mac80211: let drivers wake but not start queues
[deliverable/linux.git] / drivers / net / wireless / ath5k / base.c
1 /*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
23 *
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
27 *
28 * NO WARRANTY
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
40 *
41 */
42
43 #include <linux/version.h>
44 #include <linux/module.h>
45 #include <linux/delay.h>
46 #include <linux/if.h>
47 #include <linux/netdevice.h>
48 #include <linux/cache.h>
49 #include <linux/pci.h>
50 #include <linux/ethtool.h>
51 #include <linux/uaccess.h>
52
53 #include <net/ieee80211_radiotap.h>
54
55 #include <asm/unaligned.h>
56
57 #include "base.h"
58 #include "reg.h"
59 #include "debug.h"
60
61 enum {
62 ATH_LED_TX,
63 ATH_LED_RX,
64 };
65
66 static int ath5k_calinterval = 10; /* Calibrate PHY every 10 secs (TODO: Fixme) */
67
68
69 /******************\
70 * Internal defines *
71 \******************/
72
73 /* Module info */
74 MODULE_AUTHOR("Jiri Slaby");
75 MODULE_AUTHOR("Nick Kossifidis");
76 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
77 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
78 MODULE_LICENSE("Dual BSD/GPL");
79 MODULE_VERSION("0.5.0 (EXPERIMENTAL)");
80
81
82 /* Known PCI ids */
83 static struct pci_device_id ath5k_pci_id_table[] __devinitdata = {
84 { PCI_VDEVICE(ATHEROS, 0x0207), .driver_data = AR5K_AR5210 }, /* 5210 early */
85 { PCI_VDEVICE(ATHEROS, 0x0007), .driver_data = AR5K_AR5210 }, /* 5210 */
86 { PCI_VDEVICE(ATHEROS, 0x0011), .driver_data = AR5K_AR5211 }, /* 5311 - this is on AHB bus !*/
87 { PCI_VDEVICE(ATHEROS, 0x0012), .driver_data = AR5K_AR5211 }, /* 5211 */
88 { PCI_VDEVICE(ATHEROS, 0x0013), .driver_data = AR5K_AR5212 }, /* 5212 */
89 { PCI_VDEVICE(3COM_2, 0x0013), .driver_data = AR5K_AR5212 }, /* 3com 5212 */
90 { PCI_VDEVICE(3COM, 0x0013), .driver_data = AR5K_AR5212 }, /* 3com 3CRDAG675 5212 */
91 { PCI_VDEVICE(ATHEROS, 0x1014), .driver_data = AR5K_AR5212 }, /* IBM minipci 5212 */
92 { PCI_VDEVICE(ATHEROS, 0x0014), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
93 { PCI_VDEVICE(ATHEROS, 0x0015), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
94 { PCI_VDEVICE(ATHEROS, 0x0016), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
95 { PCI_VDEVICE(ATHEROS, 0x0017), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
96 { PCI_VDEVICE(ATHEROS, 0x0018), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
97 { PCI_VDEVICE(ATHEROS, 0x0019), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
98 { PCI_VDEVICE(ATHEROS, 0x001a), .driver_data = AR5K_AR5212 }, /* 2413 Griffin-lite */
99 { PCI_VDEVICE(ATHEROS, 0x001b), .driver_data = AR5K_AR5212 }, /* 5413 Eagle */
100 { PCI_VDEVICE(ATHEROS, 0x001c), .driver_data = AR5K_AR5212 }, /* 5424 Condor (PCI-E)*/
101 { PCI_VDEVICE(ATHEROS, 0x0023), .driver_data = AR5K_AR5212 }, /* 5416 */
102 { PCI_VDEVICE(ATHEROS, 0x0024), .driver_data = AR5K_AR5212 }, /* 5418 */
103 { 0 }
104 };
105 MODULE_DEVICE_TABLE(pci, ath5k_pci_id_table);
106
107 /* Known SREVs */
108 static struct ath5k_srev_name srev_names[] = {
109 { "5210", AR5K_VERSION_VER, AR5K_SREV_VER_AR5210 },
110 { "5311", AR5K_VERSION_VER, AR5K_SREV_VER_AR5311 },
111 { "5311A", AR5K_VERSION_VER, AR5K_SREV_VER_AR5311A },
112 { "5311B", AR5K_VERSION_VER, AR5K_SREV_VER_AR5311B },
113 { "5211", AR5K_VERSION_VER, AR5K_SREV_VER_AR5211 },
114 { "5212", AR5K_VERSION_VER, AR5K_SREV_VER_AR5212 },
115 { "5213", AR5K_VERSION_VER, AR5K_SREV_VER_AR5213 },
116 { "5213A", AR5K_VERSION_VER, AR5K_SREV_VER_AR5213A },
117 { "2413", AR5K_VERSION_VER, AR5K_SREV_VER_AR2413 },
118 { "2414", AR5K_VERSION_VER, AR5K_SREV_VER_AR2414 },
119 { "2424", AR5K_VERSION_VER, AR5K_SREV_VER_AR2424 },
120 { "5424", AR5K_VERSION_VER, AR5K_SREV_VER_AR5424 },
121 { "5413", AR5K_VERSION_VER, AR5K_SREV_VER_AR5413 },
122 { "5414", AR5K_VERSION_VER, AR5K_SREV_VER_AR5414 },
123 { "5416", AR5K_VERSION_VER, AR5K_SREV_VER_AR5416 },
124 { "5418", AR5K_VERSION_VER, AR5K_SREV_VER_AR5418 },
125 { "2425", AR5K_VERSION_VER, AR5K_SREV_VER_AR2425 },
126 { "xxxxx", AR5K_VERSION_VER, AR5K_SREV_UNKNOWN },
127 { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 },
128 { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 },
129 { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 },
130 { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 },
131 { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A },
132 { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 },
133 { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A },
134 { "SChip", AR5K_VERSION_RAD, AR5K_SREV_RAD_SC0 },
135 { "SChip", AR5K_VERSION_RAD, AR5K_SREV_RAD_SC1 },
136 { "SChip", AR5K_VERSION_RAD, AR5K_SREV_RAD_SC2 },
137 { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 },
138 { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN },
139 };
140
141 /*
142 * Prototypes - PCI stack related functions
143 */
144 static int __devinit ath5k_pci_probe(struct pci_dev *pdev,
145 const struct pci_device_id *id);
146 static void __devexit ath5k_pci_remove(struct pci_dev *pdev);
147 #ifdef CONFIG_PM
148 static int ath5k_pci_suspend(struct pci_dev *pdev,
149 pm_message_t state);
150 static int ath5k_pci_resume(struct pci_dev *pdev);
151 #else
152 #define ath5k_pci_suspend NULL
153 #define ath5k_pci_resume NULL
154 #endif /* CONFIG_PM */
155
156 static struct pci_driver ath5k_pci_driver = {
157 .name = "ath5k_pci",
158 .id_table = ath5k_pci_id_table,
159 .probe = ath5k_pci_probe,
160 .remove = __devexit_p(ath5k_pci_remove),
161 .suspend = ath5k_pci_suspend,
162 .resume = ath5k_pci_resume,
163 };
164
165
166
167 /*
168 * Prototypes - MAC 802.11 stack related functions
169 */
170 static int ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb,
171 struct ieee80211_tx_control *ctl);
172 static int ath5k_reset(struct ieee80211_hw *hw);
173 static int ath5k_start(struct ieee80211_hw *hw);
174 static void ath5k_stop(struct ieee80211_hw *hw);
175 static int ath5k_add_interface(struct ieee80211_hw *hw,
176 struct ieee80211_if_init_conf *conf);
177 static void ath5k_remove_interface(struct ieee80211_hw *hw,
178 struct ieee80211_if_init_conf *conf);
179 static int ath5k_config(struct ieee80211_hw *hw,
180 struct ieee80211_conf *conf);
181 static int ath5k_config_interface(struct ieee80211_hw *hw,
182 struct ieee80211_vif *vif,
183 struct ieee80211_if_conf *conf);
184 static void ath5k_configure_filter(struct ieee80211_hw *hw,
185 unsigned int changed_flags,
186 unsigned int *new_flags,
187 int mc_count, struct dev_mc_list *mclist);
188 static int ath5k_set_key(struct ieee80211_hw *hw,
189 enum set_key_cmd cmd,
190 const u8 *local_addr, const u8 *addr,
191 struct ieee80211_key_conf *key);
192 static int ath5k_get_stats(struct ieee80211_hw *hw,
193 struct ieee80211_low_level_stats *stats);
194 static int ath5k_get_tx_stats(struct ieee80211_hw *hw,
195 struct ieee80211_tx_queue_stats *stats);
196 static u64 ath5k_get_tsf(struct ieee80211_hw *hw);
197 static void ath5k_reset_tsf(struct ieee80211_hw *hw);
198 static int ath5k_beacon_update(struct ieee80211_hw *hw,
199 struct sk_buff *skb,
200 struct ieee80211_tx_control *ctl);
201
202 static struct ieee80211_ops ath5k_hw_ops = {
203 .tx = ath5k_tx,
204 .start = ath5k_start,
205 .stop = ath5k_stop,
206 .add_interface = ath5k_add_interface,
207 .remove_interface = ath5k_remove_interface,
208 .config = ath5k_config,
209 .config_interface = ath5k_config_interface,
210 .configure_filter = ath5k_configure_filter,
211 .set_key = ath5k_set_key,
212 .get_stats = ath5k_get_stats,
213 .conf_tx = NULL,
214 .get_tx_stats = ath5k_get_tx_stats,
215 .get_tsf = ath5k_get_tsf,
216 .reset_tsf = ath5k_reset_tsf,
217 .beacon_update = ath5k_beacon_update,
218 };
219
220 /*
221 * Prototypes - Internal functions
222 */
223 /* Attach detach */
224 static int ath5k_attach(struct pci_dev *pdev,
225 struct ieee80211_hw *hw);
226 static void ath5k_detach(struct pci_dev *pdev,
227 struct ieee80211_hw *hw);
228 /* Channel/mode setup */
229 static inline short ath5k_ieee2mhz(short chan);
230 static unsigned int ath5k_copy_rates(struct ieee80211_rate *rates,
231 const struct ath5k_rate_table *rt,
232 unsigned int max);
233 static unsigned int ath5k_copy_channels(struct ath5k_hw *ah,
234 struct ieee80211_channel *channels,
235 unsigned int mode,
236 unsigned int max);
237 static int ath5k_getchannels(struct ieee80211_hw *hw);
238 static int ath5k_chan_set(struct ath5k_softc *sc,
239 struct ieee80211_channel *chan);
240 static void ath5k_setcurmode(struct ath5k_softc *sc,
241 unsigned int mode);
242 static void ath5k_mode_setup(struct ath5k_softc *sc);
243 static void ath5k_set_total_hw_rates(struct ath5k_softc *sc);
244
245 /* Descriptor setup */
246 static int ath5k_desc_alloc(struct ath5k_softc *sc,
247 struct pci_dev *pdev);
248 static void ath5k_desc_free(struct ath5k_softc *sc,
249 struct pci_dev *pdev);
250 /* Buffers setup */
251 static int ath5k_rxbuf_setup(struct ath5k_softc *sc,
252 struct ath5k_buf *bf);
253 static int ath5k_txbuf_setup(struct ath5k_softc *sc,
254 struct ath5k_buf *bf,
255 struct ieee80211_tx_control *ctl);
256
257 static inline void ath5k_txbuf_free(struct ath5k_softc *sc,
258 struct ath5k_buf *bf)
259 {
260 BUG_ON(!bf);
261 if (!bf->skb)
262 return;
263 pci_unmap_single(sc->pdev, bf->skbaddr, bf->skb->len,
264 PCI_DMA_TODEVICE);
265 dev_kfree_skb(bf->skb);
266 bf->skb = NULL;
267 }
268
269 /* Queues setup */
270 static struct ath5k_txq *ath5k_txq_setup(struct ath5k_softc *sc,
271 int qtype, int subtype);
272 static int ath5k_beaconq_setup(struct ath5k_hw *ah);
273 static int ath5k_beaconq_config(struct ath5k_softc *sc);
274 static void ath5k_txq_drainq(struct ath5k_softc *sc,
275 struct ath5k_txq *txq);
276 static void ath5k_txq_cleanup(struct ath5k_softc *sc);
277 static void ath5k_txq_release(struct ath5k_softc *sc);
278 /* Rx handling */
279 static int ath5k_rx_start(struct ath5k_softc *sc);
280 static void ath5k_rx_stop(struct ath5k_softc *sc);
281 static unsigned int ath5k_rx_decrypted(struct ath5k_softc *sc,
282 struct ath5k_desc *ds,
283 struct sk_buff *skb,
284 struct ath5k_rx_status *rs);
285 static void ath5k_tasklet_rx(unsigned long data);
286 /* Tx handling */
287 static void ath5k_tx_processq(struct ath5k_softc *sc,
288 struct ath5k_txq *txq);
289 static void ath5k_tasklet_tx(unsigned long data);
290 /* Beacon handling */
291 static int ath5k_beacon_setup(struct ath5k_softc *sc,
292 struct ath5k_buf *bf,
293 struct ieee80211_tx_control *ctl);
294 static void ath5k_beacon_send(struct ath5k_softc *sc);
295 static void ath5k_beacon_config(struct ath5k_softc *sc);
296 static void ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf);
297
298 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
299 {
300 u64 tsf = ath5k_hw_get_tsf64(ah);
301
302 if ((tsf & 0x7fff) < rstamp)
303 tsf -= 0x8000;
304
305 return (tsf & ~0x7fff) | rstamp;
306 }
307
308 /* Interrupt handling */
309 static int ath5k_init(struct ath5k_softc *sc);
310 static int ath5k_stop_locked(struct ath5k_softc *sc);
311 static int ath5k_stop_hw(struct ath5k_softc *sc);
312 static irqreturn_t ath5k_intr(int irq, void *dev_id);
313 static void ath5k_tasklet_reset(unsigned long data);
314
315 static void ath5k_calibrate(unsigned long data);
316 /* LED functions */
317 static void ath5k_led_off(unsigned long data);
318 static void ath5k_led_blink(struct ath5k_softc *sc,
319 unsigned int on,
320 unsigned int off);
321 static void ath5k_led_event(struct ath5k_softc *sc,
322 int event);
323
324
325 /*
326 * Module init/exit functions
327 */
328 static int __init
329 init_ath5k_pci(void)
330 {
331 int ret;
332
333 ath5k_debug_init();
334
335 ret = pci_register_driver(&ath5k_pci_driver);
336 if (ret) {
337 printk(KERN_ERR "ath5k_pci: can't register pci driver\n");
338 return ret;
339 }
340
341 return 0;
342 }
343
344 static void __exit
345 exit_ath5k_pci(void)
346 {
347 pci_unregister_driver(&ath5k_pci_driver);
348
349 ath5k_debug_finish();
350 }
351
352 module_init(init_ath5k_pci);
353 module_exit(exit_ath5k_pci);
354
355
356 /********************\
357 * PCI Initialization *
358 \********************/
359
360 static const char *
361 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
362 {
363 const char *name = "xxxxx";
364 unsigned int i;
365
366 for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
367 if (srev_names[i].sr_type != type)
368 continue;
369 if ((val & 0xff) < srev_names[i + 1].sr_val) {
370 name = srev_names[i].sr_name;
371 break;
372 }
373 }
374
375 return name;
376 }
377
378 static int __devinit
379 ath5k_pci_probe(struct pci_dev *pdev,
380 const struct pci_device_id *id)
381 {
382 void __iomem *mem;
383 struct ath5k_softc *sc;
384 struct ieee80211_hw *hw;
385 int ret;
386 u8 csz;
387
388 ret = pci_enable_device(pdev);
389 if (ret) {
390 dev_err(&pdev->dev, "can't enable device\n");
391 goto err;
392 }
393
394 /* XXX 32-bit addressing only */
395 ret = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
396 if (ret) {
397 dev_err(&pdev->dev, "32-bit DMA not available\n");
398 goto err_dis;
399 }
400
401 /*
402 * Cache line size is used to size and align various
403 * structures used to communicate with the hardware.
