Merge branches 'for-4.6/upstream-fixes', 'for-4.7/asus', 'for-4.7/hidraw' and 'for...
[deliverable/linux.git] / drivers / net / wireless / ath / wil6210 / txrx.c
1 /*
2 * Copyright (c) 2012-2016 Qualcomm Atheros, Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/etherdevice.h>
18 #include <net/ieee80211_radiotap.h>
19 #include <linux/if_arp.h>
20 #include <linux/moduleparam.h>
21 #include <linux/ip.h>
22 #include <linux/ipv6.h>
23 #include <net/ipv6.h>
24 #include <linux/prefetch.h>
25
26 #include "wil6210.h"
27 #include "wmi.h"
28 #include "txrx.h"
29 #include "trace.h"
30
31 static bool rtap_include_phy_info;
32 module_param(rtap_include_phy_info, bool, S_IRUGO);
33 MODULE_PARM_DESC(rtap_include_phy_info,
34 " Include PHY info in the radiotap header, default - no");
35
36 bool rx_align_2;
37 module_param(rx_align_2, bool, S_IRUGO);
38 MODULE_PARM_DESC(rx_align_2, " align Rx buffers on 4*n+2, default - no");
39
40 static inline uint wil_rx_snaplen(void)
41 {
42 return rx_align_2 ? 6 : 0;
43 }
44
45 static inline int wil_vring_is_empty(struct vring *vring)
46 {
47 return vring->swhead == vring->swtail;
48 }
49
50 static inline u32 wil_vring_next_tail(struct vring *vring)
51 {
52 return (vring->swtail + 1) % vring->size;
53 }
54
55 static inline void wil_vring_advance_head(struct vring *vring, int n)
56 {
57 vring->swhead = (vring->swhead + n) % vring->size;
58 }
59
60 static inline int wil_vring_is_full(struct vring *vring)
61 {
62 return wil_vring_next_tail(vring) == vring->swhead;
63 }
64
65 /* Used space in Tx Vring */
66 static inline int wil_vring_used_tx(struct vring *vring)
67 {
68 u32 swhead = vring->swhead;
69 u32 swtail = vring->swtail;
70 return (vring->size + swhead - swtail) % vring->size;
71 }
72
73 /* Available space in Tx Vring */
74 static inline int wil_vring_avail_tx(struct vring *vring)
75 {
76 return vring->size - wil_vring_used_tx(vring) - 1;
77 }
78
79 /* wil_vring_wmark_low - low watermark for available descriptor space */
80 static inline int wil_vring_wmark_low(struct vring *vring)
81 {
82 return vring->size/8;
83 }
84
85 /* wil_vring_wmark_high - high watermark for available descriptor space */
86 static inline int wil_vring_wmark_high(struct vring *vring)
87 {
88 return vring->size/4;
89 }
90
91 /* wil_val_in_range - check if value in [min,max) */
92 static inline bool wil_val_in_range(int val, int min, int max)
93 {
94 return val >= min && val < max;
95 }
96
97 static int wil_vring_alloc(struct wil6210_priv *wil, struct vring *vring)
98 {
99 struct device *dev = wil_to_dev(wil);
100 size_t sz = vring->size * sizeof(vring->va[0]);
101 uint i;
102
103 wil_dbg_misc(wil, "%s()\n", __func__);
104
105 BUILD_BUG_ON(sizeof(vring->va[0]) != 32);
106
107 vring->swhead = 0;
108 vring->swtail = 0;
109 vring->ctx = kcalloc(vring->size, sizeof(vring->ctx[0]), GFP_KERNEL);
110 if (!vring->ctx) {
111 vring->va = NULL;
112 return -ENOMEM;
113 }
114 /* vring->va should be aligned on its size rounded up to power of 2
115 * This is granted by the dma_alloc_coherent
116 */
117 vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL);
118 if (!vring->va) {
119 kfree(vring->ctx);
120 vring->ctx = NULL;
121 return -ENOMEM;
122 }
123 /* initially, all descriptors are SW owned
124 * For Tx and Rx, ownership bit is at the same location, thus
125 * we can use any
126 */
127 for (i = 0; i < vring->size; i++) {
128 volatile struct vring_tx_desc *_d = &vring->va[i].tx;
129
130 _d->dma.status = TX_DMA_STATUS_DU;
131 }
132
133 wil_dbg_misc(wil, "vring[%d] 0x%p:%pad 0x%p\n", vring->size,
134 vring->va, &vring->pa, vring->ctx);
135
136 return 0;
137 }
138
139 static void wil_txdesc_unmap(struct device *dev, struct vring_tx_desc *d,
140 struct wil_ctx *ctx)
141 {
142 dma_addr_t pa = wil_desc_addr(&d->dma.addr);
143 u16 dmalen = le16_to_cpu(d->dma.length);
144
145 switch (ctx->mapped_as) {
146 case wil_mapped_as_single:
147 dma_unmap_single(dev, pa, dmalen, DMA_TO_DEVICE);
148 break;
149 case wil_mapped_as_page:
150 dma_unmap_page(dev, pa, dmalen, DMA_TO_DEVICE);
151 break;
152 default:
153 break;
154 }
155 }
156
157 static void wil_vring_free(struct wil6210_priv *wil, struct vring *vring,
158 int tx)
159 {
160 struct device *dev = wil_to_dev(wil);
161 size_t sz = vring->size * sizeof(vring->va[0]);
162
163 lockdep_assert_held(&wil->mutex);
164 if (tx) {
165 int vring_index = vring - wil->vring_tx;
166
167 wil_dbg_misc(wil, "free Tx vring %d [%d] 0x%p:%pad 0x%p\n",
168 vring_index, vring->size, vring->va,
169 &vring->pa, vring->ctx);
170 } else {
171 wil_dbg_misc(wil, "free Rx vring [%d] 0x%p:%pad 0x%p\n",
172 vring->size, vring->va,
173 &vring->pa, vring->ctx);
174 }
175
176 while (!wil_vring_is_empty(vring)) {
177 dma_addr_t pa;
178 u16 dmalen;
179 struct wil_ctx *ctx;
180
181 if (tx) {
182 struct vring_tx_desc dd, *d = &dd;
183 volatile struct vring_tx_desc *_d =
184 &vring->va[vring->swtail].tx;
185
186 ctx = &vring->ctx[vring->swtail];
187 *d = *_d;
188 wil_txdesc_unmap(dev, d, ctx);
189 if (ctx->skb)
190 dev_kfree_skb_any(ctx->skb);
191 vring->swtail = wil_vring_next_tail(vring);
192 } else { /* rx */
193 struct vring_rx_desc dd, *d = &dd;
194 volatile struct vring_rx_desc *_d =
195 &vring->va[vring->swhead].rx;
196
197 ctx = &vring->ctx[vring->swhead];
198 *d = *_d;
199 pa = wil_desc_addr(&d->dma.addr);
200 dmalen = le16_to_cpu(d->dma.length);
201 dma_unmap_single(dev, pa, dmalen, DMA_FROM_DEVICE);
202 kfree_skb(ctx->skb);
203 wil_vring_advance_head(vring, 1);
204 }
205 }
206 dma_free_coherent(dev, sz, (void *)vring->va, vring->pa);
207 kfree(vring->ctx);
208 vring->pa = 0;
209 vring->va = NULL;
210 vring->ctx = NULL;
211 }
212
213 /**
214 * Allocate one skb for Rx VRING
215 *
216 * Safe to call from IRQ
217 */
218 static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct vring *vring,
219 u32 i, int headroom)
220 {
221 struct device *dev = wil_to_dev(wil);
222 unsigned int sz = mtu_max + ETH_HLEN + wil_rx_snaplen();
223 struct vring_rx_desc dd, *d = &dd;
224 volatile struct vring_rx_desc *_d = &vring->va[i].rx;
225 dma_addr_t pa;
226 struct sk_buff *skb = dev_alloc_skb(sz + headroom);
227
228 if (unlikely(!skb))
229 return -ENOMEM;
230
231 skb_reserve(skb, headroom);
232 skb_put(skb, sz);
233
234 pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE);
235 if (unlikely(dma_mapping_error(dev, pa))) {
236 kfree_skb(skb);
237 return -ENOMEM;
238 }
239
240 d->dma.d0 = RX_DMA_D0_CMD_DMA_RT | RX_DMA_D0_CMD_DMA_IT;
241 wil_desc_addr_set(&d->dma.addr, pa);
242 /* ip_length don't care */
243 /* b11 don't care */
244 /* error don't care */
245 d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
246 d->dma.length = cpu_to_le16(sz);
247 *_d = *d;
248 vring->ctx[i].skb = skb;
249
250 return 0;
251 }
252
253 /**
254 * Adds radiotap header
255 *
256 * Any error indicated as "Bad FCS"
257 *
258 * Vendor data for 04:ce:14-1 (Wilocity-1) consists of:
259 * - Rx descriptor: 32 bytes
260 * - Phy info
261 */
262 static void wil_rx_add_radiotap_header(struct wil6210_priv *wil,
263 struct sk_buff *skb)
264 {
265 struct wireless_dev *wdev = wil->wdev;
266 struct wil6210_rtap {
267 struct ieee80211_radiotap_header rthdr;
268 /* fields should be in the order of bits in rthdr.it_present */
269 /* flags */
270 u8 flags;
271 /* channel */
272 __le16 chnl_freq __aligned(2);
273 __le16 chnl_flags;
274 /* MCS */
275 u8 mcs_present;
276 u8 mcs_flags;
277 u8 mcs_index;
278 } __packed;
279 struct wil6210_rtap_vendor {
280 struct wil6210_rtap rtap;
281 /* vendor */
282 u8 vendor_oui[3] __aligned(2);
283 u8 vendor_ns;
284 __le16 vendor_skip;
285 u8 vendor_data[0];
286 } __packed;
287 struct vring_rx_desc *d = wil_skb_rxdesc(skb);
288 struct wil6210_rtap_vendor *rtap_vendor;
289 int rtap_len = sizeof(struct wil6210_rtap);
290 int phy_length = 0; /* phy info header size, bytes */
291 static char phy_data[128];
292 struct ieee80211_channel *ch = wdev->preset_chandef.chan;
293
294 if (rtap_include_phy_info) {
295 rtap_len = sizeof(*rtap_vendor) + sizeof(*d);
296 /* calculate additional length */
297 if (d->dma.status & RX_DMA_STATUS_PHY_INFO) {
298 /**
299 * PHY info starts from 8-byte boundary
300 * there are 8-byte lines, last line may be partially
301 * written (HW bug), thus FW configures for last line
302 * to be excessive. Driver skips this last line.
