ath9k: allocate tx and rx status information on stack
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / xmit.c
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "ath9k.h"
18
19 #define BITS_PER_BYTE 8
20 #define OFDM_PLCP_BITS 22
21 #define HT_RC_2_MCS(_rc) ((_rc) & 0x0f)
22 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
23 #define L_STF 8
24 #define L_LTF 8
25 #define L_SIG 4
26 #define HT_SIG 8
27 #define HT_STF 4
28 #define HT_LTF(_ns) (4 * (_ns))
29 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
30 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
31 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
32 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
33
34 #define OFDM_SIFS_TIME 16
35
36 static u32 bits_per_symbol[][2] = {
37 /* 20MHz 40MHz */
38 { 26, 54 }, /* 0: BPSK */
39 { 52, 108 }, /* 1: QPSK 1/2 */
40 { 78, 162 }, /* 2: QPSK 3/4 */
41 { 104, 216 }, /* 3: 16-QAM 1/2 */
42 { 156, 324 }, /* 4: 16-QAM 3/4 */
43 { 208, 432 }, /* 5: 64-QAM 2/3 */
44 { 234, 486 }, /* 6: 64-QAM 3/4 */
45 { 260, 540 }, /* 7: 64-QAM 5/6 */
46 { 52, 108 }, /* 8: BPSK */
47 { 104, 216 }, /* 9: QPSK 1/2 */
48 { 156, 324 }, /* 10: QPSK 3/4 */
49 { 208, 432 }, /* 11: 16-QAM 1/2 */
50 { 312, 648 }, /* 12: 16-QAM 3/4 */
51 { 416, 864 }, /* 13: 64-QAM 2/3 */
52 { 468, 972 }, /* 14: 64-QAM 3/4 */
53 { 520, 1080 }, /* 15: 64-QAM 5/6 */
54 };
55
56 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
57
58 static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
59 struct ath_atx_tid *tid,
60 struct list_head *bf_head);
61 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
62 struct ath_txq *txq, struct list_head *bf_q,
63 struct ath_tx_status *ts, int txok, int sendbar);
64 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
65 struct list_head *head);
66 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf);
67 static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
68 struct ath_tx_status *ts, int txok);
69 static void ath_tx_rc_status(struct ath_buf *bf, struct ath_tx_status *ts,
70 int nbad, int txok, bool update_rc);
71
72 enum {
73 MCS_DEFAULT,
74 MCS_HT40,
75 MCS_HT40_SGI,
76 };
77
78 static int ath_max_4ms_framelen[3][16] = {
79 [MCS_DEFAULT] = {
80 3216, 6434, 9650, 12868, 19304, 25740, 28956, 32180,
81 6430, 12860, 19300, 25736, 38600, 51472, 57890, 64320,
82 },
83 [MCS_HT40] = {
84 6684, 13368, 20052, 26738, 40104, 53476, 60156, 66840,
85 13360, 26720, 40080, 53440, 80160, 106880, 120240, 133600,
86 },
87 [MCS_HT40_SGI] = {
88 /* TODO: Only MCS 7 and 15 updated, recalculate the rest */
89 6684, 13368, 20052, 26738, 40104, 53476, 60156, 74200,
90 13360, 26720, 40080, 53440, 80160, 106880, 120240, 148400,
91 }
92 };
93
94
95 /*********************/
96 /* Aggregation logic */
97 /*********************/
98
99 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
100 {
101 struct ath_atx_ac *ac = tid->ac;
102
103 if (tid->paused)
104 return;
105
106 if (tid->sched)
107 return;
108
109 tid->sched = true;
110 list_add_tail(&tid->list, &ac->tid_q);
111
112 if (ac->sched)
113 return;
114
115 ac->sched = true;
116 list_add_tail(&ac->list, &txq->axq_acq);
117 }
118
119 static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
120 {
121 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
122
123 spin_lock_bh(&txq->axq_lock);
124 tid->paused++;
125 spin_unlock_bh(&txq->axq_lock);
126 }
127
128 static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
129 {
130 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
131
132 BUG_ON(tid->paused <= 0);
133 spin_lock_bh(&txq->axq_lock);
134
135 tid->paused--;
136
137 if (tid->paused > 0)
138 goto unlock;
139
140 if (list_empty(&tid->buf_q))
141 goto unlock;
142
143 ath_tx_queue_tid(txq, tid);
144 ath_txq_schedule(sc, txq);
145 unlock:
146 spin_unlock_bh(&txq->axq_lock);
147 }
148
149 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
150 {
151 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
152 struct ath_buf *bf;
153 struct list_head bf_head;
154 INIT_LIST_HEAD(&bf_head);
155
156 BUG_ON(tid->paused <= 0);
157 spin_lock_bh(&txq->axq_lock);
158
159 tid->paused--;
160
161 if (tid->paused > 0) {
162 spin_unlock_bh(&txq->axq_lock);
163 return;
164 }
165
166 while (!list_empty(&tid->buf_q)) {
167 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
168 BUG_ON(bf_isretried(bf));
169 list_move_tail(&bf->list, &bf_head);
170 ath_tx_send_ht_normal(sc, txq, tid, &bf_head);
171 }
172
173 spin_unlock_bh(&txq->axq_lock);
174 }
175
176 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
177 int seqno)
178 {
179 int index, cindex;
180
181 index = ATH_BA_INDEX(tid->seq_start, seqno);
182 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
183
184 tid->tx_buf[cindex] = NULL;
185
186 while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
187 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
188 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
189 }
190 }
191
192 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
193 struct ath_buf *bf)
194 {
195 int index, cindex;
196
197 if (bf_isretried(bf))
198 return;
199
200 index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
201 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
202
203 BUG_ON(tid->tx_buf[cindex] != NULL);
204 tid->tx_buf[cindex] = bf;
205
206 if (index >= ((tid->baw_tail - tid->baw_head) &
207 (ATH_TID_MAX_BUFS - 1))) {
208 tid->baw_tail = cindex;
209 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
210 }
211 }
212
213 /*
214 * TODO: For frame(s) that are in the retry state, we will reuse the
215 * sequence number(s) without setting the retry bit. The
216 * alternative is to give up on these and BAR the receiver's window
217 * forward.
218 */
219 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
220 struct ath_atx_tid *tid)
221
222 {
223 struct ath_buf *bf;
224 struct list_head bf_head;
225 struct ath_tx_status ts;
226
227 memset(&ts, 0, sizeof(ts));
228 INIT_LIST_HEAD(&bf_head);
229
230 for (;;) {
231 if (list_empty(&tid->buf_q))
232 break;
233
234 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
235 list_move_tail(&bf->list, &bf_head);
236
237 if (bf_isretried(bf))
238 ath_tx_update_baw(sc, tid, bf->bf_seqno);
239
240 spin_unlock(&txq->axq_lock);
241 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
242 spin_lock(&txq->axq_lock);
243 }
244
245 tid->seq_next = tid->seq_start;
246 tid->baw_tail = tid->baw_head;
247 }
248
249 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
250 struct ath_buf *bf)
251 {
252 struct sk_buff *skb;
253 struct ieee80211_hdr *hdr;
254
255 bf->bf_state.bf_type |= BUF_RETRY;
256 bf->bf_retries++;
257 TX_STAT_INC(txq->axq_qnum, a_retries);
258
259 skb = bf->bf_mpdu;
260 hdr = (struct ieee80211_hdr *)skb->data;
261 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
262 }
263
264 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
265 {
266 struct ath_buf *tbf;
267
268 spin_lock_bh(&sc->tx.txbuflock);
269 if (WARN_ON(list_empty(&sc->tx.txbuf))) {
270 spin_unlock_bh(&sc->tx.txbuflock);
271 return NULL;
272 }
273 tbf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
274 list_del(&tbf->list);
275 spin_unlock_bh(&sc->tx.txbuflock);
276
277 ATH_TXBUF_RESET(tbf);
278
279 tbf->aphy = bf->aphy;
280 tbf->bf_mpdu = bf->bf_mpdu;
281 tbf->bf_buf_addr = bf->bf_buf_addr;
282 *(tbf->bf_desc) = *(bf->bf_desc);
283 tbf->bf_state = bf->bf_state;
284 tbf->bf_dmacontext = bf->bf_dmacontext;
285
286 return tbf;
287 }
288
289 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
290 struct ath_buf *bf, struct list_head *bf_q,
291 struct ath_tx_status *ts, int txok)
292 {
293 struct ath_node *an = NULL;
294 struct sk_buff *skb;
295 struct ieee80211_sta *sta;
296 struct ieee80211_hw *hw;
297 struct ieee80211_hdr *hdr;
298 struct ieee80211_tx_info *tx_info;
299 struct ath_atx_tid *tid = NULL;
300 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
301 struct list_head bf_head, bf_pending;
302 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0;
303 u32 ba[WME_BA_BMP_SIZE >> 5];
304 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
305 bool rc_update = true;
306
307 skb = bf->bf_mpdu;
308 hdr = (struct ieee80211_hdr *)skb->data;
309
310 tx_info = IEEE80211_SKB_CB(skb);
311 hw = bf->aphy->hw;
312
313 rcu_read_lock();
314
315 /* XXX: use ieee80211_find_sta! */
316 sta = ieee80211_find_sta_by_hw(hw, hdr->addr1);
317 if (!sta) {
318 rcu_read_unlock();
319 return;
320 }
321
322 an = (struct ath_node *)sta->drv_priv;
323 tid = ATH_AN_2_TID(an, bf->bf_tidno);
324
325 isaggr = bf_isaggr(bf);
326 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
327
328 if (isaggr && txok) {
329 if (ts->ts_flags & ATH9K_TX_BA) {
330 seq_st = ts->ts_seqnum;
331 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
332 } else {
333 /*
334 * AR5416 can become deaf/mute when BA
335 * issue happens. Chip needs to be reset.
