x86: Move call to print_modules() out of show_regs()
[deliverable/linux.git] / drivers / net / wireless / ath / key.c
1 /*
2 * Copyright (c) 2009 Atheros Communications Inc.
3 * Copyright (c) 2010 Bruno Randolf <br1@einfach.org>
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18 #include <linux/export.h>
19 #include <asm/unaligned.h>
20 #include <net/mac80211.h>
21
22 #include "ath.h"
23 #include "reg.h"
24
25 #define REG_READ (common->ops->read)
26 #define REG_WRITE(_ah, _reg, _val) (common->ops->write)(_ah, _val, _reg)
27 #define ENABLE_REGWRITE_BUFFER(_ah) \
28 if (common->ops->enable_write_buffer) \
29 common->ops->enable_write_buffer((_ah));
30
31 #define REGWRITE_BUFFER_FLUSH(_ah) \
32 if (common->ops->write_flush) \
33 common->ops->write_flush((_ah));
34
35
36 #define IEEE80211_WEP_NKID 4 /* number of key ids */
37
38 /************************/
39 /* Key Cache Management */
40 /************************/
41
42 bool ath_hw_keyreset(struct ath_common *common, u16 entry)
43 {
44 u32 keyType;
45 void *ah = common->ah;
46
47 if (entry >= common->keymax) {
48 ath_err(common, "keycache entry %u out of range\n", entry);
49 return false;
50 }
51
52 keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
53
54 ENABLE_REGWRITE_BUFFER(ah);
55
56 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
57 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
58 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
59 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
60 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
61 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
62 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
63 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
64
65 if (keyType == AR_KEYTABLE_TYPE_TKIP) {
66 u16 micentry = entry + 64;
67
68 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
69 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
70 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
71 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
72 if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
73 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
74 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
75 AR_KEYTABLE_TYPE_CLR);
76 }
77
78 }
79
80 REGWRITE_BUFFER_FLUSH(ah);
81
82 return true;
83 }
84 EXPORT_SYMBOL(ath_hw_keyreset);
85
86 static bool ath_hw_keysetmac(struct ath_common *common,
87 u16 entry, const u8 *mac)
88 {
89 u32 macHi, macLo;
90 u32 unicast_flag = AR_KEYTABLE_VALID;
91 void *ah = common->ah;
92
93 if (entry >= common->keymax) {
94 ath_err(common, "keycache entry %u out of range\n", entry);
95 return false;
96 }
97
98 if (mac != NULL) {
99 /*
100 * AR_KEYTABLE_VALID indicates that the address is a unicast
101 * address, which must match the transmitter address for
102 * decrypting frames.
103 * Not setting this bit allows the hardware to use the key
104 * for multicast frame decryption.
105 */
106 if (mac[0] & 0x01)
107 unicast_flag = 0;
108
109 macLo = get_unaligned_le32(mac);
110 macHi = get_unaligned_le16(mac + 4);
111 macLo >>= 1;
112 macLo |= (macHi & 1) << 31;
113 macHi >>= 1;
114 } else {
115 macLo = macHi = 0;
116 }
117 ENABLE_REGWRITE_BUFFER(ah);
118
119 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
120 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
121
122 REGWRITE_BUFFER_FLUSH(ah);
123
124 return true;
125 }
126
127 static bool ath_hw_set_keycache_entry(struct ath_common *common, u16 entry,
128 const struct ath_keyval *k,
129 const u8 *mac)
130 {
131 void *ah = common->ah;
132 u32 key0, key1, key2, key3, key4;
133 u32 keyType;
134
135 if (entry >= common->keymax) {
136 ath_err(common, "keycache entry %u out of range\n", entry);
137 return false;
138 }
139
140 switch (k->kv_type) {
141 case ATH_CIPHER_AES_OCB:
142 keyType = AR_KEYTABLE_TYPE_AES;
143 break;
144 case ATH_CIPHER_AES_CCM:
145 if (!(common->crypt_caps & ATH_CRYPT_CAP_CIPHER_AESCCM)) {
146 ath_dbg(common, ANY,
147 "AES-CCM not supported by this mac rev\n");
148 return false;
149 }
150 keyType = AR_KEYTABLE_TYPE_CCM;
151 break;
152 case ATH_CIPHER_TKIP:
153 keyType = AR_KEYTABLE_TYPE_TKIP;
154 if (entry + 64 >= common->keymax) {
155 ath_dbg(common, ANY,
156 "entry %u inappropriate for TKIP\n", entry);
157 return false;
158 }
159 break;
160 case ATH_CIPHER_WEP:
161 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
162 ath_dbg(common, ANY, "WEP key length %u too small\n",
163 k->kv_len);
164 return false;
165 }
166 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
167 keyType = AR_KEYTABLE_TYPE_40;
168 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
169 keyType = AR_KEYTABLE_TYPE_104;
170 else
171 keyType = AR_KEYTABLE_TYPE_128;
172 break;
173 case ATH_CIPHER_CLR:
174 keyType = AR_KEYTABLE_TYPE_CLR;
175 break;
176 default:
177 ath_err(common, "cipher %u not supported\n", k->kv_type);
178 return false;
179 }
180
181 key0 = get_unaligned_le32(k->kv_val + 0);
182 key1 = get_unaligned_le16(k->kv_val + 4);
183 key2 = get_unaligned_le32(k->kv_val + 6);
184 key3 = get_unaligned_le16(k->kv_val + 10);
185 key4 = get_unaligned_le32(k->kv_val + 12);
186 if (k->kv_len <= WLAN_KEY_LEN_WEP104)
187 key4 &= 0xff;
188
189 /*
190 * Note: Key cache registers access special memory area that requires
191 * two 32-bit writes to actually update the values in the internal
192 * memory. Consequently, the exact order and pairs used here must be
193 * maintained.
