ath5k: fix interpolation with equal power levels
[deliverable/linux.git] / drivers / net / wireless / ath5k / phy.c
1 /*
2 * PHY functions
3 *
4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23 #define _ATH5K_PHY
24
25 #include <linux/delay.h>
26
27 #include "ath5k.h"
28 #include "reg.h"
29 #include "base.h"
30 #include "rfbuffer.h"
31 #include "rfgain.h"
32
33 /*
34 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
35 */
36 static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
37 const struct ath5k_rf_reg *rf_regs,
38 u32 val, u8 reg_id, bool set)
39 {
40 const struct ath5k_rf_reg *rfreg = NULL;
41 u8 offset, bank, num_bits, col, position;
42 u16 entry;
43 u32 mask, data, last_bit, bits_shifted, first_bit;
44 u32 *rfb;
45 s32 bits_left;
46 int i;
47
48 data = 0;
49 rfb = ah->ah_rf_banks;
50
51 for (i = 0; i < ah->ah_rf_regs_count; i++) {
52 if (rf_regs[i].index == reg_id) {
53 rfreg = &rf_regs[i];
54 break;
55 }
56 }
57
58 if (rfb == NULL || rfreg == NULL) {
59 ATH5K_PRINTF("Rf register not found!\n");
60 /* should not happen */
61 return 0;
62 }
63
64 bank = rfreg->bank;
65 num_bits = rfreg->field.len;
66 first_bit = rfreg->field.pos;
67 col = rfreg->field.col;
68
69 /* first_bit is an offset from bank's
70 * start. Since we have all banks on
71 * the same array, we use this offset
72 * to mark each bank's start */
73 offset = ah->ah_offset[bank];
74
75 /* Boundary check */
76 if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
77 ATH5K_PRINTF("invalid values at offset %u\n", offset);
78 return 0;
79 }
80
81 entry = ((first_bit - 1) / 8) + offset;
82 position = (first_bit - 1) % 8;
83
84 if (set)
85 data = ath5k_hw_bitswap(val, num_bits);
86
87 for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
88 position = 0, entry++) {
89
90 last_bit = (position + bits_left > 8) ? 8 :
91 position + bits_left;
92
93 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
94 (col * 8);
95
96 if (set) {
97 rfb[entry] &= ~mask;
98 rfb[entry] |= ((data << position) << (col * 8)) & mask;
99 data >>= (8 - position);
100 } else {
101 data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
102 << bits_shifted;
103 bits_shifted += last_bit - position;
104 }
105
106 bits_left -= 8 - position;
107 }
108
109 data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
110
111 return data;
112 }
113
114 /**********************\
115 * RF Gain optimization *
116 \**********************/
117
118 /*
119 * This code is used to optimize rf gain on different environments
120 * (temprature mostly) based on feedback from a power detector.
121 *
122 * It's only used on RF5111 and RF5112, later RF chips seem to have
123 * auto adjustment on hw -notice they have a much smaller BANK 7 and
124 * no gain optimization ladder-.
125 *
126 * For more infos check out this patent doc
127 * http://www.freepatentsonline.com/7400691.html
128 *
129 * This paper describes power drops as seen on the receiver due to
130 * probe packets
131 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
132 * %20of%20Power%20Control.pdf
133 *
134 * And this is the MadWiFi bug entry related to the above
135 * http://madwifi-project.org/ticket/1659
136 * with various measurements and diagrams
137 *
138 * TODO: Deal with power drops due to probes by setting an apropriate
139 * tx power on the probe packets ! Make this part of the calibration process.
140 */
141
142 /* Initialize ah_gain durring attach */
143 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
144 {
145 /* Initialize the gain optimization values */
146 switch (ah->ah_radio) {
147 case AR5K_RF5111:
148 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
149 ah->ah_gain.g_low = 20;
150 ah->ah_gain.g_high = 35;
151 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
152 break;
153 case AR5K_RF5112:
154 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
155 ah->ah_gain.g_low = 20;
156 ah->ah_gain.g_high = 85;
157 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
158 break;
159 default:
160 return -EINVAL;
161 }
162
163 return 0;
164 }
165
166 /* Schedule a gain probe check on the next transmited packet.
167 * That means our next packet is going to be sent with lower
168 * tx power and a Peak to Average Power Detector (PAPD) will try
169 * to measure the gain.