404 */
405 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
406 if (csz == 0) {
407 /*
408 * Linux 2.4.18 (at least) writes the cache line size
409 * register as a 16-bit wide register which is wrong.
410 * We must have this setup properly for rx buffer
411 * DMA to work so force a reasonable value here if it
412 * comes up zero.
413 */
414 csz = L1_CACHE_BYTES / sizeof(u32);
415 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
416 }
417 /*
418 * The default setting of latency timer yields poor results,
419 * set it to the value used by other systems. It may be worth
420 * tweaking this setting more.
421 */
422 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
423
424 /* Enable bus mastering */
425 pci_set_master(pdev);
426
427 /*
428 * Disable the RETRY_TIMEOUT register (0x41) to keep
429 * PCI Tx retries from interfering with C3 CPU state.
430 */
431 pci_write_config_byte(pdev, 0x41, 0);
432
433 ret = pci_request_region(pdev, 0, "ath5k");
434 if (ret) {
435 dev_err(&pdev->dev, "cannot reserve PCI memory region\n");
436 goto err_dis;
437 }
438
439 mem = pci_iomap(pdev, 0, 0);
440 if (!mem) {
441 dev_err(&pdev->dev, "cannot remap PCI memory region\n") ;
442 ret = -EIO;
443 goto err_reg;
444 }
445
446 /*
447 * Allocate hw (mac80211 main struct)
448 * and hw->priv (driver private data)
449 */
450 hw = ieee80211_alloc_hw(sizeof(*sc), &ath5k_hw_ops);
451 if (hw == NULL) {
452 dev_err(&pdev->dev, "cannot allocate ieee80211_hw\n");
453 ret = -ENOMEM;
454 goto err_map;
455 }
456
457 dev_info(&pdev->dev, "registered as '%s'\n", wiphy_name(hw->wiphy));
458
459 /* Initialize driver private data */
460 SET_IEEE80211_DEV(hw, &pdev->dev);
461 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
462 IEEE80211_HW_SIGNAL_DBM |
463 IEEE80211_HW_NOISE_DBM;
464 hw->extra_tx_headroom = 2;
465 hw->channel_change_time = 5000;
466 sc = hw->priv;
467 sc->hw = hw;
468 sc->pdev = pdev;
469
470 ath5k_debug_init_device(sc);
471
472 /*
473 * Mark the device as detached to avoid processing
474 * interrupts until setup is complete.
475 */
476 __set_bit(ATH_STAT_INVALID, sc->status);
477
478 sc->iobase = mem; /* So we can unmap it on detach */
479 sc->cachelsz = csz * sizeof(u32); /* convert to bytes */
480 sc->opmode = IEEE80211_IF_TYPE_STA;
481 mutex_init(&sc->lock);
482 spin_lock_init(&sc->rxbuflock);
483 spin_lock_init(&sc->txbuflock);
484
485 /* Set private data */
486 pci_set_drvdata(pdev, hw);
487
488 /* Enable msi for devices that support it */
489 pci_enable_msi(pdev);
490
491 /* Setup interrupt handler */
492 ret = request_irq(pdev->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
493 if (ret) {
494 ATH5K_ERR(sc, "request_irq failed\n");
495 goto err_free;
496 }
497
498 /* Initialize device */
499 sc->ah = ath5k_hw_attach(sc, id->driver_data);
500 if (IS_ERR(sc->ah)) {
501 ret = PTR_ERR(sc->ah);
502 goto err_irq;
503 }
504
505 /* Finish private driver data initialization */
506 ret = ath5k_attach(pdev, hw);
507 if (ret)
508 goto err_ah;
509
510 ATH5K_INFO(sc, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
511 ath5k_chip_name(AR5K_VERSION_VER,sc->ah->ah_mac_srev),
512 sc->ah->ah_mac_srev,
513 sc->ah->ah_phy_revision);
514
515 if (!sc->ah->ah_single_chip) {
516 /* Single chip radio (!RF5111) */
517 if (sc->ah->ah_radio_5ghz_revision &&
518 !sc->ah->ah_radio_2ghz_revision) {
519 /* No 5GHz support -> report 2GHz radio */
520 if (!test_bit(AR5K_MODE_11A,
521 sc->ah->ah_capabilities.cap_mode)) {
522 ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
523 ath5k_chip_name(AR5K_VERSION_RAD,
524 sc->ah->ah_radio_5ghz_revision),
525 sc->ah->ah_radio_5ghz_revision);
526 /* No 2GHz support (5110 and some
527 * 5Ghz only cards) -> report 5Ghz radio */
528 } else if (!test_bit(AR5K_MODE_11B,
529 sc->ah->ah_capabilities.cap_mode)) {
530 ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
531 ath5k_chip_name(AR5K_VERSION_RAD,
532 sc->ah->ah_radio_5ghz_revision),
533 sc->ah->ah_radio_5ghz_revision);
534 /* Multiband radio */
535 } else {
536 ATH5K_INFO(sc, "RF%s multiband radio found"
537 " (0x%x)\n",
538 ath5k_chip_name(AR5K_VERSION_RAD,
539 sc->ah->ah_radio_5ghz_revision),
540 sc->ah->ah_radio_5ghz_revision);
541 }
542 }
543 /* Multi chip radio (RF5111 - RF2111) ->
544 * report both 2GHz/5GHz radios */
545 else if (sc->ah->ah_radio_5ghz_revision &&
546 sc->ah->ah_radio_2ghz_revision){
547 ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
548 ath5k_chip_name(AR5K_VERSION_RAD,
549 sc->ah->ah_radio_5ghz_revision),
550 sc->ah->ah_radio_5ghz_revision);
551 ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
552 ath5k_chip_name(AR5K_VERSION_RAD,
553 sc->ah->ah_radio_2ghz_revision),
554 sc->ah->ah_radio_2ghz_revision);
555 }
556 }
557
558
559 /* ready to process interrupts */
560 __clear_bit(ATH_STAT_INVALID, sc->status);
561
562 return 0;
563 err_ah:
564 ath5k_hw_detach(sc->ah);
565 err_irq:
566 free_irq(pdev->irq, sc);
567 err_free:
568 pci_disable_msi(pdev);
569 ieee80211_free_hw(hw);
570 err_map:
571 pci_iounmap(pdev, mem);
572 err_reg:
573 pci_release_region(pdev, 0);
574 err_dis:
575 pci_disable_device(pdev);
576 err:
577 return ret;
578 }
579
580 static void __devexit
581 ath5k_pci_remove(struct pci_dev *pdev)
582 {
583 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
584 struct ath5k_softc *sc = hw->priv;
585
586 ath5k_debug_finish_device(sc);
587 ath5k_detach(pdev, hw);
588 ath5k_hw_detach(sc->ah);
589 free_irq(pdev->irq, sc);
590 pci_disable_msi(pdev);
591 pci_iounmap(pdev, sc->iobase);
592 pci_release_region(pdev, 0);
593 pci_disable_device(pdev);
594 ieee80211_free_hw(hw);
595 }
596
597 #ifdef CONFIG_PM
598 static int
599 ath5k_pci_suspend(struct pci_dev *pdev, pm_message_t state)
600 {
601 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
602 struct ath5k_softc *sc = hw->priv;
603
604 if (test_bit(ATH_STAT_LEDSOFT, sc->status))
605 ath5k_hw_set_gpio(sc->ah, sc->led_pin, 1);
606
607 ath5k_stop_hw(sc);
608 pci_save_state(pdev);
609 pci_disable_device(pdev);
610 pci_set_power_state(pdev, PCI_D3hot);
611
612 return 0;
613 }
614
615 static int
616 ath5k_pci_resume(struct pci_dev *pdev)
617 {
618 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
619 struct ath5k_softc *sc = hw->priv;
620 struct ath5k_hw *ah = sc->ah;
621 int i, err;
622
623 err = pci_set_power_state(pdev, PCI_D0);
624 if (err)
625 return err;
626
627 err = pci_enable_device(pdev);
628 if (err)
629 return err;
630
631 pci_restore_state(pdev);
632 /*
633 * Suspend/Resume resets the PCI configuration space, so we have to
634 * re-disable the RETRY_TIMEOUT register (0x41) to keep
635 * PCI Tx retries from interfering with C3 CPU state
636 */
637 pci_write_config_byte(pdev, 0x41, 0);
638
639 ath5k_init(sc);
640 if (test_bit(ATH_STAT_LEDSOFT, sc->status)) {
641 ath5k_hw_set_gpio_output(ah, sc->led_pin);
642 ath5k_hw_set_gpio(ah, sc->led_pin, 0);
643 }
644
645 /*
646 * Reset the key cache since some parts do not
647 * reset the contents on initial power up or resume.
648 *
649 * FIXME: This may need to be revisited when mac80211 becomes
650 * aware of suspend/resume.
651 */
652 for (i = 0; i < AR5K_KEYTABLE_SIZE; i++)
653 ath5k_hw_reset_key(ah, i);
654
655 return 0;
656 }
657 #endif /* CONFIG_PM */
658
659
660
661 /***********************\
662 * Driver Initialization *
663 \***********************/
664
665 static int
666 ath5k_attach(struct pci_dev *pdev, struct ieee80211_hw *hw)
667 {
668 struct ath5k_softc *sc = hw->priv;
669 struct ath5k_hw *ah = sc->ah;
670 u8 mac[ETH_ALEN];
671 unsigned int i;
672 int ret;
673
674 ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "devid 0x%x\n", pdev->device);
675
676 /*
677 * Check if the MAC has multi-rate retry support.
678 * We do this by trying to setup a fake extended
679 * descriptor. MAC's that don't have support will
680 * return false w/o doing anything. MAC's that do
681 * support it will return true w/o doing anything.
682 */
683 ret = ah->ah_setup_xtx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
684 if (ret < 0)
685 goto err;
686 if (ret > 0)
687 __set_bit(ATH_STAT_MRRETRY, sc->status);
688
689 /*
690 * Reset the key cache since some parts do not
691 * reset the contents on initial power up.
692 */
693 for (i = 0; i < AR5K_KEYTABLE_SIZE; i++)
694 ath5k_hw_reset_key(ah, i);
695
696 /*
697 * Collect the channel list. The 802.11 layer
698 * is resposible for filtering this list based
699 * on settings like the phy mode and regulatory
700 * domain restrictions.
701 */
702 ret = ath5k_getchannels(hw);
703 if (ret) {
704 ATH5K_ERR(sc, "can't get channels\n");
705 goto err;
706 }
707
708 /* Set *_rates so we can map hw rate index */
709 ath5k_set_total_hw_rates(sc);
710
711 /* NB: setup here so ath5k_rate_update is happy */
712 if (test_bit(AR5K_MODE_11A, ah->ah_modes))
713 ath5k_setcurmode(sc, AR5K_MODE_11A);
714 else
715 ath5k_setcurmode(sc, AR5K_MODE_11B);
716
717 /*
718 * Allocate tx+rx descriptors and populate the lists.
719 */
720 ret = ath5k_desc_alloc(sc, pdev);
721 if (ret) {
722 ATH5K_ERR(sc, "can't allocate descriptors\n");
723 goto err;
724 }
725
726 /*
727 * Allocate hardware transmit queues: one queue for
728 * beacon frames and one data queue for each QoS
729 * priority. Note that hw functions handle reseting
730 * these queues at the needed time.
731 */
732 ret = ath5k_beaconq_setup(ah);
733 if (ret < 0) {
734 ATH5K_ERR(sc, "can't setup a beacon xmit queue\n");
735 goto err_desc;
736 }
737 sc->bhalq = ret;
738
739 sc->txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
740 if (IS_ERR(sc->txq)) {
741 ATH5K_ERR(sc, "can't setup xmit queue\n");
742 ret = PTR_ERR(sc->txq);
743 goto err_bhal;
744 }
745
746 tasklet_init(&sc->rxtq, ath5k_tasklet_rx, (unsigned long)sc);
747 tasklet_init(&sc->txtq, ath5k_tasklet_tx, (unsigned long)sc);
748 tasklet_init(&sc->restq, ath5k_tasklet_reset, (unsigned long)sc);
749 setup_timer(&sc->calib_tim, ath5k_calibrate, (unsigned long)sc);
750 setup_timer(&sc->led_tim, ath5k_led_off, (unsigned long)sc);
751
752 sc->led_on = 0; /* low true */
753 /*
754 * Auto-enable soft led processing for IBM cards and for
755 * 5211 minipci cards.
