hwmon: (max6650) Add support for alarms
[deliverable/linux.git] / drivers / net / wireless / ath5k / pcu.c
1 /*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Matthew W. S. Bell <mentor@madwifi.org>
5 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
6 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
7 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23 /*********************************\
24 * Protocol Control Unit Functions *
25 \*********************************/
26
27 #include "ath5k.h"
28 #include "reg.h"
29 #include "debug.h"
30 #include "base.h"
31
32 /*******************\
33 * Generic functions *
34 \*******************/
35
36 /**
37 * ath5k_hw_set_opmode - Set PCU operating mode
38 *
39 * @ah: The &struct ath5k_hw
40 *
41 * Initialize PCU for the various operating modes (AP/STA etc)
42 *
43 * NOTE: ah->ah_op_mode must be set before calling this.
44 */
45 int ath5k_hw_set_opmode(struct ath5k_hw *ah)
46 {
47 u32 pcu_reg, beacon_reg, low_id, high_id;
48
49
50 /* Preserve rest settings */
51 pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
52 pcu_reg &= ~(AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_AP
53 | AR5K_STA_ID1_KEYSRCH_MODE
54 | (ah->ah_version == AR5K_AR5210 ?
55 (AR5K_STA_ID1_PWR_SV | AR5K_STA_ID1_NO_PSPOLL) : 0));
56
57 beacon_reg = 0;
58
59 ATH5K_TRACE(ah->ah_sc);
60
61 switch (ah->ah_op_mode) {
62 case NL80211_IFTYPE_ADHOC:
63 pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_KEYSRCH_MODE;
64 beacon_reg |= AR5K_BCR_ADHOC;
65 if (ah->ah_version == AR5K_AR5210)
66 pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
67 else
68 AR5K_REG_ENABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
69 break;
70
71 case NL80211_IFTYPE_AP:
72 case NL80211_IFTYPE_MESH_POINT:
73 pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_KEYSRCH_MODE;
74 beacon_reg |= AR5K_BCR_AP;
75 if (ah->ah_version == AR5K_AR5210)
76 pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
77 else
78 AR5K_REG_DISABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
79 break;
80
81 case NL80211_IFTYPE_STATION:
82 pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
83 | (ah->ah_version == AR5K_AR5210 ?
84 AR5K_STA_ID1_PWR_SV : 0);
85 case NL80211_IFTYPE_MONITOR:
86 pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
87 | (ah->ah_version == AR5K_AR5210 ?
88 AR5K_STA_ID1_NO_PSPOLL : 0);
89 break;
90
91 default:
92 return -EINVAL;
93 }
94
95 /*
96 * Set PCU registers
97 */
98 low_id = AR5K_LOW_ID(ah->ah_sta_id);
99 high_id = AR5K_HIGH_ID(ah->ah_sta_id);
100 ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
101 ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
102
103 /*
104 * Set Beacon Control Register on 5210
105 */
106 if (ah->ah_version == AR5K_AR5210)
107 ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR);
108
109 return 0;
110 }
111
112 /**
113 * ath5k_hw_update - Update mib counters (mac layer statistics)
114 *
115 * @ah: The &struct ath5k_hw
116 * @stats: The &struct ieee80211_low_level_stats we use to track
117 * statistics on the driver
118 *
119 * Reads MIB counters from PCU and updates sw statistics. Must be
120 * called after a MIB interrupt.
121 */
122 void ath5k_hw_update_mib_counters(struct ath5k_hw *ah,
123 struct ieee80211_low_level_stats *stats)
124 {
125 ATH5K_TRACE(ah->ah_sc);
126
127 /* Read-And-Clear */
128 stats->dot11ACKFailureCount += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL);
129 stats->dot11RTSFailureCount += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL);
130 stats->dot11RTSSuccessCount += ath5k_hw_reg_read(ah, AR5K_RTS_OK);
131 stats->dot11FCSErrorCount += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL);
132
133 /* XXX: Should we use this to track beacon count ?
134 * -we read it anyway to clear the register */
135 ath5k_hw_reg_read(ah, AR5K_BEACON_CNT);
136
137 /* Reset profile count registers on 5212*/
138 if (ah->ah_version == AR5K_AR5212) {
139 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_TX);
140 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RX);
141 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RXCLR);
142 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_CYCLE);
143 }
144
145 /* TODO: Handle ANI stats */
146 }
147
148 /**
149 * ath5k_hw_set_ack_bitrate - set bitrate for ACKs
150 *
151 * @ah: The &struct ath5k_hw
152 * @high: Flag to determine if we want to use high transmition rate
153 * for ACKs or not
154 *
155 * If high flag is set, we tell hw to use a set of control rates based on
156 * the current transmition rate (check out control_rates array inside reset.c).
157 * If not hw just uses the lowest rate available for the current modulation
158 * scheme being used (1Mbit for CCK and 6Mbits for OFDM).