170 *
171 * TODO: Use propper tx power setting for the probe packet so
172 * that we don't observe a serious power drop on the receiver
173 *
174 * XXX: How about forcing a tx packet (bypassing PCU arbitrator etc)
175 * just after we enable the probe so that we don't mess with
176 * standard traffic ? Maybe it's time to use sw interrupts and
177 * a probe tasklet !!!
178 */
179 static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
180 {
181
182 /* Skip if gain calibration is inactive or
183 * we already handle a probe request */
184 if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
185 return;
186
187 /* Send the packet with 2dB below max power as
188 * patent doc suggest */
189 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_max_pwr - 4,
190 AR5K_PHY_PAPD_PROBE_TXPOWER) |
191 AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
192
193 ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
194
195 }
196
197 /* Calculate gain_F measurement correction
198 * based on the current step for RF5112 rev. 2 */
199 static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
200 {
201 u32 mix, step;
202 u32 *rf;
203 const struct ath5k_gain_opt *go;
204 const struct ath5k_gain_opt_step *g_step;
205 const struct ath5k_rf_reg *rf_regs;
206
207 /* Only RF5112 Rev. 2 supports it */
208 if ((ah->ah_radio != AR5K_RF5112) ||
209 (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
210 return 0;
211
212 go = &rfgain_opt_5112;
213 rf_regs = rf_regs_5112a;
214 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
215
216 g_step = &go->go_step[ah->ah_gain.g_step_idx];
217
218 if (ah->ah_rf_banks == NULL)
219 return 0;
220
221 rf = ah->ah_rf_banks;
222 ah->ah_gain.g_f_corr = 0;
223
224 /* No VGA (Variable Gain Amplifier) override, skip */
225 if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
226 return 0;
227
228 /* Mix gain stepping */
229 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
230
231 /* Mix gain override */
232 mix = g_step->gos_param[0];
233
234 switch (mix) {
235 case 3:
236 ah->ah_gain.g_f_corr = step * 2;
237 break;
238 case 2:
239 ah->ah_gain.g_f_corr = (step - 5) * 2;
240 break;
241 case 1:
242 ah->ah_gain.g_f_corr = step;
243 break;
244 default:
245 ah->ah_gain.g_f_corr = 0;
246 break;
247 }
248
249 return ah->ah_gain.g_f_corr;
250 }
251
252 /* Check if current gain_F measurement is in the range of our
253 * power detector windows. If we get a measurement outside range
254 * we know it's not accurate (detectors can't measure anything outside
255 * their detection window) so we must ignore it */
256 static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
257 {
258 const struct ath5k_rf_reg *rf_regs;
259 u32 step, mix_ovr, level[4];
260 u32 *rf;
261
262 if (ah->ah_rf_banks == NULL)
263 return false;
264
265 rf = ah->ah_rf_banks;
266
267 if (ah->ah_radio == AR5K_RF5111) {
268
269 rf_regs = rf_regs_5111;
270 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
271
272 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
273 false);
274
275 level[0] = 0;
276 level[1] = (step == 63) ? 50 : step + 4;
277 level[2] = (step != 63) ? 64 : level[0];
278 level[3] = level[2] + 50 ;
279
280 ah->ah_gain.g_high = level[3] -
281 (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
282 ah->ah_gain.g_low = level[0] +
283 (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
284 } else {
285
286 rf_regs = rf_regs_5112;
287 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
288
289 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
290 false);
291
292 level[0] = level[2] = 0;
293
294 if (mix_ovr == 1) {
295 level[1] = level[3] = 83;
296 } else {
297 level[1] = level[3] = 107;
298 ah->ah_gain.g_high = 55;
299 }
300 }
301
302 return (ah->ah_gain.g_current >= level[0] &&
303 ah->ah_gain.g_current <= level[1]) ||
304 (ah->ah_gain.g_current >= level[2] &&
305 ah->ah_gain.g_current <= level[3]);
306 }
307
308 /* Perform gain_F adjustment by choosing the right set
309 * of parameters from rf gain optimization ladder */
310 static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
311 {
312 const struct ath5k_gain_opt *go;
313 const struct ath5k_gain_opt_step *g_step;
314 int ret = 0;
315