756 */
757 if (pdev->device == PCI_DEVICE_ID_ATHEROS_AR5212_IBM ||
758 pdev->device == PCI_DEVICE_ID_ATHEROS_AR5211) {
759 __set_bit(ATH_STAT_LEDSOFT, sc->status);
760 sc->led_pin = 0;
761 }
762 /* Enable softled on PIN1 on HP Compaq nc6xx, nc4000 & nx5000 laptops */
763 if (pdev->subsystem_vendor == PCI_VENDOR_ID_COMPAQ) {
764 __set_bit(ATH_STAT_LEDSOFT, sc->status);
765 sc->led_pin = 0;
766 }
767 if (test_bit(ATH_STAT_LEDSOFT, sc->status)) {
768 ath5k_hw_set_gpio_output(ah, sc->led_pin);
769 ath5k_hw_set_gpio(ah, sc->led_pin, !sc->led_on);
770 }
771
772 ath5k_hw_get_lladdr(ah, mac);
773 SET_IEEE80211_PERM_ADDR(hw, mac);
774 /* All MAC address bits matter for ACKs */
775 memset(sc->bssidmask, 0xff, ETH_ALEN);
776 ath5k_hw_set_bssid_mask(sc->ah, sc->bssidmask);
777
778 ret = ieee80211_register_hw(hw);
779 if (ret) {
780 ATH5K_ERR(sc, "can't register ieee80211 hw\n");
781 goto err_queues;
782 }
783
784 return 0;
785 err_queues:
786 ath5k_txq_release(sc);
787 err_bhal:
788 ath5k_hw_release_tx_queue(ah, sc->bhalq);
789 err_desc:
790 ath5k_desc_free(sc, pdev);
791 err:
792 return ret;
793 }
794
795 static void
796 ath5k_detach(struct pci_dev *pdev, struct ieee80211_hw *hw)
797 {
798 struct ath5k_softc *sc = hw->priv;
799
800 /*
801 * NB: the order of these is important:
802 * o call the 802.11 layer before detaching ath5k_hw to
803 * insure callbacks into the driver to delete global
804 * key cache entries can be handled
805 * o reclaim the tx queue data structures after calling
806 * the 802.11 layer as we'll get called back to reclaim
807 * node state and potentially want to use them
808 * o to cleanup the tx queues the hal is called, so detach
809 * it last
810 * XXX: ??? detach ath5k_hw ???
811 * Other than that, it's straightforward...
812 */
813 ieee80211_unregister_hw(hw);
814 ath5k_desc_free(sc, pdev);
815 ath5k_txq_release(sc);
816 ath5k_hw_release_tx_queue(sc->ah, sc->bhalq);
817
818 /*
819 * NB: can't reclaim these until after ieee80211_ifdetach
820 * returns because we'll get called back to reclaim node
821 * state and potentially want to use them.
822 */
823 }
824
825
826
827
828 /********************\
829 * Channel/mode setup *
830 \********************/
831
832 /*
833 * Convert IEEE channel number to MHz frequency.
834 */
835 static inline short
836 ath5k_ieee2mhz(short chan)
837 {
838 if (chan <= 14 || chan >= 27)
839 return ieee80211chan2mhz(chan);
840 else
841 return 2212 + chan * 20;
842 }
843
844 static unsigned int
845 ath5k_copy_rates(struct ieee80211_rate *rates,
846 const struct ath5k_rate_table *rt,
847 unsigned int max)
848 {
849 unsigned int i, count;
850
851 if (rt == NULL)
852 return 0;
853
854 for (i = 0, count = 0; i < rt->rate_count && max > 0; i++) {
855 rates[count].bitrate = rt->rates[i].rate_kbps / 100;
856 rates[count].hw_value = rt->rates[i].rate_code;
857 rates[count].flags = rt->rates[i].modulation;
858 count++;
859 max--;
860 }
861
862 return count;
863 }
864
865 static unsigned int
866 ath5k_copy_channels(struct ath5k_hw *ah,
867 struct ieee80211_channel *channels,
868 unsigned int mode,
869 unsigned int max)
870 {
871 unsigned int i, count, size, chfreq, freq, ch;
872
873 if (!test_bit(mode, ah->ah_modes))
874 return 0;
875
876 switch (mode) {
877 case AR5K_MODE_11A:
878 case AR5K_MODE_11A_TURBO:
879 /* 1..220, but 2GHz frequencies are filtered by check_channel */
880 size = 220 ;
881 chfreq = CHANNEL_5GHZ;
882 break;
883 case AR5K_MODE_11B:
884 case AR5K_MODE_11G:
885 case AR5K_MODE_11G_TURBO:
886 size = 26;
887 chfreq = CHANNEL_2GHZ;
888 break;
889 default:
890 ATH5K_WARN(ah->ah_sc, "bad mode, not copying channels\n");
891 return 0;
892 }
893
894 for (i = 0, count = 0; i < size && max > 0; i++) {
895 ch = i + 1 ;
896 freq = ath5k_ieee2mhz(ch);
897
898 /* Check if channel is supported by the chipset */
899 if (!ath5k_channel_ok(ah, freq, chfreq))
900 continue;
901
902 /* Write channel info and increment counter */
903 channels[count].center_freq = freq;
904 channels[count].band = (chfreq == CHANNEL_2GHZ) ?
905 IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
906 switch (mode) {
907 case AR5K_MODE_11A:
908 case AR5K_MODE_11G:
909 channels[count].hw_value = chfreq | CHANNEL_OFDM;
910 break;
911 case AR5K_MODE_11A_TURBO:
912 case AR5K_MODE_11G_TURBO:
913 channels[count].hw_value = chfreq |
914 CHANNEL_OFDM | CHANNEL_TURBO;
915 break;
916 case AR5K_MODE_11B:
917 channels[count].hw_value = CHANNEL_B;
918 }
919
920 count++;
921 max--;
922 }
923
924 return count;
925 }
926
927 static int
928 ath5k_getchannels(struct ieee80211_hw *hw)
929 {
930 struct ath5k_softc *sc = hw->priv;
931 struct ath5k_hw *ah = sc->ah;
932 struct ieee80211_supported_band *sbands = sc->sbands;
933 const struct ath5k_rate_table *hw_rates;
934 unsigned int max_r, max_c, count_r, count_c;
935 int mode2g = AR5K_MODE_11G;
936
937 BUILD_BUG_ON(ARRAY_SIZE(sc->sbands) < IEEE80211_NUM_BANDS);
938
939 max_r = ARRAY_SIZE(sc->rates);
940 max_c = ARRAY_SIZE(sc->channels);
941 count_r = count_c = 0;
942
943 /* 2GHz band */
944 if (!test_bit(AR5K_MODE_11G, sc->ah->ah_capabilities.cap_mode)) {
945 mode2g = AR5K_MODE_11B;
946 if (!test_bit(AR5K_MODE_11B,
947 sc->ah->ah_capabilities.cap_mode))
948 mode2g = -1;
949 }
950
951 if (mode2g > 0) {
952 struct ieee80211_supported_band *sband =
953 &sbands[IEEE80211_BAND_2GHZ];
954
955 sband->bitrates = sc->rates;
956 sband->channels = sc->channels;
957
958 sband->band = IEEE80211_BAND_2GHZ;
959 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
960 mode2g, max_c);
961
962 hw_rates = ath5k_hw_get_rate_table(ah, mode2g);
963 sband->n_bitrates = ath5k_copy_rates(sband->bitrates,
964 hw_rates, max_r);
965
966 count_c = sband->n_channels;
967 count_r = sband->n_bitrates;
968
969 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
970
971 max_r -= count_r;
972 max_c -= count_c;
973
974 }
975
976 /* 5GHz band */
977
978 if (test_bit(AR5K_MODE_11A, sc->ah->ah_capabilities.cap_mode)) {
979 struct ieee80211_supported_band *sband =
980 &sbands[IEEE80211_BAND_5GHZ];
981
982 sband->bitrates = &sc->rates[count_r];
983 sband->channels = &sc->channels[count_c];
984
985 sband->band = IEEE80211_BAND_5GHZ;
986 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
987 AR5K_MODE_11A, max_c);
988
989 hw_rates = ath5k_hw_get_rate_table(ah, AR5K_MODE_11A);
990 sband->n_bitrates = ath5k_copy_rates(sband->bitrates,
991 hw_rates, max_r);
992
993 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
994 }
995
996 ath5k_debug_dump_bands(sc);
997
998 return 0;
999 }
1000
1001 /*
1002 * Set/change channels. If the channel is really being changed,
1003 * it's done by reseting the chip. To accomplish this we must
1004 * first cleanup any pending DMA, then restart stuff after a la
1005 * ath5k_init.
1006 */
1007 static int
1008 ath5k_chan_set(struct ath5k_softc *sc, struct ieee80211_channel *chan)
1009 {
1010 struct ath5k_hw *ah = sc->ah;
1011 int ret;
1012
1013 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "(%u MHz) -> (%u MHz)\n",
1014 sc->curchan->center_freq, chan->center_freq);
1015
1016 if (chan->center_freq != sc->curchan->center_freq ||
1017 chan->hw_value != sc->curchan->hw_value) {
1018
1019 sc->curchan = chan;
1020 sc->curband = &sc->sbands[chan->band];
1021
1022 /*
1023 * To switch channels clear any pending DMA operations;
1024 * wait long enough for the RX fifo to drain, reset the
1025 * hardware at the new frequency, and then re-enable
1026 * the relevant bits of the h/w.
1027 */
1028 ath5k_hw_set_intr(ah, 0); /* disable interrupts */
1029 ath5k_txq_cleanup(sc); /* clear pending tx frames */
1030 ath5k_rx_stop(sc); /* turn off frame recv */
1031 ret = ath5k_hw_reset(ah, sc->opmode, sc->curchan, true);
1032 if (ret) {
1033 ATH5K_ERR(sc, "%s: unable to reset channel "
1034 "(%u Mhz)\n", __func__, chan->center_freq);
1035 return ret;
1036 }
1037
1038 ath5k_hw_set_txpower_limit(sc->ah, 0);
1039
1040 /*
1041 * Re-enable rx framework.
1042 */
1043 ret = ath5k_rx_start(sc);
1044 if (ret) {
1045 ATH5K_ERR(sc, "%s: unable to restart recv logic\n",
1046 __func__);
1047 return ret;
1048 }
1049
1050 /*
1051 * Change channels and update the h/w rate map
1052 * if we're switching; e.g. 11a to 11b/g.
1053 *
1054 * XXX needed?
1055 */
1056 /* ath5k_chan_change(sc, chan); */
1057
1058 ath5k_beacon_config(sc);
1059 /*
1060 * Re-enable interrupts.
1061 */
1062 ath5k_hw_set_intr(ah, sc->imask);
1063 }
1064
1065 return 0;
1066 }
1067
1068 /*
1069 * TODO: CLEAN THIS !!!
1070 */
1071 static void
1072 ath5k_setcurmode(struct ath5k_softc *sc, unsigned int mode)
1073 {
1074 if (unlikely(test_bit(ATH_STAT_LEDSOFT, sc->status))) {
1075 /* from Atheros NDIS driver, w/ permission */
1076 static const struct {
1077 u16 rate; /* tx/rx 802.11 rate */
1078 u16 timeOn; /* LED on time (ms) */
1079 u16 timeOff; /* LED off time (ms) */
1080 } blinkrates[] = {
1081 { 108, 40, 10 },
1082 { 96, 44, 11 },
1083 { 72, 50, 13 },
1084 { 48, 57, 14 },
1085 { 36, 67, 16 },
1086 { 24, 80, 20 },
1087 { 22, 100, 25 },
1088 { 18, 133, 34 },
1089 { 12, 160, 40 },
1090 { 10, 200, 50 },
1091 { 6, 240, 58 },
1092 { 4, 267, 66 },
1093 { 2, 400, 100 },
1094 { 0, 500, 130 }
1095 };
1096 const struct ath5k_rate_table *rt =
1097 ath5k_hw_get_rate_table(sc->ah, mode);
1098 unsigned int i, j;
1099
1100 BUG_ON(rt == NULL);
1101
1102 memset(sc->hwmap, 0, sizeof(sc->hwmap));
1103 for (i = 0; i < 32; i++) {
1104 u8 ix = rt->rate_code_to_index[i];
1105 if (ix == 0xff) {
1106 sc->hwmap[i].ledon = msecs_to_jiffies(500);
1107 sc->hwmap[i].ledoff = msecs_to_jiffies(130);
1108 continue;
1109 }
1110 sc->hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
1111 /* receive frames include FCS */
1112 sc->hwmap[i].rxflags = sc->hwmap[i].txflags |
1113 IEEE80211_RADIOTAP_F_FCS;
1114 /* setup blink rate table to avoid per-packet lookup */
1115 for (j = 0; j < ARRAY_SIZE(blinkrates) - 1; j++)
1116 if (blinkrates[j].rate == /* XXX why 7f? */
1117 (rt->rates[ix].dot11_rate&0x7f))
1118 break;
1119
1120 sc->hwmap[i].ledon = msecs_to_jiffies(blinkrates[j].
1121 timeOn);
1122 sc->hwmap[i].ledoff = msecs_to_jiffies(blinkrates[j].
1123 timeOff);
1124 }
1125 }
1126
1127 sc->curmode = mode;
1128
1129 if (mode == AR5K_MODE_11A) {
1130 sc->curband = &sc->sbands[IEEE80211_BAND_5GHZ];
1131 } else {
1132 sc->curband = &sc->sbands[IEEE80211_BAND_2GHZ];
1133 }
1134 }
1135
1136 static void
1137 ath5k_mode_setup(struct ath5k_softc *sc)
1138 {
1139 struct ath5k_hw *ah = sc->ah;
1140 u32 rfilt;
1141
1142 /* configure rx filter */
1143 rfilt = sc->filter_flags;
1144 ath5k_hw_set_rx_filter(ah, rfilt);
1145
1146 if (ath5k_hw_hasbssidmask(ah))
1147 ath5k_hw_set_bssid_mask(ah, sc->bssidmask);
1148
1149 /* configure operational mode */
1150 ath5k_hw_set_opmode(ah);
1151
1152 ath5k_hw_set_mcast_filter(ah, 0, 0);
1153 ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
1154 }
1155
1156 /*
1157 * Match the hw provided rate index (through descriptors)
1158 * to an index for sc->curband->bitrates, so it can be used
1159 * by the stack.