303 */
304 int len = min_t(int, 8 + sizeof(phy_data),
305 wil_rxdesc_phy_length(d));
306
307 if (len > 8) {
308 void *p = skb_tail_pointer(skb);
309 void *pa = PTR_ALIGN(p, 8);
310
311 if (skb_tailroom(skb) >= len + (pa - p)) {
312 phy_length = len - 8;
313 memcpy(phy_data, pa, phy_length);
314 }
315 }
316 }
317 rtap_len += phy_length;
318 }
319
320 if (skb_headroom(skb) < rtap_len &&
321 pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) {
322 wil_err(wil, "Unable to expand headrom to %d\n", rtap_len);
323 return;
324 }
325
326 rtap_vendor = (void *)skb_push(skb, rtap_len);
327 memset(rtap_vendor, 0, rtap_len);
328
329 rtap_vendor->rtap.rthdr.it_version = PKTHDR_RADIOTAP_VERSION;
330 rtap_vendor->rtap.rthdr.it_len = cpu_to_le16(rtap_len);
331 rtap_vendor->rtap.rthdr.it_present = cpu_to_le32(
332 (1 << IEEE80211_RADIOTAP_FLAGS) |
333 (1 << IEEE80211_RADIOTAP_CHANNEL) |
334 (1 << IEEE80211_RADIOTAP_MCS));
335 if (d->dma.status & RX_DMA_STATUS_ERROR)
336 rtap_vendor->rtap.flags |= IEEE80211_RADIOTAP_F_BADFCS;
337
338 rtap_vendor->rtap.chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320);
339 rtap_vendor->rtap.chnl_flags = cpu_to_le16(0);
340
341 rtap_vendor->rtap.mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS;
342 rtap_vendor->rtap.mcs_flags = 0;
343 rtap_vendor->rtap.mcs_index = wil_rxdesc_mcs(d);
344
345 if (rtap_include_phy_info) {
346 rtap_vendor->rtap.rthdr.it_present |= cpu_to_le32(1 <<
347 IEEE80211_RADIOTAP_VENDOR_NAMESPACE);
348 /* OUI for Wilocity 04:ce:14 */
349 rtap_vendor->vendor_oui[0] = 0x04;
350 rtap_vendor->vendor_oui[1] = 0xce;
351 rtap_vendor->vendor_oui[2] = 0x14;
352 rtap_vendor->vendor_ns = 1;
353 /* Rx descriptor + PHY data */
354 rtap_vendor->vendor_skip = cpu_to_le16(sizeof(*d) +
355 phy_length);
356 memcpy(rtap_vendor->vendor_data, (void *)d, sizeof(*d));
357 memcpy(rtap_vendor->vendor_data + sizeof(*d), phy_data,
358 phy_length);
359 }
360 }
361
362 /* similar to ieee80211_ version, but FC contain only 1-st byte */
363 static inline int wil_is_back_req(u8 fc)
364 {
365 return (fc & (IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
366 (IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK_REQ);
367 }
368
369 /**
370 * reap 1 frame from @swhead
371 *
372 * Rx descriptor copied to skb->cb
373 *
374 * Safe to call from IRQ
375 */
376 static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil,
377 struct vring *vring)
378 {
379 struct device *dev = wil_to_dev(wil);
380 struct net_device *ndev = wil_to_ndev(wil);
381 volatile struct vring_rx_desc *_d;
382 struct vring_rx_desc *d;
383 struct sk_buff *skb;
384 dma_addr_t pa;
385 unsigned int snaplen = wil_rx_snaplen();
386 unsigned int sz = mtu_max + ETH_HLEN + snaplen;
387 u16 dmalen;
388 u8 ftype;
389 int cid;
390 int i;
391 struct wil_net_stats *stats;
392
393 BUILD_BUG_ON(sizeof(struct vring_rx_desc) > sizeof(skb->cb));
394
395 again:
396 if (unlikely(wil_vring_is_empty(vring)))
397 return NULL;
398
399 i = (int)vring->swhead;
400 _d = &vring->va[i].rx;
401 if (unlikely(!(_d->dma.status & RX_DMA_STATUS_DU))) {
402 /* it is not error, we just reached end of Rx done area */
403 return NULL;
404 }
405
406 skb = vring->ctx[i].skb;
407 vring->ctx[i].skb = NULL;
408 wil_vring_advance_head(vring, 1);
409 if (!skb) {
410 wil_err(wil, "No Rx skb at [%d]\n", i);
411 goto again;
412 }
413 d = wil_skb_rxdesc(skb);
414 *d = *_d;
415 pa = wil_desc_addr(&d->dma.addr);
416
417 dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE);
418 dmalen = le16_to_cpu(d->dma.length);
419
420 trace_wil6210_rx(i, d);
421 wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", i, dmalen);
422 wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
423 (const void *)d, sizeof(*d), false);
424
425 cid = wil_rxdesc_cid(d);
426 stats = &wil->sta[cid].stats;
427
428 if (unlikely(dmalen > sz)) {
429 wil_err(wil, "Rx size too large: %d bytes!\n", dmalen);
430 stats->rx_large_frame++;
431 kfree_skb(skb);
432 goto again;
433 }
434 skb_trim(skb, dmalen);
435
436 prefetch(skb->data);
437
438 wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
439 skb->data, skb_headlen(skb), false);
440
441 stats->last_mcs_rx = wil_rxdesc_mcs(d);
442 if (stats->last_mcs_rx < ARRAY_SIZE(stats->rx_per_mcs))
443 stats->rx_per_mcs[stats->last_mcs_rx]++;
444
445 /* use radiotap header only if required */
446 if (ndev->type == ARPHRD_IEEE80211_RADIOTAP)
447 wil_rx_add_radiotap_header(wil, skb);
448
449 /* no extra checks if in sniffer mode */
450 if (ndev->type != ARPHRD_ETHER)
451 return skb;
452 /* Non-data frames may be delivered through Rx DMA channel (ex: BAR)
453 * Driver should recognize it by frame type, that is found
454 * in Rx descriptor. If type is not data, it is 802.11 frame as is
455 */
456 ftype = wil_rxdesc_ftype(d) << 2;
457 if (unlikely(ftype != IEEE80211_FTYPE_DATA)) {
458 u8 fc1 = wil_rxdesc_fc1(d);
459 int mid = wil_rxdesc_mid(d);
460 int tid = wil_rxdesc_tid(d);
461 u16 seq = wil_rxdesc_seq(d);
462
463 wil_dbg_txrx(wil,
464 "Non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
465 fc1, mid, cid, tid, seq);
466 stats->rx_non_data_frame++;
467 if (wil_is_back_req(fc1)) {
468 wil_dbg_txrx(wil,
469 "BAR: MID %d CID %d TID %d Seq 0x%03x\n",
470 mid, cid, tid, seq);
471 wil_rx_bar(wil, cid, tid, seq);
472 } else {
473 /* print again all info. One can enable only this
474 * without overhead for printing every Rx frame
475 */
476 wil_dbg_txrx(wil,
477 "Unhandled non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
478 fc1, mid, cid, tid, seq);
479 wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
480 (const void *)d, sizeof(*d), false);
481 wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
482 skb->data, skb_headlen(skb), false);
483 }
484 kfree_skb(skb);
485 goto again;
486 }
487
488 if (unlikely(skb->len < ETH_HLEN + snaplen)) {
489 wil_err(wil, "Short frame, len = %d\n", skb->len);
490 stats->rx_short_frame++;
491 kfree_skb(skb);
492 goto again;
493 }
494
495 /* L4 IDENT is on when HW calculated checksum, check status
496 * and in case of error drop the packet
497 * higher stack layers will handle retransmission (if required)
498 */
499 if (likely(d->dma.status & RX_DMA_STATUS_L4I)) {
500 /* L4 protocol identified, csum calculated */
501 if (likely((d->dma.error & RX_DMA_ERROR_L4_ERR) == 0))
502 skb->ip_summed = CHECKSUM_UNNECESSARY;
503 /* If HW reports bad checksum, let IP stack re-check it
504 * For example, HW don't understand Microsoft IP stack that
505 * mis-calculates TCP checksum - if it should be 0x0,
506 * it writes 0xffff in violation of RFC 1624
507 */
508 }
509
510 if (snaplen) {
511 /* Packet layout
512 * +-------+-------+---------+------------+------+
513 * | SA(6) | DA(6) | SNAP(6) | ETHTYPE(2) | DATA |
514 * +-------+-------+---------+------------+------+
515 * Need to remove SNAP, shifting SA and DA forward
516 */
517 memmove(skb->data + snaplen, skb->data, 2 * ETH_ALEN);
518 skb_pull(skb, snaplen);
519 }
520
521 return skb;
522 }
523
524 /**
525 * allocate and fill up to @count buffers in rx ring
526 * buffers posted at @swtail
527 */
528 static int wil_rx_refill(struct wil6210_priv *wil, int count)
529 {
530 struct net_device *ndev = wil_to_ndev(wil);
531 struct vring *v = &wil->vring_rx;
532 u32 next_tail;
533 int rc = 0;
534 int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ?