336 * But AP code may have sychronization issues
337 * when perform internal reset in this routine.
338 * Only enable reset in STA mode for now.
339 */
340 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
341 needreset = 1;
342 }
343 }
344
345 INIT_LIST_HEAD(&bf_pending);
346 INIT_LIST_HEAD(&bf_head);
347
348 nbad = ath_tx_num_badfrms(sc, bf, ts, txok);
349 while (bf) {
350 txfail = txpending = 0;
351 bf_next = bf->bf_next;
352
353 if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) {
354 /* transmit completion, subframe is
355 * acked by block ack */
356 acked_cnt++;
357 } else if (!isaggr && txok) {
358 /* transmit completion */
359 acked_cnt++;
360 } else {
361 if (!(tid->state & AGGR_CLEANUP) &&
362 ts->ts_flags != ATH9K_TX_SW_ABORTED) {
363 if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
364 ath_tx_set_retry(sc, txq, bf);
365 txpending = 1;
366 } else {
367 bf->bf_state.bf_type |= BUF_XRETRY;
368 txfail = 1;
369 sendbar = 1;
370 txfail_cnt++;
371 }
372 } else {
373 /*
374 * cleanup in progress, just fail
375 * the un-acked sub-frames
376 */
377 txfail = 1;
378 }
379 }
380
381 if (bf_next == NULL) {
382 /*
383 * Make sure the last desc is reclaimed if it
384 * not a holding desc.
385 */
386 if (!bf_last->bf_stale)
387 list_move_tail(&bf->list, &bf_head);
388 else
389 INIT_LIST_HEAD(&bf_head);
390 } else {
391 BUG_ON(list_empty(bf_q));
392 list_move_tail(&bf->list, &bf_head);
393 }
394
395 if (!txpending) {
396 /*
397 * complete the acked-ones/xretried ones; update
398 * block-ack window
399 */
400 spin_lock_bh(&txq->axq_lock);
401 ath_tx_update_baw(sc, tid, bf->bf_seqno);
402 spin_unlock_bh(&txq->axq_lock);
403
404 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
405 ath_tx_rc_status(bf, ts, nbad, txok, true);
406 rc_update = false;
407 } else {
408 ath_tx_rc_status(bf, ts, nbad, txok, false);
409 }
410
411 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
412 !txfail, sendbar);
413 } else {
414 /* retry the un-acked ones */
415 if (bf->bf_next == NULL && bf_last->bf_stale) {
416 struct ath_buf *tbf;
417
418 tbf = ath_clone_txbuf(sc, bf_last);
419 /*
420 * Update tx baw and complete the frame with
421 * failed status if we run out of tx buf
422 */
423 if (!tbf) {
424 spin_lock_bh(&txq->axq_lock);
425 ath_tx_update_baw(sc, tid,
426 bf->bf_seqno);
427 spin_unlock_bh(&txq->axq_lock);
428
429 bf->bf_state.bf_type |= BUF_XRETRY;
430 ath_tx_rc_status(bf, ts, nbad,
431 0, false);
432 ath_tx_complete_buf(sc, bf, txq,
433 &bf_head, ts, 0, 0);
434 break;
435 }
436
437 ath9k_hw_cleartxdesc(sc->sc_ah, tbf->bf_desc);
438 list_add_tail(&tbf->list, &bf_head);
439 } else {
440 /*
441 * Clear descriptor status words for
442 * software retry
443 */
444 ath9k_hw_cleartxdesc(sc->sc_ah, bf->bf_desc);
445 }
446
447 /*
448 * Put this buffer to the temporary pending
449 * queue to retain ordering
450 */
451 list_splice_tail_init(&bf_head, &bf_pending);
452 }
453
454 bf = bf_next;
455 }
456
457 if (tid->state & AGGR_CLEANUP) {
458 if (tid->baw_head == tid->baw_tail) {
459 tid->state &= ~AGGR_ADDBA_COMPLETE;
460 tid->state &= ~AGGR_CLEANUP;
461
462 /* send buffered frames as singles */
463 ath_tx_flush_tid(sc, tid);
464 }
465 rcu_read_unlock();
466 return;
467 }
468
469 /* prepend un-acked frames to the beginning of the pending frame queue */
470 if (!list_empty(&bf_pending)) {
471 spin_lock_bh(&txq->axq_lock);
472 list_splice(&bf_pending, &tid->buf_q);
473 ath_tx_queue_tid(txq, tid);
474 spin_unlock_bh(&txq->axq_lock);
475 }
476
477 rcu_read_unlock();
478
479 if (needreset)
480 ath_reset(sc, false);
481 }
482
483 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
484 struct ath_atx_tid *tid)
485 {
486 struct sk_buff *skb;
487 struct ieee80211_tx_info *tx_info;
488 struct ieee80211_tx_rate *rates;
489 u32 max_4ms_framelen, frmlen;
490 u16 aggr_limit, legacy = 0;
491 int i;
492
493 skb = bf->bf_mpdu;
494 tx_info = IEEE80211_SKB_CB(skb);
495 rates = tx_info->control.rates;
496
497 /*
498 * Find the lowest frame length among the rate series that will have a
499 * 4ms transmit duration.
500 * TODO - TXOP limit needs to be considered.
501 */
502 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
503
504 for (i = 0; i < 4; i++) {
505 if (rates[i].count) {
506 int modeidx;
507 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
508 legacy = 1;
509 break;
510 }
511
512 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
513 modeidx = MCS_HT40_SGI;
514 else if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
515 modeidx = MCS_HT40;
516 else
517 modeidx = MCS_DEFAULT;
518
519 frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx];
520 max_4ms_framelen = min(max_4ms_framelen, frmlen);
521 }
522 }
523
524 /*
525 * limit aggregate size by the minimum rate if rate selected is
526 * not a probe rate, if rate selected is a probe rate then
527 * avoid aggregation of this packet.
528 */
529 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
530 return 0;
531
532 if (sc->sc_flags & SC_OP_BT_PRIORITY_DETECTED)
533 aggr_limit = min((max_4ms_framelen * 3) / 8,
534 (u32)ATH_AMPDU_LIMIT_MAX);
535 else
536 aggr_limit = min(max_4ms_framelen,
537 (u32)ATH_AMPDU_LIMIT_MAX);
538
539 /*
540 * h/w can accept aggregates upto 16 bit lengths (65535).
541 * The IE, however can hold upto 65536, which shows up here
542 * as zero. Ignore 65536 since we are constrained by hw.
543 */
544 if (tid->an->maxampdu)
545 aggr_limit = min(aggr_limit, tid->an->maxampdu);
546
547 return aggr_limit;
548 }
549
550 /*
551 * Returns the number of delimiters to be added to
552 * meet the minimum required mpdudensity.
553 */
554 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
555 struct ath_buf *bf, u16 frmlen)
556 {
557 struct sk_buff *skb = bf->bf_mpdu;
558 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
559 u32 nsymbits, nsymbols;
560 u16 minlen;
561 u8 flags, rix;
562 int width, half_gi, ndelim, mindelim;
563
564 /* Select standard number of delimiters based on frame length alone */
565 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
566
567 /*
568 * If encryption enabled, hardware requires some more padding between
569 * subframes.
570 * TODO - this could be improved to be dependent on the rate.
571 * The hardware can keep up at lower rates, but not higher rates
572 */
573 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
574 ndelim += ATH_AGGR_ENCRYPTDELIM;
575
576 /*
577 * Convert desired mpdu density from microeconds to bytes based
578 * on highest rate in rate series (i.e. first rate) to determine
579 * required minimum length for subframe. Take into account
580 * whether high rate is 20 or 40Mhz and half or full GI.
581 *
582 * If there is no mpdu density restriction, no further calculation
583 * is needed.
584 */
585
586 if (tid->an->mpdudensity == 0)
587 return ndelim;
588
589 rix = tx_info->control.rates[0].idx;
590 flags = tx_info->control.rates[0].flags;
591 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
592 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
593
594 if (half_gi)
595 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
596 else
597 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
598
599 if (nsymbols == 0)
600 nsymbols = 1;
601
602 nsymbits = bits_per_symbol[rix][width];
603 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
604
605 if (frmlen < minlen) {
606 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
607 ndelim = max(mindelim, ndelim);
608 }
609
610 return ndelim;
611 }
612
613 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
614 struct ath_txq *txq,
615 struct ath_atx_tid *tid,
616 struct list_head *bf_q)
617 {
618 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
619 struct ath_buf *bf, *bf_first, *bf_prev = NULL;
620 int rl = 0, nframes = 0, ndelim, prev_al = 0;
621 u16 aggr_limit = 0, al = 0, bpad = 0,
622 al_delta, h_baw = tid->baw_size / 2;
623 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
624
625 bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
626
627 do {
628 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
629
630 /* do not step over block-ack window */
631 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) {
632 status = ATH_AGGR_BAW_CLOSED;
633 break;
634 }
635
636 if (!rl) {
637 aggr_limit = ath_lookup_rate(sc, bf, tid);
638 rl = 1;
639 }
640
641 /* do not exceed aggregation limit */
642 al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen;
643
644 if (nframes &&
645 (aggr_limit < (al + bpad + al_delta + prev_al))) {
646 status = ATH_AGGR_LIMITED;
647 break;
648 }
649
650 /* do not exceed subframe limit */
651 if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
652 status = ATH_AGGR_LIMITED;
653 break;
654 }
655 nframes++;
656
657 /* add padding for previous frame to aggregation length */
658 al += bpad + al_delta;
659
660 /*
661 * Get the delimiters needed to meet the MPDU
662 * density for this node.