1160 *
1161 * This one is a little bit tricky but i think i'm right
1162 * about this...
1163 *
1164 * We have 4 rate tables in the following order:
1165 * XR (4 rates)
1166 * 802.11a (8 rates)
1167 * 802.11b (4 rates)
1168 * 802.11g (12 rates)
1169 * that make the hw rate table.
1170 *
1171 * Lets take a 5211 for example that supports a and b modes only.
1172 * First comes the 802.11a table and then 802.11b (total 12 rates).
1173 * When hw returns eg. 11 it points to the last 802.11b rate (11Mbit),
1174 * if it returns 2 it points to the second 802.11a rate etc.
1175 *
1176 * Same goes for 5212 who has xr/a/b/g support (total 28 rates).
1177 * First comes the XR table, then 802.11a, 802.11b and 802.11g.
1178 * When hw returns eg. 27 it points to the last 802.11g rate (54Mbits) etc
1179 */
1180 static void
1181 ath5k_set_total_hw_rates(struct ath5k_softc *sc) {
1182
1183 struct ath5k_hw *ah = sc->ah;
1184
1185 if (test_bit(AR5K_MODE_11A, ah->ah_modes))
1186 sc->a_rates = 8;
1187
1188 if (test_bit(AR5K_MODE_11B, ah->ah_modes))
1189 sc->b_rates = 4;
1190
1191 if (test_bit(AR5K_MODE_11G, ah->ah_modes))
1192 sc->g_rates = 12;
1193
1194 /* XXX: Need to see what what happens when
1195 xr disable bits in eeprom are set */
1196 if (ah->ah_version >= AR5K_AR5212)
1197 sc->xr_rates = 4;
1198
1199 }
1200
1201 static inline int
1202 ath5k_hw_to_driver_rix(struct ath5k_softc *sc, int hw_rix) {
1203
1204 int mac80211_rix;
1205
1206 if(sc->curband->band == IEEE80211_BAND_2GHZ) {
1207 /* We setup a g ratetable for both b/g modes */
1208 mac80211_rix =
1209 hw_rix - sc->b_rates - sc->a_rates - sc->xr_rates;
1210 } else {
1211 mac80211_rix = hw_rix - sc->xr_rates;
1212 }
1213
1214 /* Something went wrong, fallback to basic rate for this band */
1215 if ((mac80211_rix >= sc->curband->n_bitrates) ||
1216 (mac80211_rix <= 0 ))
1217 mac80211_rix = 1;
1218
1219 return mac80211_rix;
1220 }
1221
1222
1223
1224
1225 /***************\
1226 * Buffers setup *
1227 \***************/
1228
1229 static int
1230 ath5k_rxbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1231 {
1232 struct ath5k_hw *ah = sc->ah;
1233 struct sk_buff *skb = bf->skb;
1234 struct ath5k_desc *ds;
1235
1236 if (likely(skb == NULL)) {
1237 unsigned int off;
1238
1239 /*
1240 * Allocate buffer with headroom_needed space for the
1241 * fake physical layer header at the start.
1242 */
1243 skb = dev_alloc_skb(sc->rxbufsize + sc->cachelsz - 1);
1244 if (unlikely(skb == NULL)) {
1245 ATH5K_ERR(sc, "can't alloc skbuff of size %u\n",
1246 sc->rxbufsize + sc->cachelsz - 1);
1247 return -ENOMEM;
1248 }
1249 /*
1250 * Cache-line-align. This is important (for the
1251 * 5210 at least) as not doing so causes bogus data
1252 * in rx'd frames.
1253 */
1254 off = ((unsigned long)skb->data) % sc->cachelsz;
1255 if (off != 0)
1256 skb_reserve(skb, sc->cachelsz - off);
1257
1258 bf->skb = skb;
1259 bf->skbaddr = pci_map_single(sc->pdev,
1260 skb->data, sc->rxbufsize, PCI_DMA_FROMDEVICE);
1261 if (unlikely(pci_dma_mapping_error(bf->skbaddr))) {
1262 ATH5K_ERR(sc, "%s: DMA mapping failed\n", __func__);
1263 dev_kfree_skb(skb);
1264 bf->skb = NULL;
1265 return -ENOMEM;
1266 }
1267 }
1268
1269 /*
1270 * Setup descriptors. For receive we always terminate
1271 * the descriptor list with a self-linked entry so we'll
1272 * not get overrun under high load (as can happen with a
1273 * 5212 when ANI processing enables PHY error frames).
1274 *
1275 * To insure the last descriptor is self-linked we create
1276 * each descriptor as self-linked and add it to the end. As
1277 * each additional descriptor is added the previous self-linked
1278 * entry is ``fixed'' naturally. This should be safe even
1279 * if DMA is happening. When processing RX interrupts we
1280 * never remove/process the last, self-linked, entry on the
1281 * descriptor list. This insures the hardware always has
1282 * someplace to write a new frame.
1283 */
1284 ds = bf->desc;
1285 ds->ds_link = bf->daddr; /* link to self */
1286 ds->ds_data = bf->skbaddr;
1287 ath5k_hw_setup_rx_desc(ah, ds,
1288 skb_tailroom(skb), /* buffer size */
1289 0);
1290
1291 if (sc->rxlink != NULL)
1292 *sc->rxlink = bf->daddr;
1293 sc->rxlink = &ds->ds_link;
1294 return 0;
1295 }
1296
1297 static int
1298 ath5k_txbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf,
1299 struct ieee80211_tx_control *ctl)
1300 {
1301 struct ath5k_hw *ah = sc->ah;
1302 struct ath5k_txq *txq = sc->txq;
1303 struct ath5k_desc *ds = bf->desc;
1304 struct sk_buff *skb = bf->skb;
1305 unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
1306 int ret;
1307
1308 flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
1309 bf->ctl = *ctl;
1310 /* XXX endianness */
1311 bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
1312 PCI_DMA_TODEVICE);
1313
1314 if (ctl->flags & IEEE80211_TXCTL_NO_ACK)
1315 flags |= AR5K_TXDESC_NOACK;
1316
1317 pktlen = skb->len;
1318
1319 if (!(ctl->flags & IEEE80211_TXCTL_DO_NOT_ENCRYPT)) {
1320 keyidx = ctl->hw_key->hw_key_idx;
1321 pktlen += ctl->icv_len;
1322 }
1323
1324 ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
1325 ieee80211_get_hdrlen_from_skb(skb), AR5K_PKT_TYPE_NORMAL,
1326 (sc->power_level * 2), ctl->tx_rate->hw_value,
1327 ctl->retry_limit, keyidx, 0, flags, 0, 0);
1328 if (ret)
1329 goto err_unmap;
1330
1331 ds->ds_link = 0;
1332 ds->ds_data = bf->skbaddr;
1333
1334 spin_lock_bh(&txq->lock);
1335 list_add_tail(&bf->list, &txq->q);
1336 sc->tx_stats[txq->qnum].len++;
1337 if (txq->link == NULL) /* is this first packet? */
1338 ath5k_hw_put_tx_buf(ah, txq->qnum, bf->daddr);
1339 else /* no, so only link it */
1340 *txq->link = bf->daddr;
1341
1342 txq->link = &ds->ds_link;
1343 ath5k_hw_tx_start(ah, txq->qnum);
1344 spin_unlock_bh(&txq->lock);
1345
1346 return 0;
1347 err_unmap:
1348 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
1349 return ret;
1350 }
1351
1352 /*******************\
1353 * Descriptors setup *
1354 \*******************/
1355
1356 static int
1357 ath5k_desc_alloc(struct ath5k_softc *sc, struct pci_dev *pdev)
1358 {
1359 struct ath5k_desc *ds;
1360 struct ath5k_buf *bf;
1361 dma_addr_t da;
1362 unsigned int i;
1363 int ret;
1364
1365 /* allocate descriptors */
1366 sc->desc_len = sizeof(struct ath5k_desc) *
1367 (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
1368 sc->desc = pci_alloc_consistent(pdev, sc->desc_len, &sc->desc_daddr);
1369 if (sc->desc == NULL) {
1370 ATH5K_ERR(sc, "can't allocate descriptors\n");
1371 ret = -ENOMEM;
1372 goto err;
1373 }
1374 ds = sc->desc;
1375 da = sc->desc_daddr;
1376 ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
1377 ds, sc->desc_len, (unsigned long long)sc->desc_daddr);
1378
1379 bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
1380 sizeof(struct ath5k_buf), GFP_KERNEL);
1381 if (bf == NULL) {
1382 ATH5K_ERR(sc, "can't allocate bufptr\n");
1383 ret = -ENOMEM;
1384 goto err_free;
1385 }
1386 sc->bufptr = bf;
1387
1388 INIT_LIST_HEAD(&sc->rxbuf);
1389 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
1390 bf->desc = ds;
1391 bf->daddr = da;
1392 list_add_tail(&bf->list, &sc->rxbuf);
1393 }
1394
1395 INIT_LIST_HEAD(&sc->txbuf);
1396 sc->txbuf_len = ATH_TXBUF;
1397 for (i = 0; i < ATH_TXBUF; i++, bf++, ds++,
1398 da += sizeof(*ds)) {
1399 bf->desc = ds;
1400 bf->daddr = da;
1401 list_add_tail(&bf->list, &sc->txbuf);
1402 }
1403
1404 /* beacon buffer */
1405 bf->desc = ds;
1406 bf->daddr = da;
1407 sc->bbuf = bf;
1408
1409 return 0;
1410 err_free:
1411 pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
1412 err:
1413 sc->desc = NULL;
1414 return ret;
1415 }
1416
1417 static void
1418 ath5k_desc_free(struct ath5k_softc *sc, struct pci_dev *pdev)
1419 {
1420 struct ath5k_buf *bf;
1421
1422 ath5k_txbuf_free(sc, sc->bbuf);
1423 list_for_each_entry(bf, &sc->txbuf, list)
1424 ath5k_txbuf_free(sc, bf);
1425 list_for_each_entry(bf, &sc->rxbuf, list)
1426 ath5k_txbuf_free(sc, bf);
1427
1428 /* Free memory associated with all descriptors */
1429 pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
1430
1431 kfree(sc->bufptr);
1432 sc->bufptr = NULL;
1433 }
1434
1435
1436
1437
1438
1439 /**************\
1440 * Queues setup *
1441 \**************/
1442
1443 static struct ath5k_txq *
1444 ath5k_txq_setup(struct ath5k_softc *sc,
1445 int qtype, int subtype)
1446 {
1447 struct ath5k_hw *ah = sc->ah;
1448 struct ath5k_txq *txq;
1449 struct ath5k_txq_info qi = {
1450 .tqi_subtype = subtype,
1451 .tqi_aifs = AR5K_TXQ_USEDEFAULT,
1452 .tqi_cw_min = AR5K_TXQ_USEDEFAULT,
1453 .tqi_cw_max = AR5K_TXQ_USEDEFAULT
1454 };
1455 int qnum;
1456
1457 /*
1458 * Enable interrupts only for EOL and DESC conditions.
1459 * We mark tx descriptors to receive a DESC interrupt
1460 * when a tx queue gets deep; otherwise waiting for the
1461 * EOL to reap descriptors. Note that this is done to
1462 * reduce interrupt load and this only defers reaping
1463 * descriptors, never transmitting frames. Aside from
1464 * reducing interrupts this also permits more concurrency.
1465 * The only potential downside is if the tx queue backs
1466 * up in which case the top half of the kernel may backup
1467 * due to a lack of tx descriptors.
1468 */
1469 qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
1470 AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1471 qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1472 if (qnum < 0) {
1473 /*
1474 * NB: don't print a message, this happens
1475 * normally on parts with too few tx queues
1476 */
1477 return ERR_PTR(qnum);
1478 }
1479 if (qnum >= ARRAY_SIZE(sc->txqs)) {
1480 ATH5K_ERR(sc, "hw qnum %u out of range, max %tu!\n",
1481 qnum, ARRAY_SIZE(sc->txqs));
1482 ath5k_hw_release_tx_queue(ah, qnum);
1483 return ERR_PTR(-EINVAL);
1484 }
1485 txq = &sc->txqs[qnum];
1486 if (!txq->setup) {
1487 txq->qnum = qnum;
1488 txq->link = NULL;
1489 INIT_LIST_HEAD(&txq->q);
1490 spin_lock_init(&txq->lock);
1491 txq->setup = true;
1492 }
1493 return &sc->txqs[qnum];
1494 }
1495
1496 static int
1497 ath5k_beaconq_setup(struct ath5k_hw *ah)
1498 {
1499 struct ath5k_txq_info qi = {
1500 .tqi_aifs = AR5K_TXQ_USEDEFAULT,
1501 .tqi_cw_min = AR5K_TXQ_USEDEFAULT,
1502 .tqi_cw_max = AR5K_TXQ_USEDEFAULT,
1503 /* NB: for dynamic turbo, don't enable any other interrupts */
1504 .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1505 };
1506
1507 return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1508 }
1509
1510 static int
1511 ath5k_beaconq_config(struct ath5k_softc *sc)
1512 {
1513 struct ath5k_hw *ah = sc->ah;
1514 struct ath5k_txq_info qi;
1515 int ret;
1516
1517 ret = ath5k_hw_get_tx_queueprops(ah, sc->bhalq, &qi);
1518 if (ret)
1519 return ret;
1520 if (sc->opmode == IEEE80211_IF_TYPE_AP) {
1521 /*
1522 * Always burst out beacon and CAB traffic
1523 * (aifs = cwmin = cwmax = 0)
1524 */
1525 qi.tqi_aifs = 0;
1526 qi.tqi_cw_min = 0;
1527 qi.tqi_cw_max = 0;
1528 } else if (sc->opmode == IEEE80211_IF_TYPE_IBSS) {
1529 /*
1530 * Adhoc mode; backoff between 0 and (2 * cw_min).