316 switch (ah->ah_radio) {
317 case AR5K_RF5111:
318 go = &rfgain_opt_5111;
319 break;
320 case AR5K_RF5112:
321 go = &rfgain_opt_5112;
322 break;
323 default:
324 return 0;
325 }
326
327 g_step = &go->go_step[ah->ah_gain.g_step_idx];
328
329 if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
330
331 /* Reached maximum */
332 if (ah->ah_gain.g_step_idx == 0)
333 return -1;
334
335 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
336 ah->ah_gain.g_target >= ah->ah_gain.g_high &&
337 ah->ah_gain.g_step_idx > 0;
338 g_step = &go->go_step[ah->ah_gain.g_step_idx])
339 ah->ah_gain.g_target -= 2 *
340 (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
341 g_step->gos_gain);
342
343 ret = 1;
344 goto done;
345 }
346
347 if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
348
349 /* Reached minimum */
350 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
351 return -2;
352
353 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
354 ah->ah_gain.g_target <= ah->ah_gain.g_low &&
355 ah->ah_gain.g_step_idx < go->go_steps_count-1;
356 g_step = &go->go_step[ah->ah_gain.g_step_idx])
357 ah->ah_gain.g_target -= 2 *
358 (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
359 g_step->gos_gain);
360
361 ret = 2;
362 goto done;
363 }
364
365 done:
366 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
367 "ret %d, gain step %u, current gain %u, target gain %u\n",
368 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
369 ah->ah_gain.g_target);
370
371 return ret;
372 }
373
374 /* Main callback for thermal rf gain calibration engine
375 * Check for a new gain reading and schedule an adjustment
376 * if needed.
377 *
378 * TODO: Use sw interrupt to schedule reset if gain_F needs
379 * adjustment */
380 enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
381 {
382 u32 data, type;
383 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
384
385 ATH5K_TRACE(ah->ah_sc);
386
387 if (ah->ah_rf_banks == NULL ||
388 ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
389 return AR5K_RFGAIN_INACTIVE;
390
391 /* No check requested, either engine is inactive
392 * or an adjustment is already requested */
393 if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
394 goto done;
395
396 /* Read the PAPD (Peak to Average Power Detector)
397 * register */
398 data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
399
400 /* No probe is scheduled, read gain_F measurement */
401 if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
402 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
403 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
404
405 /* If tx packet is CCK correct the gain_F measurement
406 * by cck ofdm gain delta */
407 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
408 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
409 ah->ah_gain.g_current +=
410 ee->ee_cck_ofdm_gain_delta;
411 else
412 ah->ah_gain.g_current +=
413 AR5K_GAIN_CCK_PROBE_CORR;
414 }
415
416 /* Further correct gain_F measurement for
417 * RF5112A radios */
418 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
419 ath5k_hw_rf_gainf_corr(ah);
420 ah->ah_gain.g_current =
421 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
422 (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
423 0;
424 }
425
426 /* Check if measurement is ok and if we need
427 * to adjust gain, schedule a gain adjustment,
428 * else switch back to the acive state */
429 if (ath5k_hw_rf_check_gainf_readback(ah) &&
430 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
431 ath5k_hw_rf_gainf_adjust(ah)) {
432 ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
433 } else {
434 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
435 }
436 }
437
438 done:
439 return ah->ah_gain.g_state;
440 }
441
442 /* Write initial rf gain table to set the RF sensitivity
443 * this one works on all RF chips and has nothing to do
444 * with gain_F calibration */
445 int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
446 {
447 const struct ath5k_ini_rfgain *ath5k_rfg;
448 unsigned int i, size;
449
450 switch (ah->ah_radio) {
451 case AR5K_RF5111:
452 ath5k_rfg = rfgain_5111;
453 size = ARRAY_SIZE(rfgain_5111);
454 break;
