Merge tag 'char-misc-3.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / xmit.c
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20
21 #define BITS_PER_BYTE 8
22 #define OFDM_PLCP_BITS 22
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF 8
25 #define L_LTF 8
26 #define L_SIG 4
27 #define HT_SIG 8
28 #define HT_STF 4
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
33 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
34
35
36 static u16 bits_per_symbol[][2] = {
37 /* 20MHz 40MHz */
38 { 26, 54 }, /* 0: BPSK */
39 { 52, 108 }, /* 1: QPSK 1/2 */
40 { 78, 162 }, /* 2: QPSK 3/4 */
41 { 104, 216 }, /* 3: 16-QAM 1/2 */
42 { 156, 324 }, /* 4: 16-QAM 3/4 */
43 { 208, 432 }, /* 5: 64-QAM 2/3 */
44 { 234, 486 }, /* 6: 64-QAM 3/4 */
45 { 260, 540 }, /* 7: 64-QAM 5/6 */
46 };
47
48 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
49
50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
51 struct ath_atx_tid *tid, struct sk_buff *skb);
52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
53 int tx_flags, struct ath_txq *txq);
54 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
55 struct ath_txq *txq, struct list_head *bf_q,
56 struct ath_tx_status *ts, int txok);
57 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
58 struct list_head *head, bool internal);
59 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
60 struct ath_tx_status *ts, int nframes, int nbad,
61 int txok);
62 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
63 int seqno);
64 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
65 struct ath_txq *txq,
66 struct ath_atx_tid *tid,
67 struct sk_buff *skb);
68
69 enum {
70 MCS_HT20,
71 MCS_HT20_SGI,
72 MCS_HT40,
73 MCS_HT40_SGI,
74 };
75
76 static int ath_max_4ms_framelen[4][32] = {
77 [MCS_HT20] = {
78 3212, 6432, 9648, 12864, 19300, 25736, 28952, 32172,
79 6424, 12852, 19280, 25708, 38568, 51424, 57852, 64280,
80 9628, 19260, 28896, 38528, 57792, 65532, 65532, 65532,
81 12828, 25656, 38488, 51320, 65532, 65532, 65532, 65532,
82 },
83 [MCS_HT20_SGI] = {
84 3572, 7144, 10720, 14296, 21444, 28596, 32172, 35744,
85 7140, 14284, 21428, 28568, 42856, 57144, 64288, 65532,
86 10700, 21408, 32112, 42816, 64228, 65532, 65532, 65532,
87 14256, 28516, 42780, 57040, 65532, 65532, 65532, 65532,
88 },
89 [MCS_HT40] = {
90 6680, 13360, 20044, 26724, 40092, 53456, 60140, 65532,
91 13348, 26700, 40052, 53400, 65532, 65532, 65532, 65532,
92 20004, 40008, 60016, 65532, 65532, 65532, 65532, 65532,
93 26644, 53292, 65532, 65532, 65532, 65532, 65532, 65532,
94 },
95 [MCS_HT40_SGI] = {
96 7420, 14844, 22272, 29696, 44544, 59396, 65532, 65532,
97 14832, 29668, 44504, 59340, 65532, 65532, 65532, 65532,
98 22232, 44464, 65532, 65532, 65532, 65532, 65532, 65532,
99 29616, 59232, 65532, 65532, 65532, 65532, 65532, 65532,
100 }
101 };
102
103 /*********************/
104 /* Aggregation logic */
105 /*********************/
106
107 static void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
108 __acquires(&txq->axq_lock)
109 {
110 spin_lock_bh(&txq->axq_lock);
111 }
112
113 static void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
114 __releases(&txq->axq_lock)
115 {
116 spin_unlock_bh(&txq->axq_lock);
117 }
118
119 static void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
120 __releases(&txq->axq_lock)
121 {
122 struct sk_buff_head q;
123 struct sk_buff *skb;
124
125 __skb_queue_head_init(&q);
126 skb_queue_splice_init(&txq->complete_q, &q);
127 spin_unlock_bh(&txq->axq_lock);
128
129 while ((skb = __skb_dequeue(&q)))
130 ieee80211_tx_status(sc->hw, skb);
131 }
132
133 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
134 {
135 struct ath_atx_ac *ac = tid->ac;
136
137 if (tid->paused)
138 return;
139
140 if (tid->sched)
141 return;
142
143 tid->sched = true;
144 list_add_tail(&tid->list, &ac->tid_q);
145
146 if (ac->sched)
147 return;
148
149 ac->sched = true;
150 list_add_tail(&ac->list, &txq->axq_acq);
151 }
152
153 static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
154 {
155 struct ath_txq *txq = tid->ac->txq;
156
157 WARN_ON(!tid->paused);
158
159 ath_txq_lock(sc, txq);
160 tid->paused = false;
161
162 if (skb_queue_empty(&tid->buf_q))
163 goto unlock;
164
165 ath_tx_queue_tid(txq, tid);
166 ath_txq_schedule(sc, txq);
167 unlock:
168 ath_txq_unlock_complete(sc, txq);
169 }
170
171 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
172 {
173 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
174 BUILD_BUG_ON(sizeof(struct ath_frame_info) >
175 sizeof(tx_info->rate_driver_data));
176 return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
177 }
178
179 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
180 {
181 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
182 seqno << IEEE80211_SEQ_SEQ_SHIFT);
183 }
184
185 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
186 {
187 struct ath_txq *txq = tid->ac->txq;
188 struct sk_buff *skb;
189 struct ath_buf *bf;
190 struct list_head bf_head;
191 struct ath_tx_status ts;
192 struct ath_frame_info *fi;
193 bool sendbar = false;
194
195 INIT_LIST_HEAD(&bf_head);
196
197 memset(&ts, 0, sizeof(ts));
198
199 while ((skb = __skb_dequeue(&tid->buf_q))) {
200 fi = get_frame_info(skb);
201 bf = fi->bf;
202
203 if (bf && fi->retries) {
204 list_add_tail(&bf->list, &bf_head);
205 ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
206 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
207 sendbar = true;
208 } else {
209 ath_tx_send_normal(sc, txq, NULL, skb);
210 }
211 }
212
213 if (tid->baw_head == tid->baw_tail) {
214 tid->state &= ~AGGR_ADDBA_COMPLETE;
215 tid->state &= ~AGGR_CLEANUP;
216 }
217
218 if (sendbar) {
219 ath_txq_unlock(sc, txq);
220 ath_send_bar(tid, tid->seq_start);
221 ath_txq_lock(sc, txq);
222 }
223 }
224
225 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
226 int seqno)
227 {
228 int index, cindex;
229
230 index = ATH_BA_INDEX(tid->seq_start, seqno);
231 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
232
233 __clear_bit(cindex, tid->tx_buf);
234
235 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
236 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
237 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
238 if (tid->bar_index >= 0)
239 tid->bar_index--;
240 }
241 }
242
243 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
244 u16 seqno)
245 {
246 int index, cindex;
247
248 index = ATH_BA_INDEX(tid->seq_start, seqno);
249 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
250 __set_bit(cindex, tid->tx_buf);
251
252 if (index >= ((tid->baw_tail - tid->baw_head) &
253 (ATH_TID_MAX_BUFS - 1))) {
254 tid->baw_tail = cindex;
255 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
256 }
257 }
258
259 /*
260 * TODO: For frame(s) that are in the retry state, we will reuse the
261 * sequence number(s) without setting the retry bit. The
262 * alternative is to give up on these and BAR the receiver's window
263 * forward.