1531 */
1532 qi.tqi_aifs = 0;
1533 qi.tqi_cw_min = 0;
1534 qi.tqi_cw_max = 2 * ah->ah_cw_min;
1535 }
1536
1537 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1538 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1539 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1540
1541 ret = ath5k_hw_setup_tx_queueprops(ah, sc->bhalq, &qi);
1542 if (ret) {
1543 ATH5K_ERR(sc, "%s: unable to update parameters for beacon "
1544 "hardware queue!\n", __func__);
1545 return ret;
1546 }
1547
1548 return ath5k_hw_reset_tx_queue(ah, sc->bhalq); /* push to h/w */;
1549 }
1550
1551 static void
1552 ath5k_txq_drainq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1553 {
1554 struct ath5k_buf *bf, *bf0;
1555
1556 /*
1557 * NB: this assumes output has been stopped and
1558 * we do not need to block ath5k_tx_tasklet
1559 */
1560 spin_lock_bh(&txq->lock);
1561 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1562 ath5k_debug_printtxbuf(sc, bf);
1563
1564 ath5k_txbuf_free(sc, bf);
1565
1566 spin_lock_bh(&sc->txbuflock);
1567 sc->tx_stats[txq->qnum].len--;
1568 list_move_tail(&bf->list, &sc->txbuf);
1569 sc->txbuf_len++;
1570 spin_unlock_bh(&sc->txbuflock);
1571 }
1572 txq->link = NULL;
1573 spin_unlock_bh(&txq->lock);
1574 }
1575
1576 /*
1577 * Drain the transmit queues and reclaim resources.
1578 */
1579 static void
1580 ath5k_txq_cleanup(struct ath5k_softc *sc)
1581 {
1582 struct ath5k_hw *ah = sc->ah;
1583 unsigned int i;
1584
1585 /* XXX return value */
1586 if (likely(!test_bit(ATH_STAT_INVALID, sc->status))) {
1587 /* don't touch the hardware if marked invalid */
1588 ath5k_hw_stop_tx_dma(ah, sc->bhalq);
1589 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "beacon queue %x\n",
1590 ath5k_hw_get_tx_buf(ah, sc->bhalq));
1591 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1592 if (sc->txqs[i].setup) {
1593 ath5k_hw_stop_tx_dma(ah, sc->txqs[i].qnum);
1594 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "txq [%u] %x, "
1595 "link %p\n",
1596 sc->txqs[i].qnum,
1597 ath5k_hw_get_tx_buf(ah,
1598 sc->txqs[i].qnum),
1599 sc->txqs[i].link);
1600 }
1601 }
1602 ieee80211_wake_queues(sc->hw); /* XXX move to callers */
1603
1604 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1605 if (sc->txqs[i].setup)
1606 ath5k_txq_drainq(sc, &sc->txqs[i]);
1607 }
1608
1609 static void
1610 ath5k_txq_release(struct ath5k_softc *sc)
1611 {
1612 struct ath5k_txq *txq = sc->txqs;
1613 unsigned int i;
1614
1615 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++, txq++)
1616 if (txq->setup) {
1617 ath5k_hw_release_tx_queue(sc->ah, txq->qnum);
1618 txq->setup = false;
1619 }
1620 }
1621
1622
1623
1624
1625 /*************\
1626 * RX Handling *
1627 \*************/
1628
1629 /*
1630 * Enable the receive h/w following a reset.
1631 */
1632 static int
1633 ath5k_rx_start(struct ath5k_softc *sc)
1634 {
1635 struct ath5k_hw *ah = sc->ah;
1636 struct ath5k_buf *bf;
1637 int ret;
1638
1639 sc->rxbufsize = roundup(IEEE80211_MAX_LEN, sc->cachelsz);
1640
1641 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "cachelsz %u rxbufsize %u\n",
1642 sc->cachelsz, sc->rxbufsize);
1643
1644 sc->rxlink = NULL;
1645
1646 spin_lock_bh(&sc->rxbuflock);
1647 list_for_each_entry(bf, &sc->rxbuf, list) {
1648 ret = ath5k_rxbuf_setup(sc, bf);
1649 if (ret != 0) {
1650 spin_unlock_bh(&sc->rxbuflock);
1651 goto err;
1652 }
1653 }
1654 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1655 spin_unlock_bh(&sc->rxbuflock);
1656
1657 ath5k_hw_put_rx_buf(ah, bf->daddr);
1658 ath5k_hw_start_rx(ah); /* enable recv descriptors */
1659 ath5k_mode_setup(sc); /* set filters, etc. */
1660 ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
1661
1662 return 0;
1663 err:
1664 return ret;
1665 }
1666
1667 /*
1668 * Disable the receive h/w in preparation for a reset.
1669 */
1670 static void
1671 ath5k_rx_stop(struct ath5k_softc *sc)
1672 {
1673 struct ath5k_hw *ah = sc->ah;
1674
1675 ath5k_hw_stop_pcu_recv(ah); /* disable PCU */
1676 ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
1677 ath5k_hw_stop_rx_dma(ah); /* disable DMA engine */
1678 mdelay(3); /* 3ms is long enough for 1 frame */
1679
1680 ath5k_debug_printrxbuffs(sc, ah);
1681
1682 sc->rxlink = NULL; /* just in case */
1683 }
1684
1685 static unsigned int
1686 ath5k_rx_decrypted(struct ath5k_softc *sc, struct ath5k_desc *ds,
1687 struct sk_buff *skb, struct ath5k_rx_status *rs)
1688 {
1689 struct ieee80211_hdr *hdr = (void *)skb->data;
1690 unsigned int keyix, hlen = ieee80211_get_hdrlen_from_skb(skb);
1691
1692 if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1693 rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1694 return RX_FLAG_DECRYPTED;
1695
1696 /* Apparently when a default key is used to decrypt the packet
1697 the hw does not set the index used to decrypt. In such cases
1698 get the index from the packet. */
1699 if ((le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_PROTECTED) &&
1700 !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1701 skb->len >= hlen + 4) {
1702 keyix = skb->data[hlen + 3] >> 6;
1703
1704 if (test_bit(keyix, sc->keymap))
1705 return RX_FLAG_DECRYPTED;
1706 }
1707
1708 return 0;
1709 }
1710
1711
1712 static void
1713 ath5k_check_ibss_tsf(struct ath5k_softc *sc, struct sk_buff *skb,
1714 struct ieee80211_rx_status *rxs)
1715 {
1716 u64 tsf, bc_tstamp;
1717 u32 hw_tu;
1718 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1719
1720 if ((le16_to_cpu(mgmt->frame_control) & IEEE80211_FCTL_FTYPE) ==
1721 IEEE80211_FTYPE_MGMT &&
1722 (le16_to_cpu(mgmt->frame_control) & IEEE80211_FCTL_STYPE) ==
1723 IEEE80211_STYPE_BEACON &&
1724 le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1725 memcmp(mgmt->bssid, sc->ah->ah_bssid, ETH_ALEN) == 0) {
1726 /*
1727 * Received an IBSS beacon with the same BSSID. Hardware *must*
1728 * have updated the local TSF. We have to work around various
1729 * hardware bugs, though...
1730 */
1731 tsf = ath5k_hw_get_tsf64(sc->ah);
1732 bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1733 hw_tu = TSF_TO_TU(tsf);
1734
1735 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1736 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1737 (unsigned long long)bc_tstamp,
1738 (unsigned long long)rxs->mactime,
1739 (unsigned long long)(rxs->mactime - bc_tstamp),
1740 (unsigned long long)tsf);
1741
1742 /*
1743 * Sometimes the HW will give us a wrong tstamp in the rx
1744 * status, causing the timestamp extension to go wrong.
1745 * (This seems to happen especially with beacon frames bigger
1746 * than 78 byte (incl. FCS))
1747 * But we know that the receive timestamp must be later than the
1748 * timestamp of the beacon since HW must have synced to that.
1749 *
1750 * NOTE: here we assume mactime to be after the frame was
1751 * received, not like mac80211 which defines it at the start.
1752 */
1753 if (bc_tstamp > rxs->mactime) {
1754 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1755 "fixing mactime from %llx to %llx\n",
1756 (unsigned long long)rxs->mactime,
1757 (unsigned long long)tsf);
1758 rxs->mactime = tsf;
1759 }
1760
1761 /*
1762 * Local TSF might have moved higher than our beacon timers,
1763 * in that case we have to update them to continue sending
1764 * beacons. This also takes care of synchronizing beacon sending
1765 * times with other stations.
1766 */
1767 if (hw_tu >= sc->nexttbtt)
1768 ath5k_beacon_update_timers(sc, bc_tstamp);
1769 }
1770 }
1771
1772
1773 static void
1774 ath5k_tasklet_rx(unsigned long data)
1775 {
1776 struct ieee80211_rx_status rxs = {};
1777 struct ath5k_rx_status rs = {};
1778 struct sk_buff *skb;
1779 struct ath5k_softc *sc = (void *)data;
1780 struct ath5k_buf *bf;
1781 struct ath5k_desc *ds;
1782 int ret;
1783 int hdrlen;
1784 int pad;
1785
1786 spin_lock(&sc->rxbuflock);
1787 do {
1788 rxs.flag = 0;
1789
1790 if (unlikely(list_empty(&sc->rxbuf))) {
1791 ATH5K_WARN(sc, "empty rx buf pool\n");
1792 break;
1793 }
1794 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1795 BUG_ON(bf->skb == NULL);
1796 skb = bf->skb;
1797 ds = bf->desc;
1798
1799 /* TODO only one segment */
1800 pci_dma_sync_single_for_cpu(sc->pdev, sc->desc_daddr,
1801 sc->desc_len, PCI_DMA_FROMDEVICE);
1802
1803 if (unlikely(ds->ds_link == bf->daddr)) /* this is the end */
1804 break;
1805
1806 ret = sc->ah->ah_proc_rx_desc(sc->ah, ds, &rs);
1807 if (unlikely(ret == -EINPROGRESS))
1808 break;
1809 else if (unlikely(ret)) {
1810 ATH5K_ERR(sc, "error in processing rx descriptor\n");
1811 spin_unlock(&sc->rxbuflock);
1812 return;
1813 }
1814
1815 if (unlikely(rs.rs_more)) {
1816 ATH5K_WARN(sc, "unsupported jumbo\n");
1817 goto next;
1818 }
1819
1820 if (unlikely(rs.rs_status)) {
1821 if (rs.rs_status & AR5K_RXERR_PHY)
1822 goto next;
1823 if (rs.rs_status & AR5K_RXERR_DECRYPT) {
1824 /*
1825 * Decrypt error. If the error occurred
1826 * because there was no hardware key, then
1827 * let the frame through so the upper layers
1828 * can process it. This is necessary for 5210
1829 * parts which have no way to setup a ``clear''
1830 * key cache entry.
1831 *
1832 * XXX do key cache faulting
1833 */
1834 if (rs.rs_keyix == AR5K_RXKEYIX_INVALID &&
1835 !(rs.rs_status & AR5K_RXERR_CRC))
1836 goto accept;
1837 }
1838 if (rs.rs_status & AR5K_RXERR_MIC) {
1839 rxs.flag |= RX_FLAG_MMIC_ERROR;
1840 goto accept;
1841 }
1842
1843 /* let crypto-error packets fall through in MNTR */
1844 if ((rs.rs_status &
1845 ~(AR5K_RXERR_DECRYPT|AR5K_RXERR_MIC)) ||
1846 sc->opmode != IEEE80211_IF_TYPE_MNTR)
1847 goto next;
1848 }
1849 accept:
1850 pci_dma_sync_single_for_cpu(sc->pdev, bf->skbaddr,
1851 rs.rs_datalen, PCI_DMA_FROMDEVICE);
1852 pci_unmap_single(sc->pdev, bf->skbaddr, sc->rxbufsize,
1853 PCI_DMA_FROMDEVICE);
1854 bf->skb = NULL;
1855
1856 skb_put(skb, rs.rs_datalen);
1857
1858 /*
1859 * the hardware adds a padding to 4 byte boundaries between
1860 * the header and the payload data if the header length is
1861 * not multiples of 4 - remove it
1862 */
1863 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1864 if (hdrlen & 3) {
1865 pad = hdrlen % 4;
1866 memmove(skb->data + pad, skb->data, hdrlen);
1867 skb_pull(skb, pad);
1868 }
1869
1870 /*
1871 * always extend the mac timestamp, since this information is
1872 * also needed for proper IBSS merging.
1873 *
1874 * XXX: it might be too late to do it here, since rs_tstamp is
1875 * 15bit only. that means TSF extension has to be done within
1876 * 32768usec (about 32ms). it might be necessary to move this to
1877 * the interrupt handler, like it is done in madwifi.
1878 *
1879 * Unfortunately we don't know when the hardware takes the rx
1880 * timestamp (beginning of phy frame, data frame, end of rx?).
1881 * The only thing we know is that it is hardware specific...
1882 * On AR5213 it seems the rx timestamp is at the end of the
1883 * frame, but i'm not sure.
1884 *
1885 * NOTE: mac80211 defines mactime at the beginning of the first
1886 * data symbol. Since we don't have any time references it's
1887 * impossible to comply to that. This affects IBSS merge only
1888 * right now, so it's not too bad...