535 WIL6210_RTAP_SIZE : 0;
536
537 for (; next_tail = wil_vring_next_tail(v),
538 (next_tail != v->swhead) && (count-- > 0);
539 v->swtail = next_tail) {
540 rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom);
541 if (unlikely(rc)) {
542 wil_err(wil, "Error %d in wil_rx_refill[%d]\n",
543 rc, v->swtail);
544 break;
545 }
546 }
547 wil_w(wil, v->hwtail, v->swtail);
548
549 return rc;
550 }
551
552 /*
553 * Pass Rx packet to the netif. Update statistics.
554 * Called in softirq context (NAPI poll).
555 */
556 void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev)
557 {
558 gro_result_t rc = GRO_NORMAL;
559 struct wil6210_priv *wil = ndev_to_wil(ndev);
560 struct wireless_dev *wdev = wil_to_wdev(wil);
561 unsigned int len = skb->len;
562 struct vring_rx_desc *d = wil_skb_rxdesc(skb);
563 int cid = wil_rxdesc_cid(d); /* always 0..7, no need to check */
564 struct ethhdr *eth = (void *)skb->data;
565 /* here looking for DA, not A1, thus Rxdesc's 'mcast' indication
566 * is not suitable, need to look at data
567 */
568 int mcast = is_multicast_ether_addr(eth->h_dest);
569 struct wil_net_stats *stats = &wil->sta[cid].stats;
570 struct sk_buff *xmit_skb = NULL;
571 static const char * const gro_res_str[] = {
572 [GRO_MERGED] = "GRO_MERGED",
573 [GRO_MERGED_FREE] = "GRO_MERGED_FREE",
574 [GRO_HELD] = "GRO_HELD",
575 [GRO_NORMAL] = "GRO_NORMAL",
576 [GRO_DROP] = "GRO_DROP",
577 };
578
579 if (ndev->features & NETIF_F_RXHASH)
580 /* fake L4 to ensure it won't be re-calculated later
581 * set hash to any non-zero value to activate rps
582 * mechanism, core will be chosen according
583 * to user-level rps configuration.
584 */
585 skb_set_hash(skb, 1, PKT_HASH_TYPE_L4);
586
587 skb_orphan(skb);
588
589 if (wdev->iftype == NL80211_IFTYPE_AP && !wil->ap_isolate) {
590 if (mcast) {
591 /* send multicast frames both to higher layers in
592 * local net stack and back to the wireless medium
593 */
594 xmit_skb = skb_copy(skb, GFP_ATOMIC);
595 } else {
596 int xmit_cid = wil_find_cid(wil, eth->h_dest);
597
598 if (xmit_cid >= 0) {
599 /* The destination station is associated to
600 * this AP (in this VLAN), so send the frame
601 * directly to it and do not pass it to local
602 * net stack.
603 */
604 xmit_skb = skb;
605 skb = NULL;
606 }
607 }
608 }
609 if (xmit_skb) {
610 /* Send to wireless media and increase priority by 256 to
611 * keep the received priority instead of reclassifying
612 * the frame (see cfg80211_classify8021d).
613 */
614 xmit_skb->dev = ndev;
615 xmit_skb->priority += 256;
616 xmit_skb->protocol = htons(ETH_P_802_3);
617 skb_reset_network_header(xmit_skb);
618 skb_reset_mac_header(xmit_skb);
619 wil_dbg_txrx(wil, "Rx -> Tx %d bytes\n", len);
620 dev_queue_xmit(xmit_skb);
621 }
622
623 if (skb) { /* deliver to local stack */
624
625 skb->protocol = eth_type_trans(skb, ndev);
626 rc = napi_gro_receive(&wil->napi_rx, skb);
627 wil_dbg_txrx(wil, "Rx complete %d bytes => %s\n",
628 len, gro_res_str[rc]);
629 }
630 /* statistics. rc set to GRO_NORMAL for AP bridging */
631 if (unlikely(rc == GRO_DROP)) {
632 ndev->stats.rx_dropped++;
633 stats->rx_dropped++;
634 wil_dbg_txrx(wil, "Rx drop %d bytes\n", len);
635 } else {
636 ndev->stats.rx_packets++;
637 stats->rx_packets++;
638 ndev->stats.rx_bytes += len;
639 stats->rx_bytes += len;
640 if (mcast)
641 ndev->stats.multicast++;
642 }
643 }
644
645 /**
646 * Proceed all completed skb's from Rx VRING
647 *
648 * Safe to call from NAPI poll, i.e. softirq with interrupts enabled
649 */
650 void wil_rx_handle(struct wil6210_priv *wil, int *quota)
651 {
652 struct net_device *ndev = wil_to_ndev(wil);
653 struct vring *v = &wil->vring_rx;
654 struct sk_buff *skb;
655
656 if (unlikely(!v->va)) {
657 wil_err(wil, "Rx IRQ while Rx not yet initialized\n");
658 return;
659 }
660 wil_dbg_txrx(wil, "%s()\n", __func__);
661 while ((*quota > 0) && (NULL != (skb = wil_vring_reap_rx(wil, v)))) {
662 (*quota)--;
663
664 if (wil->wdev->iftype == NL80211_IFTYPE_MONITOR) {
665 skb->dev = ndev;
666 skb_reset_mac_header(skb);
667 skb->ip_summed = CHECKSUM_UNNECESSARY;
668 skb->pkt_type = PACKET_OTHERHOST;
669 skb->protocol = htons(ETH_P_802_2);
670 wil_netif_rx_any(skb, ndev);
671 } else {
672 wil_rx_reorder(wil, skb);
673 }
674 }
675 wil_rx_refill(wil, v->size);
676 }
677
678 int wil_rx_init(struct wil6210_priv *wil, u16 size)
679 {
680 struct vring *vring = &wil->vring_rx;
681 int rc;
682
683 wil_dbg_misc(wil, "%s()\n", __func__);
684
685 if (vring->va) {
686 wil_err(wil, "Rx ring already allocated\n");
687 return -EINVAL;
688 }
689
690 vring->size = size;
691 rc = wil_vring_alloc(wil, vring);
692 if (rc)
693 return rc;
694
695 rc = wmi_rx_chain_add(wil, vring);
696 if (rc)
697 goto err_free;
698
699 rc = wil_rx_refill(wil, vring->size);
700 if (rc)
701 goto err_free;
702
703 return 0;
704 err_free:
705 wil_vring_free(wil, vring, 0);
706
707 return rc;
708 }
709
710 void wil_rx_fini(struct wil6210_priv *wil)
711 {
712 struct vring *vring = &wil->vring_rx;
713
714 wil_dbg_misc(wil, "%s()\n", __func__);
715
716 if (vring->va)
717 wil_vring_free(wil, vring, 0);
718 }
719
720 static inline void wil_tx_data_init(struct vring_tx_data *txdata)
721 {
722 spin_lock_bh(&txdata->lock);
723 txdata->dot1x_open = 0;
724 txdata->enabled = 0;
725 txdata->idle = 0;
726 txdata->last_idle = 0;
727 txdata->begin = 0;
728 txdata->agg_wsize = 0;
729 txdata->agg_timeout = 0;
730 txdata->agg_amsdu = 0;
731 txdata->addba_in_progress = false;
732 spin_unlock_bh(&txdata->lock);
733 }
734
735 int wil_vring_init_tx(struct wil6210_priv *wil, int id, int size,
736 int cid, int tid)
737 {
738 int rc;
739 struct wmi_vring_cfg_cmd cmd = {
740 .action = cpu_to_le32(WMI_VRING_CMD_ADD),
741 .vring_cfg = {
742 .tx_sw_ring = {
743 .max_mpdu_size =
744 cpu_to_le16(wil_mtu2macbuf(mtu_max)),
745 .ring_size = cpu_to_le16(size),