264 */
265 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
266 struct ath_atx_tid *tid)
267
268 {
269 struct sk_buff *skb;
270 struct ath_buf *bf;
271 struct list_head bf_head;
272 struct ath_tx_status ts;
273 struct ath_frame_info *fi;
274
275 memset(&ts, 0, sizeof(ts));
276 INIT_LIST_HEAD(&bf_head);
277
278 while ((skb = __skb_dequeue(&tid->buf_q))) {
279 fi = get_frame_info(skb);
280 bf = fi->bf;
281
282 if (!bf) {
283 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
284 continue;
285 }
286
287 list_add_tail(&bf->list, &bf_head);
288
289 if (fi->retries)
290 ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
291
292 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
293 }
294
295 tid->seq_next = tid->seq_start;
296 tid->baw_tail = tid->baw_head;
297 tid->bar_index = -1;
298 }
299
300 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
301 struct sk_buff *skb, int count)
302 {
303 struct ath_frame_info *fi = get_frame_info(skb);
304 struct ath_buf *bf = fi->bf;
305 struct ieee80211_hdr *hdr;
306 int prev = fi->retries;
307
308 TX_STAT_INC(txq->axq_qnum, a_retries);
309 fi->retries += count;
310
311 if (prev > 0)
312 return;
313
314 hdr = (struct ieee80211_hdr *)skb->data;
315 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
316 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
317 sizeof(*hdr), DMA_TO_DEVICE);
318 }
319
320 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
321 {
322 struct ath_buf *bf = NULL;
323
324 spin_lock_bh(&sc->tx.txbuflock);
325
326 if (unlikely(list_empty(&sc->tx.txbuf))) {
327 spin_unlock_bh(&sc->tx.txbuflock);
328 return NULL;
329 }
330
331 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
332 list_del(&bf->list);
333
334 spin_unlock_bh(&sc->tx.txbuflock);
335
336 return bf;
337 }
338
339 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
340 {
341 spin_lock_bh(&sc->tx.txbuflock);
342 list_add_tail(&bf->list, &sc->tx.txbuf);
343 spin_unlock_bh(&sc->tx.txbuflock);
344 }
345
346 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
347 {
348 struct ath_buf *tbf;
349
350 tbf = ath_tx_get_buffer(sc);
351 if (WARN_ON(!tbf))
352 return NULL;
353
354 ATH_TXBUF_RESET(tbf);
355
356 tbf->bf_mpdu = bf->bf_mpdu;
357 tbf->bf_buf_addr = bf->bf_buf_addr;
358 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
359 tbf->bf_state = bf->bf_state;
360
361 return tbf;
362 }
363
364 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
365 struct ath_tx_status *ts, int txok,
366 int *nframes, int *nbad)
367 {
368 struct ath_frame_info *fi;
369 u16 seq_st = 0;
370 u32 ba[WME_BA_BMP_SIZE >> 5];
371 int ba_index;
372 int isaggr = 0;
373
374 *nbad = 0;
375 *nframes = 0;
376
377 isaggr = bf_isaggr(bf);
378 if (isaggr) {
379 seq_st = ts->ts_seqnum;
380 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
381 }
382
383 while (bf) {
384 fi = get_frame_info(bf->bf_mpdu);
385 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
386
387 (*nframes)++;
388 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
389 (*nbad)++;
390
391 bf = bf->bf_next;
392 }
393 }
394
395
396 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
397 struct ath_buf *bf, struct list_head *bf_q,
398 struct ath_tx_status *ts, int txok, bool retry)
399 {
400 struct ath_node *an = NULL;
401 struct sk_buff *skb;
402 struct ieee80211_sta *sta;
403 struct ieee80211_hw *hw = sc->hw;
404 struct ieee80211_hdr *hdr;
405 struct ieee80211_tx_info *tx_info;
406 struct ath_atx_tid *tid = NULL;
407 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
408 struct list_head bf_head;
409 struct sk_buff_head bf_pending;
410 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
411 u32 ba[WME_BA_BMP_SIZE >> 5];
412 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
413 bool rc_update = true;
414 struct ieee80211_tx_rate rates[4];
415 struct ath_frame_info *fi;
416 int nframes;
417 u8 tidno;
418 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
419 int i, retries;
420 int bar_index = -1;
421
422 skb = bf->bf_mpdu;
423 hdr = (struct ieee80211_hdr *)skb->data;
424
425 tx_info = IEEE80211_SKB_CB(skb);
426
427 memcpy(rates, tx_info->control.rates, sizeof(rates));
428
429 retries = ts->ts_longretry + 1;
430 for (i = 0; i < ts->ts_rateindex; i++)
431 retries += rates[i].count;
432
433 rcu_read_lock();
434
435 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
436 if (!sta) {
437 rcu_read_unlock();
438
439 INIT_LIST_HEAD(&bf_head);
440 while (bf) {
441 bf_next = bf->bf_next;
442
443 if (!bf->bf_stale || bf_next != NULL)
444 list_move_tail(&bf->list, &bf_head);
445
446 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
447
448 bf = bf_next;
449 }
450 return;
451 }
452
453 an = (struct ath_node *)sta->drv_priv;
454 tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
455 tid = ATH_AN_2_TID(an, tidno);
456 seq_first = tid->seq_start;
457
458 /*
459 * The hardware occasionally sends a tx status for the wrong TID.
460 * In this case, the BA status cannot be considered valid and all
461 * subframes need to be retransmitted
462 */
463 if (tidno != ts->tid)
464 txok = false;
465
466 isaggr = bf_isaggr(bf);
467 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
468
469 if (isaggr && txok) {
470 if (ts->ts_flags & ATH9K_TX_BA) {
471 seq_st = ts->ts_seqnum;
472 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
473 } else {
474 /*
475 * AR5416 can become deaf/mute when BA
476 * issue happens. Chip needs to be reset.
477 * But AP code may have sychronization issues
478 * when perform internal reset in this routine.
479 * Only enable reset in STA mode for now.
480 */
481 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
482 needreset = 1;
483 }
484 }
485
486 __skb_queue_head_init(&bf_pending);
487
488 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
489 while (bf) {
490 u16 seqno = bf->bf_state.seqno;
491
492 txfail = txpending = sendbar = 0;
493 bf_next = bf->bf_next;
494
495 skb = bf->bf_mpdu;
496 tx_info = IEEE80211_SKB_CB(skb);
497 fi = get_frame_info(skb);
498
499 if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
500 /* transmit completion, subframe is
501 * acked by block ack */
502 acked_cnt++;
503 } else if (!isaggr && txok) {
504 /* transmit completion */
505 acked_cnt++;
506 } else if ((tid->state & AGGR_CLEANUP) || !retry) {
507 /*
508 * cleanup in progress, just fail
509 * the un-acked sub-frames
510 */
511 txfail = 1;
512 } else if (flush) {
513 txpending = 1;
514 } else if (fi->retries < ATH_MAX_SW_RETRIES) {
515 if (txok || !an->sleeping)
516 ath_tx_set_retry(sc, txq, bf->bf_mpdu,
517 retries);
518
519 txpending = 1;
520 } else {
521 txfail = 1;
522 txfail_cnt++;
523 bar_index = max_t(int, bar_index,
524 ATH_BA_INDEX(seq_first, seqno));
525 }
526
527 /*
528 * Make sure the last desc is reclaimed if it
529 * not a holding desc.
530 */
531 INIT_LIST_HEAD(&bf_head);
532 if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) ||
533 bf_next != NULL || !bf_last->bf_stale)
534 list_move_tail(&bf->list, &bf_head);
535
536 if (!txpending || (tid->state & AGGR_CLEANUP)) {
537 /*
538 * complete the acked-ones/xretried ones; update
539 * block-ack window
540 */
541 ath_tx_update_baw(sc, tid, seqno);
542
543 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
544 memcpy(tx_info->control.rates, rates, sizeof(rates));
545 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
546 rc_update = false;
547 }
548
549 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
550 !txfail);
551 } else {
552 /* retry the un-acked ones */
553 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
554 bf->bf_next == NULL && bf_last->bf_stale) {
555 struct ath_buf *tbf;
556
557 tbf = ath_clone_txbuf(sc, bf_last);
558 /*
559 * Update tx baw and complete the
560 * frame with failed status if we
561 * run out of tx buf.
562 */
563 if (!tbf) {
564 ath_tx_update_baw(sc, tid, seqno);
565
566 ath_tx_complete_buf(sc, bf, txq,
567 &bf_head, ts, 0);
568 bar_index = max_t(int, bar_index,
569 ATH_BA_INDEX(seq_first, seqno));
570 break;
571 }
572
573 fi->bf = tbf;
574 }
575
576 /*
577 * Put this buffer to the temporary pending
578 * queue to retain ordering
579 */
580 __skb_queue_tail(&bf_pending, skb);
581 }
582
583 bf = bf_next;
584 }
585
586 /* prepend un-acked frames to the beginning of the pending frame queue */
587 if (!skb_queue_empty(&bf_pending)) {
588 if (an->sleeping)
589 ieee80211_sta_set_buffered(sta, tid->tidno, true);
590
591 skb_queue_splice(&bf_pending, &tid->buf_q);
592 if (!an->sleeping) {
593 ath_tx_queue_tid(txq, tid);
594
595 if (ts->ts_status & ATH9K_TXERR_FILT)
596 tid->ac->clear_ps_filter = true;
597 }
598 }
599
600 if (bar_index >= 0) {
601 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
602
603 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
604 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
605
606 ath_txq_unlock(sc, txq);
607 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
608 ath_txq_lock(sc, txq);
609 }
610
611 if (tid->state & AGGR_CLEANUP)
612 ath_tx_flush_tid(sc, tid);
613
614 rcu_read_unlock();
615
616 if (needreset) {
617 RESET_STAT_INC(sc, RESET_TYPE_TX_ERROR);
618 ieee80211_queue_work(sc->hw, &sc->hw_reset_work);
619 }
620 }
621
622 static bool ath_lookup_legacy(struct ath_buf *bf)
623 {
624 struct sk_buff *skb;
625 struct ieee80211_tx_info *tx_info;
626 struct ieee80211_tx_rate *rates;
627 int i;
628
629 skb = bf->bf_mpdu;
630 tx_info = IEEE80211_SKB_CB(skb);
631 rates = tx_info->control.rates;
632
633 for (i = 0; i < 4; i++) {
634 if (!rates[i].count || rates[i].idx < 0)
635 break;
636
637 if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
638 return true;
639 }
640
641 return false;
642 }
643
644 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
645 struct ath_atx_tid *tid)
646 {
647 struct sk_buff *skb;
648 struct ieee80211_tx_info *tx_info;
649 struct ieee80211_tx_rate *rates;
650 u32 max_4ms_framelen, frmlen;
651 u16 aggr_limit, bt_aggr_limit, legacy = 0;
652 int i;
653
654 skb = bf->bf_mpdu;
655 tx_info = IEEE80211_SKB_CB(skb);
656 rates = tx_info->control.rates;
657
658 /*
659 * Find the lowest frame length among the rate series that will have a
660 * 4ms transmit duration.
