Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[deliverable/linux.git] / drivers / net / wireless / ath5k / base.c
1 /*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
23 *
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
27 *
28 * NO WARRANTY
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
40 *
41 */
42
43 #include <linux/version.h>
44 #include <linux/module.h>
45 #include <linux/delay.h>
46 #include <linux/if.h>
47 #include <linux/netdevice.h>
48 #include <linux/cache.h>
49 #include <linux/pci.h>
50 #include <linux/ethtool.h>
51 #include <linux/uaccess.h>
52
53 #include <net/ieee80211_radiotap.h>
54
55 #include <asm/unaligned.h>
56
57 #include "base.h"
58 #include "reg.h"
59 #include "debug.h"
60
61 /* unaligned little endian access */
62 #define LE_READ_2(_p) (le16_to_cpu(get_unaligned((__le16 *)(_p))))
63 #define LE_READ_4(_p) (le32_to_cpu(get_unaligned((__le32 *)(_p))))
64
65 enum {
66 ATH_LED_TX,
67 ATH_LED_RX,
68 };
69
70 static int ath5k_calinterval = 10; /* Calibrate PHY every 10 secs (TODO: Fixme) */
71
72
73 /******************\
74 * Internal defines *
75 \******************/
76
77 /* Module info */
78 MODULE_AUTHOR("Jiri Slaby");
79 MODULE_AUTHOR("Nick Kossifidis");
80 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
81 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
82 MODULE_LICENSE("Dual BSD/GPL");
83 MODULE_VERSION("0.5.0 (EXPERIMENTAL)");
84
85
86 /* Known PCI ids */
87 static struct pci_device_id ath5k_pci_id_table[] __devinitdata = {
88 { PCI_VDEVICE(ATHEROS, 0x0207), .driver_data = AR5K_AR5210 }, /* 5210 early */
89 { PCI_VDEVICE(ATHEROS, 0x0007), .driver_data = AR5K_AR5210 }, /* 5210 */
90 { PCI_VDEVICE(ATHEROS, 0x0011), .driver_data = AR5K_AR5211 }, /* 5311 - this is on AHB bus !*/
91 { PCI_VDEVICE(ATHEROS, 0x0012), .driver_data = AR5K_AR5211 }, /* 5211 */
92 { PCI_VDEVICE(ATHEROS, 0x0013), .driver_data = AR5K_AR5212 }, /* 5212 */
93 { PCI_VDEVICE(3COM_2, 0x0013), .driver_data = AR5K_AR5212 }, /* 3com 5212 */
94 { PCI_VDEVICE(3COM, 0x0013), .driver_data = AR5K_AR5212 }, /* 3com 3CRDAG675 5212 */
95 { PCI_VDEVICE(ATHEROS, 0x1014), .driver_data = AR5K_AR5212 }, /* IBM minipci 5212 */
96 { PCI_VDEVICE(ATHEROS, 0x0014), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
97 { PCI_VDEVICE(ATHEROS, 0x0015), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
98 { PCI_VDEVICE(ATHEROS, 0x0016), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
99 { PCI_VDEVICE(ATHEROS, 0x0017), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
100 { PCI_VDEVICE(ATHEROS, 0x0018), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
101 { PCI_VDEVICE(ATHEROS, 0x0019), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
102 { PCI_VDEVICE(ATHEROS, 0x001a), .driver_data = AR5K_AR5212 }, /* 2413 Griffin-lite */
103 { PCI_VDEVICE(ATHEROS, 0x001b), .driver_data = AR5K_AR5212 }, /* 5413 Eagle */
104 { PCI_VDEVICE(ATHEROS, 0x001c), .driver_data = AR5K_AR5212 }, /* 5424 Condor (PCI-E)*/
105 { PCI_VDEVICE(ATHEROS, 0x0023), .driver_data = AR5K_AR5212 }, /* 5416 */
106 { PCI_VDEVICE(ATHEROS, 0x0024), .driver_data = AR5K_AR5212 }, /* 5418 */
107 { 0 }
108 };
109 MODULE_DEVICE_TABLE(pci, ath5k_pci_id_table);
110
111 /* Known SREVs */
112 static struct ath5k_srev_name srev_names[] = {
113 { "5210", AR5K_VERSION_VER, AR5K_SREV_VER_AR5210 },
114 { "5311", AR5K_VERSION_VER, AR5K_SREV_VER_AR5311 },
115 { "5311A", AR5K_VERSION_VER, AR5K_SREV_VER_AR5311A },
116 { "5311B", AR5K_VERSION_VER, AR5K_SREV_VER_AR5311B },
117 { "5211", AR5K_VERSION_VER, AR5K_SREV_VER_AR5211 },
118 { "5212", AR5K_VERSION_VER, AR5K_SREV_VER_AR5212 },
119 { "5213", AR5K_VERSION_VER, AR5K_SREV_VER_AR5213 },
120 { "5213A", AR5K_VERSION_VER, AR5K_SREV_VER_AR5213A },
121 { "2413", AR5K_VERSION_VER, AR5K_SREV_VER_AR2413 },
122 { "2414", AR5K_VERSION_VER, AR5K_SREV_VER_AR2414 },
123 { "2424", AR5K_VERSION_VER, AR5K_SREV_VER_AR2424 },
124 { "5424", AR5K_VERSION_VER, AR5K_SREV_VER_AR5424 },
125 { "5413", AR5K_VERSION_VER, AR5K_SREV_VER_AR5413 },
126 { "5414", AR5K_VERSION_VER, AR5K_SREV_VER_AR5414 },
127 { "5416", AR5K_VERSION_VER, AR5K_SREV_VER_AR5416 },
128 { "5418", AR5K_VERSION_VER, AR5K_SREV_VER_AR5418 },
129 { "xxxxx", AR5K_VERSION_VER, AR5K_SREV_UNKNOWN },
130 { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 },
131 { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 },
132 { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 },
133 { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 },
134 { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A },
135 { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 },
136 { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A },
137 { "SChip", AR5K_VERSION_RAD, AR5K_SREV_RAD_SC0 },
138 { "SChip", AR5K_VERSION_RAD, AR5K_SREV_RAD_SC1 },
139 { "SChip", AR5K_VERSION_RAD, AR5K_SREV_RAD_SC2 },
140 { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 },
141 { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN },
142 };
143
144 /*
145 * Prototypes - PCI stack related functions
146 */
147 static int __devinit ath5k_pci_probe(struct pci_dev *pdev,
148 const struct pci_device_id *id);
149 static void __devexit ath5k_pci_remove(struct pci_dev *pdev);
150 #ifdef CONFIG_PM
151 static int ath5k_pci_suspend(struct pci_dev *pdev,
152 pm_message_t state);
153 static int ath5k_pci_resume(struct pci_dev *pdev);
154 #else
155 #define ath5k_pci_suspend NULL
156 #define ath5k_pci_resume NULL
157 #endif /* CONFIG_PM */
158
159 static struct pci_driver ath5k_pci_driver = {
160 .name = "ath5k_pci",
161 .id_table = ath5k_pci_id_table,
162 .probe = ath5k_pci_probe,
163 .remove = __devexit_p(ath5k_pci_remove),
164 .suspend = ath5k_pci_suspend,
165 .resume = ath5k_pci_resume,
166 };
167
168
169
170 /*
171 * Prototypes - MAC 802.11 stack related functions
172 */
173 static int ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb,
174 struct ieee80211_tx_control *ctl);
175 static int ath5k_reset(struct ieee80211_hw *hw);
176 static int ath5k_start(struct ieee80211_hw *hw);
177 static void ath5k_stop(struct ieee80211_hw *hw);
178 static int ath5k_add_interface(struct ieee80211_hw *hw,
179 struct ieee80211_if_init_conf *conf);
180 static void ath5k_remove_interface(struct ieee80211_hw *hw,
181 struct ieee80211_if_init_conf *conf);
182 static int ath5k_config(struct ieee80211_hw *hw,
183 struct ieee80211_conf *conf);
184 static int ath5k_config_interface(struct ieee80211_hw *hw,
185 struct ieee80211_vif *vif,
186 struct ieee80211_if_conf *conf);
187 static void ath5k_configure_filter(struct ieee80211_hw *hw,
188 unsigned int changed_flags,
189 unsigned int *new_flags,
190 int mc_count, struct dev_mc_list *mclist);
191 static int ath5k_set_key(struct ieee80211_hw *hw,
192 enum set_key_cmd cmd,
193 const u8 *local_addr, const u8 *addr,
194 struct ieee80211_key_conf *key);
195 static int ath5k_get_stats(struct ieee80211_hw *hw,
196 struct ieee80211_low_level_stats *stats);
197 static int ath5k_get_tx_stats(struct ieee80211_hw *hw,
198 struct ieee80211_tx_queue_stats *stats);
199 static u64 ath5k_get_tsf(struct ieee80211_hw *hw);
200 static void ath5k_reset_tsf(struct ieee80211_hw *hw);
201 static int ath5k_beacon_update(struct ieee80211_hw *hw,
202 struct sk_buff *skb,
203 struct ieee80211_tx_control *ctl);
204
205 static struct ieee80211_ops ath5k_hw_ops = {
206 .tx = ath5k_tx,
207 .start = ath5k_start,
208 .stop = ath5k_stop,
209 .add_interface = ath5k_add_interface,
210 .remove_interface = ath5k_remove_interface,
211 .config = ath5k_config,
212 .config_interface = ath5k_config_interface,
213 .configure_filter = ath5k_configure_filter,
214 .set_key = ath5k_set_key,
215 .get_stats = ath5k_get_stats,
216 .conf_tx = NULL,
217 .get_tx_stats = ath5k_get_tx_stats,
218 .get_tsf = ath5k_get_tsf,
219 .reset_tsf = ath5k_reset_tsf,
220 .beacon_update = ath5k_beacon_update,
221 };
222
223 /*
224 * Prototypes - Internal functions
225 */
226 /* Attach detach */
227 static int ath5k_attach(struct pci_dev *pdev,
228 struct ieee80211_hw *hw);
229 static void ath5k_detach(struct pci_dev *pdev,
230 struct ieee80211_hw *hw);
231 /* Channel/mode setup */
232 static inline short ath5k_ieee2mhz(short chan);
233 static unsigned int ath5k_copy_rates(struct ieee80211_rate *rates,
234 const struct ath5k_rate_table *rt,
235 unsigned int max);
236 static unsigned int ath5k_copy_channels(struct ath5k_hw *ah,
237 struct ieee80211_channel *channels,
238 unsigned int mode,
239 unsigned int max);
240 static int ath5k_getchannels(struct ieee80211_hw *hw);
241 static int ath5k_chan_set(struct ath5k_softc *sc,
242 struct ieee80211_channel *chan);
243 static void ath5k_setcurmode(struct ath5k_softc *sc,
244 unsigned int mode);
245 static void ath5k_mode_setup(struct ath5k_softc *sc);
246 static void ath5k_set_total_hw_rates(struct ath5k_softc *sc);
247
248 /* Descriptor setup */
249 static int ath5k_desc_alloc(struct ath5k_softc *sc,
250 struct pci_dev *pdev);
251 static void ath5k_desc_free(struct ath5k_softc *sc,
252 struct pci_dev *pdev);
253 /* Buffers setup */
254 static int ath5k_rxbuf_setup(struct ath5k_softc *sc,
255 struct ath5k_buf *bf);
256 static int ath5k_txbuf_setup(struct ath5k_softc *sc,
257 struct ath5k_buf *bf,
258 struct ieee80211_tx_control *ctl);
259
260 static inline void ath5k_txbuf_free(struct ath5k_softc *sc,
261 struct ath5k_buf *bf)
262 {
263 BUG_ON(!bf);
264 if (!bf->skb)
265 return;
266 pci_unmap_single(sc->pdev, bf->skbaddr, bf->skb->len,
267 PCI_DMA_TODEVICE);
268 dev_kfree_skb(bf->skb);
269 bf->skb = NULL;
270 }
271
272 /* Queues setup */
273 static struct ath5k_txq *ath5k_txq_setup(struct ath5k_softc *sc,
274 int qtype, int subtype);
275 static int ath5k_beaconq_setup(struct ath5k_hw *ah);
276 static int ath5k_beaconq_config(struct ath5k_softc *sc);
277 static void ath5k_txq_drainq(struct ath5k_softc *sc,
278 struct ath5k_txq *txq);
279 static void ath5k_txq_cleanup(struct ath5k_softc *sc);
280 static void ath5k_txq_release(struct ath5k_softc *sc);
281 /* Rx handling */
282 static int ath5k_rx_start(struct ath5k_softc *sc);
283 static void ath5k_rx_stop(struct ath5k_softc *sc);
284 static unsigned int ath5k_rx_decrypted(struct ath5k_softc *sc,
285 struct ath5k_desc *ds,
286 struct sk_buff *skb,
287 struct ath5k_rx_status *rs);
288 static void ath5k_tasklet_rx(unsigned long data);
289 /* Tx handling */
290 static void ath5k_tx_processq(struct ath5k_softc *sc,
291 struct ath5k_txq *txq);
292 static void ath5k_tasklet_tx(unsigned long data);
293 /* Beacon handling */
294 static int ath5k_beacon_setup(struct ath5k_softc *sc,
295 struct ath5k_buf *bf,
296 struct ieee80211_tx_control *ctl);
297 static void ath5k_beacon_send(struct ath5k_softc *sc);
298 static void ath5k_beacon_config(struct ath5k_softc *sc);
299 static void ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf);
300
301 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
302 {
303 u64 tsf = ath5k_hw_get_tsf64(ah);
304
305 if ((tsf & 0x7fff) < rstamp)
306 tsf -= 0x8000;
307
308 return (tsf & ~0x7fff) | rstamp;
309 }
310
311 /* Interrupt handling */
312 static int ath5k_init(struct ath5k_softc *sc);
313 static int ath5k_stop_locked(struct ath5k_softc *sc);
314 static int ath5k_stop_hw(struct ath5k_softc *sc);
315 static irqreturn_t ath5k_intr(int irq, void *dev_id);
316 static void ath5k_tasklet_reset(unsigned long data);
317
318 static void ath5k_calibrate(unsigned long data);
319 /* LED functions */
320 static void ath5k_led_off(unsigned long data);
321 static void ath5k_led_blink(struct ath5k_softc *sc,
322 unsigned int on,
323 unsigned int off);
324 static void ath5k_led_event(struct ath5k_softc *sc,
325 int event);
326
327
328 /*
329 * Module init/exit functions
330 */
331 static int __init
332 init_ath5k_pci(void)
333 {
334 int ret;
335
336 ath5k_debug_init();
337
338 ret = pci_register_driver(&ath5k_pci_driver);
339 if (ret) {
340 printk(KERN_ERR "ath5k_pci: can't register pci driver\n");
341 return ret;
342 }
343
344 return 0;
345 }
346
347 static void __exit
348 exit_ath5k_pci(void)
349 {
350 pci_unregister_driver(&ath5k_pci_driver);
351
352 ath5k_debug_finish();
353 }
354
355 module_init(init_ath5k_pci);
356 module_exit(exit_ath5k_pci);
357
358
359 /********************\
360 * PCI Initialization *
361 \********************/
362
363 static const char *
364 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
365 {
366 const char *name = "xxxxx";
367 unsigned int i;
368
369 for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
370 if (srev_names[i].sr_type != type)
371 continue;
372 if ((val & 0xff) < srev_names[i + 1].sr_val) {
373 name = srev_names[i].sr_name;
374 break;
375 }
376 }
377
378 return name;
379 }
380
381 static int __devinit
382 ath5k_pci_probe(struct pci_dev *pdev,
383 const struct pci_device_id *id)
384 {
385 void __iomem *mem;
386 struct ath5k_softc *sc;
387 struct ieee80211_hw *hw;
388 int ret;
389 u8 csz;
390
391 ret = pci_enable_device(pdev);
392 if (ret) {
393 dev_err(&pdev->dev, "can't enable device\n");
394 goto err;
395 }
396
397 /* XXX 32-bit addressing only */
398 ret = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
399 if (ret) {
400 dev_err(&pdev->dev, "32-bit DMA not available\n");
401 goto err_dis;
402 }
403
404 /*
405 * Cache line size is used to size and align various
406 * structures used to communicate with the hardware.
