wil6210: treat broadcast bssid as "disconnect all"
[deliverable/linux.git] / drivers / net / wireless / ath / wil6210 / txrx.c
1 /*
2 * Copyright (c) 2012-2015 Qualcomm Atheros, Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/etherdevice.h>
18 #include <net/ieee80211_radiotap.h>
19 #include <linux/if_arp.h>
20 #include <linux/moduleparam.h>
21 #include <linux/ip.h>
22 #include <linux/ipv6.h>
23 #include <net/ipv6.h>
24 #include <linux/prefetch.h>
25
26 #include "wil6210.h"
27 #include "wmi.h"
28 #include "txrx.h"
29 #include "trace.h"
30
31 static bool rtap_include_phy_info;
32 module_param(rtap_include_phy_info, bool, S_IRUGO);
33 MODULE_PARM_DESC(rtap_include_phy_info,
34 " Include PHY info in the radiotap header, default - no");
35
36 bool rx_align_2;
37 module_param(rx_align_2, bool, S_IRUGO);
38 MODULE_PARM_DESC(rx_align_2, " align Rx buffers on 4*n+2, default - no");
39
40 static inline uint wil_rx_snaplen(void)
41 {
42 return rx_align_2 ? 6 : 0;
43 }
44
45 static inline int wil_vring_is_empty(struct vring *vring)
46 {
47 return vring->swhead == vring->swtail;
48 }
49
50 static inline u32 wil_vring_next_tail(struct vring *vring)
51 {
52 return (vring->swtail + 1) % vring->size;
53 }
54
55 static inline void wil_vring_advance_head(struct vring *vring, int n)
56 {
57 vring->swhead = (vring->swhead + n) % vring->size;
58 }
59
60 static inline int wil_vring_is_full(struct vring *vring)
61 {
62 return wil_vring_next_tail(vring) == vring->swhead;
63 }
64
65 /* Used space in Tx Vring */
66 static inline int wil_vring_used_tx(struct vring *vring)
67 {
68 u32 swhead = vring->swhead;
69 u32 swtail = vring->swtail;
70 return (vring->size + swhead - swtail) % vring->size;
71 }
72
73 /* Available space in Tx Vring */
74 static inline int wil_vring_avail_tx(struct vring *vring)
75 {
76 return vring->size - wil_vring_used_tx(vring) - 1;
77 }
78
79 /* wil_vring_wmark_low - low watermark for available descriptor space */
80 static inline int wil_vring_wmark_low(struct vring *vring)
81 {
82 return vring->size/8;
83 }
84
85 /* wil_vring_wmark_high - high watermark for available descriptor space */
86 static inline int wil_vring_wmark_high(struct vring *vring)
87 {
88 return vring->size/4;
89 }
90
91 /* wil_val_in_range - check if value in [min,max) */
92 static inline bool wil_val_in_range(int val, int min, int max)
93 {
94 return val >= min && val < max;
95 }
96
97 static int wil_vring_alloc(struct wil6210_priv *wil, struct vring *vring)
98 {
99 struct device *dev = wil_to_dev(wil);
100 size_t sz = vring->size * sizeof(vring->va[0]);
101 uint i;
102
103 wil_dbg_misc(wil, "%s()\n", __func__);
104
105 BUILD_BUG_ON(sizeof(vring->va[0]) != 32);
106
107 vring->swhead = 0;
108 vring->swtail = 0;
109 vring->ctx = kcalloc(vring->size, sizeof(vring->ctx[0]), GFP_KERNEL);
110 if (!vring->ctx) {
111 vring->va = NULL;
112 return -ENOMEM;
113 }
114 /* vring->va should be aligned on its size rounded up to power of 2
115 * This is granted by the dma_alloc_coherent
116 */
117 vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL);
118 if (!vring->va) {
119 kfree(vring->ctx);
120 vring->ctx = NULL;
121 return -ENOMEM;
122 }
123 /* initially, all descriptors are SW owned
124 * For Tx and Rx, ownership bit is at the same location, thus
125 * we can use any
126 */
127 for (i = 0; i < vring->size; i++) {
128 volatile struct vring_tx_desc *_d = &vring->va[i].tx;
129
130 _d->dma.status = TX_DMA_STATUS_DU;
131 }
132
133 wil_dbg_misc(wil, "vring[%d] 0x%p:%pad 0x%p\n", vring->size,
134 vring->va, &vring->pa, vring->ctx);
135
136 return 0;
137 }
138
139 static void wil_txdesc_unmap(struct device *dev, struct vring_tx_desc *d,
140 struct wil_ctx *ctx)
141 {
142 dma_addr_t pa = wil_desc_addr(&d->dma.addr);
143 u16 dmalen = le16_to_cpu(d->dma.length);
144
145 switch (ctx->mapped_as) {
146 case wil_mapped_as_single:
147 dma_unmap_single(dev, pa, dmalen, DMA_TO_DEVICE);
148 break;
149 case wil_mapped_as_page:
150 dma_unmap_page(dev, pa, dmalen, DMA_TO_DEVICE);
151 break;
152 default:
153 break;
154 }
155 }
156
157 static void wil_vring_free(struct wil6210_priv *wil, struct vring *vring,
158 int tx)
159 {
160 struct device *dev = wil_to_dev(wil);
161 size_t sz = vring->size * sizeof(vring->va[0]);
162
163 if (tx) {
164 int vring_index = vring - wil->vring_tx;
165
166 wil_dbg_misc(wil, "free Tx vring %d [%d] 0x%p:%pad 0x%p\n",
167 vring_index, vring->size, vring->va,
168 &vring->pa, vring->ctx);
169 } else {
170 wil_dbg_misc(wil, "free Rx vring [%d] 0x%p:%pad 0x%p\n",
171 vring->size, vring->va,
172 &vring->pa, vring->ctx);
173 }
174
175 while (!wil_vring_is_empty(vring)) {
176 dma_addr_t pa;
177 u16 dmalen;
178 struct wil_ctx *ctx;
179
180 if (tx) {
181 struct vring_tx_desc dd, *d = &dd;
182 volatile struct vring_tx_desc *_d =
183 &vring->va[vring->swtail].tx;
184
185 ctx = &vring->ctx[vring->swtail];
186 *d = *_d;
187 wil_txdesc_unmap(dev, d, ctx);
188 if (ctx->skb)
189 dev_kfree_skb_any(ctx->skb);
190 vring->swtail = wil_vring_next_tail(vring);
191 } else { /* rx */
192 struct vring_rx_desc dd, *d = &dd;
193 volatile struct vring_rx_desc *_d =
194 &vring->va[vring->swhead].rx;
195
196 ctx = &vring->ctx[vring->swhead];
197 *d = *_d;
198 pa = wil_desc_addr(&d->dma.addr);
199 dmalen = le16_to_cpu(d->dma.length);
200 dma_unmap_single(dev, pa, dmalen, DMA_FROM_DEVICE);
201 kfree_skb(ctx->skb);
202 wil_vring_advance_head(vring, 1);
203 }
204 }
205 dma_free_coherent(dev, sz, (void *)vring->va, vring->pa);
206 kfree(vring->ctx);
207 vring->pa = 0;
208 vring->va = NULL;
209 vring->ctx = NULL;
210 }
211
212 /**
213 * Allocate one skb for Rx VRING
214 *
215 * Safe to call from IRQ
216 */
217 static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct vring *vring,
218 u32 i, int headroom)
219 {
220 struct device *dev = wil_to_dev(wil);
221 unsigned int sz = mtu_max + ETH_HLEN + wil_rx_snaplen();
222 struct vring_rx_desc dd, *d = &dd;
223 volatile struct vring_rx_desc *_d = &vring->va[i].rx;
224 dma_addr_t pa;
225 struct sk_buff *skb = dev_alloc_skb(sz + headroom);
226
227 if (unlikely(!skb))
228 return -ENOMEM;
229
230 skb_reserve(skb, headroom);
231 skb_put(skb, sz);
232
233 pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE);
234 if (unlikely(dma_mapping_error(dev, pa))) {
235 kfree_skb(skb);
236 return -ENOMEM;
237 }
238
239 d->dma.d0 = RX_DMA_D0_CMD_DMA_RT | RX_DMA_D0_CMD_DMA_IT;
240 wil_desc_addr_set(&d->dma.addr, pa);
241 /* ip_length don't care */
242 /* b11 don't care */
243 /* error don't care */
244 d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
245 d->dma.length = cpu_to_le16(sz);
246 *_d = *d;
247 vring->ctx[i].skb = skb;
248
249 return 0;
250 }
251
252 /**
253 * Adds radiotap header
254 *
255 * Any error indicated as "Bad FCS"
256 *
257 * Vendor data for 04:ce:14-1 (Wilocity-1) consists of:
258 * - Rx descriptor: 32 bytes
259 * - Phy info
260 */
261 static void wil_rx_add_radiotap_header(struct wil6210_priv *wil,
262 struct sk_buff *skb)
263 {
264 struct wireless_dev *wdev = wil->wdev;
265 struct wil6210_rtap {
266 struct ieee80211_radiotap_header rthdr;
267 /* fields should be in the order of bits in rthdr.it_present */
268 /* flags */
269 u8 flags;
270 /* channel */
271 __le16 chnl_freq __aligned(2);
272 __le16 chnl_flags;
273 /* MCS */
274 u8 mcs_present;
275 u8 mcs_flags;
276 u8 mcs_index;
277 } __packed;
278 struct wil6210_rtap_vendor {
279 struct wil6210_rtap rtap;
280 /* vendor */
281 u8 vendor_oui[3] __aligned(2);
282 u8 vendor_ns;
283 __le16 vendor_skip;
284 u8 vendor_data[0];
285 } __packed;
286 struct vring_rx_desc *d = wil_skb_rxdesc(skb);
287 struct wil6210_rtap_vendor *rtap_vendor;
288 int rtap_len = sizeof(struct wil6210_rtap);
289 int phy_length = 0; /* phy info header size, bytes */
290 static char phy_data[128];
291 struct ieee80211_channel *ch = wdev->preset_chandef.chan;
292
293 if (rtap_include_phy_info) {
294 rtap_len = sizeof(*rtap_vendor) + sizeof(*d);
295 /* calculate additional length */
296 if (d->dma.status & RX_DMA_STATUS_PHY_INFO) {
297 /**
298 * PHY info starts from 8-byte boundary
299 * there are 8-byte lines, last line may be partially
300 * written (HW bug), thus FW configures for last line
301 * to be excessive. Driver skips this last line.