1889 */
1890 rxs.mactime = ath5k_extend_tsf(sc->ah, rs.rs_tstamp);
1891 rxs.flag |= RX_FLAG_TSFT;
1892
1893 rxs.freq = sc->curchan->center_freq;
1894 rxs.band = sc->curband->band;
1895
1896 rxs.noise = sc->ah->ah_noise_floor;
1897 rxs.signal = rxs.noise + rs.rs_rssi;
1898 rxs.qual = rs.rs_rssi * 100 / 64;
1899
1900 rxs.antenna = rs.rs_antenna;
1901 rxs.rate_idx = ath5k_hw_to_driver_rix(sc, rs.rs_rate);
1902 rxs.flag |= ath5k_rx_decrypted(sc, ds, skb, &rs);
1903
1904 ath5k_debug_dump_skb(sc, skb, "RX ", 0);
1905
1906 /* check beacons in IBSS mode */
1907 if (sc->opmode == IEEE80211_IF_TYPE_IBSS)
1908 ath5k_check_ibss_tsf(sc, skb, &rxs);
1909
1910 __ieee80211_rx(sc->hw, skb, &rxs);
1911 sc->led_rxrate = rs.rs_rate;
1912 ath5k_led_event(sc, ATH_LED_RX);
1913 next:
1914 list_move_tail(&bf->list, &sc->rxbuf);
1915 } while (ath5k_rxbuf_setup(sc, bf) == 0);
1916 spin_unlock(&sc->rxbuflock);
1917 }
1918
1919
1920
1921
1922 /*************\
1923 * TX Handling *
1924 \*************/
1925
1926 static void
1927 ath5k_tx_processq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1928 {
1929 struct ieee80211_tx_status txs = {};
1930 struct ath5k_tx_status ts = {};
1931 struct ath5k_buf *bf, *bf0;
1932 struct ath5k_desc *ds;
1933 struct sk_buff *skb;
1934 int ret;
1935
1936 spin_lock(&txq->lock);
1937 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1938 ds = bf->desc;
1939
1940 /* TODO only one segment */
1941 pci_dma_sync_single_for_cpu(sc->pdev, sc->desc_daddr,
1942 sc->desc_len, PCI_DMA_FROMDEVICE);
1943 ret = sc->ah->ah_proc_tx_desc(sc->ah, ds, &ts);
1944 if (unlikely(ret == -EINPROGRESS))
1945 break;
1946 else if (unlikely(ret)) {
1947 ATH5K_ERR(sc, "error %d while processing queue %u\n",
1948 ret, txq->qnum);
1949 break;
1950 }
1951
1952 skb = bf->skb;
1953 bf->skb = NULL;
1954 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len,
1955 PCI_DMA_TODEVICE);
1956
1957 txs.control = bf->ctl;
1958 txs.retry_count = ts.ts_shortretry + ts.ts_longretry / 6;
1959 if (unlikely(ts.ts_status)) {
1960 sc->ll_stats.dot11ACKFailureCount++;
1961 if (ts.ts_status & AR5K_TXERR_XRETRY)
1962 txs.excessive_retries = 1;
1963 else if (ts.ts_status & AR5K_TXERR_FILT)
1964 txs.flags |= IEEE80211_TX_STATUS_TX_FILTERED;
1965 } else {
1966 txs.flags |= IEEE80211_TX_STATUS_ACK;
1967 txs.ack_signal = ts.ts_rssi;
1968 }
1969
1970 ieee80211_tx_status(sc->hw, skb, &txs);
1971 sc->tx_stats[txq->qnum].count++;
1972
1973 spin_lock(&sc->txbuflock);
1974 sc->tx_stats[txq->qnum].len--;
1975 list_move_tail(&bf->list, &sc->txbuf);
1976 sc->txbuf_len++;
1977 spin_unlock(&sc->txbuflock);
1978 }
1979 if (likely(list_empty(&txq->q)))
1980 txq->link = NULL;
1981 spin_unlock(&txq->lock);
1982 if (sc->txbuf_len > ATH_TXBUF / 5)
1983 ieee80211_wake_queues(sc->hw);
1984 }
1985
1986 static void
1987 ath5k_tasklet_tx(unsigned long data)
1988 {
1989 struct ath5k_softc *sc = (void *)data;
1990
1991 ath5k_tx_processq(sc, sc->txq);
1992
1993 ath5k_led_event(sc, ATH_LED_TX);
1994 }
1995
1996
1997
1998
1999 /*****************\
2000 * Beacon handling *
2001 \*****************/
2002
2003 /*
2004 * Setup the beacon frame for transmit.
2005 */
2006 static int
2007 ath5k_beacon_setup(struct ath5k_softc *sc, struct ath5k_buf *bf,
2008 struct ieee80211_tx_control *ctl)
2009 {
2010 struct sk_buff *skb = bf->skb;
2011 struct ath5k_hw *ah = sc->ah;
2012 struct ath5k_desc *ds;
2013 int ret, antenna = 0;
2014 u32 flags;
2015
2016 bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
2017 PCI_DMA_TODEVICE);
2018 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
2019 "skbaddr %llx\n", skb, skb->data, skb->len,
2020 (unsigned long long)bf->skbaddr);
2021 if (pci_dma_mapping_error(bf->skbaddr)) {
2022 ATH5K_ERR(sc, "beacon DMA mapping failed\n");
2023 return -EIO;
2024 }
2025
2026 ds = bf->desc;
2027
2028 flags = AR5K_TXDESC_NOACK;
2029 if (sc->opmode == IEEE80211_IF_TYPE_IBSS && ath5k_hw_hasveol(ah)) {
2030 ds->ds_link = bf->daddr; /* self-linked */
2031 flags |= AR5K_TXDESC_VEOL;
2032 /*
2033 * Let hardware handle antenna switching if txantenna is not set
2034 */
2035 } else {
2036 ds->ds_link = 0;
2037 /*
2038 * Switch antenna every 4 beacons if txantenna is not set
2039 * XXX assumes two antennas
2040 */
2041 if (antenna == 0)
2042 antenna = sc->bsent & 4 ? 2 : 1;
2043 }
2044
2045 ds->ds_data = bf->skbaddr;
2046 ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
2047 ieee80211_get_hdrlen_from_skb(skb),
2048 AR5K_PKT_TYPE_BEACON, (sc->power_level * 2),
2049 ctl->tx_rate->hw_value, 1, AR5K_TXKEYIX_INVALID,
2050 antenna, flags, 0, 0);
2051 if (ret)
2052 goto err_unmap;
2053
2054 return 0;
2055 err_unmap:
2056 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
2057 return ret;
2058 }
2059
2060 /*
2061 * Transmit a beacon frame at SWBA. Dynamic updates to the
2062 * frame contents are done as needed and the slot time is
2063 * also adjusted based on current state.
2064 *
2065 * this is usually called from interrupt context (ath5k_intr())
2066 * but also from ath5k_beacon_config() in IBSS mode which in turn
2067 * can be called from a tasklet and user context
2068 */
2069 static void
2070 ath5k_beacon_send(struct ath5k_softc *sc)
2071 {
2072 struct ath5k_buf *bf = sc->bbuf;
2073 struct ath5k_hw *ah = sc->ah;
2074
2075 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "in beacon_send\n");
2076
2077 if (unlikely(bf->skb == NULL || sc->opmode == IEEE80211_IF_TYPE_STA ||
2078 sc->opmode == IEEE80211_IF_TYPE_MNTR)) {
2079 ATH5K_WARN(sc, "bf=%p bf_skb=%p\n", bf, bf ? bf->skb : NULL);
2080 return;
2081 }
2082 /*
2083 * Check if the previous beacon has gone out. If
2084 * not don't don't try to post another, skip this
2085 * period and wait for the next. Missed beacons
2086 * indicate a problem and should not occur. If we
2087 * miss too many consecutive beacons reset the device.
2088 */
2089 if (unlikely(ath5k_hw_num_tx_pending(ah, sc->bhalq) != 0)) {
2090 sc->bmisscount++;
2091 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2092 "missed %u consecutive beacons\n", sc->bmisscount);
2093 if (sc->bmisscount > 3) { /* NB: 3 is a guess */
2094 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2095 "stuck beacon time (%u missed)\n",
2096 sc->bmisscount);
2097 tasklet_schedule(&sc->restq);
2098 }
2099 return;
2100 }
2101 if (unlikely(sc->bmisscount != 0)) {
2102 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2103 "resume beacon xmit after %u misses\n",
2104 sc->bmisscount);
2105 sc->bmisscount = 0;
2106 }
2107
2108 /*
2109 * Stop any current dma and put the new frame on the queue.
2110 * This should never fail since we check above that no frames
2111 * are still pending on the queue.
2112 */
2113 if (unlikely(ath5k_hw_stop_tx_dma(ah, sc->bhalq))) {
2114 ATH5K_WARN(sc, "beacon queue %u didn't stop?\n", sc->bhalq);
2115 /* NB: hw still stops DMA, so proceed */
2116 }
2117 pci_dma_sync_single_for_cpu(sc->pdev, bf->skbaddr, bf->skb->len,
2118 PCI_DMA_TODEVICE);
2119
2120 ath5k_hw_put_tx_buf(ah, sc->bhalq, bf->daddr);
2121 ath5k_hw_tx_start(ah, sc->bhalq);
2122 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
2123 sc->bhalq, (unsigned long long)bf->daddr, bf->desc);
2124
2125 sc->bsent++;
2126 }
2127
2128
2129 /**
2130 * ath5k_beacon_update_timers - update beacon timers
2131 *
2132 * @sc: struct ath5k_softc pointer we are operating on
2133 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2134 * beacon timer update based on the current HW TSF.
2135 *
2136 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2137 * of a received beacon or the current local hardware TSF and write it to the
2138 * beacon timer registers.
2139 *
2140 * This is called in a variety of situations, e.g. when a beacon is received,
2141 * when a TSF update has been detected, but also when an new IBSS is created or
2142 * when we otherwise know we have to update the timers, but we keep it in this
2143 * function to have it all together in one place.
2144 */
2145 static void
2146 ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf)
2147 {
2148 struct ath5k_hw *ah = sc->ah;
2149 u32 nexttbtt, intval, hw_tu, bc_tu;
2150 u64 hw_tsf;
2151
2152 intval = sc->bintval & AR5K_BEACON_PERIOD;
2153 if (WARN_ON(!intval))
2154 return;
2155
2156 /* beacon TSF converted to TU */
2157 bc_tu = TSF_TO_TU(bc_tsf);
2158
2159 /* current TSF converted to TU */
2160 hw_tsf = ath5k_hw_get_tsf64(ah);
2161 hw_tu = TSF_TO_TU(hw_tsf);
2162
2163 #define FUDGE 3
2164 /* we use FUDGE to make sure the next TBTT is ahead of the current TU */
2165 if (bc_tsf == -1) {
2166 /*
2167 * no beacons received, called internally.
2168 * just need to refresh timers based on HW TSF.
2169 */
2170 nexttbtt = roundup(hw_tu + FUDGE, intval);
2171 } else if (bc_tsf == 0) {
2172 /*
2173 * no beacon received, probably called by ath5k_reset_tsf().
2174 * reset TSF to start with 0.
2175 */
2176 nexttbtt = intval;
2177 intval |= AR5K_BEACON_RESET_TSF;
2178 } else if (bc_tsf > hw_tsf) {
2179 /*
2180 * beacon received, SW merge happend but HW TSF not yet updated.
2181 * not possible to reconfigure timers yet, but next time we
2182 * receive a beacon with the same BSSID, the hardware will
2183 * automatically update the TSF and then we need to reconfigure
2184 * the timers.
2185 */
2186 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2187 "need to wait for HW TSF sync\n");
2188 return;
2189 } else {
2190 /*
2191 * most important case for beacon synchronization between STA.
2192 *
2193 * beacon received and HW TSF has been already updated by HW.
2194 * update next TBTT based on the TSF of the beacon, but make
2195 * sure it is ahead of our local TSF timer.
2196 */
2197 nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2198 }
2199 #undef FUDGE
2200
2201 sc->nexttbtt = nexttbtt;
2202
2203 intval |= AR5K_BEACON_ENA;
2204 ath5k_hw_init_beacon(ah, nexttbtt, intval);
2205
2206 /*
2207 * debugging output last in order to preserve the time critical aspect
2208 * of this function
2209 */
2210 if (bc_tsf == -1)
2211 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2212 "reconfigured timers based on HW TSF\n");
2213 else if (bc_tsf == 0)
2214 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2215 "reset HW TSF and timers\n");
2216 else
2217 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2218 "updated timers based on beacon TSF\n");
2219
2220 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2221 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2222 (unsigned long long) bc_tsf,
2223 (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2224 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2225 intval & AR5K_BEACON_PERIOD,
2226 intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2227 intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2228 }
2229
2230
2231 /**
2232 * ath5k_beacon_config - Configure the beacon queues and interrupts
2233 *
2234 * @sc: struct ath5k_softc pointer we are operating on
2235 *
2236 * When operating in station mode we want to receive a BMISS interrupt when we
2237 * stop seeing beacons from the AP we've associated with so we can look for
2238 * another AP to associate with.
2239 *
2240 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2241 * interrupts to detect TSF updates only.
2242 *
2243 * AP mode is missing.
2244 */
2245 static void
2246 ath5k_beacon_config(struct ath5k_softc *sc)
2247 {
2248 struct ath5k_hw *ah = sc->ah;
2249
2250 ath5k_hw_set_intr(ah, 0);
2251 sc->bmisscount = 0;
2252
2253 if (sc->opmode == IEEE80211_IF_TYPE_STA) {
2254 sc->imask |= AR5K_INT_BMISS;
2255 } else if (sc->opmode == IEEE80211_IF_TYPE_IBSS) {
2256 /*
2257 * In IBSS mode we use a self-linked tx descriptor and let the
2258 * hardware send the beacons automatically. We have to load it
2259 * only once here.
2260 * We use the SWBA interrupt only to keep track of the beacon
2261 * timers in order to detect automatic TSF updates.
2262 */
2263 ath5k_beaconq_config(sc);
2264
2265 sc->imask |= AR5K_INT_SWBA;
2266
2267 if (ath5k_hw_hasveol(ah))
2268 ath5k_beacon_send(sc);
2269 }
2270 /* TODO else AP */
2271
2272 ath5k_hw_set_intr(ah, sc->imask);
2273 }
2274
2275
2276 /********************\
2277 * Interrupt handling *
2278 \********************/
2279
2280 static int
2281 ath5k_init(struct ath5k_softc *sc)
2282 {
2283 int ret;
2284
2285 mutex_lock(&sc->lock);
2286
2287 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mode %d\n", sc->opmode);
2288
2289 /*
2290 * Stop anything previously setup. This is safe
2291 * no matter this is the first time through or not.
2292 */
2293 ath5k_stop_locked(sc);
2294
2295 /*
2296 * The basic interface to setting the hardware in a good
2297 * state is ``reset''. On return the hardware is known to
2298 * be powered up and with interrupts disabled. This must
2299 * be followed by initialization of the appropriate bits
2300 * and then setup of the interrupt mask.
2301 */
2302 sc->curchan = sc->hw->conf.channel;
2303 sc->curband = &sc->sbands[sc->curchan->band];
2304 ret = ath5k_hw_reset(sc->ah, sc->opmode, sc->curchan, false);
2305 if (ret) {
2306 ATH5K_ERR(sc, "unable to reset hardware: %d\n", ret);
2307 goto done;
2308 }
2309 /*
2310 * This is needed only to setup initial state
2311 * but it's best done after a reset.