159 */
160 void ath5k_hw_set_ack_bitrate_high(struct ath5k_hw *ah, bool high)
161 {
162 if (ah->ah_version != AR5K_AR5212)
163 return;
164 else {
165 u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB;
166 if (high)
167 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val);
168 else
169 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val);
170 }
171 }
172
173
174 /******************\
175 * ACK/CTS Timeouts *
176 \******************/
177
178 /**
179 * ath5k_hw_het_ack_timeout - Get ACK timeout from PCU in usec
180 *
181 * @ah: The &struct ath5k_hw
182 */
183 unsigned int ath5k_hw_get_ack_timeout(struct ath5k_hw *ah)
184 {
185 ATH5K_TRACE(ah->ah_sc);
186
187 return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
188 AR5K_TIME_OUT), AR5K_TIME_OUT_ACK), ah->ah_turbo);
189 }
190
191 /**
192 * ath5k_hw_set_ack_timeout - Set ACK timeout on PCU
193 *
194 * @ah: The &struct ath5k_hw
195 * @timeout: Timeout in usec
196 */
197 int ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout)
198 {
199 ATH5K_TRACE(ah->ah_sc);
200 if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK),
201 ah->ah_turbo) <= timeout)
202 return -EINVAL;
203
204 AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK,
205 ath5k_hw_htoclock(timeout, ah->ah_turbo));
206
207 return 0;
208 }
209
210 /**
211 * ath5k_hw_get_cts_timeout - Get CTS timeout from PCU in usec
212 *
213 * @ah: The &struct ath5k_hw
214 */
215 unsigned int ath5k_hw_get_cts_timeout(struct ath5k_hw *ah)
216 {
217 ATH5K_TRACE(ah->ah_sc);
218 return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
219 AR5K_TIME_OUT), AR5K_TIME_OUT_CTS), ah->ah_turbo);
220 }
221
222 /**
223 * ath5k_hw_set_cts_timeout - Set CTS timeout on PCU
224 *
225 * @ah: The &struct ath5k_hw
226 * @timeout: Timeout in usec
227 */
228 int ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout)
229 {
230 ATH5K_TRACE(ah->ah_sc);
231 if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS),
232 ah->ah_turbo) <= timeout)
233 return -EINVAL;
234
235 AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS,
236 ath5k_hw_htoclock(timeout, ah->ah_turbo));
237
238 return 0;
239 }
240
241
242 /****************\
243 * BSSID handling *
244 \****************/
245
246 /**
247 * ath5k_hw_get_lladdr - Get station id
248 *
249 * @ah: The &struct ath5k_hw
250 * @mac: The card's mac address
251 *
252 * Initialize ah->ah_sta_id using the mac address provided
253 * (just a memcpy).
254 *
255 * TODO: Remove it once we merge ath5k_softc and ath5k_hw
256 */
257 void ath5k_hw_get_lladdr(struct ath5k_hw *ah, u8 *mac)
258 {
259 ATH5K_TRACE(ah->ah_sc);
260 memcpy(mac, ah->ah_sta_id, ETH_ALEN);
261 }
262
263 /**
264 * ath5k_hw_set_lladdr - Set station id
265 *
266 * @ah: The &struct ath5k_hw
267 * @mac: The card's mac address
268 *
269 * Set station id on hw using the provided mac address
270 */
271 int ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac)
272 {
273 u32 low_id, high_id;
274 u32 pcu_reg;
275
276 ATH5K_TRACE(ah->ah_sc);
277 /* Set new station ID */
278 memcpy(ah->ah_sta_id, mac, ETH_ALEN);
279
280 pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
281
282 low_id = AR5K_LOW_ID(mac);
283 high_id = AR5K_HIGH_ID(mac);
284
285 ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
286 ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
287
288 return 0;
289 }
290
291 /**
292 * ath5k_hw_set_associd - Set BSSID for association
293 *
294 * @ah: The &struct ath5k_hw
295 * @bssid: BSSID
296 * @assoc_id: Assoc id
297 *
298 * Sets the BSSID which trigers the "SME Join" operation
299 */
300 void ath5k_hw_set_associd(struct ath5k_hw *ah, const u8 *bssid, u16 assoc_id)
301 {
302 u32 low_id, high_id;
303 u16 tim_offset = 0;
304
305 /*
306 * Set simple BSSID mask on 5212
307 */
308 if (ah->ah_version == AR5K_AR5212) {
309 ath5k_hw_reg_write(ah, AR5K_LOW_ID(ah->ah_bssid_mask),
310 AR5K_BSS_IDM0);
311 ath5k_hw_reg_write(ah, AR5K_HIGH_ID(ah->ah_bssid_mask),
312 AR5K_BSS_IDM1);
313 }
314
315 /*
316 * Set BSSID which triggers the "SME Join" operation
317 */
318 low_id = AR5K_LOW_ID(bssid);
319 high_id = AR5K_HIGH_ID(bssid);
320 ath5k_hw_reg_write(ah, low_id, AR5K_BSS_ID0);
321 ath5k_hw_reg_write(ah, high_id | ((assoc_id & 0x3fff) <<
322 AR5K_BSS_ID1_AID_S), AR5K_BSS_ID1);
323
324 if (assoc_id == 0) {
325 ath5k_hw_disable_pspoll(ah);
326 return;
327 }
328
329 AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM,
330 tim_offset ? tim_offset + 4 : 0);
331
332 ath5k_hw_enable_pspoll(ah, NULL, 0);
333 }
334
335 /**
336 * ath5k_hw_set_bssid_mask - filter out bssids we listen
337 *
338 * @ah: the &struct ath5k_hw
339 * @mask: the bssid_mask, a u8 array of size ETH_ALEN
340 *
341 * BSSID masking is a method used by AR5212 and newer hardware to inform PCU
342 * which bits of the interface's MAC address should be looked at when trying
343 * to decide which packets to ACK. In station mode and AP mode with a single
344 * BSS every bit matters since we lock to only one BSS. In AP mode with
345 * multiple BSSes (virtual interfaces) not every bit matters because hw must
346 * accept frames for all BSSes and so we tweak some bits of our mac address
347 * in order to have multiple BSSes.