194 */
195
196 if (keyType == AR_KEYTABLE_TYPE_TKIP) {
197 u16 micentry = entry + 64;
198
199 /*
200 * Write inverted key[47:0] first to avoid Michael MIC errors
201 * on frames that could be sent or received at the same time.
202 * The correct key will be written in the end once everything
203 * else is ready.
204 */
205 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
206 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
207
208 /* Write key[95:48] */
209 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
210 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
211
212 /* Write key[127:96] and key type */
213 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
214 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
215
216 /* Write MAC address for the entry */
217 (void) ath_hw_keysetmac(common, entry, mac);
218
219 if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
220 /*
221 * TKIP uses two key cache entries:
222 * Michael MIC TX/RX keys in the same key cache entry
223 * (idx = main index + 64):
224 * key0 [31:0] = RX key [31:0]
225 * key1 [15:0] = TX key [31:16]
226 * key1 [31:16] = reserved
227 * key2 [31:0] = RX key [63:32]
228 * key3 [15:0] = TX key [15:0]
229 * key3 [31:16] = reserved
230 * key4 [31:0] = TX key [63:32]
231 */
232 u32 mic0, mic1, mic2, mic3, mic4;
233
234 mic0 = get_unaligned_le32(k->kv_mic + 0);
235 mic2 = get_unaligned_le32(k->kv_mic + 4);
236 mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
237 mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
238 mic4 = get_unaligned_le32(k->kv_txmic + 4);
239
240 ENABLE_REGWRITE_BUFFER(ah);
241
242 /* Write RX[31:0] and TX[31:16] */
243 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
244 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
245
246 /* Write RX[63:32] and TX[15:0] */
247 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
248 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
249
250 /* Write TX[63:32] and keyType(reserved) */
251 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
252 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
253 AR_KEYTABLE_TYPE_CLR);
254
255 REGWRITE_BUFFER_FLUSH(ah);
256
257 } else {
258 /*
259 * TKIP uses four key cache entries (two for group
260 * keys):
261 * Michael MIC TX/RX keys are in different key cache
262 * entries (idx = main index + 64 for TX and
263 * main index + 32 + 96 for RX):
264 * key0 [31:0] = TX/RX MIC key [31:0]
265 * key1 [31:0] = reserved
266 * key2 [31:0] = TX/RX MIC key [63:32]
267 * key3 [31:0] = reserved
268 * key4 [31:0] = reserved
269 *
270 * Upper layer code will call this function separately
271 * for TX and RX keys when these registers offsets are
272 * used.
273 */
274 u32 mic0, mic2;
275
276 mic0 = get_unaligned_le32(k->kv_mic + 0);
277 mic2 = get_unaligned_le32(k->kv_mic + 4);
278
279 ENABLE_REGWRITE_BUFFER(ah);
280
281 /* Write MIC key[31:0] */
282 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
283 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
284
285 /* Write MIC key[63:32] */
286 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
287 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
288
289 /* Write TX[63:32] and keyType(reserved) */
290 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
291 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
292 AR_KEYTABLE_TYPE_CLR);
293
294 REGWRITE_BUFFER_FLUSH(ah);
295 }
296
297 ENABLE_REGWRITE_BUFFER(ah);
298
299 /* MAC address registers are reserved for the MIC entry */
300 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
301 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
302
303 /*
304 * Write the correct (un-inverted) key[47:0] last to enable
305 * TKIP now that all other registers are set with correct
306 * values.
