Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / xmit.c
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "ath9k.h"
18 #include "ar9003_mac.h"
19
20 #define BITS_PER_BYTE 8
21 #define OFDM_PLCP_BITS 22
22 #define HT_RC_2_MCS(_rc) ((_rc) & 0x1f)
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF 8
25 #define L_LTF 8
26 #define L_SIG 4
27 #define HT_SIG 8
28 #define HT_STF 4
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
33 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
34
35 #define OFDM_SIFS_TIME 16
36
37 static u16 bits_per_symbol[][2] = {
38 /* 20MHz 40MHz */
39 { 26, 54 }, /* 0: BPSK */
40 { 52, 108 }, /* 1: QPSK 1/2 */
41 { 78, 162 }, /* 2: QPSK 3/4 */
42 { 104, 216 }, /* 3: 16-QAM 1/2 */
43 { 156, 324 }, /* 4: 16-QAM 3/4 */
44 { 208, 432 }, /* 5: 64-QAM 2/3 */
45 { 234, 486 }, /* 6: 64-QAM 3/4 */
46 { 260, 540 }, /* 7: 64-QAM 5/6 */
47 };
48
49 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
50
51 static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
52 struct ath_atx_tid *tid,
53 struct list_head *bf_head);
54 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
55 struct ath_txq *txq, struct list_head *bf_q,
56 struct ath_tx_status *ts, int txok, int sendbar);
57 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
58 struct list_head *head);
59 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf);
60 static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
61 struct ath_tx_status *ts, int txok);
62 static void ath_tx_rc_status(struct ath_buf *bf, struct ath_tx_status *ts,
63 int nbad, int txok, bool update_rc);
64
65 enum {
66 MCS_HT20,
67 MCS_HT20_SGI,
68 MCS_HT40,
69 MCS_HT40_SGI,
70 };
71
72 static int ath_max_4ms_framelen[4][32] = {
73 [MCS_HT20] = {
74 3212, 6432, 9648, 12864, 19300, 25736, 28952, 32172,
75 6424, 12852, 19280, 25708, 38568, 51424, 57852, 64280,
76 9628, 19260, 28896, 38528, 57792, 65532, 65532, 65532,
77 12828, 25656, 38488, 51320, 65532, 65532, 65532, 65532,
78 },
79 [MCS_HT20_SGI] = {
80 3572, 7144, 10720, 14296, 21444, 28596, 32172, 35744,
81 7140, 14284, 21428, 28568, 42856, 57144, 64288, 65532,
82 10700, 21408, 32112, 42816, 64228, 65532, 65532, 65532,
83 14256, 28516, 42780, 57040, 65532, 65532, 65532, 65532,
84 },
85 [MCS_HT40] = {
86 6680, 13360, 20044, 26724, 40092, 53456, 60140, 65532,
87 13348, 26700, 40052, 53400, 65532, 65532, 65532, 65532,
88 20004, 40008, 60016, 65532, 65532, 65532, 65532, 65532,
89 26644, 53292, 65532, 65532, 65532, 65532, 65532, 65532,
90 },
91 [MCS_HT40_SGI] = {
92 7420, 14844, 22272, 29696, 44544, 59396, 65532, 65532,
93 14832, 29668, 44504, 59340, 65532, 65532, 65532, 65532,
94 22232, 44464, 65532, 65532, 65532, 65532, 65532, 65532,
95 29616, 59232, 65532, 65532, 65532, 65532, 65532, 65532,
96 }
97 };
98
99 /*********************/
100 /* Aggregation logic */
101 /*********************/
102
103 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
104 {
105 struct ath_atx_ac *ac = tid->ac;
106
107 if (tid->paused)
108 return;
109
110 if (tid->sched)
111 return;
112
113 tid->sched = true;
114 list_add_tail(&tid->list, &ac->tid_q);
115
116 if (ac->sched)
117 return;
118
119 ac->sched = true;
120 list_add_tail(&ac->list, &txq->axq_acq);
121 }
122
123 static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
124 {
125 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
126
127 spin_lock_bh(&txq->axq_lock);
128 tid->paused++;
129 spin_unlock_bh(&txq->axq_lock);
130 }
131
132 static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
133 {
134 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
135
136 BUG_ON(tid->paused <= 0);
137 spin_lock_bh(&txq->axq_lock);
138
139 tid->paused--;
140
141 if (tid->paused > 0)
142 goto unlock;
143
144 if (list_empty(&tid->buf_q))
145 goto unlock;
146
147 ath_tx_queue_tid(txq, tid);
148 ath_txq_schedule(sc, txq);
149 unlock:
150 spin_unlock_bh(&txq->axq_lock);
151 }
152
153 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
154 {
155 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
156 struct ath_buf *bf;
157 struct list_head bf_head;
158 INIT_LIST_HEAD(&bf_head);
159
160 BUG_ON(tid->paused <= 0);
161 spin_lock_bh(&txq->axq_lock);
162
163 tid->paused--;
164
165 if (tid->paused > 0) {
166 spin_unlock_bh(&txq->axq_lock);
167 return;
168 }
169
170 while (!list_empty(&tid->buf_q)) {
171 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
172 BUG_ON(bf_isretried(bf));
173 list_move_tail(&bf->list, &bf_head);
174 ath_tx_send_ht_normal(sc, txq, tid, &bf_head);
175 }
176
177 spin_unlock_bh(&txq->axq_lock);
178 }
179
180 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
181 int seqno)
182 {
183 int index, cindex;
184
185 index = ATH_BA_INDEX(tid->seq_start, seqno);
186 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
187
188 tid->tx_buf[cindex] = NULL;
189
190 while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
191 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
192 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
193 }
194 }
195
196 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
197 struct ath_buf *bf)
198 {
199 int index, cindex;
200
201 if (bf_isretried(bf))
202 return;
203
204 index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
205 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
206
207 BUG_ON(tid->tx_buf[cindex] != NULL);
208 tid->tx_buf[cindex] = bf;
209
210 if (index >= ((tid->baw_tail - tid->baw_head) &
211 (ATH_TID_MAX_BUFS - 1))) {
212 tid->baw_tail = cindex;
213 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
214 }
215 }
216
217 /*
218 * TODO: For frame(s) that are in the retry state, we will reuse the
219 * sequence number(s) without setting the retry bit. The
220 * alternative is to give up on these and BAR the receiver's window
221 * forward.
222 */
223 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
224 struct ath_atx_tid *tid)
225
226 {
227 struct ath_buf *bf;
228 struct list_head bf_head;
229 struct ath_tx_status ts;
230
231 memset(&ts, 0, sizeof(ts));
232 INIT_LIST_HEAD(&bf_head);
233
234 for (;;) {
235 if (list_empty(&tid->buf_q))
236 break;
237
238 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
239 list_move_tail(&bf->list, &bf_head);
240
241 if (bf_isretried(bf))
242 ath_tx_update_baw(sc, tid, bf->bf_seqno);
243
244 spin_unlock(&txq->axq_lock);
245 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
246 spin_lock(&txq->axq_lock);
247 }
248
249 tid->seq_next = tid->seq_start;
250 tid->baw_tail = tid->baw_head;
251 }
252
253 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
254 struct ath_buf *bf)
255 {
256 struct sk_buff *skb;
257 struct ieee80211_hdr *hdr;
258
259 bf->bf_state.bf_type |= BUF_RETRY;
260 bf->bf_retries++;
261 TX_STAT_INC(txq->axq_qnum, a_retries);
262
263 skb = bf->bf_mpdu;
264 hdr = (struct ieee80211_hdr *)skb->data;
265 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
266 }
267
268 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
269 {
270 struct ath_buf *bf = NULL;
271
272 spin_lock_bh(&sc->tx.txbuflock);
273
274 if (unlikely(list_empty(&sc->tx.txbuf))) {
275 spin_unlock_bh(&sc->tx.txbuflock);
276 return NULL;
277 }
278
279 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
280 list_del(&bf->list);
281
282 spin_unlock_bh(&sc->tx.txbuflock);
283
284 return bf;
285 }
286
287 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
288 {
289 spin_lock_bh(&sc->tx.txbuflock);
290 list_add_tail(&bf->list, &sc->tx.txbuf);
291 spin_unlock_bh(&sc->tx.txbuflock);
292 }
293
294 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
295 {
296 struct ath_buf *tbf;
297
298 tbf = ath_tx_get_buffer(sc);
299 if (WARN_ON(!tbf))
300 return NULL;
301
302 ATH_TXBUF_RESET(tbf);
303
304 tbf->aphy = bf->aphy;
305 tbf->bf_mpdu = bf->bf_mpdu;
306 tbf->bf_buf_addr = bf->bf_buf_addr;
307 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
308 tbf->bf_state = bf->bf_state;
309 tbf->bf_dmacontext = bf->bf_dmacontext;
310
311 return tbf;
312 }
313
314 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
315 struct ath_buf *bf, struct list_head *bf_q,
316 struct ath_tx_status *ts, int txok)
317 {
318 struct ath_node *an = NULL;
319 struct sk_buff *skb;
320 struct ieee80211_sta *sta;
321 struct ieee80211_hw *hw;
322 struct ieee80211_hdr *hdr;
323 struct ieee80211_tx_info *tx_info;
324 struct ath_atx_tid *tid = NULL;
325 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
326 struct list_head bf_head, bf_pending;
327 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0;
328 u32 ba[WME_BA_BMP_SIZE >> 5];
329 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
330 bool rc_update = true;
331 struct ieee80211_tx_rate rates[4];
332
333 skb = bf->bf_mpdu;
334 hdr = (struct ieee80211_hdr *)skb->data;
335
336 tx_info = IEEE80211_SKB_CB(skb);
337 hw = bf->aphy->hw;
338
339 memcpy(rates, tx_info->control.rates, sizeof(rates));
340
341 rcu_read_lock();
342
343 /* XXX: use ieee80211_find_sta! */
344 sta = ieee80211_find_sta_by_hw(hw, hdr->addr1);
345 if (!sta) {
346 rcu_read_unlock();
347 return;
348 }
349
350 an = (struct ath_node *)sta->drv_priv;
351 tid = ATH_AN_2_TID(an, bf->bf_tidno);
352
353 isaggr = bf_isaggr(bf);
354 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
355
356 if (isaggr && txok) {
357 if (ts->ts_flags & ATH9K_TX_BA) {
358 seq_st = ts->ts_seqnum;
359 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
360 } else {
361 /*
362 * AR5416 can become deaf/mute when BA
363 * issue happens. Chip needs to be reset.