661 * TODO - TXOP limit needs to be considered.
662 */
663 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
664
665 for (i = 0; i < 4; i++) {
666 int modeidx;
667
668 if (!rates[i].count)
669 continue;
670
671 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
672 legacy = 1;
673 break;
674 }
675
676 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
677 modeidx = MCS_HT40;
678 else
679 modeidx = MCS_HT20;
680
681 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
682 modeidx++;
683
684 frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx];
685 max_4ms_framelen = min(max_4ms_framelen, frmlen);
686 }
687
688 /*
689 * limit aggregate size by the minimum rate if rate selected is
690 * not a probe rate, if rate selected is a probe rate then
691 * avoid aggregation of this packet.
692 */
693 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
694 return 0;
695
696 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
697
698 /*
699 * Override the default aggregation limit for BTCOEX.
700 */
701 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
702 if (bt_aggr_limit)
703 aggr_limit = bt_aggr_limit;
704
705 /*
706 * h/w can accept aggregates up to 16 bit lengths (65535).
707 * The IE, however can hold up to 65536, which shows up here
708 * as zero. Ignore 65536 since we are constrained by hw.
709 */
710 if (tid->an->maxampdu)
711 aggr_limit = min(aggr_limit, tid->an->maxampdu);
712
713 return aggr_limit;
714 }
715
716 /*
717 * Returns the number of delimiters to be added to
718 * meet the minimum required mpdudensity.
719 */
720 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
721 struct ath_buf *bf, u16 frmlen,
722 bool first_subfrm)
723 {
724 #define FIRST_DESC_NDELIMS 60
725 struct sk_buff *skb = bf->bf_mpdu;
726 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
727 u32 nsymbits, nsymbols;
728 u16 minlen;
729 u8 flags, rix;
730 int width, streams, half_gi, ndelim, mindelim;
731 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
732
733 /* Select standard number of delimiters based on frame length alone */
734 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
735
736 /*
737 * If encryption enabled, hardware requires some more padding between
738 * subframes.
739 * TODO - this could be improved to be dependent on the rate.
740 * The hardware can keep up at lower rates, but not higher rates
741 */
742 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
743 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
744 ndelim += ATH_AGGR_ENCRYPTDELIM;
745
746 /*
747 * Add delimiter when using RTS/CTS with aggregation
748 * and non enterprise AR9003 card
749 */
750 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
751 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
752 ndelim = max(ndelim, FIRST_DESC_NDELIMS);
753
754 /*
755 * Convert desired mpdu density from microeconds to bytes based
756 * on highest rate in rate series (i.e. first rate) to determine
757 * required minimum length for subframe. Take into account
758 * whether high rate is 20 or 40Mhz and half or full GI.
759 *
760 * If there is no mpdu density restriction, no further calculation
761 * is needed.
762 */
763
764 if (tid->an->mpdudensity == 0)
765 return ndelim;
766
767 rix = tx_info->control.rates[0].idx;
768 flags = tx_info->control.rates[0].flags;
769 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
770 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
771
772 if (half_gi)
773 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
774 else
775 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
776
777 if (nsymbols == 0)
778 nsymbols = 1;
779
780 streams = HT_RC_2_STREAMS(rix);
781 nsymbits = bits_per_symbol[rix % 8][width] * streams;
782 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
783
784 if (frmlen < minlen) {
785 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
786 ndelim = max(mindelim, ndelim);
787 }
788
789 return ndelim;
790 }
791
792 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
793 struct ath_txq *txq,
794 struct ath_atx_tid *tid,
795 struct list_head *bf_q,
796 int *aggr_len)
797 {
798 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
799 struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
800 int rl = 0, nframes = 0, ndelim, prev_al = 0;
801 u16 aggr_limit = 0, al = 0, bpad = 0,
802 al_delta, h_baw = tid->baw_size / 2;
803 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
804 struct ieee80211_tx_info *tx_info;
805 struct ath_frame_info *fi;
806 struct sk_buff *skb;
807 u16 seqno;
808
809 do {
810 skb = skb_peek(&tid->buf_q);
811 fi = get_frame_info(skb);
812 bf = fi->bf;
813 if (!fi->bf)
814 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
815
816 if (!bf)
817 continue;
818
819 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
820 seqno = bf->bf_state.seqno;
821
822 /* do not step over block-ack window */
823 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
824 status = ATH_AGGR_BAW_CLOSED;
825 break;
826 }
827
828 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
829 struct ath_tx_status ts = {};
830 struct list_head bf_head;
831
832 INIT_LIST_HEAD(&bf_head);
833 list_add(&bf->list, &bf_head);
834 __skb_unlink(skb, &tid->buf_q);
835 ath_tx_update_baw(sc, tid, seqno);
836 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
837 continue;
838 }
839
840 if (!bf_first)
841 bf_first = bf;
842
843 if (!rl) {
844 aggr_limit = ath_lookup_rate(sc, bf, tid);
845 rl = 1;
846 }
847
848 /* do not exceed aggregation limit */
849 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
850
851 if (nframes &&
852 ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
853 ath_lookup_legacy(bf))) {
854 status = ATH_AGGR_LIMITED;
855 break;
856 }
857
858 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
859 if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
860 break;
861
862 /* do not exceed subframe limit */
863 if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
864 status = ATH_AGGR_LIMITED;
865 break;
866 }
867
868 /* add padding for previous frame to aggregation length */
869 al += bpad + al_delta;
870
871 /*
872 * Get the delimiters needed to meet the MPDU
873 * density for this node.
874 */
875 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
876 !nframes);
877 bpad = PADBYTES(al_delta) + (ndelim << 2);
878
879 nframes++;
880 bf->bf_next = NULL;
881
882 /* link buffers of this frame to the aggregate */
883 if (!fi->retries)
884 ath_tx_addto_baw(sc, tid, seqno);
885 bf->bf_state.ndelim = ndelim;
886
887 __skb_unlink(skb, &tid->buf_q);
888 list_add_tail(&bf->list, bf_q);
889 if (bf_prev)
890 bf_prev->bf_next = bf;
891
892 bf_prev = bf;
893
894 } while (!skb_queue_empty(&tid->buf_q));
895
896 *aggr_len = al;
897
898 return status;
899 #undef PADBYTES
900 }
901
902 /*
903 * rix - rate index
904 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
905 * width - 0 for 20 MHz, 1 for 40 MHz
906 * half_gi - to use 4us v/s 3.6 us for symbol time
907 */
908 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
909 int width, int half_gi, bool shortPreamble)
910 {
911 u32 nbits, nsymbits, duration, nsymbols;
912 int streams;
913
914 /* find number of symbols: PLCP + data */
915 streams = HT_RC_2_STREAMS(rix);
916 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
917 nsymbits = bits_per_symbol[rix % 8][width] * streams;
918 nsymbols = (nbits + nsymbits - 1) / nsymbits;
919
920 if (!half_gi)
921 duration = SYMBOL_TIME(nsymbols);
922 else
923 duration = SYMBOL_TIME_HALFGI(nsymbols);
924
925 /* addup duration for legacy/ht training and signal fields */
926 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
927
928 return duration;
929 }
930
931 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
932 struct ath_tx_info *info, int len)
933 {
934 struct ath_hw *ah = sc->sc_ah;
935 struct sk_buff *skb;
936 struct ieee80211_tx_info *tx_info;
937 struct ieee80211_tx_rate *rates;
938 const struct ieee80211_rate *rate;
939 struct ieee80211_hdr *hdr;
940 int i;
941 u8 rix = 0;
942
943 skb = bf->bf_mpdu;
944 tx_info = IEEE80211_SKB_CB(skb);
945 rates = tx_info->control.rates;
946 hdr = (struct ieee80211_hdr *)skb->data;
947
948 /* set dur_update_en for l-sig computation except for PS-Poll frames */
949 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
950
951 /*
952 * We check if Short Preamble is needed for the CTS rate by
953 * checking the BSS's global flag.