2312 */
2313 ath5k_hw_set_txpower_limit(sc->ah, 0);
2314
2315 /*
2316 * Setup the hardware after reset: the key cache
2317 * is filled as needed and the receive engine is
2318 * set going. Frame transmit is handled entirely
2319 * in the frame output path; there's nothing to do
2320 * here except setup the interrupt mask.
2321 */
2322 ret = ath5k_rx_start(sc);
2323 if (ret)
2324 goto done;
2325
2326 /*
2327 * Enable interrupts.
2328 */
2329 sc->imask = AR5K_INT_RX | AR5K_INT_TX | AR5K_INT_RXEOL |
2330 AR5K_INT_RXORN | AR5K_INT_FATAL | AR5K_INT_GLOBAL |
2331 AR5K_INT_MIB;
2332
2333 ath5k_hw_set_intr(sc->ah, sc->imask);
2334 /* Set ack to be sent at low bit-rates */
2335 ath5k_hw_set_ack_bitrate_high(sc->ah, false);
2336
2337 mod_timer(&sc->calib_tim, round_jiffies(jiffies +
2338 msecs_to_jiffies(ath5k_calinterval * 1000)));
2339
2340 ret = 0;
2341 done:
2342 mutex_unlock(&sc->lock);
2343 return ret;
2344 }
2345
2346 static int
2347 ath5k_stop_locked(struct ath5k_softc *sc)
2348 {
2349 struct ath5k_hw *ah = sc->ah;
2350
2351 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "invalid %u\n",
2352 test_bit(ATH_STAT_INVALID, sc->status));
2353
2354 /*
2355 * Shutdown the hardware and driver:
2356 * stop output from above
2357 * disable interrupts
2358 * turn off timers
2359 * turn off the radio
2360 * clear transmit machinery
2361 * clear receive machinery
2362 * drain and release tx queues
2363 * reclaim beacon resources
2364 * power down hardware
2365 *
2366 * Note that some of this work is not possible if the
2367 * hardware is gone (invalid).
2368 */
2369 ieee80211_stop_queues(sc->hw);
2370
2371 if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2372 if (test_bit(ATH_STAT_LEDSOFT, sc->status)) {
2373 del_timer_sync(&sc->led_tim);
2374 ath5k_hw_set_gpio(ah, sc->led_pin, !sc->led_on);
2375 __clear_bit(ATH_STAT_LEDBLINKING, sc->status);
2376 }
2377 ath5k_hw_set_intr(ah, 0);
2378 }
2379 ath5k_txq_cleanup(sc);
2380 if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2381 ath5k_rx_stop(sc);
2382 ath5k_hw_phy_disable(ah);
2383 } else
2384 sc->rxlink = NULL;
2385
2386 return 0;
2387 }
2388
2389 /*
2390 * Stop the device, grabbing the top-level lock to protect
2391 * against concurrent entry through ath5k_init (which can happen
2392 * if another thread does a system call and the thread doing the
2393 * stop is preempted).
2394 */
2395 static int
2396 ath5k_stop_hw(struct ath5k_softc *sc)
2397 {
2398 int ret;
2399
2400 mutex_lock(&sc->lock);
2401 ret = ath5k_stop_locked(sc);
2402 if (ret == 0 && !test_bit(ATH_STAT_INVALID, sc->status)) {
2403 /*
2404 * Set the chip in full sleep mode. Note that we are
2405 * careful to do this only when bringing the interface
2406 * completely to a stop. When the chip is in this state
2407 * it must be carefully woken up or references to
2408 * registers in the PCI clock domain may freeze the bus
2409 * (and system). This varies by chip and is mostly an
2410 * issue with newer parts that go to sleep more quickly.
2411 */
2412 if (sc->ah->ah_mac_srev >= 0x78) {
2413 /*
2414 * XXX
2415 * don't put newer MAC revisions > 7.8 to sleep because
2416 * of the above mentioned problems
2417 */
2418 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mac version > 7.8, "
2419 "not putting device to sleep\n");
2420 } else {
2421 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2422 "putting device to full sleep\n");
2423 ath5k_hw_set_power(sc->ah, AR5K_PM_FULL_SLEEP, true, 0);
2424 }
2425 }
2426 ath5k_txbuf_free(sc, sc->bbuf);
2427 mutex_unlock(&sc->lock);
2428
2429 del_timer_sync(&sc->calib_tim);
2430
2431 return ret;
2432 }
2433
2434 static irqreturn_t
2435 ath5k_intr(int irq, void *dev_id)
2436 {
2437 struct ath5k_softc *sc = dev_id;
2438 struct ath5k_hw *ah = sc->ah;
2439 enum ath5k_int status;
2440 unsigned int counter = 1000;
2441
2442 if (unlikely(test_bit(ATH_STAT_INVALID, sc->status) ||
2443 !ath5k_hw_is_intr_pending(ah)))
2444 return IRQ_NONE;
2445
2446 do {
2447 /*
2448 * Figure out the reason(s) for the interrupt. Note
2449 * that get_isr returns a pseudo-ISR that may include
2450 * bits we haven't explicitly enabled so we mask the
2451 * value to insure we only process bits we requested.
2452 */
2453 ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */
2454 ATH5K_DBG(sc, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2455 status, sc->imask);
2456 status &= sc->imask; /* discard unasked for bits */
2457 if (unlikely(status & AR5K_INT_FATAL)) {
2458 /*
2459 * Fatal errors are unrecoverable.
2460 * Typically these are caused by DMA errors.
2461 */
2462 tasklet_schedule(&sc->restq);
2463 } else if (unlikely(status & AR5K_INT_RXORN)) {
2464 tasklet_schedule(&sc->restq);
2465 } else {
2466 if (status & AR5K_INT_SWBA) {
2467 /*
2468 * Software beacon alert--time to send a beacon.
2469 * Handle beacon transmission directly; deferring
2470 * this is too slow to meet timing constraints
2471 * under load.
2472 *
2473 * In IBSS mode we use this interrupt just to
2474 * keep track of the next TBTT (target beacon
2475 * transmission time) in order to detect wether
2476 * automatic TSF updates happened.
2477 */
2478 if (sc->opmode == IEEE80211_IF_TYPE_IBSS) {
2479 /* XXX: only if VEOL suppported */
2480 u64 tsf = ath5k_hw_get_tsf64(ah);
2481 sc->nexttbtt += sc->bintval;
2482 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2483 "SWBA nexttbtt: %x hw_tu: %x "
2484 "TSF: %llx\n",
2485 sc->nexttbtt,
2486 TSF_TO_TU(tsf),
2487 (unsigned long long) tsf);
2488 } else {
2489 ath5k_beacon_send(sc);
2490 }
2491 }
2492 if (status & AR5K_INT_RXEOL) {
2493 /*
2494 * NB: the hardware should re-read the link when
2495 * RXE bit is written, but it doesn't work at
2496 * least on older hardware revs.
2497 */
2498 sc->rxlink = NULL;
2499 }
2500 if (status & AR5K_INT_TXURN) {
2501 /* bump tx trigger level */
2502 ath5k_hw_update_tx_triglevel(ah, true);
2503 }
2504 if (status & AR5K_INT_RX)
2505 tasklet_schedule(&sc->rxtq);
2506 if (status & AR5K_INT_TX)
2507 tasklet_schedule(&sc->txtq);
2508 if (status & AR5K_INT_BMISS) {
2509 }
2510 if (status & AR5K_INT_MIB) {
2511 /*
2512 * These stats are also used for ANI i think
2513 * so how about updating them more often ?
2514 */
2515 ath5k_hw_update_mib_counters(ah, &sc->ll_stats);
2516 }
2517 }
2518 } while (ath5k_hw_is_intr_pending(ah) && counter-- > 0);
2519
2520 if (unlikely(!counter))
2521 ATH5K_WARN(sc, "too many interrupts, giving up for now\n");
2522
2523 return IRQ_HANDLED;
2524 }
2525
2526 static void
2527 ath5k_tasklet_reset(unsigned long data)
2528 {
2529 struct ath5k_softc *sc = (void *)data;
2530
2531 ath5k_reset(sc->hw);
2532 }
2533
2534 /*
2535 * Periodically recalibrate the PHY to account
2536 * for temperature/environment changes.
2537 */
2538 static void
2539 ath5k_calibrate(unsigned long data)
2540 {
2541 struct ath5k_softc *sc = (void *)data;
2542 struct ath5k_hw *ah = sc->ah;
2543
2544 ATH5K_DBG(sc, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2545 ieee80211_frequency_to_channel(sc->curchan->center_freq),
2546 sc->curchan->hw_value);
2547
2548 if (ath5k_hw_get_rf_gain(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2549 /*
2550 * Rfgain is out of bounds, reset the chip
2551 * to load new gain values.
2552 */
2553 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "calibration, resetting\n");
2554 ath5k_reset(sc->hw);
2555 }
2556 if (ath5k_hw_phy_calibrate(ah, sc->curchan))
2557 ATH5K_ERR(sc, "calibration of channel %u failed\n",
2558 ieee80211_frequency_to_channel(
2559 sc->curchan->center_freq));
2560
2561 mod_timer(&sc->calib_tim, round_jiffies(jiffies +
2562 msecs_to_jiffies(ath5k_calinterval * 1000)));
2563 }
2564
2565
2566
2567 /***************\
2568 * LED functions *
2569 \***************/
2570
2571 static void
2572 ath5k_led_off(unsigned long data)
2573 {
2574 struct ath5k_softc *sc = (void *)data;
2575
2576 if (test_bit(ATH_STAT_LEDENDBLINK, sc->status))
2577 __clear_bit(ATH_STAT_LEDBLINKING, sc->status);
2578 else {
2579 __set_bit(ATH_STAT_LEDENDBLINK, sc->status);
2580 ath5k_hw_set_gpio(sc->ah, sc->led_pin, !sc->led_on);
2581 mod_timer(&sc->led_tim, jiffies + sc->led_off);
2582 }
2583 }
2584
2585 /*
2586 * Blink the LED according to the specified on/off times.
2587 */
2588 static void
2589 ath5k_led_blink(struct ath5k_softc *sc, unsigned int on,
2590 unsigned int off)
2591 {
2592 ATH5K_DBG(sc, ATH5K_DEBUG_LED, "on %u off %u\n", on, off);
2593 ath5k_hw_set_gpio(sc->ah, sc->led_pin, sc->led_on);
2594 __set_bit(ATH_STAT_LEDBLINKING, sc->status);
2595 __clear_bit(ATH_STAT_LEDENDBLINK, sc->status);
2596 sc->led_off = off;
2597 mod_timer(&sc->led_tim, jiffies + on);
2598 }
2599
2600 static void
2601 ath5k_led_event(struct ath5k_softc *sc, int event)
2602 {
2603 if (likely(!test_bit(ATH_STAT_LEDSOFT, sc->status)))
2604 return;
2605 if (unlikely(test_bit(ATH_STAT_LEDBLINKING, sc->status)))
2606 return; /* don't interrupt active blink */
2607 switch (event) {
2608 case ATH_LED_TX:
2609 ath5k_led_blink(sc, sc->hwmap[sc->led_txrate].ledon,
2610 sc->hwmap[sc->led_txrate].ledoff);
2611 break;
2612 case ATH_LED_RX:
2613 ath5k_led_blink(sc, sc->hwmap[sc->led_rxrate].ledon,
2614 sc->hwmap[sc->led_rxrate].ledoff);
2615 break;
2616 }
2617 }
2618
2619
2620
2621
2622 /********************\
2623 * Mac80211 functions *
2624 \********************/
2625
2626 static int
2627 ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb,
2628 struct ieee80211_tx_control *ctl)
2629 {
2630 struct ath5k_softc *sc = hw->priv;
2631 struct ath5k_buf *bf;
2632 unsigned long flags;
2633 int hdrlen;
2634 int pad;
2635
2636 ath5k_debug_dump_skb(sc, skb, "TX ", 1);
2637
2638 if (sc->opmode == IEEE80211_IF_TYPE_MNTR)
2639 ATH5K_DBG(sc, ATH5K_DEBUG_XMIT, "tx in monitor (scan?)\n");
2640
2641 /*
2642 * the hardware expects the header padded to 4 byte boundaries
2643 * if this is not the case we add the padding after the header
2644 */
2645 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2646 if (hdrlen & 3) {
2647 pad = hdrlen % 4;
2648 if (skb_headroom(skb) < pad) {
2649 ATH5K_ERR(sc, "tx hdrlen not %%4: %d not enough"
2650 " headroom to pad %d\n", hdrlen, pad);
2651 return -1;
2652 }
2653 skb_push(skb, pad);
2654 memmove(skb->data, skb->data+pad, hdrlen);
2655 }
2656
2657 sc->led_txrate = ctl->tx_rate->hw_value;
2658
2659 spin_lock_irqsave(&sc->txbuflock, flags);
2660 if (list_empty(&sc->txbuf)) {
2661 ATH5K_ERR(sc, "no further txbuf available, dropping packet\n");
2662 spin_unlock_irqrestore(&sc->txbuflock, flags);
2663 ieee80211_stop_queue(hw, ctl->queue);
2664 return -1;
2665 }
2666 bf = list_first_entry(&sc->txbuf, struct ath5k_buf, list);
2667 list_del(&bf->list);
2668 sc->txbuf_len--;
2669 if (list_empty(&sc->txbuf))
2670 ieee80211_stop_queues(hw);
2671 spin_unlock_irqrestore(&sc->txbuflock, flags);
2672
2673 bf->skb = skb;
2674
2675 if (ath5k_txbuf_setup(sc, bf, ctl)) {
2676 bf->skb = NULL;
2677 spin_lock_irqsave(&sc->txbuflock, flags);
2678 list_add_tail(&bf->list, &sc->txbuf);
2679 sc->txbuf_len++;
2680 spin_unlock_irqrestore(&sc->txbuflock, flags);
2681 dev_kfree_skb_any(skb);
2682 return 0;
2683 }
2684
2685 return 0;
2686 }
2687
2688 static int
2689 ath5k_reset(struct ieee80211_hw *hw)
2690 {
2691 struct ath5k_softc *sc = hw->priv;
2692 struct ath5k_hw *ah = sc->ah;
2693 int ret;
2694
2695 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "resetting\n");
2696
2697 ath5k_hw_set_intr(ah, 0);
2698 ath5k_txq_cleanup(sc);
2699 ath5k_rx_stop(sc);
2700
2701 ret = ath5k_hw_reset(ah, sc->opmode, sc->curchan, true);
2702 if (unlikely(ret)) {
2703 ATH5K_ERR(sc, "can't reset hardware (%d)\n", ret);
2704 goto err;
2705 }
2706 ath5k_hw_set_txpower_limit(sc->ah, 0);
2707
2708 ret = ath5k_rx_start(sc);
2709 if (unlikely(ret)) {
2710 ATH5K_ERR(sc, "can't start recv logic\n");
2711 goto err;
2712 }
2713 /*
2714 * We may be doing a reset in response to an ioctl
2715 * that changes the channel so update any state that
2716 * might change as a result.