302 */
303 int len = min_t(int, 8 + sizeof(phy_data),
304 wil_rxdesc_phy_length(d));
305
306 if (len > 8) {
307 void *p = skb_tail_pointer(skb);
308 void *pa = PTR_ALIGN(p, 8);
309
310 if (skb_tailroom(skb) >= len + (pa - p)) {
311 phy_length = len - 8;
312 memcpy(phy_data, pa, phy_length);
313 }
314 }
315 }
316 rtap_len += phy_length;
317 }
318
319 if (skb_headroom(skb) < rtap_len &&
320 pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) {
321 wil_err(wil, "Unable to expand headrom to %d\n", rtap_len);
322 return;
323 }
324
325 rtap_vendor = (void *)skb_push(skb, rtap_len);
326 memset(rtap_vendor, 0, rtap_len);
327
328 rtap_vendor->rtap.rthdr.it_version = PKTHDR_RADIOTAP_VERSION;
329 rtap_vendor->rtap.rthdr.it_len = cpu_to_le16(rtap_len);
330 rtap_vendor->rtap.rthdr.it_present = cpu_to_le32(
331 (1 << IEEE80211_RADIOTAP_FLAGS) |
332 (1 << IEEE80211_RADIOTAP_CHANNEL) |
333 (1 << IEEE80211_RADIOTAP_MCS));
334 if (d->dma.status & RX_DMA_STATUS_ERROR)
335 rtap_vendor->rtap.flags |= IEEE80211_RADIOTAP_F_BADFCS;
336
337 rtap_vendor->rtap.chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320);
338 rtap_vendor->rtap.chnl_flags = cpu_to_le16(0);
339
340 rtap_vendor->rtap.mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS;
341 rtap_vendor->rtap.mcs_flags = 0;
342 rtap_vendor->rtap.mcs_index = wil_rxdesc_mcs(d);
343
344 if (rtap_include_phy_info) {
345 rtap_vendor->rtap.rthdr.it_present |= cpu_to_le32(1 <<
346 IEEE80211_RADIOTAP_VENDOR_NAMESPACE);
347 /* OUI for Wilocity 04:ce:14 */
348 rtap_vendor->vendor_oui[0] = 0x04;
349 rtap_vendor->vendor_oui[1] = 0xce;
350 rtap_vendor->vendor_oui[2] = 0x14;
351 rtap_vendor->vendor_ns = 1;
352 /* Rx descriptor + PHY data */
353 rtap_vendor->vendor_skip = cpu_to_le16(sizeof(*d) +
354 phy_length);
355 memcpy(rtap_vendor->vendor_data, (void *)d, sizeof(*d));
356 memcpy(rtap_vendor->vendor_data + sizeof(*d), phy_data,
357 phy_length);
358 }
359 }
360
361 /**
362 * reap 1 frame from @swhead
363 *
364 * Rx descriptor copied to skb->cb
365 *
366 * Safe to call from IRQ
367 */
368 static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil,
369 struct vring *vring)
370 {
371 struct device *dev = wil_to_dev(wil);
372 struct net_device *ndev = wil_to_ndev(wil);
373 volatile struct vring_rx_desc *_d;
374 struct vring_rx_desc *d;
375 struct sk_buff *skb;
376 dma_addr_t pa;
377 unsigned int snaplen = wil_rx_snaplen();
378 unsigned int sz = mtu_max + ETH_HLEN + snaplen;
379 u16 dmalen;
380 u8 ftype;
381 int cid;
382 int i;
383 struct wil_net_stats *stats;
384
385 BUILD_BUG_ON(sizeof(struct vring_rx_desc) > sizeof(skb->cb));
386
387 again:
388 if (unlikely(wil_vring_is_empty(vring)))
389 return NULL;
390
391 i = (int)vring->swhead;
392 _d = &vring->va[i].rx;
393 if (unlikely(!(_d->dma.status & RX_DMA_STATUS_DU))) {
394 /* it is not error, we just reached end of Rx done area */
395 return NULL;
396 }
397
398 skb = vring->ctx[i].skb;
399 vring->ctx[i].skb = NULL;
400 wil_vring_advance_head(vring, 1);
401 if (!skb) {
402 wil_err(wil, "No Rx skb at [%d]\n", i);
403 goto again;
404 }
405 d = wil_skb_rxdesc(skb);
406 *d = *_d;
407 pa = wil_desc_addr(&d->dma.addr);
408
409 dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE);
410 dmalen = le16_to_cpu(d->dma.length);
411
412 trace_wil6210_rx(i, d);
413 wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", i, dmalen);
414 wil_hex_dump_txrx("Rx ", DUMP_PREFIX_NONE, 32, 4,
415 (const void *)d, sizeof(*d), false);
416
417 cid = wil_rxdesc_cid(d);
418 stats = &wil->sta[cid].stats;
419
420 if (unlikely(dmalen > sz)) {
421 wil_err(wil, "Rx size too large: %d bytes!\n", dmalen);
422 stats->rx_large_frame++;
423 kfree_skb(skb);
424 goto again;
425 }
426 skb_trim(skb, dmalen);
427
428 prefetch(skb->data);
429
430 wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
431 skb->data, skb_headlen(skb), false);
432
433 stats->last_mcs_rx = wil_rxdesc_mcs(d);
434 if (stats->last_mcs_rx < ARRAY_SIZE(stats->rx_per_mcs))
435 stats->rx_per_mcs[stats->last_mcs_rx]++;
436
437 /* use radiotap header only if required */
438 if (ndev->type == ARPHRD_IEEE80211_RADIOTAP)
439 wil_rx_add_radiotap_header(wil, skb);
440
441 /* no extra checks if in sniffer mode */
442 if (ndev->type != ARPHRD_ETHER)
443 return skb;
444 /*
445 * Non-data frames may be delivered through Rx DMA channel (ex: BAR)
446 * Driver should recognize it by frame type, that is found
447 * in Rx descriptor. If type is not data, it is 802.11 frame as is
448 */
449 ftype = wil_rxdesc_ftype(d) << 2;
450 if (unlikely(ftype != IEEE80211_FTYPE_DATA)) {
451 wil_dbg_txrx(wil, "Non-data frame ftype 0x%08x\n", ftype);
452 /* TODO: process it */
453 stats->rx_non_data_frame++;
454 kfree_skb(skb);
455 goto again;
456 }
457
458 if (unlikely(skb->len < ETH_HLEN + snaplen)) {
459 wil_err(wil, "Short frame, len = %d\n", skb->len);
460 /* TODO: process it (i.e. BAR) */
461 stats->rx_short_frame++;
462 kfree_skb(skb);
463 goto again;
464 }
465
466 /* L4 IDENT is on when HW calculated checksum, check status
467 * and in case of error drop the packet
468 * higher stack layers will handle retransmission (if required)
469 */
470 if (likely(d->dma.status & RX_DMA_STATUS_L4I)) {
471 /* L4 protocol identified, csum calculated */
472 if (likely((d->dma.error & RX_DMA_ERROR_L4_ERR) == 0))
473 skb->ip_summed = CHECKSUM_UNNECESSARY;
474 /* If HW reports bad checksum, let IP stack re-check it
475 * For example, HW don't understand Microsoft IP stack that
476 * mis-calculates TCP checksum - if it should be 0x0,
477 * it writes 0xffff in violation of RFC 1624
478 */
479 }
480
481 if (snaplen) {
482 /* Packet layout
483 * +-------+-------+---------+------------+------+
484 * | SA(6) | DA(6) | SNAP(6) | ETHTYPE(2) | DATA |
485 * +-------+-------+---------+------------+------+
486 * Need to remove SNAP, shifting SA and DA forward
487 */
488 memmove(skb->data + snaplen, skb->data, 2 * ETH_ALEN);
489 skb_pull(skb, snaplen);
490 }
491
492 return skb;
493 }
494
495 /**
496 * allocate and fill up to @count buffers in rx ring
497 * buffers posted at @swtail
498 */
499 static int wil_rx_refill(struct wil6210_priv *wil, int count)
500 {
501 struct net_device *ndev = wil_to_ndev(wil);
502 struct vring *v = &wil->vring_rx;
503 u32 next_tail;
504 int rc = 0;
505 int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ?