407 */
408 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
409 if (csz == 0) {
410 /*
411 * Linux 2.4.18 (at least) writes the cache line size
412 * register as a 16-bit wide register which is wrong.
413 * We must have this setup properly for rx buffer
414 * DMA to work so force a reasonable value here if it
415 * comes up zero.
416 */
417 csz = L1_CACHE_BYTES / sizeof(u32);
418 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
419 }
420 /*
421 * The default setting of latency timer yields poor results,
422 * set it to the value used by other systems. It may be worth
423 * tweaking this setting more.
424 */
425 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
426
427 /* Enable bus mastering */
428 pci_set_master(pdev);
429
430 /*
431 * Disable the RETRY_TIMEOUT register (0x41) to keep
432 * PCI Tx retries from interfering with C3 CPU state.
433 */
434 pci_write_config_byte(pdev, 0x41, 0);
435
436 ret = pci_request_region(pdev, 0, "ath5k");
437 if (ret) {
438 dev_err(&pdev->dev, "cannot reserve PCI memory region\n");
439 goto err_dis;
440 }
441
442 mem = pci_iomap(pdev, 0, 0);
443 if (!mem) {
444 dev_err(&pdev->dev, "cannot remap PCI memory region\n") ;
445 ret = -EIO;
446 goto err_reg;
447 }
448
449 /*
450 * Allocate hw (mac80211 main struct)
451 * and hw->priv (driver private data)
452 */
453 hw = ieee80211_alloc_hw(sizeof(*sc), &ath5k_hw_ops);
454 if (hw == NULL) {
455 dev_err(&pdev->dev, "cannot allocate ieee80211_hw\n");
456 ret = -ENOMEM;
457 goto err_map;
458 }
459
460 dev_info(&pdev->dev, "registered as '%s'\n", wiphy_name(hw->wiphy));
461
462 /* Initialize driver private data */
463 SET_IEEE80211_DEV(hw, &pdev->dev);
464 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS;
465 hw->extra_tx_headroom = 2;
466 hw->channel_change_time = 5000;
467 /* these names are misleading */
468 hw->max_rssi = -110; /* signal in dBm */
469 hw->max_noise = -110; /* noise in dBm */
470 hw->max_signal = 100; /* we will provide a percentage based on rssi */
471 sc = hw->priv;
472 sc->hw = hw;
473 sc->pdev = pdev;
474
475 ath5k_debug_init_device(sc);
476
477 /*
478 * Mark the device as detached to avoid processing
479 * interrupts until setup is complete.
480 */
481 __set_bit(ATH_STAT_INVALID, sc->status);
482
483 sc->iobase = mem; /* So we can unmap it on detach */
484 sc->cachelsz = csz * sizeof(u32); /* convert to bytes */
485 sc->opmode = IEEE80211_IF_TYPE_STA;
486 mutex_init(&sc->lock);
487 spin_lock_init(&sc->rxbuflock);
488 spin_lock_init(&sc->txbuflock);
489
490 /* Set private data */
491 pci_set_drvdata(pdev, hw);
492
493 /* Enable msi for devices that support it */
494 pci_enable_msi(pdev);
495
496 /* Setup interrupt handler */
497 ret = request_irq(pdev->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
498 if (ret) {
499 ATH5K_ERR(sc, "request_irq failed\n");
500 goto err_free;
501 }
502
503 /* Initialize device */
504 sc->ah = ath5k_hw_attach(sc, id->driver_data);
505 if (IS_ERR(sc->ah)) {
506 ret = PTR_ERR(sc->ah);
507 goto err_irq;
508 }
509
510 /* Finish private driver data initialization */
511 ret = ath5k_attach(pdev, hw);
512 if (ret)
513 goto err_ah;
514
515 ATH5K_INFO(sc, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
516 ath5k_chip_name(AR5K_VERSION_VER,sc->ah->ah_mac_srev),
517 sc->ah->ah_mac_srev,
518 sc->ah->ah_phy_revision);
519
520 if (!sc->ah->ah_single_chip) {
521 /* Single chip radio (!RF5111) */
522 if (sc->ah->ah_radio_5ghz_revision &&
523 !sc->ah->ah_radio_2ghz_revision) {
524 /* No 5GHz support -> report 2GHz radio */
525 if (!test_bit(AR5K_MODE_11A,
526 sc->ah->ah_capabilities.cap_mode)) {
527 ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
528 ath5k_chip_name(AR5K_VERSION_RAD,
529 sc->ah->ah_radio_5ghz_revision),
530 sc->ah->ah_radio_5ghz_revision);
531 /* No 2GHz support (5110 and some
532 * 5Ghz only cards) -> report 5Ghz radio */
533 } else if (!test_bit(AR5K_MODE_11B,
534 sc->ah->ah_capabilities.cap_mode)) {
535 ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
536 ath5k_chip_name(AR5K_VERSION_RAD,
537 sc->ah->ah_radio_5ghz_revision),
538 sc->ah->ah_radio_5ghz_revision);
539 /* Multiband radio */
540 } else {
541 ATH5K_INFO(sc, "RF%s multiband radio found"
542 " (0x%x)\n",
543 ath5k_chip_name(AR5K_VERSION_RAD,
544 sc->ah->ah_radio_5ghz_revision),
545 sc->ah->ah_radio_5ghz_revision);
546 }
547 }
548 /* Multi chip radio (RF5111 - RF2111) ->
549 * report both 2GHz/5GHz radios */
550 else if (sc->ah->ah_radio_5ghz_revision &&
551 sc->ah->ah_radio_2ghz_revision){
552 ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
553 ath5k_chip_name(AR5K_VERSION_RAD,
554 sc->ah->ah_radio_5ghz_revision),
555 sc->ah->ah_radio_5ghz_revision);
556 ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
557 ath5k_chip_name(AR5K_VERSION_RAD,
558 sc->ah->ah_radio_2ghz_revision),
559 sc->ah->ah_radio_2ghz_revision);
560 }
561 }
562
563
564 /* ready to process interrupts */
565 __clear_bit(ATH_STAT_INVALID, sc->status);
566
567 return 0;
568 err_ah:
569 ath5k_hw_detach(sc->ah);
570 err_irq:
571 free_irq(pdev->irq, sc);
572 err_free:
573 pci_disable_msi(pdev);
574 ieee80211_free_hw(hw);
575 err_map:
576 pci_iounmap(pdev, mem);
577 err_reg:
578 pci_release_region(pdev, 0);
579 err_dis:
580 pci_disable_device(pdev);
581 err:
582 return ret;
583 }
584
585 static void __devexit
586 ath5k_pci_remove(struct pci_dev *pdev)
587 {
588 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
589 struct ath5k_softc *sc = hw->priv;
590
591 ath5k_debug_finish_device(sc);
592 ath5k_detach(pdev, hw);
593 ath5k_hw_detach(sc->ah);
594 free_irq(pdev->irq, sc);
595 pci_disable_msi(pdev);
596 pci_iounmap(pdev, sc->iobase);
597 pci_release_region(pdev, 0);
598 pci_disable_device(pdev);
599 ieee80211_free_hw(hw);
600 }
601
602 #ifdef CONFIG_PM
603 static int
604 ath5k_pci_suspend(struct pci_dev *pdev, pm_message_t state)
605 {
606 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
607 struct ath5k_softc *sc = hw->priv;
608
609 if (test_bit(ATH_STAT_LEDSOFT, sc->status))
610 ath5k_hw_set_gpio(sc->ah, sc->led_pin, 1);
611
612 ath5k_stop_hw(sc);
613 pci_save_state(pdev);
614 pci_disable_device(pdev);
615 pci_set_power_state(pdev, PCI_D3hot);
616
617 return 0;
618 }
619
620 static int
621 ath5k_pci_resume(struct pci_dev *pdev)
622 {
623 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
624 struct ath5k_softc *sc = hw->priv;
625 struct ath5k_hw *ah = sc->ah;
626 int i, err;
627
628 err = pci_set_power_state(pdev, PCI_D0);
629 if (err)
630 return err;
631
632 err = pci_enable_device(pdev);
633 if (err)
634 return err;
635
636 pci_restore_state(pdev);
637 /*
638 * Suspend/Resume resets the PCI configuration space, so we have to
639 * re-disable the RETRY_TIMEOUT register (0x41) to keep
640 * PCI Tx retries from interfering with C3 CPU state
641 */
642 pci_write_config_byte(pdev, 0x41, 0);
643
644 ath5k_init(sc);
645 if (test_bit(ATH_STAT_LEDSOFT, sc->status)) {
646 ath5k_hw_set_gpio_output(ah, sc->led_pin);
647 ath5k_hw_set_gpio(ah, sc->led_pin, 0);
648 }
649
650 /*
651 * Reset the key cache since some parts do not
652 * reset the contents on initial power up or resume.
653 *
654 * FIXME: This may need to be revisited when mac80211 becomes
655 * aware of suspend/resume.
656 */
657 for (i = 0; i < AR5K_KEYTABLE_SIZE; i++)
658 ath5k_hw_reset_key(ah, i);
659
660 return 0;
661 }
662 #endif /* CONFIG_PM */
663
664
665
666 /***********************\
667 * Driver Initialization *
668 \***********************/
669
670 static int
671 ath5k_attach(struct pci_dev *pdev, struct ieee80211_hw *hw)
672 {
673 struct ath5k_softc *sc = hw->priv;
674 struct ath5k_hw *ah = sc->ah;
675 u8 mac[ETH_ALEN];
676 unsigned int i;
677 int ret;
678
679 ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "devid 0x%x\n", pdev->device);
680
681 /*
682 * Check if the MAC has multi-rate retry support.
683 * We do this by trying to setup a fake extended
684 * descriptor. MAC's that don't have support will
685 * return false w/o doing anything. MAC's that do
686 * support it will return true w/o doing anything.
687 */
688 ret = ah->ah_setup_xtx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
689 if (ret < 0)
690 goto err;
691 if (ret > 0)
692 __set_bit(ATH_STAT_MRRETRY, sc->status);
693
694 /*
695 * Reset the key cache since some parts do not
696 * reset the contents on initial power up.
697 */
698 for (i = 0; i < AR5K_KEYTABLE_SIZE; i++)
699 ath5k_hw_reset_key(ah, i);
700
701 /*
702 * Collect the channel list. The 802.11 layer
703 * is resposible for filtering this list based
704 * on settings like the phy mode and regulatory
705 * domain restrictions.
706 */
707 ret = ath5k_getchannels(hw);
708 if (ret) {
709 ATH5K_ERR(sc, "can't get channels\n");
710 goto err;
711 }
712
713 /* Set *_rates so we can map hw rate index */
714 ath5k_set_total_hw_rates(sc);
715
716 /* NB: setup here so ath5k_rate_update is happy */
717 if (test_bit(AR5K_MODE_11A, ah->ah_modes))
718 ath5k_setcurmode(sc, AR5K_MODE_11A);
719 else
720 ath5k_setcurmode(sc, AR5K_MODE_11B);
721
722 /*
723 * Allocate tx+rx descriptors and populate the lists.
724 */
725 ret = ath5k_desc_alloc(sc, pdev);
726 if (ret) {
727 ATH5K_ERR(sc, "can't allocate descriptors\n");
728 goto err;
729 }
730
731 /*
732 * Allocate hardware transmit queues: one queue for
733 * beacon frames and one data queue for each QoS
734 * priority. Note that hw functions handle reseting
735 * these queues at the needed time.
736 */
737 ret = ath5k_beaconq_setup(ah);
738 if (ret < 0) {
739 ATH5K_ERR(sc, "can't setup a beacon xmit queue\n");
740 goto err_desc;
741 }
742 sc->bhalq = ret;
743
744 sc->txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
745 if (IS_ERR(sc->txq)) {
746 ATH5K_ERR(sc, "can't setup xmit queue\n");
747 ret = PTR_ERR(sc->txq);
748 goto err_bhal;
749 }
750
751 tasklet_init(&sc->rxtq, ath5k_tasklet_rx, (unsigned long)sc);
752 tasklet_init(&sc->txtq, ath5k_tasklet_tx, (unsigned long)sc);
753 tasklet_init(&sc->restq, ath5k_tasklet_reset, (unsigned long)sc);
754 setup_timer(&sc->calib_tim, ath5k_calibrate, (unsigned long)sc);
755 setup_timer(&sc->led_tim, ath5k_led_off, (unsigned long)sc);
756
757 sc->led_on = 0; /* low true */
758 /*
759 * Auto-enable soft led processing for IBM cards and for
760 * 5211 minipci cards.