663 */
664 ndelim = ath_compute_num_delims(sc, tid, bf_first, bf->bf_frmlen);
665 bpad = PADBYTES(al_delta) + (ndelim << 2);
666
667 bf->bf_next = NULL;
668 bf->bf_desc->ds_link = 0;
669
670 /* link buffers of this frame to the aggregate */
671 ath_tx_addto_baw(sc, tid, bf);
672 ath9k_hw_set11n_aggr_middle(sc->sc_ah, bf->bf_desc, ndelim);
673 list_move_tail(&bf->list, bf_q);
674 if (bf_prev) {
675 bf_prev->bf_next = bf;
676 bf_prev->bf_desc->ds_link = bf->bf_daddr;
677 }
678 bf_prev = bf;
679
680 } while (!list_empty(&tid->buf_q));
681
682 bf_first->bf_al = al;
683 bf_first->bf_nframes = nframes;
684
685 return status;
686 #undef PADBYTES
687 }
688
689 static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
690 struct ath_atx_tid *tid)
691 {
692 struct ath_buf *bf;
693 enum ATH_AGGR_STATUS status;
694 struct list_head bf_q;
695
696 do {
697 if (list_empty(&tid->buf_q))
698 return;
699
700 INIT_LIST_HEAD(&bf_q);
701
702 status = ath_tx_form_aggr(sc, txq, tid, &bf_q);
703
704 /*
705 * no frames picked up to be aggregated;
706 * block-ack window is not open.
707 */
708 if (list_empty(&bf_q))
709 break;
710
711 bf = list_first_entry(&bf_q, struct ath_buf, list);
712 bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
713
714 /* if only one frame, send as non-aggregate */
715 if (bf->bf_nframes == 1) {
716 bf->bf_state.bf_type &= ~BUF_AGGR;
717 ath9k_hw_clr11n_aggr(sc->sc_ah, bf->bf_desc);
718 ath_buf_set_rate(sc, bf);
719 ath_tx_txqaddbuf(sc, txq, &bf_q);
720 continue;
721 }
722
723 /* setup first desc of aggregate */
724 bf->bf_state.bf_type |= BUF_AGGR;
725 ath_buf_set_rate(sc, bf);
726 ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al);
727
728 /* anchor last desc of aggregate */
729 ath9k_hw_set11n_aggr_last(sc->sc_ah, bf->bf_lastbf->bf_desc);
730
731 ath_tx_txqaddbuf(sc, txq, &bf_q);
732 TX_STAT_INC(txq->axq_qnum, a_aggr);
733
734 } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
735 status != ATH_AGGR_BAW_CLOSED);
736 }
737
738 void ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
739 u16 tid, u16 *ssn)
740 {
741 struct ath_atx_tid *txtid;
742 struct ath_node *an;
743
744 an = (struct ath_node *)sta->drv_priv;
745 txtid = ATH_AN_2_TID(an, tid);
746 txtid->state |= AGGR_ADDBA_PROGRESS;
747 ath_tx_pause_tid(sc, txtid);
748 *ssn = txtid->seq_start;
749 }
750
751 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
752 {
753 struct ath_node *an = (struct ath_node *)sta->drv_priv;
754 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
755 struct ath_txq *txq = &sc->tx.txq[txtid->ac->qnum];
756 struct ath_tx_status ts;
757 struct ath_buf *bf;
758 struct list_head bf_head;
759
760 memset(&ts, 0, sizeof(ts));
761 INIT_LIST_HEAD(&bf_head);
762
763 if (txtid->state & AGGR_CLEANUP)
764 return;
765
766 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
767 txtid->state &= ~AGGR_ADDBA_PROGRESS;
768 return;
769 }
770
771 ath_tx_pause_tid(sc, txtid);
772
773 /* drop all software retried frames and mark this TID */
774 spin_lock_bh(&txq->axq_lock);
775 while (!list_empty(&txtid->buf_q)) {
776 bf = list_first_entry(&txtid->buf_q, struct ath_buf, list);
777 if (!bf_isretried(bf)) {
778 /*
779 * NB: it's based on the assumption that
780 * software retried frame will always stay
781 * at the head of software queue.
782 */
783 break;
784 }
785 list_move_tail(&bf->list, &bf_head);
786 ath_tx_update_baw(sc, txtid, bf->bf_seqno);
787 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
788 }
789 spin_unlock_bh(&txq->axq_lock);
790
791 if (txtid->baw_head != txtid->baw_tail) {
792 txtid->state |= AGGR_CLEANUP;
793 } else {
794 txtid->state &= ~AGGR_ADDBA_COMPLETE;
795 ath_tx_flush_tid(sc, txtid);
796 }
797 }
798
799 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
800 {
801 struct ath_atx_tid *txtid;
802 struct ath_node *an;
803
804 an = (struct ath_node *)sta->drv_priv;
805
806 if (sc->sc_flags & SC_OP_TXAGGR) {
807 txtid = ATH_AN_2_TID(an, tid);
808 txtid->baw_size =
809 IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
810 txtid->state |= AGGR_ADDBA_COMPLETE;
811 txtid->state &= ~AGGR_ADDBA_PROGRESS;
812 ath_tx_resume_tid(sc, txtid);
813 }
814 }
815
816 bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an, u8 tidno)
817 {
818 struct ath_atx_tid *txtid;
819
820 if (!(sc->sc_flags & SC_OP_TXAGGR))
821 return false;
822
823 txtid = ATH_AN_2_TID(an, tidno);
824
825 if (!(txtid->state & (AGGR_ADDBA_COMPLETE | AGGR_ADDBA_PROGRESS)))
826 return true;
827 return false;
828 }
829
830 /********************/
831 /* Queue Management */
832 /********************/
833
834 static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
835 struct ath_txq *txq)
836 {
837 struct ath_atx_ac *ac, *ac_tmp;
838 struct ath_atx_tid *tid, *tid_tmp;
839
840 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
841 list_del(&ac->list);
842 ac->sched = false;
843 list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
844 list_del(&tid->list);
845 tid->sched = false;
846 ath_tid_drain(sc, txq, tid);
847 }
848 }
849 }
850
851 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
852 {
853 struct ath_hw *ah = sc->sc_ah;
854 struct ath_common *common = ath9k_hw_common(ah);
855 struct ath9k_tx_queue_info qi;
856 int qnum;
857
858 memset(&qi, 0, sizeof(qi));
859 qi.tqi_subtype = subtype;
860 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
861 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
862 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
863 qi.tqi_physCompBuf = 0;
864
865 /*
866 * Enable interrupts only for EOL and DESC conditions.
867 * We mark tx descriptors to receive a DESC interrupt
868 * when a tx queue gets deep; otherwise waiting for the
869 * EOL to reap descriptors. Note that this is done to
870 * reduce interrupt load and this only defers reaping
871 * descriptors, never transmitting frames. Aside from
872 * reducing interrupts this also permits more concurrency.
873 * The only potential downside is if the tx queue backs
874 * up in which case the top half of the kernel may backup
875 * due to a lack of tx descriptors.
876 *
877 * The UAPSD queue is an exception, since we take a desc-
878 * based intr on the EOSP frames.