746 },
747 .ringid = id,
748 .cidxtid = mk_cidxtid(cid, tid),
749 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
750 .mac_ctrl = 0,
751 .to_resolution = 0,
752 .agg_max_wsize = 0,
753 .schd_params = {
754 .priority = cpu_to_le16(0),
755 .timeslot_us = cpu_to_le16(0xfff),
756 },
757 },
758 };
759 struct {
760 struct wil6210_mbox_hdr_wmi wmi;
761 struct wmi_vring_cfg_done_event cmd;
762 } __packed reply;
763 struct vring *vring = &wil->vring_tx[id];
764 struct vring_tx_data *txdata = &wil->vring_tx_data[id];
765
766 wil_dbg_misc(wil, "%s() max_mpdu_size %d\n", __func__,
767 cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
768 lockdep_assert_held(&wil->mutex);
769
770 if (vring->va) {
771 wil_err(wil, "Tx ring [%d] already allocated\n", id);
772 rc = -EINVAL;
773 goto out;
774 }
775
776 wil_tx_data_init(txdata);
777 vring->size = size;
778 rc = wil_vring_alloc(wil, vring);
779 if (rc)
780 goto out;
781
782 wil->vring2cid_tid[id][0] = cid;
783 wil->vring2cid_tid[id][1] = tid;
784
785 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
786
787 if (!wil->privacy)
788 txdata->dot1x_open = true;
789 rc = wmi_call(wil, WMI_VRING_CFG_CMDID, &cmd, sizeof(cmd),
790 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
791 if (rc)
792 goto out_free;
793
794 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
795 wil_err(wil, "Tx config failed, status 0x%02x\n",
796 reply.cmd.status);
797 rc = -EINVAL;
798 goto out_free;
799 }
800 vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
801
802 txdata->enabled = 1;
803 if (txdata->dot1x_open && (agg_wsize >= 0))
804 wil_addba_tx_request(wil, id, agg_wsize);
805
806 return 0;
807 out_free:
808 spin_lock_bh(&txdata->lock);
809 txdata->dot1x_open = false;
810 txdata->enabled = 0;
811 spin_unlock_bh(&txdata->lock);
812 wil_vring_free(wil, vring, 1);
813 wil->vring2cid_tid[id][0] = WIL6210_MAX_CID;
814 wil->vring2cid_tid[id][1] = 0;
815
816 out:
817
818 return rc;
819 }
820
821 int wil_vring_init_bcast(struct wil6210_priv *wil, int id, int size)
822 {
823 int rc;
824 struct wmi_bcast_vring_cfg_cmd cmd = {
825 .action = cpu_to_le32(WMI_VRING_CMD_ADD),
826 .vring_cfg = {
827 .tx_sw_ring = {
828 .max_mpdu_size =
829 cpu_to_le16(wil_mtu2macbuf(mtu_max)),
830 .ring_size = cpu_to_le16(size),
831 },
832 .ringid = id,
833 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
834 },
835 };
836 struct {
837 struct wil6210_mbox_hdr_wmi wmi;
838 struct wmi_vring_cfg_done_event cmd;
839 } __packed reply;
840 struct vring *vring = &wil->vring_tx[id];
841 struct vring_tx_data *txdata = &wil->vring_tx_data[id];
842
843 wil_dbg_misc(wil, "%s() max_mpdu_size %d\n", __func__,
844 cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
845 lockdep_assert_held(&wil->mutex);
846
847 if (vring->va) {
848 wil_err(wil, "Tx ring [%d] already allocated\n", id);
849 rc = -EINVAL;
850 goto out;
851 }
852
853 wil_tx_data_init(txdata);
854 vring->size = size;
855 rc = wil_vring_alloc(wil, vring);
856 if (rc)
857 goto out;
858
859 wil->vring2cid_tid[id][0] = WIL6210_MAX_CID; /* CID */
860 wil->vring2cid_tid[id][1] = 0; /* TID */
861
862 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
863
864 if (!wil->privacy)
865 txdata->dot1x_open = true;
866 rc = wmi_call(wil, WMI_BCAST_VRING_CFG_CMDID, &cmd, sizeof(cmd),
867 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
868 if (rc)
869 goto out_free;
870
871 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
872 wil_err(wil, "Tx config failed, status 0x%02x\n",
873 reply.cmd.status);
874 rc = -EINVAL;
875 goto out_free;
876 }
877 vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
878
879 txdata->enabled = 1;
880
881 return 0;
882 out_free:
883 spin_lock_bh(&txdata->lock);
884 txdata->enabled = 0;
885 txdata->dot1x_open = false;
886 spin_unlock_bh(&txdata->lock);
887 wil_vring_free(wil, vring, 1);
888 out:
889
890 return rc;
891 }
892
893 void wil_vring_fini_tx(struct wil6210_priv *wil, int id)
894 {
895 struct vring *vring = &wil->vring_tx[id];
896 struct vring_tx_data *txdata = &wil->vring_tx_data[id];
897
898 lockdep_assert_held(&wil->mutex);
899
900 if (!vring->va)
901 return;
902
903 wil_dbg_misc(wil, "%s() id=%d\n", __func__, id);
904
905 spin_lock_bh(&txdata->lock);
906 txdata->dot1x_open = false;
907 txdata->enabled = 0; /* no Tx can be in progress or start anew */
908 spin_unlock_bh(&txdata->lock);
909 /* make sure NAPI won't touch this vring */
910 if (test_bit(wil_status_napi_en, wil->status))
911 napi_synchronize(&wil->napi_tx);
912
913 wil_vring_free(wil, vring, 1);
914 }
915
916 static struct vring *wil_find_tx_ucast(struct wil6210_priv *wil,
917 struct sk_buff *skb)
918 {
919 int i;
920 struct ethhdr *eth = (void *)skb->data;
921 int cid = wil_find_cid(wil, eth->h_dest);
922
923 if (cid < 0)
924 return NULL;
925
926 /* TODO: fix for multiple TID */
927 for (i = 0; i < ARRAY_SIZE(wil->vring2cid_tid); i++) {
928 if (!wil->vring_tx_data[i].dot1x_open &&
929 (skb->protocol != cpu_to_be16(ETH_P_PAE)))
930 continue;
931 if (wil->vring2cid_tid[i][0] == cid) {
932 struct vring *v = &wil->vring_tx[i];
933 struct vring_tx_data *txdata = &wil->vring_tx_data[i];
934
935 wil_dbg_txrx(wil, "%s(%pM) -> [%d]\n",
936 __func__, eth->h_dest, i);
937 if (v->va && txdata->enabled) {
938 return v;
939 } else {
940 wil_dbg_txrx(wil, "vring[%d] not valid\n", i);
941 return NULL;
942 }
943 }
944 }
945
946 return NULL;
947 }
948
949 static int wil_tx_vring(struct wil6210_priv *wil, struct vring *vring,
950 struct sk_buff *skb);
951
952 static struct vring *wil_find_tx_vring_sta(struct wil6210_priv *wil,
953 struct sk_buff *skb)
954 {
955 struct vring *v;
956 int i;
957 u8 cid;
958 struct vring_tx_data *txdata;
959
960 /* In the STA mode, it is expected to have only 1 VRING
961 * for the AP we connected to.
962 * find 1-st vring eligible for this skb and use it.