2717 *
2718 * XXX needed?
2719 */
2720 /* ath5k_chan_change(sc, c); */
2721 ath5k_beacon_config(sc);
2722 /* intrs are started by ath5k_beacon_config */
2723
2724 ieee80211_wake_queues(hw);
2725
2726 return 0;
2727 err:
2728 return ret;
2729 }
2730
2731 static int ath5k_start(struct ieee80211_hw *hw)
2732 {
2733 return ath5k_init(hw->priv);
2734 }
2735
2736 static void ath5k_stop(struct ieee80211_hw *hw)
2737 {
2738 ath5k_stop_hw(hw->priv);
2739 }
2740
2741 static int ath5k_add_interface(struct ieee80211_hw *hw,
2742 struct ieee80211_if_init_conf *conf)
2743 {
2744 struct ath5k_softc *sc = hw->priv;
2745 int ret;
2746
2747 mutex_lock(&sc->lock);
2748 if (sc->vif) {
2749 ret = 0;
2750 goto end;
2751 }
2752
2753 sc->vif = conf->vif;
2754
2755 switch (conf->type) {
2756 case IEEE80211_IF_TYPE_STA:
2757 case IEEE80211_IF_TYPE_IBSS:
2758 case IEEE80211_IF_TYPE_MNTR:
2759 sc->opmode = conf->type;
2760 break;
2761 default:
2762 ret = -EOPNOTSUPP;
2763 goto end;
2764 }
2765 ret = 0;
2766 end:
2767 mutex_unlock(&sc->lock);
2768 return ret;
2769 }
2770
2771 static void
2772 ath5k_remove_interface(struct ieee80211_hw *hw,
2773 struct ieee80211_if_init_conf *conf)
2774 {
2775 struct ath5k_softc *sc = hw->priv;
2776
2777 mutex_lock(&sc->lock);
2778 if (sc->vif != conf->vif)
2779 goto end;
2780
2781 sc->vif = NULL;
2782 end:
2783 mutex_unlock(&sc->lock);
2784 }
2785
2786 /*
2787 * TODO: Phy disable/diversity etc
2788 */
2789 static int
2790 ath5k_config(struct ieee80211_hw *hw,
2791 struct ieee80211_conf *conf)
2792 {
2793 struct ath5k_softc *sc = hw->priv;
2794
2795 sc->bintval = conf->beacon_int;
2796 sc->power_level = conf->power_level;
2797
2798 return ath5k_chan_set(sc, conf->channel);
2799 }
2800
2801 static int
2802 ath5k_config_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2803 struct ieee80211_if_conf *conf)
2804 {
2805 struct ath5k_softc *sc = hw->priv;
2806 struct ath5k_hw *ah = sc->ah;
2807 int ret;
2808
2809 /* Set to a reasonable value. Note that this will
2810 * be set to mac80211's value at ath5k_config(). */
2811 sc->bintval = 1000;
2812 mutex_lock(&sc->lock);
2813 if (sc->vif != vif) {
2814 ret = -EIO;
2815 goto unlock;
2816 }
2817 if (conf->bssid) {
2818 /* Cache for later use during resets */
2819 memcpy(ah->ah_bssid, conf->bssid, ETH_ALEN);
2820 /* XXX: assoc id is set to 0 for now, mac80211 doesn't have
2821 * a clean way of letting us retrieve this yet. */
2822 ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
2823 }
2824 mutex_unlock(&sc->lock);
2825
2826 return ath5k_reset(hw);
2827 unlock:
2828 mutex_unlock(&sc->lock);
2829 return ret;
2830 }
2831
2832 #define SUPPORTED_FIF_FLAGS \
2833 FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | \
2834 FIF_PLCPFAIL | FIF_CONTROL | FIF_OTHER_BSS | \
2835 FIF_BCN_PRBRESP_PROMISC
2836 /*
2837 * o always accept unicast, broadcast, and multicast traffic
2838 * o multicast traffic for all BSSIDs will be enabled if mac80211
2839 * says it should be
2840 * o maintain current state of phy ofdm or phy cck error reception.
2841 * If the hardware detects any of these type of errors then
2842 * ath5k_hw_get_rx_filter() will pass to us the respective
2843 * hardware filters to be able to receive these type of frames.
2844 * o probe request frames are accepted only when operating in
2845 * hostap, adhoc, or monitor modes
2846 * o enable promiscuous mode according to the interface state
2847 * o accept beacons:
2848 * - when operating in adhoc mode so the 802.11 layer creates
2849 * node table entries for peers,
2850 * - when operating in station mode for collecting rssi data when
2851 * the station is otherwise quiet, or
2852 * - when scanning
2853 */
2854 static void ath5k_configure_filter(struct ieee80211_hw *hw,
2855 unsigned int changed_flags,
2856 unsigned int *new_flags,
2857 int mc_count, struct dev_mc_list *mclist)
2858 {
2859 struct ath5k_softc *sc = hw->priv;
2860 struct ath5k_hw *ah = sc->ah;
2861 u32 mfilt[2], val, rfilt;
2862 u8 pos;
2863 int i;
2864
2865 mfilt[0] = 0;
2866 mfilt[1] = 0;
2867
2868 /* Only deal with supported flags */
2869 changed_flags &= SUPPORTED_FIF_FLAGS;
2870 *new_flags &= SUPPORTED_FIF_FLAGS;
2871
2872 /* If HW detects any phy or radar errors, leave those filters on.
2873 * Also, always enable Unicast, Broadcasts and Multicast
2874 * XXX: move unicast, bssid broadcasts and multicast to mac80211 */
2875 rfilt = (ath5k_hw_get_rx_filter(ah) & (AR5K_RX_FILTER_PHYERR)) |
2876 (AR5K_RX_FILTER_UCAST | AR5K_RX_FILTER_BCAST |
2877 AR5K_RX_FILTER_MCAST);
2878
2879 if (changed_flags & (FIF_PROMISC_IN_BSS | FIF_OTHER_BSS)) {
2880 if (*new_flags & FIF_PROMISC_IN_BSS) {
2881 rfilt |= AR5K_RX_FILTER_PROM;
2882 __set_bit(ATH_STAT_PROMISC, sc->status);
2883 }
2884 else
2885 __clear_bit(ATH_STAT_PROMISC, sc->status);
2886 }
2887
2888 /* Note, AR5K_RX_FILTER_MCAST is already enabled */
2889 if (*new_flags & FIF_ALLMULTI) {
2890 mfilt[0] = ~0;
2891 mfilt[1] = ~0;
2892 } else {
2893 for (i = 0; i < mc_count; i++) {
2894 if (!mclist)
2895 break;
2896 /* calculate XOR of eight 6-bit values */
2897 val = get_unaligned_le32(mclist->dmi_addr + 0);
2898 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2899 val = get_unaligned_le32(mclist->dmi_addr + 3);
2900 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2901 pos &= 0x3f;
2902 mfilt[pos / 32] |= (1 << (pos % 32));
2903 /* XXX: we might be able to just do this instead,
2904 * but not sure, needs testing, if we do use this we'd
2905 * neet to inform below to not reset the mcast */
2906 /* ath5k_hw_set_mcast_filterindex(ah,
2907 * mclist->dmi_addr[5]); */
2908 mclist = mclist->next;
2909 }
2910 }
2911
2912 /* This is the best we can do */
2913 if (*new_flags & (FIF_FCSFAIL | FIF_PLCPFAIL))
2914 rfilt |= AR5K_RX_FILTER_PHYERR;
2915
2916 /* FIF_BCN_PRBRESP_PROMISC really means to enable beacons
2917 * and probes for any BSSID, this needs testing */
2918 if (*new_flags & FIF_BCN_PRBRESP_PROMISC)
2919 rfilt |= AR5K_RX_FILTER_BEACON | AR5K_RX_FILTER_PROBEREQ;
2920
2921 /* FIF_CONTROL doc says that if FIF_PROMISC_IN_BSS is not
2922 * set we should only pass on control frames for this
2923 * station. This needs testing. I believe right now this
2924 * enables *all* control frames, which is OK.. but
2925 * but we should see if we can improve on granularity */
2926 if (*new_flags & FIF_CONTROL)
2927 rfilt |= AR5K_RX_FILTER_CONTROL;
2928
2929 /* Additional settings per mode -- this is per ath5k */
2930
2931 /* XXX move these to mac80211, and add a beacon IFF flag to mac80211 */
2932
2933 if (sc->opmode == IEEE80211_IF_TYPE_MNTR)
2934 rfilt |= AR5K_RX_FILTER_CONTROL | AR5K_RX_FILTER_BEACON |
2935 AR5K_RX_FILTER_PROBEREQ | AR5K_RX_FILTER_PROM;
2936 if (sc->opmode != IEEE80211_IF_TYPE_STA)
2937 rfilt |= AR5K_RX_FILTER_PROBEREQ;
2938 if (sc->opmode != IEEE80211_IF_TYPE_AP &&
2939 test_bit(ATH_STAT_PROMISC, sc->status))
2940 rfilt |= AR5K_RX_FILTER_PROM;
2941 if (sc->opmode == IEEE80211_IF_TYPE_STA ||
2942 sc->opmode == IEEE80211_IF_TYPE_IBSS) {
2943 rfilt |= AR5K_RX_FILTER_BEACON;
2944 }
2945
2946 /* Set filters */
2947 ath5k_hw_set_rx_filter(ah,rfilt);
2948
2949 /* Set multicast bits */
2950 ath5k_hw_set_mcast_filter(ah, mfilt[0], mfilt[1]);
2951 /* Set the cached hw filter flags, this will alter actually
2952 * be set in HW */
2953 sc->filter_flags = rfilt;
2954 }
2955
2956 static int
2957 ath5k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
2958 const u8 *local_addr, const u8 *addr,
2959 struct ieee80211_key_conf *key)
2960 {
2961 struct ath5k_softc *sc = hw->priv;
2962 int ret = 0;
2963
2964 switch(key->alg) {
2965 case ALG_WEP:
2966 /* XXX: fix hardware encryption, its not working. For now
2967 * allow software encryption */
2968 /* break; */
2969 case ALG_TKIP:
2970 case ALG_CCMP:
2971 return -EOPNOTSUPP;
2972 default:
2973 WARN_ON(1);
2974 return -EINVAL;
2975 }
2976
2977 mutex_lock(&sc->lock);
2978
2979 switch (cmd) {
2980 case SET_KEY:
2981 ret = ath5k_hw_set_key(sc->ah, key->keyidx, key, addr);
2982 if (ret) {
2983 ATH5K_ERR(sc, "can't set the key\n");
2984 goto unlock;
2985 }
2986 __set_bit(key->keyidx, sc->keymap);
2987 key->hw_key_idx = key->keyidx;
2988 break;
2989 case DISABLE_KEY:
2990 ath5k_hw_reset_key(sc->ah, key->keyidx);
2991 __clear_bit(key->keyidx, sc->keymap);
2992 break;
2993 default:
2994 ret = -EINVAL;
2995 goto unlock;
2996 }
2997
2998 unlock:
2999 mutex_unlock(&sc->lock);
3000 return ret;
3001 }
3002
3003 static int
3004 ath5k_get_stats(struct ieee80211_hw *hw,
3005 struct ieee80211_low_level_stats *stats)
3006 {
3007 struct ath5k_softc *sc = hw->priv;
3008 struct ath5k_hw *ah = sc->ah;
3009
3010 /* Force update */
3011 ath5k_hw_update_mib_counters(ah, &sc->ll_stats);
3012
3013 memcpy(stats, &sc->ll_stats, sizeof(sc->ll_stats));
3014
3015 return 0;
3016 }
3017
3018 static int
3019 ath5k_get_tx_stats(struct ieee80211_hw *hw,
3020 struct ieee80211_tx_queue_stats *stats)
3021 {
3022 struct ath5k_softc *sc = hw->priv;
3023
3024 memcpy(stats, &sc->tx_stats, sizeof(sc->tx_stats));
3025
3026 return 0;
3027 }
3028
3029 static u64
3030 ath5k_get_tsf(struct ieee80211_hw *hw)
3031 {
3032 struct ath5k_softc *sc = hw->priv;
3033
3034 return ath5k_hw_get_tsf64(sc->ah);
3035 }
3036
3037 static void
3038 ath5k_reset_tsf(struct ieee80211_hw *hw)
3039 {
3040 struct ath5k_softc *sc = hw->priv;
3041
3042 /*
3043 * in IBSS mode we need to update the beacon timers too.
3044 * this will also reset the TSF if we call it with 0
3045 */
3046 if (sc->opmode == IEEE80211_IF_TYPE_IBSS)
3047 ath5k_beacon_update_timers(sc, 0);
3048 else
3049 ath5k_hw_reset_tsf(sc->ah);
3050 }
3051
3052 static int
3053 ath5k_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
3054 struct ieee80211_tx_control *ctl)
3055 {
3056 struct ath5k_softc *sc = hw->priv;
3057 int ret;
3058
3059 ath5k_debug_dump_skb(sc, skb, "BC ", 1);
3060
3061 mutex_lock(&sc->lock);
3062
3063 if (sc->opmode != IEEE80211_IF_TYPE_IBSS) {
3064 ret = -EIO;
3065 goto end;
3066 }
3067
3068 ath5k_txbuf_free(sc, sc->bbuf);
3069 sc->bbuf->skb = skb;
3070 ret = ath5k_beacon_setup(sc, sc->bbuf, ctl);
3071 if (ret)
3072 sc->bbuf->skb = NULL;
3073 else
3074 ath5k_beacon_config(sc);
3075
3076 end:
3077 mutex_unlock(&sc->lock);
3078 return ret;
3079 }
3080
This page took 0.098215 seconds and 5 git commands to generate.