364 * But AP code may have sychronization issues
365 * when perform internal reset in this routine.
366 * Only enable reset in STA mode for now.
367 */
368 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
369 needreset = 1;
370 }
371 }
372
373 INIT_LIST_HEAD(&bf_pending);
374 INIT_LIST_HEAD(&bf_head);
375
376 nbad = ath_tx_num_badfrms(sc, bf, ts, txok);
377 while (bf) {
378 txfail = txpending = 0;
379 bf_next = bf->bf_next;
380
381 skb = bf->bf_mpdu;
382 tx_info = IEEE80211_SKB_CB(skb);
383
384 if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) {
385 /* transmit completion, subframe is
386 * acked by block ack */
387 acked_cnt++;
388 } else if (!isaggr && txok) {
389 /* transmit completion */
390 acked_cnt++;
391 } else {
392 if (!(tid->state & AGGR_CLEANUP) &&
393 !bf_last->bf_tx_aborted) {
394 if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
395 ath_tx_set_retry(sc, txq, bf);
396 txpending = 1;
397 } else {
398 bf->bf_state.bf_type |= BUF_XRETRY;
399 txfail = 1;
400 sendbar = 1;
401 txfail_cnt++;
402 }
403 } else {
404 /*
405 * cleanup in progress, just fail
406 * the un-acked sub-frames
407 */
408 txfail = 1;
409 }
410 }
411
412 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
413 bf_next == NULL) {
414 /*
415 * Make sure the last desc is reclaimed if it
416 * not a holding desc.
417 */
418 if (!bf_last->bf_stale)
419 list_move_tail(&bf->list, &bf_head);
420 else
421 INIT_LIST_HEAD(&bf_head);
422 } else {
423 BUG_ON(list_empty(bf_q));
424 list_move_tail(&bf->list, &bf_head);
425 }
426
427 if (!txpending) {
428 /*
429 * complete the acked-ones/xretried ones; update
430 * block-ack window
431 */
432 spin_lock_bh(&txq->axq_lock);
433 ath_tx_update_baw(sc, tid, bf->bf_seqno);
434 spin_unlock_bh(&txq->axq_lock);
435
436 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
437 memcpy(tx_info->control.rates, rates, sizeof(rates));
438 ath_tx_rc_status(bf, ts, nbad, txok, true);
439 rc_update = false;
440 } else {
441 ath_tx_rc_status(bf, ts, nbad, txok, false);
442 }
443
444 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
445 !txfail, sendbar);
446 } else {
447 /* retry the un-acked ones */
448 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) {
449 if (bf->bf_next == NULL && bf_last->bf_stale) {
450 struct ath_buf *tbf;
451
452 tbf = ath_clone_txbuf(sc, bf_last);
453 /*
454 * Update tx baw and complete the
455 * frame with failed status if we
456 * run out of tx buf.
457 */
458 if (!tbf) {
459 spin_lock_bh(&txq->axq_lock);
460 ath_tx_update_baw(sc, tid,
461 bf->bf_seqno);
462 spin_unlock_bh(&txq->axq_lock);
463
464 bf->bf_state.bf_type |=
465 BUF_XRETRY;
466 ath_tx_rc_status(bf, ts, nbad,
467 0, false);
468 ath_tx_complete_buf(sc, bf, txq,
469 &bf_head,
470 ts, 0, 0);
471 break;
472 }
473
474 ath9k_hw_cleartxdesc(sc->sc_ah,
475 tbf->bf_desc);
476 list_add_tail(&tbf->list, &bf_head);
477 } else {
478 /*
479 * Clear descriptor status words for
480 * software retry
481 */
482 ath9k_hw_cleartxdesc(sc->sc_ah,
483 bf->bf_desc);
484 }
485 }
486
487 /*
488 * Put this buffer to the temporary pending
489 * queue to retain ordering
490 */
491 list_splice_tail_init(&bf_head, &bf_pending);
492 }
493
494 bf = bf_next;
495 }
496
497 if (tid->state & AGGR_CLEANUP) {
498 if (tid->baw_head == tid->baw_tail) {
499 tid->state &= ~AGGR_ADDBA_COMPLETE;
500 tid->state &= ~AGGR_CLEANUP;
501
502 /* send buffered frames as singles */
503 ath_tx_flush_tid(sc, tid);
504 }
505 rcu_read_unlock();
506 return;
507 }
508
509 /* prepend un-acked frames to the beginning of the pending frame queue */
510 if (!list_empty(&bf_pending)) {
511 spin_lock_bh(&txq->axq_lock);
512 list_splice(&bf_pending, &tid->buf_q);
513 ath_tx_queue_tid(txq, tid);
514 spin_unlock_bh(&txq->axq_lock);
515 }
516
517 rcu_read_unlock();
518
519 if (needreset)
520 ath_reset(sc, false);
521 }
522
523 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
524 struct ath_atx_tid *tid)
525 {
526 struct sk_buff *skb;
527 struct ieee80211_tx_info *tx_info;
528 struct ieee80211_tx_rate *rates;
529 u32 max_4ms_framelen, frmlen;
530 u16 aggr_limit, legacy = 0;
531 int i;
532
533 skb = bf->bf_mpdu;
534 tx_info = IEEE80211_SKB_CB(skb);
535 rates = tx_info->control.rates;
536
537 /*
538 * Find the lowest frame length among the rate series that will have a
539 * 4ms transmit duration.
540 * TODO - TXOP limit needs to be considered.
541 */
542 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
543
544 for (i = 0; i < 4; i++) {
545 if (rates[i].count) {
546 int modeidx;
547 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
548 legacy = 1;
549 break;
550 }
551
552 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
553 modeidx = MCS_HT40;
554 else
555 modeidx = MCS_HT20;
556
557 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
558 modeidx++;
559
560 frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx];
561 max_4ms_framelen = min(max_4ms_framelen, frmlen);
562 }
563 }
564
565 /*
566 * limit aggregate size by the minimum rate if rate selected is
567 * not a probe rate, if rate selected is a probe rate then
568 * avoid aggregation of this packet.
569 */
570 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
571 return 0;
572
573 if (sc->sc_flags & SC_OP_BT_PRIORITY_DETECTED)
574 aggr_limit = min((max_4ms_framelen * 3) / 8,
575 (u32)ATH_AMPDU_LIMIT_MAX);
576 else
577 aggr_limit = min(max_4ms_framelen,
578 (u32)ATH_AMPDU_LIMIT_MAX);
579
580 /*
581 * h/w can accept aggregates upto 16 bit lengths (65535).
582 * The IE, however can hold upto 65536, which shows up here
583 * as zero. Ignore 65536 since we are constrained by hw.
584 */
585 if (tid->an->maxampdu)
586 aggr_limit = min(aggr_limit, tid->an->maxampdu);
587
588 return aggr_limit;
589 }
590
591 /*
592 * Returns the number of delimiters to be added to
593 * meet the minimum required mpdudensity.
594 */
595 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
596 struct ath_buf *bf, u16 frmlen)
597 {
598 struct sk_buff *skb = bf->bf_mpdu;
599 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
600 u32 nsymbits, nsymbols;
601 u16 minlen;
602 u8 flags, rix;
603 int width, streams, half_gi, ndelim, mindelim;
604
605 /* Select standard number of delimiters based on frame length alone */
606 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
607
608 /*
609 * If encryption enabled, hardware requires some more padding between
610 * subframes.
611 * TODO - this could be improved to be dependent on the rate.
612 * The hardware can keep up at lower rates, but not higher rates
613 */
614 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
615 ndelim += ATH_AGGR_ENCRYPTDELIM;
616
617 /*
618 * Convert desired mpdu density from microeconds to bytes based
619 * on highest rate in rate series (i.e. first rate) to determine
620 * required minimum length for subframe. Take into account
621 * whether high rate is 20 or 40Mhz and half or full GI.
622 *
623 * If there is no mpdu density restriction, no further calculation
624 * is needed.
625 */
626
627 if (tid->an->mpdudensity == 0)
628 return ndelim;
629
630 rix = tx_info->control.rates[0].idx;
631 flags = tx_info->control.rates[0].flags;
632 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
633 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
634
635 if (half_gi)
636 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
637 else
638 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
639
640 if (nsymbols == 0)
641 nsymbols = 1;
642
643 streams = HT_RC_2_STREAMS(rix);
644 nsymbits = bits_per_symbol[rix % 8][width] * streams;
645 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
646
647 if (frmlen < minlen) {
648 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
649 ndelim = max(mindelim, ndelim);
650 }
651
652 return ndelim;
653 }
654
655 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
656 struct ath_txq *txq,
657 struct ath_atx_tid *tid,
658 struct list_head *bf_q)
659 {
660 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
661 struct ath_buf *bf, *bf_first, *bf_prev = NULL;
662 int rl = 0, nframes = 0, ndelim, prev_al = 0;
663 u16 aggr_limit = 0, al = 0, bpad = 0,
664 al_delta, h_baw = tid->baw_size / 2;
665 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
666
667 bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
668
669 do {
670 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
671
672 /* do not step over block-ack window */
673 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) {
674 status = ATH_AGGR_BAW_CLOSED;
675 break;
676 }
677
678 if (!rl) {
679 aggr_limit = ath_lookup_rate(sc, bf, tid);
680 rl = 1;
681 }
682
683 /* do not exceed aggregation limit */
684 al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen;
685
686 if (nframes &&
687 (aggr_limit < (al + bpad + al_delta + prev_al))) {
688 status = ATH_AGGR_LIMITED;
689 break;
690 }
691
692 /* do not exceed subframe limit */
693 if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
694 status = ATH_AGGR_LIMITED;
695 break;
696 }
697 nframes++;
698
699 /* add padding for previous frame to aggregation length */
700 al += bpad + al_delta;
701
702 /*
703 * Get the delimiters needed to meet the MPDU
704 * density for this node.