455 case AR5K_RF5112:
456 ath5k_rfg = rfgain_5112;
457 size = ARRAY_SIZE(rfgain_5112);
458 break;
459 case AR5K_RF2413:
460 ath5k_rfg = rfgain_2413;
461 size = ARRAY_SIZE(rfgain_2413);
462 break;
463 case AR5K_RF2316:
464 ath5k_rfg = rfgain_2316;
465 size = ARRAY_SIZE(rfgain_2316);
466 break;
467 case AR5K_RF5413:
468 ath5k_rfg = rfgain_5413;
469 size = ARRAY_SIZE(rfgain_5413);
470 break;
471 case AR5K_RF2317:
472 case AR5K_RF2425:
473 ath5k_rfg = rfgain_2425;
474 size = ARRAY_SIZE(rfgain_2425);
475 break;
476 default:
477 return -EINVAL;
478 }
479
480 switch (freq) {
481 case AR5K_INI_RFGAIN_2GHZ:
482 case AR5K_INI_RFGAIN_5GHZ:
483 break;
484 default:
485 return -EINVAL;
486 }
487
488 for (i = 0; i < size; i++) {
489 AR5K_REG_WAIT(i);
490 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
491 (u32)ath5k_rfg[i].rfg_register);
492 }
493
494 return 0;
495 }
496
497
498
499 /********************\
500 * RF Registers setup *
501 \********************/
502
503
504 /*
505 * Setup RF registers by writing rf buffer on hw
506 */
507 int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
508 unsigned int mode)
509 {
510 const struct ath5k_rf_reg *rf_regs;
511 const struct ath5k_ini_rfbuffer *ini_rfb;
512 const struct ath5k_gain_opt *go = NULL;
513 const struct ath5k_gain_opt_step *g_step;
514 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
515 u8 ee_mode = 0;
516 u32 *rfb;
517 int i, obdb = -1, bank = -1;
518
519 switch (ah->ah_radio) {
520 case AR5K_RF5111:
521 rf_regs = rf_regs_5111;
522 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
523 ini_rfb = rfb_5111;
524 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
525 go = &rfgain_opt_5111;
526 break;
527 case AR5K_RF5112:
528 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
529 rf_regs = rf_regs_5112a;
530 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
531 ini_rfb = rfb_5112a;
532 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
533 } else {
534 rf_regs = rf_regs_5112;
535 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
536 ini_rfb = rfb_5112;
537 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
538 }
539 go = &rfgain_opt_5112;
540 break;
541 case AR5K_RF2413:
542 rf_regs = rf_regs_2413;
543 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
544 ini_rfb = rfb_2413;
545 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
546 break;
547 case AR5K_RF2316:
548 rf_regs = rf_regs_2316;
549 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
550 ini_rfb = rfb_2316;
551 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
552 break;
553 case AR5K_RF5413:
554 rf_regs = rf_regs_5413;
555 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
556 ini_rfb = rfb_5413;
557 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
558 break;
559 case AR5K_RF2317:
560 rf_regs = rf_regs_2425;
561 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
562 ini_rfb = rfb_2317;
563 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
564 break;
565 case AR5K_RF2425:
566 rf_regs = rf_regs_2425;
567 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
568 if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
569 ini_rfb = rfb_2425;
570 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
571 } else {
572 ini_rfb = rfb_2417;
573 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
574 }
575 break;
576 default:
577 return -EINVAL;
578 }
579
580 /* If it's the first time we set rf buffer, allocate
581 * ah->ah_rf_banks based on ah->ah_rf_banks_size
582 * we set above */
583 if (ah->ah_rf_banks == NULL) {
584 ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
585 GFP_KERNEL);
586 if (ah->ah_rf_banks == NULL) {
587 ATH5K_ERR(ah->ah_sc, "out of memory\n");
588 return -ENOMEM;
589 }
590 }
591
592 /* Copy values to modify them */
593 rfb = ah->ah_rf_banks;
594
595 for (i = 0; i < ah->ah_rf_banks_size; i++) {
596 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
597 ATH5K_ERR(ah->ah_sc, "invalid bank\n");
598 return -EINVAL;
599 }
600
601 /* Bank changed, write down the offset */
602 if (bank != ini_rfb[i].rfb_bank) {
603 bank = ini_rfb[i].rfb_bank;
604 ah->ah_offset[bank] = i;
605 }
606
607 rfb[i] = ini_rfb[i].rfb_mode_data[mode];
608 }
