ath9k: fix mac80211 queue lookup for waking up queues
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / xmit.c
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "ath9k.h"
18 #include "ar9003_mac.h"
19
20 #define BITS_PER_BYTE 8
21 #define OFDM_PLCP_BITS 22
22 #define HT_RC_2_MCS(_rc) ((_rc) & 0x1f)
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF 8
25 #define L_LTF 8
26 #define L_SIG 4
27 #define HT_SIG 8
28 #define HT_STF 4
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
33 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
34
35 #define OFDM_SIFS_TIME 16
36
37 static u16 bits_per_symbol[][2] = {
38 /* 20MHz 40MHz */
39 { 26, 54 }, /* 0: BPSK */
40 { 52, 108 }, /* 1: QPSK 1/2 */
41 { 78, 162 }, /* 2: QPSK 3/4 */
42 { 104, 216 }, /* 3: 16-QAM 1/2 */
43 { 156, 324 }, /* 4: 16-QAM 3/4 */
44 { 208, 432 }, /* 5: 64-QAM 2/3 */
45 { 234, 486 }, /* 6: 64-QAM 3/4 */
46 { 260, 540 }, /* 7: 64-QAM 5/6 */
47 };
48
49 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
50
51 static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
52 struct ath_atx_tid *tid,
53 struct list_head *bf_head);
54 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
55 struct ath_txq *txq, struct list_head *bf_q,
56 struct ath_tx_status *ts, int txok, int sendbar);
57 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
58 struct list_head *head);
59 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf);
60 static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
61 struct ath_tx_status *ts, int txok);
62 static void ath_tx_rc_status(struct ath_buf *bf, struct ath_tx_status *ts,
63 int nbad, int txok, bool update_rc);
64
65 enum {
66 MCS_HT20,
67 MCS_HT20_SGI,
68 MCS_HT40,
69 MCS_HT40_SGI,
70 };
71
72 static int ath_max_4ms_framelen[4][32] = {
73 [MCS_HT20] = {
74 3212, 6432, 9648, 12864, 19300, 25736, 28952, 32172,
75 6424, 12852, 19280, 25708, 38568, 51424, 57852, 64280,
76 9628, 19260, 28896, 38528, 57792, 65532, 65532, 65532,
77 12828, 25656, 38488, 51320, 65532, 65532, 65532, 65532,
78 },
79 [MCS_HT20_SGI] = {
80 3572, 7144, 10720, 14296, 21444, 28596, 32172, 35744,
81 7140, 14284, 21428, 28568, 42856, 57144, 64288, 65532,
82 10700, 21408, 32112, 42816, 64228, 65532, 65532, 65532,
83 14256, 28516, 42780, 57040, 65532, 65532, 65532, 65532,
84 },
85 [MCS_HT40] = {
86 6680, 13360, 20044, 26724, 40092, 53456, 60140, 65532,
87 13348, 26700, 40052, 53400, 65532, 65532, 65532, 65532,
88 20004, 40008, 60016, 65532, 65532, 65532, 65532, 65532,
89 26644, 53292, 65532, 65532, 65532, 65532, 65532, 65532,
90 },
91 [MCS_HT40_SGI] = {
92 7420, 14844, 22272, 29696, 44544, 59396, 65532, 65532,
93 14832, 29668, 44504, 59340, 65532, 65532, 65532, 65532,
94 22232, 44464, 65532, 65532, 65532, 65532, 65532, 65532,
95 29616, 59232, 65532, 65532, 65532, 65532, 65532, 65532,
96 }
97 };
98
99 /*********************/
100 /* Aggregation logic */
101 /*********************/
102
103 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
104 {
105 struct ath_atx_ac *ac = tid->ac;
106
107 if (tid->paused)
108 return;
109
110 if (tid->sched)
111 return;
112
113 tid->sched = true;
114 list_add_tail(&tid->list, &ac->tid_q);
115
116 if (ac->sched)
117 return;
118
119 ac->sched = true;
120 list_add_tail(&ac->list, &txq->axq_acq);
121 }
122
123 static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
124 {
125 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
126
127 spin_lock_bh(&txq->axq_lock);
128 tid->paused++;
129 spin_unlock_bh(&txq->axq_lock);
130 }
131
132 static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
133 {
134 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
135
136 BUG_ON(tid->paused <= 0);
137 spin_lock_bh(&txq->axq_lock);
138
139 tid->paused--;
140
141 if (tid->paused > 0)
142 goto unlock;
143
144 if (list_empty(&tid->buf_q))
145 goto unlock;
146
147 ath_tx_queue_tid(txq, tid);
148 ath_txq_schedule(sc, txq);
149 unlock:
150 spin_unlock_bh(&txq->axq_lock);
151 }
152
153 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
154 {
155 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
156 struct ath_buf *bf;
157 struct list_head bf_head;
158 INIT_LIST_HEAD(&bf_head);
159
160 BUG_ON(tid->paused <= 0);
161 spin_lock_bh(&txq->axq_lock);
162
163 tid->paused--;
164
165 if (tid->paused > 0) {
166 spin_unlock_bh(&txq->axq_lock);
167 return;
168 }
169
170 while (!list_empty(&tid->buf_q)) {
171 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
172 BUG_ON(bf_isretried(bf));
173 list_move_tail(&bf->list, &bf_head);
174 ath_tx_send_ht_normal(sc, txq, tid, &bf_head);
175 }
176
177 spin_unlock_bh(&txq->axq_lock);
178 }
179
180 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
181 int seqno)
182 {
183 int index, cindex;
184
185 index = ATH_BA_INDEX(tid->seq_start, seqno);
186 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
187
188 tid->tx_buf[cindex] = NULL;
189
190 while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
191 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
192 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
193 }
194 }
195
196 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
197 struct ath_buf *bf)
198 {
199 int index, cindex;
200
201 if (bf_isretried(bf))
202 return;
203
204 index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
205 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
206
207 BUG_ON(tid->tx_buf[cindex] != NULL);
208 tid->tx_buf[cindex] = bf;
209
210 if (index >= ((tid->baw_tail - tid->baw_head) &
211 (ATH_TID_MAX_BUFS - 1))) {
212 tid->baw_tail = cindex;
213 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
214 }
215 }
216
217 /*
218 * TODO: For frame(s) that are in the retry state, we will reuse the
219 * sequence number(s) without setting the retry bit. The
220 * alternative is to give up on these and BAR the receiver's window
221 * forward.
222 */
223 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
224 struct ath_atx_tid *tid)
225
226 {
227 struct ath_buf *bf;
228 struct list_head bf_head;
229 struct ath_tx_status ts;
230
231 memset(&ts, 0, sizeof(ts));
232 INIT_LIST_HEAD(&bf_head);
233
234 for (;;) {
235 if (list_empty(&tid->buf_q))
236 break;
237
238 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
239 list_move_tail(&bf->list, &bf_head);
240
241 if (bf_isretried(bf))
242 ath_tx_update_baw(sc, tid, bf->bf_seqno);
243
244 spin_unlock(&txq->axq_lock);
245 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
246 spin_lock(&txq->axq_lock);
247 }
248
249 tid->seq_next = tid->seq_start;
250 tid->baw_tail = tid->baw_head;
251 }
252
253 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
254 struct ath_buf *bf)
255 {
256 struct sk_buff *skb;
257 struct ieee80211_hdr *hdr;
258
259 bf->bf_state.bf_type |= BUF_RETRY;
260 bf->bf_retries++;
261 TX_STAT_INC(txq->axq_qnum, a_retries);
262
263 skb = bf->bf_mpdu;
264 hdr = (struct ieee80211_hdr *)skb->data;
265 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
266 }
267
268 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
269 {
270 struct ath_buf *bf = NULL;
271
272 spin_lock_bh(&sc->tx.txbuflock);
273
274 if (unlikely(list_empty(&sc->tx.txbuf))) {
275 spin_unlock_bh(&sc->tx.txbuflock);
276 return NULL;
277 }
278
279 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
280 list_del(&bf->list);
281
282 spin_unlock_bh(&sc->tx.txbuflock);
283
284 return bf;
285 }
286
287 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
288 {
289 spin_lock_bh(&sc->tx.txbuflock);
290 list_add_tail(&bf->list, &sc->tx.txbuf);
291 spin_unlock_bh(&sc->tx.txbuflock);
292 }
293
294 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
295 {
296 struct ath_buf *tbf;
297
298 tbf = ath_tx_get_buffer(sc);
299 if (WARN_ON(!tbf))
300 return NULL;
301
302 ATH_TXBUF_RESET(tbf);
303
304 tbf->aphy = bf->aphy;
305 tbf->bf_mpdu = bf->bf_mpdu;
306 tbf->bf_buf_addr = bf->bf_buf_addr;
307 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
308 tbf->bf_state = bf->bf_state;
309 tbf->bf_dmacontext = bf->bf_dmacontext;
310
311 return tbf;
312 }
313
314 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
315 struct ath_buf *bf, struct list_head *bf_q,
316 struct ath_tx_status *ts, int txok)
317 {
318 struct ath_node *an = NULL;
319 struct sk_buff *skb;
320 struct ieee80211_sta *sta;
321 struct ieee80211_hw *hw;
322 struct ieee80211_hdr *hdr;
323 struct ieee80211_tx_info *tx_info;
324 struct ath_atx_tid *tid = NULL;
325 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
326 struct list_head bf_head, bf_pending;
327 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0;
328 u32 ba[WME_BA_BMP_SIZE >> 5];
329 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
330 bool rc_update = true;
331
332 skb = bf->bf_mpdu;
333 hdr = (struct ieee80211_hdr *)skb->data;
334
335 tx_info = IEEE80211_SKB_CB(skb);
336 hw = bf->aphy->hw;
337
338 rcu_read_lock();
339
340 /* XXX: use ieee80211_find_sta! */
341 sta = ieee80211_find_sta_by_hw(hw, hdr->addr1);
342 if (!sta) {
343 rcu_read_unlock();
344 return;
345 }
346
347 an = (struct ath_node *)sta->drv_priv;
348 tid = ATH_AN_2_TID(an, bf->bf_tidno);
349
350 isaggr = bf_isaggr(bf);
351 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
352
353 if (isaggr && txok) {
354 if (ts->ts_flags & ATH9K_TX_BA) {
355 seq_st = ts->ts_seqnum;
356 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
357 } else {
358 /*
359 * AR5416 can become deaf/mute when BA
360 * issue happens. Chip needs to be reset.