348 *
349 * NOTE: This is a simple filter and does *not* filter out all
350 * relevant frames. Some frames that are not for us might get ACKed from us
351 * by PCU because they just match the mask.
352 *
353 * When handling multiple BSSes you can get the BSSID mask by computing the
354 * set of ~ ( MAC XOR BSSID ) for all bssids we handle.
355 *
356 * When you do this you are essentially computing the common bits of all your
357 * BSSes. Later it is assumed the harware will "and" (&) the BSSID mask with
358 * the MAC address to obtain the relevant bits and compare the result with
359 * (frame's BSSID & mask) to see if they match.
360 */
361 /*
362 * Simple example: on your card you have have two BSSes you have created with
363 * BSSID-01 and BSSID-02. Lets assume BSSID-01 will not use the MAC address.
364 * There is another BSSID-03 but you are not part of it. For simplicity's sake,
365 * assuming only 4 bits for a mac address and for BSSIDs you can then have:
366 *
367 * \
368 * MAC: 0001 |
369 * BSSID-01: 0100 | --> Belongs to us
370 * BSSID-02: 1001 |
371 * /
372 * -------------------
373 * BSSID-03: 0110 | --> External
374 * -------------------
375 *
376 * Our bssid_mask would then be:
377 *
378 * On loop iteration for BSSID-01:
379 * ~(0001 ^ 0100) -> ~(0101)
380 * -> 1010
381 * bssid_mask = 1010
382 *
383 * On loop iteration for BSSID-02:
384 * bssid_mask &= ~(0001 ^ 1001)
385 * bssid_mask = (1010) & ~(0001 ^ 1001)
386 * bssid_mask = (1010) & ~(1001)
387 * bssid_mask = (1010) & (0110)
388 * bssid_mask = 0010
389 *
390 * A bssid_mask of 0010 means "only pay attention to the second least
391 * significant bit". This is because its the only bit common
392 * amongst the MAC and all BSSIDs we support. To findout what the real
393 * common bit is we can simply "&" the bssid_mask now with any BSSID we have
394 * or our MAC address (we assume the hardware uses the MAC address).
395 *
396 * Now, suppose there's an incoming frame for BSSID-03:
397 *
398 * IFRAME-01: 0110
399 *
400 * An easy eye-inspeciton of this already should tell you that this frame
401 * will not pass our check. This is beacuse the bssid_mask tells the
402 * hardware to only look at the second least significant bit and the
403 * common bit amongst the MAC and BSSIDs is 0, this frame has the 2nd LSB
404 * as 1, which does not match 0.
405 *
406 * So with IFRAME-01 we *assume* the hardware will do:
407 *
408 * allow = (IFRAME-01 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
409 * --> allow = (0110 & 0010) == (0010 & 0001) ? 1 : 0;
410 * --> allow = (0010) == 0000 ? 1 : 0;
411 * --> allow = 0
412 *
413 * Lets now test a frame that should work:
414 *
415 * IFRAME-02: 0001 (we should allow)
416 *
417 * allow = (0001 & 1010) == 1010
418 *
419 * allow = (IFRAME-02 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
420 * --> allow = (0001 & 0010) == (0010 & 0001) ? 1 :0;
421 * --> allow = (0010) == (0010)
422 * --> allow = 1
423 *
424 * Other examples:
425 *
426 * IFRAME-03: 0100 --> allowed
427 * IFRAME-04: 1001 --> allowed
428 * IFRAME-05: 1101 --> allowed but its not for us!!!
429 *
430 */
431 int ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask)
432 {
433 u32 low_id, high_id;
434 ATH5K_TRACE(ah->ah_sc);
435
436 /* Cache bssid mask so that we can restore it
437 * on reset */
438 memcpy(ah->ah_bssid_mask, mask, ETH_ALEN);
439 if (ah->ah_version == AR5K_AR5212) {
440 low_id = AR5K_LOW_ID(mask);
441 high_id = AR5K_HIGH_ID(mask);
442
443 ath5k_hw_reg_write(ah, low_id, AR5K_BSS_IDM0);
444 ath5k_hw_reg_write(ah, high_id, AR5K_BSS_IDM1);
445
446 return 0;
447 }
448
449 return -EIO;
450 }
451
452
453 /************\
454 * RX Control *
455 \************/
456
457 /**
458 * ath5k_hw_start_rx_pcu - Start RX engine
459 *
460 * @ah: The &struct ath5k_hw
461 *
462 * Starts RX engine on PCU so that hw can process RXed frames
463 * (ACK etc).