609
610 /* Set Output and Driver bias current (OB/DB) */
611 if (channel->hw_value & CHANNEL_2GHZ) {
612
613 if (channel->hw_value & CHANNEL_CCK)
614 ee_mode = AR5K_EEPROM_MODE_11B;
615 else
616 ee_mode = AR5K_EEPROM_MODE_11G;
617
618 /* For RF511X/RF211X combination we
619 * use b_OB and b_DB parameters stored
620 * in eeprom on ee->ee_ob[ee_mode][0]
621 *
622 * For all other chips we use OB/DB for 2Ghz
623 * stored in the b/g modal section just like
624 * 802.11a on ee->ee_ob[ee_mode][1] */
625 if ((ah->ah_radio == AR5K_RF5111) ||
626 (ah->ah_radio == AR5K_RF5112))
627 obdb = 0;
628 else
629 obdb = 1;
630
631 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
632 AR5K_RF_OB_2GHZ, true);
633
634 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
635 AR5K_RF_DB_2GHZ, true);
636
637 /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
638 } else if ((channel->hw_value & CHANNEL_5GHZ) ||
639 (ah->ah_radio == AR5K_RF5111)) {
640
641 /* For 11a, Turbo and XR we need to choose
642 * OB/DB based on frequency range */
643 ee_mode = AR5K_EEPROM_MODE_11A;
644 obdb = channel->center_freq >= 5725 ? 3 :
645 (channel->center_freq >= 5500 ? 2 :
646 (channel->center_freq >= 5260 ? 1 :
647 (channel->center_freq > 4000 ? 0 : -1)));
648
649 if (obdb < 0)
650 return -EINVAL;
651
652 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
653 AR5K_RF_OB_5GHZ, true);
654
655 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
656 AR5K_RF_DB_5GHZ, true);
657 }
658
659 g_step = &go->go_step[ah->ah_gain.g_step_idx];
660
661 /* Bank Modifications (chip-specific) */
662 if (ah->ah_radio == AR5K_RF5111) {
663
664 /* Set gain_F settings according to current step */
665 if (channel->hw_value & CHANNEL_OFDM) {
666
667 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
668 AR5K_PHY_FRAME_CTL_TX_CLIP,
669 g_step->gos_param[0]);
670
671 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
672 AR5K_RF_PWD_90, true);
673
674 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
675 AR5K_RF_PWD_84, true);
676
677 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
678 AR5K_RF_RFGAIN_SEL, true);
679
680 /* We programmed gain_F parameters, switch back
681 * to active state */
682 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
683
684 }
685
686 /* Bank 6/7 setup */
687
688 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
689 AR5K_RF_PWD_XPD, true);
690
691 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
692 AR5K_RF_XPD_GAIN, true);
693
694 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
695 AR5K_RF_GAIN_I, true);
696
697 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
698 AR5K_RF_PLO_SEL, true);
699
700 /* TODO: Half/quarter channel support */
701 }
702
703 if (ah->ah_radio == AR5K_RF5112) {
704
705 /* Set gain_F settings according to current step */
706 if (channel->hw_value & CHANNEL_OFDM) {
707
708 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
709 AR5K_RF_MIXGAIN_OVR, true);
710
711 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
712 AR5K_RF_PWD_138, true);
713
714 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
715 AR5K_RF_PWD_137, true);
716
717 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
718 AR5K_RF_PWD_136, true);
719
720 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
721 AR5K_RF_PWD_132, true);
722
723 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
724 AR5K_RF_PWD_131, true);
725
726 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
727 AR5K_RF_PWD_130, true);
728
729 /* We programmed gain_F parameters, switch back
730 * to active state */
731 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
732 }
733
734 /* Bank 6/7 setup */
735
736 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
737 AR5K_RF_XPD_SEL, true);
738
739 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
740 /* Rev. 1 supports only one xpd */
741 ath5k_hw_rfb_op(ah, rf_regs,
742 ee->ee_x_gain[ee_mode],
743 AR5K_RF_XPD_GAIN, true);
744
745 } else {
746 /* TODO: Set high and low gain bits */
747 ath5k_hw_rfb_op(ah, rf_regs,
748 ee->ee_x_gain[ee_mode],
749 AR5K_RF_PD_GAIN_LO, true);
750 ath5k_hw_rfb_op(ah, rf_regs,
751 ee->ee_x_gain[ee_mode],
752 AR5K_RF_PD_GAIN_HI, true);