761 */
762 if (pdev->device == PCI_DEVICE_ID_ATHEROS_AR5212_IBM ||
763 pdev->device == PCI_DEVICE_ID_ATHEROS_AR5211) {
764 __set_bit(ATH_STAT_LEDSOFT, sc->status);
765 sc->led_pin = 0;
766 }
767 /* Enable softled on PIN1 on HP Compaq nc6xx, nc4000 & nx5000 laptops */
768 if (pdev->subsystem_vendor == PCI_VENDOR_ID_COMPAQ) {
769 __set_bit(ATH_STAT_LEDSOFT, sc->status);
770 sc->led_pin = 0;
771 }
772 if (test_bit(ATH_STAT_LEDSOFT, sc->status)) {
773 ath5k_hw_set_gpio_output(ah, sc->led_pin);
774 ath5k_hw_set_gpio(ah, sc->led_pin, !sc->led_on);
775 }
776
777 ath5k_hw_get_lladdr(ah, mac);
778 SET_IEEE80211_PERM_ADDR(hw, mac);
779 /* All MAC address bits matter for ACKs */
780 memset(sc->bssidmask, 0xff, ETH_ALEN);
781 ath5k_hw_set_bssid_mask(sc->ah, sc->bssidmask);
782
783 ret = ieee80211_register_hw(hw);
784 if (ret) {
785 ATH5K_ERR(sc, "can't register ieee80211 hw\n");
786 goto err_queues;
787 }
788
789 return 0;
790 err_queues:
791 ath5k_txq_release(sc);
792 err_bhal:
793 ath5k_hw_release_tx_queue(ah, sc->bhalq);
794 err_desc:
795 ath5k_desc_free(sc, pdev);
796 err:
797 return ret;
798 }
799
800 static void
801 ath5k_detach(struct pci_dev *pdev, struct ieee80211_hw *hw)
802 {
803 struct ath5k_softc *sc = hw->priv;
804
805 /*
806 * NB: the order of these is important:
807 * o call the 802.11 layer before detaching ath5k_hw to
808 * insure callbacks into the driver to delete global
809 * key cache entries can be handled
810 * o reclaim the tx queue data structures after calling
811 * the 802.11 layer as we'll get called back to reclaim
812 * node state and potentially want to use them
813 * o to cleanup the tx queues the hal is called, so detach
814 * it last
815 * XXX: ??? detach ath5k_hw ???
816 * Other than that, it's straightforward...
817 */
818 ieee80211_unregister_hw(hw);
819 ath5k_desc_free(sc, pdev);
820 ath5k_txq_release(sc);
821 ath5k_hw_release_tx_queue(sc->ah, sc->bhalq);
822
823 /*
824 * NB: can't reclaim these until after ieee80211_ifdetach
825 * returns because we'll get called back to reclaim node
826 * state and potentially want to use them.
827 */
828 }
829
830
831
832
833 /********************\
834 * Channel/mode setup *
835 \********************/
836
837 /*
838 * Convert IEEE channel number to MHz frequency.
839 */
840 static inline short
841 ath5k_ieee2mhz(short chan)
842 {
843 if (chan <= 14 || chan >= 27)
844 return ieee80211chan2mhz(chan);
845 else
846 return 2212 + chan * 20;
847 }
848
849 static unsigned int
850 ath5k_copy_rates(struct ieee80211_rate *rates,
851 const struct ath5k_rate_table *rt,
852 unsigned int max)
853 {
854 unsigned int i, count;
855
856 if (rt == NULL)
857 return 0;
858
859 for (i = 0, count = 0; i < rt->rate_count && max > 0; i++) {
860 rates[count].bitrate = rt->rates[i].rate_kbps / 100;
861 rates[count].hw_value = rt->rates[i].rate_code;
862 rates[count].flags = rt->rates[i].modulation;
863 count++;
864 max--;
865 }
866
867 return count;
868 }
869
870 static unsigned int
871 ath5k_copy_channels(struct ath5k_hw *ah,
872 struct ieee80211_channel *channels,
873 unsigned int mode,
874 unsigned int max)
875 {
876 unsigned int i, count, size, chfreq, freq, ch;
877
878 if (!test_bit(mode, ah->ah_modes))
879 return 0;
880
881 switch (mode) {
882 case AR5K_MODE_11A:
883 case AR5K_MODE_11A_TURBO:
884 /* 1..220, but 2GHz frequencies are filtered by check_channel */
885 size = 220 ;
886 chfreq = CHANNEL_5GHZ;
887 break;
888 case AR5K_MODE_11B:
889 case AR5K_MODE_11G:
890 case AR5K_MODE_11G_TURBO:
891 size = 26;
892 chfreq = CHANNEL_2GHZ;
893 break;
894 default:
895 ATH5K_WARN(ah->ah_sc, "bad mode, not copying channels\n");
896 return 0;
897 }
898
899 for (i = 0, count = 0; i < size && max > 0; i++) {
900 ch = i + 1 ;
901 freq = ath5k_ieee2mhz(ch);
902
903 /* Check if channel is supported by the chipset */
904 if (!ath5k_channel_ok(ah, freq, chfreq))
905 continue;
906
907 /* Write channel info and increment counter */
908 channels[count].center_freq = freq;
909 channels[count].band = (chfreq == CHANNEL_2GHZ) ?
910 IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
911 switch (mode) {
912 case AR5K_MODE_11A:
913 case AR5K_MODE_11G:
914 channels[count].hw_value = chfreq | CHANNEL_OFDM;
915 break;
916 case AR5K_MODE_11A_TURBO:
917 case AR5K_MODE_11G_TURBO:
918 channels[count].hw_value = chfreq |
919 CHANNEL_OFDM | CHANNEL_TURBO;
920 break;
921 case AR5K_MODE_11B:
922 channels[count].hw_value = CHANNEL_B;
923 }
924
925 count++;
926 max--;
927 }
928
929 return count;
930 }
931
932 static int
933 ath5k_getchannels(struct ieee80211_hw *hw)
934 {
935 struct ath5k_softc *sc = hw->priv;
936 struct ath5k_hw *ah = sc->ah;
937 struct ieee80211_supported_band *sbands = sc->sbands;
938 const struct ath5k_rate_table *hw_rates;
939 unsigned int max_r, max_c, count_r, count_c;
940 int mode2g = AR5K_MODE_11G;
941
942 BUILD_BUG_ON(ARRAY_SIZE(sc->sbands) < IEEE80211_NUM_BANDS);
943
944 max_r = ARRAY_SIZE(sc->rates);
945 max_c = ARRAY_SIZE(sc->channels);
946 count_r = count_c = 0;
947
948 /* 2GHz band */
949 if (!test_bit(AR5K_MODE_11G, sc->ah->ah_capabilities.cap_mode)) {
950 mode2g = AR5K_MODE_11B;
951 if (!test_bit(AR5K_MODE_11B,
952 sc->ah->ah_capabilities.cap_mode))
953 mode2g = -1;
954 }
955
956 if (mode2g > 0) {
957 struct ieee80211_supported_band *sband =
958 &sbands[IEEE80211_BAND_2GHZ];
959
960 sband->bitrates = sc->rates;
961 sband->channels = sc->channels;
962
963 sband->band = IEEE80211_BAND_2GHZ;
964 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
965 mode2g, max_c);
966
967 hw_rates = ath5k_hw_get_rate_table(ah, mode2g);
968 sband->n_bitrates = ath5k_copy_rates(sband->bitrates,
969 hw_rates, max_r);
970
971 count_c = sband->n_channels;
972 count_r = sband->n_bitrates;
973
974 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
975
976 max_r -= count_r;
977 max_c -= count_c;
978
979 }
980
981 /* 5GHz band */
982
983 if (test_bit(AR5K_MODE_11A, sc->ah->ah_capabilities.cap_mode)) {
984 struct ieee80211_supported_band *sband =
985 &sbands[IEEE80211_BAND_5GHZ];
986
987 sband->bitrates = &sc->rates[count_r];
988 sband->channels = &sc->channels[count_c];
989
990 sband->band = IEEE80211_BAND_5GHZ;
991 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
992 AR5K_MODE_11A, max_c);
993
994 hw_rates = ath5k_hw_get_rate_table(ah, AR5K_MODE_11A);
995 sband->n_bitrates = ath5k_copy_rates(sband->bitrates,
996 hw_rates, max_r);
997
998 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
999 }
1000
1001 ath5k_debug_dump_bands(sc);
1002
1003 return 0;
1004 }
1005
1006 /*
1007 * Set/change channels. If the channel is really being changed,
1008 * it's done by reseting the chip. To accomplish this we must
1009 * first cleanup any pending DMA, then restart stuff after a la
1010 * ath5k_init.
1011 */
1012 static int
1013 ath5k_chan_set(struct ath5k_softc *sc, struct ieee80211_channel *chan)
1014 {
1015 struct ath5k_hw *ah = sc->ah;
1016 int ret;
1017
1018 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "(%u MHz) -> (%u MHz)\n",
1019 sc->curchan->center_freq, chan->center_freq);
1020
1021 if (chan->center_freq != sc->curchan->center_freq ||
1022 chan->hw_value != sc->curchan->hw_value) {
1023
1024 sc->curchan = chan;
1025 sc->curband = &sc->sbands[chan->band];
1026
1027 /*
1028 * To switch channels clear any pending DMA operations;
1029 * wait long enough for the RX fifo to drain, reset the
1030 * hardware at the new frequency, and then re-enable
1031 * the relevant bits of the h/w.
1032 */
1033 ath5k_hw_set_intr(ah, 0); /* disable interrupts */
1034 ath5k_txq_cleanup(sc); /* clear pending tx frames */
1035 ath5k_rx_stop(sc); /* turn off frame recv */
1036 ret = ath5k_hw_reset(ah, sc->opmode, sc->curchan, true);
1037 if (ret) {
1038 ATH5K_ERR(sc, "%s: unable to reset channel "
1039 "(%u Mhz)\n", __func__, chan->center_freq);
1040 return ret;
1041 }
1042
1043 ath5k_hw_set_txpower_limit(sc->ah, 0);
1044
1045 /*
1046 * Re-enable rx framework.
1047 */
1048 ret = ath5k_rx_start(sc);
1049 if (ret) {
1050 ATH5K_ERR(sc, "%s: unable to restart recv logic\n",
1051 __func__);
1052 return ret;
1053 }
1054
1055 /*
1056 * Change channels and update the h/w rate map
1057 * if we're switching; e.g. 11a to 11b/g.
1058 *
1059 * XXX needed?
1060 */
1061 /* ath5k_chan_change(sc, chan); */
1062
1063 ath5k_beacon_config(sc);
1064 /*
1065 * Re-enable interrupts.
1066 */
1067 ath5k_hw_set_intr(ah, sc->imask);
1068 }
1069
1070 return 0;
1071 }
1072
1073 /*
1074 * TODO: CLEAN THIS !!!
1075 */
1076 static void
1077 ath5k_setcurmode(struct ath5k_softc *sc, unsigned int mode)
1078 {
1079 if (unlikely(test_bit(ATH_STAT_LEDSOFT, sc->status))) {
1080 /* from Atheros NDIS driver, w/ permission */
1081 static const struct {
1082 u16 rate; /* tx/rx 802.11 rate */
1083 u16 timeOn; /* LED on time (ms) */
1084 u16 timeOff; /* LED off time (ms) */
1085 } blinkrates[] = {
1086 { 108, 40, 10 },
1087 { 96, 44, 11 },
1088 { 72, 50, 13 },
1089 { 48, 57, 14 },
1090 { 36, 67, 16 },
1091 { 24, 80, 20 },
1092 { 22, 100, 25 },
1093 { 18, 133, 34 },
1094 { 12, 160, 40 },
1095 { 10, 200, 50 },
1096 { 6, 240, 58 },
1097 { 4, 267, 66 },
1098 { 2, 400, 100 },
1099 { 0, 500, 130 }
1100 };
1101 const struct ath5k_rate_table *rt =
1102 ath5k_hw_get_rate_table(sc->ah, mode);
1103 unsigned int i, j;
1104
1105 BUG_ON(rt == NULL);
1106
1107 memset(sc->hwmap, 0, sizeof(sc->hwmap));
1108 for (i = 0; i < 32; i++) {
1109 u8 ix = rt->rate_code_to_index[i];
1110 if (ix == 0xff) {
1111 sc->hwmap[i].ledon = msecs_to_jiffies(500);
1112 sc->hwmap[i].ledoff = msecs_to_jiffies(130);
1113 continue;
1114 }
1115 sc->hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
1116 /* receive frames include FCS */
1117 sc->hwmap[i].rxflags = sc->hwmap[i].txflags |
1118 IEEE80211_RADIOTAP_F_FCS;
1119 /* setup blink rate table to avoid per-packet lookup */
1120 for (j = 0; j < ARRAY_SIZE(blinkrates) - 1; j++)
1121 if (blinkrates[j].rate == /* XXX why 7f? */
1122 (rt->rates[ix].dot11_rate&0x7f))
1123 break;
1124
1125 sc->hwmap[i].ledon = msecs_to_jiffies(blinkrates[j].
1126 timeOn);
1127 sc->hwmap[i].ledoff = msecs_to_jiffies(blinkrates[j].
1128 timeOff);
1129 }
1130 }
1131
1132 sc->curmode = mode;
1133
1134 if (mode == AR5K_MODE_11A) {
1135 sc->curband = &sc->sbands[IEEE80211_BAND_5GHZ];
1136 } else {
1137 sc->curband = &sc->sbands[IEEE80211_BAND_2GHZ];
1138 }
1139 }
1140
1141 static void
1142 ath5k_mode_setup(struct ath5k_softc *sc)
1143 {
1144 struct ath5k_hw *ah = sc->ah;
1145 u32 rfilt;
1146
1147 /* configure rx filter */
1148 rfilt = sc->filter_flags;
1149 ath5k_hw_set_rx_filter(ah, rfilt);
1150
1151 if (ath5k_hw_hasbssidmask(ah))
1152 ath5k_hw_set_bssid_mask(ah, sc->bssidmask);
1153
1154 /* configure operational mode */
1155 ath5k_hw_set_opmode(ah);
1156
1157 ath5k_hw_set_mcast_filter(ah, 0, 0);
1158 ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
1159 }
1160
1161 /*
1162 * Match the hw provided rate index (through descriptors)
1163 * to an index for sc->curband->bitrates, so it can be used
1164 * by the stack.