464 *
465 * NOTE: RX DMA should be already enabled using ath5k_hw_start_rx_dma
466 * TODO: Init ANI here
467 */
468 void ath5k_hw_start_rx_pcu(struct ath5k_hw *ah)
469 {
470 ATH5K_TRACE(ah->ah_sc);
471 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
472 }
473
474 /**
475 * at5k_hw_stop_rx_pcu - Stop RX engine
476 *
477 * @ah: The &struct ath5k_hw
478 *
479 * Stops RX engine on PCU
480 *
481 * TODO: Detach ANI here
482 */
483 void ath5k_hw_stop_rx_pcu(struct ath5k_hw *ah)
484 {
485 ATH5K_TRACE(ah->ah_sc);
486 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
487 }
488
489 /*
490 * Set multicast filter
491 */
492 void ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1)
493 {
494 ATH5K_TRACE(ah->ah_sc);
495 /* Set the multicat filter */
496 ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0);
497 ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1);
498 }
499
500 /*
501 * Set multicast filter by index
502 */
503 int ath5k_hw_set_mcast_filter_idx(struct ath5k_hw *ah, u32 index)
504 {
505
506 ATH5K_TRACE(ah->ah_sc);
507 if (index >= 64)
508 return -EINVAL;
509 else if (index >= 32)
510 AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER1,
511 (1 << (index - 32)));
512 else
513 AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
514
515 return 0;
516 }
517
518 /*
519 * Clear Multicast filter by index
520 */
521 int ath5k_hw_clear_mcast_filter_idx(struct ath5k_hw *ah, u32 index)
522 {
523
524 ATH5K_TRACE(ah->ah_sc);
525 if (index >= 64)
526 return -EINVAL;
527 else if (index >= 32)
528 AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER1,
529 (1 << (index - 32)));
530 else
531 AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
532
533 return 0;
534 }
535
536 /**
537 * ath5k_hw_get_rx_filter - Get current rx filter
538 *
539 * @ah: The &struct ath5k_hw
540 *
541 * Returns the RX filter by reading rx filter and
542 * phy error filter registers. RX filter is used
543 * to set the allowed frame types that PCU will accept
544 * and pass to the driver. For a list of frame types
545 * check out reg.h.
546 */
547 u32 ath5k_hw_get_rx_filter(struct ath5k_hw *ah)
548 {
549 u32 data, filter = 0;
550
551 ATH5K_TRACE(ah->ah_sc);
552 filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER);
553
554 /*Radar detection for 5212*/
555 if (ah->ah_version == AR5K_AR5212) {
556 data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL);
557
558 if (data & AR5K_PHY_ERR_FIL_RADAR)
559 filter |= AR5K_RX_FILTER_RADARERR;
560 if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK))
561 filter |= AR5K_RX_FILTER_PHYERR;
562 }
563
564 return filter;
565 }
566
567 /**
568 * ath5k_hw_set_rx_filter - Set rx filter
569 *
570 * @ah: The &struct ath5k_hw
571 * @filter: RX filter mask (see reg.h)
572 *
573 * Sets RX filter register and also handles PHY error filter
574 * register on 5212 and newer chips so that we have proper PHY
575 * error reporting.
576 */
577 void ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter)
578 {
579 u32 data = 0;
580
581 ATH5K_TRACE(ah->ah_sc);
582
583 /* Set PHY error filter register on 5212*/
584 if (ah->ah_version == AR5K_AR5212) {
585 if (filter & AR5K_RX_FILTER_RADARERR)
586 data |= AR5K_PHY_ERR_FIL_RADAR;
587 if (filter & AR5K_RX_FILTER_PHYERR)
588 data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK;
589 }
590
591 /*
592 * The AR5210 uses promiscous mode to detect radar activity
593 */
594 if (ah->ah_version == AR5K_AR5210 &&
595 (filter & AR5K_RX_FILTER_RADARERR)) {
596 filter &= ~AR5K_RX_FILTER_RADARERR;
597 filter |= AR5K_RX_FILTER_PROM;
598 }
599
600 /*Zero length DMA (phy error reporting) */
601 if (data)
602 AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
603 else
604 AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
605
606 /*Write RX Filter register*/
607 ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER);
608
609 /*Write PHY error filter register on 5212*/
610 if (ah->ah_version == AR5K_AR5212)
611 ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL);
612
613 }
614
615
616 /****************\
617 * Beacon control *
618 \****************/
619
620 /**
621 * ath5k_hw_get_tsf32 - Get a 32bit TSF
622 *
623 * @ah: The &struct ath5k_hw
624 *
625 * Returns lower 32 bits of current TSF
626 */
627 u32 ath5k_hw_get_tsf32(struct ath5k_hw *ah)
628 {
629 ATH5K_TRACE(ah->ah_sc);
630 return ath5k_hw_reg_read(ah, AR5K_TSF_L32);
631 }
632
633 /**
634 * ath5k_hw_get_tsf64 - Get the full 64bit TSF
635 *
636 * @ah: The &struct ath5k_hw
637 *
638 * Returns the current TSF
639 */