506 WIL6210_RTAP_SIZE : 0;
507
508 for (; next_tail = wil_vring_next_tail(v),
509 (next_tail != v->swhead) && (count-- > 0);
510 v->swtail = next_tail) {
511 rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom);
512 if (unlikely(rc)) {
513 wil_err(wil, "Error %d in wil_rx_refill[%d]\n",
514 rc, v->swtail);
515 break;
516 }
517 }
518 wil_w(wil, v->hwtail, v->swtail);
519
520 return rc;
521 }
522
523 /*
524 * Pass Rx packet to the netif. Update statistics.
525 * Called in softirq context (NAPI poll).
526 */
527 void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev)
528 {
529 gro_result_t rc = GRO_NORMAL;
530 struct wil6210_priv *wil = ndev_to_wil(ndev);
531 struct wireless_dev *wdev = wil_to_wdev(wil);
532 unsigned int len = skb->len;
533 struct vring_rx_desc *d = wil_skb_rxdesc(skb);
534 int cid = wil_rxdesc_cid(d); /* always 0..7, no need to check */
535 struct ethhdr *eth = (void *)skb->data;
536 /* here looking for DA, not A1, thus Rxdesc's 'mcast' indication
537 * is not suitable, need to look at data
538 */
539 int mcast = is_multicast_ether_addr(eth->h_dest);
540 struct wil_net_stats *stats = &wil->sta[cid].stats;
541 struct sk_buff *xmit_skb = NULL;
542 static const char * const gro_res_str[] = {
543 [GRO_MERGED] = "GRO_MERGED",
544 [GRO_MERGED_FREE] = "GRO_MERGED_FREE",
545 [GRO_HELD] = "GRO_HELD",
546 [GRO_NORMAL] = "GRO_NORMAL",
547 [GRO_DROP] = "GRO_DROP",
548 };
549
550 if (ndev->features & NETIF_F_RXHASH)
551 /* fake L4 to ensure it won't be re-calculated later
552 * set hash to any non-zero value to activate rps
553 * mechanism, core will be chosen according
554 * to user-level rps configuration.
555 */
556 skb_set_hash(skb, 1, PKT_HASH_TYPE_L4);
557
558 skb_orphan(skb);
559
560 if (wdev->iftype == NL80211_IFTYPE_AP && !wil->ap_isolate) {
561 if (mcast) {
562 /* send multicast frames both to higher layers in
563 * local net stack and back to the wireless medium
564 */
565 xmit_skb = skb_copy(skb, GFP_ATOMIC);
566 } else {
567 int xmit_cid = wil_find_cid(wil, eth->h_dest);
568
569 if (xmit_cid >= 0) {
570 /* The destination station is associated to
571 * this AP (in this VLAN), so send the frame
572 * directly to it and do not pass it to local
573 * net stack.
574 */
575 xmit_skb = skb;
576 skb = NULL;
577 }
578 }
579 }
580 if (xmit_skb) {
581 /* Send to wireless media and increase priority by 256 to
582 * keep the received priority instead of reclassifying
583 * the frame (see cfg80211_classify8021d).
584 */
585 xmit_skb->dev = ndev;
586 xmit_skb->priority += 256;
587 xmit_skb->protocol = htons(ETH_P_802_3);
588 skb_reset_network_header(xmit_skb);
589 skb_reset_mac_header(xmit_skb);
590 wil_dbg_txrx(wil, "Rx -> Tx %d bytes\n", len);
591 dev_queue_xmit(xmit_skb);
592 }
593
594 if (skb) { /* deliver to local stack */
595
596 skb->protocol = eth_type_trans(skb, ndev);
597 rc = napi_gro_receive(&wil->napi_rx, skb);
598 wil_dbg_txrx(wil, "Rx complete %d bytes => %s\n",
599 len, gro_res_str[rc]);
600 }
601 /* statistics. rc set to GRO_NORMAL for AP bridging */
602 if (unlikely(rc == GRO_DROP)) {
603 ndev->stats.rx_dropped++;
604 stats->rx_dropped++;
605 wil_dbg_txrx(wil, "Rx drop %d bytes\n", len);
606 } else {
607 ndev->stats.rx_packets++;
608 stats->rx_packets++;
609 ndev->stats.rx_bytes += len;
610 stats->rx_bytes += len;
611 if (mcast)
612 ndev->stats.multicast++;
613 }
614 }
615
616 /**
617 * Proceed all completed skb's from Rx VRING
618 *
619 * Safe to call from NAPI poll, i.e. softirq with interrupts enabled
620 */
621 void wil_rx_handle(struct wil6210_priv *wil, int *quota)
622 {
623 struct net_device *ndev = wil_to_ndev(wil);
624 struct vring *v = &wil->vring_rx;
625 struct sk_buff *skb;
626
627 if (unlikely(!v->va)) {
628 wil_err(wil, "Rx IRQ while Rx not yet initialized\n");
629 return;
630 }
631 wil_dbg_txrx(wil, "%s()\n", __func__);
632 while ((*quota > 0) && (NULL != (skb = wil_vring_reap_rx(wil, v)))) {
633 (*quota)--;
634
635 if (wil->wdev->iftype == NL80211_IFTYPE_MONITOR) {
636 skb->dev = ndev;
637 skb_reset_mac_header(skb);
638 skb->ip_summed = CHECKSUM_UNNECESSARY;
639 skb->pkt_type = PACKET_OTHERHOST;
640 skb->protocol = htons(ETH_P_802_2);
641 wil_netif_rx_any(skb, ndev);
642 } else {
643 wil_rx_reorder(wil, skb);
644 }
645 }
646 wil_rx_refill(wil, v->size);
647 }
648
649 int wil_rx_init(struct wil6210_priv *wil, u16 size)
650 {
651 struct vring *vring = &wil->vring_rx;
652 int rc;
653
654 wil_dbg_misc(wil, "%s()\n", __func__);
655
656 if (vring->va) {
657 wil_err(wil, "Rx ring already allocated\n");
658 return -EINVAL;
659 }
660
661 vring->size = size;
662 rc = wil_vring_alloc(wil, vring);
663 if (rc)
664 return rc;
665
666 rc = wmi_rx_chain_add(wil, vring);
667 if (rc)
668 goto err_free;
669
670 rc = wil_rx_refill(wil, vring->size);
671 if (rc)
672 goto err_free;
673
674 return 0;
675 err_free:
676 wil_vring_free(wil, vring, 0);
677
678 return rc;
679 }
680
681 void wil_rx_fini(struct wil6210_priv *wil)
682 {
683 struct vring *vring = &wil->vring_rx;
684
685 wil_dbg_misc(wil, "%s()\n", __func__);
686
687 if (vring->va)
688 wil_vring_free(wil, vring, 0);
689 }
690
691 int wil_vring_init_tx(struct wil6210_priv *wil, int id, int size,
692 int cid, int tid)
693 {
694 int rc;
695 struct wmi_vring_cfg_cmd cmd = {
696 .action = cpu_to_le32(WMI_VRING_CMD_ADD),
697 .vring_cfg = {
698 .tx_sw_ring = {
699 .max_mpdu_size =
700 cpu_to_le16(wil_mtu2macbuf(mtu_max)),
701 .ring_size = cpu_to_le16(size),
702 },
703 .ringid = id,
704 .cidxtid = mk_cidxtid(cid, tid),