705 */
706 ndelim = ath_compute_num_delims(sc, tid, bf_first, bf->bf_frmlen);
707 bpad = PADBYTES(al_delta) + (ndelim << 2);
708
709 bf->bf_next = NULL;
710 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, 0);
711
712 /* link buffers of this frame to the aggregate */
713 ath_tx_addto_baw(sc, tid, bf);
714 ath9k_hw_set11n_aggr_middle(sc->sc_ah, bf->bf_desc, ndelim);
715 list_move_tail(&bf->list, bf_q);
716 if (bf_prev) {
717 bf_prev->bf_next = bf;
718 ath9k_hw_set_desc_link(sc->sc_ah, bf_prev->bf_desc,
719 bf->bf_daddr);
720 }
721 bf_prev = bf;
722
723 } while (!list_empty(&tid->buf_q));
724
725 bf_first->bf_al = al;
726 bf_first->bf_nframes = nframes;
727
728 return status;
729 #undef PADBYTES
730 }
731
732 static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
733 struct ath_atx_tid *tid)
734 {
735 struct ath_buf *bf;
736 enum ATH_AGGR_STATUS status;
737 struct list_head bf_q;
738
739 do {
740 if (list_empty(&tid->buf_q))
741 return;
742
743 INIT_LIST_HEAD(&bf_q);
744
745 status = ath_tx_form_aggr(sc, txq, tid, &bf_q);
746
747 /*
748 * no frames picked up to be aggregated;
749 * block-ack window is not open.
750 */
751 if (list_empty(&bf_q))
752 break;
753
754 bf = list_first_entry(&bf_q, struct ath_buf, list);
755 bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
756
757 /* if only one frame, send as non-aggregate */
758 if (bf->bf_nframes == 1) {
759 bf->bf_state.bf_type &= ~BUF_AGGR;
760 ath9k_hw_clr11n_aggr(sc->sc_ah, bf->bf_desc);
761 ath_buf_set_rate(sc, bf);
762 ath_tx_txqaddbuf(sc, txq, &bf_q);
763 continue;
764 }
765
766 /* setup first desc of aggregate */
767 bf->bf_state.bf_type |= BUF_AGGR;
768 ath_buf_set_rate(sc, bf);
769 ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al);
770
771 /* anchor last desc of aggregate */
772 ath9k_hw_set11n_aggr_last(sc->sc_ah, bf->bf_lastbf->bf_desc);
773
774 ath_tx_txqaddbuf(sc, txq, &bf_q);
775 TX_STAT_INC(txq->axq_qnum, a_aggr);
776
777 } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
778 status != ATH_AGGR_BAW_CLOSED);
779 }
780
781 void ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
782 u16 tid, u16 *ssn)
783 {
784 struct ath_atx_tid *txtid;
785 struct ath_node *an;
786
787 an = (struct ath_node *)sta->drv_priv;
788 txtid = ATH_AN_2_TID(an, tid);
789 txtid->state |= AGGR_ADDBA_PROGRESS;
790 ath_tx_pause_tid(sc, txtid);
791 *ssn = txtid->seq_start;
792 }
793
794 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
795 {
796 struct ath_node *an = (struct ath_node *)sta->drv_priv;
797 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
798 struct ath_txq *txq = &sc->tx.txq[txtid->ac->qnum];
799 struct ath_tx_status ts;
800 struct ath_buf *bf;
801 struct list_head bf_head;
802
803 memset(&ts, 0, sizeof(ts));
804 INIT_LIST_HEAD(&bf_head);
805
806 if (txtid->state & AGGR_CLEANUP)
807 return;
808
809 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
810 txtid->state &= ~AGGR_ADDBA_PROGRESS;
811 return;
812 }
813
814 ath_tx_pause_tid(sc, txtid);
815
816 /* drop all software retried frames and mark this TID */
817 spin_lock_bh(&txq->axq_lock);
818 while (!list_empty(&txtid->buf_q)) {
819 bf = list_first_entry(&txtid->buf_q, struct ath_buf, list);
820 if (!bf_isretried(bf)) {
821 /*
822 * NB: it's based on the assumption that
823 * software retried frame will always stay
824 * at the head of software queue.
825 */
826 break;
827 }
828 list_move_tail(&bf->list, &bf_head);
829 ath_tx_update_baw(sc, txtid, bf->bf_seqno);
830 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
831 }
832 spin_unlock_bh(&txq->axq_lock);
833
834 if (txtid->baw_head != txtid->baw_tail) {
835 txtid->state |= AGGR_CLEANUP;
836 } else {
837 txtid->state &= ~AGGR_ADDBA_COMPLETE;
838 ath_tx_flush_tid(sc, txtid);
839 }
840 }
841
842 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
843 {
844 struct ath_atx_tid *txtid;
845 struct ath_node *an;
846
847 an = (struct ath_node *)sta->drv_priv;
848
849 if (sc->sc_flags & SC_OP_TXAGGR) {
850 txtid = ATH_AN_2_TID(an, tid);
851 txtid->baw_size =
852 IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
853 txtid->state |= AGGR_ADDBA_COMPLETE;
854 txtid->state &= ~AGGR_ADDBA_PROGRESS;
855 ath_tx_resume_tid(sc, txtid);
856 }
857 }
858
859 bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an, u8 tidno)
860 {
861 struct ath_atx_tid *txtid;
862
863 if (!(sc->sc_flags & SC_OP_TXAGGR))
864 return false;
865
866 txtid = ATH_AN_2_TID(an, tidno);
867
868 if (!(txtid->state & (AGGR_ADDBA_COMPLETE | AGGR_ADDBA_PROGRESS)))
869 return true;
870 return false;
871 }
872
873 /********************/
874 /* Queue Management */
875 /********************/
876
877 static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
878 struct ath_txq *txq)
879 {
880 struct ath_atx_ac *ac, *ac_tmp;
881 struct ath_atx_tid *tid, *tid_tmp;
882
883 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
884 list_del(&ac->list);
885 ac->sched = false;
886 list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
887 list_del(&tid->list);
888 tid->sched = false;
889 ath_tid_drain(sc, txq, tid);
890 }
891 }
892 }
893
894 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
895 {
896 struct ath_hw *ah = sc->sc_ah;
897 struct ath_common *common = ath9k_hw_common(ah);
898 struct ath9k_tx_queue_info qi;
899 int qnum, i;
900
901 memset(&qi, 0, sizeof(qi));
902 qi.tqi_subtype = subtype;
903 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
904 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
905 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
906 qi.tqi_physCompBuf = 0;
907
908 /*
909 * Enable interrupts only for EOL and DESC conditions.
910 * We mark tx descriptors to receive a DESC interrupt
911 * when a tx queue gets deep; otherwise waiting for the
912 * EOL to reap descriptors. Note that this is done to
913 * reduce interrupt load and this only defers reaping
914 * descriptors, never transmitting frames. Aside from
915 * reducing interrupts this also permits more concurrency.
916 * The only potential downside is if the tx queue backs
917 * up in which case the top half of the kernel may backup
918 * due to a lack of tx descriptors.
919 *
920 * The UAPSD queue is an exception, since we take a desc-
921 * based intr on the EOSP frames.
922 */
923 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
924 qi.tqi_qflags = TXQ_FLAG_TXOKINT_ENABLE |
925 TXQ_FLAG_TXERRINT_ENABLE;
926 } else {
927 if (qtype == ATH9K_TX_QUEUE_UAPSD)
928 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
929 else
930 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
931 TXQ_FLAG_TXDESCINT_ENABLE;
932 }
933 qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
934 if (qnum == -1) {
935 /*
936 * NB: don't print a message, this happens
937 * normally on parts with too few tx queues
938 */
939 return NULL;
940 }
941 if (qnum >= ARRAY_SIZE(sc->tx.txq)) {
942 ath_print(common, ATH_DBG_FATAL,
943 "qnum %u out of range, max %u!\n",
944 qnum, (unsigned int)ARRAY_SIZE(sc->tx.txq));
945 ath9k_hw_releasetxqueue(ah, qnum);
946 return NULL;
947 }
948 if (!ATH_TXQ_SETUP(sc, qnum)) {
949 struct ath_txq *txq = &sc->tx.txq[qnum];
950
951 txq->axq_class = subtype;
952 txq->axq_qnum = qnum;
953 txq->axq_link = NULL;
954 INIT_LIST_HEAD(&txq->axq_q);
955 INIT_LIST_HEAD(&txq->axq_acq);
956 spin_lock_init(&txq->axq_lock);
957 txq->axq_depth = 0;
958 txq->axq_tx_inprogress = false;
959 sc->tx.txqsetup |= 1<<qnum;
960
961 txq->txq_headidx = txq->txq_tailidx = 0;
962 for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
963 INIT_LIST_HEAD(&txq->txq_fifo[i]);
964 INIT_LIST_HEAD(&txq->txq_fifo_pending);
965 }
966 return &sc->tx.txq[qnum];
967 }
968
969 int ath_txq_update(struct ath_softc *sc, int qnum,
970 struct ath9k_tx_queue_info *qinfo)
971 {
972 struct ath_hw *ah = sc->sc_ah;
973 int error = 0;
974 struct ath9k_tx_queue_info qi;
975
976 if (qnum == sc->beacon.beaconq) {
977 /*
978 * XXX: for beacon queue, we just save the parameter.
979 * It will be picked up by ath_beaconq_config when
980 * it's necessary.