640 u64 ath5k_hw_get_tsf64(struct ath5k_hw *ah)
641 {
642 u64 tsf = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
643 ATH5K_TRACE(ah->ah_sc);
644
645 return ath5k_hw_reg_read(ah, AR5K_TSF_L32) | (tsf << 32);
646 }
647
648 /**
649 * ath5k_hw_set_tsf64 - Set a new 64bit TSF
650 *
651 * @ah: The &struct ath5k_hw
652 * @tsf64: The new 64bit TSF
653 *
654 * Sets the new TSF
655 */
656 void ath5k_hw_set_tsf64(struct ath5k_hw *ah, u64 tsf64)
657 {
658 ATH5K_TRACE(ah->ah_sc);
659
660 ath5k_hw_reg_write(ah, tsf64 & 0xffffffff, AR5K_TSF_L32);
661 ath5k_hw_reg_write(ah, (tsf64 >> 32) & 0xffffffff, AR5K_TSF_U32);
662 }
663
664 /**
665 * ath5k_hw_reset_tsf - Force a TSF reset
666 *
667 * @ah: The &struct ath5k_hw
668 *
669 * Forces a TSF reset on PCU
670 */
671 void ath5k_hw_reset_tsf(struct ath5k_hw *ah)
672 {
673 u32 val;
674
675 ATH5K_TRACE(ah->ah_sc);
676
677 val = ath5k_hw_reg_read(ah, AR5K_BEACON) | AR5K_BEACON_RESET_TSF;
678
679 /*
680 * Each write to the RESET_TSF bit toggles a hardware internal
681 * signal to reset TSF, but if left high it will cause a TSF reset
682 * on the next chip reset as well. Thus we always write the value
683 * twice to clear the signal.
684 */
685 ath5k_hw_reg_write(ah, val, AR5K_BEACON);
686 ath5k_hw_reg_write(ah, val, AR5K_BEACON);
687 }
688
689 /*
690 * Initialize beacon timers
691 */
692 void ath5k_hw_init_beacon(struct ath5k_hw *ah, u32 next_beacon, u32 interval)
693 {
694 u32 timer1, timer2, timer3;
695
696 ATH5K_TRACE(ah->ah_sc);
697 /*
698 * Set the additional timers by mode
699 */
700 switch (ah->ah_op_mode) {
701 case NL80211_IFTYPE_MONITOR:
702 case NL80211_IFTYPE_STATION:
703 /* In STA mode timer1 is used as next wakeup
704 * timer and timer2 as next CFP duration start
705 * timer. Both in 1/8TUs. */
706 /* TODO: PCF handling */
707 if (ah->ah_version == AR5K_AR5210) {
708 timer1 = 0xffffffff;
709 timer2 = 0xffffffff;
710 } else {
711 timer1 = 0x0000ffff;
712 timer2 = 0x0007ffff;
713 }
714 /* Mark associated AP as PCF incapable for now */
715 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PCF);
716 break;
717 case NL80211_IFTYPE_ADHOC:
718 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_ADHOC_BCN_ATIM);
719 default:
720 /* On non-STA modes timer1 is used as next DMA
721 * beacon alert (DBA) timer and timer2 as next
722 * software beacon alert. Both in 1/8TUs. */
723 timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) << 3;
724 timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) << 3;
725 break;
726 }
727
728 /* Timer3 marks the end of our ATIM window
729 * a zero length window is not allowed because
730 * we 'll get no beacons */
731 timer3 = next_beacon + (ah->ah_atim_window ? ah->ah_atim_window : 1);
732
733 /*
734 * Set the beacon register and enable all timers.
735 */
736 /* When in AP mode zero timer0 to start TSF */
737 if (ah->ah_op_mode == NL80211_IFTYPE_AP)
738 ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
739 else
740 ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0);
741 ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1);
742 ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2);
743 ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3);
744
745 /* Force a TSF reset if requested and enable beacons */
746 if (interval & AR5K_BEACON_RESET_TSF)
747 ath5k_hw_reset_tsf(ah);
748
749 ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD |
750 AR5K_BEACON_ENABLE),
751 AR5K_BEACON);
752
753 /* Flush any pending BMISS interrupts on ISR by
754 * performing a clear-on-write operation on PISR
755 * register for the BMISS bit (writing a bit on
756 * ISR togles a reset for that bit and leaves
757 * the rest bits intact) */
758 if (ah->ah_version == AR5K_AR5210)
759 ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_ISR);
760 else
761 ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_PISR);
762
763 /* TODO: Set enchanced sleep registers on AR5212
764 * based on vif->bss_conf params, until then
765 * disable power save reporting.*/
766 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PWR_SV);
767
768 }
769
770 #if 0
771 /*
772 * Set beacon timers
773 */
774 int ath5k_hw_set_beacon_timers(struct ath5k_hw *ah,
775 const struct ath5k_beacon_state *state)
776 {
777 u32 cfp_period, next_cfp, dtim, interval, next_beacon;
778
779 /*
780 * TODO: should be changed through *state
781 * review struct ath5k_beacon_state struct
782 *
783 * XXX: These are used for cfp period bellow, are they
784 * ok ? Is it O.K. for tsf here to be 0 or should we use
785 * get_tsf ?