361 * But AP code may have sychronization issues
362 * when perform internal reset in this routine.
363 * Only enable reset in STA mode for now.
364 */
365 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
366 needreset = 1;
367 }
368 }
369
370 INIT_LIST_HEAD(&bf_pending);
371 INIT_LIST_HEAD(&bf_head);
372
373 nbad = ath_tx_num_badfrms(sc, bf, ts, txok);
374 while (bf) {
375 txfail = txpending = 0;
376 bf_next = bf->bf_next;
377
378 if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) {
379 /* transmit completion, subframe is
380 * acked by block ack */
381 acked_cnt++;
382 } else if (!isaggr && txok) {
383 /* transmit completion */
384 acked_cnt++;
385 } else {
386 if (!(tid->state & AGGR_CLEANUP) &&
387 !bf_last->bf_tx_aborted) {
388 if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
389 ath_tx_set_retry(sc, txq, bf);
390 txpending = 1;
391 } else {
392 bf->bf_state.bf_type |= BUF_XRETRY;
393 txfail = 1;
394 sendbar = 1;
395 txfail_cnt++;
396 }
397 } else {
398 /*
399 * cleanup in progress, just fail
400 * the un-acked sub-frames
401 */
402 txfail = 1;
403 }
404 }
405
406 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
407 bf_next == NULL) {
408 /*
409 * Make sure the last desc is reclaimed if it
410 * not a holding desc.
411 */
412 if (!bf_last->bf_stale)
413 list_move_tail(&bf->list, &bf_head);
414 else
415 INIT_LIST_HEAD(&bf_head);
416 } else {
417 BUG_ON(list_empty(bf_q));
418 list_move_tail(&bf->list, &bf_head);
419 }
420
421 if (!txpending) {
422 /*
423 * complete the acked-ones/xretried ones; update
424 * block-ack window
425 */
426 spin_lock_bh(&txq->axq_lock);
427 ath_tx_update_baw(sc, tid, bf->bf_seqno);
428 spin_unlock_bh(&txq->axq_lock);
429
430 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
431 ath_tx_rc_status(bf, ts, nbad, txok, true);
432 rc_update = false;
433 } else {
434 ath_tx_rc_status(bf, ts, nbad, txok, false);
435 }
436
437 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
438 !txfail, sendbar);
439 } else {
440 /* retry the un-acked ones */
441 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) {
442 if (bf->bf_next == NULL && bf_last->bf_stale) {
443 struct ath_buf *tbf;
444
445 tbf = ath_clone_txbuf(sc, bf_last);
446 /*
447 * Update tx baw and complete the
448 * frame with failed status if we
449 * run out of tx buf.
450 */
451 if (!tbf) {
452 spin_lock_bh(&txq->axq_lock);
453 ath_tx_update_baw(sc, tid,
454 bf->bf_seqno);
455 spin_unlock_bh(&txq->axq_lock);
456
457 bf->bf_state.bf_type |=
458 BUF_XRETRY;
459 ath_tx_rc_status(bf, ts, nbad,
460 0, false);
461 ath_tx_complete_buf(sc, bf, txq,
462 &bf_head,
463 ts, 0, 0);
464 break;
465 }
466
467 ath9k_hw_cleartxdesc(sc->sc_ah,
468 tbf->bf_desc);
469 list_add_tail(&tbf->list, &bf_head);
470 } else {
471 /*
472 * Clear descriptor status words for
473 * software retry
474 */
475 ath9k_hw_cleartxdesc(sc->sc_ah,
476 bf->bf_desc);
477 }
478 }
479
480 /*
481 * Put this buffer to the temporary pending
482 * queue to retain ordering
483 */
484 list_splice_tail_init(&bf_head, &bf_pending);
485 }
486
487 bf = bf_next;
488 }
489
490 if (tid->state & AGGR_CLEANUP) {
491 if (tid->baw_head == tid->baw_tail) {
492 tid->state &= ~AGGR_ADDBA_COMPLETE;
493 tid->state &= ~AGGR_CLEANUP;
494
495 /* send buffered frames as singles */
496 ath_tx_flush_tid(sc, tid);
497 }
498 rcu_read_unlock();
499 return;
500 }
501
502 /* prepend un-acked frames to the beginning of the pending frame queue */
503 if (!list_empty(&bf_pending)) {
504 spin_lock_bh(&txq->axq_lock);
505 list_splice(&bf_pending, &tid->buf_q);
506 ath_tx_queue_tid(txq, tid);
507 spin_unlock_bh(&txq->axq_lock);
508 }
509
510 rcu_read_unlock();
511
512 if (needreset)
513 ath_reset(sc, false);
514 }
515
516 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
517 struct ath_atx_tid *tid)
518 {
519 struct sk_buff *skb;
520 struct ieee80211_tx_info *tx_info;
521 struct ieee80211_tx_rate *rates;
522 u32 max_4ms_framelen, frmlen;
523 u16 aggr_limit, legacy = 0;
524 int i;
525
526 skb = bf->bf_mpdu;
527 tx_info = IEEE80211_SKB_CB(skb);
528 rates = tx_info->control.rates;
529
530 /*
531 * Find the lowest frame length among the rate series that will have a
532 * 4ms transmit duration.
533 * TODO - TXOP limit needs to be considered.
534 */
535 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
536
537 for (i = 0; i < 4; i++) {
538 if (rates[i].count) {
539 int modeidx;
540 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
541 legacy = 1;
542 break;
543 }
544
545 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
546 modeidx = MCS_HT40;
547 else
548 modeidx = MCS_HT20;
549
550 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
551 modeidx++;
552
553 frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx];
554 max_4ms_framelen = min(max_4ms_framelen, frmlen);
555 }
556 }
557
558 /*
559 * limit aggregate size by the minimum rate if rate selected is
560 * not a probe rate, if rate selected is a probe rate then
561 * avoid aggregation of this packet.
562 */
563 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
564 return 0;
565
566 if (sc->sc_flags & SC_OP_BT_PRIORITY_DETECTED)
567 aggr_limit = min((max_4ms_framelen * 3) / 8,
568 (u32)ATH_AMPDU_LIMIT_MAX);
569 else
570 aggr_limit = min(max_4ms_framelen,
571 (u32)ATH_AMPDU_LIMIT_MAX);
572
573 /*
574 * h/w can accept aggregates upto 16 bit lengths (65535).
575 * The IE, however can hold upto 65536, which shows up here
576 * as zero. Ignore 65536 since we are constrained by hw.
577 */
578 if (tid->an->maxampdu)
579 aggr_limit = min(aggr_limit, tid->an->maxampdu);
580
581 return aggr_limit;
582 }
583
584 /*
585 * Returns the number of delimiters to be added to
586 * meet the minimum required mpdudensity.
587 */
588 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
589 struct ath_buf *bf, u16 frmlen)
590 {
591 struct sk_buff *skb = bf->bf_mpdu;
592 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
593 u32 nsymbits, nsymbols;
594 u16 minlen;
595 u8 flags, rix;
596 int width, streams, half_gi, ndelim, mindelim;
597
598 /* Select standard number of delimiters based on frame length alone */
599 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
600
601 /*
602 * If encryption enabled, hardware requires some more padding between
603 * subframes.
604 * TODO - this could be improved to be dependent on the rate.
605 * The hardware can keep up at lower rates, but not higher rates
606 */
607 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
608 ndelim += ATH_AGGR_ENCRYPTDELIM;
609
610 /*
611 * Convert desired mpdu density from microeconds to bytes based
612 * on highest rate in rate series (i.e. first rate) to determine
613 * required minimum length for subframe. Take into account
614 * whether high rate is 20 or 40Mhz and half or full GI.
615 *
616 * If there is no mpdu density restriction, no further calculation
617 * is needed.
618 */
619
620 if (tid->an->mpdudensity == 0)
621 return ndelim;
622
623 rix = tx_info->control.rates[0].idx;
624 flags = tx_info->control.rates[0].flags;
625 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
626 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
627
628 if (half_gi)
629 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
630 else
631 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
632
633 if (nsymbols == 0)
634 nsymbols = 1;
635
636 streams = HT_RC_2_STREAMS(rix);
637 nsymbits = bits_per_symbol[rix % 8][width] * streams;
638 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
639
640 if (frmlen < minlen) {
641 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
642 ndelim = max(mindelim, ndelim);
643 }
644
645 return ndelim;
646 }
647
648 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
649 struct ath_txq *txq,
650 struct ath_atx_tid *tid,
651 struct list_head *bf_q)
652 {
653 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
654 struct ath_buf *bf, *bf_first, *bf_prev = NULL;
655 int rl = 0, nframes = 0, ndelim, prev_al = 0;
656 u16 aggr_limit = 0, al = 0, bpad = 0,
657 al_delta, h_baw = tid->baw_size / 2;
658 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
659
660 bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
661
662 do {
663 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
664
665 /* do not step over block-ack window */
666 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) {
667 status = ATH_AGGR_BAW_CLOSED;
668 break;
669 }
670
671 if (!rl) {
672 aggr_limit = ath_lookup_rate(sc, bf, tid);
673 rl = 1;
674 }
675
676 /* do not exceed aggregation limit */
677 al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen;
678
679 if (nframes &&
680 (aggr_limit < (al + bpad + al_delta + prev_al))) {
681 status = ATH_AGGR_LIMITED;
682 break;
683 }
684
685 /* do not exceed subframe limit */
686 if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
687 status = ATH_AGGR_LIMITED;
688 break;
689 }
690 nframes++;
691
692 /* add padding for previous frame to aggregation length */
693 al += bpad + al_delta;
694
695 /*
696 * Get the delimiters needed to meet the MPDU
697 * density for this node.