879 */
880 if (qtype == ATH9K_TX_QUEUE_UAPSD)
881 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
882 else
883 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
884 TXQ_FLAG_TXDESCINT_ENABLE;
885 qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
886 if (qnum == -1) {
887 /*
888 * NB: don't print a message, this happens
889 * normally on parts with too few tx queues
890 */
891 return NULL;
892 }
893 if (qnum >= ARRAY_SIZE(sc->tx.txq)) {
894 ath_print(common, ATH_DBG_FATAL,
895 "qnum %u out of range, max %u!\n",
896 qnum, (unsigned int)ARRAY_SIZE(sc->tx.txq));
897 ath9k_hw_releasetxqueue(ah, qnum);
898 return NULL;
899 }
900 if (!ATH_TXQ_SETUP(sc, qnum)) {
901 struct ath_txq *txq = &sc->tx.txq[qnum];
902
903 txq->axq_qnum = qnum;
904 txq->axq_link = NULL;
905 INIT_LIST_HEAD(&txq->axq_q);
906 INIT_LIST_HEAD(&txq->axq_acq);
907 spin_lock_init(&txq->axq_lock);
908 txq->axq_depth = 0;
909 txq->axq_tx_inprogress = false;
910 sc->tx.txqsetup |= 1<<qnum;
911 }
912 return &sc->tx.txq[qnum];
913 }
914
915 int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype)
916 {
917 int qnum;
918
919 switch (qtype) {
920 case ATH9K_TX_QUEUE_DATA:
921 if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
922 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
923 "HAL AC %u out of range, max %zu!\n",
924 haltype, ARRAY_SIZE(sc->tx.hwq_map));
925 return -1;
926 }
927 qnum = sc->tx.hwq_map[haltype];
928 break;
929 case ATH9K_TX_QUEUE_BEACON:
930 qnum = sc->beacon.beaconq;
931 break;
932 case ATH9K_TX_QUEUE_CAB:
933 qnum = sc->beacon.cabq->axq_qnum;
934 break;
935 default:
936 qnum = -1;
937 }
938 return qnum;
939 }
940
941 struct ath_txq *ath_test_get_txq(struct ath_softc *sc, struct sk_buff *skb)
942 {
943 struct ath_txq *txq = NULL;
944 u16 skb_queue = skb_get_queue_mapping(skb);
945 int qnum;
946
947 qnum = ath_get_hal_qnum(skb_queue, sc);
948 txq = &sc->tx.txq[qnum];
949
950 spin_lock_bh(&txq->axq_lock);
951
952 if (txq->axq_depth >= (ATH_TXBUF - 20)) {
953 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_XMIT,
954 "TX queue: %d is full, depth: %d\n",
955 qnum, txq->axq_depth);
956 ath_mac80211_stop_queue(sc, skb_queue);
957 txq->stopped = 1;
958 spin_unlock_bh(&txq->axq_lock);
959 return NULL;
960 }
961
962 spin_unlock_bh(&txq->axq_lock);
963
964 return txq;
965 }
966
967 int ath_txq_update(struct ath_softc *sc, int qnum,
968 struct ath9k_tx_queue_info *qinfo)
969 {
970 struct ath_hw *ah = sc->sc_ah;
971 int error = 0;
972 struct ath9k_tx_queue_info qi;
973
974 if (qnum == sc->beacon.beaconq) {
975 /*
976 * XXX: for beacon queue, we just save the parameter.
977 * It will be picked up by ath_beaconq_config when
978 * it's necessary.
979 */
980 sc->beacon.beacon_qi = *qinfo;
981 return 0;
982 }
983
984 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
985
986 ath9k_hw_get_txq_props(ah, qnum, &qi);
987 qi.tqi_aifs = qinfo->tqi_aifs;
988 qi.tqi_cwmin = qinfo->tqi_cwmin;
989 qi.tqi_cwmax = qinfo->tqi_cwmax;
990 qi.tqi_burstTime = qinfo->tqi_burstTime;
991 qi.tqi_readyTime = qinfo->tqi_readyTime;
992
993 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
994 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
995 "Unable to update hardware queue %u!\n", qnum);
996 error = -EIO;
997 } else {
998 ath9k_hw_resettxqueue(ah, qnum);
999 }
1000
1001 return error;
1002 }
1003
1004 int ath_cabq_update(struct ath_softc *sc)
1005 {
1006 struct ath9k_tx_queue_info qi;
1007 int qnum = sc->beacon.cabq->axq_qnum;
1008
1009 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1010 /*
1011 * Ensure the readytime % is within the bounds.
1012 */
1013 if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
1014 sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
1015 else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
1016 sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
1017
1018 qi.tqi_readyTime = (sc->beacon_interval *
1019 sc->config.cabqReadytime) / 100;
1020 ath_txq_update(sc, qnum, &qi);
1021
1022 return 0;
1023 }
1024
1025 /*
1026 * Drain a given TX queue (could be Beacon or Data)
1027 *
1028 * This assumes output has been stopped and
1029 * we do not need to block ath_tx_tasklet.
1030 */
1031 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
1032 {
1033 struct ath_buf *bf, *lastbf;
1034 struct list_head bf_head;
1035 struct ath_tx_status ts;
1036
1037 memset(&ts, 0, sizeof(ts));
1038 if (!retry_tx)
1039 ts.ts_flags = ATH9K_TX_SW_ABORTED;
1040
1041 INIT_LIST_HEAD(&bf_head);
1042
1043 for (;;) {
1044 spin_lock_bh(&txq->axq_lock);
1045
1046 if (list_empty(&txq->axq_q)) {
1047 txq->axq_link = NULL;
1048 spin_unlock_bh(&txq->axq_lock);
1049 break;
1050 }
1051
1052 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
1053
1054 if (bf->bf_stale) {
1055 list_del(&bf->list);
1056 spin_unlock_bh(&txq->axq_lock);
1057
1058 spin_lock_bh(&sc->tx.txbuflock);
1059 list_add_tail(&bf->list, &sc->tx.txbuf);
1060 spin_unlock_bh(&sc->tx.txbuflock);
1061 continue;
1062 }
1063
1064 lastbf = bf->bf_lastbf;
1065
1066 /* remove ath_buf's of the same mpdu from txq */
1067 list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
1068 txq->axq_depth--;
1069
1070 spin_unlock_bh(&txq->axq_lock);
1071
1072 if (bf_isampdu(bf))
1073 ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0);
1074 else
1075 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
1076 }
1077
1078 spin_lock_bh(&txq->axq_lock);
1079 txq->axq_tx_inprogress = false;
1080 spin_unlock_bh(&txq->axq_lock);
1081
1082 /* flush any pending frames if aggregation is enabled */
1083 if (sc->sc_flags & SC_OP_TXAGGR) {
1084 if (!retry_tx) {
1085 spin_lock_bh(&txq->axq_lock);
1086 ath_txq_drain_pending_buffers(sc, txq);
1087 spin_unlock_bh(&txq->axq_lock);
1088 }
1089 }
1090 }
1091
1092 void ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
1093 {
1094 struct ath_hw *ah = sc->sc_ah;
1095 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1096 struct ath_txq *txq;
1097 int i, npend = 0;
1098
1099 if (sc->sc_flags & SC_OP_INVALID)
1100 return;
1101
1102 /* Stop beacon queue */
1103 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
1104
1105 /* Stop data queues */
1106 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1107 if (ATH_TXQ_SETUP(sc, i)) {
1108 txq = &sc->tx.txq[i];
1109 ath9k_hw_stoptxdma(ah, txq->axq_qnum);
1110 npend += ath9k_hw_numtxpending(ah, txq->axq_qnum);
1111 }
1112 }
1113
1114 if (npend) {
1115 int r;
1116
1117 ath_print(common, ATH_DBG_FATAL,
1118 "Unable to stop TxDMA. Reset HAL!\n");
1119
1120 spin_lock_bh(&sc->sc_resetlock);
1121 r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1122 if (r)
1123 ath_print(common, ATH_DBG_FATAL,
1124 "Unable to reset hardware; reset status %d\n",
1125 r);
1126 spin_unlock_bh(&sc->sc_resetlock);
1127 }
1128
1129 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1130 if (ATH_TXQ_SETUP(sc, i))
1131 ath_draintxq(sc, &sc->tx.txq[i], retry_tx);
1132 }
1133 }
1134
1135 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1136 {
1137 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1138 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1139 }
1140
1141 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1142 {
1143 struct ath_atx_ac *ac;
1144 struct ath_atx_tid *tid;
1145
1146 if (list_empty(&txq->axq_acq))
1147 return;
1148
1149 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1150 list_del(&ac->list);
1151 ac->sched = false;
1152
1153 do {
1154 if (list_empty(&ac->tid_q))
1155 return;
1156
1157 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
1158 list_del(&tid->list);
1159 tid->sched = false;
1160
1161 if (tid->paused)
1162 continue;
1163
1164 ath_tx_sched_aggr(sc, txq, tid);
1165
1166 /*
1167 * add tid to round-robin queue if more frames
1168 * are pending for the tid
1169 */
1170 if (!list_empty(&tid->buf_q))
1171 ath_tx_queue_tid(txq, tid);
1172
1173 break;
1174 } while (!list_empty(&ac->tid_q));
1175
1176 if (!list_empty(&ac->tid_q)) {
1177 if (!ac->sched) {
1178 ac->sched = true;
1179 list_add_tail(&ac->list, &txq->axq_acq);
1180 }
1181 }
1182 }
1183
1184 int ath_tx_setup(struct ath_softc *sc, int haltype)
1185 {
1186 struct ath_txq *txq;
1187
1188 if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
1189 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1190 "HAL AC %u out of range, max %zu!\n",
1191 haltype, ARRAY_SIZE(sc->tx.hwq_map));
1192 return 0;
1193 }
1194 txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
1195 if (txq != NULL) {
1196 sc->tx.hwq_map[haltype] = txq->axq_qnum;
1197 return 1;
1198 } else
1199 return 0;
1200 }
1201
1202 /***********/
1203 /* TX, DMA */
1204 /***********/
1205
1206 /*
1207 * Insert a chain of ath_buf (descriptors) on a txq and
1208 * assume the descriptors are already chained together by caller.
1209 */
1210 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1211 struct list_head *head)
1212 {
1213 struct ath_hw *ah = sc->sc_ah;
1214 struct ath_common *common = ath9k_hw_common(ah);
1215 struct ath_buf *bf;
1216
1217 /*
1218 * Insert the frame on the outbound list and
1219 * pass it on to the hardware.