981 */
982 sc->beacon.beacon_qi = *qinfo;
983 return 0;
984 }
985
986 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
987
988 ath9k_hw_get_txq_props(ah, qnum, &qi);
989 qi.tqi_aifs = qinfo->tqi_aifs;
990 qi.tqi_cwmin = qinfo->tqi_cwmin;
991 qi.tqi_cwmax = qinfo->tqi_cwmax;
992 qi.tqi_burstTime = qinfo->tqi_burstTime;
993 qi.tqi_readyTime = qinfo->tqi_readyTime;
994
995 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
996 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
997 "Unable to update hardware queue %u!\n", qnum);
998 error = -EIO;
999 } else {
1000 ath9k_hw_resettxqueue(ah, qnum);
1001 }
1002
1003 return error;
1004 }
1005
1006 int ath_cabq_update(struct ath_softc *sc)
1007 {
1008 struct ath9k_tx_queue_info qi;
1009 int qnum = sc->beacon.cabq->axq_qnum;
1010
1011 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1012 /*
1013 * Ensure the readytime % is within the bounds.
1014 */
1015 if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
1016 sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
1017 else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
1018 sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
1019
1020 qi.tqi_readyTime = (sc->beacon_interval *
1021 sc->config.cabqReadytime) / 100;
1022 ath_txq_update(sc, qnum, &qi);
1023
1024 return 0;
1025 }
1026
1027 /*
1028 * Drain a given TX queue (could be Beacon or Data)
1029 *
1030 * This assumes output has been stopped and
1031 * we do not need to block ath_tx_tasklet.
1032 */
1033 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
1034 {
1035 struct ath_buf *bf, *lastbf;
1036 struct list_head bf_head;
1037 struct ath_tx_status ts;
1038
1039 memset(&ts, 0, sizeof(ts));
1040 INIT_LIST_HEAD(&bf_head);
1041
1042 for (;;) {
1043 spin_lock_bh(&txq->axq_lock);
1044
1045 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1046 if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
1047 txq->txq_headidx = txq->txq_tailidx = 0;
1048 spin_unlock_bh(&txq->axq_lock);
1049 break;
1050 } else {
1051 bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
1052 struct ath_buf, list);
1053 }
1054 } else {
1055 if (list_empty(&txq->axq_q)) {
1056 txq->axq_link = NULL;
1057 spin_unlock_bh(&txq->axq_lock);
1058 break;
1059 }
1060 bf = list_first_entry(&txq->axq_q, struct ath_buf,
1061 list);
1062
1063 if (bf->bf_stale) {
1064 list_del(&bf->list);
1065 spin_unlock_bh(&txq->axq_lock);
1066
1067 ath_tx_return_buffer(sc, bf);
1068 continue;
1069 }
1070 }
1071
1072 lastbf = bf->bf_lastbf;
1073 if (!retry_tx)
1074 lastbf->bf_tx_aborted = true;
1075
1076 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1077 list_cut_position(&bf_head,
1078 &txq->txq_fifo[txq->txq_tailidx],
1079 &lastbf->list);
1080 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
1081 } else {
1082 /* remove ath_buf's of the same mpdu from txq */
1083 list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
1084 }
1085
1086 txq->axq_depth--;
1087
1088 spin_unlock_bh(&txq->axq_lock);
1089
1090 if (bf_isampdu(bf))
1091 ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0);
1092 else
1093 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
1094 }
1095
1096 spin_lock_bh(&txq->axq_lock);
1097 txq->axq_tx_inprogress = false;
1098 spin_unlock_bh(&txq->axq_lock);
1099
1100 /* flush any pending frames if aggregation is enabled */
1101 if (sc->sc_flags & SC_OP_TXAGGR) {
1102 if (!retry_tx) {
1103 spin_lock_bh(&txq->axq_lock);
1104 ath_txq_drain_pending_buffers(sc, txq);
1105 spin_unlock_bh(&txq->axq_lock);
1106 }
1107 }
1108
1109 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1110 spin_lock_bh(&txq->axq_lock);
1111 while (!list_empty(&txq->txq_fifo_pending)) {
1112 bf = list_first_entry(&txq->txq_fifo_pending,
1113 struct ath_buf, list);
1114 list_cut_position(&bf_head,
1115 &txq->txq_fifo_pending,
1116 &bf->bf_lastbf->list);
1117 spin_unlock_bh(&txq->axq_lock);
1118
1119 if (bf_isampdu(bf))
1120 ath_tx_complete_aggr(sc, txq, bf, &bf_head,
1121 &ts, 0);
1122 else
1123 ath_tx_complete_buf(sc, bf, txq, &bf_head,
1124 &ts, 0, 0);
1125 spin_lock_bh(&txq->axq_lock);
1126 }
1127 spin_unlock_bh(&txq->axq_lock);
1128 }
1129 }
1130
1131 void ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
1132 {
1133 struct ath_hw *ah = sc->sc_ah;
1134 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1135 struct ath_txq *txq;
1136 int i, npend = 0;
1137
1138 if (sc->sc_flags & SC_OP_INVALID)
1139 return;
1140
1141 /* Stop beacon queue */
1142 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
1143
1144 /* Stop data queues */
1145 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1146 if (ATH_TXQ_SETUP(sc, i)) {
1147 txq = &sc->tx.txq[i];
1148 ath9k_hw_stoptxdma(ah, txq->axq_qnum);
1149 npend += ath9k_hw_numtxpending(ah, txq->axq_qnum);
1150 }
1151 }
1152
1153 if (npend) {
1154 int r;
1155
1156 ath_print(common, ATH_DBG_FATAL,
1157 "Failed to stop TX DMA. Resetting hardware!\n");
1158
1159 spin_lock_bh(&sc->sc_resetlock);
1160 r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1161 if (r)
1162 ath_print(common, ATH_DBG_FATAL,
1163 "Unable to reset hardware; reset status %d\n",
1164 r);
1165 spin_unlock_bh(&sc->sc_resetlock);
1166 }
1167
1168 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1169 if (ATH_TXQ_SETUP(sc, i))
1170 ath_draintxq(sc, &sc->tx.txq[i], retry_tx);
1171 }
1172 }
1173
1174 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1175 {
1176 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1177 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1178 }
1179
1180 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1181 {
1182 struct ath_atx_ac *ac;
1183 struct ath_atx_tid *tid;
1184
1185 if (list_empty(&txq->axq_acq))
1186 return;
1187
1188 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1189 list_del(&ac->list);
1190 ac->sched = false;
1191
1192 do {
1193 if (list_empty(&ac->tid_q))
1194 return;
1195
1196 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
1197 list_del(&tid->list);
1198 tid->sched = false;
1199
1200 if (tid->paused)
1201 continue;
1202
1203 ath_tx_sched_aggr(sc, txq, tid);
1204
1205 /*
1206 * add tid to round-robin queue if more frames
1207 * are pending for the tid
1208 */
1209 if (!list_empty(&tid->buf_q))
1210 ath_tx_queue_tid(txq, tid);
1211
1212 break;
1213 } while (!list_empty(&ac->tid_q));
1214
1215 if (!list_empty(&ac->tid_q)) {
1216 if (!ac->sched) {
1217 ac->sched = true;
1218 list_add_tail(&ac->list, &txq->axq_acq);
1219 }
1220 }
1221 }
1222
1223 int ath_tx_setup(struct ath_softc *sc, int haltype)
1224 {
1225 struct ath_txq *txq;
1226
1227 if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
1228 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1229 "HAL AC %u out of range, max %zu!\n",
1230 haltype, ARRAY_SIZE(sc->tx.hwq_map));
1231 return 0;
1232 }
1233 txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
1234 if (txq != NULL) {
1235 sc->tx.hwq_map[haltype] = txq->axq_qnum;
1236 return 1;
1237 } else
1238 return 0;
1239 }
1240
1241 /***********/
1242 /* TX, DMA */
1243 /***********/
1244
1245 /*
1246 * Insert a chain of ath_buf (descriptors) on a txq and
1247 * assume the descriptors are already chained together by caller.
1248 */
1249 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1250 struct list_head *head)
1251 {
1252 struct ath_hw *ah = sc->sc_ah;
1253 struct ath_common *common = ath9k_hw_common(ah);
1254 struct ath_buf *bf;
1255
1256 /*
1257 * Insert the frame on the outbound list and
1258 * pass it on to the hardware.
1259 */
1260
1261 if (list_empty(head))
1262 return;
1263
1264 bf = list_first_entry(head, struct ath_buf, list);
1265
1266 ath_print(common, ATH_DBG_QUEUE,
1267 "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
1268
1269 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1270 if (txq->axq_depth >= ATH_TXFIFO_DEPTH) {
1271 list_splice_tail_init(head, &txq->txq_fifo_pending);
1272 return;
1273 }
1274 if (!list_empty(&txq->txq_fifo[txq->txq_headidx]))
1275 ath_print(common, ATH_DBG_XMIT,
1276 "Initializing tx fifo %d which "
1277 "is non-empty\n",
1278 txq->txq_headidx);
1279 INIT_LIST_HEAD(&txq->txq_fifo[txq->txq_headidx]);
1280 list_splice_init(head, &txq->txq_fifo[txq->txq_headidx]);
1281 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
1282 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1283 ath_print(common, ATH_DBG_XMIT,
1284 "TXDP[%u] = %llx (%p)\n",
1285 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1286 } else {
1287 list_splice_tail_init(head, &txq->axq_q);
1288
1289 if (txq->axq_link == NULL) {
1290 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1291 ath_print(common, ATH_DBG_XMIT,
1292 "TXDP[%u] = %llx (%p)\n",
1293 txq->axq_qnum, ito64(bf->bf_daddr),
1294 bf->bf_desc);
1295 } else {
1296 *txq->axq_link = bf->bf_daddr;
1297 ath_print(common, ATH_DBG_XMIT,
1298 "link[%u] (%p)=%llx (%p)\n",
1299 txq->axq_qnum, txq->axq_link,
1300 ito64(bf->bf_daddr), bf->bf_desc);
1301 }
1302 ath9k_hw_get_desc_link(ah, bf->bf_lastbf->bf_desc,
1303 &txq->axq_link);
1304 ath9k_hw_txstart(ah, txq->axq_qnum);
1305 }
1306 txq->axq_depth++;
1307 }
1308
1309 static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
1310 struct list_head *bf_head,
1311 struct ath_tx_control *txctl)
1312 {
1313 struct ath_buf *bf;
1314
1315 bf = list_first_entry(bf_head, struct ath_buf, list);
1316 bf->bf_state.bf_type |= BUF_AMPDU;
1317 TX_STAT_INC(txctl->txq->axq_qnum, a_queued);
1318
1319 /*
1320 * Do not queue to h/w when any of the following conditions is true:
1321 * - there are pending frames in software queue
1322 * - the TID is currently paused for ADDBA/BAR request
1323 * - seqno is not within block-ack window
1324 * - h/w queue depth exceeds low water mark
1325 */
1326 if (!list_empty(&tid->buf_q) || tid->paused ||
1327 !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) ||
1328 txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
1329 /*
1330 * Add this frame to software queue for scheduling later
1331 * for aggregation.