307 */
308 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
309 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
310
311 REGWRITE_BUFFER_FLUSH(ah);
312 } else {
313 ENABLE_REGWRITE_BUFFER(ah);
314
315 /* Write key[47:0] */
316 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
317 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
318
319 /* Write key[95:48] */
320 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
321 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
322
323 /* Write key[127:96] and key type */
324 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
325 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
326
327 REGWRITE_BUFFER_FLUSH(ah);
328
329 /* Write MAC address for the entry */
330 (void) ath_hw_keysetmac(common, entry, mac);
331 }
332
333 return true;
334 }
335
336 static int ath_setkey_tkip(struct ath_common *common, u16 keyix, const u8 *key,
337 struct ath_keyval *hk, const u8 *addr,
338 bool authenticator)
339 {
340 const u8 *key_rxmic;
341 const u8 *key_txmic;
342
343 key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
344 key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
345
346 if (addr == NULL) {
347 /*
348 * Group key installation - only two key cache entries are used
349 * regardless of splitmic capability since group key is only
350 * used either for TX or RX.
351 */
352 if (authenticator) {
353 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
354 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
355 } else {
356 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
357 memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
358 }
359 return ath_hw_set_keycache_entry(common, keyix, hk, addr);
360 }
361 if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
362 /* TX and RX keys share the same key cache entry. */
363 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
364 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
365 return ath_hw_set_keycache_entry(common, keyix, hk, addr);
366 }
367
368 /* Separate key cache entries for TX and RX */
369
370 /* TX key goes at first index, RX key at +32. */
371 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
372 if (!ath_hw_set_keycache_entry(common, keyix, hk, NULL)) {
373 /* TX MIC entry failed. No need to proceed further */
374 ath_err(common, "Setting TX MIC Key Failed\n");
375 return 0;
376 }
377
378 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
379 /* XXX delete tx key on failure? */
380 return ath_hw_set_keycache_entry(common, keyix + 32, hk, addr);
381 }
382
383 static int ath_reserve_key_cache_slot_tkip(struct ath_common *common)
384 {
385 int i;
386
387 for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
388 if (test_bit(i, common->keymap) ||
389 test_bit(i + 64, common->keymap))
390 continue; /* At least one part of TKIP key allocated */
391 if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) &&
392 (test_bit(i + 32, common->keymap) ||
393 test_bit(i + 64 + 32, common->keymap)))
394 continue; /* At least one part of TKIP key allocated */
395
396 /* Found a free slot for a TKIP key */
397 return i;
398 }
399 return -1;
400 }
401
402 static int ath_reserve_key_cache_slot(struct ath_common *common,
403 u32 cipher)
404 {
405 int i;
406
407 if (cipher == WLAN_CIPHER_SUITE_TKIP)
408 return ath_reserve_key_cache_slot_tkip(common);
409
410 /* First, try to find slots that would not be available for TKIP. */
411 if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
412 for (i = IEEE80211_WEP_NKID; i < common->keymax / 4; i++) {
413 if (!test_bit(i, common->keymap) &&
414 (test_bit(i + 32, common->keymap) ||
415 test_bit(i + 64, common->keymap) ||
416 test_bit(i + 64 + 32, common->keymap)))
417 return i;
418 if (!test_bit(i + 32, common->keymap) &&
419 (test_bit(i, common->keymap) ||
420 test_bit(i + 64, common->keymap) ||
421 test_bit(i + 64 + 32, common->keymap)))
422 return i + 32;
423 if (!test_bit(i + 64, common->keymap) &&
424 (test_bit(i , common->keymap) ||
425 test_bit(i + 32, common->keymap) ||
426 test_bit(i + 64 + 32, common->keymap)))
427 return i + 64;
428 if (!test_bit(i + 64 + 32, common->keymap) &&
429 (test_bit(i, common->keymap) ||
430 test_bit(i + 32, common->keymap) ||
431 test_bit(i + 64, common->keymap)))
432 return i + 64 + 32;
433 }
434 } else {
435 for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
436 if (!test_bit(i, common->keymap) &&
437 test_bit(i + 64, common->keymap))
438 return i;
439 if (test_bit(i, common->keymap) &&
440 !test_bit(i + 64, common->keymap))
441 return i + 64;
442 }
443 }
444
445 /* No partially used TKIP slots, pick any available slot */
446 for (i = IEEE80211_WEP_NKID; i < common->keymax; i++) {
447 /* Do not allow slots that could be needed for TKIP group keys
448 * to be used. This limitation could be removed if we know that
449 * TKIP will not be used. */
450 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
451 continue;
452 if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
453 if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
454 continue;
455 if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
456 continue;
457 }
458
459 if (!test_bit(i, common->keymap))
460 return i; /* Found a free slot for a key */
461 }
462
463 /* No free slot found */
464 return -1;
465 }
466
467 /*
468 * Configure encryption in the HW.