1220 */
1221
1222 if (list_empty(head))
1223 return;
1224
1225 bf = list_first_entry(head, struct ath_buf, list);
1226
1227 list_splice_tail_init(head, &txq->axq_q);
1228 txq->axq_depth++;
1229
1230 ath_print(common, ATH_DBG_QUEUE,
1231 "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
1232
1233 if (txq->axq_link == NULL) {
1234 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1235 ath_print(common, ATH_DBG_XMIT,
1236 "TXDP[%u] = %llx (%p)\n",
1237 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1238 } else {
1239 *txq->axq_link = bf->bf_daddr;
1240 ath_print(common, ATH_DBG_XMIT, "link[%u] (%p)=%llx (%p)\n",
1241 txq->axq_qnum, txq->axq_link,
1242 ito64(bf->bf_daddr), bf->bf_desc);
1243 }
1244 txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link);
1245 ath9k_hw_txstart(ah, txq->axq_qnum);
1246 }
1247
1248 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
1249 {
1250 struct ath_buf *bf = NULL;
1251
1252 spin_lock_bh(&sc->tx.txbuflock);
1253
1254 if (unlikely(list_empty(&sc->tx.txbuf))) {
1255 spin_unlock_bh(&sc->tx.txbuflock);
1256 return NULL;
1257 }
1258
1259 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
1260 list_del(&bf->list);
1261
1262 spin_unlock_bh(&sc->tx.txbuflock);
1263
1264 return bf;
1265 }
1266
1267 static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
1268 struct list_head *bf_head,
1269 struct ath_tx_control *txctl)
1270 {
1271 struct ath_buf *bf;
1272
1273 bf = list_first_entry(bf_head, struct ath_buf, list);
1274 bf->bf_state.bf_type |= BUF_AMPDU;
1275 TX_STAT_INC(txctl->txq->axq_qnum, a_queued);
1276
1277 /*
1278 * Do not queue to h/w when any of the following conditions is true:
1279 * - there are pending frames in software queue
1280 * - the TID is currently paused for ADDBA/BAR request
1281 * - seqno is not within block-ack window
1282 * - h/w queue depth exceeds low water mark
1283 */
1284 if (!list_empty(&tid->buf_q) || tid->paused ||
1285 !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) ||
1286 txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
1287 /*
1288 * Add this frame to software queue for scheduling later
1289 * for aggregation.
1290 */
1291 list_move_tail(&bf->list, &tid->buf_q);
1292 ath_tx_queue_tid(txctl->txq, tid);
1293 return;
1294 }
1295
1296 /* Add sub-frame to BAW */
1297 ath_tx_addto_baw(sc, tid, bf);
1298
1299 /* Queue to h/w without aggregation */
1300 bf->bf_nframes = 1;
1301 bf->bf_lastbf = bf;
1302 ath_buf_set_rate(sc, bf);
1303 ath_tx_txqaddbuf(sc, txctl->txq, bf_head);
1304 }
1305
1306 static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
1307 struct ath_atx_tid *tid,
1308 struct list_head *bf_head)
1309 {
1310 struct ath_buf *bf;
1311
1312 bf = list_first_entry(bf_head, struct ath_buf, list);
1313 bf->bf_state.bf_type &= ~BUF_AMPDU;
1314
1315 /* update starting sequence number for subsequent ADDBA request */
1316 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
1317
1318 bf->bf_nframes = 1;
1319 bf->bf_lastbf = bf;
1320 ath_buf_set_rate(sc, bf);
1321 ath_tx_txqaddbuf(sc, txq, bf_head);
1322 TX_STAT_INC(txq->axq_qnum, queued);
1323 }
1324
1325 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1326 struct list_head *bf_head)
1327 {
1328 struct ath_buf *bf;
1329
1330 bf = list_first_entry(bf_head, struct ath_buf, list);
1331
1332 bf->bf_lastbf = bf;
1333 bf->bf_nframes = 1;
1334 ath_buf_set_rate(sc, bf);
1335 ath_tx_txqaddbuf(sc, txq, bf_head);
1336 TX_STAT_INC(txq->axq_qnum, queued);
1337 }
1338
1339 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1340 {
1341 struct ieee80211_hdr *hdr;
1342 enum ath9k_pkt_type htype;
1343 __le16 fc;
1344
1345 hdr = (struct ieee80211_hdr *)skb->data;
1346 fc = hdr->frame_control;
1347
1348 if (ieee80211_is_beacon(fc))
1349 htype = ATH9K_PKT_TYPE_BEACON;
1350 else if (ieee80211_is_probe_resp(fc))
1351 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1352 else if (ieee80211_is_atim(fc))
1353 htype = ATH9K_PKT_TYPE_ATIM;
1354 else if (ieee80211_is_pspoll(fc))
1355 htype = ATH9K_PKT_TYPE_PSPOLL;
1356 else
1357 htype = ATH9K_PKT_TYPE_NORMAL;
1358
1359 return htype;
1360 }
1361
1362 static bool is_pae(struct sk_buff *skb)
1363 {
1364 struct ieee80211_hdr *hdr;
1365 __le16 fc;
1366
1367 hdr = (struct ieee80211_hdr *)skb->data;
1368 fc = hdr->frame_control;
1369
1370 if (ieee80211_is_data(fc)) {
1371 if (ieee80211_is_nullfunc(fc) ||
1372 /* Port Access Entity (IEEE 802.1X) */
1373 (skb->protocol == cpu_to_be16(ETH_P_PAE))) {
1374 return true;
1375 }
1376 }
1377
1378 return false;
1379 }
1380
1381 static int get_hw_crypto_keytype(struct sk_buff *skb)
1382 {
1383 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1384
1385 if (tx_info->control.hw_key) {
1386 if (tx_info->control.hw_key->alg == ALG_WEP)
1387 return ATH9K_KEY_TYPE_WEP;
1388 else if (tx_info->control.hw_key->alg == ALG_TKIP)
1389 return ATH9K_KEY_TYPE_TKIP;
1390 else if (tx_info->control.hw_key->alg == ALG_CCMP)
1391 return ATH9K_KEY_TYPE_AES;
1392 }
1393
1394 return ATH9K_KEY_TYPE_CLEAR;
1395 }
1396
1397 static void assign_aggr_tid_seqno(struct sk_buff *skb,
1398 struct ath_buf *bf)
1399 {
1400 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1401 struct ieee80211_hdr *hdr;
1402 struct ath_node *an;
1403 struct ath_atx_tid *tid;
1404 __le16 fc;
1405 u8 *qc;
1406
1407 if (!tx_info->control.sta)
1408 return;
1409
1410 an = (struct ath_node *)tx_info->control.sta->drv_priv;
1411 hdr = (struct ieee80211_hdr *)skb->data;
1412 fc = hdr->frame_control;
1413
1414 if (ieee80211_is_data_qos(fc)) {
1415 qc = ieee80211_get_qos_ctl(hdr);
1416 bf->bf_tidno = qc[0] & 0xf;
1417 }
1418
1419 /*
1420 * For HT capable stations, we save tidno for later use.
1421 * We also override seqno set by upper layer with the one
1422 * in tx aggregation state.
1423 */
1424 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1425 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
1426 bf->bf_seqno = tid->seq_next;
1427 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
1428 }
1429
1430 static int setup_tx_flags(struct ath_softc *sc, struct sk_buff *skb,
1431 struct ath_txq *txq)
1432 {
1433 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1434 int flags = 0;
1435
1436 flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
1437 flags |= ATH9K_TXDESC_INTREQ;
1438
1439 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1440 flags |= ATH9K_TXDESC_NOACK;
1441
1442 return flags;
1443 }
1444
1445 /*
1446 * rix - rate index
1447 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1448 * width - 0 for 20 MHz, 1 for 40 MHz
1449 * half_gi - to use 4us v/s 3.6 us for symbol time
1450 */
1451 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, struct ath_buf *bf,
1452 int width, int half_gi, bool shortPreamble)
1453 {
1454 u32 nbits, nsymbits, duration, nsymbols;
1455 int streams, pktlen;
1456
1457 pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
1458
1459 /* find number of symbols: PLCP + data */
1460 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1461 nsymbits = bits_per_symbol[rix][width];
1462 nsymbols = (nbits + nsymbits - 1) / nsymbits;
1463
1464 if (!half_gi)
1465 duration = SYMBOL_TIME(nsymbols);
1466 else
1467 duration = SYMBOL_TIME_HALFGI(nsymbols);
1468
1469 /* addup duration for legacy/ht training and signal fields */
1470 streams = HT_RC_2_STREAMS(rix);
1471 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1472
1473 return duration;
1474 }
1475
1476 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
1477 {
1478 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1479 struct ath9k_11n_rate_series series[4];
1480 struct sk_buff *skb;
1481 struct ieee80211_tx_info *tx_info;
1482 struct ieee80211_tx_rate *rates;
1483 const struct ieee80211_rate *rate;
1484 struct ieee80211_hdr *hdr;
1485 int i, flags = 0;
1486 u8 rix = 0, ctsrate = 0;
1487 bool is_pspoll;
1488
1489 memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
1490
1491 skb = bf->bf_mpdu;
1492 tx_info = IEEE80211_SKB_CB(skb);
1493 rates = tx_info->control.rates;
1494 hdr = (struct ieee80211_hdr *)skb->data;
1495 is_pspoll = ieee80211_is_pspoll(hdr->frame_control);
1496
1497 /*
1498 * We check if Short Preamble is needed for the CTS rate by
1499 * checking the BSS's global flag.