705 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
706 .mac_ctrl = 0,
707 .to_resolution = 0,
708 .agg_max_wsize = 0,
709 .schd_params = {
710 .priority = cpu_to_le16(0),
711 .timeslot_us = cpu_to_le16(0xfff),
712 },
713 },
714 };
715 struct {
716 struct wil6210_mbox_hdr_wmi wmi;
717 struct wmi_vring_cfg_done_event cmd;
718 } __packed reply;
719 struct vring *vring = &wil->vring_tx[id];
720 struct vring_tx_data *txdata = &wil->vring_tx_data[id];
721
722 wil_dbg_misc(wil, "%s() max_mpdu_size %d\n", __func__,
723 cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
724
725 if (vring->va) {
726 wil_err(wil, "Tx ring [%d] already allocated\n", id);
727 rc = -EINVAL;
728 goto out;
729 }
730
731 memset(txdata, 0, sizeof(*txdata));
732 spin_lock_init(&txdata->lock);
733 vring->size = size;
734 rc = wil_vring_alloc(wil, vring);
735 if (rc)
736 goto out;
737
738 wil->vring2cid_tid[id][0] = cid;
739 wil->vring2cid_tid[id][1] = tid;
740
741 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
742
743 if (!wil->privacy)
744 txdata->dot1x_open = true;
745 rc = wmi_call(wil, WMI_VRING_CFG_CMDID, &cmd, sizeof(cmd),
746 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
747 if (rc)
748 goto out_free;
749
750 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
751 wil_err(wil, "Tx config failed, status 0x%02x\n",
752 reply.cmd.status);
753 rc = -EINVAL;
754 goto out_free;
755 }
756 vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
757
758 txdata->enabled = 1;
759 if (txdata->dot1x_open && (agg_wsize >= 0))
760 wil_addba_tx_request(wil, id, agg_wsize);
761
762 return 0;
763 out_free:
764 txdata->dot1x_open = false;
765 txdata->enabled = 0;
766 wil_vring_free(wil, vring, 1);
767 out:
768
769 return rc;
770 }
771
772 int wil_vring_init_bcast(struct wil6210_priv *wil, int id, int size)
773 {
774 int rc;
775 struct wmi_bcast_vring_cfg_cmd cmd = {
776 .action = cpu_to_le32(WMI_VRING_CMD_ADD),
777 .vring_cfg = {
778 .tx_sw_ring = {
779 .max_mpdu_size =
780 cpu_to_le16(wil_mtu2macbuf(mtu_max)),
781 .ring_size = cpu_to_le16(size),
782 },
783 .ringid = id,
784 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
785 },
786 };
787 struct {
788 struct wil6210_mbox_hdr_wmi wmi;
789 struct wmi_vring_cfg_done_event cmd;
790 } __packed reply;
791 struct vring *vring = &wil->vring_tx[id];
792 struct vring_tx_data *txdata = &wil->vring_tx_data[id];
793
794 wil_dbg_misc(wil, "%s() max_mpdu_size %d\n", __func__,
795 cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
796
797 if (vring->va) {
798 wil_err(wil, "Tx ring [%d] already allocated\n", id);
799 rc = -EINVAL;
800 goto out;
801 }
802
803 memset(txdata, 0, sizeof(*txdata));
804 spin_lock_init(&txdata->lock);
805 vring->size = size;
806 rc = wil_vring_alloc(wil, vring);
807 if (rc)
808 goto out;
809
810 wil->vring2cid_tid[id][0] = WIL6210_MAX_CID; /* CID */
811 wil->vring2cid_tid[id][1] = 0; /* TID */
812
813 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
814
815 if (!wil->privacy)
816 txdata->dot1x_open = true;
817 rc = wmi_call(wil, WMI_BCAST_VRING_CFG_CMDID, &cmd, sizeof(cmd),
818 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
819 if (rc)
820 goto out_free;
821
822 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
823 wil_err(wil, "Tx config failed, status 0x%02x\n",
824 reply.cmd.status);
825 rc = -EINVAL;
826 goto out_free;
827 }
828 vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
829
830 txdata->enabled = 1;
831
832 return 0;
833 out_free:
834 txdata->enabled = 0;
835 txdata->dot1x_open = false;
836 wil_vring_free(wil, vring, 1);
837 out:
838
839 return rc;
840 }
841
842 void wil_vring_fini_tx(struct wil6210_priv *wil, int id)
843 {
844 struct vring *vring = &wil->vring_tx[id];
845 struct vring_tx_data *txdata = &wil->vring_tx_data[id];
846
847 WARN_ON(!mutex_is_locked(&wil->mutex));
848
849 if (!vring->va)
850 return;
851
852 wil_dbg_misc(wil, "%s() id=%d\n", __func__, id);
853
854 spin_lock_bh(&txdata->lock);
855 txdata->dot1x_open = false;
856 txdata->enabled = 0; /* no Tx can be in progress or start anew */
857 spin_unlock_bh(&txdata->lock);
858 /* make sure NAPI won't touch this vring */
859 if (test_bit(wil_status_napi_en, wil->status))
860 napi_synchronize(&wil->napi_tx);
861
862 wil_vring_free(wil, vring, 1);
863 memset(txdata, 0, sizeof(*txdata));
864 }
865
866 static struct vring *wil_find_tx_ucast(struct wil6210_priv *wil,
867 struct sk_buff *skb)
868 {
869 int i;
870 struct ethhdr *eth = (void *)skb->data;
871 int cid = wil_find_cid(wil, eth->h_dest);
872
873 if (cid < 0)
874 return NULL;
875
876 /* TODO: fix for multiple TID */
877 for (i = 0; i < ARRAY_SIZE(wil->vring2cid_tid); i++) {
878 if (!wil->vring_tx_data[i].dot1x_open &&
879 (skb->protocol != cpu_to_be16(ETH_P_PAE)))
880 continue;
881 if (wil->vring2cid_tid[i][0] == cid) {
882 struct vring *v = &wil->vring_tx[i];
883
884 wil_dbg_txrx(wil, "%s(%pM) -> [%d]\n",
885 __func__, eth->h_dest, i);
886 if (v->va) {
887 return v;
888 } else {
889 wil_dbg_txrx(wil, "vring[%d] not valid\n", i);
890 return NULL;
891 }
892 }
893 }
894
895 return NULL;
896 }
897
898 static int wil_tx_vring(struct wil6210_priv *wil, struct vring *vring,
899 struct sk_buff *skb);
900
901 static struct vring *wil_find_tx_vring_sta(struct wil6210_priv *wil,
902 struct sk_buff *skb)
903 {
904 struct vring *v;
905 int i;
906 u8 cid;
907
908 /* In the STA mode, it is expected to have only 1 VRING
909 * for the AP we connected to.
910 * find 1-st vring eligible for this skb and use it.