1165 *
1166 * This one is a little bit tricky but i think i'm right
1167 * about this...
1168 *
1169 * We have 4 rate tables in the following order:
1170 * XR (4 rates)
1171 * 802.11a (8 rates)
1172 * 802.11b (4 rates)
1173 * 802.11g (12 rates)
1174 * that make the hw rate table.
1175 *
1176 * Lets take a 5211 for example that supports a and b modes only.
1177 * First comes the 802.11a table and then 802.11b (total 12 rates).
1178 * When hw returns eg. 11 it points to the last 802.11b rate (11Mbit),
1179 * if it returns 2 it points to the second 802.11a rate etc.
1180 *
1181 * Same goes for 5212 who has xr/a/b/g support (total 28 rates).
1182 * First comes the XR table, then 802.11a, 802.11b and 802.11g.
1183 * When hw returns eg. 27 it points to the last 802.11g rate (54Mbits) etc
1184 */
1185 static void
1186 ath5k_set_total_hw_rates(struct ath5k_softc *sc) {
1187
1188 struct ath5k_hw *ah = sc->ah;
1189
1190 if (test_bit(AR5K_MODE_11A, ah->ah_modes))
1191 sc->a_rates = 8;
1192
1193 if (test_bit(AR5K_MODE_11B, ah->ah_modes))
1194 sc->b_rates = 4;
1195
1196 if (test_bit(AR5K_MODE_11G, ah->ah_modes))
1197 sc->g_rates = 12;
1198
1199 /* XXX: Need to see what what happens when
1200 xr disable bits in eeprom are set */
1201 if (ah->ah_version >= AR5K_AR5212)
1202 sc->xr_rates = 4;
1203
1204 }
1205
1206 static inline int
1207 ath5k_hw_to_driver_rix(struct ath5k_softc *sc, int hw_rix) {
1208
1209 int mac80211_rix;
1210
1211 if(sc->curband->band == IEEE80211_BAND_2GHZ) {
1212 /* We setup a g ratetable for both b/g modes */
1213 mac80211_rix =
1214 hw_rix - sc->b_rates - sc->a_rates - sc->xr_rates;
1215 } else {
1216 mac80211_rix = hw_rix - sc->xr_rates;
1217 }
1218
1219 /* Something went wrong, fallback to basic rate for this band */
1220 if ((mac80211_rix >= sc->curband->n_bitrates) ||
1221 (mac80211_rix <= 0 ))
1222 mac80211_rix = 1;
1223
1224 return mac80211_rix;
1225 }
1226
1227
1228
1229
1230 /***************\
1231 * Buffers setup *
1232 \***************/
1233
1234 static int
1235 ath5k_rxbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1236 {
1237 struct ath5k_hw *ah = sc->ah;
1238 struct sk_buff *skb = bf->skb;
1239 struct ath5k_desc *ds;
1240
1241 if (likely(skb == NULL)) {
1242 unsigned int off;
1243
1244 /*
1245 * Allocate buffer with headroom_needed space for the
1246 * fake physical layer header at the start.
1247 */
1248 skb = dev_alloc_skb(sc->rxbufsize + sc->cachelsz - 1);
1249 if (unlikely(skb == NULL)) {
1250 ATH5K_ERR(sc, "can't alloc skbuff of size %u\n",
1251 sc->rxbufsize + sc->cachelsz - 1);
1252 return -ENOMEM;
1253 }
1254 /*
1255 * Cache-line-align. This is important (for the
1256 * 5210 at least) as not doing so causes bogus data
1257 * in rx'd frames.
1258 */
1259 off = ((unsigned long)skb->data) % sc->cachelsz;
1260 if (off != 0)
1261 skb_reserve(skb, sc->cachelsz - off);
1262
1263 bf->skb = skb;
1264 bf->skbaddr = pci_map_single(sc->pdev,
1265 skb->data, sc->rxbufsize, PCI_DMA_FROMDEVICE);
1266 if (unlikely(pci_dma_mapping_error(bf->skbaddr))) {
1267 ATH5K_ERR(sc, "%s: DMA mapping failed\n", __func__);
1268 dev_kfree_skb(skb);
1269 bf->skb = NULL;
1270 return -ENOMEM;
1271 }
1272 }
1273
1274 /*
1275 * Setup descriptors. For receive we always terminate
1276 * the descriptor list with a self-linked entry so we'll
1277 * not get overrun under high load (as can happen with a
1278 * 5212 when ANI processing enables PHY error frames).
1279 *
1280 * To insure the last descriptor is self-linked we create
1281 * each descriptor as self-linked and add it to the end. As
1282 * each additional descriptor is added the previous self-linked
1283 * entry is ``fixed'' naturally. This should be safe even
1284 * if DMA is happening. When processing RX interrupts we
1285 * never remove/process the last, self-linked, entry on the
1286 * descriptor list. This insures the hardware always has
1287 * someplace to write a new frame.
1288 */
1289 ds = bf->desc;
1290 ds->ds_link = bf->daddr; /* link to self */
1291 ds->ds_data = bf->skbaddr;
1292 ath5k_hw_setup_rx_desc(ah, ds,
1293 skb_tailroom(skb), /* buffer size */
1294 0);
1295
1296 if (sc->rxlink != NULL)
1297 *sc->rxlink = bf->daddr;
1298 sc->rxlink = &ds->ds_link;
1299 return 0;
1300 }
1301
1302 static int
1303 ath5k_txbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf,
1304 struct ieee80211_tx_control *ctl)
1305 {
1306 struct ath5k_hw *ah = sc->ah;
1307 struct ath5k_txq *txq = sc->txq;
1308 struct ath5k_desc *ds = bf->desc;
1309 struct sk_buff *skb = bf->skb;
1310 unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
1311 int ret;
1312
1313 flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
1314 bf->ctl = *ctl;
1315 /* XXX endianness */
1316 bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
1317 PCI_DMA_TODEVICE);
1318
1319 if (ctl->flags & IEEE80211_TXCTL_NO_ACK)
1320 flags |= AR5K_TXDESC_NOACK;
1321
1322 pktlen = skb->len;
1323
1324 if (!(ctl->flags & IEEE80211_TXCTL_DO_NOT_ENCRYPT)) {
1325 keyidx = ctl->key_idx;
1326 pktlen += ctl->icv_len;
1327 }
1328
1329 ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
1330 ieee80211_get_hdrlen_from_skb(skb), AR5K_PKT_TYPE_NORMAL,
1331 (sc->power_level * 2), ctl->tx_rate->hw_value,
1332 ctl->retry_limit, keyidx, 0, flags, 0, 0);
1333 if (ret)
1334 goto err_unmap;
1335
1336 ds->ds_link = 0;
1337 ds->ds_data = bf->skbaddr;
1338
1339 spin_lock_bh(&txq->lock);
1340 list_add_tail(&bf->list, &txq->q);
1341 sc->tx_stats.data[txq->qnum].len++;
1342 if (txq->link == NULL) /* is this first packet? */
1343 ath5k_hw_put_tx_buf(ah, txq->qnum, bf->daddr);
1344 else /* no, so only link it */
1345 *txq->link = bf->daddr;
1346
1347 txq->link = &ds->ds_link;
1348 ath5k_hw_tx_start(ah, txq->qnum);
1349 spin_unlock_bh(&txq->lock);
1350
1351 return 0;
1352 err_unmap:
1353 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
1354 return ret;
1355 }
1356
1357 /*******************\
1358 * Descriptors setup *
1359 \*******************/
1360
1361 static int
1362 ath5k_desc_alloc(struct ath5k_softc *sc, struct pci_dev *pdev)
1363 {
1364 struct ath5k_desc *ds;
1365 struct ath5k_buf *bf;
1366 dma_addr_t da;
1367 unsigned int i;
1368 int ret;
1369
1370 /* allocate descriptors */
1371 sc->desc_len = sizeof(struct ath5k_desc) *
1372 (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
1373 sc->desc = pci_alloc_consistent(pdev, sc->desc_len, &sc->desc_daddr);
1374 if (sc->desc == NULL) {
1375 ATH5K_ERR(sc, "can't allocate descriptors\n");
1376 ret = -ENOMEM;
1377 goto err;
1378 }
1379 ds = sc->desc;
1380 da = sc->desc_daddr;
1381 ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
1382 ds, sc->desc_len, (unsigned long long)sc->desc_daddr);
1383
1384 bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
1385 sizeof(struct ath5k_buf), GFP_KERNEL);
1386 if (bf == NULL) {
1387 ATH5K_ERR(sc, "can't allocate bufptr\n");
1388 ret = -ENOMEM;
1389 goto err_free;
1390 }
1391 sc->bufptr = bf;
1392
1393 INIT_LIST_HEAD(&sc->rxbuf);
1394 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
1395 bf->desc = ds;
1396 bf->daddr = da;
1397 list_add_tail(&bf->list, &sc->rxbuf);
1398 }
1399
1400 INIT_LIST_HEAD(&sc->txbuf);
1401 sc->txbuf_len = ATH_TXBUF;
1402 for (i = 0; i < ATH_TXBUF; i++, bf++, ds++,
1403 da += sizeof(*ds)) {
1404 bf->desc = ds;
1405 bf->daddr = da;
1406 list_add_tail(&bf->list, &sc->txbuf);
1407 }
1408
1409 /* beacon buffer */
1410 bf->desc = ds;
1411 bf->daddr = da;
1412 sc->bbuf = bf;
1413
1414 return 0;
1415 err_free:
1416 pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
1417 err:
1418 sc->desc = NULL;
1419 return ret;
1420 }
1421
1422 static void
1423 ath5k_desc_free(struct ath5k_softc *sc, struct pci_dev *pdev)
1424 {
1425 struct ath5k_buf *bf;
1426
1427 ath5k_txbuf_free(sc, sc->bbuf);
1428 list_for_each_entry(bf, &sc->txbuf, list)
1429 ath5k_txbuf_free(sc, bf);
1430 list_for_each_entry(bf, &sc->rxbuf, list)
1431 ath5k_txbuf_free(sc, bf);
1432
1433 /* Free memory associated with all descriptors */
1434 pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
1435
1436 kfree(sc->bufptr);
1437 sc->bufptr = NULL;
1438 }
1439
1440
1441
1442
1443
1444 /**************\
1445 * Queues setup *
1446 \**************/
1447
1448 static struct ath5k_txq *
1449 ath5k_txq_setup(struct ath5k_softc *sc,
1450 int qtype, int subtype)
1451 {
1452 struct ath5k_hw *ah = sc->ah;
1453 struct ath5k_txq *txq;
1454 struct ath5k_txq_info qi = {
1455 .tqi_subtype = subtype,
1456 .tqi_aifs = AR5K_TXQ_USEDEFAULT,
1457 .tqi_cw_min = AR5K_TXQ_USEDEFAULT,
1458 .tqi_cw_max = AR5K_TXQ_USEDEFAULT
1459 };
1460 int qnum;
1461
1462 /*
1463 * Enable interrupts only for EOL and DESC conditions.
1464 * We mark tx descriptors to receive a DESC interrupt
1465 * when a tx queue gets deep; otherwise waiting for the
1466 * EOL to reap descriptors. Note that this is done to
1467 * reduce interrupt load and this only defers reaping
1468 * descriptors, never transmitting frames. Aside from
1469 * reducing interrupts this also permits more concurrency.
1470 * The only potential downside is if the tx queue backs
1471 * up in which case the top half of the kernel may backup
1472 * due to a lack of tx descriptors.
1473 */
1474 qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
1475 AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1476 qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1477 if (qnum < 0) {
1478 /*
1479 * NB: don't print a message, this happens
1480 * normally on parts with too few tx queues
1481 */
1482 return ERR_PTR(qnum);
1483 }
1484 if (qnum >= ARRAY_SIZE(sc->txqs)) {
1485 ATH5K_ERR(sc, "hw qnum %u out of range, max %tu!\n",
1486 qnum, ARRAY_SIZE(sc->txqs));
1487 ath5k_hw_release_tx_queue(ah, qnum);
1488 return ERR_PTR(-EINVAL);
1489 }
1490 txq = &sc->txqs[qnum];
1491 if (!txq->setup) {
1492 txq->qnum = qnum;
1493 txq->link = NULL;
1494 INIT_LIST_HEAD(&txq->q);
1495 spin_lock_init(&txq->lock);
1496 txq->setup = true;
1497 }
1498 return &sc->txqs[qnum];
1499 }
1500
1501 static int
1502 ath5k_beaconq_setup(struct ath5k_hw *ah)
1503 {
1504 struct ath5k_txq_info qi = {
1505 .tqi_aifs = AR5K_TXQ_USEDEFAULT,
1506 .tqi_cw_min = AR5K_TXQ_USEDEFAULT,
1507 .tqi_cw_max = AR5K_TXQ_USEDEFAULT,
1508 /* NB: for dynamic turbo, don't enable any other interrupts */
1509 .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1510 };
1511
1512 return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1513 }
1514
1515 static int
1516 ath5k_beaconq_config(struct ath5k_softc *sc)
1517 {
1518 struct ath5k_hw *ah = sc->ah;
1519 struct ath5k_txq_info qi;
1520 int ret;
1521
1522 ret = ath5k_hw_get_tx_queueprops(ah, sc->bhalq, &qi);
1523 if (ret)
1524 return ret;
1525 if (sc->opmode == IEEE80211_IF_TYPE_AP) {
1526 /*
1527 * Always burst out beacon and CAB traffic
1528 * (aifs = cwmin = cwmax = 0)
1529 */
1530 qi.tqi_aifs = 0;
1531 qi.tqi_cw_min = 0;
1532 qi.tqi_cw_max = 0;
1533 } else if (sc->opmode == IEEE80211_IF_TYPE_IBSS) {
1534 /*
1535 * Adhoc mode; backoff between 0 and (2 * cw_min).