1500 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
1501 */
1502 rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info);
1503 ctsrate = rate->hw_value;
1504 if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
1505 ctsrate |= rate->hw_value_short;
1506
1507 for (i = 0; i < 4; i++) {
1508 bool is_40, is_sgi, is_sp;
1509 int phy;
1510
1511 if (!rates[i].count || (rates[i].idx < 0))
1512 continue;
1513
1514 rix = rates[i].idx;
1515 series[i].Tries = rates[i].count;
1516 series[i].ChSel = common->tx_chainmask;
1517
1518 if ((sc->config.ath_aggr_prot && bf_isaggr(bf)) ||
1519 (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS)) {
1520 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1521 flags |= ATH9K_TXDESC_RTSENA;
1522 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1523 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1524 flags |= ATH9K_TXDESC_CTSENA;
1525 }
1526
1527 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1528 series[i].RateFlags |= ATH9K_RATESERIES_2040;
1529 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1530 series[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1531
1532 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1533 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1534 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1535
1536 if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1537 /* MCS rates */
1538 series[i].Rate = rix | 0x80;
1539 series[i].PktDuration = ath_pkt_duration(sc, rix, bf,
1540 is_40, is_sgi, is_sp);
1541 continue;
1542 }
1543
1544 /* legcay rates */
1545 if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1546 !(rate->flags & IEEE80211_RATE_ERP_G))
1547 phy = WLAN_RC_PHY_CCK;
1548 else
1549 phy = WLAN_RC_PHY_OFDM;
1550
1551 rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
1552 series[i].Rate = rate->hw_value;
1553 if (rate->hw_value_short) {
1554 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1555 series[i].Rate |= rate->hw_value_short;
1556 } else {
1557 is_sp = false;
1558 }
1559
1560 series[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1561 phy, rate->bitrate * 100, bf->bf_frmlen, rix, is_sp);
1562 }
1563
1564 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1565 if (bf_isaggr(bf) && (bf->bf_al > sc->sc_ah->caps.rts_aggr_limit))
1566 flags &= ~ATH9K_TXDESC_RTSENA;
1567
1568 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1569 if (flags & ATH9K_TXDESC_RTSENA)
1570 flags &= ~ATH9K_TXDESC_CTSENA;
1571
1572 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1573 ath9k_hw_set11n_ratescenario(sc->sc_ah, bf->bf_desc,
1574 bf->bf_lastbf->bf_desc,
1575 !is_pspoll, ctsrate,
1576 0, series, 4, flags);
1577
1578 if (sc->config.ath_aggr_prot && flags)
1579 ath9k_hw_set11n_burstduration(sc->sc_ah, bf->bf_desc, 8192);
1580 }
1581
1582 static int ath_tx_setup_buffer(struct ieee80211_hw *hw, struct ath_buf *bf,
1583 struct sk_buff *skb,
1584 struct ath_tx_control *txctl)
1585 {
1586 struct ath_wiphy *aphy = hw->priv;
1587 struct ath_softc *sc = aphy->sc;
1588 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1589 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1590 int hdrlen;
1591 __le16 fc;
1592 int padpos, padsize;
1593
1594 tx_info->pad[0] = 0;
1595 switch (txctl->frame_type) {
1596 case ATH9K_NOT_INTERNAL:
1597 break;
1598 case ATH9K_INT_PAUSE:
1599 tx_info->pad[0] |= ATH_TX_INFO_FRAME_TYPE_PAUSE;
1600 /* fall through */
1601 case ATH9K_INT_UNPAUSE:
1602 tx_info->pad[0] |= ATH_TX_INFO_FRAME_TYPE_INTERNAL;
1603 break;
1604 }
1605 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1606 fc = hdr->frame_control;
1607
1608 ATH_TXBUF_RESET(bf);
1609
1610 bf->aphy = aphy;
1611 bf->bf_frmlen = skb->len + FCS_LEN;
1612 /* Remove the padding size from bf_frmlen, if any */
1613 padpos = ath9k_cmn_padpos(hdr->frame_control);
1614 padsize = padpos & 3;
1615 if (padsize && skb->len>padpos+padsize) {
1616 bf->bf_frmlen -= padsize;
1617 }
1618
1619 if (conf_is_ht(&hw->conf))
1620 bf->bf_state.bf_type |= BUF_HT;
1621
1622 bf->bf_flags = setup_tx_flags(sc, skb, txctl->txq);
1623
1624 bf->bf_keytype = get_hw_crypto_keytype(skb);
1625 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) {
1626 bf->bf_frmlen += tx_info->control.hw_key->icv_len;
1627 bf->bf_keyix = tx_info->control.hw_key->hw_key_idx;
1628 } else {
1629 bf->bf_keyix = ATH9K_TXKEYIX_INVALID;
1630 }
1631
1632 if (ieee80211_is_data_qos(fc) && bf_isht(bf) &&
1633 (sc->sc_flags & SC_OP_TXAGGR))
1634 assign_aggr_tid_seqno(skb, bf);
1635
1636 bf->bf_mpdu = skb;
1637
1638 bf->bf_dmacontext = dma_map_single(sc->dev, skb->data,
1639 skb->len, DMA_TO_DEVICE);
1640 if (unlikely(dma_mapping_error(sc->dev, bf->bf_dmacontext))) {
1641 bf->bf_mpdu = NULL;
1642 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1643 "dma_mapping_error() on TX\n");
1644 return -ENOMEM;
1645 }
1646
1647 bf->bf_buf_addr = bf->bf_dmacontext;
1648
1649 /* tag if this is a nullfunc frame to enable PS when AP acks it */
1650 if (ieee80211_is_nullfunc(fc) && ieee80211_has_pm(fc)) {
1651 bf->bf_isnullfunc = true;
1652 sc->ps_flags &= ~PS_NULLFUNC_COMPLETED;
1653 } else
1654 bf->bf_isnullfunc = false;
1655
1656 return 0;
1657 }
1658
1659 /* FIXME: tx power */
1660 static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf,
1661 struct ath_tx_control *txctl)
1662 {
1663 struct sk_buff *skb = bf->bf_mpdu;
1664 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1665 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1666 struct ath_node *an = NULL;
1667 struct list_head bf_head;
1668 struct ath_desc *ds;
1669 struct ath_atx_tid *tid;
1670 struct ath_hw *ah = sc->sc_ah;
1671 int frm_type;
1672 __le16 fc;
1673
1674 frm_type = get_hw_packet_type(skb);
1675 fc = hdr->frame_control;
1676
1677 INIT_LIST_HEAD(&bf_head);
1678 list_add_tail(&bf->list, &bf_head);
1679
1680 ds = bf->bf_desc;
1681 ds->ds_link = 0;
1682 ds->ds_data = bf->bf_buf_addr;
1683
1684 ath9k_hw_set11n_txdesc(ah, ds, bf->bf_frmlen, frm_type, MAX_RATE_POWER,
1685 bf->bf_keyix, bf->bf_keytype, bf->bf_flags);
1686
1687 ath9k_hw_filltxdesc(ah, ds,
1688 skb->len, /* segment length */
1689 true, /* first segment */
1690 true, /* last segment */
1691 ds); /* first descriptor */
1692
1693 spin_lock_bh(&txctl->txq->axq_lock);
1694
1695 if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR) &&
1696 tx_info->control.sta) {
1697 an = (struct ath_node *)tx_info->control.sta->drv_priv;
1698 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1699
1700 if (!ieee80211_is_data_qos(fc)) {
1701 ath_tx_send_normal(sc, txctl->txq, &bf_head);
1702 goto tx_done;
1703 }
1704
1705 if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && !is_pae(skb)) {
1706 /*
1707 * Try aggregation if it's a unicast data frame
1708 * and the destination is HT capable.
1709 */
1710 ath_tx_send_ampdu(sc, tid, &bf_head, txctl);
1711 } else {
1712 /*
1713 * Send this frame as regular when ADDBA
1714 * exchange is neither complete nor pending.