1332 */
1333 list_move_tail(&bf->list, &tid->buf_q);
1334 ath_tx_queue_tid(txctl->txq, tid);
1335 return;
1336 }
1337
1338 /* Add sub-frame to BAW */
1339 ath_tx_addto_baw(sc, tid, bf);
1340
1341 /* Queue to h/w without aggregation */
1342 bf->bf_nframes = 1;
1343 bf->bf_lastbf = bf;
1344 ath_buf_set_rate(sc, bf);
1345 ath_tx_txqaddbuf(sc, txctl->txq, bf_head);
1346 }
1347
1348 static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
1349 struct ath_atx_tid *tid,
1350 struct list_head *bf_head)
1351 {
1352 struct ath_buf *bf;
1353
1354 bf = list_first_entry(bf_head, struct ath_buf, list);
1355 bf->bf_state.bf_type &= ~BUF_AMPDU;
1356
1357 /* update starting sequence number for subsequent ADDBA request */
1358 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
1359
1360 bf->bf_nframes = 1;
1361 bf->bf_lastbf = bf;
1362 ath_buf_set_rate(sc, bf);
1363 ath_tx_txqaddbuf(sc, txq, bf_head);
1364 TX_STAT_INC(txq->axq_qnum, queued);
1365 }
1366
1367 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1368 struct list_head *bf_head)
1369 {
1370 struct ath_buf *bf;
1371
1372 bf = list_first_entry(bf_head, struct ath_buf, list);
1373
1374 bf->bf_lastbf = bf;
1375 bf->bf_nframes = 1;
1376 ath_buf_set_rate(sc, bf);
1377 ath_tx_txqaddbuf(sc, txq, bf_head);
1378 TX_STAT_INC(txq->axq_qnum, queued);
1379 }
1380
1381 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1382 {
1383 struct ieee80211_hdr *hdr;
1384 enum ath9k_pkt_type htype;
1385 __le16 fc;
1386
1387 hdr = (struct ieee80211_hdr *)skb->data;
1388 fc = hdr->frame_control;
1389
1390 if (ieee80211_is_beacon(fc))
1391 htype = ATH9K_PKT_TYPE_BEACON;
1392 else if (ieee80211_is_probe_resp(fc))
1393 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1394 else if (ieee80211_is_atim(fc))
1395 htype = ATH9K_PKT_TYPE_ATIM;
1396 else if (ieee80211_is_pspoll(fc))
1397 htype = ATH9K_PKT_TYPE_PSPOLL;
1398 else
1399 htype = ATH9K_PKT_TYPE_NORMAL;
1400
1401 return htype;
1402 }
1403
1404 static int get_hw_crypto_keytype(struct sk_buff *skb)
1405 {
1406 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1407
1408 if (tx_info->control.hw_key) {
1409 if (tx_info->control.hw_key->alg == ALG_WEP)
1410 return ATH9K_KEY_TYPE_WEP;
1411 else if (tx_info->control.hw_key->alg == ALG_TKIP)
1412 return ATH9K_KEY_TYPE_TKIP;
1413 else if (tx_info->control.hw_key->alg == ALG_CCMP)
1414 return ATH9K_KEY_TYPE_AES;
1415 }
1416
1417 return ATH9K_KEY_TYPE_CLEAR;
1418 }
1419
1420 static void assign_aggr_tid_seqno(struct sk_buff *skb,
1421 struct ath_buf *bf)
1422 {
1423 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1424 struct ieee80211_hdr *hdr;
1425 struct ath_node *an;
1426 struct ath_atx_tid *tid;
1427 __le16 fc;
1428 u8 *qc;
1429
1430 if (!tx_info->control.sta)
1431 return;
1432
1433 an = (struct ath_node *)tx_info->control.sta->drv_priv;
1434 hdr = (struct ieee80211_hdr *)skb->data;
1435 fc = hdr->frame_control;
1436
1437 if (ieee80211_is_data_qos(fc)) {
1438 qc = ieee80211_get_qos_ctl(hdr);
1439 bf->bf_tidno = qc[0] & 0xf;
1440 }
1441
1442 /*
1443 * For HT capable stations, we save tidno for later use.
1444 * We also override seqno set by upper layer with the one
1445 * in tx aggregation state.
1446 */
1447 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1448 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
1449 bf->bf_seqno = tid->seq_next;
1450 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
1451 }
1452
1453 static int setup_tx_flags(struct sk_buff *skb, bool use_ldpc)
1454 {
1455 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1456 int flags = 0;
1457
1458 flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
1459 flags |= ATH9K_TXDESC_INTREQ;
1460
1461 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1462 flags |= ATH9K_TXDESC_NOACK;
1463
1464 if (use_ldpc)
1465 flags |= ATH9K_TXDESC_LDPC;
1466
1467 return flags;
1468 }
1469
1470 /*
1471 * rix - rate index
1472 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1473 * width - 0 for 20 MHz, 1 for 40 MHz
1474 * half_gi - to use 4us v/s 3.6 us for symbol time
1475 */
1476 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, struct ath_buf *bf,
1477 int width, int half_gi, bool shortPreamble)
1478 {
1479 u32 nbits, nsymbits, duration, nsymbols;
1480 int streams, pktlen;
1481
1482 pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
1483
1484 /* find number of symbols: PLCP + data */
1485 streams = HT_RC_2_STREAMS(rix);
1486 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1487 nsymbits = bits_per_symbol[rix % 8][width] * streams;
1488 nsymbols = (nbits + nsymbits - 1) / nsymbits;
1489
1490 if (!half_gi)
1491 duration = SYMBOL_TIME(nsymbols);
1492 else
1493 duration = SYMBOL_TIME_HALFGI(nsymbols);
1494
1495 /* addup duration for legacy/ht training and signal fields */
1496 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1497
1498 return duration;
1499 }
1500
1501 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
1502 {
1503 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1504 struct ath9k_11n_rate_series series[4];
1505 struct sk_buff *skb;
1506 struct ieee80211_tx_info *tx_info;
1507 struct ieee80211_tx_rate *rates;
1508 const struct ieee80211_rate *rate;
1509 struct ieee80211_hdr *hdr;
1510 int i, flags = 0;
1511 u8 rix = 0, ctsrate = 0;
1512 bool is_pspoll;
1513
1514 memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
1515
1516 skb = bf->bf_mpdu;
1517 tx_info = IEEE80211_SKB_CB(skb);
1518 rates = tx_info->control.rates;
1519 hdr = (struct ieee80211_hdr *)skb->data;
1520 is_pspoll = ieee80211_is_pspoll(hdr->frame_control);
1521
1522 /*
1523 * We check if Short Preamble is needed for the CTS rate by
1524 * checking the BSS's global flag.