1536 */
1537 qi.tqi_aifs = 0;
1538 qi.tqi_cw_min = 0;
1539 qi.tqi_cw_max = 2 * ah->ah_cw_min;
1540 }
1541
1542 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1543 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1544 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1545
1546 ret = ath5k_hw_setup_tx_queueprops(ah, sc->bhalq, &qi);
1547 if (ret) {
1548 ATH5K_ERR(sc, "%s: unable to update parameters for beacon "
1549 "hardware queue!\n", __func__);
1550 return ret;
1551 }
1552
1553 return ath5k_hw_reset_tx_queue(ah, sc->bhalq); /* push to h/w */;
1554 }
1555
1556 static void
1557 ath5k_txq_drainq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1558 {
1559 struct ath5k_buf *bf, *bf0;
1560
1561 /*
1562 * NB: this assumes output has been stopped and
1563 * we do not need to block ath5k_tx_tasklet
1564 */
1565 spin_lock_bh(&txq->lock);
1566 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1567 ath5k_debug_printtxbuf(sc, bf);
1568
1569 ath5k_txbuf_free(sc, bf);
1570
1571 spin_lock_bh(&sc->txbuflock);
1572 sc->tx_stats.data[txq->qnum].len--;
1573 list_move_tail(&bf->list, &sc->txbuf);
1574 sc->txbuf_len++;
1575 spin_unlock_bh(&sc->txbuflock);
1576 }
1577 txq->link = NULL;
1578 spin_unlock_bh(&txq->lock);
1579 }
1580
1581 /*
1582 * Drain the transmit queues and reclaim resources.
1583 */
1584 static void
1585 ath5k_txq_cleanup(struct ath5k_softc *sc)
1586 {
1587 struct ath5k_hw *ah = sc->ah;
1588 unsigned int i;
1589
1590 /* XXX return value */
1591 if (likely(!test_bit(ATH_STAT_INVALID, sc->status))) {
1592 /* don't touch the hardware if marked invalid */
1593 ath5k_hw_stop_tx_dma(ah, sc->bhalq);
1594 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "beacon queue %x\n",
1595 ath5k_hw_get_tx_buf(ah, sc->bhalq));
1596 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1597 if (sc->txqs[i].setup) {
1598 ath5k_hw_stop_tx_dma(ah, sc->txqs[i].qnum);
1599 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "txq [%u] %x, "
1600 "link %p\n",
1601 sc->txqs[i].qnum,
1602 ath5k_hw_get_tx_buf(ah,
1603 sc->txqs[i].qnum),
1604 sc->txqs[i].link);
1605 }
1606 }
1607 ieee80211_start_queues(sc->hw); /* XXX move to callers */
1608
1609 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1610 if (sc->txqs[i].setup)
1611 ath5k_txq_drainq(sc, &sc->txqs[i]);
1612 }
1613
1614 static void
1615 ath5k_txq_release(struct ath5k_softc *sc)
1616 {
1617 struct ath5k_txq *txq = sc->txqs;
1618 unsigned int i;
1619
1620 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++, txq++)
1621 if (txq->setup) {
1622 ath5k_hw_release_tx_queue(sc->ah, txq->qnum);
1623 txq->setup = false;
1624 }
1625 }
1626
1627
1628
1629
1630 /*************\
1631 * RX Handling *
1632 \*************/
1633
1634 /*
1635 * Enable the receive h/w following a reset.
1636 */
1637 static int
1638 ath5k_rx_start(struct ath5k_softc *sc)
1639 {
1640 struct ath5k_hw *ah = sc->ah;
1641 struct ath5k_buf *bf;
1642 int ret;
1643
1644 sc->rxbufsize = roundup(IEEE80211_MAX_LEN, sc->cachelsz);
1645
1646 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "cachelsz %u rxbufsize %u\n",
1647 sc->cachelsz, sc->rxbufsize);
1648
1649 sc->rxlink = NULL;
1650
1651 spin_lock_bh(&sc->rxbuflock);
1652 list_for_each_entry(bf, &sc->rxbuf, list) {
1653 ret = ath5k_rxbuf_setup(sc, bf);
1654 if (ret != 0) {
1655 spin_unlock_bh(&sc->rxbuflock);
1656 goto err;
1657 }
1658 }
1659 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1660 spin_unlock_bh(&sc->rxbuflock);
1661
1662 ath5k_hw_put_rx_buf(ah, bf->daddr);
1663 ath5k_hw_start_rx(ah); /* enable recv descriptors */
1664 ath5k_mode_setup(sc); /* set filters, etc. */
1665 ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
1666
1667 return 0;
1668 err:
1669 return ret;
1670 }
1671
1672 /*
1673 * Disable the receive h/w in preparation for a reset.
1674 */
1675 static void
1676 ath5k_rx_stop(struct ath5k_softc *sc)
1677 {
1678 struct ath5k_hw *ah = sc->ah;
1679
1680 ath5k_hw_stop_pcu_recv(ah); /* disable PCU */
1681 ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
1682 ath5k_hw_stop_rx_dma(ah); /* disable DMA engine */
1683 mdelay(3); /* 3ms is long enough for 1 frame */
1684
1685 ath5k_debug_printrxbuffs(sc, ah);
1686
1687 sc->rxlink = NULL; /* just in case */
1688 }
1689
1690 static unsigned int
1691 ath5k_rx_decrypted(struct ath5k_softc *sc, struct ath5k_desc *ds,
1692 struct sk_buff *skb, struct ath5k_rx_status *rs)
1693 {
1694 struct ieee80211_hdr *hdr = (void *)skb->data;
1695 unsigned int keyix, hlen = ieee80211_get_hdrlen_from_skb(skb);
1696
1697 if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1698 rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1699 return RX_FLAG_DECRYPTED;
1700
1701 /* Apparently when a default key is used to decrypt the packet
1702 the hw does not set the index used to decrypt. In such cases
1703 get the index from the packet. */
1704 if ((le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_PROTECTED) &&
1705 !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1706 skb->len >= hlen + 4) {
1707 keyix = skb->data[hlen + 3] >> 6;
1708
1709 if (test_bit(keyix, sc->keymap))
1710 return RX_FLAG_DECRYPTED;
1711 }
1712
1713 return 0;
1714 }
1715
1716
1717 static void
1718 ath5k_check_ibss_tsf(struct ath5k_softc *sc, struct sk_buff *skb,
1719 struct ieee80211_rx_status *rxs)
1720 {
1721 u64 tsf, bc_tstamp;
1722 u32 hw_tu;
1723 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1724
1725 if ((le16_to_cpu(mgmt->frame_control) & IEEE80211_FCTL_FTYPE) ==
1726 IEEE80211_FTYPE_MGMT &&
1727 (le16_to_cpu(mgmt->frame_control) & IEEE80211_FCTL_STYPE) ==
1728 IEEE80211_STYPE_BEACON &&
1729 le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1730 memcmp(mgmt->bssid, sc->ah->ah_bssid, ETH_ALEN) == 0) {
1731 /*
1732 * Received an IBSS beacon with the same BSSID. Hardware *must*
1733 * have updated the local TSF. We have to work around various
1734 * hardware bugs, though...
1735 */
1736 tsf = ath5k_hw_get_tsf64(sc->ah);
1737 bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1738 hw_tu = TSF_TO_TU(tsf);
1739
1740 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1741 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1742 (unsigned long long)bc_tstamp,
1743 (unsigned long long)rxs->mactime,
1744 (unsigned long long)(rxs->mactime - bc_tstamp),
1745 (unsigned long long)tsf);
1746
1747 /*
1748 * Sometimes the HW will give us a wrong tstamp in the rx
1749 * status, causing the timestamp extension to go wrong.
1750 * (This seems to happen especially with beacon frames bigger
1751 * than 78 byte (incl. FCS))
1752 * But we know that the receive timestamp must be later than the
1753 * timestamp of the beacon since HW must have synced to that.
1754 *
1755 * NOTE: here we assume mactime to be after the frame was
1756 * received, not like mac80211 which defines it at the start.
1757 */
1758 if (bc_tstamp > rxs->mactime) {
1759 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1760 "fixing mactime from %llx to %llx\n",
1761 (unsigned long long)rxs->mactime,
1762 (unsigned long long)tsf);
1763 rxs->mactime = tsf;
1764 }
1765
1766 /*
1767 * Local TSF might have moved higher than our beacon timers,
1768 * in that case we have to update them to continue sending
1769 * beacons. This also takes care of synchronizing beacon sending
1770 * times with other stations.
1771 */
1772 if (hw_tu >= sc->nexttbtt)
1773 ath5k_beacon_update_timers(sc, bc_tstamp);
1774 }
1775 }
1776
1777
1778 static void
1779 ath5k_tasklet_rx(unsigned long data)
1780 {
1781 struct ieee80211_rx_status rxs = {};
1782 struct ath5k_rx_status rs = {};
1783 struct sk_buff *skb;
1784 struct ath5k_softc *sc = (void *)data;
1785 struct ath5k_buf *bf;
1786 struct ath5k_desc *ds;
1787 int ret;
1788 int hdrlen;
1789 int pad;
1790
1791 spin_lock(&sc->rxbuflock);
1792 do {
1793 if (unlikely(list_empty(&sc->rxbuf))) {
1794 ATH5K_WARN(sc, "empty rx buf pool\n");
1795 break;
1796 }
1797 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1798 BUG_ON(bf->skb == NULL);
1799 skb = bf->skb;
1800 ds = bf->desc;
1801
1802 /* TODO only one segment */
1803 pci_dma_sync_single_for_cpu(sc->pdev, sc->desc_daddr,
1804 sc->desc_len, PCI_DMA_FROMDEVICE);
1805
1806 if (unlikely(ds->ds_link == bf->daddr)) /* this is the end */
1807 break;
1808
1809 ret = sc->ah->ah_proc_rx_desc(sc->ah, ds, &rs);
1810 if (unlikely(ret == -EINPROGRESS))
1811 break;
1812 else if (unlikely(ret)) {
1813 ATH5K_ERR(sc, "error in processing rx descriptor\n");
1814 spin_unlock(&sc->rxbuflock);
1815 return;
1816 }
1817
1818 if (unlikely(rs.rs_more)) {
1819 ATH5K_WARN(sc, "unsupported jumbo\n");
1820 goto next;
1821 }
1822
1823 if (unlikely(rs.rs_status)) {
1824 if (rs.rs_status & AR5K_RXERR_PHY)
1825 goto next;
1826 if (rs.rs_status & AR5K_RXERR_DECRYPT) {
1827 /*
1828 * Decrypt error. If the error occurred
1829 * because there was no hardware key, then
1830 * let the frame through so the upper layers
1831 * can process it. This is necessary for 5210
1832 * parts which have no way to setup a ``clear''
1833 * key cache entry.
1834 *
1835 * XXX do key cache faulting
1836 */
1837 if (rs.rs_keyix == AR5K_RXKEYIX_INVALID &&
1838 !(rs.rs_status & AR5K_RXERR_CRC))
1839 goto accept;
1840 }
1841 if (rs.rs_status & AR5K_RXERR_MIC) {
1842 rxs.flag |= RX_FLAG_MMIC_ERROR;
1843 goto accept;
1844 }
1845
1846 /* let crypto-error packets fall through in MNTR */
1847 if ((rs.rs_status &
1848 ~(AR5K_RXERR_DECRYPT|AR5K_RXERR_MIC)) ||
1849 sc->opmode != IEEE80211_IF_TYPE_MNTR)
1850 goto next;
1851 }
1852 accept:
1853 pci_dma_sync_single_for_cpu(sc->pdev, bf->skbaddr,
1854 rs.rs_datalen, PCI_DMA_FROMDEVICE);
1855 pci_unmap_single(sc->pdev, bf->skbaddr, sc->rxbufsize,
1856 PCI_DMA_FROMDEVICE);
1857 bf->skb = NULL;
1858
1859 skb_put(skb, rs.rs_datalen);
1860
1861 /*
1862 * the hardware adds a padding to 4 byte boundaries between
1863 * the header and the payload data if the header length is
1864 * not multiples of 4 - remove it
1865 */
1866 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1867 if (hdrlen & 3) {
1868 pad = hdrlen % 4;
1869 memmove(skb->data + pad, skb->data, hdrlen);
1870 skb_pull(skb, pad);
1871 }
1872
1873 /*
1874 * always extend the mac timestamp, since this information is
1875 * also needed for proper IBSS merging.
1876 *
1877 * XXX: it might be too late to do it here, since rs_tstamp is
1878 * 15bit only. that means TSF extension has to be done within
1879 * 32768usec (about 32ms). it might be necessary to move this to
1880 * the interrupt handler, like it is done in madwifi.
1881 *
1882 * Unfortunately we don't know when the hardware takes the rx
1883 * timestamp (beginning of phy frame, data frame, end of rx?).
1884 * The only thing we know is that it is hardware specific...
1885 * On AR5213 it seems the rx timestamp is at the end of the
1886 * frame, but i'm not sure.
1887 *
1888 * NOTE: mac80211 defines mactime at the beginning of the first
1889 * data symbol. Since we don't have any time references it's
1890 * impossible to comply to that. This affects IBSS merge only
1891 * right now, so it's not too bad...