963 */
964 for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
965 v = &wil->vring_tx[i];
966 txdata = &wil->vring_tx_data[i];
967 if (!v->va || !txdata->enabled)
968 continue;
969
970 cid = wil->vring2cid_tid[i][0];
971 if (cid >= WIL6210_MAX_CID) /* skip BCAST */
972 continue;
973
974 if (!wil->vring_tx_data[i].dot1x_open &&
975 (skb->protocol != cpu_to_be16(ETH_P_PAE)))
976 continue;
977
978 wil_dbg_txrx(wil, "Tx -> ring %d\n", i);
979
980 return v;
981 }
982
983 wil_dbg_txrx(wil, "Tx while no vrings active?\n");
984
985 return NULL;
986 }
987
988 /* Use one of 2 strategies:
989 *
990 * 1. New (real broadcast):
991 * use dedicated broadcast vring
992 * 2. Old (pseudo-DMS):
993 * Find 1-st vring and return it;
994 * duplicate skb and send it to other active vrings;
995 * in all cases override dest address to unicast peer's address
996 * Use old strategy when new is not supported yet:
997 * - for PBSS
998 */
999 static struct vring *wil_find_tx_bcast_1(struct wil6210_priv *wil,
1000 struct sk_buff *skb)
1001 {
1002 struct vring *v;
1003 struct vring_tx_data *txdata;
1004 int i = wil->bcast_vring;
1005
1006 if (i < 0)
1007 return NULL;
1008 v = &wil->vring_tx[i];
1009 txdata = &wil->vring_tx_data[i];
1010 if (!v->va || !txdata->enabled)
1011 return NULL;
1012 if (!wil->vring_tx_data[i].dot1x_open &&
1013 (skb->protocol != cpu_to_be16(ETH_P_PAE)))
1014 return NULL;
1015
1016 return v;
1017 }
1018
1019 static void wil_set_da_for_vring(struct wil6210_priv *wil,
1020 struct sk_buff *skb, int vring_index)
1021 {
1022 struct ethhdr *eth = (void *)skb->data;
1023 int cid = wil->vring2cid_tid[vring_index][0];
1024
1025 ether_addr_copy(eth->h_dest, wil->sta[cid].addr);
1026 }
1027
1028 static struct vring *wil_find_tx_bcast_2(struct wil6210_priv *wil,
1029 struct sk_buff *skb)
1030 {
1031 struct vring *v, *v2;
1032 struct sk_buff *skb2;
1033 int i;
1034 u8 cid;
1035 struct ethhdr *eth = (void *)skb->data;
1036 char *src = eth->h_source;
1037 struct vring_tx_data *txdata;
1038
1039 /* find 1-st vring eligible for data */
1040 for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
1041 v = &wil->vring_tx[i];
1042 txdata = &wil->vring_tx_data[i];
1043 if (!v->va || !txdata->enabled)
1044 continue;
1045
1046 cid = wil->vring2cid_tid[i][0];
1047 if (cid >= WIL6210_MAX_CID) /* skip BCAST */
1048 continue;
1049 if (!wil->vring_tx_data[i].dot1x_open &&
1050 (skb->protocol != cpu_to_be16(ETH_P_PAE)))
1051 continue;
1052
1053 /* don't Tx back to source when re-routing Rx->Tx at the AP */
1054 if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1055 continue;
1056
1057 goto found;
1058 }
1059
1060 wil_dbg_txrx(wil, "Tx while no vrings active?\n");
1061
1062 return NULL;
1063
1064 found:
1065 wil_dbg_txrx(wil, "BCAST -> ring %d\n", i);
1066 wil_set_da_for_vring(wil, skb, i);
1067
1068 /* find other active vrings and duplicate skb for each */
1069 for (i++; i < WIL6210_MAX_TX_RINGS; i++) {
1070 v2 = &wil->vring_tx[i];
1071 if (!v2->va)
1072 continue;
1073 cid = wil->vring2cid_tid[i][0];
1074 if (cid >= WIL6210_MAX_CID) /* skip BCAST */
1075 continue;
1076 if (!wil->vring_tx_data[i].dot1x_open &&
1077 (skb->protocol != cpu_to_be16(ETH_P_PAE)))
1078 continue;
1079
1080 if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1081 continue;
1082
1083 skb2 = skb_copy(skb, GFP_ATOMIC);
1084 if (skb2) {
1085 wil_dbg_txrx(wil, "BCAST DUP -> ring %d\n", i);
1086 wil_set_da_for_vring(wil, skb2, i);
1087 wil_tx_vring(wil, v2, skb2);
1088 } else {
1089 wil_err(wil, "skb_copy failed\n");
1090 }
1091 }
1092
1093 return v;
1094 }
1095
1096 static struct vring *wil_find_tx_bcast(struct wil6210_priv *wil,
1097 struct sk_buff *skb)
1098 {
1099 struct wireless_dev *wdev = wil->wdev;
1100
1101 if (wdev->iftype != NL80211_IFTYPE_AP)
1102 return wil_find_tx_bcast_2(wil, skb);
1103
1104 return wil_find_tx_bcast_1(wil, skb);
1105 }
1106
1107 static int wil_tx_desc_map(struct vring_tx_desc *d, dma_addr_t pa, u32 len,
1108 int vring_index)
1109 {
1110 wil_desc_addr_set(&d->dma.addr, pa);
1111 d->dma.ip_length = 0;
1112 /* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/
1113 d->dma.b11 = 0/*14 | BIT(7)*/;
1114 d->dma.error = 0;
1115 d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
1116 d->dma.length = cpu_to_le16((u16)len);
1117 d->dma.d0 = (vring_index << DMA_CFG_DESC_TX_0_QID_POS);
1118 d->mac.d[0] = 0;
1119 d->mac.d[1] = 0;
1120 d->mac.d[2] = 0;
1121 d->mac.ucode_cmd = 0;
1122 /* translation type: 0 - bypass; 1 - 802.3; 2 - native wifi */
1123 d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) |
1124 (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS);
1125
1126 return 0;
1127 }
1128
1129 static inline
1130 void wil_tx_desc_set_nr_frags(struct vring_tx_desc *d, int nr_frags)
1131 {
1132 d->mac.d[2] |= (nr_frags << MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS);
1133 }
1134
1135 /**
1136 * Sets the descriptor @d up for csum and/or TSO offloading. The corresponding
1137 * @skb is used to obtain the protocol and headers length.
1138 * @tso_desc_type is a descriptor type for TSO: 0 - a header, 1 - first data,
1139 * 2 - middle, 3 - last descriptor.
1140 */
1141
1142 static void wil_tx_desc_offload_setup_tso(struct vring_tx_desc *d,
1143 struct sk_buff *skb,
1144 int tso_desc_type, bool is_ipv4,
1145 int tcp_hdr_len, int skb_net_hdr_len)
1146 {
1147 d->dma.b11 = ETH_HLEN; /* MAC header length */
1148 d->dma.b11 |= is_ipv4 << DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS;
1149
1150 d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1151 /* L4 header len: TCP header length */
1152 d->dma.d0 |= (tcp_hdr_len & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1153
1154 /* Setup TSO: bit and desc type */
1155 d->dma.d0 |= (BIT(DMA_CFG_DESC_TX_0_TCP_SEG_EN_POS)) |
1156 (tso_desc_type << DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS);
1157 d->dma.d0 |= (is_ipv4 << DMA_CFG_DESC_TX_0_IPV4_CHECKSUM_EN_POS);
1158
1159 d->dma.ip_length = skb_net_hdr_len;
1160 /* Enable TCP/UDP checksum */
1161 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1162 /* Calculate pseudo-header */
1163 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1164 }
1165
1166 /**
1167 * Sets the descriptor @d up for csum. The corresponding
1168 * @skb is used to obtain the protocol and headers length.
1169 * Returns the protocol: 0 - not TCP, 1 - TCPv4, 2 - TCPv6.
1170 * Note, if d==NULL, the function only returns the protocol result.
1171 *
1172 * It is very similar to previous wil_tx_desc_offload_setup_tso. This
1173 * is "if unrolling" to optimize the critical path.