911 */
912 for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
913 v = &wil->vring_tx[i];
914 if (!v->va)
915 continue;
916
917 cid = wil->vring2cid_tid[i][0];
918 if (cid >= WIL6210_MAX_CID) /* skip BCAST */
919 continue;
920
921 if (!wil->vring_tx_data[i].dot1x_open &&
922 (skb->protocol != cpu_to_be16(ETH_P_PAE)))
923 continue;
924
925 wil_dbg_txrx(wil, "Tx -> ring %d\n", i);
926
927 return v;
928 }
929
930 wil_dbg_txrx(wil, "Tx while no vrings active?\n");
931
932 return NULL;
933 }
934
935 /* Use one of 2 strategies:
936 *
937 * 1. New (real broadcast):
938 * use dedicated broadcast vring
939 * 2. Old (pseudo-DMS):
940 * Find 1-st vring and return it;
941 * duplicate skb and send it to other active vrings;
942 * in all cases override dest address to unicast peer's address
943 * Use old strategy when new is not supported yet:
944 * - for PBSS
945 */
946 static struct vring *wil_find_tx_bcast_1(struct wil6210_priv *wil,
947 struct sk_buff *skb)
948 {
949 struct vring *v;
950 int i = wil->bcast_vring;
951
952 if (i < 0)
953 return NULL;
954 v = &wil->vring_tx[i];
955 if (!v->va)
956 return NULL;
957 if (!wil->vring_tx_data[i].dot1x_open &&
958 (skb->protocol != cpu_to_be16(ETH_P_PAE)))
959 return NULL;
960
961 return v;
962 }
963
964 static void wil_set_da_for_vring(struct wil6210_priv *wil,
965 struct sk_buff *skb, int vring_index)
966 {
967 struct ethhdr *eth = (void *)skb->data;
968 int cid = wil->vring2cid_tid[vring_index][0];
969
970 ether_addr_copy(eth->h_dest, wil->sta[cid].addr);
971 }
972
973 static struct vring *wil_find_tx_bcast_2(struct wil6210_priv *wil,
974 struct sk_buff *skb)
975 {
976 struct vring *v, *v2;
977 struct sk_buff *skb2;
978 int i;
979 u8 cid;
980 struct ethhdr *eth = (void *)skb->data;
981 char *src = eth->h_source;
982
983 /* find 1-st vring eligible for data */
984 for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
985 v = &wil->vring_tx[i];
986 if (!v->va)
987 continue;
988
989 cid = wil->vring2cid_tid[i][0];
990 if (cid >= WIL6210_MAX_CID) /* skip BCAST */
991 continue;
992 if (!wil->vring_tx_data[i].dot1x_open &&
993 (skb->protocol != cpu_to_be16(ETH_P_PAE)))
994 continue;
995
996 /* don't Tx back to source when re-routing Rx->Tx at the AP */
997 if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
998 continue;
999
1000 goto found;
1001 }
1002
1003 wil_dbg_txrx(wil, "Tx while no vrings active?\n");
1004
1005 return NULL;
1006
1007 found:
1008 wil_dbg_txrx(wil, "BCAST -> ring %d\n", i);
1009 wil_set_da_for_vring(wil, skb, i);
1010
1011 /* find other active vrings and duplicate skb for each */
1012 for (i++; i < WIL6210_MAX_TX_RINGS; i++) {
1013 v2 = &wil->vring_tx[i];
1014 if (!v2->va)
1015 continue;
1016 cid = wil->vring2cid_tid[i][0];
1017 if (cid >= WIL6210_MAX_CID) /* skip BCAST */
1018 continue;
1019 if (!wil->vring_tx_data[i].dot1x_open &&
1020 (skb->protocol != cpu_to_be16(ETH_P_PAE)))
1021 continue;
1022
1023 if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1024 continue;
1025
1026 skb2 = skb_copy(skb, GFP_ATOMIC);
1027 if (skb2) {
1028 wil_dbg_txrx(wil, "BCAST DUP -> ring %d\n", i);
1029 wil_set_da_for_vring(wil, skb2, i);
1030 wil_tx_vring(wil, v2, skb2);
1031 } else {
1032 wil_err(wil, "skb_copy failed\n");
1033 }
1034 }
1035
1036 return v;
1037 }
1038
1039 static struct vring *wil_find_tx_bcast(struct wil6210_priv *wil,
1040 struct sk_buff *skb)
1041 {
1042 struct wireless_dev *wdev = wil->wdev;
1043
1044 if (wdev->iftype != NL80211_IFTYPE_AP)
1045 return wil_find_tx_bcast_2(wil, skb);
1046
1047 return wil_find_tx_bcast_1(wil, skb);
1048 }
1049
1050 static int wil_tx_desc_map(struct vring_tx_desc *d, dma_addr_t pa, u32 len,
1051 int vring_index)
1052 {
1053 wil_desc_addr_set(&d->dma.addr, pa);
1054 d->dma.ip_length = 0;
1055 /* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/
1056 d->dma.b11 = 0/*14 | BIT(7)*/;
1057 d->dma.error = 0;
1058 d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
1059 d->dma.length = cpu_to_le16((u16)len);
1060 d->dma.d0 = (vring_index << DMA_CFG_DESC_TX_0_QID_POS);
1061 d->mac.d[0] = 0;
1062 d->mac.d[1] = 0;
1063 d->mac.d[2] = 0;
1064 d->mac.ucode_cmd = 0;
1065 /* translation type: 0 - bypass; 1 - 802.3; 2 - native wifi */
1066 d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) |
1067 (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS);
1068
1069 return 0;
1070 }
1071
1072 static inline
1073 void wil_tx_desc_set_nr_frags(struct vring_tx_desc *d, int nr_frags)
1074 {
1075 d->mac.d[2] |= (nr_frags << MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS);
1076 }
1077
1078 /**
1079 * Sets the descriptor @d up for csum and/or TSO offloading. The corresponding
1080 * @skb is used to obtain the protocol and headers length.
1081 * @tso_desc_type is a descriptor type for TSO: 0 - a header, 1 - first data,
1082 * 2 - middle, 3 - last descriptor.
1083 */
1084
1085 static void wil_tx_desc_offload_setup_tso(struct vring_tx_desc *d,
1086 struct sk_buff *skb,
1087 int tso_desc_type, bool is_ipv4,
1088 int tcp_hdr_len, int skb_net_hdr_len)
1089 {
1090 d->dma.b11 = ETH_HLEN; /* MAC header length */
1091 d->dma.b11 |= is_ipv4 << DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS;
1092
1093 d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1094 /* L4 header len: TCP header length */
1095 d->dma.d0 |= (tcp_hdr_len & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1096
1097 /* Setup TSO: bit and desc type */
1098 d->dma.d0 |= (BIT(DMA_CFG_DESC_TX_0_TCP_SEG_EN_POS)) |
1099 (tso_desc_type << DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS);
1100 d->dma.d0 |= (is_ipv4 << DMA_CFG_DESC_TX_0_IPV4_CHECKSUM_EN_POS);
1101
1102 d->dma.ip_length = skb_net_hdr_len;
1103 /* Enable TCP/UDP checksum */
1104 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1105 /* Calculate pseudo-header */
1106 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1107 }
1108
1109 /**
1110 * Sets the descriptor @d up for csum. The corresponding
1111 * @skb is used to obtain the protocol and headers length.
1112 * Returns the protocol: 0 - not TCP, 1 - TCPv4, 2 - TCPv6.
1113 * Note, if d==NULL, the function only returns the protocol result.
1114 *
1115 * It is very similar to previous wil_tx_desc_offload_setup_tso. This
1116 * is "if unrolling" to optimize the critical path.
1117 */
1118
1119 static int wil_tx_desc_offload_setup(struct vring_tx_desc *d,
1120 struct sk_buff *skb){
1121 int protocol;
1122
1123 if (skb->ip_summed != CHECKSUM_PARTIAL)
1124 return 0;
1125
1126 d->dma.b11 = ETH_HLEN; /* MAC header length */
1127
1128 switch (skb->protocol) {
1129 case cpu_to_be16(ETH_P_IP):
1130 protocol = ip_hdr(skb)->protocol;
1131 d->dma.b11 |= BIT(DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS);
1132 break;
1133 case cpu_to_be16(ETH_P_IPV6):
1134 protocol = ipv6_hdr(skb)->nexthdr;
1135 break;
1136 default:
1137 return -EINVAL;
1138 }
1139
1140 switch (protocol) {
1141 case IPPROTO_TCP:
1142 d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1143 /* L4 header len: TCP header length */
1144 d->dma.d0 |=
1145 (tcp_hdrlen(skb) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1146 break;
1147 case IPPROTO_UDP:
1148 /* L4 header len: UDP header length */
1149 d->dma.d0 |=
1150 (sizeof(struct udphdr) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1151 break;
1152 default:
1153 return -EINVAL;
1154 }
1155
1156 d->dma.ip_length = skb_network_header_len(skb);
1157 /* Enable TCP/UDP checksum */
1158 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1159 /* Calculate pseudo-header */
1160 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1161
1162 return 0;
1163 }
1164
1165 static inline void wil_tx_last_desc(struct vring_tx_desc *d)
1166 {
1167 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS) |
1168 BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS) |
1169 BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
1170 }
1171
1172 static inline void wil_set_tx_desc_last_tso(volatile struct vring_tx_desc *d)
1173 {
1174 d->dma.d0 |= wil_tso_type_lst <<
1175 DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS;
1176 }
1177
1178 static int __wil_tx_vring_tso(struct wil6210_priv *wil, struct vring *vring,
1179 struct sk_buff *skb)
1180 {
1181 struct device *dev = wil_to_dev(wil);
1182
1183 /* point to descriptors in shared memory */
1184 volatile struct vring_tx_desc *_desc = NULL, *_hdr_desc,
1185 *_first_desc = NULL;
1186
1187 /* pointers to shadow descriptors */
1188 struct vring_tx_desc desc_mem, hdr_desc_mem, first_desc_mem,
1189 *d = &hdr_desc_mem, *hdr_desc = &hdr_desc_mem,
1190 *first_desc = &first_desc_mem;
1191
1192 /* pointer to shadow descriptors' context */
1193 struct wil_ctx *hdr_ctx, *first_ctx = NULL;
1194
1195 int descs_used = 0; /* total number of used descriptors */
1196 int sg_desc_cnt = 0; /* number of descriptors for current mss*/
1197
1198 u32 swhead = vring->swhead;
1199 int used, avail = wil_vring_avail_tx(vring);
1200 int nr_frags = skb_shinfo(skb)->nr_frags;
1201 int min_desc_required = nr_frags + 1;
1202 int mss = skb_shinfo(skb)->gso_size; /* payload size w/o headers */
1203 int f, len, hdrlen, headlen;
1204 int vring_index = vring - wil->vring_tx;
1205 struct vring_tx_data *txdata = &wil->vring_tx_data[vring_index];
1206 uint i = swhead;
1207 dma_addr_t pa;
1208 const skb_frag_t *frag = NULL;
1209 int rem_data = mss;
1210 int lenmss;
1211 int hdr_compensation_need = true;
1212 int desc_tso_type = wil_tso_type_first;
1213 bool is_ipv4;
1214 int tcp_hdr_len;
1215 int skb_net_hdr_len;
1216 int gso_type;
1217
1218 wil_dbg_txrx(wil, "%s() %d bytes to vring %d\n",
1219 __func__, skb->len, vring_index);
1220
1221 if (unlikely(!txdata->enabled))
1222 return -EINVAL;
1223
1224 /* A typical page 4K is 3-4 payloads, we assume each fragment
1225 * is a full payload, that's how min_desc_required has been
1226 * calculated. In real we might need more or less descriptors,
1227 * this is the initial check only.