1892 */
1893 rxs.mactime = ath5k_extend_tsf(sc->ah, rs.rs_tstamp);
1894 rxs.flag |= RX_FLAG_TSFT;
1895
1896 rxs.freq = sc->curchan->center_freq;
1897 rxs.band = sc->curband->band;
1898
1899 /*
1900 * signal quality:
1901 * the names here are misleading and the usage of these
1902 * values by iwconfig makes it even worse
1903 */
1904 /* noise floor in dBm, from the last noise calibration */
1905 rxs.noise = sc->ah->ah_noise_floor;
1906 /* signal level in dBm */
1907 rxs.ssi = rxs.noise + rs.rs_rssi;
1908 /*
1909 * "signal" is actually displayed as Link Quality by iwconfig
1910 * we provide a percentage based on rssi (assuming max rssi 64)
1911 */
1912 rxs.signal = rs.rs_rssi * 100 / 64;
1913
1914 rxs.antenna = rs.rs_antenna;
1915 rxs.rate_idx = ath5k_hw_to_driver_rix(sc, rs.rs_rate);
1916 rxs.flag |= ath5k_rx_decrypted(sc, ds, skb, &rs);
1917
1918 ath5k_debug_dump_skb(sc, skb, "RX ", 0);
1919
1920 /* check beacons in IBSS mode */
1921 if (sc->opmode == IEEE80211_IF_TYPE_IBSS)
1922 ath5k_check_ibss_tsf(sc, skb, &rxs);
1923
1924 __ieee80211_rx(sc->hw, skb, &rxs);
1925 sc->led_rxrate = rs.rs_rate;
1926 ath5k_led_event(sc, ATH_LED_RX);
1927 next:
1928 list_move_tail(&bf->list, &sc->rxbuf);
1929 } while (ath5k_rxbuf_setup(sc, bf) == 0);
1930 spin_unlock(&sc->rxbuflock);
1931 }
1932
1933
1934
1935
1936 /*************\
1937 * TX Handling *
1938 \*************/
1939
1940 static void
1941 ath5k_tx_processq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1942 {
1943 struct ieee80211_tx_status txs = {};
1944 struct ath5k_tx_status ts = {};
1945 struct ath5k_buf *bf, *bf0;
1946 struct ath5k_desc *ds;
1947 struct sk_buff *skb;
1948 int ret;
1949
1950 spin_lock(&txq->lock);
1951 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1952 ds = bf->desc;
1953
1954 /* TODO only one segment */
1955 pci_dma_sync_single_for_cpu(sc->pdev, sc->desc_daddr,
1956 sc->desc_len, PCI_DMA_FROMDEVICE);
1957 ret = sc->ah->ah_proc_tx_desc(sc->ah, ds, &ts);
1958 if (unlikely(ret == -EINPROGRESS))
1959 break;
1960 else if (unlikely(ret)) {
1961 ATH5K_ERR(sc, "error %d while processing queue %u\n",
1962 ret, txq->qnum);
1963 break;
1964 }
1965
1966 skb = bf->skb;
1967 bf->skb = NULL;
1968 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len,
1969 PCI_DMA_TODEVICE);
1970
1971 txs.control = bf->ctl;
1972 txs.retry_count = ts.ts_shortretry + ts.ts_longretry / 6;
1973 if (unlikely(ts.ts_status)) {
1974 sc->ll_stats.dot11ACKFailureCount++;
1975 if (ts.ts_status & AR5K_TXERR_XRETRY)
1976 txs.excessive_retries = 1;
1977 else if (ts.ts_status & AR5K_TXERR_FILT)
1978 txs.flags |= IEEE80211_TX_STATUS_TX_FILTERED;
1979 } else {
1980 txs.flags |= IEEE80211_TX_STATUS_ACK;
1981 txs.ack_signal = ts.ts_rssi;
1982 }
1983
1984 ieee80211_tx_status(sc->hw, skb, &txs);
1985 sc->tx_stats.data[txq->qnum].count++;
1986
1987 spin_lock(&sc->txbuflock);
1988 sc->tx_stats.data[txq->qnum].len--;
1989 list_move_tail(&bf->list, &sc->txbuf);
1990 sc->txbuf_len++;
1991 spin_unlock(&sc->txbuflock);
1992 }
1993 if (likely(list_empty(&txq->q)))
1994 txq->link = NULL;
1995 spin_unlock(&txq->lock);
1996 if (sc->txbuf_len > ATH_TXBUF / 5)
1997 ieee80211_wake_queues(sc->hw);
1998 }
1999
2000 static void
2001 ath5k_tasklet_tx(unsigned long data)
2002 {
2003 struct ath5k_softc *sc = (void *)data;
2004
2005 ath5k_tx_processq(sc, sc->txq);
2006
2007 ath5k_led_event(sc, ATH_LED_TX);
2008 }
2009
2010
2011
2012
2013 /*****************\
2014 * Beacon handling *
2015 \*****************/
2016
2017 /*
2018 * Setup the beacon frame for transmit.
2019 */
2020 static int
2021 ath5k_beacon_setup(struct ath5k_softc *sc, struct ath5k_buf *bf,
2022 struct ieee80211_tx_control *ctl)
2023 {
2024 struct sk_buff *skb = bf->skb;
2025 struct ath5k_hw *ah = sc->ah;
2026 struct ath5k_desc *ds;
2027 int ret, antenna = 0;
2028 u32 flags;
2029
2030 bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
2031 PCI_DMA_TODEVICE);
2032 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
2033 "skbaddr %llx\n", skb, skb->data, skb->len,
2034 (unsigned long long)bf->skbaddr);
2035 if (pci_dma_mapping_error(bf->skbaddr)) {
2036 ATH5K_ERR(sc, "beacon DMA mapping failed\n");
2037 return -EIO;
2038 }
2039
2040 ds = bf->desc;
2041
2042 flags = AR5K_TXDESC_NOACK;
2043 if (sc->opmode == IEEE80211_IF_TYPE_IBSS && ath5k_hw_hasveol(ah)) {
2044 ds->ds_link = bf->daddr; /* self-linked */
2045 flags |= AR5K_TXDESC_VEOL;
2046 /*
2047 * Let hardware handle antenna switching if txantenna is not set
2048 */
2049 } else {
2050 ds->ds_link = 0;
2051 /*
2052 * Switch antenna every 4 beacons if txantenna is not set
2053 * XXX assumes two antennas
2054 */
2055 if (antenna == 0)
2056 antenna = sc->bsent & 4 ? 2 : 1;
2057 }
2058
2059 ds->ds_data = bf->skbaddr;
2060 ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
2061 ieee80211_get_hdrlen_from_skb(skb),
2062 AR5K_PKT_TYPE_BEACON, (sc->power_level * 2),
2063 ctl->tx_rate->hw_value, 1, AR5K_TXKEYIX_INVALID,
2064 antenna, flags, 0, 0);
2065 if (ret)
2066 goto err_unmap;
2067
2068 return 0;
2069 err_unmap:
2070 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
2071 return ret;
2072 }
2073
2074 /*
2075 * Transmit a beacon frame at SWBA. Dynamic updates to the
2076 * frame contents are done as needed and the slot time is
2077 * also adjusted based on current state.
2078 *
2079 * this is usually called from interrupt context (ath5k_intr())
2080 * but also from ath5k_beacon_config() in IBSS mode which in turn
2081 * can be called from a tasklet and user context
2082 */
2083 static void
2084 ath5k_beacon_send(struct ath5k_softc *sc)
2085 {
2086 struct ath5k_buf *bf = sc->bbuf;
2087 struct ath5k_hw *ah = sc->ah;
2088
2089 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "in beacon_send\n");
2090
2091 if (unlikely(bf->skb == NULL || sc->opmode == IEEE80211_IF_TYPE_STA ||
2092 sc->opmode == IEEE80211_IF_TYPE_MNTR)) {
2093 ATH5K_WARN(sc, "bf=%p bf_skb=%p\n", bf, bf ? bf->skb : NULL);
2094 return;
2095 }
2096 /*
2097 * Check if the previous beacon has gone out. If
2098 * not don't don't try to post another, skip this
2099 * period and wait for the next. Missed beacons
2100 * indicate a problem and should not occur. If we
2101 * miss too many consecutive beacons reset the device.
2102 */
2103 if (unlikely(ath5k_hw_num_tx_pending(ah, sc->bhalq) != 0)) {
2104 sc->bmisscount++;
2105 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2106 "missed %u consecutive beacons\n", sc->bmisscount);
2107 if (sc->bmisscount > 3) { /* NB: 3 is a guess */
2108 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2109 "stuck beacon time (%u missed)\n",
2110 sc->bmisscount);
2111 tasklet_schedule(&sc->restq);
2112 }
2113 return;
2114 }
2115 if (unlikely(sc->bmisscount != 0)) {
2116 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2117 "resume beacon xmit after %u misses\n",
2118 sc->bmisscount);
2119 sc->bmisscount = 0;
2120 }
2121
2122 /*
2123 * Stop any current dma and put the new frame on the queue.
2124 * This should never fail since we check above that no frames
2125 * are still pending on the queue.
2126 */
2127 if (unlikely(ath5k_hw_stop_tx_dma(ah, sc->bhalq))) {
2128 ATH5K_WARN(sc, "beacon queue %u didn't stop?\n", sc->bhalq);
2129 /* NB: hw still stops DMA, so proceed */
2130 }
2131 pci_dma_sync_single_for_cpu(sc->pdev, bf->skbaddr, bf->skb->len,
2132 PCI_DMA_TODEVICE);
2133
2134 ath5k_hw_put_tx_buf(ah, sc->bhalq, bf->daddr);
2135 ath5k_hw_tx_start(ah, sc->bhalq);
2136 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
2137 sc->bhalq, (unsigned long long)bf->daddr, bf->desc);
2138
2139 sc->bsent++;
2140 }
2141
2142
2143 /**
2144 * ath5k_beacon_update_timers - update beacon timers
2145 *
2146 * @sc: struct ath5k_softc pointer we are operating on
2147 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2148 * beacon timer update based on the current HW TSF.
2149 *
2150 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2151 * of a received beacon or the current local hardware TSF and write it to the
2152 * beacon timer registers.
2153 *
2154 * This is called in a variety of situations, e.g. when a beacon is received,
2155 * when a TSF update has been detected, but also when an new IBSS is created or
2156 * when we otherwise know we have to update the timers, but we keep it in this
2157 * function to have it all together in one place.
2158 */
2159 static void
2160 ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf)
2161 {
2162 struct ath5k_hw *ah = sc->ah;
2163 u32 nexttbtt, intval, hw_tu, bc_tu;
2164 u64 hw_tsf;
2165
2166 intval = sc->bintval & AR5K_BEACON_PERIOD;
2167 if (WARN_ON(!intval))
2168 return;
2169
2170 /* beacon TSF converted to TU */
2171 bc_tu = TSF_TO_TU(bc_tsf);
2172
2173 /* current TSF converted to TU */
2174 hw_tsf = ath5k_hw_get_tsf64(ah);
2175 hw_tu = TSF_TO_TU(hw_tsf);
2176
2177 #define FUDGE 3
2178 /* we use FUDGE to make sure the next TBTT is ahead of the current TU */
2179 if (bc_tsf == -1) {
2180 /*
2181 * no beacons received, called internally.
2182 * just need to refresh timers based on HW TSF.
2183 */
2184 nexttbtt = roundup(hw_tu + FUDGE, intval);
2185 } else if (bc_tsf == 0) {
2186 /*
2187 * no beacon received, probably called by ath5k_reset_tsf().
2188 * reset TSF to start with 0.
2189 */
2190 nexttbtt = intval;
2191 intval |= AR5K_BEACON_RESET_TSF;
2192 } else if (bc_tsf > hw_tsf) {
2193 /*
2194 * beacon received, SW merge happend but HW TSF not yet updated.
2195 * not possible to reconfigure timers yet, but next time we
2196 * receive a beacon with the same BSSID, the hardware will
2197 * automatically update the TSF and then we need to reconfigure
2198 * the timers.
2199 */
2200 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2201 "need to wait for HW TSF sync\n");
2202 return;
2203 } else {
2204 /*
2205 * most important case for beacon synchronization between STA.
2206 *
2207 * beacon received and HW TSF has been already updated by HW.
2208 * update next TBTT based on the TSF of the beacon, but make
2209 * sure it is ahead of our local TSF timer.
2210 */
2211 nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2212 }
2213 #undef FUDGE
2214
2215 sc->nexttbtt = nexttbtt;
2216
2217 intval |= AR5K_BEACON_ENA;
2218 ath5k_hw_init_beacon(ah, nexttbtt, intval);
2219
2220 /*
2221 * debugging output last in order to preserve the time critical aspect
2222 * of this function
2223 */
2224 if (bc_tsf == -1)
2225 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2226 "reconfigured timers based on HW TSF\n");
2227 else if (bc_tsf == 0)
2228 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2229 "reset HW TSF and timers\n");
2230 else
2231 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2232 "updated timers based on beacon TSF\n");
2233
2234 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2235 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2236 (unsigned long long) bc_tsf,
2237 (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2238 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2239 intval & AR5K_BEACON_PERIOD,
2240 intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2241 intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2242 }
2243
2244
2245 /**
2246 * ath5k_beacon_config - Configure the beacon queues and interrupts
2247 *
2248 * @sc: struct ath5k_softc pointer we are operating on
2249 *
2250 * When operating in station mode we want to receive a BMISS interrupt when we
2251 * stop seeing beacons from the AP we've associated with so we can look for
2252 * another AP to associate with.
2253 *
2254 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2255 * interrupts to detect TSF updates only.
2256 *
2257 * AP mode is missing.
2258 */
2259 static void
2260 ath5k_beacon_config(struct ath5k_softc *sc)
2261 {
2262 struct ath5k_hw *ah = sc->ah;
2263
2264 ath5k_hw_set_intr(ah, 0);
2265 sc->bmisscount = 0;
2266
2267 if (sc->opmode == IEEE80211_IF_TYPE_STA) {
2268 sc->imask |= AR5K_INT_BMISS;
2269 } else if (sc->opmode == IEEE80211_IF_TYPE_IBSS) {
2270 /*
2271 * In IBSS mode we use a self-linked tx descriptor and let the
2272 * hardware send the beacons automatically. We have to load it
2273 * only once here.
2274 * We use the SWBA interrupt only to keep track of the beacon
2275 * timers in order to detect automatic TSF updates.
2276 */
2277 ath5k_beaconq_config(sc);
2278
2279 sc->imask |= AR5K_INT_SWBA;
2280
2281 if (ath5k_hw_hasveol(ah))
2282 ath5k_beacon_send(sc);
2283 }
2284 /* TODO else AP */
2285
2286 ath5k_hw_set_intr(ah, sc->imask);
2287 }
2288
2289
2290 /********************\
2291 * Interrupt handling *
2292 \********************/
2293
2294 static int
2295 ath5k_init(struct ath5k_softc *sc)
2296 {
2297 int ret;
2298
2299 mutex_lock(&sc->lock);
2300
2301 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mode %d\n", sc->opmode);
2302
2303 /*
2304 * Stop anything previously setup. This is safe
2305 * no matter this is the first time through or not.
2306 */
2307 ath5k_stop_locked(sc);
2308
2309 /*
2310 * The basic interface to setting the hardware in a good
2311 * state is ``reset''. On return the hardware is known to
2312 * be powered up and with interrupts disabled. This must
2313 * be followed by initialization of the appropriate bits
2314 * and then setup of the interrupt mask.