1525 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
1526 */
1527 rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info);
1528 ctsrate = rate->hw_value;
1529 if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
1530 ctsrate |= rate->hw_value_short;
1531
1532 for (i = 0; i < 4; i++) {
1533 bool is_40, is_sgi, is_sp;
1534 int phy;
1535
1536 if (!rates[i].count || (rates[i].idx < 0))
1537 continue;
1538
1539 rix = rates[i].idx;
1540 series[i].Tries = rates[i].count;
1541 series[i].ChSel = common->tx_chainmask;
1542
1543 if ((sc->config.ath_aggr_prot && bf_isaggr(bf)) ||
1544 (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS)) {
1545 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1546 flags |= ATH9K_TXDESC_RTSENA;
1547 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1548 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1549 flags |= ATH9K_TXDESC_CTSENA;
1550 }
1551
1552 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1553 series[i].RateFlags |= ATH9K_RATESERIES_2040;
1554 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1555 series[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1556
1557 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1558 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1559 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1560
1561 if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1562 /* MCS rates */
1563 series[i].Rate = rix | 0x80;
1564 series[i].PktDuration = ath_pkt_duration(sc, rix, bf,
1565 is_40, is_sgi, is_sp);
1566 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1567 series[i].RateFlags |= ATH9K_RATESERIES_STBC;
1568 continue;
1569 }
1570
1571 /* legcay rates */
1572 if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1573 !(rate->flags & IEEE80211_RATE_ERP_G))
1574 phy = WLAN_RC_PHY_CCK;
1575 else
1576 phy = WLAN_RC_PHY_OFDM;
1577
1578 rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
1579 series[i].Rate = rate->hw_value;
1580 if (rate->hw_value_short) {
1581 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1582 series[i].Rate |= rate->hw_value_short;
1583 } else {
1584 is_sp = false;
1585 }
1586
1587 series[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1588 phy, rate->bitrate * 100, bf->bf_frmlen, rix, is_sp);
1589 }
1590
1591 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1592 if (bf_isaggr(bf) && (bf->bf_al > sc->sc_ah->caps.rts_aggr_limit))
1593 flags &= ~ATH9K_TXDESC_RTSENA;
1594
1595 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1596 if (flags & ATH9K_TXDESC_RTSENA)
1597 flags &= ~ATH9K_TXDESC_CTSENA;
1598
1599 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1600 ath9k_hw_set11n_ratescenario(sc->sc_ah, bf->bf_desc,
1601 bf->bf_lastbf->bf_desc,
1602 !is_pspoll, ctsrate,
1603 0, series, 4, flags);
1604
1605 if (sc->config.ath_aggr_prot && flags)
1606 ath9k_hw_set11n_burstduration(sc->sc_ah, bf->bf_desc, 8192);
1607 }
1608
1609 static int ath_tx_setup_buffer(struct ieee80211_hw *hw, struct ath_buf *bf,
1610 struct sk_buff *skb,
1611 struct ath_tx_control *txctl)
1612 {
1613 struct ath_wiphy *aphy = hw->priv;
1614 struct ath_softc *sc = aphy->sc;
1615 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1616 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1617 int hdrlen;
1618 __le16 fc;
1619 int padpos, padsize;
1620 bool use_ldpc = false;
1621
1622 tx_info->pad[0] = 0;
1623 switch (txctl->frame_type) {
1624 case ATH9K_IFT_NOT_INTERNAL:
1625 break;
1626 case ATH9K_IFT_PAUSE:
1627 tx_info->pad[0] |= ATH_TX_INFO_FRAME_TYPE_PAUSE;
1628 /* fall through */
1629 case ATH9K_IFT_UNPAUSE:
1630 tx_info->pad[0] |= ATH_TX_INFO_FRAME_TYPE_INTERNAL;
1631 break;
1632 }
1633 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1634 fc = hdr->frame_control;
1635
1636 ATH_TXBUF_RESET(bf);
1637
1638 bf->aphy = aphy;
1639 bf->bf_frmlen = skb->len + FCS_LEN;
1640 /* Remove the padding size from bf_frmlen, if any */
1641 padpos = ath9k_cmn_padpos(hdr->frame_control);
1642 padsize = padpos & 3;
1643 if (padsize && skb->len>padpos+padsize) {
1644 bf->bf_frmlen -= padsize;
1645 }
1646
1647 if (!txctl->paprd && conf_is_ht(&hw->conf)) {
1648 bf->bf_state.bf_type |= BUF_HT;
1649 if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1650 use_ldpc = true;
1651 }
1652
1653 bf->bf_state.bfs_paprd = txctl->paprd;
1654 if (txctl->paprd)
1655 bf->bf_state.bfs_paprd_timestamp = jiffies;
1656 bf->bf_flags = setup_tx_flags(skb, use_ldpc);
1657
1658 bf->bf_keytype = get_hw_crypto_keytype(skb);
1659 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) {
1660 bf->bf_frmlen += tx_info->control.hw_key->icv_len;
1661 bf->bf_keyix = tx_info->control.hw_key->hw_key_idx;
1662 } else {
1663 bf->bf_keyix = ATH9K_TXKEYIX_INVALID;
1664 }
1665
1666 if (ieee80211_is_data_qos(fc) && bf_isht(bf) &&
1667 (sc->sc_flags & SC_OP_TXAGGR))
1668 assign_aggr_tid_seqno(skb, bf);
1669
1670 bf->bf_mpdu = skb;
1671
1672 bf->bf_dmacontext = dma_map_single(sc->dev, skb->data,
1673 skb->len, DMA_TO_DEVICE);
1674 if (unlikely(dma_mapping_error(sc->dev, bf->bf_dmacontext))) {
1675 bf->bf_mpdu = NULL;
1676 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1677 "dma_mapping_error() on TX\n");
1678 return -ENOMEM;
1679 }
1680
1681 bf->bf_buf_addr = bf->bf_dmacontext;
1682
1683 /* tag if this is a nullfunc frame to enable PS when AP acks it */
1684 if (ieee80211_is_nullfunc(fc) && ieee80211_has_pm(fc)) {
1685 bf->bf_isnullfunc = true;
1686 sc->ps_flags &= ~PS_NULLFUNC_COMPLETED;
1687 } else
1688 bf->bf_isnullfunc = false;
1689
1690 bf->bf_tx_aborted = false;
1691
1692 return 0;
1693 }
1694
1695 /* FIXME: tx power */
1696 static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf,
1697 struct ath_tx_control *txctl)
1698 {
1699 struct sk_buff *skb = bf->bf_mpdu;
1700 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1701 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1702 struct ath_node *an = NULL;
1703 struct list_head bf_head;
1704 struct ath_desc *ds;
1705 struct ath_atx_tid *tid;
1706 struct ath_hw *ah = sc->sc_ah;
1707 int frm_type;
1708 __le16 fc;
1709
1710 frm_type = get_hw_packet_type(skb);
1711 fc = hdr->frame_control;
1712
1713 INIT_LIST_HEAD(&bf_head);
1714 list_add_tail(&bf->list, &bf_head);
1715
1716 ds = bf->bf_desc;
1717 ath9k_hw_set_desc_link(ah, ds, 0);
1718
1719 ath9k_hw_set11n_txdesc(ah, ds, bf->bf_frmlen, frm_type, MAX_RATE_POWER,
1720 bf->bf_keyix, bf->bf_keytype, bf->bf_flags);
1721
1722 ath9k_hw_filltxdesc(ah, ds,
1723 skb->len, /* segment length */
1724 true, /* first segment */
1725 true, /* last segment */
1726 ds, /* first descriptor */
1727 bf->bf_buf_addr,
1728 txctl->txq->axq_qnum);
1729
1730 if (bf->bf_state.bfs_paprd)
1731 ar9003_hw_set_paprd_txdesc(ah, ds, bf->bf_state.bfs_paprd);
1732
1733 spin_lock_bh(&txctl->txq->axq_lock);
1734
1735 if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR) &&
1736 tx_info->control.sta) {
1737 an = (struct ath_node *)tx_info->control.sta->drv_priv;
1738 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1739
1740 if (!ieee80211_is_data_qos(fc)) {
1741 ath_tx_send_normal(sc, txctl->txq, &bf_head);
1742 goto tx_done;
1743 }
1744
1745 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
1746 /*
1747 * Try aggregation if it's a unicast data frame
1748 * and the destination is HT capable.
1749 */
1750 ath_tx_send_ampdu(sc, tid, &bf_head, txctl);
1751 } else {
1752 /*
1753 * Send this frame as regular when ADDBA
1754 * exchange is neither complete nor pending.
1755 */
1756 ath_tx_send_ht_normal(sc, txctl->txq,
1757 tid, &bf_head);
1758 }
1759 } else {
1760 ath_tx_send_normal(sc, txctl->txq, &bf_head);
1761 }
1762
1763 tx_done:
1764 spin_unlock_bh(&txctl->txq->axq_lock);
1765 }
1766
1767 /* Upon failure caller should free skb */
1768 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
1769 struct ath_tx_control *txctl)
1770 {
1771 struct ath_wiphy *aphy = hw->priv;
1772 struct ath_softc *sc = aphy->sc;
1773 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1774 struct ath_txq *txq = txctl->txq;
1775 struct ath_buf *bf;
1776 int q, r;
1777
1778 bf = ath_tx_get_buffer(sc);
1779 if (!bf) {
1780 ath_print(common, ATH_DBG_XMIT, "TX buffers are full\n");
1781 return -1;
1782 }
1783
1784 r = ath_tx_setup_buffer(hw, bf, skb, txctl);
1785 if (unlikely(r)) {
1786 ath_print(common, ATH_DBG_FATAL, "TX mem alloc failure\n");
1787
1788 /* upon ath_tx_processq() this TX queue will be resumed, we
1789 * guarantee this will happen by knowing beforehand that
1790 * we will at least have to run TX completionon one buffer
1791 * on the queue */
1792 spin_lock_bh(&txq->axq_lock);
1793 if (!txq->stopped && txq->axq_depth > 1) {
1794 ath_mac80211_stop_queue(sc, skb_get_queue_mapping(skb));
1795 txq->stopped = 1;
1796 }
1797 spin_unlock_bh(&txq->axq_lock);
1798
1799 ath_tx_return_buffer(sc, bf);
1800
1801 return r;
1802 }
1803
1804 q = skb_get_queue_mapping(skb);
1805 if (q >= 4)
1806 q = 0;
1807
1808 spin_lock_bh(&txq->axq_lock);
1809 if (++sc->tx.pending_frames[q] > ATH_MAX_QDEPTH && !txq->stopped) {
1810 ath_mac80211_stop_queue(sc, skb_get_queue_mapping(skb));
1811 txq->stopped = 1;
1812 }
1813 spin_unlock_bh(&txq->axq_lock);
1814
1815 ath_tx_start_dma(sc, bf, txctl);
1816
1817 return 0;
1818 }
1819
1820 void ath_tx_cabq(struct ieee80211_hw *hw, struct sk_buff *skb)
1821 {
1822 struct ath_wiphy *aphy = hw->priv;
1823 struct ath_softc *sc = aphy->sc;
1824 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1825 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1826 int padpos, padsize;
1827 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1828 struct ath_tx_control txctl;
1829
1830 memset(&txctl, 0, sizeof(struct ath_tx_control));
1831
1832 /*
1833 * As a temporary workaround, assign seq# here; this will likely need
1834 * to be cleaned up to work better with Beacon transmission and virtual
1835 * BSSes.