1228 */
1229 if (unlikely(avail < min_desc_required)) {
1230 wil_err_ratelimited(wil,
1231 "TSO: Tx ring[%2d] full. No space for %d fragments\n",
1232 vring_index, min_desc_required);
1233 return -ENOMEM;
1234 }
1235
1236 /* Header Length = MAC header len + IP header len + TCP header len*/
1237 hdrlen = ETH_HLEN +
1238 (int)skb_network_header_len(skb) +
1239 tcp_hdrlen(skb);
1240
1241 gso_type = skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV6 | SKB_GSO_TCPV4);
1242 switch (gso_type) {
1243 case SKB_GSO_TCPV4:
1244 /* TCP v4, zero out the IP length and IPv4 checksum fields
1245 * as required by the offloading doc
1246 */
1247 ip_hdr(skb)->tot_len = 0;
1248 ip_hdr(skb)->check = 0;
1249 is_ipv4 = true;
1250 break;
1251 case SKB_GSO_TCPV6:
1252 /* TCP v6, zero out the payload length */
1253 ipv6_hdr(skb)->payload_len = 0;
1254 is_ipv4 = false;
1255 break;
1256 default:
1257 /* other than TCPv4 or TCPv6 types are not supported for TSO.
1258 * It is also illegal for both to be set simultaneously
1259 */
1260 return -EINVAL;
1261 }
1262
1263 if (skb->ip_summed != CHECKSUM_PARTIAL)
1264 return -EINVAL;
1265
1266 /* tcp header length and skb network header length are fixed for all
1267 * packet's descriptors - read then once here
1268 */
1269 tcp_hdr_len = tcp_hdrlen(skb);
1270 skb_net_hdr_len = skb_network_header_len(skb);
1271
1272 _hdr_desc = &vring->va[i].tx;
1273
1274 pa = dma_map_single(dev, skb->data, hdrlen, DMA_TO_DEVICE);
1275 if (unlikely(dma_mapping_error(dev, pa))) {
1276 wil_err(wil, "TSO: Skb head DMA map error\n");
1277 goto err_exit;
1278 }
1279
1280 wil_tx_desc_map(hdr_desc, pa, hdrlen, vring_index);
1281 wil_tx_desc_offload_setup_tso(hdr_desc, skb, wil_tso_type_hdr, is_ipv4,
1282 tcp_hdr_len, skb_net_hdr_len);
1283 wil_tx_last_desc(hdr_desc);
1284
1285 vring->ctx[i].mapped_as = wil_mapped_as_single;
1286 hdr_ctx = &vring->ctx[i];
1287
1288 descs_used++;
1289 headlen = skb_headlen(skb) - hdrlen;
1290
1291 for (f = headlen ? -1 : 0; f < nr_frags; f++) {
1292 if (headlen) {
1293 len = headlen;
1294 wil_dbg_txrx(wil, "TSO: process skb head, len %u\n",
1295 len);
1296 } else {
1297 frag = &skb_shinfo(skb)->frags[f];
1298 len = frag->size;
1299 wil_dbg_txrx(wil, "TSO: frag[%d]: len %u\n", f, len);
1300 }
1301
1302 while (len) {
1303 wil_dbg_txrx(wil,
1304 "TSO: len %d, rem_data %d, descs_used %d\n",
1305 len, rem_data, descs_used);
1306
1307 if (descs_used == avail) {
1308 wil_err(wil, "TSO: ring overflow\n");
1309 goto dma_error;
1310 }
1311
1312 lenmss = min_t(int, rem_data, len);
1313 i = (swhead + descs_used) % vring->size;
1314 wil_dbg_txrx(wil, "TSO: lenmss %d, i %d\n", lenmss, i);
1315
1316 if (!headlen) {
1317 pa = skb_frag_dma_map(dev, frag,
1318 frag->size - len, lenmss,
1319 DMA_TO_DEVICE);
1320 vring->ctx[i].mapped_as = wil_mapped_as_page;
1321 } else {
1322 pa = dma_map_single(dev,
1323 skb->data +
1324 skb_headlen(skb) - headlen,
1325 lenmss,
1326 DMA_TO_DEVICE);
1327 vring->ctx[i].mapped_as = wil_mapped_as_single;
1328 headlen -= lenmss;
1329 }
1330
1331 if (unlikely(dma_mapping_error(dev, pa)))
1332 goto dma_error;
1333
1334 _desc = &vring->va[i].tx;
1335
1336 if (!_first_desc) {
1337 _first_desc = _desc;
1338 first_ctx = &vring->ctx[i];
1339 d = first_desc;
1340 } else {
1341 d = &desc_mem;
1342 }
1343
1344 wil_tx_desc_map(d, pa, lenmss, vring_index);
1345 wil_tx_desc_offload_setup_tso(d, skb, desc_tso_type,
1346 is_ipv4, tcp_hdr_len,
1347 skb_net_hdr_len);
1348
1349 /* use tso_type_first only once */
1350 desc_tso_type = wil_tso_type_mid;
1351
1352 descs_used++; /* desc used so far */
1353 sg_desc_cnt++; /* desc used for this segment */
1354 len -= lenmss;
1355 rem_data -= lenmss;
1356
1357 wil_dbg_txrx(wil,
1358 "TSO: len %d, rem_data %d, descs_used %d, sg_desc_cnt %d,\n",
1359 len, rem_data, descs_used, sg_desc_cnt);
1360
1361 /* Close the segment if reached mss size or last frag*/
1362 if (rem_data == 0 || (f == nr_frags - 1 && len == 0)) {
1363 if (hdr_compensation_need) {
1364 /* first segment include hdr desc for
1365 * release
1366 */
1367 hdr_ctx->nr_frags = sg_desc_cnt;
1368 wil_tx_desc_set_nr_frags(first_desc,
1369 sg_desc_cnt +
1370 1);
1371 hdr_compensation_need = false;
1372 } else {
1373 wil_tx_desc_set_nr_frags(first_desc,
1374 sg_desc_cnt);
1375 }
1376 first_ctx->nr_frags = sg_desc_cnt - 1;
1377
1378 wil_tx_last_desc(d);
1379
1380 /* first descriptor may also be the last
1381 * for this mss - make sure not to copy
1382 * it twice
1383 */
1384 if (first_desc != d)
1385 *_first_desc = *first_desc;
1386
1387 /*last descriptor will be copied at the end
1388 * of this TS processing
1389 */
1390 if (f < nr_frags - 1 || len > 0)
1391 *_desc = *d;
1392
1393 rem_data = mss;
1394 _first_desc = NULL;
1395 sg_desc_cnt = 0;
1396 } else if (first_desc != d) /* update mid descriptor */
1397 *_desc = *d;
1398 }
1399 }
1400
1401 /* first descriptor may also be the last.