698 */
699 ndelim = ath_compute_num_delims(sc, tid, bf_first, bf->bf_frmlen);
700 bpad = PADBYTES(al_delta) + (ndelim << 2);
701
702 bf->bf_next = NULL;
703 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, 0);
704
705 /* link buffers of this frame to the aggregate */
706 ath_tx_addto_baw(sc, tid, bf);
707 ath9k_hw_set11n_aggr_middle(sc->sc_ah, bf->bf_desc, ndelim);
708 list_move_tail(&bf->list, bf_q);
709 if (bf_prev) {
710 bf_prev->bf_next = bf;
711 ath9k_hw_set_desc_link(sc->sc_ah, bf_prev->bf_desc,
712 bf->bf_daddr);
713 }
714 bf_prev = bf;
715
716 } while (!list_empty(&tid->buf_q));
717
718 bf_first->bf_al = al;
719 bf_first->bf_nframes = nframes;
720
721 return status;
722 #undef PADBYTES
723 }
724
725 static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
726 struct ath_atx_tid *tid)
727 {
728 struct ath_buf *bf;
729 enum ATH_AGGR_STATUS status;
730 struct list_head bf_q;
731
732 do {
733 if (list_empty(&tid->buf_q))
734 return;
735
736 INIT_LIST_HEAD(&bf_q);
737
738 status = ath_tx_form_aggr(sc, txq, tid, &bf_q);
739
740 /*
741 * no frames picked up to be aggregated;
742 * block-ack window is not open.
743 */
744 if (list_empty(&bf_q))
745 break;
746
747 bf = list_first_entry(&bf_q, struct ath_buf, list);
748 bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
749
750 /* if only one frame, send as non-aggregate */
751 if (bf->bf_nframes == 1) {
752 bf->bf_state.bf_type &= ~BUF_AGGR;
753 ath9k_hw_clr11n_aggr(sc->sc_ah, bf->bf_desc);
754 ath_buf_set_rate(sc, bf);
755 ath_tx_txqaddbuf(sc, txq, &bf_q);
756 continue;
757 }
758
759 /* setup first desc of aggregate */
760 bf->bf_state.bf_type |= BUF_AGGR;
761 ath_buf_set_rate(sc, bf);
762 ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al);
763
764 /* anchor last desc of aggregate */
765 ath9k_hw_set11n_aggr_last(sc->sc_ah, bf->bf_lastbf->bf_desc);
766
767 ath_tx_txqaddbuf(sc, txq, &bf_q);
768 TX_STAT_INC(txq->axq_qnum, a_aggr);
769
770 } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
771 status != ATH_AGGR_BAW_CLOSED);
772 }
773
774 void ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
775 u16 tid, u16 *ssn)
776 {
777 struct ath_atx_tid *txtid;
778 struct ath_node *an;
779
780 an = (struct ath_node *)sta->drv_priv;
781 txtid = ATH_AN_2_TID(an, tid);
782 txtid->state |= AGGR_ADDBA_PROGRESS;
783 ath_tx_pause_tid(sc, txtid);
784 *ssn = txtid->seq_start;
785 }
786
787 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
788 {
789 struct ath_node *an = (struct ath_node *)sta->drv_priv;
790 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
791 struct ath_txq *txq = &sc->tx.txq[txtid->ac->qnum];
792 struct ath_tx_status ts;
793 struct ath_buf *bf;
794 struct list_head bf_head;
795
796 memset(&ts, 0, sizeof(ts));
797 INIT_LIST_HEAD(&bf_head);
798
799 if (txtid->state & AGGR_CLEANUP)
800 return;
801
802 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
803 txtid->state &= ~AGGR_ADDBA_PROGRESS;
804 return;
805 }
806
807 ath_tx_pause_tid(sc, txtid);
808
809 /* drop all software retried frames and mark this TID */
810 spin_lock_bh(&txq->axq_lock);
811 while (!list_empty(&txtid->buf_q)) {
812 bf = list_first_entry(&txtid->buf_q, struct ath_buf, list);
813 if (!bf_isretried(bf)) {
814 /*
815 * NB: it's based on the assumption that
816 * software retried frame will always stay
817 * at the head of software queue.
818 */
819 break;
820 }
821 list_move_tail(&bf->list, &bf_head);
822 ath_tx_update_baw(sc, txtid, bf->bf_seqno);
823 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
824 }
825 spin_unlock_bh(&txq->axq_lock);
826
827 if (txtid->baw_head != txtid->baw_tail) {
828 txtid->state |= AGGR_CLEANUP;
829 } else {
830 txtid->state &= ~AGGR_ADDBA_COMPLETE;
831 ath_tx_flush_tid(sc, txtid);
832 }
833 }
834
835 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
836 {
837 struct ath_atx_tid *txtid;
838 struct ath_node *an;
839
840 an = (struct ath_node *)sta->drv_priv;
841
842 if (sc->sc_flags & SC_OP_TXAGGR) {
843 txtid = ATH_AN_2_TID(an, tid);
844 txtid->baw_size =
845 IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
846 txtid->state |= AGGR_ADDBA_COMPLETE;
847 txtid->state &= ~AGGR_ADDBA_PROGRESS;
848 ath_tx_resume_tid(sc, txtid);
849 }
850 }
851
852 bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an, u8 tidno)
853 {
854 struct ath_atx_tid *txtid;
855
856 if (!(sc->sc_flags & SC_OP_TXAGGR))
857 return false;
858
859 txtid = ATH_AN_2_TID(an, tidno);
860
861 if (!(txtid->state & (AGGR_ADDBA_COMPLETE | AGGR_ADDBA_PROGRESS)))
862 return true;
863 return false;
864 }
865
866 /********************/
867 /* Queue Management */
868 /********************/
869
870 static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
871 struct ath_txq *txq)
872 {
873 struct ath_atx_ac *ac, *ac_tmp;
874 struct ath_atx_tid *tid, *tid_tmp;
875
876 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
877 list_del(&ac->list);
878 ac->sched = false;
879 list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
880 list_del(&tid->list);
881 tid->sched = false;
882 ath_tid_drain(sc, txq, tid);
883 }
884 }
885 }
886
887 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
888 {
889 struct ath_hw *ah = sc->sc_ah;
890 struct ath_common *common = ath9k_hw_common(ah);
891 struct ath9k_tx_queue_info qi;
892 int qnum, i;
893
894 memset(&qi, 0, sizeof(qi));
895 qi.tqi_subtype = subtype;
896 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
897 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
898 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
899 qi.tqi_physCompBuf = 0;
900
901 /*
902 * Enable interrupts only for EOL and DESC conditions.
903 * We mark tx descriptors to receive a DESC interrupt
904 * when a tx queue gets deep; otherwise waiting for the
905 * EOL to reap descriptors. Note that this is done to
906 * reduce interrupt load and this only defers reaping
907 * descriptors, never transmitting frames. Aside from
908 * reducing interrupts this also permits more concurrency.
909 * The only potential downside is if the tx queue backs
910 * up in which case the top half of the kernel may backup
911 * due to a lack of tx descriptors.
912 *
913 * The UAPSD queue is an exception, since we take a desc-
914 * based intr on the EOSP frames.
915 */
916 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
917 qi.tqi_qflags = TXQ_FLAG_TXOKINT_ENABLE |
918 TXQ_FLAG_TXERRINT_ENABLE;
919 } else {
920 if (qtype == ATH9K_TX_QUEUE_UAPSD)
921 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
922 else
923 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
924 TXQ_FLAG_TXDESCINT_ENABLE;
925 }
926 qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
927 if (qnum == -1) {
928 /*
929 * NB: don't print a message, this happens
930 * normally on parts with too few tx queues
931 */
932 return NULL;
933 }
934 if (qnum >= ARRAY_SIZE(sc->tx.txq)) {
935 ath_print(common, ATH_DBG_FATAL,
936 "qnum %u out of range, max %u!\n",
937 qnum, (unsigned int)ARRAY_SIZE(sc->tx.txq));
938 ath9k_hw_releasetxqueue(ah, qnum);
939 return NULL;
940 }
941 if (!ATH_TXQ_SETUP(sc, qnum)) {
942 struct ath_txq *txq = &sc->tx.txq[qnum];
943
944 txq->axq_class = subtype;
945 txq->axq_qnum = qnum;
946 txq->axq_link = NULL;
947 INIT_LIST_HEAD(&txq->axq_q);
948 INIT_LIST_HEAD(&txq->axq_acq);
949 spin_lock_init(&txq->axq_lock);
950 txq->axq_depth = 0;
951 txq->axq_tx_inprogress = false;
952 sc->tx.txqsetup |= 1<<qnum;
953
954 txq->txq_headidx = txq->txq_tailidx = 0;
955 for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
956 INIT_LIST_HEAD(&txq->txq_fifo[i]);
957 INIT_LIST_HEAD(&txq->txq_fifo_pending);
958 }
959 return &sc->tx.txq[qnum];
960 }
961
962 int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype)
963 {
964 int qnum;
965
966 switch (qtype) {
967 case ATH9K_TX_QUEUE_DATA:
968 if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
969 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
970 "HAL AC %u out of range, max %zu!\n",
971 haltype, ARRAY_SIZE(sc->tx.hwq_map));
972 return -1;
973 }
974 qnum = sc->tx.hwq_map[haltype];
975 break;
976 case ATH9K_TX_QUEUE_BEACON:
977 qnum = sc->beacon.beaconq;
978 break;
979 case ATH9K_TX_QUEUE_CAB:
980 qnum = sc->beacon.cabq->axq_qnum;
981 break;
982 default:
983 qnum = -1;
984 }
985 return qnum;
986 }
987
988 int ath_txq_update(struct ath_softc *sc, int qnum,
989 struct ath9k_tx_queue_info *qinfo)
990 {
991 struct ath_hw *ah = sc->sc_ah;
992 int error = 0;
993 struct ath9k_tx_queue_info qi;
994
995 if (qnum == sc->beacon.beaconq) {
996 /*
997 * XXX: for beacon queue, we just save the parameter.
998 * It will be picked up by ath_beaconq_config when
999 * it's necessary.