2315 */
2316 sc->curchan = sc->hw->conf.channel;
2317 sc->curband = &sc->sbands[sc->curchan->band];
2318 ret = ath5k_hw_reset(sc->ah, sc->opmode, sc->curchan, false);
2319 if (ret) {
2320 ATH5K_ERR(sc, "unable to reset hardware: %d\n", ret);
2321 goto done;
2322 }
2323 /*
2324 * This is needed only to setup initial state
2325 * but it's best done after a reset.
2326 */
2327 ath5k_hw_set_txpower_limit(sc->ah, 0);
2328
2329 /*
2330 * Setup the hardware after reset: the key cache
2331 * is filled as needed and the receive engine is
2332 * set going. Frame transmit is handled entirely
2333 * in the frame output path; there's nothing to do
2334 * here except setup the interrupt mask.
2335 */
2336 ret = ath5k_rx_start(sc);
2337 if (ret)
2338 goto done;
2339
2340 /*
2341 * Enable interrupts.
2342 */
2343 sc->imask = AR5K_INT_RX | AR5K_INT_TX | AR5K_INT_RXEOL |
2344 AR5K_INT_RXORN | AR5K_INT_FATAL | AR5K_INT_GLOBAL;
2345
2346 ath5k_hw_set_intr(sc->ah, sc->imask);
2347 /* Set ack to be sent at low bit-rates */
2348 ath5k_hw_set_ack_bitrate_high(sc->ah, false);
2349
2350 mod_timer(&sc->calib_tim, round_jiffies(jiffies +
2351 msecs_to_jiffies(ath5k_calinterval * 1000)));
2352
2353 ret = 0;
2354 done:
2355 mutex_unlock(&sc->lock);
2356 return ret;
2357 }
2358
2359 static int
2360 ath5k_stop_locked(struct ath5k_softc *sc)
2361 {
2362 struct ath5k_hw *ah = sc->ah;
2363
2364 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "invalid %u\n",
2365 test_bit(ATH_STAT_INVALID, sc->status));
2366
2367 /*
2368 * Shutdown the hardware and driver:
2369 * stop output from above
2370 * disable interrupts
2371 * turn off timers
2372 * turn off the radio
2373 * clear transmit machinery
2374 * clear receive machinery
2375 * drain and release tx queues
2376 * reclaim beacon resources
2377 * power down hardware
2378 *
2379 * Note that some of this work is not possible if the
2380 * hardware is gone (invalid).
2381 */
2382 ieee80211_stop_queues(sc->hw);
2383
2384 if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2385 if (test_bit(ATH_STAT_LEDSOFT, sc->status)) {
2386 del_timer_sync(&sc->led_tim);
2387 ath5k_hw_set_gpio(ah, sc->led_pin, !sc->led_on);
2388 __clear_bit(ATH_STAT_LEDBLINKING, sc->status);
2389 }
2390 ath5k_hw_set_intr(ah, 0);
2391 }
2392 ath5k_txq_cleanup(sc);
2393 if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2394 ath5k_rx_stop(sc);
2395 ath5k_hw_phy_disable(ah);
2396 } else
2397 sc->rxlink = NULL;
2398
2399 return 0;
2400 }
2401
2402 /*
2403 * Stop the device, grabbing the top-level lock to protect
2404 * against concurrent entry through ath5k_init (which can happen
2405 * if another thread does a system call and the thread doing the
2406 * stop is preempted).
2407 */
2408 static int
2409 ath5k_stop_hw(struct ath5k_softc *sc)
2410 {
2411 int ret;
2412
2413 mutex_lock(&sc->lock);
2414 ret = ath5k_stop_locked(sc);
2415 if (ret == 0 && !test_bit(ATH_STAT_INVALID, sc->status)) {
2416 /*
2417 * Set the chip in full sleep mode. Note that we are
2418 * careful to do this only when bringing the interface
2419 * completely to a stop. When the chip is in this state
2420 * it must be carefully woken up or references to
2421 * registers in the PCI clock domain may freeze the bus
2422 * (and system). This varies by chip and is mostly an
2423 * issue with newer parts that go to sleep more quickly.
2424 */
2425 if (sc->ah->ah_mac_srev >= 0x78) {
2426 /*
2427 * XXX
2428 * don't put newer MAC revisions > 7.8 to sleep because
2429 * of the above mentioned problems
2430 */
2431 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mac version > 7.8, "
2432 "not putting device to sleep\n");
2433 } else {
2434 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2435 "putting device to full sleep\n");
2436 ath5k_hw_set_power(sc->ah, AR5K_PM_FULL_SLEEP, true, 0);
2437 }
2438 }
2439 ath5k_txbuf_free(sc, sc->bbuf);
2440 mutex_unlock(&sc->lock);
2441
2442 del_timer_sync(&sc->calib_tim);
2443
2444 return ret;
2445 }
2446
2447 static irqreturn_t
2448 ath5k_intr(int irq, void *dev_id)
2449 {
2450 struct ath5k_softc *sc = dev_id;
2451 struct ath5k_hw *ah = sc->ah;
2452 enum ath5k_int status;
2453 unsigned int counter = 1000;
2454
2455 if (unlikely(test_bit(ATH_STAT_INVALID, sc->status) ||
2456 !ath5k_hw_is_intr_pending(ah)))
2457 return IRQ_NONE;
2458
2459 do {
2460 /*
2461 * Figure out the reason(s) for the interrupt. Note
2462 * that get_isr returns a pseudo-ISR that may include
2463 * bits we haven't explicitly enabled so we mask the
2464 * value to insure we only process bits we requested.
2465 */
2466 ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */
2467 ATH5K_DBG(sc, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2468 status, sc->imask);
2469 status &= sc->imask; /* discard unasked for bits */
2470 if (unlikely(status & AR5K_INT_FATAL)) {
2471 /*
2472 * Fatal errors are unrecoverable.
2473 * Typically these are caused by DMA errors.
2474 */
2475 tasklet_schedule(&sc->restq);
2476 } else if (unlikely(status & AR5K_INT_RXORN)) {
2477 tasklet_schedule(&sc->restq);
2478 } else {
2479 if (status & AR5K_INT_SWBA) {
2480 /*
2481 * Software beacon alert--time to send a beacon.
2482 * Handle beacon transmission directly; deferring
2483 * this is too slow to meet timing constraints
2484 * under load.
2485 *
2486 * In IBSS mode we use this interrupt just to
2487 * keep track of the next TBTT (target beacon
2488 * transmission time) in order to detect wether
2489 * automatic TSF updates happened.
2490 */
2491 if (sc->opmode == IEEE80211_IF_TYPE_IBSS) {
2492 /* XXX: only if VEOL suppported */
2493 u64 tsf = ath5k_hw_get_tsf64(ah);
2494 sc->nexttbtt += sc->bintval;
2495 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2496 "SWBA nexttbtt: %x hw_tu: %x "
2497 "TSF: %llx\n",
2498 sc->nexttbtt,
2499 TSF_TO_TU(tsf),
2500 (unsigned long long) tsf);
2501 } else {
2502 ath5k_beacon_send(sc);
2503 }
2504 }
2505 if (status & AR5K_INT_RXEOL) {
2506 /*
2507 * NB: the hardware should re-read the link when
2508 * RXE bit is written, but it doesn't work at
2509 * least on older hardware revs.
2510 */
2511 sc->rxlink = NULL;
2512 }
2513 if (status & AR5K_INT_TXURN) {
2514 /* bump tx trigger level */
2515 ath5k_hw_update_tx_triglevel(ah, true);
2516 }
2517 if (status & AR5K_INT_RX)
2518 tasklet_schedule(&sc->rxtq);
2519 if (status & AR5K_INT_TX)
2520 tasklet_schedule(&sc->txtq);
2521 if (status & AR5K_INT_BMISS) {
2522 }
2523 if (status & AR5K_INT_MIB) {
2524 /* TODO */
2525 }
2526 }
2527 } while (ath5k_hw_is_intr_pending(ah) && counter-- > 0);
2528
2529 if (unlikely(!counter))
2530 ATH5K_WARN(sc, "too many interrupts, giving up for now\n");
2531
2532 return IRQ_HANDLED;
2533 }
2534
2535 static void
2536 ath5k_tasklet_reset(unsigned long data)
2537 {
2538 struct ath5k_softc *sc = (void *)data;
2539
2540 ath5k_reset(sc->hw);
2541 }
2542
2543 /*
2544 * Periodically recalibrate the PHY to account
2545 * for temperature/environment changes.
2546 */
2547 static void
2548 ath5k_calibrate(unsigned long data)
2549 {
2550 struct ath5k_softc *sc = (void *)data;
2551 struct ath5k_hw *ah = sc->ah;
2552
2553 ATH5K_DBG(sc, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2554 ieee80211_frequency_to_channel(sc->curchan->center_freq),
2555 sc->curchan->hw_value);
2556
2557 if (ath5k_hw_get_rf_gain(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2558 /*
2559 * Rfgain is out of bounds, reset the chip
2560 * to load new gain values.
2561 */
2562 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "calibration, resetting\n");
2563 ath5k_reset(sc->hw);
2564 }
2565 if (ath5k_hw_phy_calibrate(ah, sc->curchan))
2566 ATH5K_ERR(sc, "calibration of channel %u failed\n",
2567 ieee80211_frequency_to_channel(
2568 sc->curchan->center_freq));
2569
2570 mod_timer(&sc->calib_tim, round_jiffies(jiffies +
2571 msecs_to_jiffies(ath5k_calinterval * 1000)));
2572 }
2573
2574
2575
2576 /***************\
2577 * LED functions *
2578 \***************/
2579
2580 static void
2581 ath5k_led_off(unsigned long data)
2582 {
2583 struct ath5k_softc *sc = (void *)data;
2584
2585 if (test_bit(ATH_STAT_LEDENDBLINK, sc->status))
2586 __clear_bit(ATH_STAT_LEDBLINKING, sc->status);
2587 else {
2588 __set_bit(ATH_STAT_LEDENDBLINK, sc->status);
2589 ath5k_hw_set_gpio(sc->ah, sc->led_pin, !sc->led_on);
2590 mod_timer(&sc->led_tim, jiffies + sc->led_off);
2591 }
2592 }
2593
2594 /*
2595 * Blink the LED according to the specified on/off times.
2596 */
2597 static void
2598 ath5k_led_blink(struct ath5k_softc *sc, unsigned int on,
2599 unsigned int off)
2600 {
2601 ATH5K_DBG(sc, ATH5K_DEBUG_LED, "on %u off %u\n", on, off);
2602 ath5k_hw_set_gpio(sc->ah, sc->led_pin, sc->led_on);
2603 __set_bit(ATH_STAT_LEDBLINKING, sc->status);
2604 __clear_bit(ATH_STAT_LEDENDBLINK, sc->status);
2605 sc->led_off = off;
2606 mod_timer(&sc->led_tim, jiffies + on);
2607 }
2608
2609 static void
2610 ath5k_led_event(struct ath5k_softc *sc, int event)
2611 {
2612 if (likely(!test_bit(ATH_STAT_LEDSOFT, sc->status)))
2613 return;
2614 if (unlikely(test_bit(ATH_STAT_LEDBLINKING, sc->status)))
2615 return; /* don't interrupt active blink */
2616 switch (event) {
2617 case ATH_LED_TX:
2618 ath5k_led_blink(sc, sc->hwmap[sc->led_txrate].ledon,
2619 sc->hwmap[sc->led_txrate].ledoff);
2620 break;
2621 case ATH_LED_RX:
2622 ath5k_led_blink(sc, sc->hwmap[sc->led_rxrate].ledon,
2623 sc->hwmap[sc->led_rxrate].ledoff);
2624 break;
2625 }
2626 }
2627
2628
2629
2630
2631 /********************\
2632 * Mac80211 functions *
2633 \********************/
2634
2635 static int
2636 ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb,
2637 struct ieee80211_tx_control *ctl)
2638 {
2639 struct ath5k_softc *sc = hw->priv;
2640 struct ath5k_buf *bf;
2641 unsigned long flags;
2642 int hdrlen;
2643 int pad;
2644
2645 ath5k_debug_dump_skb(sc, skb, "TX ", 1);
2646
2647 if (sc->opmode == IEEE80211_IF_TYPE_MNTR)
2648 ATH5K_DBG(sc, ATH5K_DEBUG_XMIT, "tx in monitor (scan?)\n");
2649
2650 /*
2651 * the hardware expects the header padded to 4 byte boundaries
2652 * if this is not the case we add the padding after the header
2653 */
2654 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2655 if (hdrlen & 3) {
2656 pad = hdrlen % 4;
2657 if (skb_headroom(skb) < pad) {
2658 ATH5K_ERR(sc, "tx hdrlen not %%4: %d not enough"
2659 " headroom to pad %d\n", hdrlen, pad);
2660 return -1;
2661 }
2662 skb_push(skb, pad);
2663 memmove(skb->data, skb->data+pad, hdrlen);
2664 }
2665
2666 sc->led_txrate = ctl->tx_rate->hw_value;
2667
2668 spin_lock_irqsave(&sc->txbuflock, flags);
2669 if (list_empty(&sc->txbuf)) {
2670 ATH5K_ERR(sc, "no further txbuf available, dropping packet\n");
2671 spin_unlock_irqrestore(&sc->txbuflock, flags);
2672 ieee80211_stop_queue(hw, ctl->queue);
2673 return -1;
2674 }
2675 bf = list_first_entry(&sc->txbuf, struct ath5k_buf, list);
2676 list_del(&bf->list);
2677 sc->txbuf_len--;
2678 if (list_empty(&sc->txbuf))
2679 ieee80211_stop_queues(hw);
2680 spin_unlock_irqrestore(&sc->txbuflock, flags);
2681
2682 bf->skb = skb;
2683
2684 if (ath5k_txbuf_setup(sc, bf, ctl)) {
2685 bf->skb = NULL;
2686 spin_lock_irqsave(&sc->txbuflock, flags);
2687 list_add_tail(&bf->list, &sc->txbuf);
2688 sc->txbuf_len++;
2689 spin_unlock_irqrestore(&sc->txbuflock, flags);
2690 dev_kfree_skb_any(skb);
2691 return 0;
2692 }
2693
2694 return 0;
2695 }
2696
2697 static int
2698 ath5k_reset(struct ieee80211_hw *hw)
2699 {
2700 struct ath5k_softc *sc = hw->priv;
2701 struct ath5k_hw *ah = sc->ah;
2702 int ret;
2703
2704 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "resetting\n");
2705
2706 ath5k_hw_set_intr(ah, 0);
2707 ath5k_txq_cleanup(sc);
2708 ath5k_rx_stop(sc);
2709
2710 ret = ath5k_hw_reset(ah, sc->opmode, sc->curchan, true);
2711 if (unlikely(ret)) {
2712 ATH5K_ERR(sc, "can't reset hardware (%d)\n", ret);
2713 goto err;
2714 }
2715 ath5k_hw_set_txpower_limit(sc->ah, 0);
2716
2717 ret = ath5k_rx_start(sc);
2718 if (unlikely(ret)) {
2719 ATH5K_ERR(sc, "can't start recv logic\n");
2720 goto err;
2721 }
2722 /*
2723 * We may be doing a reset in response to an ioctl
2724 * that changes the channel so update any state that
2725 * might change as a result.