1402 * in this case d pointer is invalid
1403 */
1404 if (_first_desc == _desc)
1405 d = first_desc;
1406
1407 /* Last data descriptor */
1408 wil_set_tx_desc_last_tso(d);
1409 *_desc = *d;
1410
1411 /* Fill the total number of descriptors in first desc (hdr)*/
1412 wil_tx_desc_set_nr_frags(hdr_desc, descs_used);
1413 *_hdr_desc = *hdr_desc;
1414
1415 /* hold reference to skb
1416 * to prevent skb release before accounting
1417 * in case of immediate "tx done"
1418 */
1419 vring->ctx[i].skb = skb_get(skb);
1420
1421 /* performance monitoring */
1422 used = wil_vring_used_tx(vring);
1423 if (wil_val_in_range(vring_idle_trsh,
1424 used, used + descs_used)) {
1425 txdata->idle += get_cycles() - txdata->last_idle;
1426 wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n",
1427 vring_index, used, used + descs_used);
1428 }
1429
1430 /* advance swhead */
1431 wil_dbg_txrx(wil, "TSO: Tx swhead %d -> %d\n", swhead, vring->swhead);
1432 wil_vring_advance_head(vring, descs_used);
1433
1434 /* make sure all writes to descriptors (shared memory) are done before
1435 * committing them to HW
1436 */
1437 wmb();
1438
1439 wil_w(wil, vring->hwtail, vring->swhead);
1440 return 0;
1441
1442 dma_error:
1443 wil_err(wil, "TSO: DMA map page error\n");
1444 while (descs_used > 0) {
1445 struct wil_ctx *ctx;
1446
1447 i = (swhead + descs_used) % vring->size;
1448 d = (struct vring_tx_desc *)&vring->va[i].tx;
1449 _desc = &vring->va[i].tx;
1450 *d = *_desc;
1451 _desc->dma.status = TX_DMA_STATUS_DU;
1452 ctx = &vring->ctx[i];
1453 wil_txdesc_unmap(dev, d, ctx);
1454 if (ctx->skb)
1455 dev_kfree_skb_any(ctx->skb);
1456 memset(ctx, 0, sizeof(*ctx));
1457 descs_used--;
1458 }
1459
1460 err_exit:
1461 return -EINVAL;
1462 }
1463
1464 static int __wil_tx_vring(struct wil6210_priv *wil, struct vring *vring,
1465 struct sk_buff *skb)
1466 {
1467 struct device *dev = wil_to_dev(wil);
1468 struct vring_tx_desc dd, *d = &dd;
1469 volatile struct vring_tx_desc *_d;
1470 u32 swhead = vring->swhead;
1471 int avail = wil_vring_avail_tx(vring);
1472 int nr_frags = skb_shinfo(skb)->nr_frags;
1473 uint f = 0;
1474 int vring_index = vring - wil->vring_tx;
1475 struct vring_tx_data *txdata = &wil->vring_tx_data[vring_index];
1476 uint i = swhead;
1477 dma_addr_t pa;
1478 int used;
1479 bool mcast = (vring_index == wil->bcast_vring);
1480 uint len = skb_headlen(skb);
1481
1482 wil_dbg_txrx(wil, "%s() %d bytes to vring %d\n",
1483 __func__, skb->len, vring_index);
1484
1485 if (unlikely(!txdata->enabled))
1486 return -EINVAL;
1487
1488 if (unlikely(avail < 1 + nr_frags)) {
1489 wil_err_ratelimited(wil,
1490 "Tx ring[%2d] full. No space for %d fragments\n",
1491 vring_index, 1 + nr_frags);
1492 return -ENOMEM;
1493 }
1494 _d = &vring->va[i].tx;
1495
1496 pa = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
1497
1498 wil_dbg_txrx(wil, "Tx[%2d] skb %d bytes 0x%p -> %pad\n", vring_index,
1499 skb_headlen(skb), skb->data, &pa);
1500 wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1,
1501 skb->data, skb_headlen(skb), false);
1502
1503 if (unlikely(dma_mapping_error(dev, pa)))
1504 return -EINVAL;
1505 vring->ctx[i].mapped_as = wil_mapped_as_single;
1506 /* 1-st segment */
1507 wil_tx_desc_map(d, pa, len, vring_index);
1508 if (unlikely(mcast)) {
1509 d->mac.d[0] |= BIT(MAC_CFG_DESC_TX_0_MCS_EN_POS); /* MCS 0 */
1510 if (unlikely(len > WIL_BCAST_MCS0_LIMIT)) /* set MCS 1 */
1511 d->mac.d[0] |= (1 << MAC_CFG_DESC_TX_0_MCS_INDEX_POS);
1512 }
1513 /* Process TCP/UDP checksum offloading */
1514 if (unlikely(wil_tx_desc_offload_setup(d, skb))) {
1515 wil_err(wil, "Tx[%2d] Failed to set cksum, drop packet\n",
1516 vring_index);
1517 goto dma_error;
1518 }
1519
1520 vring->ctx[i].nr_frags = nr_frags;
1521 wil_tx_desc_set_nr_frags(d, nr_frags + 1);
1522
1523 /* middle segments */
1524 for (; f < nr_frags; f++) {
1525 const struct skb_frag_struct *frag =
1526 &skb_shinfo(skb)->frags[f];
1527 int len = skb_frag_size(frag);
1528
1529 *_d = *d;
1530 wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", vring_index, i);
1531 wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
1532 (const void *)d, sizeof(*d), false);
1533 i = (swhead + f + 1) % vring->size;
1534 _d = &vring->va[i].tx;
1535 pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag),
1536 DMA_TO_DEVICE);
1537 if (unlikely(dma_mapping_error(dev, pa)))
1538 goto dma_error;
1539 vring->ctx[i].mapped_as = wil_mapped_as_page;
1540 wil_tx_desc_map(d, pa, len, vring_index);
1541 /* no need to check return code -
1542 * if it succeeded for 1-st descriptor,
1543 * it will succeed here too
1544 */
1545 wil_tx_desc_offload_setup(d, skb);
1546 }
1547 /* for the last seg only */
1548 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS);
1549 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS);
1550 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
1551 *_d = *d;
1552 wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", vring_index, i);
1553 wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
1554 (const void *)d, sizeof(*d), false);
1555
1556 /* hold reference to skb
1557 * to prevent skb release before accounting
1558 * in case of immediate "tx done"
1559 */
1560 vring->ctx[i].skb = skb_get(skb);
1561
1562 /* performance monitoring */
1563 used = wil_vring_used_tx(vring);
1564 if (wil_val_in_range(vring_idle_trsh,
1565 used, used + nr_frags + 1)) {
1566 txdata->idle += get_cycles() - txdata->last_idle;
1567 wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n",
1568 vring_index, used, used + nr_frags + 1);
1569 }
1570
1571 /* advance swhead */
1572 wil_vring_advance_head(vring, nr_frags + 1);
1573 wil_dbg_txrx(wil, "Tx[%2d] swhead %d -> %d\n", vring_index, swhead,
1574 vring->swhead);
1575 trace_wil6210_tx(vring_index, swhead, skb->len, nr_frags);
1576
1577 /* make sure all writes to descriptors (shared memory) are done before
1578 * committing them to HW
1579 */
1580 wmb();
1581
1582 wil_w(wil, vring->hwtail, vring->swhead);
1583
1584 return 0;
1585 dma_error:
1586 /* unmap what we have mapped */
1587 nr_frags = f + 1; /* frags mapped + one for skb head */
1588 for (f = 0; f < nr_frags; f++) {
1589 struct wil_ctx *ctx;
1590
1591 i = (swhead + f) % vring->size;
1592 ctx = &vring->ctx[i];
1593 _d = &vring->va[i].tx;
1594 *d = *_d;
1595 _d->dma.status = TX_DMA_STATUS_DU;
1596 wil_txdesc_unmap(dev, d, ctx);
1597
1598 if (ctx->skb)
1599 dev_kfree_skb_any(ctx->skb);
1600
1601 memset(ctx, 0, sizeof(*ctx));
1602 }
1603