786 */
787 u32 dtim_count = 0; /* XXX */
788 u32 cfp_count = 0; /* XXX */
789 u32 tsf = 0; /* XXX */
790
791 ATH5K_TRACE(ah->ah_sc);
792 /* Return on an invalid beacon state */
793 if (state->bs_interval < 1)
794 return -EINVAL;
795
796 interval = state->bs_interval;
797 dtim = state->bs_dtim_period;
798
799 /*
800 * PCF support?
801 */
802 if (state->bs_cfp_period > 0) {
803 /*
804 * Enable PCF mode and set the CFP
805 * (Contention Free Period) and timer registers
806 */
807 cfp_period = state->bs_cfp_period * state->bs_dtim_period *
808 state->bs_interval;
809 next_cfp = (cfp_count * state->bs_dtim_period + dtim_count) *
810 state->bs_interval;
811
812 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1,
813 AR5K_STA_ID1_DEFAULT_ANTENNA |
814 AR5K_STA_ID1_PCF);
815 ath5k_hw_reg_write(ah, cfp_period, AR5K_CFP_PERIOD);
816 ath5k_hw_reg_write(ah, state->bs_cfp_max_duration,
817 AR5K_CFP_DUR);
818 ath5k_hw_reg_write(ah, (tsf + (next_cfp == 0 ? cfp_period :
819 next_cfp)) << 3, AR5K_TIMER2);
820 } else {
821 /* Disable PCF mode */
822 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
823 AR5K_STA_ID1_DEFAULT_ANTENNA |
824 AR5K_STA_ID1_PCF);
825 }
826
827 /*
828 * Enable the beacon timer register
829 */
830 ath5k_hw_reg_write(ah, state->bs_next_beacon, AR5K_TIMER0);
831
832 /*
833 * Start the beacon timers
834 */
835 ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_BEACON) &
836 ~(AR5K_BEACON_PERIOD | AR5K_BEACON_TIM)) |
837 AR5K_REG_SM(state->bs_tim_offset ? state->bs_tim_offset + 4 : 0,
838 AR5K_BEACON_TIM) | AR5K_REG_SM(state->bs_interval,
839 AR5K_BEACON_PERIOD), AR5K_BEACON);
840
841 /*
842 * Write new beacon miss threshold, if it appears to be valid
843 * XXX: Figure out right values for min <= bs_bmiss_threshold <= max
844 * and return if its not in range. We can test this by reading value and
845 * setting value to a largest value and seeing which values register.
846 */
847
848 AR5K_REG_WRITE_BITS(ah, AR5K_RSSI_THR, AR5K_RSSI_THR_BMISS,
849 state->bs_bmiss_threshold);
850
851 /*
852 * Set sleep control register
853 * XXX: Didn't find this in 5210 code but since this register
854 * exists also in ar5k's 5210 headers i leave it as common code.
855 */
856 AR5K_REG_WRITE_BITS(ah, AR5K_SLEEP_CTL, AR5K_SLEEP_CTL_SLDUR,
857 (state->bs_sleep_duration - 3) << 3);
858
859 /*
860 * Set enhanced sleep registers on 5212
861 */
862 if (ah->ah_version == AR5K_AR5212) {
863 if (state->bs_sleep_duration > state->bs_interval &&
864 roundup(state->bs_sleep_duration, interval) ==
865 state->bs_sleep_duration)
866 interval = state->bs_sleep_duration;
867
868 if (state->bs_sleep_duration > dtim && (dtim == 0 ||
869 roundup(state->bs_sleep_duration, dtim) ==
870 state->bs_sleep_duration))
871 dtim = state->bs_sleep_duration;
872
873 if (interval > dtim)
874 return -EINVAL;
875
876 next_beacon = interval == dtim ? state->bs_next_dtim :
877 state->bs_next_beacon;
878
879 ath5k_hw_reg_write(ah,
880 AR5K_REG_SM((state->bs_next_dtim - 3) << 3,
881 AR5K_SLEEP0_NEXT_DTIM) |
882 AR5K_REG_SM(10, AR5K_SLEEP0_CABTO) |
883 AR5K_SLEEP0_ENH_SLEEP_EN |
884 AR5K_SLEEP0_ASSUME_DTIM, AR5K_SLEEP0);
885
886 ath5k_hw_reg_write(ah, AR5K_REG_SM((next_beacon - 3) << 3,
887 AR5K_SLEEP1_NEXT_TIM) |
888 AR5K_REG_SM(10, AR5K_SLEEP1_BEACON_TO), AR5K_SLEEP1);
889
890 ath5k_hw_reg_write(ah,
891 AR5K_REG_SM(interval, AR5K_SLEEP2_TIM_PER) |
892 AR5K_REG_SM(dtim, AR5K_SLEEP2_DTIM_PER), AR5K_SLEEP2);
893 }
894
895 return 0;
896 }
897
898 /*
899 * Reset beacon timers
900 */
901 void ath5k_hw_reset_beacon(struct ath5k_hw *ah)
902 {
903 ATH5K_TRACE(ah->ah_sc);
904 /*
905 * Disable beacon timer
906 */
907 ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
908
909 /*
910 * Disable some beacon register values
911 */
912 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
913 AR5K_STA_ID1_DEFAULT_ANTENNA | AR5K_STA_ID1_PCF);
914 ath5k_hw_reg_write(ah, AR5K_BEACON_PERIOD, AR5K_BEACON);
915 }
916
917 /*
918 * Wait for beacon queue to finish
919 */
920 int ath5k_hw_beaconq_finish(struct ath5k_hw *ah, unsigned long phys_addr)
921 {
922 unsigned int i;
923 int ret;
924
925 ATH5K_TRACE(ah->ah_sc);
926
927 /* 5210 doesn't have QCU*/
928 if (ah->ah_version == AR5K_AR5210) {
929 /*
930 * Wait for beaconn queue to finish by checking
931 * Control Register and Beacon Status Register.