2726 *
2727 * XXX needed?
2728 */
2729 /* ath5k_chan_change(sc, c); */
2730 ath5k_beacon_config(sc);
2731 /* intrs are started by ath5k_beacon_config */
2732
2733 ieee80211_wake_queues(hw);
2734
2735 return 0;
2736 err:
2737 return ret;
2738 }
2739
2740 static int ath5k_start(struct ieee80211_hw *hw)
2741 {
2742 return ath5k_init(hw->priv);
2743 }
2744
2745 static void ath5k_stop(struct ieee80211_hw *hw)
2746 {
2747 ath5k_stop_hw(hw->priv);
2748 }
2749
2750 static int ath5k_add_interface(struct ieee80211_hw *hw,
2751 struct ieee80211_if_init_conf *conf)
2752 {
2753 struct ath5k_softc *sc = hw->priv;
2754 int ret;
2755
2756 mutex_lock(&sc->lock);
2757 if (sc->vif) {
2758 ret = 0;
2759 goto end;
2760 }
2761
2762 sc->vif = conf->vif;
2763
2764 switch (conf->type) {
2765 case IEEE80211_IF_TYPE_STA:
2766 case IEEE80211_IF_TYPE_IBSS:
2767 case IEEE80211_IF_TYPE_MNTR:
2768 sc->opmode = conf->type;
2769 break;
2770 default:
2771 ret = -EOPNOTSUPP;
2772 goto end;
2773 }
2774 ret = 0;
2775 end:
2776 mutex_unlock(&sc->lock);
2777 return ret;
2778 }
2779
2780 static void
2781 ath5k_remove_interface(struct ieee80211_hw *hw,
2782 struct ieee80211_if_init_conf *conf)
2783 {
2784 struct ath5k_softc *sc = hw->priv;
2785
2786 mutex_lock(&sc->lock);
2787 if (sc->vif != conf->vif)
2788 goto end;
2789
2790 sc->vif = NULL;
2791 end:
2792 mutex_unlock(&sc->lock);
2793 }
2794
2795 /*
2796 * TODO: Phy disable/diversity etc
2797 */
2798 static int
2799 ath5k_config(struct ieee80211_hw *hw,
2800 struct ieee80211_conf *conf)
2801 {
2802 struct ath5k_softc *sc = hw->priv;
2803
2804 sc->bintval = conf->beacon_int;
2805 sc->power_level = conf->power_level;
2806
2807 return ath5k_chan_set(sc, conf->channel);
2808 }
2809
2810 static int
2811 ath5k_config_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2812 struct ieee80211_if_conf *conf)
2813 {
2814 struct ath5k_softc *sc = hw->priv;
2815 struct ath5k_hw *ah = sc->ah;
2816 int ret;
2817
2818 /* Set to a reasonable value. Note that this will
2819 * be set to mac80211's value at ath5k_config(). */
2820 sc->bintval = 1000;
2821 mutex_lock(&sc->lock);
2822 if (sc->vif != vif) {
2823 ret = -EIO;
2824 goto unlock;
2825 }
2826 if (conf->bssid) {
2827 /* Cache for later use during resets */
2828 memcpy(ah->ah_bssid, conf->bssid, ETH_ALEN);
2829 /* XXX: assoc id is set to 0 for now, mac80211 doesn't have
2830 * a clean way of letting us retrieve this yet. */
2831 ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
2832 }
2833 mutex_unlock(&sc->lock);
2834
2835 return ath5k_reset(hw);
2836 unlock:
2837 mutex_unlock(&sc->lock);
2838 return ret;
2839 }
2840
2841 #define SUPPORTED_FIF_FLAGS \
2842 FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | \
2843 FIF_PLCPFAIL | FIF_CONTROL | FIF_OTHER_BSS | \
2844 FIF_BCN_PRBRESP_PROMISC
2845 /*
2846 * o always accept unicast, broadcast, and multicast traffic
2847 * o multicast traffic for all BSSIDs will be enabled if mac80211
2848 * says it should be
2849 * o maintain current state of phy ofdm or phy cck error reception.
2850 * If the hardware detects any of these type of errors then
2851 * ath5k_hw_get_rx_filter() will pass to us the respective
2852 * hardware filters to be able to receive these type of frames.
2853 * o probe request frames are accepted only when operating in
2854 * hostap, adhoc, or monitor modes
2855 * o enable promiscuous mode according to the interface state
2856 * o accept beacons:
2857 * - when operating in adhoc mode so the 802.11 layer creates
2858 * node table entries for peers,
2859 * - when operating in station mode for collecting rssi data when
2860 * the station is otherwise quiet, or
2861 * - when scanning
2862 */
2863 static void ath5k_configure_filter(struct ieee80211_hw *hw,
2864 unsigned int changed_flags,
2865 unsigned int *new_flags,
2866 int mc_count, struct dev_mc_list *mclist)
2867 {
2868 struct ath5k_softc *sc = hw->priv;
2869 struct ath5k_hw *ah = sc->ah;
2870 u32 mfilt[2], val, rfilt;
2871 u8 pos;
2872 int i;
2873
2874 mfilt[0] = 0;
2875 mfilt[1] = 0;
2876
2877 /* Only deal with supported flags */
2878 changed_flags &= SUPPORTED_FIF_FLAGS;
2879 *new_flags &= SUPPORTED_FIF_FLAGS;
2880
2881 /* If HW detects any phy or radar errors, leave those filters on.
2882 * Also, always enable Unicast, Broadcasts and Multicast
2883 * XXX: move unicast, bssid broadcasts and multicast to mac80211 */
2884 rfilt = (ath5k_hw_get_rx_filter(ah) & (AR5K_RX_FILTER_PHYERR)) |
2885 (AR5K_RX_FILTER_UCAST | AR5K_RX_FILTER_BCAST |
2886 AR5K_RX_FILTER_MCAST);
2887
2888 if (changed_flags & (FIF_PROMISC_IN_BSS | FIF_OTHER_BSS)) {
2889 if (*new_flags & FIF_PROMISC_IN_BSS) {
2890 rfilt |= AR5K_RX_FILTER_PROM;
2891 __set_bit(ATH_STAT_PROMISC, sc->status);
2892 }
2893 else
2894 __clear_bit(ATH_STAT_PROMISC, sc->status);
2895 }
2896
2897 /* Note, AR5K_RX_FILTER_MCAST is already enabled */
2898 if (*new_flags & FIF_ALLMULTI) {
2899 mfilt[0] = ~0;
2900 mfilt[1] = ~0;
2901 } else {
2902 for (i = 0; i < mc_count; i++) {
2903 if (!mclist)
2904 break;
2905 /* calculate XOR of eight 6-bit values */
2906 val = LE_READ_4(mclist->dmi_addr + 0);
2907 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2908 val = LE_READ_4(mclist->dmi_addr + 3);
2909 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2910 pos &= 0x3f;
2911 mfilt[pos / 32] |= (1 << (pos % 32));
2912 /* XXX: we might be able to just do this instead,
2913 * but not sure, needs testing, if we do use this we'd
2914 * neet to inform below to not reset the mcast */
2915 /* ath5k_hw_set_mcast_filterindex(ah,
2916 * mclist->dmi_addr[5]); */
2917 mclist = mclist->next;
2918 }
2919 }
2920
2921 /* This is the best we can do */
2922 if (*new_flags & (FIF_FCSFAIL | FIF_PLCPFAIL))
2923 rfilt |= AR5K_RX_FILTER_PHYERR;
2924
2925 /* FIF_BCN_PRBRESP_PROMISC really means to enable beacons
2926 * and probes for any BSSID, this needs testing */
2927 if (*new_flags & FIF_BCN_PRBRESP_PROMISC)
2928 rfilt |= AR5K_RX_FILTER_BEACON | AR5K_RX_FILTER_PROBEREQ;
2929
2930 /* FIF_CONTROL doc says that if FIF_PROMISC_IN_BSS is not
2931 * set we should only pass on control frames for this
2932 * station. This needs testing. I believe right now this
2933 * enables *all* control frames, which is OK.. but
2934 * but we should see if we can improve on granularity */
2935 if (*new_flags & FIF_CONTROL)
2936 rfilt |= AR5K_RX_FILTER_CONTROL;
2937
2938 /* Additional settings per mode -- this is per ath5k */
2939
2940 /* XXX move these to mac80211, and add a beacon IFF flag to mac80211 */
2941
2942 if (sc->opmode == IEEE80211_IF_TYPE_MNTR)
2943 rfilt |= AR5K_RX_FILTER_CONTROL | AR5K_RX_FILTER_BEACON |
2944 AR5K_RX_FILTER_PROBEREQ | AR5K_RX_FILTER_PROM;
2945 if (sc->opmode != IEEE80211_IF_TYPE_STA)
2946 rfilt |= AR5K_RX_FILTER_PROBEREQ;
2947 if (sc->opmode != IEEE80211_IF_TYPE_AP &&
2948 test_bit(ATH_STAT_PROMISC, sc->status))
2949 rfilt |= AR5K_RX_FILTER_PROM;
2950 if (sc->opmode == IEEE80211_IF_TYPE_STA ||
2951 sc->opmode == IEEE80211_IF_TYPE_IBSS) {
2952 rfilt |= AR5K_RX_FILTER_BEACON;
2953 }
2954
2955 /* Set filters */
2956 ath5k_hw_set_rx_filter(ah,rfilt);
2957
2958 /* Set multicast bits */
2959 ath5k_hw_set_mcast_filter(ah, mfilt[0], mfilt[1]);
2960 /* Set the cached hw filter flags, this will alter actually
2961 * be set in HW */
2962 sc->filter_flags = rfilt;
2963 }
2964
2965 static int
2966 ath5k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
2967 const u8 *local_addr, const u8 *addr,
2968 struct ieee80211_key_conf *key)
2969 {
2970 struct ath5k_softc *sc = hw->priv;
2971 int ret = 0;
2972
2973 switch(key->alg) {
2974 case ALG_WEP:
2975 /* XXX: fix hardware encryption, its not working. For now
2976 * allow software encryption */
2977 /* break; */
2978 case ALG_TKIP:
2979 case ALG_CCMP:
2980 return -EOPNOTSUPP;
2981 default:
2982 WARN_ON(1);
2983 return -EINVAL;
2984 }
2985
2986 mutex_lock(&sc->lock);
2987
2988 switch (cmd) {
2989 case SET_KEY:
2990 ret = ath5k_hw_set_key(sc->ah, key->keyidx, key, addr);
2991 if (ret) {
2992 ATH5K_ERR(sc, "can't set the key\n");
2993 goto unlock;
2994 }
2995 __set_bit(key->keyidx, sc->keymap);
2996 key->hw_key_idx = key->keyidx;
2997 break;
2998 case DISABLE_KEY:
2999 ath5k_hw_reset_key(sc->ah, key->keyidx);
3000 __clear_bit(key->keyidx, sc->keymap);
3001 break;
3002 default:
3003 ret = -EINVAL;
3004 goto unlock;
3005 }
3006
3007 unlock:
3008 mutex_unlock(&sc->lock);
3009 return ret;
3010 }
3011
3012 static int
3013 ath5k_get_stats(struct ieee80211_hw *hw,
3014 struct ieee80211_low_level_stats *stats)
3015 {
3016 struct ath5k_softc *sc = hw->priv;
3017
3018 memcpy(stats, &sc->ll_stats, sizeof(sc->ll_stats));
3019
3020 return 0;
3021 }
3022
3023 static int
3024 ath5k_get_tx_stats(struct ieee80211_hw *hw,
3025 struct ieee80211_tx_queue_stats *stats)
3026 {
3027 struct ath5k_softc *sc = hw->priv;
3028
3029 memcpy(stats, &sc->tx_stats, sizeof(sc->tx_stats));
3030
3031 return 0;
3032 }
3033
3034 static u64
3035 ath5k_get_tsf(struct ieee80211_hw *hw)
3036 {
3037 struct ath5k_softc *sc = hw->priv;
3038
3039 return ath5k_hw_get_tsf64(sc->ah);
3040 }
3041
3042 static void
3043 ath5k_reset_tsf(struct ieee80211_hw *hw)
3044 {
3045 struct ath5k_softc *sc = hw->priv;
3046
3047 /*
3048 * in IBSS mode we need to update the beacon timers too.
3049 * this will also reset the TSF if we call it with 0
3050 */
3051 if (sc->opmode == IEEE80211_IF_TYPE_IBSS)
3052 ath5k_beacon_update_timers(sc, 0);
3053 else
3054 ath5k_hw_reset_tsf(sc->ah);
3055 }
3056
3057 static int
3058 ath5k_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
3059 struct ieee80211_tx_control *ctl)
3060 {
3061 struct ath5k_softc *sc = hw->priv;
3062 int ret;
3063
3064 ath5k_debug_dump_skb(sc, skb, "BC ", 1);
3065
3066 mutex_lock(&sc->lock);
3067
3068 if (sc->opmode != IEEE80211_IF_TYPE_IBSS) {
3069 ret = -EIO;
3070 goto end;
3071 }
3072
3073 ath5k_txbuf_free(sc, sc->bbuf);
3074 sc->bbuf->skb = skb;
3075 ret = ath5k_beacon_setup(sc, sc->bbuf, ctl);
3076 if (ret)
3077 sc->bbuf->skb = NULL;
3078 else
3079 ath5k_beacon_config(sc);
3080
3081 end:
3082 mutex_unlock(&sc->lock);
3083 return ret;
3084 }
3085
This page took 0.092054 seconds and 6 git commands to generate.