1000 */
1001 sc->beacon.beacon_qi = *qinfo;
1002 return 0;
1003 }
1004
1005 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1006
1007 ath9k_hw_get_txq_props(ah, qnum, &qi);
1008 qi.tqi_aifs = qinfo->tqi_aifs;
1009 qi.tqi_cwmin = qinfo->tqi_cwmin;
1010 qi.tqi_cwmax = qinfo->tqi_cwmax;
1011 qi.tqi_burstTime = qinfo->tqi_burstTime;
1012 qi.tqi_readyTime = qinfo->tqi_readyTime;
1013
1014 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1015 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1016 "Unable to update hardware queue %u!\n", qnum);
1017 error = -EIO;
1018 } else {
1019 ath9k_hw_resettxqueue(ah, qnum);
1020 }
1021
1022 return error;
1023 }
1024
1025 int ath_cabq_update(struct ath_softc *sc)
1026 {
1027 struct ath9k_tx_queue_info qi;
1028 int qnum = sc->beacon.cabq->axq_qnum;
1029
1030 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1031 /*
1032 * Ensure the readytime % is within the bounds.
1033 */
1034 if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
1035 sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
1036 else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
1037 sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
1038
1039 qi.tqi_readyTime = (sc->beacon_interval *
1040 sc->config.cabqReadytime) / 100;
1041 ath_txq_update(sc, qnum, &qi);
1042
1043 return 0;
1044 }
1045
1046 /*
1047 * Drain a given TX queue (could be Beacon or Data)
1048 *
1049 * This assumes output has been stopped and
1050 * we do not need to block ath_tx_tasklet.
1051 */
1052 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
1053 {
1054 struct ath_buf *bf, *lastbf;
1055 struct list_head bf_head;
1056 struct ath_tx_status ts;
1057
1058 memset(&ts, 0, sizeof(ts));
1059 INIT_LIST_HEAD(&bf_head);
1060
1061 for (;;) {
1062 spin_lock_bh(&txq->axq_lock);
1063
1064 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1065 if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
1066 txq->txq_headidx = txq->txq_tailidx = 0;
1067 spin_unlock_bh(&txq->axq_lock);
1068 break;
1069 } else {
1070 bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
1071 struct ath_buf, list);
1072 }
1073 } else {
1074 if (list_empty(&txq->axq_q)) {
1075 txq->axq_link = NULL;
1076 spin_unlock_bh(&txq->axq_lock);
1077 break;
1078 }
1079 bf = list_first_entry(&txq->axq_q, struct ath_buf,
1080 list);
1081
1082 if (bf->bf_stale) {
1083 list_del(&bf->list);
1084 spin_unlock_bh(&txq->axq_lock);
1085
1086 ath_tx_return_buffer(sc, bf);
1087 continue;
1088 }
1089 }
1090
1091 lastbf = bf->bf_lastbf;
1092 if (!retry_tx)
1093 lastbf->bf_tx_aborted = true;
1094
1095 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1096 list_cut_position(&bf_head,
1097 &txq->txq_fifo[txq->txq_tailidx],
1098 &lastbf->list);
1099 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
1100 } else {
1101 /* remove ath_buf's of the same mpdu from txq */
1102 list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
1103 }
1104
1105 txq->axq_depth--;
1106
1107 spin_unlock_bh(&txq->axq_lock);
1108
1109 if (bf_isampdu(bf))
1110 ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0);
1111 else
1112 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
1113 }
1114
1115 spin_lock_bh(&txq->axq_lock);
1116 txq->axq_tx_inprogress = false;
1117 spin_unlock_bh(&txq->axq_lock);
1118
1119 /* flush any pending frames if aggregation is enabled */
1120 if (sc->sc_flags & SC_OP_TXAGGR) {
1121 if (!retry_tx) {
1122 spin_lock_bh(&txq->axq_lock);
1123 ath_txq_drain_pending_buffers(sc, txq);
1124 spin_unlock_bh(&txq->axq_lock);
1125 }
1126 }
1127
1128 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1129 spin_lock_bh(&txq->axq_lock);
1130 while (!list_empty(&txq->txq_fifo_pending)) {
1131 bf = list_first_entry(&txq->txq_fifo_pending,
1132 struct ath_buf, list);
1133 list_cut_position(&bf_head,
1134 &txq->txq_fifo_pending,
1135 &bf->bf_lastbf->list);
1136 spin_unlock_bh(&txq->axq_lock);
1137
1138 if (bf_isampdu(bf))
1139 ath_tx_complete_aggr(sc, txq, bf, &bf_head,
1140 &ts, 0);
1141 else
1142 ath_tx_complete_buf(sc, bf, txq, &bf_head,
1143 &ts, 0, 0);
1144 spin_lock_bh(&txq->axq_lock);
1145 }
1146 spin_unlock_bh(&txq->axq_lock);
1147 }
1148 }
1149
1150 void ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
1151 {
1152 struct ath_hw *ah = sc->sc_ah;
1153 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1154 struct ath_txq *txq;
1155 int i, npend = 0;
1156
1157 if (sc->sc_flags & SC_OP_INVALID)
1158 return;
1159
1160 /* Stop beacon queue */
1161 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
1162
1163 /* Stop data queues */
1164 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1165 if (ATH_TXQ_SETUP(sc, i)) {
1166 txq = &sc->tx.txq[i];
1167 ath9k_hw_stoptxdma(ah, txq->axq_qnum);
1168 npend += ath9k_hw_numtxpending(ah, txq->axq_qnum);
1169 }
1170 }
1171
1172 if (npend) {
1173 int r;
1174
1175 ath_print(common, ATH_DBG_FATAL,
1176 "Failed to stop TX DMA. Resetting hardware!\n");
1177
1178 spin_lock_bh(&sc->sc_resetlock);
1179 r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1180 if (r)
1181 ath_print(common, ATH_DBG_FATAL,
1182 "Unable to reset hardware; reset status %d\n",
1183 r);
1184 spin_unlock_bh(&sc->sc_resetlock);
1185 }
1186
1187 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1188 if (ATH_TXQ_SETUP(sc, i))
1189 ath_draintxq(sc, &sc->tx.txq[i], retry_tx);
1190 }
1191 }
1192
1193 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1194 {
1195 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1196 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1197 }
1198
1199 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1200 {
1201 struct ath_atx_ac *ac;
1202 struct ath_atx_tid *tid;
1203
1204 if (list_empty(&txq->axq_acq))
1205 return;
1206
1207 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1208 list_del(&ac->list);
1209 ac->sched = false;
1210
1211 do {
1212 if (list_empty(&ac->tid_q))
1213 return;
1214
1215 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
1216 list_del(&tid->list);
1217 tid->sched = false;
1218
1219 if (tid->paused)
1220 continue;
1221
1222 ath_tx_sched_aggr(sc, txq, tid);
1223
1224 /*
1225 * add tid to round-robin queue if more frames
1226 * are pending for the tid
1227 */
1228 if (!list_empty(&tid->buf_q))
1229 ath_tx_queue_tid(txq, tid);
1230
1231 break;
1232 } while (!list_empty(&ac->tid_q));
1233
1234 if (!list_empty(&ac->tid_q)) {
1235 if (!ac->sched) {
1236 ac->sched = true;
1237 list_add_tail(&ac->list, &txq->axq_acq);
1238 }
1239 }
1240 }
1241
1242 int ath_tx_setup(struct ath_softc *sc, int haltype)
1243 {
1244 struct ath_txq *txq;
1245
1246 if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
1247 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1248 "HAL AC %u out of range, max %zu!\n",
1249 haltype, ARRAY_SIZE(sc->tx.hwq_map));
1250 return 0;
1251 }
1252 txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
1253 if (txq != NULL) {
1254 sc->tx.hwq_map[haltype] = txq->axq_qnum;
1255 return 1;
1256 } else
1257 return 0;
1258 }
1259
1260 /***********/
1261 /* TX, DMA */
1262 /***********/
1263
1264 /*
1265 * Insert a chain of ath_buf (descriptors) on a txq and
1266 * assume the descriptors are already chained together by caller.
1267 */
1268 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1269 struct list_head *head)
1270 {
1271 struct ath_hw *ah = sc->sc_ah;
1272 struct ath_common *common = ath9k_hw_common(ah);
1273 struct ath_buf *bf;
1274
1275 /*
1276 * Insert the frame on the outbound list and
1277 * pass it on to the hardware.
1278 */
1279
1280 if (list_empty(head))
1281 return;
1282
1283 bf = list_first_entry(head, struct ath_buf, list);
1284
1285 ath_print(common, ATH_DBG_QUEUE,
1286 "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
1287
1288 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1289 if (txq->axq_depth >= ATH_TXFIFO_DEPTH) {
1290 list_splice_tail_init(head, &txq->txq_fifo_pending);
1291 return;
1292 }
1293 if (!list_empty(&txq->txq_fifo[txq->txq_headidx]))
1294 ath_print(common, ATH_DBG_XMIT,
1295 "Initializing tx fifo %d which "
1296 "is non-empty\n",
1297 txq->txq_headidx);
1298 INIT_LIST_HEAD(&txq->txq_fifo[txq->txq_headidx]);
1299 list_splice_init(head, &txq->txq_fifo[txq->txq_headidx]);
1300 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
1301 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1302 ath_print(common, ATH_DBG_XMIT,
1303 "TXDP[%u] = %llx (%p)\n",
1304 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1305 } else {
1306 list_splice_tail_init(head, &txq->axq_q);
1307
1308 if (txq->axq_link == NULL) {
1309 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1310 ath_print(common, ATH_DBG_XMIT,
1311 "TXDP[%u] = %llx (%p)\n",
1312 txq->axq_qnum, ito64(bf->bf_daddr),
1313 bf->bf_desc);
1314 } else {
1315 *txq->axq_link = bf->bf_daddr;
1316 ath_print(common, ATH_DBG_XMIT,
1317 "link[%u] (%p)=%llx (%p)\n",
1318 txq->axq_qnum, txq->axq_link,
1319 ito64(bf->bf_daddr), bf->bf_desc);
1320 }
1321 ath9k_hw_get_desc_link(ah, bf->bf_lastbf->bf_desc,
1322 &txq->axq_link);
1323 ath9k_hw_txstart(ah, txq->axq_qnum);
1324 }
1325 txq->axq_depth++;
1326 }
1327
1328 static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
1329 struct list_head *bf_head,
1330 struct ath_tx_control *txctl)
1331 {
1332 struct ath_buf *bf;
1333
1334 bf = list_first_entry(bf_head, struct ath_buf, list);
1335 bf->bf_state.bf_type |= BUF_AMPDU;
1336 TX_STAT_INC(txctl->txq->axq_qnum, a_queued);
1337
1338 /*
1339 * Do not queue to h/w when any of the following conditions is true:
1340 * - there are pending frames in software queue
1341 * - the TID is currently paused for ADDBA/BAR request
1342 * - seqno is not within block-ack window
1343 * - h/w queue depth exceeds low water mark
1344 */
1345 if (!list_empty(&tid->buf_q) || tid->paused ||
1346 !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) ||
1347 txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
1348 /*
1349 * Add this frame to software queue for scheduling later
1350 * for aggregation.