1836 */
1837 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1838 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1839 sc->tx.seq_no += 0x10;
1840 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1841 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1842 }
1843
1844 /* Add the padding after the header if this is not already done */
1845 padpos = ath9k_cmn_padpos(hdr->frame_control);
1846 padsize = padpos & 3;
1847 if (padsize && skb->len>padpos) {
1848 if (skb_headroom(skb) < padsize) {
1849 ath_print(common, ATH_DBG_XMIT,
1850 "TX CABQ padding failed\n");
1851 dev_kfree_skb_any(skb);
1852 return;
1853 }
1854 skb_push(skb, padsize);
1855 memmove(skb->data, skb->data + padsize, padpos);
1856 }
1857
1858 txctl.txq = sc->beacon.cabq;
1859
1860 ath_print(common, ATH_DBG_XMIT,
1861 "transmitting CABQ packet, skb: %p\n", skb);
1862
1863 if (ath_tx_start(hw, skb, &txctl) != 0) {
1864 ath_print(common, ATH_DBG_XMIT, "CABQ TX failed\n");
1865 goto exit;
1866 }
1867
1868 return;
1869 exit:
1870 dev_kfree_skb_any(skb);
1871 }
1872
1873 /*****************/
1874 /* TX Completion */
1875 /*****************/
1876
1877 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
1878 struct ath_wiphy *aphy, int tx_flags)
1879 {
1880 struct ieee80211_hw *hw = sc->hw;
1881 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1882 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1883 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
1884 int q, padpos, padsize;
1885
1886 ath_print(common, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
1887
1888 if (aphy)
1889 hw = aphy->hw;
1890
1891 if (tx_flags & ATH_TX_BAR)
1892 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
1893
1894 if (!(tx_flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) {
1895 /* Frame was ACKed */
1896 tx_info->flags |= IEEE80211_TX_STAT_ACK;
1897 }
1898
1899 padpos = ath9k_cmn_padpos(hdr->frame_control);
1900 padsize = padpos & 3;
1901 if (padsize && skb->len>padpos+padsize) {
1902 /*
1903 * Remove MAC header padding before giving the frame back to
1904 * mac80211.
1905 */
1906 memmove(skb->data + padsize, skb->data, padpos);
1907 skb_pull(skb, padsize);
1908 }
1909
1910 if (sc->ps_flags & PS_WAIT_FOR_TX_ACK) {
1911 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
1912 ath_print(common, ATH_DBG_PS,
1913 "Going back to sleep after having "
1914 "received TX status (0x%lx)\n",
1915 sc->ps_flags & (PS_WAIT_FOR_BEACON |
1916 PS_WAIT_FOR_CAB |
1917 PS_WAIT_FOR_PSPOLL_DATA |
1918 PS_WAIT_FOR_TX_ACK));
1919 }
1920
1921 if (unlikely(tx_info->pad[0] & ATH_TX_INFO_FRAME_TYPE_INTERNAL))
1922 ath9k_tx_status(hw, skb);
1923 else {
1924 q = skb_get_queue_mapping(skb);
1925 if (q >= 4)
1926 q = 0;
1927
1928 if (--sc->tx.pending_frames[q] < 0)
1929 sc->tx.pending_frames[q] = 0;
1930
1931 ieee80211_tx_status(hw, skb);
1932 }
1933 }
1934
1935 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
1936 struct ath_txq *txq, struct list_head *bf_q,
1937 struct ath_tx_status *ts, int txok, int sendbar)
1938 {
1939 struct sk_buff *skb = bf->bf_mpdu;
1940 unsigned long flags;
1941 int tx_flags = 0;
1942
1943 if (sendbar)
1944 tx_flags = ATH_TX_BAR;
1945
1946 if (!txok) {
1947 tx_flags |= ATH_TX_ERROR;
1948
1949 if (bf_isxretried(bf))
1950 tx_flags |= ATH_TX_XRETRY;
1951 }
1952
1953 dma_unmap_single(sc->dev, bf->bf_dmacontext, skb->len, DMA_TO_DEVICE);
1954
1955 if (bf->bf_state.bfs_paprd) {
1956 if (time_after(jiffies,
1957 bf->bf_state.bfs_paprd_timestamp +
1958 msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
1959 dev_kfree_skb_any(skb);
1960 else
1961 complete(&sc->paprd_complete);
1962 } else {
1963 ath_tx_complete(sc, skb, bf->aphy, tx_flags);
1964 ath_debug_stat_tx(sc, txq, bf, ts);
1965 }
1966
1967 /*
1968 * Return the list of ath_buf of this mpdu to free queue
1969 */
1970 spin_lock_irqsave(&sc->tx.txbuflock, flags);
1971 list_splice_tail_init(bf_q, &sc->tx.txbuf);
1972 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
1973 }
1974
1975 static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
1976 struct ath_tx_status *ts, int txok)
1977 {
1978 u16 seq_st = 0;
1979 u32 ba[WME_BA_BMP_SIZE >> 5];
1980 int ba_index;
1981 int nbad = 0;
1982 int isaggr = 0;
1983
1984 if (bf->bf_lastbf->bf_tx_aborted)
1985 return 0;
1986
1987 isaggr = bf_isaggr(bf);
1988 if (isaggr) {
1989 seq_st = ts->ts_seqnum;
1990 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
1991 }
1992
1993 while (bf) {
1994 ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
1995 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
1996 nbad++;
1997
1998 bf = bf->bf_next;
1999 }
2000
2001 return nbad;
2002 }
2003
2004 static void ath_tx_rc_status(struct ath_buf *bf, struct ath_tx_status *ts,
2005 int nbad, int txok, bool update_rc)
2006 {
2007 struct sk_buff *skb = bf->bf_mpdu;
2008 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2009 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2010 struct ieee80211_hw *hw = bf->aphy->hw;
2011 u8 i, tx_rateindex;
2012
2013 if (txok)
2014 tx_info->status.ack_signal = ts->ts_rssi;
2015
2016 tx_rateindex = ts->ts_rateindex;
2017 WARN_ON(tx_rateindex >= hw->max_rates);
2018
2019 if (ts->ts_status & ATH9K_TXERR_FILT)
2020 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2021 if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && update_rc)
2022 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2023
2024 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2025 (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0 && update_rc) {
2026 if (ieee80211_is_data(hdr->frame_control)) {
2027 if (ts->ts_flags &
2028 (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN))
2029 tx_info->pad[0] |= ATH_TX_INFO_UNDERRUN;
2030 if ((ts->ts_status & ATH9K_TXERR_XRETRY) ||
2031 (ts->ts_status & ATH9K_TXERR_FIFO))
2032 tx_info->pad[0] |= ATH_TX_INFO_XRETRY;
2033 tx_info->status.ampdu_len = bf->bf_nframes;
2034 tx_info->status.ampdu_ack_len = bf->bf_nframes - nbad;
2035 }
2036 }
2037
2038 for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2039 tx_info->status.rates[i].count = 0;
2040 tx_info->status.rates[i].idx = -1;
2041 }
2042
2043 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2044 }
2045
2046 static void ath_wake_mac80211_queue(struct ath_softc *sc, struct ath_txq *txq)
2047 {
2048 int qnum;
2049
2050 qnum = ath_get_mac80211_qnum(txq->axq_class, sc);
2051 if (qnum == -1)
2052 return;
2053
2054 spin_lock_bh(&txq->axq_lock);
2055 if (txq->stopped && sc->tx.pending_frames[qnum] < ATH_MAX_QDEPTH) {
2056 ath_mac80211_start_queue(sc, qnum);
2057 txq->stopped = 0;
2058 }
2059 spin_unlock_bh(&txq->axq_lock);
2060 }
2061
2062 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2063 {
2064 struct ath_hw *ah = sc->sc_ah;
2065 struct ath_common *common = ath9k_hw_common(ah);
2066 struct ath_buf *bf, *lastbf, *bf_held = NULL;
2067 struct list_head bf_head;
2068 struct ath_desc *ds;
2069 struct ath_tx_status ts;
2070 int txok;
2071 int status;
2072
2073 ath_print(common, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
2074 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2075 txq->axq_link);
2076
2077 for (;;) {
2078 spin_lock_bh(&txq->axq_lock);
2079 if (list_empty(&txq->axq_q)) {
2080 txq->axq_link = NULL;
2081 spin_unlock_bh(&txq->axq_lock);
2082 break;
2083 }
2084 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2085
2086 /*
2087 * There is a race condition that a BH gets scheduled
2088 * after sw writes TxE and before hw re-load the last
2089 * descriptor to get the newly chained one.
2090 * Software must keep the last DONE descriptor as a
2091 * holding descriptor - software does so by marking
2092 * it with the STALE flag.
2093 */
2094 bf_held = NULL;
2095 if (bf->bf_stale) {
2096 bf_held = bf;
2097 if (list_is_last(&bf_held->list, &txq->axq_q)) {
2098 spin_unlock_bh(&txq->axq_lock);
2099 break;
2100 } else {
2101 bf = list_entry(bf_held->list.next,
2102 struct ath_buf, list);
2103 }
2104 }
2105
2106 lastbf = bf->bf_lastbf;
2107 ds = lastbf->bf_desc;
2108
2109 memset(&ts, 0, sizeof(ts));
2110 status = ath9k_hw_txprocdesc(ah, ds, &ts);
2111 if (status == -EINPROGRESS) {
2112 spin_unlock_bh(&txq->axq_lock);
2113 break;
2114 }
2115
2116 /*
2117 * We now know the nullfunc frame has been ACKed so we
2118 * can disable RX.
2119 */
2120 if (bf->bf_isnullfunc &&
2121 (ts.ts_status & ATH9K_TX_ACKED)) {
2122 if ((sc->ps_flags & PS_ENABLED))
2123 ath9k_enable_ps(sc);
2124 else
2125 sc->ps_flags |= PS_NULLFUNC_COMPLETED;
2126 }
2127
2128 /*
2129 * Remove ath_buf's of the same transmit unit from txq,
2130 * however leave the last descriptor back as the holding
2131 * descriptor for hw.
2132 */
2133 lastbf->bf_stale = true;
2134 INIT_LIST_HEAD(&bf_head);
2135 if (!list_is_singular(&lastbf->list))
2136 list_cut_position(&bf_head,
2137 &txq->axq_q, lastbf->list.prev);
2138
2139 txq->axq_depth--;
2140 txok = !(ts.ts_status & ATH9K_TXERR_MASK);
2141 txq->axq_tx_inprogress = false;
2142 if (bf_held)
2143 list_del(&bf_held->list);
2144 spin_unlock_bh(&txq->axq_lock);
2145
2146 if (bf_held)
2147 ath_tx_return_buffer(sc, bf_held);
2148
2149 if (!bf_isampdu(bf)) {
2150 /*
2151 * This frame is sent out as a single frame.
2152 * Use hardware retry status for this frame.