954 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
955 */
956 rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info);
957 info->rtscts_rate = rate->hw_value;
958
959 if (tx_info->control.vif &&
960 tx_info->control.vif->bss_conf.use_short_preamble)
961 info->rtscts_rate |= rate->hw_value_short;
962
963 for (i = 0; i < 4; i++) {
964 bool is_40, is_sgi, is_sp;
965 int phy;
966
967 if (!rates[i].count || (rates[i].idx < 0))
968 continue;
969
970 rix = rates[i].idx;
971 info->rates[i].Tries = rates[i].count;
972
973 if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
974 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
975 info->flags |= ATH9K_TXDESC_RTSENA;
976 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
977 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
978 info->flags |= ATH9K_TXDESC_CTSENA;
979 }
980
981 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
982 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
983 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
984 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
985
986 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
987 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
988 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
989
990 if (rates[i].flags & IEEE80211_TX_RC_MCS) {
991 /* MCS rates */
992 info->rates[i].Rate = rix | 0x80;
993 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
994 ah->txchainmask, info->rates[i].Rate);
995 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
996 is_40, is_sgi, is_sp);
997 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
998 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
999 continue;
1000 }
1001
1002 /* legacy rates */
1003 if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1004 !(rate->flags & IEEE80211_RATE_ERP_G))
1005 phy = WLAN_RC_PHY_CCK;
1006 else
1007 phy = WLAN_RC_PHY_OFDM;
1008
1009 rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
1010 info->rates[i].Rate = rate->hw_value;
1011 if (rate->hw_value_short) {
1012 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1013 info->rates[i].Rate |= rate->hw_value_short;
1014 } else {
1015 is_sp = false;
1016 }
1017
1018 if (bf->bf_state.bfs_paprd)
1019 info->rates[i].ChSel = ah->txchainmask;
1020 else
1021 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1022 ah->txchainmask, info->rates[i].Rate);
1023
1024 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1025 phy, rate->bitrate * 100, len, rix, is_sp);
1026 }
1027
1028 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1029 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1030 info->flags &= ~ATH9K_TXDESC_RTSENA;
1031
1032 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1033 if (info->flags & ATH9K_TXDESC_RTSENA)
1034 info->flags &= ~ATH9K_TXDESC_CTSENA;
1035 }
1036
1037 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1038 {
1039 struct ieee80211_hdr *hdr;
1040 enum ath9k_pkt_type htype;
1041 __le16 fc;
1042
1043 hdr = (struct ieee80211_hdr *)skb->data;
1044 fc = hdr->frame_control;
1045
1046 if (ieee80211_is_beacon(fc))
1047 htype = ATH9K_PKT_TYPE_BEACON;
1048 else if (ieee80211_is_probe_resp(fc))
1049 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1050 else if (ieee80211_is_atim(fc))
1051 htype = ATH9K_PKT_TYPE_ATIM;
1052 else if (ieee80211_is_pspoll(fc))
1053 htype = ATH9K_PKT_TYPE_PSPOLL;
1054 else
1055 htype = ATH9K_PKT_TYPE_NORMAL;
1056
1057 return htype;
1058 }
1059
1060 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1061 struct ath_txq *txq, int len)
1062 {
1063 struct ath_hw *ah = sc->sc_ah;
1064 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1065 struct ath_buf *bf_first = bf;
1066 struct ath_tx_info info;
1067 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1068
1069 memset(&info, 0, sizeof(info));
1070 info.is_first = true;
1071 info.is_last = true;
1072 info.txpower = MAX_RATE_POWER;
1073 info.qcu = txq->axq_qnum;
1074
1075 info.flags = ATH9K_TXDESC_INTREQ;
1076 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1077 info.flags |= ATH9K_TXDESC_NOACK;
1078 if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1079 info.flags |= ATH9K_TXDESC_LDPC;
1080
1081 ath_buf_set_rate(sc, bf, &info, len);
1082
1083 if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
1084 info.flags |= ATH9K_TXDESC_CLRDMASK;
1085
1086 if (bf->bf_state.bfs_paprd)
1087 info.flags |= (u32) bf->bf_state.bfs_paprd << ATH9K_TXDESC_PAPRD_S;
1088
1089
1090 while (bf) {
1091 struct sk_buff *skb = bf->bf_mpdu;
1092 struct ath_frame_info *fi = get_frame_info(skb);
1093
1094 info.type = get_hw_packet_type(skb);
1095 if (bf->bf_next)
1096 info.link = bf->bf_next->bf_daddr;
1097 else
1098 info.link = 0;
1099
1100 info.buf_addr[0] = bf->bf_buf_addr;
1101 info.buf_len[0] = skb->len;
1102 info.pkt_len = fi->framelen;
1103 info.keyix = fi->keyix;
1104 info.keytype = fi->keytype;
1105
1106 if (aggr) {
1107 if (bf == bf_first)
1108 info.aggr = AGGR_BUF_FIRST;
1109 else if (!bf->bf_next)
1110 info.aggr = AGGR_BUF_LAST;
1111 else
1112 info.aggr = AGGR_BUF_MIDDLE;
1113
1114 info.ndelim = bf->bf_state.ndelim;
1115 info.aggr_len = len;
1116 }
1117
1118 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1119 bf = bf->bf_next;
1120 }
1121 }
1122
1123 static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1124 struct ath_atx_tid *tid)
1125 {
1126 struct ath_buf *bf;
1127 enum ATH_AGGR_STATUS status;
1128 struct ieee80211_tx_info *tx_info;
1129 struct list_head bf_q;
1130 int aggr_len;
1131
1132 do {
1133 if (skb_queue_empty(&tid->buf_q))
1134 return;
1135
1136 INIT_LIST_HEAD(&bf_q);
1137
1138 status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
1139
1140 /*
1141 * no frames picked up to be aggregated;
1142 * block-ack window is not open.
1143 */
1144 if (list_empty(&bf_q))
1145 break;
1146
1147 bf = list_first_entry(&bf_q, struct ath_buf, list);
1148 bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
1149 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1150
1151 if (tid->ac->clear_ps_filter) {
1152 tid->ac->clear_ps_filter = false;
1153 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1154 } else {
1155 tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
1156 }
1157
1158 /* if only one frame, send as non-aggregate */
1159 if (bf == bf->bf_lastbf) {
1160 aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
1161 bf->bf_state.bf_type = BUF_AMPDU;
1162 } else {
1163 TX_STAT_INC(txq->axq_qnum, a_aggr);
1164 }
1165
1166 ath_tx_fill_desc(sc, bf, txq, aggr_len);
1167 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1168 } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
1169 status != ATH_AGGR_BAW_CLOSED);
1170 }
1171
1172 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1173 u16 tid, u16 *ssn)
1174 {
1175 struct ath_atx_tid *txtid;
1176 struct ath_node *an;
1177
1178 an = (struct ath_node *)sta->drv_priv;
1179 txtid = ATH_AN_2_TID(an, tid);
1180
1181 if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
1182 return -EAGAIN;
1183
1184 txtid->state |= AGGR_ADDBA_PROGRESS;
1185 txtid->paused = true;
1186 *ssn = txtid->seq_start = txtid->seq_next;
1187 txtid->bar_index = -1;
1188
1189 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1190 txtid->baw_head = txtid->baw_tail = 0;
1191
1192 return 0;
1193 }
1194
1195 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1196 {
1197 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1198 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1199 struct ath_txq *txq = txtid->ac->txq;
1200
1201 if (txtid->state & AGGR_CLEANUP)
1202 return;
1203
1204 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
1205 txtid->state &= ~AGGR_ADDBA_PROGRESS;
1206 return;
1207 }
1208
1209 ath_txq_lock(sc, txq);
1210 txtid->paused = true;
1211
1212 /*
1213 * If frames are still being transmitted for this TID, they will be
1214 * cleaned up during tx completion. To prevent race conditions, this
1215 * TID can only be reused after all in-progress subframes have been
1216 * completed.
1217 */
1218 if (txtid->baw_head != txtid->baw_tail)
1219 txtid->state |= AGGR_CLEANUP;
1220 else
1221 txtid->state &= ~AGGR_ADDBA_COMPLETE;
1222
1223 ath_tx_flush_tid(sc, txtid);
1224 ath_txq_unlock_complete(sc, txq);
1225 }
1226
1227 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1228 struct ath_node *an)
1229 {
1230 struct ath_atx_tid *tid;
1231 struct ath_atx_ac *ac;
1232 struct ath_txq *txq;
1233 bool buffered;
1234 int tidno;
1235
1236 for (tidno = 0, tid = &an->tid[tidno];
1237 tidno < WME_NUM_TID; tidno++, tid++) {
1238
1239 if (!tid->sched)
1240 continue;
1241
1242 ac = tid->ac;
1243 txq = ac->txq;
1244
1245 ath_txq_lock(sc, txq);
1246
1247 buffered = !skb_queue_empty(&tid->buf_q);
1248
1249 tid->sched = false;
1250 list_del(&tid->list);
1251
1252 if (ac->sched) {
1253 ac->sched = false;
1254 list_del(&ac->list);
1255 }
1256
1257 ath_txq_unlock(sc, txq);
1258
1259 ieee80211_sta_set_buffered(sta, tidno, buffered);
1260 }
1261 }
1262
1263 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1264 {
1265 struct ath_atx_tid *tid;
1266 struct ath_atx_ac *ac;
1267 struct ath_txq *txq;
1268 int tidno;
1269
1270 for (tidno = 0, tid = &an->tid[tidno];
1271 tidno < WME_NUM_TID; tidno++, tid++) {
1272
1273 ac = tid->ac;
1274 txq = ac->txq;
1275
1276 ath_txq_lock(sc, txq);
1277 ac->clear_ps_filter = true;
1278
1279 if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
1280 ath_tx_queue_tid(txq, tid);
1281 ath_txq_schedule(sc, txq);
1282 }
1283
1284 ath_txq_unlock_complete(sc, txq);
1285 }
1286 }
1287
1288 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1289 {
1290 struct ath_atx_tid *txtid;
1291 struct ath_node *an;
1292
1293 an = (struct ath_node *)sta->drv_priv;
1294
1295 txtid = ATH_AN_2_TID(an, tid);
1296 txtid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1297 txtid->state |= AGGR_ADDBA_COMPLETE;
1298 txtid->state &= ~AGGR_ADDBA_PROGRESS;
1299 ath_tx_resume_tid(sc, txtid);
1300 }
1301
1302 /********************/
1303 /* Queue Management */
1304 /********************/
1305
1306 static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
1307 struct ath_txq *txq)
1308 {
1309 struct ath_atx_ac *ac, *ac_tmp;
1310 struct ath_atx_tid *tid, *tid_tmp;
1311
1312 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
1313 list_del(&ac->list);
1314 ac->sched = false;
1315 list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
1316 list_del(&tid->list);
1317 tid->sched = false;
1318 ath_tid_drain(sc, txq, tid);
1319 }
1320 }
1321 }
1322
1323 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1324 {
1325 struct ath_hw *ah = sc->sc_ah;
1326 struct ath9k_tx_queue_info qi;
1327 static const int subtype_txq_to_hwq[] = {
1328 [WME_AC_BE] = ATH_TXQ_AC_BE,
1329 [WME_AC_BK] = ATH_TXQ_AC_BK,
1330 [WME_AC_VI] = ATH_TXQ_AC_VI,
1331 [WME_AC_VO] = ATH_TXQ_AC_VO,
1332 };
1333 int axq_qnum, i;
1334
1335 memset(&qi, 0, sizeof(qi));
1336 qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1337 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1338 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1339 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1340 qi.tqi_physCompBuf = 0;
1341
1342 /*
1343 * Enable interrupts only for EOL and DESC conditions.