1174 */
1175
1176 static int wil_tx_desc_offload_setup(struct vring_tx_desc *d,
1177 struct sk_buff *skb){
1178 int protocol;
1179
1180 if (skb->ip_summed != CHECKSUM_PARTIAL)
1181 return 0;
1182
1183 d->dma.b11 = ETH_HLEN; /* MAC header length */
1184
1185 switch (skb->protocol) {
1186 case cpu_to_be16(ETH_P_IP):
1187 protocol = ip_hdr(skb)->protocol;
1188 d->dma.b11 |= BIT(DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS);
1189 break;
1190 case cpu_to_be16(ETH_P_IPV6):
1191 protocol = ipv6_hdr(skb)->nexthdr;
1192 break;
1193 default:
1194 return -EINVAL;
1195 }
1196
1197 switch (protocol) {
1198 case IPPROTO_TCP:
1199 d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1200 /* L4 header len: TCP header length */
1201 d->dma.d0 |=
1202 (tcp_hdrlen(skb) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1203 break;
1204 case IPPROTO_UDP:
1205 /* L4 header len: UDP header length */
1206 d->dma.d0 |=
1207 (sizeof(struct udphdr) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1208 break;
1209 default:
1210 return -EINVAL;
1211 }
1212
1213 d->dma.ip_length = skb_network_header_len(skb);
1214 /* Enable TCP/UDP checksum */
1215 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1216 /* Calculate pseudo-header */
1217 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1218
1219 return 0;
1220 }
1221
1222 static inline void wil_tx_last_desc(struct vring_tx_desc *d)
1223 {
1224 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS) |
1225 BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS) |
1226 BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
1227 }
1228
1229 static inline void wil_set_tx_desc_last_tso(volatile struct vring_tx_desc *d)
1230 {
1231 d->dma.d0 |= wil_tso_type_lst <<
1232 DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS;
1233 }
1234
1235 static int __wil_tx_vring_tso(struct wil6210_priv *wil, struct vring *vring,
1236 struct sk_buff *skb)
1237 {
1238 struct device *dev = wil_to_dev(wil);
1239
1240 /* point to descriptors in shared memory */
1241 volatile struct vring_tx_desc *_desc = NULL, *_hdr_desc,
1242 *_first_desc = NULL;
1243
1244 /* pointers to shadow descriptors */
1245 struct vring_tx_desc desc_mem, hdr_desc_mem, first_desc_mem,
1246 *d = &hdr_desc_mem, *hdr_desc = &hdr_desc_mem,
1247 *first_desc = &first_desc_mem;
1248
1249 /* pointer to shadow descriptors' context */
1250 struct wil_ctx *hdr_ctx, *first_ctx = NULL;
1251
1252 int descs_used = 0; /* total number of used descriptors */
1253 int sg_desc_cnt = 0; /* number of descriptors for current mss*/
1254
1255 u32 swhead = vring->swhead;
1256 int used, avail = wil_vring_avail_tx(vring);
1257 int nr_frags = skb_shinfo(skb)->nr_frags;
1258 int min_desc_required = nr_frags + 1;
1259 int mss = skb_shinfo(skb)->gso_size; /* payload size w/o headers */
1260 int f, len, hdrlen, headlen;
1261 int vring_index = vring - wil->vring_tx;
1262 struct vring_tx_data *txdata = &wil->vring_tx_data[vring_index];
1263 uint i = swhead;
1264 dma_addr_t pa;
1265 const skb_frag_t *frag = NULL;
1266 int rem_data = mss;
1267 int lenmss;
1268 int hdr_compensation_need = true;
1269 int desc_tso_type = wil_tso_type_first;
1270 bool is_ipv4;
1271 int tcp_hdr_len;
1272 int skb_net_hdr_len;
1273 int gso_type;
1274 int rc = -EINVAL;
1275
1276 wil_dbg_txrx(wil, "%s() %d bytes to vring %d\n",
1277 __func__, skb->len, vring_index);
1278
1279 if (unlikely(!txdata->enabled))
1280 return -EINVAL;
1281
1282 /* A typical page 4K is 3-4 payloads, we assume each fragment
1283 * is a full payload, that's how min_desc_required has been
1284 * calculated. In real we might need more or less descriptors,
1285 * this is the initial check only.
1286 */
1287 if (unlikely(avail < min_desc_required)) {
1288 wil_err_ratelimited(wil,
1289 "TSO: Tx ring[%2d] full. No space for %d fragments\n",
1290 vring_index, min_desc_required);
1291 return -ENOMEM;
1292 }
1293
1294 /* Header Length = MAC header len + IP header len + TCP header len*/
1295 hdrlen = ETH_HLEN +
1296 (int)skb_network_header_len(skb) +
1297 tcp_hdrlen(skb);
1298
1299 gso_type = skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV6 | SKB_GSO_TCPV4);
1300 switch (gso_type) {
1301 case SKB_GSO_TCPV4:
1302 /* TCP v4, zero out the IP length and IPv4 checksum fields
1303 * as required by the offloading doc
1304 */
1305 ip_hdr(skb)->tot_len = 0;
1306 ip_hdr(skb)->check = 0;
1307 is_ipv4 = true;
1308 break;
1309 case SKB_GSO_TCPV6:
1310 /* TCP v6, zero out the payload length */
1311 ipv6_hdr(skb)->payload_len = 0;
1312 is_ipv4 = false;
1313 break;
1314 default:
1315 /* other than TCPv4 or TCPv6 types are not supported for TSO.
1316 * It is also illegal for both to be set simultaneously
1317 */
1318 return -EINVAL;
1319 }
1320
1321 if (skb->ip_summed != CHECKSUM_PARTIAL)
1322 return -EINVAL;
1323
1324 /* tcp header length and skb network header length are fixed for all
1325 * packet's descriptors - read then once here
1326 */
1327 tcp_hdr_len = tcp_hdrlen(skb);
1328 skb_net_hdr_len = skb_network_header_len(skb);
1329
1330 _hdr_desc = &vring->va[i].tx;
1331
1332 pa = dma_map_single(dev, skb->data, hdrlen, DMA_TO_DEVICE);
1333 if (unlikely(dma_mapping_error(dev, pa))) {
1334 wil_err(wil, "TSO: Skb head DMA map error\n");
1335 goto err_exit;
1336 }
1337
1338 wil_tx_desc_map(hdr_desc, pa, hdrlen, vring_index);
1339 wil_tx_desc_offload_setup_tso(hdr_desc, skb, wil_tso_type_hdr, is_ipv4,
1340 tcp_hdr_len, skb_net_hdr_len);
1341 wil_tx_last_desc(hdr_desc);
1342
1343 vring->ctx[i].mapped_as = wil_mapped_as_single;
1344 hdr_ctx = &vring->ctx[i];
1345
1346 descs_used++;
1347 headlen = skb_headlen(skb) - hdrlen;
1348
1349 for (f = headlen ? -1 : 0; f < nr_frags; f++) {
1350 if (headlen) {
1351 len = headlen;
1352 wil_dbg_txrx(wil, "TSO: process skb head, len %u\n",
1353 len);
1354 } else {
1355 frag = &skb_shinfo(skb)->frags[f];
1356 len = frag->size;
1357 wil_dbg_txrx(wil, "TSO: frag[%d]: len %u\n", f, len);
1358 }
1359
1360 while (len) {
1361 wil_dbg_txrx(wil,
1362 "TSO: len %d, rem_data %d, descs_used %d\n",
1363 len, rem_data, descs_used);
1364
1365 if (descs_used == avail) {
1366 wil_err_ratelimited(wil, "TSO: ring overflow\n");
1367 rc = -ENOMEM;
1368 goto mem_error;
1369 }
1370
1371 lenmss = min_t(int, rem_data, len);
1372 i = (swhead + descs_used) % vring->size;
1373 wil_dbg_txrx(wil, "TSO: lenmss %d, i %d\n", lenmss, i);
1374
1375 if (!headlen) {
1376 pa = skb_frag_dma_map(dev, frag,
1377 frag->size - len, lenmss,
1378 DMA_TO_DEVICE);
1379 vring->ctx[i].mapped_as = wil_mapped_as_page;
1380 } else {
1381 pa = dma_map_single(dev,
1382 skb->data +
1383 skb_headlen(skb) - headlen,
1384 lenmss,
1385 DMA_TO_DEVICE);
1386 vring->ctx[i].mapped_as = wil_mapped_as_single;
1387 headlen -= lenmss;
1388 }
1389
1390 if (unlikely(dma_mapping_error(dev, pa))) {
1391 wil_err(wil, "TSO: DMA map page error\n");
1392 goto mem_error;
1393 }
1394
1395 _desc = &vring->va[i].tx;
1396
1397 if (!_first_desc) {
1398 _first_desc = _desc;
1399 first_ctx = &vring->ctx[i];
1400 d = first_desc;
1401 } else {
1402 d = &desc_mem;
1403 }
1404
1405 wil_tx_desc_map(d, pa, lenmss, vring_index);
1406 wil_tx_desc_offload_setup_tso(d, skb, desc_tso_type,
1407 is_ipv4, tcp_hdr_len,
1408 skb_net_hdr_len);
1409
1410 /* use tso_type_first only once */
1411 desc_tso_type = wil_tso_type_mid;
1412
1413 descs_used++; /* desc used so far */
1414 sg_desc_cnt++; /* desc used for this segment */
1415 len -= lenmss;
1416 rem_data -= lenmss;
1417
1418 wil_dbg_txrx(wil,
1419 "TSO: len %d, rem_data %d, descs_used %d, sg_desc_cnt %d,\n",
1420 len, rem_data, descs_used, sg_desc_cnt);
1421
1422 /* Close the segment if reached mss size or last frag*/
1423 if (rem_data == 0 || (f == nr_frags - 1 && len == 0)) {
1424 if (hdr_compensation_need) {
1425 /* first segment include hdr desc for
1426 * release
1427 */
1428 hdr_ctx->nr_frags = sg_desc_cnt;
1429 wil_tx_desc_set_nr_frags(first_desc,
1430 sg_desc_cnt +
1431 1);
1432 hdr_compensation_need = false;
1433 } else {
1434 wil_tx_desc_set_nr_frags(first_desc,
1435 sg_desc_cnt);
1436 }
1437 first_ctx->nr_frags = sg_desc_cnt - 1;
1438
1439 wil_tx_last_desc(d);
1440
1441 /* first descriptor may also be the last
1442 * for this mss - make sure not to copy
1443 * it twice
1444 */
1445 if (first_desc != d)
1446 *_first_desc = *first_desc;
1447
1448 /*last descriptor will be copied at the end
1449 * of this TS processing
1450 */
1451 if (f < nr_frags - 1 || len > 0)
1452 *_desc = *d;
1453
1454 rem_data = mss;
1455 _first_desc = NULL;
1456 sg_desc_cnt = 0;
1457 } else if (first_desc != d) /* update mid descriptor */
1458 *_desc = *d;
1459 }
1460 }
1461
1462 /* first descriptor may also be the last.