753
754 /* Lower synth voltage on Rev 2 */
755 ath5k_hw_rfb_op(ah, rf_regs, 2,
756 AR5K_RF_HIGH_VC_CP, true);
757
758 ath5k_hw_rfb_op(ah, rf_regs, 2,
759 AR5K_RF_MID_VC_CP, true);
760
761 ath5k_hw_rfb_op(ah, rf_regs, 2,
762 AR5K_RF_LOW_VC_CP, true);
763
764 ath5k_hw_rfb_op(ah, rf_regs, 2,
765 AR5K_RF_PUSH_UP, true);
766
767 /* Decrease power consumption on 5213+ BaseBand */
768 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
769 ath5k_hw_rfb_op(ah, rf_regs, 1,
770 AR5K_RF_PAD2GND, true);
771
772 ath5k_hw_rfb_op(ah, rf_regs, 1,
773 AR5K_RF_XB2_LVL, true);
774
775 ath5k_hw_rfb_op(ah, rf_regs, 1,
776 AR5K_RF_XB5_LVL, true);
777
778 ath5k_hw_rfb_op(ah, rf_regs, 1,
779 AR5K_RF_PWD_167, true);
780
781 ath5k_hw_rfb_op(ah, rf_regs, 1,
782 AR5K_RF_PWD_166, true);
783 }
784 }
785
786 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
787 AR5K_RF_GAIN_I, true);
788
789 /* TODO: Half/quarter channel support */
790
791 }
792
793 if (ah->ah_radio == AR5K_RF5413 &&
794 channel->hw_value & CHANNEL_2GHZ) {
795
796 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
797 true);
798
799 /* Set optimum value for early revisions (on pci-e chips) */
800 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
801 ah->ah_mac_srev < AR5K_SREV_AR5413)
802 ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
803 AR5K_RF_PWD_ICLOBUF_2G, true);
804
805 }
806
807 /* Write RF banks on hw */
808 for (i = 0; i < ah->ah_rf_banks_size; i++) {
809 AR5K_REG_WAIT(i);
810 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
811 }
812
813 return 0;
814 }
815
816
817 /**************************\
818 PHY/RF channel functions
819 \**************************/
820
821 /*
822 * Check if a channel is supported
823 */
824 bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
825 {
826 /* Check if the channel is in our supported range */
827 if (flags & CHANNEL_2GHZ) {
828 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
829 (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
830 return true;
831 } else if (flags & CHANNEL_5GHZ)
832 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
833 (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
834 return true;
835
836 return false;
837 }
838
839 /*
840 * Convertion needed for RF5110
841 */
842 static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
843 {
844 u32 athchan;
845
846 /*
847 * Convert IEEE channel/MHz to an internal channel value used
848 * by the AR5210 chipset. This has not been verified with
849 * newer chipsets like the AR5212A who have a completely
850 * different RF/PHY part.
851 */
852 athchan = (ath5k_hw_bitswap(
853 (ieee80211_frequency_to_channel(
854 channel->center_freq) - 24) / 2, 5)
855 << 1) | (1 << 6) | 0x1;
856 return athchan;
857 }
858
859 /*
860 * Set channel on RF5110
861 */
862 static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
863 struct ieee80211_channel *channel)
864 {
865 u32 data;
866
867 /*
868 * Set the channel and wait
869 */
870 data = ath5k_hw_rf5110_chan2athchan(channel);
871 ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
872 ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
873 mdelay(1);
874
875 return 0;
876 }
877
878 /*
879 * Convertion needed for 5111
880 */
881 static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
882 struct ath5k_athchan_2ghz *athchan)
883 {
884 int channel;
885
886 /* Cast this value to catch negative channel numbers (>= -19) */
887 channel = (int)ieee;
888
889 /*
890 * Map 2GHz IEEE channel to 5GHz Atheros channel
891 */
892 if (channel <= 13) {
893 athchan->a2_athchan = 115 + channel;
894 athchan->a2_flags = 0x46;
895 } else if (channel == 14) {
896 athchan->a2_athchan = 124;
897 athchan->a2_flags = 0x44;
898 } else if (channel >= 15 && channel <= 26) {
899 athchan->a2_athchan = ((channel - 14) * 4) + 132;
900 athchan->a2_flags = 0x46;
901 } else
902 return -EINVAL;
903
904 return 0;
905 }
906
907 /*
908 * Set channel on 5111
909 */
910 static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
911 struct ieee80211_channel *channel)
912 {
913 struct ath5k_athchan_2ghz ath5k_channel_2ghz;
914 unsigned int ath5k_channel =
915 ieee80211_frequency_to_channel(channel->center_freq);