1715 */
1716 ath_tx_send_ht_normal(sc, txctl->txq,
1717 tid, &bf_head);
1718 }
1719 } else {
1720 ath_tx_send_normal(sc, txctl->txq, &bf_head);
1721 }
1722
1723 tx_done:
1724 spin_unlock_bh(&txctl->txq->axq_lock);
1725 }
1726
1727 /* Upon failure caller should free skb */
1728 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
1729 struct ath_tx_control *txctl)
1730 {
1731 struct ath_wiphy *aphy = hw->priv;
1732 struct ath_softc *sc = aphy->sc;
1733 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1734 struct ath_buf *bf;
1735 int r;
1736
1737 bf = ath_tx_get_buffer(sc);
1738 if (!bf) {
1739 ath_print(common, ATH_DBG_XMIT, "TX buffers are full\n");
1740 return -1;
1741 }
1742
1743 r = ath_tx_setup_buffer(hw, bf, skb, txctl);
1744 if (unlikely(r)) {
1745 struct ath_txq *txq = txctl->txq;
1746
1747 ath_print(common, ATH_DBG_FATAL, "TX mem alloc failure\n");
1748
1749 /* upon ath_tx_processq() this TX queue will be resumed, we
1750 * guarantee this will happen by knowing beforehand that
1751 * we will at least have to run TX completionon one buffer
1752 * on the queue */
1753 spin_lock_bh(&txq->axq_lock);
1754 if (sc->tx.txq[txq->axq_qnum].axq_depth > 1) {
1755 ath_mac80211_stop_queue(sc, skb_get_queue_mapping(skb));
1756 txq->stopped = 1;
1757 }
1758 spin_unlock_bh(&txq->axq_lock);
1759
1760 spin_lock_bh(&sc->tx.txbuflock);
1761 list_add_tail(&bf->list, &sc->tx.txbuf);
1762 spin_unlock_bh(&sc->tx.txbuflock);
1763
1764 return r;
1765 }
1766
1767 ath_tx_start_dma(sc, bf, txctl);
1768
1769 return 0;
1770 }
1771
1772 void ath_tx_cabq(struct ieee80211_hw *hw, struct sk_buff *skb)
1773 {
1774 struct ath_wiphy *aphy = hw->priv;
1775 struct ath_softc *sc = aphy->sc;
1776 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1777 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1778 int padpos, padsize;
1779 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1780 struct ath_tx_control txctl;
1781
1782 memset(&txctl, 0, sizeof(struct ath_tx_control));
1783
1784 /*
1785 * As a temporary workaround, assign seq# here; this will likely need
1786 * to be cleaned up to work better with Beacon transmission and virtual
1787 * BSSes.
1788 */
1789 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1790 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1791 sc->tx.seq_no += 0x10;
1792 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1793 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1794 }
1795
1796 /* Add the padding after the header if this is not already done */
1797 padpos = ath9k_cmn_padpos(hdr->frame_control);
1798 padsize = padpos & 3;
1799 if (padsize && skb->len>padpos) {
1800 if (skb_headroom(skb) < padsize) {
1801 ath_print(common, ATH_DBG_XMIT,
1802 "TX CABQ padding failed\n");
1803 dev_kfree_skb_any(skb);
1804 return;
1805 }
1806 skb_push(skb, padsize);
1807 memmove(skb->data, skb->data + padsize, padpos);
1808 }
1809
1810 txctl.txq = sc->beacon.cabq;
1811
1812 ath_print(common, ATH_DBG_XMIT,
1813 "transmitting CABQ packet, skb: %p\n", skb);
1814
1815 if (ath_tx_start(hw, skb, &txctl) != 0) {
1816 ath_print(common, ATH_DBG_XMIT, "CABQ TX failed\n");
1817 goto exit;
1818 }
1819
1820 return;
1821 exit:
1822 dev_kfree_skb_any(skb);
1823 }
1824
1825 /*****************/
1826 /* TX Completion */
1827 /*****************/
1828
1829 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
1830 struct ath_wiphy *aphy, int tx_flags)
1831 {
1832 struct ieee80211_hw *hw = sc->hw;
1833 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1834 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1835 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
1836 int padpos, padsize;
1837
1838 ath_print(common, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
1839
1840 if (aphy)
1841 hw = aphy->hw;
1842
1843 if (tx_flags & ATH_TX_BAR)
1844 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
1845
1846 if (!(tx_flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) {
1847 /* Frame was ACKed */
1848 tx_info->flags |= IEEE80211_TX_STAT_ACK;
1849 }
1850
1851 padpos = ath9k_cmn_padpos(hdr->frame_control);
1852 padsize = padpos & 3;
1853 if (padsize && skb->len>padpos+padsize) {
1854 /*
1855 * Remove MAC header padding before giving the frame back to
1856 * mac80211.
1857 */
1858 memmove(skb->data + padsize, skb->data, padpos);
1859 skb_pull(skb, padsize);
1860 }
1861
1862 if (sc->ps_flags & PS_WAIT_FOR_TX_ACK) {
1863 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
1864 ath_print(common, ATH_DBG_PS,
1865 "Going back to sleep after having "
1866 "received TX status (0x%lx)\n",
1867 sc->ps_flags & (PS_WAIT_FOR_BEACON |
1868 PS_WAIT_FOR_CAB |
1869 PS_WAIT_FOR_PSPOLL_DATA |
1870 PS_WAIT_FOR_TX_ACK));
1871 }
1872
1873 if (unlikely(tx_info->pad[0] & ATH_TX_INFO_FRAME_TYPE_INTERNAL))
1874 ath9k_tx_status(hw, skb);
1875 else
1876 ieee80211_tx_status(hw, skb);
1877 }
1878
1879 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
1880 struct ath_txq *txq, struct list_head *bf_q,
1881 struct ath_tx_status *ts, int txok, int sendbar)
1882 {
1883 struct sk_buff *skb = bf->bf_mpdu;
1884 unsigned long flags;
1885 int tx_flags = 0;
1886
1887 if (sendbar)
1888 tx_flags = ATH_TX_BAR;
1889
1890 if (!txok) {
1891 tx_flags |= ATH_TX_ERROR;
1892
1893 if (bf_isxretried(bf))
1894 tx_flags |= ATH_TX_XRETRY;
1895 }
1896
1897 dma_unmap_single(sc->dev, bf->bf_dmacontext, skb->len, DMA_TO_DEVICE);
1898 ath_tx_complete(sc, skb, bf->aphy, tx_flags);
1899 ath_debug_stat_tx(sc, txq, bf, ts);
1900
1901 /*
1902 * Return the list of ath_buf of this mpdu to free queue
1903 */
1904 spin_lock_irqsave(&sc->tx.txbuflock, flags);
1905 list_splice_tail_init(bf_q, &sc->tx.txbuf);
1906 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
1907 }
1908
1909 static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
1910 struct ath_tx_status *ts, int txok)
1911 {
1912 u16 seq_st = 0;
1913 u32 ba[WME_BA_BMP_SIZE >> 5];
1914 int ba_index;
1915 int nbad = 0;
1916 int isaggr = 0;
1917
1918 if (ts->ts_flags == ATH9K_TX_SW_ABORTED)
1919 return 0;
1920
1921 isaggr = bf_isaggr(bf);
1922 if (isaggr) {
1923 seq_st = ts->ts_seqnum;
1924 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
1925 }
1926
1927 while (bf) {
1928 ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
1929 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
1930 nbad++;
1931
1932 bf = bf->bf_next;
1933 }
1934
1935 return nbad;
1936 }
1937
1938 static void ath_tx_rc_status(struct ath_buf *bf, struct ath_tx_status *ts,
1939 int nbad, int txok, bool update_rc)
1940 {
1941 struct sk_buff *skb = bf->bf_mpdu;
1942 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1943 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1944 struct ieee80211_hw *hw = bf->aphy->hw;
1945 u8 i, tx_rateindex;
1946
1947 if (txok)
1948 tx_info->status.ack_signal = ts->ts_rssi;
1949
1950 tx_rateindex = ts->ts_rateindex;
1951 WARN_ON(tx_rateindex >= hw->max_rates);
1952
1953 if (ts->ts_status & ATH9K_TXERR_FILT)
1954 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1955 if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && update_rc)
1956 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
1957
1958 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
1959 (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0 && update_rc) {
1960 if (ieee80211_is_data(hdr->frame_control)) {
1961 if (ts->ts_flags &
1962 (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN))
1963 tx_info->pad[0] |= ATH_TX_INFO_UNDERRUN;
1964 if ((ts->ts_status & ATH9K_TXERR_XRETRY) ||
1965 (ts->ts_status & ATH9K_TXERR_FIFO))
1966 tx_info->pad[0] |= ATH_TX_INFO_XRETRY;
1967 tx_info->status.ampdu_len = bf->bf_nframes;
1968 tx_info->status.ampdu_ack_len = bf->bf_nframes - nbad;
1969 }
1970 }
1971
1972 for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
1973 tx_info->status.rates[i].count = 0;
1974 tx_info->status.rates[i].idx = -1;
1975 }
1976
1977 tx_info->status.rates[tx_rateindex].count = bf->bf_retries + 1;
1978 }
1979
1980 static void ath_wake_mac80211_queue(struct ath_softc *sc, struct ath_txq *txq)
1981 {
1982 int qnum;
1983
1984 spin_lock_bh(&txq->axq_lock);
1985 if (txq->stopped &&
1986 sc->tx.txq[txq->axq_qnum].axq_depth <= (ATH_TXBUF - 20)) {
1987 qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc);
1988 if (qnum != -1) {
1989 ath_mac80211_start_queue(sc, qnum);
1990 txq->stopped = 0;
1991 }
1992 }
1993 spin_unlock_bh(&txq->axq_lock);
1994 }
1995
1996 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
1997 {
1998 struct ath_hw *ah = sc->sc_ah;
1999 struct ath_common *common = ath9k_hw_common(ah);
2000 struct ath_buf *bf, *lastbf, *bf_held = NULL;
2001 struct list_head bf_head;
2002 struct ath_desc *ds;
2003 struct ath_tx_status ts;
2004 int txok;
2005 int status;
2006
2007 ath_print(common, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
2008 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2009 txq->axq_link);
2010
2011 for (;;) {
2012 spin_lock_bh(&txq->axq_lock);
2013 if (list_empty(&txq->axq_q)) {
2014 txq->axq_link = NULL;
2015 spin_unlock_bh(&txq->axq_lock);
2016 break;
2017 }
2018 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2019
2020 /*
2021 * There is a race condition that a BH gets scheduled
2022 * after sw writes TxE and before hw re-load the last
2023 * descriptor to get the newly chained one.