1344 * We mark tx descriptors to receive a DESC interrupt
1345 * when a tx queue gets deep; otherwise waiting for the
1346 * EOL to reap descriptors. Note that this is done to
1347 * reduce interrupt load and this only defers reaping
1348 * descriptors, never transmitting frames. Aside from
1349 * reducing interrupts this also permits more concurrency.
1350 * The only potential downside is if the tx queue backs
1351 * up in which case the top half of the kernel may backup
1352 * due to a lack of tx descriptors.
1353 *
1354 * The UAPSD queue is an exception, since we take a desc-
1355 * based intr on the EOSP frames.
1356 */
1357 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1358 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1359 } else {
1360 if (qtype == ATH9K_TX_QUEUE_UAPSD)
1361 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1362 else
1363 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1364 TXQ_FLAG_TXDESCINT_ENABLE;
1365 }
1366 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1367 if (axq_qnum == -1) {
1368 /*
1369 * NB: don't print a message, this happens
1370 * normally on parts with too few tx queues
1371 */
1372 return NULL;
1373 }
1374 if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1375 struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1376
1377 txq->axq_qnum = axq_qnum;
1378 txq->mac80211_qnum = -1;
1379 txq->axq_link = NULL;
1380 __skb_queue_head_init(&txq->complete_q);
1381 INIT_LIST_HEAD(&txq->axq_q);
1382 INIT_LIST_HEAD(&txq->axq_acq);
1383 spin_lock_init(&txq->axq_lock);
1384 txq->axq_depth = 0;
1385 txq->axq_ampdu_depth = 0;
1386 txq->axq_tx_inprogress = false;
1387 sc->tx.txqsetup |= 1<<axq_qnum;
1388
1389 txq->txq_headidx = txq->txq_tailidx = 0;
1390 for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1391 INIT_LIST_HEAD(&txq->txq_fifo[i]);
1392 }
1393 return &sc->tx.txq[axq_qnum];
1394 }
1395
1396 int ath_txq_update(struct ath_softc *sc, int qnum,
1397 struct ath9k_tx_queue_info *qinfo)
1398 {
1399 struct ath_hw *ah = sc->sc_ah;
1400 int error = 0;
1401 struct ath9k_tx_queue_info qi;
1402
1403 if (qnum == sc->beacon.beaconq) {
1404 /*
1405 * XXX: for beacon queue, we just save the parameter.
1406 * It will be picked up by ath_beaconq_config when
1407 * it's necessary.
1408 */
1409 sc->beacon.beacon_qi = *qinfo;
1410 return 0;
1411 }
1412
1413 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1414
1415 ath9k_hw_get_txq_props(ah, qnum, &qi);
1416 qi.tqi_aifs = qinfo->tqi_aifs;
1417 qi.tqi_cwmin = qinfo->tqi_cwmin;
1418 qi.tqi_cwmax = qinfo->tqi_cwmax;
1419 qi.tqi_burstTime = qinfo->tqi_burstTime;
1420 qi.tqi_readyTime = qinfo->tqi_readyTime;
1421
1422 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1423 ath_err(ath9k_hw_common(sc->sc_ah),
1424 "Unable to update hardware queue %u!\n", qnum);
1425 error = -EIO;
1426 } else {
1427 ath9k_hw_resettxqueue(ah, qnum);
1428 }
1429
1430 return error;
1431 }
1432
1433 int ath_cabq_update(struct ath_softc *sc)
1434 {
1435 struct ath9k_tx_queue_info qi;
1436 struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
1437 int qnum = sc->beacon.cabq->axq_qnum;
1438
1439 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1440 /*
1441 * Ensure the readytime % is within the bounds.
1442 */
1443 if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
1444 sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
1445 else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
1446 sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
1447
1448 qi.tqi_readyTime = (cur_conf->beacon_interval *
1449 sc->config.cabqReadytime) / 100;
1450 ath_txq_update(sc, qnum, &qi);
1451
1452 return 0;
1453 }
1454
1455 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
1456 {
1457 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
1458 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
1459 }
1460
1461 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1462 struct list_head *list, bool retry_tx)
1463 {
1464 struct ath_buf *bf, *lastbf;
1465 struct list_head bf_head;
1466 struct ath_tx_status ts;
1467
1468 memset(&ts, 0, sizeof(ts));
1469 ts.ts_status = ATH9K_TX_FLUSH;
1470 INIT_LIST_HEAD(&bf_head);
1471
1472 while (!list_empty(list)) {
1473 bf = list_first_entry(list, struct ath_buf, list);
1474
1475 if (bf->bf_stale) {
1476 list_del(&bf->list);
1477
1478 ath_tx_return_buffer(sc, bf);
1479 continue;
1480 }
1481
1482 lastbf = bf->bf_lastbf;
1483 list_cut_position(&bf_head, list, &lastbf->list);
1484
1485 txq->axq_depth--;
1486 if (bf_is_ampdu_not_probing(bf))
1487 txq->axq_ampdu_depth--;
1488
1489 if (bf_isampdu(bf))
1490 ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0,
1491 retry_tx);
1492 else
1493 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
1494 }
1495 }
1496
1497 /*
1498 * Drain a given TX queue (could be Beacon or Data)
1499 *
1500 * This assumes output has been stopped and
1501 * we do not need to block ath_tx_tasklet.
1502 */
1503 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
1504 {
1505 ath_txq_lock(sc, txq);
1506
1507 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1508 int idx = txq->txq_tailidx;
1509
1510 while (!list_empty(&txq->txq_fifo[idx])) {
1511 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx],
1512 retry_tx);
1513
1514 INCR(idx, ATH_TXFIFO_DEPTH);
1515 }
1516 txq->txq_tailidx = idx;
1517 }
1518
1519 txq->axq_link = NULL;
1520 txq->axq_tx_inprogress = false;
1521 ath_drain_txq_list(sc, txq, &txq->axq_q, retry_tx);
1522
1523 /* flush any pending frames if aggregation is enabled */
1524 if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && !retry_tx)
1525 ath_txq_drain_pending_buffers(sc, txq);
1526
1527 ath_txq_unlock_complete(sc, txq);
1528 }
1529
1530 bool ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
1531 {
1532 struct ath_hw *ah = sc->sc_ah;
1533 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1534 struct ath_txq *txq;
1535 int i;
1536 u32 npend = 0;
1537
1538 if (sc->sc_flags & SC_OP_INVALID)
1539 return true;
1540
1541 ath9k_hw_abort_tx_dma(ah);
1542
1543 /* Check if any queue remains active */
1544 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1545 if (!ATH_TXQ_SETUP(sc, i))
1546 continue;
1547
1548 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1549 npend |= BIT(i);
1550 }
1551
1552 if (npend)
1553 ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1554
1555 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1556 if (!ATH_TXQ_SETUP(sc, i))
1557 continue;
1558
1559 /*
1560 * The caller will resume queues with ieee80211_wake_queues.
1561 * Mark the queue as not stopped to prevent ath_tx_complete
1562 * from waking the queue too early.
1563 */
1564 txq = &sc->tx.txq[i];
1565 txq->stopped = false;
1566 ath_draintxq(sc, txq, retry_tx);
1567 }
1568
1569 return !npend;
1570 }
1571
1572 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1573 {
1574 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1575 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1576 }
1577
1578 /* For each axq_acq entry, for each tid, try to schedule packets
1579 * for transmit until ampdu_depth has reached min Q depth.