469 */
470 int ath_key_config(struct ath_common *common,
471 struct ieee80211_vif *vif,
472 struct ieee80211_sta *sta,
473 struct ieee80211_key_conf *key)
474 {
475 struct ath_keyval hk;
476 const u8 *mac = NULL;
477 u8 gmac[ETH_ALEN];
478 int ret = 0;
479 int idx;
480
481 memset(&hk, 0, sizeof(hk));
482
483 switch (key->cipher) {
484 case 0:
485 hk.kv_type = ATH_CIPHER_CLR;
486 break;
487 case WLAN_CIPHER_SUITE_WEP40:
488 case WLAN_CIPHER_SUITE_WEP104:
489 hk.kv_type = ATH_CIPHER_WEP;
490 break;
491 case WLAN_CIPHER_SUITE_TKIP:
492 hk.kv_type = ATH_CIPHER_TKIP;
493 break;
494 case WLAN_CIPHER_SUITE_CCMP:
495 hk.kv_type = ATH_CIPHER_AES_CCM;
496 break;
497 default:
498 return -EOPNOTSUPP;
499 }
500
501 hk.kv_len = key->keylen;
502 if (key->keylen)
503 memcpy(hk.kv_val, key->key, key->keylen);
504
505 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
506 switch (vif->type) {
507 case NL80211_IFTYPE_AP:
508 memcpy(gmac, vif->addr, ETH_ALEN);
509 gmac[0] |= 0x01;
510 mac = gmac;
511 idx = ath_reserve_key_cache_slot(common, key->cipher);
512 break;
513 case NL80211_IFTYPE_ADHOC:
514 if (!sta) {
515 idx = key->keyidx;
516 break;
517 }
518 memcpy(gmac, sta->addr, ETH_ALEN);
519 gmac[0] |= 0x01;
520 mac = gmac;
521 idx = ath_reserve_key_cache_slot(common, key->cipher);
522 break;
523 default:
524 idx = key->keyidx;
525 break;
526 }
527 } else if (key->keyidx) {
528 if (WARN_ON(!sta))
529 return -EOPNOTSUPP;
530 mac = sta->addr;
531
532 if (vif->type != NL80211_IFTYPE_AP) {
533 /* Only keyidx 0 should be used with unicast key, but
534 * allow this for client mode for now. */
535 idx = key->keyidx;
536 } else
537 return -EIO;
538 } else {
539 if (WARN_ON(!sta))
540 return -EOPNOTSUPP;
541 mac = sta->addr;
542
543 idx = ath_reserve_key_cache_slot(common, key->cipher);
544 }
545
546 if (idx < 0)
547 return -ENOSPC; /* no free key cache entries */
548
549 if (key->cipher == WLAN_CIPHER_SUITE_TKIP)
550 ret = ath_setkey_tkip(common, idx, key->key, &hk, mac,
551 vif->type == NL80211_IFTYPE_AP);
552 else
553 ret = ath_hw_set_keycache_entry(common, idx, &hk, mac);
554
555 if (!ret)
556 return -EIO;
557
558 set_bit(idx, common->keymap);
559 if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
560 set_bit(idx + 64, common->keymap);
561 set_bit(idx, common->tkip_keymap);
562 set_bit(idx + 64, common->tkip_keymap);
563 if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
564 set_bit(idx + 32, common->keymap);
565 set_bit(idx + 64 + 32, common->keymap);
566 set_bit(idx + 32, common->tkip_keymap);
567 set_bit(idx + 64 + 32, common->tkip_keymap);
568 }
569 }
570
571 return idx;
572 }
573 EXPORT_SYMBOL(ath_key_config);
574
575 /*
576 * Delete Key.
577 */
578 void ath_key_delete(struct ath_common *common, struct ieee80211_key_conf *key)
579 {
580 ath_hw_keyreset(common, key->hw_key_idx);
581 if (key->hw_key_idx < IEEE80211_WEP_NKID)
582 return;
583
584 clear_bit(key->hw_key_idx, common->keymap);
585 if (key->cipher != WLAN_CIPHER_SUITE_TKIP)
586 return;
587
588 clear_bit(key->hw_key_idx + 64, common->keymap);
589
590 clear_bit(key->hw_key_idx, common->tkip_keymap);
591 clear_bit(key->hw_key_idx + 64, common->tkip_keymap);
592
593 if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
594 ath_hw_keyreset(common, key->hw_key_idx + 32);
595 clear_bit(key->hw_key_idx + 32, common->keymap);
596 clear_bit(key->hw_key_idx + 64 + 32, common->keymap);
597
598 clear_bit(key->hw_key_idx + 32, common->tkip_keymap);
599 clear_bit(key->hw_key_idx + 64 + 32, common->tkip_keymap);
600 }
601 }
602 EXPORT_SYMBOL(ath_key_delete);
This page took 0.076622 seconds and 5 git commands to generate.