1604 return -EINVAL;
1605 }
1606
1607 static int wil_tx_vring(struct wil6210_priv *wil, struct vring *vring,
1608 struct sk_buff *skb)
1609 {
1610 int vring_index = vring - wil->vring_tx;
1611 struct vring_tx_data *txdata = &wil->vring_tx_data[vring_index];
1612 int rc;
1613
1614 spin_lock(&txdata->lock);
1615
1616 rc = (skb_is_gso(skb) ? __wil_tx_vring_tso : __wil_tx_vring)
1617 (wil, vring, skb);
1618
1619 spin_unlock(&txdata->lock);
1620
1621 return rc;
1622 }
1623
1624 netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1625 {
1626 struct wil6210_priv *wil = ndev_to_wil(ndev);
1627 struct ethhdr *eth = (void *)skb->data;
1628 bool bcast = is_multicast_ether_addr(eth->h_dest);
1629 struct vring *vring;
1630 static bool pr_once_fw;
1631 int rc;
1632
1633 wil_dbg_txrx(wil, "%s()\n", __func__);
1634 if (unlikely(!test_bit(wil_status_fwready, wil->status))) {
1635 if (!pr_once_fw) {
1636 wil_err(wil, "FW not ready\n");
1637 pr_once_fw = true;
1638 }
1639 goto drop;
1640 }
1641 if (unlikely(!test_bit(wil_status_fwconnected, wil->status))) {
1642 wil_err(wil, "FW not connected\n");
1643 goto drop;
1644 }
1645 if (unlikely(wil->wdev->iftype == NL80211_IFTYPE_MONITOR)) {
1646 wil_err(wil, "Xmit in monitor mode not supported\n");
1647 goto drop;
1648 }
1649 pr_once_fw = false;
1650
1651 /* find vring */
1652 if (wil->wdev->iftype == NL80211_IFTYPE_STATION) {
1653 /* in STA mode (ESS), all to same VRING */
1654 vring = wil_find_tx_vring_sta(wil, skb);
1655 } else { /* direct communication, find matching VRING */
1656 vring = bcast ? wil_find_tx_bcast(wil, skb) :
1657 wil_find_tx_ucast(wil, skb);
1658 }
1659 if (unlikely(!vring)) {
1660 wil_dbg_txrx(wil, "No Tx VRING found for %pM\n", eth->h_dest);
1661 goto drop;
1662 }
1663 /* set up vring entry */
1664 rc = wil_tx_vring(wil, vring, skb);
1665
1666 /* do we still have enough room in the vring? */
1667 if (unlikely(wil_vring_avail_tx(vring) < wil_vring_wmark_low(vring))) {
1668 netif_tx_stop_all_queues(wil_to_ndev(wil));
1669 wil_dbg_txrx(wil, "netif_tx_stop : ring full\n");
1670 }
1671
1672 switch (rc) {
1673 case 0:
1674 /* statistics will be updated on the tx_complete */
1675 dev_kfree_skb_any(skb);
1676 return NETDEV_TX_OK;
1677 case -ENOMEM:
1678 return NETDEV_TX_BUSY;
1679 default:
1680 break; /* goto drop; */
1681 }
1682 drop:
1683 ndev->stats.tx_dropped++;
1684 dev_kfree_skb_any(skb);
1685
1686 return NET_XMIT_DROP;
1687 }
1688
1689 static inline bool wil_need_txstat(struct sk_buff *skb)
1690 {
1691 struct ethhdr *eth = (void *)skb->data;
1692
1693 return is_unicast_ether_addr(eth->h_dest) && skb->sk &&
1694 (skb_shinfo(skb)->tx_flags & SKBTX_WIFI_STATUS);
1695 }
1696
1697 static inline void wil_consume_skb(struct sk_buff *skb, bool acked)
1698 {
1699 if (unlikely(wil_need_txstat(skb)))
1700 skb_complete_wifi_ack(skb, acked);
1701 else
1702 acked ? dev_consume_skb_any(skb) : dev_kfree_skb_any(skb);
1703 }
1704
1705 /**
1706 * Clean up transmitted skb's from the Tx VRING
1707 *
1708 * Return number of descriptors cleared
1709 *
1710 * Safe to call from IRQ
1711 */
1712 int wil_tx_complete(struct wil6210_priv *wil, int ringid)
1713 {
1714 struct net_device *ndev = wil_to_ndev(wil);
1715 struct device *dev = wil_to_dev(wil);
1716 struct vring *vring = &wil->vring_tx[ringid];
1717 struct vring_tx_data *txdata = &wil->vring_tx_data[ringid];
1718 int done = 0;
1719 int cid = wil->vring2cid_tid[ringid][0];
1720 struct wil_net_stats *stats = NULL;
1721 volatile struct vring_tx_desc *_d;
1722 int used_before_complete;
1723 int used_new;
1724
1725 if (unlikely(!vring->va)) {
1726 wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid);
1727 return 0;
1728 }
1729
1730 if (unlikely(!txdata->enabled)) {
1731 wil_info(wil, "Tx irq[%d]: vring disabled\n", ringid);
1732 return 0;
1733 }
1734
1735 wil_dbg_txrx(wil, "%s(%d)\n", __func__, ringid);
1736
1737 used_before_complete = wil_vring_used_tx(vring);
1738
1739 if (cid < WIL6210_MAX_CID)
1740 stats = &wil->sta[cid].stats;
1741
1742 while (!wil_vring_is_empty(vring)) {
1743 int new_swtail;
1744 struct wil_ctx *ctx = &vring->ctx[vring->swtail];
1745 /**
1746 * For the fragmented skb, HW will set DU bit only for the
1747 * last fragment. look for it.
1748 * In TSO the first DU will include hdr desc
1749 */
1750 int lf = (vring->swtail + ctx->nr_frags) % vring->size;
1751 /* TODO: check we are not past head */
1752
1753 _d = &vring->va[lf].tx;
1754 if (unlikely(!(_d->dma.status & TX_DMA_STATUS_DU)))
1755 break;
1756
1757 new_swtail = (lf + 1) % vring->size;
1758 while (vring->swtail != new_swtail) {
1759 struct vring_tx_desc dd, *d = &dd;
1760 u16 dmalen;
1761 struct sk_buff *skb;
1762
1763 ctx = &vring->ctx[vring->swtail];
1764 skb = ctx->skb;
1765 _d = &vring->va[vring->swtail].tx;
1766
1767 *d = *_d;
1768
1769 dmalen = le16_to_cpu(d->dma.length);
1770 trace_wil6210_tx_done(ringid, vring->swtail, dmalen,
1771 d->dma.error);
1772 wil_dbg_txrx(wil,
1773 "TxC[%2d][%3d] : %d bytes, status 0x%02x err 0x%02x\n",
1774 ringid, vring->swtail, dmalen,
1775 d->dma.status, d->dma.error);
1776 wil_hex_dump_txrx("TxCD ", DUMP_PREFIX_NONE, 32, 4,
1777 (const void *)d, sizeof(*d), false);
1778
1779 wil_txdesc_unmap(dev, d, ctx);
1780
1781 if (skb) {
1782 if (likely(d->dma.error == 0)) {
1783 ndev->stats.tx_packets++;
1784 ndev->stats.tx_bytes += skb->len;
1785 if (stats) {
1786 stats->tx_packets++;
1787 stats->tx_bytes += skb->len;
1788 }
1789 } else {
1790 ndev->stats.tx_errors++;
1791 if (stats)
1792 stats->tx_errors++;
1793 }
1794 wil_consume_skb(skb, d->dma.error == 0);
1795 }
1796 memset(ctx, 0, sizeof(*ctx));
1797 /* There is no need to touch HW descriptor:
1798 * - ststus bit TX_DMA_STATUS_DU is set by design,
1799 * so hardware will not try to process this desc.,
1800 * - rest of descriptor will be initialized on Tx.
1801 */
1802 vring->swtail = wil_vring_next_tail(vring);
1803 done++;
1804 }
1805 }
1806
1807 /* performance monitoring */
1808 used_new = wil_vring_used_tx(vring);
1809 if (wil_val_in_range(vring_idle_trsh,
1810 used_new, used_before_complete)) {
1811 wil_dbg_txrx(wil, "Ring[%2d] idle %d -> %d\n",
1812 ringid, used_before_complete, used_new);
1813 txdata->last_idle = get_cycles();
1814 }
1815
1816 if (wil_vring_avail_tx(vring) > wil_vring_wmark_high(vring)) {
1817 wil_dbg_txrx(wil, "netif_tx_wake : ring not full\n");
1818 netif_tx_wake_all_queues(wil_to_ndev(wil));
1819 }
1820
1821 return done;
1822 }
This page took 0.070686 seconds and 5 git commands to generate.