2153 */
2154 if (ts.ts_status & ATH9K_TXERR_XRETRY)
2155 bf->bf_state.bf_type |= BUF_XRETRY;
2156 ath_tx_rc_status(bf, &ts, 0, txok, true);
2157 }
2158
2159 if (bf_isampdu(bf))
2160 ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, txok);
2161 else
2162 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, txok, 0);
2163
2164 ath_wake_mac80211_queue(sc, txq);
2165
2166 spin_lock_bh(&txq->axq_lock);
2167 if (sc->sc_flags & SC_OP_TXAGGR)
2168 ath_txq_schedule(sc, txq);
2169 spin_unlock_bh(&txq->axq_lock);
2170 }
2171 }
2172
2173 static void ath_tx_complete_poll_work(struct work_struct *work)
2174 {
2175 struct ath_softc *sc = container_of(work, struct ath_softc,
2176 tx_complete_work.work);
2177 struct ath_txq *txq;
2178 int i;
2179 bool needreset = false;
2180
2181 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
2182 if (ATH_TXQ_SETUP(sc, i)) {
2183 txq = &sc->tx.txq[i];
2184 spin_lock_bh(&txq->axq_lock);
2185 if (txq->axq_depth) {
2186 if (txq->axq_tx_inprogress) {
2187 needreset = true;
2188 spin_unlock_bh(&txq->axq_lock);
2189 break;
2190 } else {
2191 txq->axq_tx_inprogress = true;
2192 }
2193 }
2194 spin_unlock_bh(&txq->axq_lock);
2195 }
2196
2197 if (needreset) {
2198 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_RESET,
2199 "tx hung, resetting the chip\n");
2200 ath9k_ps_wakeup(sc);
2201 ath_reset(sc, false);
2202 ath9k_ps_restore(sc);
2203 }
2204
2205 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2206 msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
2207 }
2208
2209
2210
2211 void ath_tx_tasklet(struct ath_softc *sc)
2212 {
2213 int i;
2214 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
2215
2216 ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
2217
2218 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2219 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2220 ath_tx_processq(sc, &sc->tx.txq[i]);
2221 }
2222 }
2223
2224 void ath_tx_edma_tasklet(struct ath_softc *sc)
2225 {
2226 struct ath_tx_status txs;
2227 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2228 struct ath_hw *ah = sc->sc_ah;
2229 struct ath_txq *txq;
2230 struct ath_buf *bf, *lastbf;
2231 struct list_head bf_head;
2232 int status;
2233 int txok;
2234
2235 for (;;) {
2236 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&txs);
2237 if (status == -EINPROGRESS)
2238 break;
2239 if (status == -EIO) {
2240 ath_print(common, ATH_DBG_XMIT,
2241 "Error processing tx status\n");
2242 break;
2243 }
2244
2245 /* Skip beacon completions */
2246 if (txs.qid == sc->beacon.beaconq)
2247 continue;
2248
2249 txq = &sc->tx.txq[txs.qid];
2250
2251 spin_lock_bh(&txq->axq_lock);
2252 if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
2253 spin_unlock_bh(&txq->axq_lock);
2254 return;
2255 }
2256
2257 bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
2258 struct ath_buf, list);
2259 lastbf = bf->bf_lastbf;
2260
2261 INIT_LIST_HEAD(&bf_head);
2262 list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
2263 &lastbf->list);
2264 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2265 txq->axq_depth--;
2266 txq->axq_tx_inprogress = false;
2267 spin_unlock_bh(&txq->axq_lock);
2268
2269 txok = !(txs.ts_status & ATH9K_TXERR_MASK);
2270
2271 /*
2272 * Make sure null func frame is acked before configuring
2273 * hw into ps mode.
2274 */
2275 if (bf->bf_isnullfunc && txok) {
2276 if ((sc->ps_flags & PS_ENABLED))
2277 ath9k_enable_ps(sc);
2278 else
2279 sc->ps_flags |= PS_NULLFUNC_COMPLETED;
2280 }
2281
2282 if (!bf_isampdu(bf)) {
2283 if (txs.ts_status & ATH9K_TXERR_XRETRY)
2284 bf->bf_state.bf_type |= BUF_XRETRY;
2285 ath_tx_rc_status(bf, &txs, 0, txok, true);
2286 }
2287
2288 if (bf_isampdu(bf))
2289 ath_tx_complete_aggr(sc, txq, bf, &bf_head, &txs, txok);
2290 else
2291 ath_tx_complete_buf(sc, bf, txq, &bf_head,
2292 &txs, txok, 0);
2293
2294 ath_wake_mac80211_queue(sc, txq);
2295
2296 spin_lock_bh(&txq->axq_lock);
2297 if (!list_empty(&txq->txq_fifo_pending)) {
2298 INIT_LIST_HEAD(&bf_head);
2299 bf = list_first_entry(&txq->txq_fifo_pending,
2300 struct ath_buf, list);
2301 list_cut_position(&bf_head, &txq->txq_fifo_pending,
2302 &bf->bf_lastbf->list);
2303 ath_tx_txqaddbuf(sc, txq, &bf_head);
2304 } else if (sc->sc_flags & SC_OP_TXAGGR)
2305 ath_txq_schedule(sc, txq);
2306 spin_unlock_bh(&txq->axq_lock);
2307 }
2308 }
2309
2310 /*****************/
2311 /* Init, Cleanup */
2312 /*****************/
2313
2314 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2315 {
2316 struct ath_descdma *dd = &sc->txsdma;
2317 u8 txs_len = sc->sc_ah->caps.txs_len;
2318
2319 dd->dd_desc_len = size * txs_len;
2320 dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
2321 &dd->dd_desc_paddr, GFP_KERNEL);
2322 if (!dd->dd_desc)
2323 return -ENOMEM;
2324
2325 return 0;
2326 }
2327
2328 static int ath_tx_edma_init(struct ath_softc *sc)
2329 {
2330 int err;
2331
2332 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2333 if (!err)
2334 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2335 sc->txsdma.dd_desc_paddr,
2336 ATH_TXSTATUS_RING_SIZE);
2337
2338 return err;
2339 }
2340
2341 static void ath_tx_edma_cleanup(struct ath_softc *sc)
2342 {
2343 struct ath_descdma *dd = &sc->txsdma;
2344
2345 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
2346 dd->dd_desc_paddr);
2347 }
2348
2349 int ath_tx_init(struct ath_softc *sc, int nbufs)
2350 {
2351 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2352 int error = 0;
2353
2354 spin_lock_init(&sc->tx.txbuflock);
2355
2356 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2357 "tx", nbufs, 1, 1);
2358 if (error != 0) {
2359 ath_print(common, ATH_DBG_FATAL,
2360 "Failed to allocate tx descriptors: %d\n", error);
2361 goto err;
2362 }
2363
2364 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2365 "beacon", ATH_BCBUF, 1, 1);
2366 if (error != 0) {
2367 ath_print(common, ATH_DBG_FATAL,
2368 "Failed to allocate beacon descriptors: %d\n", error);
2369 goto err;
2370 }
2371
2372 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2373
2374 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
2375 error = ath_tx_edma_init(sc);
2376 if (error)
2377 goto err;
2378 }
2379
2380 err:
2381 if (error != 0)
2382 ath_tx_cleanup(sc);
2383
2384 return error;
2385 }
2386
2387 void ath_tx_cleanup(struct ath_softc *sc)
2388 {
2389 if (sc->beacon.bdma.dd_desc_len != 0)
2390 ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
2391
2392 if (sc->tx.txdma.dd_desc_len != 0)
2393 ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
2394
2395 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2396 ath_tx_edma_cleanup(sc);
2397 }
2398
2399 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2400 {
2401 struct ath_atx_tid *tid;
2402 struct ath_atx_ac *ac;
2403 int tidno, acno;
2404
2405 for (tidno = 0, tid = &an->tid[tidno];
2406 tidno < WME_NUM_TID;
2407 tidno++, tid++) {
2408 tid->an = an;
2409 tid->tidno = tidno;
2410 tid->seq_start = tid->seq_next = 0;
2411 tid->baw_size = WME_MAX_BA;
2412 tid->baw_head = tid->baw_tail = 0;
2413 tid->sched = false;
2414 tid->paused = false;
2415 tid->state &= ~AGGR_CLEANUP;
2416 INIT_LIST_HEAD(&tid->buf_q);
2417 acno = TID_TO_WME_AC(tidno);
2418 tid->ac = &an->ac[acno];
2419 tid->state &= ~AGGR_ADDBA_COMPLETE;
2420 tid->state &= ~AGGR_ADDBA_PROGRESS;
2421 }
2422
2423 for (acno = 0, ac = &an->ac[acno];
2424 acno < WME_NUM_AC; acno++, ac++) {
2425 ac->sched = false;
2426 ac->qnum = sc->tx.hwq_map[acno];
2427 INIT_LIST_HEAD(&ac->tid_q);
2428 }
2429 }
2430
2431 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2432 {
2433 int i;
2434 struct ath_atx_ac *ac, *ac_tmp;
2435 struct ath_atx_tid *tid, *tid_tmp;
2436 struct ath_txq *txq;
2437
2438 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2439 if (ATH_TXQ_SETUP(sc, i)) {
2440 txq = &sc->tx.txq[i];
2441
2442 spin_lock_bh(&txq->axq_lock);
2443
2444 list_for_each_entry_safe(ac,
2445 ac_tmp, &txq->axq_acq, list) {
2446 tid = list_first_entry(&ac->tid_q,
2447 struct ath_atx_tid, list);
2448 if (tid && tid->an != an)
2449 continue;
2450 list_del(&ac->list);
2451 ac->sched = false;
2452
2453 list_for_each_entry_safe(tid,
2454 tid_tmp, &ac->tid_q, list) {
2455 list_del(&tid->list);
2456 tid->sched = false;
2457 ath_tid_drain(sc, txq, tid);
2458 tid->state &= ~AGGR_ADDBA_COMPLETE;
2459 tid->state &= ~AGGR_CLEANUP;
2460 }
2461 }
2462
2463 spin_unlock_bh(&txq->axq_lock);
2464 }
2465 }
2466 }
This page took 0.130041 seconds and 6 git commands to generate.