1580 */
1581 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1582 {
1583 struct ath_atx_ac *ac, *ac_tmp, *last_ac;
1584 struct ath_atx_tid *tid, *last_tid;
1585
1586 if (work_pending(&sc->hw_reset_work) || list_empty(&txq->axq_acq) ||
1587 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1588 return;
1589
1590 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1591 last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
1592
1593 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
1594 last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
1595 list_del(&ac->list);
1596 ac->sched = false;
1597
1598 while (!list_empty(&ac->tid_q)) {
1599 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
1600 list);
1601 list_del(&tid->list);
1602 tid->sched = false;
1603
1604 if (tid->paused)
1605 continue;
1606
1607 ath_tx_sched_aggr(sc, txq, tid);
1608
1609 /*
1610 * add tid to round-robin queue if more frames
1611 * are pending for the tid
1612 */
1613 if (!skb_queue_empty(&tid->buf_q))
1614 ath_tx_queue_tid(txq, tid);
1615
1616 if (tid == last_tid ||
1617 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1618 break;
1619 }
1620
1621 if (!list_empty(&ac->tid_q) && !ac->sched) {
1622 ac->sched = true;
1623 list_add_tail(&ac->list, &txq->axq_acq);
1624 }
1625
1626 if (ac == last_ac ||
1627 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1628 return;
1629 }
1630 }
1631
1632 /***********/
1633 /* TX, DMA */
1634 /***********/
1635
1636 /*
1637 * Insert a chain of ath_buf (descriptors) on a txq and
1638 * assume the descriptors are already chained together by caller.
1639 */
1640 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1641 struct list_head *head, bool internal)
1642 {
1643 struct ath_hw *ah = sc->sc_ah;
1644 struct ath_common *common = ath9k_hw_common(ah);
1645 struct ath_buf *bf, *bf_last;
1646 bool puttxbuf = false;
1647 bool edma;
1648
1649 /*
1650 * Insert the frame on the outbound list and
1651 * pass it on to the hardware.
1652 */
1653
1654 if (list_empty(head))
1655 return;
1656
1657 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1658 bf = list_first_entry(head, struct ath_buf, list);
1659 bf_last = list_entry(head->prev, struct ath_buf, list);
1660
1661 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
1662 txq->axq_qnum, txq->axq_depth);
1663
1664 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
1665 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
1666 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
1667 puttxbuf = true;
1668 } else {
1669 list_splice_tail_init(head, &txq->axq_q);
1670
1671 if (txq->axq_link) {
1672 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
1673 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
1674 txq->axq_qnum, txq->axq_link,
1675 ito64(bf->bf_daddr), bf->bf_desc);
1676 } else if (!edma)
1677 puttxbuf = true;
1678
1679 txq->axq_link = bf_last->bf_desc;
1680 }
1681
1682 if (puttxbuf) {
1683 TX_STAT_INC(txq->axq_qnum, puttxbuf);
1684 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1685 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
1686 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1687 }
1688
1689 if (!edma) {
1690 TX_STAT_INC(txq->axq_qnum, txstart);
1691 ath9k_hw_txstart(ah, txq->axq_qnum);
1692 }
1693
1694 if (!internal) {
1695 txq->axq_depth++;
1696 if (bf_is_ampdu_not_probing(bf))
1697 txq->axq_ampdu_depth++;
1698 }
1699 }
1700
1701 static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
1702 struct sk_buff *skb, struct ath_tx_control *txctl)
1703 {
1704 struct ath_frame_info *fi = get_frame_info(skb);
1705 struct list_head bf_head;
1706 struct ath_buf *bf;
1707
1708 /*
1709 * Do not queue to h/w when any of the following conditions is true:
1710 * - there are pending frames in software queue
1711 * - the TID is currently paused for ADDBA/BAR request
1712 * - seqno is not within block-ack window
1713 * - h/w queue depth exceeds low water mark
1714 */
1715 if (!skb_queue_empty(&tid->buf_q) || tid->paused ||
1716 !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
1717 txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) {
1718 /*
1719 * Add this frame to software queue for scheduling later
1720 * for aggregation.
1721 */
1722 TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw);
1723 __skb_queue_tail(&tid->buf_q, skb);
1724 if (!txctl->an || !txctl->an->sleeping)
1725 ath_tx_queue_tid(txctl->txq, tid);
1726 return;
1727 }
1728
1729 bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
1730 if (!bf)
1731 return;
1732
1733 bf->bf_state.bf_type = BUF_AMPDU;
1734 INIT_LIST_HEAD(&bf_head);
1735 list_add(&bf->list, &bf_head);
1736
1737 /* Add sub-frame to BAW */
1738 ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
1739
1740 /* Queue to h/w without aggregation */
1741 TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw);
1742 bf->bf_lastbf = bf;
1743 ath_tx_fill_desc(sc, bf, txctl->txq, fi->framelen);
1744 ath_tx_txqaddbuf(sc, txctl->txq, &bf_head, false);
1745 }
1746
1747 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1748 struct ath_atx_tid *tid, struct sk_buff *skb)
1749 {
1750 struct ath_frame_info *fi = get_frame_info(skb);
1751 struct list_head bf_head;
1752 struct ath_buf *bf;
1753
1754 bf = fi->bf;
1755 if (!bf)
1756 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
1757
1758 if (!bf)
1759 return;
1760
1761 INIT_LIST_HEAD(&bf_head);
1762 list_add_tail(&bf->list, &bf_head);
1763 bf->bf_state.bf_type = 0;
1764
1765 bf->bf_lastbf = bf;
1766 ath_tx_fill_desc(sc, bf, txq, fi->framelen);
1767 ath_tx_txqaddbuf(sc, txq, &bf_head, false);
1768 TX_STAT_INC(txq->axq_qnum, queued);
1769 }
1770
1771 static void setup_frame_info(struct ieee80211_hw *hw, struct sk_buff *skb,
1772 int framelen)
1773 {
1774 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1775 struct ieee80211_sta *sta = tx_info->control.sta;
1776 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
1777 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1778 struct ath_frame_info *fi = get_frame_info(skb);
1779 struct ath_node *an = NULL;
1780 enum ath9k_key_type keytype;
1781
1782 keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
1783
1784 if (sta)
1785 an = (struct ath_node *) sta->drv_priv;
1786
1787 memset(fi, 0, sizeof(*fi));
1788 if (hw_key)
1789 fi->keyix = hw_key->hw_key_idx;
1790 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
1791 fi->keyix = an->ps_key;
1792 else
1793 fi->keyix = ATH9K_TXKEYIX_INVALID;
1794 fi->keytype = keytype;
1795 fi->framelen = framelen;
1796 }
1797
1798 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
1799 {
1800 struct ath_hw *ah = sc->sc_ah;
1801 struct ath9k_channel *curchan = ah->curchan;
1802 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
1803 (curchan->channelFlags & CHANNEL_5GHZ) &&
1804 (chainmask == 0x7) && (rate < 0x90))
1805 return 0x3;
1806 else
1807 return chainmask;
1808 }
1809
1810 /*
1811 * Assign a descriptor (and sequence number if necessary,
1812 * and map buffer for DMA. Frees skb on error
1813 */
1814 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
1815 struct ath_txq *txq,
1816 struct ath_atx_tid *tid,
1817 struct sk_buff *skb)
1818 {
1819 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1820 struct ath_frame_info *fi = get_frame_info(skb);
1821 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1822 struct ath_buf *bf;
1823 int fragno;
1824 u16 seqno;
1825
1826 bf = ath_tx_get_buffer(sc);
1827 if (!bf) {
1828 ath_dbg(common, XMIT, "TX buffers are full\n");
1829 goto error;
1830 }
1831
1832 ATH_TXBUF_RESET(bf);
1833
1834 if (tid) {
1835 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
1836 seqno = tid->seq_next;
1837 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
1838
1839 if (fragno)
1840 hdr->seq_ctrl |= cpu_to_le16(fragno);
1841
1842 if (!ieee80211_has_morefrags(hdr->frame_control))
1843 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
1844
1845 bf->bf_state.seqno = seqno;
1846 }
1847
1848 bf->bf_mpdu = skb;
1849
1850 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
1851 skb->len, DMA_TO_DEVICE);
1852 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
1853 bf->bf_mpdu = NULL;
1854 bf->bf_buf_addr = 0;
1855 ath_err(ath9k_hw_common(sc->sc_ah),
1856 "dma_mapping_error() on TX\n");
1857 ath_tx_return_buffer(sc, bf);
1858 goto error;
1859 }
1860
1861 fi->bf = bf;
1862
1863 return bf;
1864
1865 error:
1866 dev_kfree_skb_any(skb);
1867 return NULL;
1868 }
1869
1870 /* FIXME: tx power */
1871 static void ath_tx_start_dma(struct ath_softc *sc, struct sk_buff *skb,
1872 struct ath_tx_control *txctl)
1873 {
1874 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1875 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1876 struct ath_atx_tid *tid = NULL;
1877 struct ath_buf *bf;
1878 u8 tidno;
1879
1880 if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && txctl->an &&
1881 ieee80211_is_data_qos(hdr->frame_control)) {
1882 tidno = ieee80211_get_qos_ctl(hdr)[0] &
1883 IEEE80211_QOS_CTL_TID_MASK;
1884 tid = ATH_AN_2_TID(txctl->an, tidno);
1885
1886 WARN_ON(tid->ac->txq != txctl->txq);
1887 }
1888
1889 if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
1890 /*
1891 * Try aggregation if it's a unicast data frame
1892 * and the destination is HT capable.