932 */
933 for (i = AR5K_TUNE_BEACON_INTERVAL / 2; i > 0; i--) {
934 if (!(ath5k_hw_reg_read(ah, AR5K_BSR) & AR5K_BSR_TXQ1F)
935 ||
936 !(ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_BSR_TXQ1F))
937 break;
938 udelay(10);
939 }
940
941 /* Timeout... */
942 if (i <= 0) {
943 /*
944 * Re-schedule the beacon queue
945 */
946 ath5k_hw_reg_write(ah, phys_addr, AR5K_NOQCU_TXDP1);
947 ath5k_hw_reg_write(ah, AR5K_BCR_TQ1V | AR5K_BCR_BDMAE,
948 AR5K_BCR);
949
950 return -EIO;
951 }
952 ret = 0;
953 } else {
954 /*5211/5212*/
955 ret = ath5k_hw_register_timeout(ah,
956 AR5K_QUEUE_STATUS(AR5K_TX_QUEUE_ID_BEACON),
957 AR5K_QCU_STS_FRMPENDCNT, 0, false);
958
959 if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, AR5K_TX_QUEUE_ID_BEACON))
960 return -EIO;
961 }
962
963 return ret;
964 }
965 #endif
966
967
968 /*********************\
969 * Key table functions *
970 \*********************/
971
972 /*
973 * Reset a key entry on the table
974 */
975 int ath5k_hw_reset_key(struct ath5k_hw *ah, u16 entry)
976 {
977 unsigned int i, type;
978 u16 micentry = entry + AR5K_KEYTABLE_MIC_OFFSET;
979
980 ATH5K_TRACE(ah->ah_sc);
981 AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
982
983 type = ath5k_hw_reg_read(ah, AR5K_KEYTABLE_TYPE(entry));
984
985 for (i = 0; i < AR5K_KEYCACHE_SIZE; i++)
986 ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_OFF(entry, i));
987
988 /* Reset associated MIC entry if TKIP
989 * is enabled located at offset (entry + 64) */
990 if (type == AR5K_KEYTABLE_TYPE_TKIP) {
991 AR5K_ASSERT_ENTRY(micentry, AR5K_KEYTABLE_SIZE);
992 for (i = 0; i < AR5K_KEYCACHE_SIZE / 2 ; i++)
993 ath5k_hw_reg_write(ah, 0,
994 AR5K_KEYTABLE_OFF(micentry, i));
995 }
996
997 /*
998 * Set NULL encryption on AR5212+
999 *
1000 * Note: AR5K_KEYTABLE_TYPE -> AR5K_KEYTABLE_OFF(entry, 5)
1001 * AR5K_KEYTABLE_TYPE_NULL -> 0x00000007
1002 *
1003 * Note2: Windows driver (ndiswrapper) sets this to
1004 * 0x00000714 instead of 0x00000007
1005 */
1006 if (ah->ah_version > AR5K_AR5211) {
1007 ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
1008 AR5K_KEYTABLE_TYPE(entry));
1009
1010 if (type == AR5K_KEYTABLE_TYPE_TKIP) {
1011 ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
1012 AR5K_KEYTABLE_TYPE(micentry));
1013 }
1014 }
1015
1016 return 0;
1017 }
1018
1019 /*
1020 * Check if a table entry is valid
1021 */
1022 int ath5k_hw_is_key_valid(struct ath5k_hw *ah, u16 entry)
1023 {
1024 ATH5K_TRACE(ah->ah_sc);
1025 AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
1026
1027 /* Check the validation flag at the end of the entry */
1028 return ath5k_hw_reg_read(ah, AR5K_KEYTABLE_MAC1(entry)) &
1029 AR5K_KEYTABLE_VALID;
1030 }
1031
1032 static
1033 int ath5k_keycache_type(const struct ieee80211_key_conf *key)
1034 {
1035 switch (key->alg) {
1036 case ALG_TKIP:
1037 return AR5K_KEYTABLE_TYPE_TKIP;
1038 case ALG_CCMP:
1039 return AR5K_KEYTABLE_TYPE_CCM;
1040 case ALG_WEP:
1041 if (key->keylen == LEN_WEP40)
1042 return AR5K_KEYTABLE_TYPE_40;
1043 else if (key->keylen == LEN_WEP104)
1044 return AR5K_KEYTABLE_TYPE_104;
1045 return -EINVAL;
1046 default:
1047 return -EINVAL;
1048 }
1049 return -EINVAL;
1050 }
1051
1052 /*
1053 * Set a key entry on the table
1054 */
1055 int ath5k_hw_set_key(struct ath5k_hw *ah, u16 entry,
1056 const struct ieee80211_key_conf *key, const u8 *mac)
1057 {
1058 unsigned int i;
1059 int keylen;
1060 __le32 key_v[5] = {};
1061 __le32 key0 = 0, key1 = 0;
1062 __le32 *rxmic, *txmic;
1063 int keytype;
1064 u16 micentry = entry + AR5K_KEYTABLE_MIC_OFFSET;
1065 bool is_tkip;
1066 const u8 *key_ptr;
1067
1068 ATH5K_TRACE(ah->ah_sc);
1069
1070 is_tkip = (key->alg == ALG_TKIP);
1071
1072 /*
1073 * key->keylen comes in from mac80211 in bytes.