1351 */
1352 list_move_tail(&bf->list, &tid->buf_q);
1353 ath_tx_queue_tid(txctl->txq, tid);
1354 return;
1355 }
1356
1357 /* Add sub-frame to BAW */
1358 ath_tx_addto_baw(sc, tid, bf);
1359
1360 /* Queue to h/w without aggregation */
1361 bf->bf_nframes = 1;
1362 bf->bf_lastbf = bf;
1363 ath_buf_set_rate(sc, bf);
1364 ath_tx_txqaddbuf(sc, txctl->txq, bf_head);
1365 }
1366
1367 static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
1368 struct ath_atx_tid *tid,
1369 struct list_head *bf_head)
1370 {
1371 struct ath_buf *bf;
1372
1373 bf = list_first_entry(bf_head, struct ath_buf, list);
1374 bf->bf_state.bf_type &= ~BUF_AMPDU;
1375
1376 /* update starting sequence number for subsequent ADDBA request */
1377 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
1378
1379 bf->bf_nframes = 1;
1380 bf->bf_lastbf = bf;
1381 ath_buf_set_rate(sc, bf);
1382 ath_tx_txqaddbuf(sc, txq, bf_head);
1383 TX_STAT_INC(txq->axq_qnum, queued);
1384 }
1385
1386 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1387 struct list_head *bf_head)
1388 {
1389 struct ath_buf *bf;
1390
1391 bf = list_first_entry(bf_head, struct ath_buf, list);
1392
1393 bf->bf_lastbf = bf;
1394 bf->bf_nframes = 1;
1395 ath_buf_set_rate(sc, bf);
1396 ath_tx_txqaddbuf(sc, txq, bf_head);
1397 TX_STAT_INC(txq->axq_qnum, queued);
1398 }
1399
1400 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1401 {
1402 struct ieee80211_hdr *hdr;
1403 enum ath9k_pkt_type htype;
1404 __le16 fc;
1405
1406 hdr = (struct ieee80211_hdr *)skb->data;
1407 fc = hdr->frame_control;
1408
1409 if (ieee80211_is_beacon(fc))
1410 htype = ATH9K_PKT_TYPE_BEACON;
1411 else if (ieee80211_is_probe_resp(fc))
1412 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1413 else if (ieee80211_is_atim(fc))
1414 htype = ATH9K_PKT_TYPE_ATIM;
1415 else if (ieee80211_is_pspoll(fc))
1416 htype = ATH9K_PKT_TYPE_PSPOLL;
1417 else
1418 htype = ATH9K_PKT_TYPE_NORMAL;
1419
1420 return htype;
1421 }
1422
1423 static int get_hw_crypto_keytype(struct sk_buff *skb)
1424 {
1425 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1426
1427 if (tx_info->control.hw_key) {
1428 if (tx_info->control.hw_key->alg == ALG_WEP)
1429 return ATH9K_KEY_TYPE_WEP;
1430 else if (tx_info->control.hw_key->alg == ALG_TKIP)
1431 return ATH9K_KEY_TYPE_TKIP;
1432 else if (tx_info->control.hw_key->alg == ALG_CCMP)
1433 return ATH9K_KEY_TYPE_AES;
1434 }
1435
1436 return ATH9K_KEY_TYPE_CLEAR;
1437 }
1438
1439 static void assign_aggr_tid_seqno(struct sk_buff *skb,
1440 struct ath_buf *bf)
1441 {
1442 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1443 struct ieee80211_hdr *hdr;
1444 struct ath_node *an;
1445 struct ath_atx_tid *tid;
1446 __le16 fc;
1447 u8 *qc;
1448
1449 if (!tx_info->control.sta)
1450 return;
1451
1452 an = (struct ath_node *)tx_info->control.sta->drv_priv;
1453 hdr = (struct ieee80211_hdr *)skb->data;
1454 fc = hdr->frame_control;
1455
1456 if (ieee80211_is_data_qos(fc)) {
1457 qc = ieee80211_get_qos_ctl(hdr);
1458 bf->bf_tidno = qc[0] & 0xf;
1459 }
1460
1461 /*
1462 * For HT capable stations, we save tidno for later use.
1463 * We also override seqno set by upper layer with the one
1464 * in tx aggregation state.
1465 */
1466 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1467 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
1468 bf->bf_seqno = tid->seq_next;
1469 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
1470 }
1471
1472 static int setup_tx_flags(struct sk_buff *skb, bool use_ldpc)
1473 {
1474 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1475 int flags = 0;
1476
1477 flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
1478 flags |= ATH9K_TXDESC_INTREQ;
1479
1480 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1481 flags |= ATH9K_TXDESC_NOACK;
1482
1483 if (use_ldpc)
1484 flags |= ATH9K_TXDESC_LDPC;
1485
1486 return flags;
1487 }
1488
1489 /*
1490 * rix - rate index
1491 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1492 * width - 0 for 20 MHz, 1 for 40 MHz
1493 * half_gi - to use 4us v/s 3.6 us for symbol time
1494 */
1495 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, struct ath_buf *bf,
1496 int width, int half_gi, bool shortPreamble)
1497 {
1498 u32 nbits, nsymbits, duration, nsymbols;
1499 int streams, pktlen;
1500
1501 pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
1502
1503 /* find number of symbols: PLCP + data */
1504 streams = HT_RC_2_STREAMS(rix);
1505 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1506 nsymbits = bits_per_symbol[rix % 8][width] * streams;
1507 nsymbols = (nbits + nsymbits - 1) / nsymbits;
1508
1509 if (!half_gi)
1510 duration = SYMBOL_TIME(nsymbols);
1511 else
1512 duration = SYMBOL_TIME_HALFGI(nsymbols);
1513
1514 /* addup duration for legacy/ht training and signal fields */
1515 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1516
1517 return duration;
1518 }
1519
1520 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
1521 {
1522 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1523 struct ath9k_11n_rate_series series[4];
1524 struct sk_buff *skb;
1525 struct ieee80211_tx_info *tx_info;
1526 struct ieee80211_tx_rate *rates;
1527 const struct ieee80211_rate *rate;
1528 struct ieee80211_hdr *hdr;
1529 int i, flags = 0;
1530 u8 rix = 0, ctsrate = 0;
1531 bool is_pspoll;
1532
1533 memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
1534
1535 skb = bf->bf_mpdu;
1536 tx_info = IEEE80211_SKB_CB(skb);
1537 rates = tx_info->control.rates;
1538 hdr = (struct ieee80211_hdr *)skb->data;
1539 is_pspoll = ieee80211_is_pspoll(hdr->frame_control);
1540
1541 /*
1542 * We check if Short Preamble is needed for the CTS rate by
1543 * checking the BSS's global flag.