1893 */
1894 ath_tx_send_ampdu(sc, tid, skb, txctl);
1895 } else {
1896 bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
1897 if (!bf)
1898 return;
1899
1900 bf->bf_state.bfs_paprd = txctl->paprd;
1901
1902 if (txctl->paprd)
1903 bf->bf_state.bfs_paprd_timestamp = jiffies;
1904
1905 ath_tx_send_normal(sc, txctl->txq, tid, skb);
1906 }
1907 }
1908
1909 /* Upon failure caller should free skb */
1910 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
1911 struct ath_tx_control *txctl)
1912 {
1913 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1914 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1915 struct ieee80211_sta *sta = info->control.sta;
1916 struct ieee80211_vif *vif = info->control.vif;
1917 struct ath_softc *sc = hw->priv;
1918 struct ath_txq *txq = txctl->txq;
1919 int padpos, padsize;
1920 int frmlen = skb->len + FCS_LEN;
1921 int q;
1922
1923 /* NOTE: sta can be NULL according to net/mac80211.h */
1924 if (sta)
1925 txctl->an = (struct ath_node *)sta->drv_priv;
1926
1927 if (info->control.hw_key)
1928 frmlen += info->control.hw_key->icv_len;
1929
1930 /*
1931 * As a temporary workaround, assign seq# here; this will likely need
1932 * to be cleaned up to work better with Beacon transmission and virtual
1933 * BSSes.
1934 */
1935 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1936 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1937 sc->tx.seq_no += 0x10;
1938 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1939 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1940 }
1941
1942 /* Add the padding after the header if this is not already done */
1943 padpos = ath9k_cmn_padpos(hdr->frame_control);
1944 padsize = padpos & 3;
1945 if (padsize && skb->len > padpos) {
1946 if (skb_headroom(skb) < padsize)
1947 return -ENOMEM;
1948
1949 skb_push(skb, padsize);
1950 memmove(skb->data, skb->data + padsize, padpos);
1951 hdr = (struct ieee80211_hdr *) skb->data;
1952 }
1953
1954 if ((vif && vif->type != NL80211_IFTYPE_AP &&
1955 vif->type != NL80211_IFTYPE_AP_VLAN) ||
1956 !ieee80211_is_data(hdr->frame_control))
1957 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1958
1959 setup_frame_info(hw, skb, frmlen);
1960
1961 /*
1962 * At this point, the vif, hw_key and sta pointers in the tx control
1963 * info are no longer valid (overwritten by the ath_frame_info data.
1964 */
1965
1966 q = skb_get_queue_mapping(skb);
1967
1968 ath_txq_lock(sc, txq);
1969 if (txq == sc->tx.txq_map[q] &&
1970 ++txq->pending_frames > ATH_MAX_QDEPTH && !txq->stopped) {
1971 ieee80211_stop_queue(sc->hw, q);
1972 txq->stopped = true;
1973 }
1974
1975 ath_tx_start_dma(sc, skb, txctl);
1976
1977 ath_txq_unlock(sc, txq);
1978
1979 return 0;
1980 }
1981
1982 /*****************/
1983 /* TX Completion */
1984 /*****************/
1985
1986 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
1987 int tx_flags, struct ath_txq *txq)
1988 {
1989 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1990 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1991 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
1992 int q, padpos, padsize;
1993
1994 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
1995
1996 if (!(tx_flags & ATH_TX_ERROR))
1997 /* Frame was ACKed */
1998 tx_info->flags |= IEEE80211_TX_STAT_ACK;
1999
2000 padpos = ath9k_cmn_padpos(hdr->frame_control);
2001 padsize = padpos & 3;
2002 if (padsize && skb->len>padpos+padsize) {
2003 /*
2004 * Remove MAC header padding before giving the frame back to
2005 * mac80211.
2006 */
2007 memmove(skb->data + padsize, skb->data, padpos);
2008 skb_pull(skb, padsize);
2009 }
2010
2011 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2012 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2013 ath_dbg(common, PS,
2014 "Going back to sleep after having received TX status (0x%lx)\n",
2015 sc->ps_flags & (PS_WAIT_FOR_BEACON |
2016 PS_WAIT_FOR_CAB |
2017 PS_WAIT_FOR_PSPOLL_DATA |
2018 PS_WAIT_FOR_TX_ACK));
2019 }
2020
2021 q = skb_get_queue_mapping(skb);
2022 if (txq == sc->tx.txq_map[q]) {
2023 if (WARN_ON(--txq->pending_frames < 0))
2024 txq->pending_frames = 0;
2025
2026 if (txq->stopped && txq->pending_frames < ATH_MAX_QDEPTH) {
2027 ieee80211_wake_queue(sc->hw, q);
2028 txq->stopped = false;
2029 }
2030 }
2031
2032 __skb_queue_tail(&txq->complete_q, skb);
2033 }
2034
2035 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2036 struct ath_txq *txq, struct list_head *bf_q,
2037 struct ath_tx_status *ts, int txok)
2038 {
2039 struct sk_buff *skb = bf->bf_mpdu;
2040 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2041 unsigned long flags;
2042 int tx_flags = 0;
2043
2044 if (!txok)
2045 tx_flags |= ATH_TX_ERROR;
2046
2047 if (ts->ts_status & ATH9K_TXERR_FILT)
2048 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2049
2050 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2051 bf->bf_buf_addr = 0;
2052
2053 if (bf->bf_state.bfs_paprd) {
2054 if (time_after(jiffies,
2055 bf->bf_state.bfs_paprd_timestamp +
2056 msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2057 dev_kfree_skb_any(skb);
2058 else
2059 complete(&sc->paprd_complete);
2060 } else {
2061 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2062 ath_tx_complete(sc, skb, tx_flags, txq);
2063 }
2064 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2065 * accidentally reference it later.
2066 */
2067 bf->bf_mpdu = NULL;
2068
2069 /*
2070 * Return the list of ath_buf of this mpdu to free queue
2071 */
2072 spin_lock_irqsave(&sc->tx.txbuflock, flags);
2073 list_splice_tail_init(bf_q, &sc->tx.txbuf);
2074 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2075 }
2076
2077 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2078 struct ath_tx_status *ts, int nframes, int nbad,
2079 int txok)
2080 {
2081 struct sk_buff *skb = bf->bf_mpdu;
2082 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2083 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2084 struct ieee80211_hw *hw = sc->hw;
2085 struct ath_hw *ah = sc->sc_ah;
2086 u8 i, tx_rateindex;
2087
2088 if (txok)
2089 tx_info->status.ack_signal = ts->ts_rssi;
2090
2091 tx_rateindex = ts->ts_rateindex;
2092 WARN_ON(tx_rateindex >= hw->max_rates);
2093
2094 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2095 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2096
2097 BUG_ON(nbad > nframes);
2098 }
2099 tx_info->status.ampdu_len = nframes;
2100 tx_info->status.ampdu_ack_len = nframes - nbad;
2101
2102 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2103 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2104 /*
2105 * If an underrun error is seen assume it as an excessive
2106 * retry only if max frame trigger level has been reached
2107 * (2 KB for single stream, and 4 KB for dual stream).
2108 * Adjust the long retry as if the frame was tried
2109 * hw->max_rate_tries times to affect how rate control updates
2110 * PER for the failed rate.
2111 * In case of congestion on the bus penalizing this type of
2112 * underruns should help hardware actually transmit new frames
2113 * successfully by eventually preferring slower rates.
2114 * This itself should also alleviate congestion on the bus.
2115 */
2116 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2117 ATH9K_TX_DELIM_UNDERRUN)) &&
2118 ieee80211_is_data(hdr->frame_control) &&
2119 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2120 tx_info->status.rates[tx_rateindex].count =
2121 hw->max_rate_tries;
2122 }
2123
2124 for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2125 tx_info->status.rates[i].count = 0;
2126 tx_info->status.rates[i].idx = -1;
2127 }
2128
2129 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2130 }
2131
2132 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
2133 struct ath_tx_status *ts, struct ath_buf *bf,
2134 struct list_head *bf_head)
2135 {
2136 int txok;
2137
2138 txq->axq_depth--;
2139 txok = !(ts->ts_status & ATH9K_TXERR_MASK);
2140 txq->axq_tx_inprogress = false;
2141 if (bf_is_ampdu_not_probing(bf))
2142 txq->axq_ampdu_depth--;
2143
2144 if (!bf_isampdu(bf)) {
2145 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
2146 ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
2147 } else
2148 ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok, true);
2149
2150 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2151 ath_txq_schedule(sc, txq);
2152 }
2153
2154 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2155 {
2156 struct ath_hw *ah = sc->sc_ah;
2157 struct ath_common *common = ath9k_hw_common(ah);
2158 struct ath_buf *bf, *lastbf, *bf_held = NULL;
2159 struct list_head bf_head;
2160 struct ath_desc *ds;
2161 struct ath_tx_status ts;
2162 int status;
2163
2164 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2165 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2166 txq->axq_link);
2167
2168 ath_txq_lock(sc, txq);
2169 for (;;) {
2170 if (work_pending(&sc->hw_reset_work))
2171 break;
2172
2173 if (list_empty(&txq->axq_q)) {
2174 txq->axq_link = NULL;
2175 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2176 ath_txq_schedule(sc, txq);
2177 break;
2178 }
2179 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2180
2181 /*
2182 * There is a race condition that a BH gets scheduled
2183 * after sw writes TxE and before hw re-load the last
2184 * descriptor to get the newly chained one.
2185 * Software must keep the last DONE descriptor as a
2186 * holding descriptor - software does so by marking
2187 * it with the STALE flag.