1463 * in this case d pointer is invalid
1464 */
1465 if (_first_desc == _desc)
1466 d = first_desc;
1467
1468 /* Last data descriptor */
1469 wil_set_tx_desc_last_tso(d);
1470 *_desc = *d;
1471
1472 /* Fill the total number of descriptors in first desc (hdr)*/
1473 wil_tx_desc_set_nr_frags(hdr_desc, descs_used);
1474 *_hdr_desc = *hdr_desc;
1475
1476 /* hold reference to skb
1477 * to prevent skb release before accounting
1478 * in case of immediate "tx done"
1479 */
1480 vring->ctx[i].skb = skb_get(skb);
1481
1482 /* performance monitoring */
1483 used = wil_vring_used_tx(vring);
1484 if (wil_val_in_range(vring_idle_trsh,
1485 used, used + descs_used)) {
1486 txdata->idle += get_cycles() - txdata->last_idle;
1487 wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n",
1488 vring_index, used, used + descs_used);
1489 }
1490
1491 /* advance swhead */
1492 wil_vring_advance_head(vring, descs_used);
1493 wil_dbg_txrx(wil, "TSO: Tx swhead %d -> %d\n", swhead, vring->swhead);
1494
1495 /* make sure all writes to descriptors (shared memory) are done before
1496 * committing them to HW
1497 */
1498 wmb();
1499
1500 wil_w(wil, vring->hwtail, vring->swhead);
1501 return 0;
1502
1503 mem_error:
1504 while (descs_used > 0) {
1505 struct wil_ctx *ctx;
1506
1507 i = (swhead + descs_used) % vring->size;
1508 d = (struct vring_tx_desc *)&vring->va[i].tx;
1509 _desc = &vring->va[i].tx;
1510 *d = *_desc;
1511 _desc->dma.status = TX_DMA_STATUS_DU;
1512 ctx = &vring->ctx[i];
1513 wil_txdesc_unmap(dev, d, ctx);
1514 memset(ctx, 0, sizeof(*ctx));
1515 descs_used--;
1516 }
1517 err_exit:
1518 return rc;
1519 }
1520
1521 static int __wil_tx_vring(struct wil6210_priv *wil, struct vring *vring,
1522 struct sk_buff *skb)
1523 {
1524 struct device *dev = wil_to_dev(wil);
1525 struct vring_tx_desc dd, *d = &dd;
1526 volatile struct vring_tx_desc *_d;
1527 u32 swhead = vring->swhead;
1528 int avail = wil_vring_avail_tx(vring);
1529 int nr_frags = skb_shinfo(skb)->nr_frags;
1530 uint f = 0;
1531 int vring_index = vring - wil->vring_tx;
1532 struct vring_tx_data *txdata = &wil->vring_tx_data[vring_index];
1533 uint i = swhead;
1534 dma_addr_t pa;
1535 int used;
1536 bool mcast = (vring_index == wil->bcast_vring);
1537 uint len = skb_headlen(skb);
1538
1539 wil_dbg_txrx(wil, "%s() %d bytes to vring %d\n",
1540 __func__, skb->len, vring_index);
1541
1542 if (unlikely(!txdata->enabled))
1543 return -EINVAL;
1544
1545 if (unlikely(avail < 1 + nr_frags)) {
1546 wil_err_ratelimited(wil,
1547 "Tx ring[%2d] full. No space for %d fragments\n",
1548 vring_index, 1 + nr_frags);
1549 return -ENOMEM;
1550 }
1551 _d = &vring->va[i].tx;
1552
1553 pa = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
1554
1555 wil_dbg_txrx(wil, "Tx[%2d] skb %d bytes 0x%p -> %pad\n", vring_index,
1556 skb_headlen(skb), skb->data, &pa);
1557 wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1,
1558 skb->data, skb_headlen(skb), false);
1559
1560 if (unlikely(dma_mapping_error(dev, pa)))
1561 return -EINVAL;
1562 vring->ctx[i].mapped_as = wil_mapped_as_single;
1563 /* 1-st segment */
1564 wil_tx_desc_map(d, pa, len, vring_index);
1565 if (unlikely(mcast)) {
1566 d->mac.d[0] |= BIT(MAC_CFG_DESC_TX_0_MCS_EN_POS); /* MCS 0 */
1567 if (unlikely(len > WIL_BCAST_MCS0_LIMIT)) /* set MCS 1 */
1568 d->mac.d[0] |= (1 << MAC_CFG_DESC_TX_0_MCS_INDEX_POS);
1569 }
1570 /* Process TCP/UDP checksum offloading */
1571 if (unlikely(wil_tx_desc_offload_setup(d, skb))) {
1572 wil_err(wil, "Tx[%2d] Failed to set cksum, drop packet\n",
1573 vring_index);
1574 goto dma_error;
1575 }
1576
1577 vring->ctx[i].nr_frags = nr_frags;
1578 wil_tx_desc_set_nr_frags(d, nr_frags + 1);
1579
1580 /* middle segments */
1581 for (; f < nr_frags; f++) {
1582 const struct skb_frag_struct *frag =
1583 &skb_shinfo(skb)->frags[f];
1584 int len = skb_frag_size(frag);
1585
1586 *_d = *d;
1587 wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", vring_index, i);
1588 wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
1589 (const void *)d, sizeof(*d), false);
1590 i = (swhead + f + 1) % vring->size;
1591 _d = &vring->va[i].tx;
1592 pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag),
1593 DMA_TO_DEVICE);
1594 if (unlikely(dma_mapping_error(dev, pa))) {
1595 wil_err(wil, "Tx[%2d] failed to map fragment\n",
1596 vring_index);
1597 goto dma_error;
1598 }
1599 vring->ctx[i].mapped_as = wil_mapped_as_page;
1600 wil_tx_desc_map(d, pa, len, vring_index);
1601 /* no need to check return code -
1602 * if it succeeded for 1-st descriptor,
1603 * it will succeed here too
1604 */
1605 wil_tx_desc_offload_setup(d, skb);
1606 }
1607 /* for the last seg only */
1608 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS);
1609 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS);
1610 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
1611 *_d = *d;
1612 wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", vring_index, i);
1613 wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
1614 (const void *)d, sizeof(*d), false);
1615
1616 /* hold reference to skb
1617 * to prevent skb release before accounting
1618 * in case of immediate "tx done"
1619 */
1620 vring->ctx[i].skb = skb_get(skb);
1621
1622 /* performance monitoring */
1623 used = wil_vring_used_tx(vring);
1624 if (wil_val_in_range(vring_idle_trsh,
1625 used, used + nr_frags + 1)) {
1626 txdata->idle += get_cycles() - txdata->last_idle;
1627 wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n",
1628 vring_index, used, used + nr_frags + 1);
1629 }
1630
1631 /* advance swhead */
1632 wil_vring_advance_head(vring, nr_frags + 1);
1633 wil_dbg_txrx(wil, "Tx[%2d] swhead %d -> %d\n", vring_index, swhead,
1634 vring->swhead);
1635 trace_wil6210_tx(vring_index, swhead, skb->len, nr_frags);
1636
1637 /* make sure all writes to descriptors (shared memory) are done before
1638 * committing them to HW
1639 */
1640 wmb();
1641
1642 wil_w(wil, vring->hwtail, vring->swhead);
1643
1644 return 0;
1645 dma_error:
1646 /* unmap what we have mapped */
1647 nr_frags = f + 1; /* frags mapped + one for skb head */
1648 for (f = 0; f < nr_frags; f++) {
1649 struct wil_ctx *ctx;
1650
1651 i = (swhead + f) % vring->size;
1652 ctx = &vring->ctx[i];
1653 _d = &vring->va[i].tx;
1654 *d = *_d;
1655 _d->dma.status = TX_DMA_STATUS_DU;
1656 wil_txdesc_unmap(dev, d, ctx);
1657
1658 memset(ctx, 0, sizeof(*ctx));
1659 }
1660
1661 return -EINVAL;
1662 }
1663