1544 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
1545 */
1546 rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info);
1547 ctsrate = rate->hw_value;
1548 if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
1549 ctsrate |= rate->hw_value_short;
1550
1551 for (i = 0; i < 4; i++) {
1552 bool is_40, is_sgi, is_sp;
1553 int phy;
1554
1555 if (!rates[i].count || (rates[i].idx < 0))
1556 continue;
1557
1558 rix = rates[i].idx;
1559 series[i].Tries = rates[i].count;
1560 series[i].ChSel = common->tx_chainmask;
1561
1562 if ((sc->config.ath_aggr_prot && bf_isaggr(bf)) ||
1563 (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS)) {
1564 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1565 flags |= ATH9K_TXDESC_RTSENA;
1566 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1567 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1568 flags |= ATH9K_TXDESC_CTSENA;
1569 }
1570
1571 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1572 series[i].RateFlags |= ATH9K_RATESERIES_2040;
1573 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1574 series[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1575
1576 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1577 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1578 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1579
1580 if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1581 /* MCS rates */
1582 series[i].Rate = rix | 0x80;
1583 series[i].PktDuration = ath_pkt_duration(sc, rix, bf,
1584 is_40, is_sgi, is_sp);
1585 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1586 series[i].RateFlags |= ATH9K_RATESERIES_STBC;
1587 continue;
1588 }
1589
1590 /* legcay rates */
1591 if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1592 !(rate->flags & IEEE80211_RATE_ERP_G))
1593 phy = WLAN_RC_PHY_CCK;
1594 else
1595 phy = WLAN_RC_PHY_OFDM;
1596
1597 rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
1598 series[i].Rate = rate->hw_value;
1599 if (rate->hw_value_short) {
1600 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1601 series[i].Rate |= rate->hw_value_short;
1602 } else {
1603 is_sp = false;
1604 }
1605
1606 series[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1607 phy, rate->bitrate * 100, bf->bf_frmlen, rix, is_sp);
1608 }
1609
1610 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1611 if (bf_isaggr(bf) && (bf->bf_al > sc->sc_ah->caps.rts_aggr_limit))
1612 flags &= ~ATH9K_TXDESC_RTSENA;
1613
1614 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1615 if (flags & ATH9K_TXDESC_RTSENA)
1616 flags &= ~ATH9K_TXDESC_CTSENA;
1617
1618 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1619 ath9k_hw_set11n_ratescenario(sc->sc_ah, bf->bf_desc,
1620 bf->bf_lastbf->bf_desc,
1621 !is_pspoll, ctsrate,
1622 0, series, 4, flags);
1623
1624 if (sc->config.ath_aggr_prot && flags)
1625 ath9k_hw_set11n_burstduration(sc->sc_ah, bf->bf_desc, 8192);
1626 }
1627
1628 static int ath_tx_setup_buffer(struct ieee80211_hw *hw, struct ath_buf *bf,
1629 struct sk_buff *skb,
1630 struct ath_tx_control *txctl)
1631 {
1632 struct ath_wiphy *aphy = hw->priv;
1633 struct ath_softc *sc = aphy->sc;
1634 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1635 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1636 int hdrlen;
1637 __le16 fc;
1638 int padpos, padsize;
1639 bool use_ldpc = false;
1640
1641 tx_info->pad[0] = 0;
1642 switch (txctl->frame_type) {
1643 case ATH9K_IFT_NOT_INTERNAL:
1644 break;
1645 case ATH9K_IFT_PAUSE:
1646 tx_info->pad[0] |= ATH_TX_INFO_FRAME_TYPE_PAUSE;
1647 /* fall through */
1648 case ATH9K_IFT_UNPAUSE:
1649 tx_info->pad[0] |= ATH_TX_INFO_FRAME_TYPE_INTERNAL;
1650 break;
1651 }
1652 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1653 fc = hdr->frame_control;
1654
1655 ATH_TXBUF_RESET(bf);
1656
1657 bf->aphy = aphy;
1658 bf->bf_frmlen = skb->len + FCS_LEN;
1659 /* Remove the padding size from bf_frmlen, if any */
1660 padpos = ath9k_cmn_padpos(hdr->frame_control);
1661 padsize = padpos & 3;
1662 if (padsize && skb->len>padpos+padsize) {
1663 bf->bf_frmlen -= padsize;
1664 }
1665
1666 if (conf_is_ht(&hw->conf)) {
1667 bf->bf_state.bf_type |= BUF_HT;
1668 if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1669 use_ldpc = true;
1670 }
1671
1672 bf->bf_flags = setup_tx_flags(skb, use_ldpc);
1673
1674 bf->bf_keytype = get_hw_crypto_keytype(skb);
1675 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) {
1676 bf->bf_frmlen += tx_info->control.hw_key->icv_len;
1677 bf->bf_keyix = tx_info->control.hw_key->hw_key_idx;
1678 } else {
1679 bf->bf_keyix = ATH9K_TXKEYIX_INVALID;
1680 }
1681
1682 if (ieee80211_is_data_qos(fc) && bf_isht(bf) &&
1683 (sc->sc_flags & SC_OP_TXAGGR))
1684 assign_aggr_tid_seqno(skb, bf);
1685
1686 bf->bf_mpdu = skb;
1687
1688 bf->bf_dmacontext = dma_map_single(sc->dev, skb->data,
1689 skb->len, DMA_TO_DEVICE);
1690 if (unlikely(dma_mapping_error(sc->dev, bf->bf_dmacontext))) {
1691 bf->bf_mpdu = NULL;
1692 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1693 "dma_mapping_error() on TX\n");
1694 return -ENOMEM;
1695 }
1696
1697 bf->bf_buf_addr = bf->bf_dmacontext;
1698
1699 /* tag if this is a nullfunc frame to enable PS when AP acks it */
1700 if (ieee80211_is_nullfunc(fc) && ieee80211_has_pm(fc)) {
1701 bf->bf_isnullfunc = true;
1702 sc->ps_flags &= ~PS_NULLFUNC_COMPLETED;
1703 } else
1704 bf->bf_isnullfunc = false;
1705
1706 bf->bf_tx_aborted = false;
1707
1708 return 0;
1709 }
1710
1711 /* FIXME: tx power */
1712 static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf,
1713 struct ath_tx_control *txctl)
1714 {
1715 struct sk_buff *skb = bf->bf_mpdu;
1716 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1717 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1718 struct ath_node *an = NULL;
1719 struct list_head bf_head;
1720 struct ath_desc *ds;
1721 struct ath_atx_tid *tid;
1722 struct ath_hw *ah = sc->sc_ah;
1723 int frm_type;
1724 __le16 fc;
1725
1726 frm_type = get_hw_packet_type(skb);
1727 fc = hdr->frame_control;
1728
1729 INIT_LIST_HEAD(&bf_head);
1730 list_add_tail(&bf->list, &bf_head);
1731
1732 ds = bf->bf_desc;
1733 ath9k_hw_set_desc_link(ah, ds, 0);
1734
1735 ath9k_hw_set11n_txdesc(ah, ds, bf->bf_frmlen, frm_type, MAX_RATE_POWER,
1736 bf->bf_keyix, bf->bf_keytype, bf->bf_flags);
1737
1738 ath9k_hw_filltxdesc(ah, ds,
1739 skb->len, /* segment length */
1740 true, /* first segment */
1741 true, /* last segment */
1742 ds, /* first descriptor */
1743 bf->bf_buf_addr,
1744 txctl->txq->axq_qnum);
1745
1746 spin_lock_bh(&txctl->txq->axq_lock);
1747
1748 if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR) &&
1749 tx_info->control.sta) {
1750 an = (struct ath_node *)tx_info->control.sta->drv_priv;
1751 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1752
1753 if (!ieee80211_is_data_qos(fc)) {
1754 ath_tx_send_normal(sc, txctl->txq, &bf_head);
1755 goto tx_done;
1756 }
1757
1758 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
1759 /*
1760 * Try aggregation if it's a unicast data frame
1761 * and the destination is HT capable.
1762 */
1763 ath_tx_send_ampdu(sc, tid, &bf_head, txctl);
1764 } else {
1765 /*
1766 * Send this frame as regular when ADDBA
1767 * exchange is neither complete nor pending.
1768 */
1769 ath_tx_send_ht_normal(sc, txctl->txq,
1770 tid, &bf_head);
1771 }
1772 } else {
1773 ath_tx_send_normal(sc, txctl->txq, &bf_head);
1774 }
1775
1776 tx_done:
1777 spin_unlock_bh(&txctl->txq->axq_lock);
1778 }
1779
1780 /* Upon failure caller should free skb */
1781 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
1782 struct ath_tx_control *txctl)
1783 {
1784 struct ath_wiphy *aphy = hw->priv;
1785 struct ath_softc *sc = aphy->sc;
1786 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1787 struct ath_txq *txq = txctl->txq;
1788 struct ath_buf *bf;
1789 int r;
1790
1791 bf = ath_tx_get_buffer(sc);
1792 if (!bf) {
1793 ath_print(common, ATH_DBG_XMIT, "TX buffers are full\n");
1794 return -1;
1795 }
1796
1797 bf->txq = txctl->txq;
1798 spin_lock_bh(&bf->txq->axq_lock);
1799 if (++bf->txq->pending_frames > ATH_MAX_QDEPTH && !txq->stopped) {
1800 ath_mac80211_stop_queue(sc, skb_get_queue_mapping(skb));
1801 txq->stopped = 1;
1802 }
1803 spin_unlock_bh(&bf->txq->axq_lock);
1804
1805 r = ath_tx_setup_buffer(hw, bf, skb, txctl);
1806 if (unlikely(r)) {
1807 ath_print(common, ATH_DBG_FATAL, "TX mem alloc failure\n");
1808
1809 /* upon ath_tx_processq() this TX queue will be resumed, we
1810 * guarantee this will happen by knowing beforehand that
1811 * we will at least have to run TX completionon one buffer
1812 * on the queue */
1813 spin_lock_bh(&txq->axq_lock);
1814 if (!txq->stopped && txq->axq_depth > 1) {
1815 ath_mac80211_stop_queue(sc, skb_get_queue_mapping(skb));
1816 txq->stopped = 1;
1817 }
1818 spin_unlock_bh(&txq->axq_lock);
1819
1820 ath_tx_return_buffer(sc, bf);
1821
1822 return r;
1823 }
1824
1825 ath_tx_start_dma(sc, bf, txctl);
1826
1827 return 0;
1828 }
1829
1830 void ath_tx_cabq(struct ieee80211_hw *hw, struct sk_buff *skb)
1831 {
1832 struct ath_wiphy *aphy = hw->priv;
1833 struct ath_softc *sc = aphy->sc;
1834 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1835 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1836 int padpos, padsize;
1837 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1838 struct ath_tx_control txctl;
1839
1840 memset(&txctl, 0, sizeof(struct ath_tx_control));
1841
1842 /*
1843 * As a temporary workaround, assign seq# here; this will likely need
1844 * to be cleaned up to work better with Beacon transmission and virtual
1845 * BSSes.
1846 */
1847 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1848 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1849 sc->tx.seq_no += 0x10;
1850 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1851 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1852 }
1853
1854 /* Add the padding after the header if this is not already done */
1855 padpos = ath9k_cmn_padpos(hdr->frame_control);
1856 padsize = padpos & 3;
1857 if (padsize && skb->len>padpos) {
1858 if (skb_headroom(skb) < padsize) {
1859 ath_print(common, ATH_DBG_XMIT,
1860 "TX CABQ padding failed\n");
1861 dev_kfree_skb_any(skb);
1862 return;
1863 }
1864 skb_push(skb, padsize);
1865 memmove(skb->data, skb->data + padsize, padpos);
1866 }
1867
1868 txctl.txq = sc->beacon.cabq;
1869
1870 ath_print(common, ATH_DBG_XMIT,
1871 "transmitting CABQ packet, skb: %p\n", skb);
1872
1873 if (ath_tx_start(hw, skb, &txctl) != 0) {
1874 ath_print(common, ATH_DBG_XMIT, "CABQ TX failed\n");
1875 goto exit;
1876 }
1877
1878 return;
1879 exit:
1880 dev_kfree_skb_any(skb);
1881 }
1882
1883 /*****************/
1884 /* TX Completion */
1885 /*****************/
1886
1887 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
1888 struct ath_wiphy *aphy, int tx_flags)
1889 {
1890 struct ieee80211_hw *hw = sc->hw;
1891 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1892 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1893 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
1894 int padpos, padsize;
1895
1896 ath_print(common, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
1897
1898 if (aphy)
1899 hw = aphy->hw;
1900
1901 if (tx_flags & ATH_TX_BAR)
1902 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
1903
1904 if (!(tx_flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) {
1905 /* Frame was ACKed */
1906 tx_info->flags |= IEEE80211_TX_STAT_ACK;
1907 }
1908
1909 padpos = ath9k_cmn_padpos(hdr->frame_control);
1910 padsize = padpos & 3;
1911 if (padsize && skb->len>padpos+padsize) {
1912 /*
1913 * Remove MAC header padding before giving the frame back to
1914 * mac80211.