2188 */
2189 bf_held = NULL;
2190 if (bf->bf_stale) {
2191 bf_held = bf;
2192 if (list_is_last(&bf_held->list, &txq->axq_q))
2193 break;
2194
2195 bf = list_entry(bf_held->list.next, struct ath_buf,
2196 list);
2197 }
2198
2199 lastbf = bf->bf_lastbf;
2200 ds = lastbf->bf_desc;
2201
2202 memset(&ts, 0, sizeof(ts));
2203 status = ath9k_hw_txprocdesc(ah, ds, &ts);
2204 if (status == -EINPROGRESS)
2205 break;
2206
2207 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2208
2209 /*
2210 * Remove ath_buf's of the same transmit unit from txq,
2211 * however leave the last descriptor back as the holding
2212 * descriptor for hw.
2213 */
2214 lastbf->bf_stale = true;
2215 INIT_LIST_HEAD(&bf_head);
2216 if (!list_is_singular(&lastbf->list))
2217 list_cut_position(&bf_head,
2218 &txq->axq_q, lastbf->list.prev);
2219
2220 if (bf_held) {
2221 list_del(&bf_held->list);
2222 ath_tx_return_buffer(sc, bf_held);
2223 }
2224
2225 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2226 }
2227 ath_txq_unlock_complete(sc, txq);
2228 }
2229
2230 static void ath_tx_complete_poll_work(struct work_struct *work)
2231 {
2232 struct ath_softc *sc = container_of(work, struct ath_softc,
2233 tx_complete_work.work);
2234 struct ath_txq *txq;
2235 int i;
2236 bool needreset = false;
2237 #ifdef CONFIG_ATH9K_DEBUGFS
2238 sc->tx_complete_poll_work_seen++;
2239 #endif
2240
2241 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
2242 if (ATH_TXQ_SETUP(sc, i)) {
2243 txq = &sc->tx.txq[i];
2244 ath_txq_lock(sc, txq);
2245 if (txq->axq_depth) {
2246 if (txq->axq_tx_inprogress) {
2247 needreset = true;
2248 ath_txq_unlock(sc, txq);
2249 break;
2250 } else {
2251 txq->axq_tx_inprogress = true;
2252 }
2253 }
2254 ath_txq_unlock_complete(sc, txq);
2255 }
2256
2257 if (needreset) {
2258 ath_dbg(ath9k_hw_common(sc->sc_ah), RESET,
2259 "tx hung, resetting the chip\n");
2260 RESET_STAT_INC(sc, RESET_TYPE_TX_HANG);
2261 ieee80211_queue_work(sc->hw, &sc->hw_reset_work);
2262 }
2263
2264 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2265 msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
2266 }
2267
2268
2269
2270 void ath_tx_tasklet(struct ath_softc *sc)
2271 {
2272 struct ath_hw *ah = sc->sc_ah;
2273 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2274 int i;
2275
2276 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2277 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2278 ath_tx_processq(sc, &sc->tx.txq[i]);
2279 }
2280 }
2281
2282 void ath_tx_edma_tasklet(struct ath_softc *sc)
2283 {
2284 struct ath_tx_status ts;
2285 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2286 struct ath_hw *ah = sc->sc_ah;
2287 struct ath_txq *txq;
2288 struct ath_buf *bf, *lastbf;
2289 struct list_head bf_head;
2290 int status;
2291
2292 for (;;) {
2293 if (work_pending(&sc->hw_reset_work))
2294 break;
2295
2296 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2297 if (status == -EINPROGRESS)
2298 break;
2299 if (status == -EIO) {
2300 ath_dbg(common, XMIT, "Error processing tx status\n");
2301 break;
2302 }
2303
2304 /* Process beacon completions separately */
2305 if (ts.qid == sc->beacon.beaconq) {
2306 sc->beacon.tx_processed = true;
2307 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2308 continue;
2309 }
2310
2311 txq = &sc->tx.txq[ts.qid];
2312
2313 ath_txq_lock(sc, txq);
2314
2315 if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
2316 ath_txq_unlock(sc, txq);
2317 return;
2318 }
2319
2320 bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
2321 struct ath_buf, list);
2322 lastbf = bf->bf_lastbf;
2323
2324 INIT_LIST_HEAD(&bf_head);
2325 list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
2326 &lastbf->list);
2327
2328 if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
2329 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2330
2331 if (!list_empty(&txq->axq_q)) {
2332 struct list_head bf_q;
2333
2334 INIT_LIST_HEAD(&bf_q);
2335 txq->axq_link = NULL;
2336 list_splice_tail_init(&txq->axq_q, &bf_q);
2337 ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2338 }
2339 }
2340
2341 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2342 ath_txq_unlock_complete(sc, txq);
2343 }
2344 }
2345
2346 /*****************/
2347 /* Init, Cleanup */
2348 /*****************/
2349
2350 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2351 {
2352 struct ath_descdma *dd = &sc->txsdma;
2353 u8 txs_len = sc->sc_ah->caps.txs_len;
2354
2355 dd->dd_desc_len = size * txs_len;
2356 dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
2357 &dd->dd_desc_paddr, GFP_KERNEL);
2358 if (!dd->dd_desc)
2359 return -ENOMEM;
2360
2361 return 0;
2362 }
2363
2364 static int ath_tx_edma_init(struct ath_softc *sc)
2365 {
2366 int err;
2367
2368 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2369 if (!err)
2370 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2371 sc->txsdma.dd_desc_paddr,
2372 ATH_TXSTATUS_RING_SIZE);
2373
2374 return err;
2375 }
2376
2377 static void ath_tx_edma_cleanup(struct ath_softc *sc)
2378 {
2379 struct ath_descdma *dd = &sc->txsdma;
2380
2381 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
2382 dd->dd_desc_paddr);
2383 }
2384
2385 int ath_tx_init(struct ath_softc *sc, int nbufs)
2386 {
2387 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2388 int error = 0;
2389
2390 spin_lock_init(&sc->tx.txbuflock);
2391
2392 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2393 "tx", nbufs, 1, 1);
2394 if (error != 0) {
2395 ath_err(common,
2396 "Failed to allocate tx descriptors: %d\n", error);
2397 goto err;
2398 }
2399
2400 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2401 "beacon", ATH_BCBUF, 1, 1);
2402 if (error != 0) {
2403 ath_err(common,
2404 "Failed to allocate beacon descriptors: %d\n", error);
2405 goto err;
2406 }
2407
2408 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2409
2410 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
2411 error = ath_tx_edma_init(sc);
2412 if (error)
2413 goto err;
2414 }
2415
2416 err:
2417 if (error != 0)
2418 ath_tx_cleanup(sc);
2419
2420 return error;
2421 }
2422
2423 void ath_tx_cleanup(struct ath_softc *sc)
2424 {
2425 if (sc->beacon.bdma.dd_desc_len != 0)
2426 ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
2427
2428 if (sc->tx.txdma.dd_desc_len != 0)
2429 ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
2430
2431 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2432 ath_tx_edma_cleanup(sc);
2433 }
2434
2435 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2436 {
2437 struct ath_atx_tid *tid;
2438 struct ath_atx_ac *ac;
2439 int tidno, acno;
2440
2441 for (tidno = 0, tid = &an->tid[tidno];
2442 tidno < WME_NUM_TID;
2443 tidno++, tid++) {
2444 tid->an = an;
2445 tid->tidno = tidno;
2446 tid->seq_start = tid->seq_next = 0;
2447 tid->baw_size = WME_MAX_BA;
2448 tid->baw_head = tid->baw_tail = 0;
2449 tid->sched = false;
2450 tid->paused = false;
2451 tid->state &= ~AGGR_CLEANUP;
2452 __skb_queue_head_init(&tid->buf_q);
2453 acno = TID_TO_WME_AC(tidno);
2454 tid->ac = &an->ac[acno];
2455 tid->state &= ~AGGR_ADDBA_COMPLETE;
2456 tid->state &= ~AGGR_ADDBA_PROGRESS;
2457 }
2458
2459 for (acno = 0, ac = &an->ac[acno];
2460 acno < WME_NUM_AC; acno++, ac++) {
2461 ac->sched = false;
2462 ac->txq = sc->tx.txq_map[acno];
2463 INIT_LIST_HEAD(&ac->tid_q);
2464 }
2465 }
2466
2467 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2468 {
2469 struct ath_atx_ac *ac;
2470 struct ath_atx_tid *tid;
2471 struct ath_txq *txq;
2472 int tidno;
2473
2474 for (tidno = 0, tid = &an->tid[tidno];
2475 tidno < WME_NUM_TID; tidno++, tid++) {
2476
2477 ac = tid->ac;
2478 txq = ac->txq;
2479
2480 ath_txq_lock(sc, txq);
2481
2482 if (tid->sched) {
2483 list_del(&tid->list);
2484 tid->sched = false;
2485 }
2486
2487 if (ac->sched) {
2488 list_del(&ac->list);
2489 tid->ac->sched = false;
2490 }
2491
2492 ath_tid_drain(sc, txq, tid);
2493 tid->state &= ~AGGR_ADDBA_COMPLETE;
2494 tid->state &= ~AGGR_CLEANUP;
2495
2496 ath_txq_unlock(sc, txq);
2497 }
2498 }
This page took 0.117172 seconds and 6 git commands to generate.