1074 * TKIP is 128 bit + 128 bit mic
1075 */
1076 keylen = (is_tkip) ? (128 / 8) : key->keylen;
1077
1078 if (entry > AR5K_KEYTABLE_SIZE ||
1079 (is_tkip && micentry > AR5K_KEYTABLE_SIZE))
1080 return -EOPNOTSUPP;
1081
1082 if (unlikely(keylen > 16))
1083 return -EOPNOTSUPP;
1084
1085 keytype = ath5k_keycache_type(key);
1086 if (keytype < 0)
1087 return keytype;
1088
1089 /*
1090 * each key block is 6 bytes wide, written as pairs of
1091 * alternating 32 and 16 bit le values.
1092 */
1093 key_ptr = key->key;
1094 for (i = 0; keylen >= 6; keylen -= 6) {
1095 memcpy(&key_v[i], key_ptr, 6);
1096 i += 2;
1097 key_ptr += 6;
1098 }
1099 if (keylen)
1100 memcpy(&key_v[i], key_ptr, keylen);
1101
1102 /* intentionally corrupt key until mic is installed */
1103 if (is_tkip) {
1104 key0 = key_v[0] = ~key_v[0];
1105 key1 = key_v[1] = ~key_v[1];
1106 }
1107
1108 for (i = 0; i < ARRAY_SIZE(key_v); i++)
1109 ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]),
1110 AR5K_KEYTABLE_OFF(entry, i));
1111
1112 ath5k_hw_reg_write(ah, keytype, AR5K_KEYTABLE_TYPE(entry));
1113
1114 if (is_tkip) {
1115 /* Install rx/tx MIC */
1116 rxmic = (__le32 *) &key->key[16];
1117 txmic = (__le32 *) &key->key[24];
1118
1119 if (ah->ah_combined_mic) {
1120 key_v[0] = rxmic[0];
1121 key_v[1] = cpu_to_le32(le32_to_cpu(txmic[0]) >> 16);
1122 key_v[2] = rxmic[1];
1123 key_v[3] = cpu_to_le32(le32_to_cpu(txmic[0]) & 0xffff);
1124 key_v[4] = txmic[1];
1125 } else {
1126 key_v[0] = rxmic[0];
1127 key_v[1] = 0;
1128 key_v[2] = rxmic[1];
1129 key_v[3] = 0;
1130 key_v[4] = 0;
1131 }
1132 for (i = 0; i < ARRAY_SIZE(key_v); i++)
1133 ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]),
1134 AR5K_KEYTABLE_OFF(micentry, i));
1135
1136 ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
1137 AR5K_KEYTABLE_TYPE(micentry));
1138 ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_MAC0(micentry));
1139 ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_MAC1(micentry));
1140
1141 /* restore first 2 words of key */
1142 ath5k_hw_reg_write(ah, le32_to_cpu(~key0),
1143 AR5K_KEYTABLE_OFF(entry, 0));
1144 ath5k_hw_reg_write(ah, le32_to_cpu(~key1),
1145 AR5K_KEYTABLE_OFF(entry, 1));
1146 }
1147
1148 return ath5k_hw_set_key_lladdr(ah, entry, mac);
1149 }
1150
1151 int ath5k_hw_set_key_lladdr(struct ath5k_hw *ah, u16 entry, const u8 *mac)
1152 {
1153 u32 low_id, high_id;
1154
1155 ATH5K_TRACE(ah->ah_sc);
1156 /* Invalid entry (key table overflow) */
1157 AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
1158
1159 /* MAC may be NULL if it's a broadcast key. In this case no need to
1160 * to compute AR5K_LOW_ID and AR5K_HIGH_ID as we already know it. */
1161 if (!mac) {
1162 low_id = 0xffffffff;
1163 high_id = 0xffff | AR5K_KEYTABLE_VALID;
1164 } else {
1165 low_id = AR5K_LOW_ID(mac);
1166 high_id = AR5K_HIGH_ID(mac) | AR5K_KEYTABLE_VALID;
1167 }
1168
1169 ath5k_hw_reg_write(ah, low_id, AR5K_KEYTABLE_MAC0(entry));
1170 ath5k_hw_reg_write(ah, high_id, AR5K_KEYTABLE_MAC1(entry));
1171
1172 return 0;
1173 }
1174
This page took 0.069428 seconds and 5 git commands to generate.