1915 */
1916 memmove(skb->data + padsize, skb->data, padpos);
1917 skb_pull(skb, padsize);
1918 }
1919
1920 if (sc->ps_flags & PS_WAIT_FOR_TX_ACK) {
1921 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
1922 ath_print(common, ATH_DBG_PS,
1923 "Going back to sleep after having "
1924 "received TX status (0x%lx)\n",
1925 sc->ps_flags & (PS_WAIT_FOR_BEACON |
1926 PS_WAIT_FOR_CAB |
1927 PS_WAIT_FOR_PSPOLL_DATA |
1928 PS_WAIT_FOR_TX_ACK));
1929 }
1930
1931 if (unlikely(tx_info->pad[0] & ATH_TX_INFO_FRAME_TYPE_INTERNAL))
1932 ath9k_tx_status(hw, skb);
1933 else
1934 ieee80211_tx_status(hw, skb);
1935 }
1936
1937 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
1938 struct ath_txq *txq, struct list_head *bf_q,
1939 struct ath_tx_status *ts, int txok, int sendbar)
1940 {
1941 struct sk_buff *skb = bf->bf_mpdu;
1942 unsigned long flags;
1943 int tx_flags = 0;
1944
1945 if (sendbar)
1946 tx_flags = ATH_TX_BAR;
1947
1948 if (!txok) {
1949 tx_flags |= ATH_TX_ERROR;
1950
1951 if (bf_isxretried(bf))
1952 tx_flags |= ATH_TX_XRETRY;
1953 }
1954
1955 if (bf->txq) {
1956 spin_lock_bh(&bf->txq->axq_lock);
1957 bf->txq->pending_frames--;
1958 spin_unlock_bh(&bf->txq->axq_lock);
1959 bf->txq = NULL;
1960 }
1961
1962 dma_unmap_single(sc->dev, bf->bf_dmacontext, skb->len, DMA_TO_DEVICE);
1963 ath_tx_complete(sc, skb, bf->aphy, tx_flags);
1964 ath_debug_stat_tx(sc, txq, bf, ts);
1965
1966 /*
1967 * Return the list of ath_buf of this mpdu to free queue
1968 */
1969 spin_lock_irqsave(&sc->tx.txbuflock, flags);
1970 list_splice_tail_init(bf_q, &sc->tx.txbuf);
1971 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
1972 }
1973
1974 static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
1975 struct ath_tx_status *ts, int txok)
1976 {
1977 u16 seq_st = 0;
1978 u32 ba[WME_BA_BMP_SIZE >> 5];
1979 int ba_index;
1980 int nbad = 0;
1981 int isaggr = 0;
1982
1983 if (bf->bf_lastbf->bf_tx_aborted)
1984 return 0;
1985
1986 isaggr = bf_isaggr(bf);
1987 if (isaggr) {
1988 seq_st = ts->ts_seqnum;
1989 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
1990 }
1991
1992 while (bf) {
1993 ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
1994 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
1995 nbad++;
1996
1997 bf = bf->bf_next;
1998 }
1999
2000 return nbad;
2001 }
2002
2003 static void ath_tx_rc_status(struct ath_buf *bf, struct ath_tx_status *ts,
2004 int nbad, int txok, bool update_rc)
2005 {
2006 struct sk_buff *skb = bf->bf_mpdu;
2007 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2008 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2009 struct ieee80211_hw *hw = bf->aphy->hw;
2010 u8 i, tx_rateindex;
2011
2012 if (txok)
2013 tx_info->status.ack_signal = ts->ts_rssi;
2014
2015 tx_rateindex = ts->ts_rateindex;
2016 WARN_ON(tx_rateindex >= hw->max_rates);
2017
2018 if (ts->ts_status & ATH9K_TXERR_FILT)
2019 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2020 if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && update_rc)
2021 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2022
2023 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2024 (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0 && update_rc) {
2025 if (ieee80211_is_data(hdr->frame_control)) {
2026 if (ts->ts_flags &
2027 (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN))
2028 tx_info->pad[0] |= ATH_TX_INFO_UNDERRUN;
2029 if ((ts->ts_status & ATH9K_TXERR_XRETRY) ||
2030 (ts->ts_status & ATH9K_TXERR_FIFO))
2031 tx_info->pad[0] |= ATH_TX_INFO_XRETRY;
2032 tx_info->status.ampdu_len = bf->bf_nframes;
2033 tx_info->status.ampdu_ack_len = bf->bf_nframes - nbad;
2034 }
2035 }
2036
2037 for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2038 tx_info->status.rates[i].count = 0;
2039 tx_info->status.rates[i].idx = -1;
2040 }
2041
2042 tx_info->status.rates[tx_rateindex].count = bf->bf_retries + 1;
2043 }
2044
2045 static void ath_wake_mac80211_queue(struct ath_softc *sc, struct ath_txq *txq)
2046 {
2047 int qnum;
2048
2049 spin_lock_bh(&txq->axq_lock);
2050 if (txq->stopped && txq->pending_frames < ATH_MAX_QDEPTH) {
2051 qnum = ath_get_mac80211_qnum(txq->axq_class, sc);
2052 if (qnum != -1) {
2053 ath_mac80211_start_queue(sc, qnum);
2054 txq->stopped = 0;
2055 }
2056 }
2057 spin_unlock_bh(&txq->axq_lock);
2058 }
2059
2060 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2061 {
2062 struct ath_hw *ah = sc->sc_ah;
2063 struct ath_common *common = ath9k_hw_common(ah);
2064 struct ath_buf *bf, *lastbf, *bf_held = NULL;
2065 struct list_head bf_head;
2066 struct ath_desc *ds;
2067 struct ath_tx_status ts;
2068 int txok;
2069 int status;
2070
2071 ath_print(common, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
2072 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2073 txq->axq_link);
2074
2075 for (;;) {
2076 spin_lock_bh(&txq->axq_lock);
2077 if (list_empty(&txq->axq_q)) {
2078 txq->axq_link = NULL;
2079 spin_unlock_bh(&txq->axq_lock);
2080 break;
2081 }
2082 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2083
2084 /*
2085 * There is a race condition that a BH gets scheduled
2086 * after sw writes TxE and before hw re-load the last
2087 * descriptor to get the newly chained one.
2088 * Software must keep the last DONE descriptor as a
2089 * holding descriptor - software does so by marking
2090 * it with the STALE flag.
2091 */
2092 bf_held = NULL;
2093 if (bf->bf_stale) {
2094 bf_held = bf;
2095 if (list_is_last(&bf_held->list, &txq->axq_q)) {
2096 spin_unlock_bh(&txq->axq_lock);
2097 break;
2098 } else {
2099 bf = list_entry(bf_held->list.next,
2100 struct ath_buf, list);
2101 }
2102 }
2103
2104 lastbf = bf->bf_lastbf;
2105 ds = lastbf->bf_desc;
2106
2107 memset(&ts, 0, sizeof(ts));
2108 status = ath9k_hw_txprocdesc(ah, ds, &ts);
2109 if (status == -EINPROGRESS) {
2110 spin_unlock_bh(&txq->axq_lock);
2111 break;
2112 }
2113
2114 /*
2115 * We now know the nullfunc frame has been ACKed so we
2116 * can disable RX.
2117 */
2118 if (bf->bf_isnullfunc &&
2119 (ts.ts_status & ATH9K_TX_ACKED)) {
2120 if ((sc->ps_flags & PS_ENABLED))
2121 ath9k_enable_ps(sc);
2122 else
2123 sc->ps_flags |= PS_NULLFUNC_COMPLETED;
2124 }
2125
2126 /*
2127 * Remove ath_buf's of the same transmit unit from txq,
2128 * however leave the last descriptor back as the holding
2129 * descriptor for hw.
2130 */
2131 lastbf->bf_stale = true;
2132 INIT_LIST_HEAD(&bf_head);
2133 if (!list_is_singular(&lastbf->list))
2134 list_cut_position(&bf_head,
2135 &txq->axq_q, lastbf->list.prev);
2136
2137 txq->axq_depth--;
2138 txok = !(ts.ts_status & ATH9K_TXERR_MASK);
2139 txq->axq_tx_inprogress = false;
2140 if (bf_held)
2141 list_del(&bf_held->list);
2142 spin_unlock_bh(&txq->axq_lock);
2143
2144 if (bf_held)
2145 ath_tx_return_buffer(sc, bf_held);
2146
2147 if (!bf_isampdu(bf)) {
2148 /*
2149 * This frame is sent out as a single frame.
2150 * Use hardware retry status for this frame.