1664 static int wil_tx_vring(struct wil6210_priv *wil, struct vring *vring,
1665 struct sk_buff *skb)
1666 {
1667 int vring_index = vring - wil->vring_tx;
1668 struct vring_tx_data *txdata = &wil->vring_tx_data[vring_index];
1669 int rc;
1670
1671 spin_lock(&txdata->lock);
1672
1673 rc = (skb_is_gso(skb) ? __wil_tx_vring_tso : __wil_tx_vring)
1674 (wil, vring, skb);
1675
1676 spin_unlock(&txdata->lock);
1677
1678 return rc;
1679 }
1680
1681 netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1682 {
1683 struct wil6210_priv *wil = ndev_to_wil(ndev);
1684 struct ethhdr *eth = (void *)skb->data;
1685 bool bcast = is_multicast_ether_addr(eth->h_dest);
1686 struct vring *vring;
1687 static bool pr_once_fw;
1688 int rc;
1689
1690 wil_dbg_txrx(wil, "%s()\n", __func__);
1691 if (unlikely(!test_bit(wil_status_fwready, wil->status))) {
1692 if (!pr_once_fw) {
1693 wil_err(wil, "FW not ready\n");
1694 pr_once_fw = true;
1695 }
1696 goto drop;
1697 }
1698 if (unlikely(!test_bit(wil_status_fwconnected, wil->status))) {
1699 wil_err_ratelimited(wil, "FW not connected\n");
1700 goto drop;
1701 }
1702 if (unlikely(wil->wdev->iftype == NL80211_IFTYPE_MONITOR)) {
1703 wil_err(wil, "Xmit in monitor mode not supported\n");
1704 goto drop;
1705 }
1706 pr_once_fw = false;
1707
1708 /* find vring */
1709 if (wil->wdev->iftype == NL80211_IFTYPE_STATION) {
1710 /* in STA mode (ESS), all to same VRING */
1711 vring = wil_find_tx_vring_sta(wil, skb);
1712 } else { /* direct communication, find matching VRING */
1713 vring = bcast ? wil_find_tx_bcast(wil, skb) :
1714 wil_find_tx_ucast(wil, skb);
1715 }
1716 if (unlikely(!vring)) {
1717 wil_dbg_txrx(wil, "No Tx VRING found for %pM\n", eth->h_dest);
1718 goto drop;
1719 }
1720 /* set up vring entry */
1721 rc = wil_tx_vring(wil, vring, skb);
1722
1723 /* do we still have enough room in the vring? */
1724 if (unlikely(wil_vring_avail_tx(vring) < wil_vring_wmark_low(vring))) {
1725 netif_tx_stop_all_queues(wil_to_ndev(wil));
1726 wil_dbg_txrx(wil, "netif_tx_stop : ring full\n");
1727 }
1728
1729 switch (rc) {
1730 case 0:
1731 /* statistics will be updated on the tx_complete */
1732 dev_kfree_skb_any(skb);
1733 return NETDEV_TX_OK;
1734 case -ENOMEM:
1735 return NETDEV_TX_BUSY;
1736 default:
1737 break; /* goto drop; */
1738 }
1739 drop:
1740 ndev->stats.tx_dropped++;
1741 dev_kfree_skb_any(skb);
1742
1743 return NET_XMIT_DROP;
1744 }
1745
1746 static inline bool wil_need_txstat(struct sk_buff *skb)
1747 {
1748 struct ethhdr *eth = (void *)skb->data;
1749
1750 return is_unicast_ether_addr(eth->h_dest) && skb->sk &&
1751 (skb_shinfo(skb)->tx_flags & SKBTX_WIFI_STATUS);
1752 }
1753
1754 static inline void wil_consume_skb(struct sk_buff *skb, bool acked)
1755 {
1756 if (unlikely(wil_need_txstat(skb)))
1757 skb_complete_wifi_ack(skb, acked);
1758 else
1759 acked ? dev_consume_skb_any(skb) : dev_kfree_skb_any(skb);
1760 }
1761
1762 /**
1763 * Clean up transmitted skb's from the Tx VRING
1764 *
1765 * Return number of descriptors cleared
1766 *
1767 * Safe to call from IRQ
1768 */
1769 int wil_tx_complete(struct wil6210_priv *wil, int ringid)
1770 {
1771 struct net_device *ndev = wil_to_ndev(wil);
1772 struct device *dev = wil_to_dev(wil);
1773 struct vring *vring = &wil->vring_tx[ringid];
1774 struct vring_tx_data *txdata = &wil->vring_tx_data[ringid];
1775 int done = 0;
1776 int cid = wil->vring2cid_tid[ringid][0];
1777 struct wil_net_stats *stats = NULL;
1778 volatile struct vring_tx_desc *_d;
1779 int used_before_complete;
1780 int used_new;
1781
1782 if (unlikely(!vring->va)) {
1783 wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid);
1784 return 0;
1785 }
1786
1787 if (unlikely(!txdata->enabled)) {
1788 wil_info(wil, "Tx irq[%d]: vring disabled\n", ringid);
1789 return 0;
1790 }
1791
1792 wil_dbg_txrx(wil, "%s(%d)\n", __func__, ringid);
1793
1794 used_before_complete = wil_vring_used_tx(vring);
1795
1796 if (cid < WIL6210_MAX_CID)
1797 stats = &wil->sta[cid].stats;
1798
1799 while (!wil_vring_is_empty(vring)) {
1800 int new_swtail;
1801 struct wil_ctx *ctx = &vring->ctx[vring->swtail];
1802 /**
1803 * For the fragmented skb, HW will set DU bit only for the
1804 * last fragment. look for it.
1805 * In TSO the first DU will include hdr desc
1806 */
1807 int lf = (vring->swtail + ctx->nr_frags) % vring->size;
1808 /* TODO: check we are not past head */
1809
1810 _d = &vring->va[lf].tx;
1811 if (unlikely(!(_d->dma.status & TX_DMA_STATUS_DU)))
1812 break;
1813
1814 new_swtail = (lf + 1) % vring->size;
1815 while (vring->swtail != new_swtail) {
1816 struct vring_tx_desc dd, *d = &dd;
1817 u16 dmalen;
1818 struct sk_buff *skb;
1819
1820 ctx = &vring->ctx[vring->swtail];
1821 skb = ctx->skb;
1822 _d = &vring->va[vring->swtail].tx;
1823
1824 *d = *_d;
1825
1826 dmalen = le16_to_cpu(d->dma.length);
1827 trace_wil6210_tx_done(ringid, vring->swtail, dmalen,
1828 d->dma.error);
1829 wil_dbg_txrx(wil,
1830 "TxC[%2d][%3d] : %d bytes, status 0x%02x err 0x%02x\n",
1831 ringid, vring->swtail, dmalen,
1832 d->dma.status, d->dma.error);
1833 wil_hex_dump_txrx("TxCD ", DUMP_PREFIX_NONE, 32, 4,
1834 (const void *)d, sizeof(*d), false);
1835
1836 wil_txdesc_unmap(dev, d, ctx);
1837
1838 if (skb) {
1839 if (likely(d->dma.error == 0)) {
1840 ndev->stats.tx_packets++;
1841 ndev->stats.tx_bytes += skb->len;
1842 if (stats) {
1843 stats->tx_packets++;
1844 stats->tx_bytes += skb->len;
1845 }
1846 } else {
1847 ndev->stats.tx_errors++;
1848 if (stats)
1849 stats->tx_errors++;
1850 }
1851 wil_consume_skb(skb, d->dma.error == 0);
1852 }
1853 memset(ctx, 0, sizeof(*ctx));
1854 /* There is no need to touch HW descriptor:
1855 * - ststus bit TX_DMA_STATUS_DU is set by design,
1856 * so hardware will not try to process this desc.,
1857 * - rest of descriptor will be initialized on Tx.
1858 */
1859 vring->swtail = wil_vring_next_tail(vring);
1860 done++;
1861 }
1862 }
1863
1864 /* performance monitoring */
1865 used_new = wil_vring_used_tx(vring);
1866 if (wil_val_in_range(vring_idle_trsh,
1867 used_new, used_before_complete)) {
1868 wil_dbg_txrx(wil, "Ring[%2d] idle %d -> %d\n",
1869 ringid, used_before_complete, used_new);
1870 txdata->last_idle = get_cycles();
1871 }
1872
1873 if (wil_vring_avail_tx(vring) > wil_vring_wmark_high(vring)) {
1874 wil_dbg_txrx(wil, "netif_tx_wake : ring not full\n");
1875 netif_tx_wake_all_queues(wil_to_ndev(wil));
1876 }
1877
1878 return done;
1879 }
This page took 0.095279 seconds and 6 git commands to generate.