2024 * Software must keep the last DONE descriptor as a
2025 * holding descriptor - software does so by marking
2026 * it with the STALE flag.
2027 */
2028 bf_held = NULL;
2029 if (bf->bf_stale) {
2030 bf_held = bf;
2031 if (list_is_last(&bf_held->list, &txq->axq_q)) {
2032 spin_unlock_bh(&txq->axq_lock);
2033 break;
2034 } else {
2035 bf = list_entry(bf_held->list.next,
2036 struct ath_buf, list);
2037 }
2038 }
2039
2040 lastbf = bf->bf_lastbf;
2041 ds = lastbf->bf_desc;
2042
2043 memset(&ts, 0, sizeof(ts));
2044 status = ath9k_hw_txprocdesc(ah, ds, &ts);
2045 if (status == -EINPROGRESS) {
2046 spin_unlock_bh(&txq->axq_lock);
2047 break;
2048 }
2049
2050 /*
2051 * We now know the nullfunc frame has been ACKed so we
2052 * can disable RX.
2053 */
2054 if (bf->bf_isnullfunc &&
2055 (ts.ts_status & ATH9K_TX_ACKED)) {
2056 if ((sc->ps_flags & PS_ENABLED))
2057 ath9k_enable_ps(sc);
2058 else
2059 sc->ps_flags |= PS_NULLFUNC_COMPLETED;
2060 }
2061
2062 /*
2063 * Remove ath_buf's of the same transmit unit from txq,
2064 * however leave the last descriptor back as the holding
2065 * descriptor for hw.
2066 */
2067 lastbf->bf_stale = true;
2068 INIT_LIST_HEAD(&bf_head);
2069 if (!list_is_singular(&lastbf->list))
2070 list_cut_position(&bf_head,
2071 &txq->axq_q, lastbf->list.prev);
2072
2073 txq->axq_depth--;
2074 txok = !(ts.ts_status & ATH9K_TXERR_MASK);
2075 txq->axq_tx_inprogress = false;
2076 spin_unlock_bh(&txq->axq_lock);
2077
2078 if (bf_held) {
2079 spin_lock_bh(&sc->tx.txbuflock);
2080 list_move_tail(&bf_held->list, &sc->tx.txbuf);
2081 spin_unlock_bh(&sc->tx.txbuflock);
2082 }
2083
2084 if (!bf_isampdu(bf)) {
2085 /*
2086 * This frame is sent out as a single frame.
2087 * Use hardware retry status for this frame.
2088 */
2089 bf->bf_retries = ts.ts_longretry;
2090 if (ts.ts_status & ATH9K_TXERR_XRETRY)
2091 bf->bf_state.bf_type |= BUF_XRETRY;
2092 ath_tx_rc_status(bf, &ts, 0, txok, true);
2093 }
2094
2095 if (bf_isampdu(bf))
2096 ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, txok);
2097 else
2098 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, txok, 0);
2099
2100 ath_wake_mac80211_queue(sc, txq);
2101
2102 spin_lock_bh(&txq->axq_lock);
2103 if (sc->sc_flags & SC_OP_TXAGGR)
2104 ath_txq_schedule(sc, txq);
2105 spin_unlock_bh(&txq->axq_lock);
2106 }
2107 }
2108
2109 static void ath_tx_complete_poll_work(struct work_struct *work)
2110 {
2111 struct ath_softc *sc = container_of(work, struct ath_softc,
2112 tx_complete_work.work);
2113 struct ath_txq *txq;
2114 int i;
2115 bool needreset = false;
2116
2117 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
2118 if (ATH_TXQ_SETUP(sc, i)) {
2119 txq = &sc->tx.txq[i];
2120 spin_lock_bh(&txq->axq_lock);
2121 if (txq->axq_depth) {
2122 if (txq->axq_tx_inprogress) {
2123 needreset = true;
2124 spin_unlock_bh(&txq->axq_lock);
2125 break;
2126 } else {
2127 txq->axq_tx_inprogress = true;
2128 }
2129 }
2130 spin_unlock_bh(&txq->axq_lock);
2131 }
2132
2133 if (needreset) {
2134 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_RESET,
2135 "tx hung, resetting the chip\n");
2136 ath9k_ps_wakeup(sc);
2137 ath_reset(sc, false);
2138 ath9k_ps_restore(sc);
2139 }
2140
2141 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2142 msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
2143 }
2144
2145
2146
2147 void ath_tx_tasklet(struct ath_softc *sc)
2148 {
2149 int i;
2150 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
2151
2152 ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
2153
2154 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2155 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2156 ath_tx_processq(sc, &sc->tx.txq[i]);
2157 }
2158 }
2159
2160 /*****************/
2161 /* Init, Cleanup */
2162 /*****************/
2163
2164 int ath_tx_init(struct ath_softc *sc, int nbufs)
2165 {
2166 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2167 int error = 0;
2168
2169 spin_lock_init(&sc->tx.txbuflock);
2170
2171 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2172 "tx", nbufs, 1);
2173 if (error != 0) {
2174 ath_print(common, ATH_DBG_FATAL,
2175 "Failed to allocate tx descriptors: %d\n", error);
2176 goto err;
2177 }
2178
2179 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2180 "beacon", ATH_BCBUF, 1);
2181 if (error != 0) {
2182 ath_print(common, ATH_DBG_FATAL,
2183 "Failed to allocate beacon descriptors: %d\n", error);
2184 goto err;
2185 }
2186
2187 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2188
2189 err:
2190 if (error != 0)
2191 ath_tx_cleanup(sc);
2192
2193 return error;
2194 }
2195
2196 void ath_tx_cleanup(struct ath_softc *sc)
2197 {
2198 if (sc->beacon.bdma.dd_desc_len != 0)
2199 ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
2200
2201 if (sc->tx.txdma.dd_desc_len != 0)
2202 ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
2203 }
2204
2205 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2206 {
2207 struct ath_atx_tid *tid;
2208 struct ath_atx_ac *ac;
2209 int tidno, acno;
2210
2211 for (tidno = 0, tid = &an->tid[tidno];
2212 tidno < WME_NUM_TID;
2213 tidno++, tid++) {
2214 tid->an = an;
2215 tid->tidno = tidno;
2216 tid->seq_start = tid->seq_next = 0;
2217 tid->baw_size = WME_MAX_BA;
2218 tid->baw_head = tid->baw_tail = 0;
2219 tid->sched = false;
2220 tid->paused = false;
2221 tid->state &= ~AGGR_CLEANUP;
2222 INIT_LIST_HEAD(&tid->buf_q);
2223 acno = TID_TO_WME_AC(tidno);
2224 tid->ac = &an->ac[acno];
2225 tid->state &= ~AGGR_ADDBA_COMPLETE;
2226 tid->state &= ~AGGR_ADDBA_PROGRESS;
2227 }
2228
2229 for (acno = 0, ac = &an->ac[acno];
2230 acno < WME_NUM_AC; acno++, ac++) {
2231 ac->sched = false;
2232 INIT_LIST_HEAD(&ac->tid_q);
2233
2234 switch (acno) {
2235 case WME_AC_BE:
2236 ac->qnum = ath_tx_get_qnum(sc,
2237 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
2238 break;
2239 case WME_AC_BK:
2240 ac->qnum = ath_tx_get_qnum(sc,
2241 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK);
2242 break;
2243 case WME_AC_VI:
2244 ac->qnum = ath_tx_get_qnum(sc,
2245 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI);
2246 break;
2247 case WME_AC_VO:
2248 ac->qnum = ath_tx_get_qnum(sc,
2249 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO);
2250 break;
2251 }
2252 }
2253 }
2254
2255 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2256 {
2257 int i;
2258 struct ath_atx_ac *ac, *ac_tmp;
2259 struct ath_atx_tid *tid, *tid_tmp;
2260 struct ath_txq *txq;
2261
2262 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2263 if (ATH_TXQ_SETUP(sc, i)) {
2264 txq = &sc->tx.txq[i];
2265
2266 spin_lock_bh(&txq->axq_lock);
2267
2268 list_for_each_entry_safe(ac,
2269 ac_tmp, &txq->axq_acq, list) {
2270 tid = list_first_entry(&ac->tid_q,
2271 struct ath_atx_tid, list);
2272 if (tid && tid->an != an)
2273 continue;
2274 list_del(&ac->list);
2275 ac->sched = false;
2276
2277 list_for_each_entry_safe(tid,
2278 tid_tmp, &ac->tid_q, list) {
2279 list_del(&tid->list);
2280 tid->sched = false;
2281 ath_tid_drain(sc, txq, tid);
2282 tid->state &= ~AGGR_ADDBA_COMPLETE;
2283 tid->state &= ~AGGR_CLEANUP;
2284 }
2285 }
2286
2287 spin_unlock_bh(&txq->axq_lock);
2288 }
2289 }
2290 }
This page took 0.079184 seconds and 6 git commands to generate.