2151 */
2152 bf->bf_retries = ts.ts_longretry;
2153 if (ts.ts_status & ATH9K_TXERR_XRETRY)
2154 bf->bf_state.bf_type |= BUF_XRETRY;
2155 ath_tx_rc_status(bf, &ts, 0, txok, true);
2156 }
2157
2158 if (bf_isampdu(bf))
2159 ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, txok);
2160 else
2161 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, txok, 0);
2162
2163 ath_wake_mac80211_queue(sc, txq);
2164
2165 spin_lock_bh(&txq->axq_lock);
2166 if (sc->sc_flags & SC_OP_TXAGGR)
2167 ath_txq_schedule(sc, txq);
2168 spin_unlock_bh(&txq->axq_lock);
2169 }
2170 }
2171
2172 static void ath_tx_complete_poll_work(struct work_struct *work)
2173 {
2174 struct ath_softc *sc = container_of(work, struct ath_softc,
2175 tx_complete_work.work);
2176 struct ath_txq *txq;
2177 int i;
2178 bool needreset = false;
2179
2180 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
2181 if (ATH_TXQ_SETUP(sc, i)) {
2182 txq = &sc->tx.txq[i];
2183 spin_lock_bh(&txq->axq_lock);
2184 if (txq->axq_depth) {
2185 if (txq->axq_tx_inprogress) {
2186 needreset = true;
2187 spin_unlock_bh(&txq->axq_lock);
2188 break;
2189 } else {
2190 txq->axq_tx_inprogress = true;
2191 }
2192 }
2193 spin_unlock_bh(&txq->axq_lock);
2194 }
2195
2196 if (needreset) {
2197 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_RESET,
2198 "tx hung, resetting the chip\n");
2199 ath9k_ps_wakeup(sc);
2200 ath_reset(sc, false);
2201 ath9k_ps_restore(sc);
2202 }
2203
2204 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2205 msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
2206 }
2207
2208
2209
2210 void ath_tx_tasklet(struct ath_softc *sc)
2211 {
2212 int i;
2213 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
2214
2215 ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
2216
2217 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2218 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2219 ath_tx_processq(sc, &sc->tx.txq[i]);
2220 }
2221 }
2222
2223 void ath_tx_edma_tasklet(struct ath_softc *sc)
2224 {
2225 struct ath_tx_status txs;
2226 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2227 struct ath_hw *ah = sc->sc_ah;
2228 struct ath_txq *txq;
2229 struct ath_buf *bf, *lastbf;
2230 struct list_head bf_head;
2231 int status;
2232 int txok;
2233
2234 for (;;) {
2235 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&txs);
2236 if (status == -EINPROGRESS)
2237 break;
2238 if (status == -EIO) {
2239 ath_print(common, ATH_DBG_XMIT,
2240 "Error processing tx status\n");
2241 break;
2242 }
2243
2244 /* Skip beacon completions */
2245 if (txs.qid == sc->beacon.beaconq)
2246 continue;
2247
2248 txq = &sc->tx.txq[txs.qid];
2249
2250 spin_lock_bh(&txq->axq_lock);
2251 if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
2252 spin_unlock_bh(&txq->axq_lock);
2253 return;
2254 }
2255
2256 bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
2257 struct ath_buf, list);
2258 lastbf = bf->bf_lastbf;
2259
2260 INIT_LIST_HEAD(&bf_head);
2261 list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
2262 &lastbf->list);
2263 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2264 txq->axq_depth--;
2265 txq->axq_tx_inprogress = false;
2266 spin_unlock_bh(&txq->axq_lock);
2267
2268 txok = !(txs.ts_status & ATH9K_TXERR_MASK);
2269
2270 /*
2271 * Make sure null func frame is acked before configuring
2272 * hw into ps mode.
2273 */
2274 if (bf->bf_isnullfunc && txok) {
2275 if ((sc->ps_flags & PS_ENABLED))
2276 ath9k_enable_ps(sc);
2277 else
2278 sc->ps_flags |= PS_NULLFUNC_COMPLETED;
2279 }
2280
2281 if (!bf_isampdu(bf)) {
2282 bf->bf_retries = txs.ts_longretry;
2283 if (txs.ts_status & ATH9K_TXERR_XRETRY)
2284 bf->bf_state.bf_type |= BUF_XRETRY;
2285 ath_tx_rc_status(bf, &txs, 0, txok, true);
2286 }
2287
2288 if (bf_isampdu(bf))
2289 ath_tx_complete_aggr(sc, txq, bf, &bf_head, &txs, txok);
2290 else
2291 ath_tx_complete_buf(sc, bf, txq, &bf_head,
2292 &txs, txok, 0);
2293
2294 ath_wake_mac80211_queue(sc, txq);
2295
2296 spin_lock_bh(&txq->axq_lock);
2297 if (!list_empty(&txq->txq_fifo_pending)) {
2298 INIT_LIST_HEAD(&bf_head);
2299 bf = list_first_entry(&txq->txq_fifo_pending,
2300 struct ath_buf, list);
2301 list_cut_position(&bf_head, &txq->txq_fifo_pending,
2302 &bf->bf_lastbf->list);
2303 ath_tx_txqaddbuf(sc, txq, &bf_head);
2304 } else if (sc->sc_flags & SC_OP_TXAGGR)
2305 ath_txq_schedule(sc, txq);
2306 spin_unlock_bh(&txq->axq_lock);
2307 }
2308 }
2309
2310 /*****************/
2311 /* Init, Cleanup */
2312 /*****************/
2313
2314 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2315 {
2316 struct ath_descdma *dd = &sc->txsdma;
2317 u8 txs_len = sc->sc_ah->caps.txs_len;
2318
2319 dd->dd_desc_len = size * txs_len;
2320 dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
2321 &dd->dd_desc_paddr, GFP_KERNEL);
2322 if (!dd->dd_desc)
2323 return -ENOMEM;
2324
2325 return 0;
2326 }
2327
2328 static int ath_tx_edma_init(struct ath_softc *sc)
2329 {
2330 int err;
2331
2332 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2333 if (!err)
2334 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2335 sc->txsdma.dd_desc_paddr,
2336 ATH_TXSTATUS_RING_SIZE);
2337
2338 return err;
2339 }
2340
2341 static void ath_tx_edma_cleanup(struct ath_softc *sc)
2342 {
2343 struct ath_descdma *dd = &sc->txsdma;
2344
2345 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
2346 dd->dd_desc_paddr);
2347 }
2348
2349 int ath_tx_init(struct ath_softc *sc, int nbufs)
2350 {
2351 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2352 int error = 0;
2353
2354 spin_lock_init(&sc->tx.txbuflock);
2355
2356 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2357 "tx", nbufs, 1, 1);
2358 if (error != 0) {
2359 ath_print(common, ATH_DBG_FATAL,
2360 "Failed to allocate tx descriptors: %d\n", error);
2361 goto err;
2362 }
2363
2364 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2365 "beacon", ATH_BCBUF, 1, 1);
2366 if (error != 0) {
2367 ath_print(common, ATH_DBG_FATAL,
2368 "Failed to allocate beacon descriptors: %d\n", error);
2369 goto err;
2370 }
2371
2372 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2373
2374 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
2375 error = ath_tx_edma_init(sc);
2376 if (error)
2377 goto err;
2378 }
2379
2380 err:
2381 if (error != 0)
2382 ath_tx_cleanup(sc);
2383
2384 return error;
2385 }
2386
2387 void ath_tx_cleanup(struct ath_softc *sc)
2388 {
2389 if (sc->beacon.bdma.dd_desc_len != 0)
2390 ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
2391
2392 if (sc->tx.txdma.dd_desc_len != 0)
2393 ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
2394
2395 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2396 ath_tx_edma_cleanup(sc);
2397 }
2398
2399 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2400 {
2401 struct ath_atx_tid *tid;
2402 struct ath_atx_ac *ac;
2403 int tidno, acno;
2404
2405 for (tidno = 0, tid = &an->tid[tidno];
2406 tidno < WME_NUM_TID;
2407 tidno++, tid++) {
2408 tid->an = an;
2409 tid->tidno = tidno;
2410 tid->seq_start = tid->seq_next = 0;
2411 tid->baw_size = WME_MAX_BA;
2412 tid->baw_head = tid->baw_tail = 0;
2413 tid->sched = false;
2414 tid->paused = false;
2415 tid->state &= ~AGGR_CLEANUP;
2416 INIT_LIST_HEAD(&tid->buf_q);
2417 acno = TID_TO_WME_AC(tidno);
2418 tid->ac = &an->ac[acno];
2419 tid->state &= ~AGGR_ADDBA_COMPLETE;
2420 tid->state &= ~AGGR_ADDBA_PROGRESS;
2421 }
2422
2423 for (acno = 0, ac = &an->ac[acno];
2424 acno < WME_NUM_AC; acno++, ac++) {
2425 ac->sched = false;
2426 INIT_LIST_HEAD(&ac->tid_q);
2427
2428 switch (acno) {
2429 case WME_AC_BE:
2430 ac->qnum = ath_tx_get_qnum(sc,
2431 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
2432 break;
2433 case WME_AC_BK:
2434 ac->qnum = ath_tx_get_qnum(sc,
2435 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK);
2436 break;
2437 case WME_AC_VI:
2438 ac->qnum = ath_tx_get_qnum(sc,
2439 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI);
2440 break;
2441 case WME_AC_VO:
2442 ac->qnum = ath_tx_get_qnum(sc,
2443 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO);
2444 break;
2445 }
2446 }
2447 }
2448
2449 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2450 {
2451 int i;
2452 struct ath_atx_ac *ac, *ac_tmp;
2453 struct ath_atx_tid *tid, *tid_tmp;
2454 struct ath_txq *txq;
2455
2456 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2457 if (ATH_TXQ_SETUP(sc, i)) {
2458 txq = &sc->tx.txq[i];
2459
2460 spin_lock_bh(&txq->axq_lock);
2461
2462 list_for_each_entry_safe(ac,
2463 ac_tmp, &txq->axq_acq, list) {
2464 tid = list_first_entry(&ac->tid_q,
2465 struct ath_atx_tid, list);
2466 if (tid && tid->an != an)
2467 continue;
2468 list_del(&ac->list);
2469 ac->sched = false;
2470
2471 list_for_each_entry_safe(tid,
2472 tid_tmp, &ac->tid_q, list) {
2473 list_del(&tid->list);
2474 tid->sched = false;
2475 ath_tid_drain(sc, txq, tid);
2476 tid->state &= ~AGGR_ADDBA_COMPLETE;
2477 tid->state &= ~AGGR_CLEANUP;
2478 }
2479 }
2480
2481 spin_unlock_bh(&txq->axq_lock);
2482 }
2483 }
2484 }
This page took 0.083188 seconds and 6 git commands to generate.