916 u32 data0, data1, clock;
917 int ret;
918
919 /*
920 * Set the channel on the RF5111 radio
921 */
922 data0 = data1 = 0;
923
924 if (channel->hw_value & CHANNEL_2GHZ) {
925 /* Map 2GHz channel to 5GHz Atheros channel ID */
926 ret = ath5k_hw_rf5111_chan2athchan(
927 ieee80211_frequency_to_channel(channel->center_freq),
928 &ath5k_channel_2ghz);
929 if (ret)
930 return ret;
931
932 ath5k_channel = ath5k_channel_2ghz.a2_athchan;
933 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
934 << 5) | (1 << 4);
935 }
936
937 if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
938 clock = 1;
939 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
940 (clock << 1) | (1 << 10) | 1;
941 } else {
942 clock = 0;
943 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
944 << 2) | (clock << 1) | (1 << 10) | 1;
945 }
946
947 ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
948 AR5K_RF_BUFFER);
949 ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
950 AR5K_RF_BUFFER_CONTROL_3);
951
952 return 0;
953 }
954
955 /*
956 * Set channel on 5112 and newer
957 */
958 static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
959 struct ieee80211_channel *channel)
960 {
961 u32 data, data0, data1, data2;
962 u16 c;
963
964 data = data0 = data1 = data2 = 0;
965 c = channel->center_freq;
966
967 if (c < 4800) {
968 if (!((c - 2224) % 5)) {
969 data0 = ((2 * (c - 704)) - 3040) / 10;
970 data1 = 1;
971 } else if (!((c - 2192) % 5)) {
972 data0 = ((2 * (c - 672)) - 3040) / 10;
973 data1 = 0;
974 } else
975 return -EINVAL;
976
977 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
978 } else if ((c - (c % 5)) != 2 || c > 5435) {
979 if (!(c % 20) && c >= 5120) {
980 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
981 data2 = ath5k_hw_bitswap(3, 2);
982 } else if (!(c % 10)) {
983 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
984 data2 = ath5k_hw_bitswap(2, 2);
985 } else if (!(c % 5)) {
986 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
987 data2 = ath5k_hw_bitswap(1, 2);
988 } else
989 return -EINVAL;
990 } else {
991 data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
992 data2 = ath5k_hw_bitswap(0, 2);
993 }
994
995 data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
996
997 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
998 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
999
1000 return 0;
1001 }
1002
1003 /*
1004 * Set the channel on the RF2425
1005 */
1006 static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1007 struct ieee80211_channel *channel)
1008 {
1009 u32 data, data0, data2;
1010 u16 c;
1011
1012 data = data0 = data2 = 0;
1013 c = channel->center_freq;
1014
1015 if (c < 4800) {
1016 data0 = ath5k_hw_bitswap((c - 2272), 8);
1017 data2 = 0;
1018 /* ? 5GHz ? */
1019 } else if ((c - (c % 5)) != 2 || c > 5435) {
1020 if (!(c % 20) && c < 5120)
1021 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1022 else if (!(c % 10))
1023 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1024 else if (!(c % 5))
1025 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1026 else
1027 return -EINVAL;
1028 data2 = ath5k_hw_bitswap(1, 2);
1029 } else {
1030 data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
1031 data2 = ath5k_hw_bitswap(0, 2);
1032 }
1033
1034 data = (data0 << 4) | data2 << 2 | 0x1001;
1035
1036 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1037 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1038
1039 return 0;
1040 }
1041
1042 /*
1043 * Set a channel on the radio chip
1044 */
1045 int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
1046 {
1047 int ret;
1048 /*
1049 * Check bounds supported by the PHY (we don't care about regultory
1050 * restrictions at this point). Note: hw_value already has the band
1051 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1052 * of the band by that */
1053 if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1054 ATH5K_ERR(ah->ah_sc,
1055 "channel frequency (%u MHz) out of supported "
1056 "band range\n",
1057 channel->center_freq);
1058 return -EINVAL;
1059 }
1060
1061 /*
1062 * Set the channel and wait
1063 */
1064 switch (ah->ah_radio) {
1065 case AR5K_RF5110:
1066 ret = ath5k_hw_rf5110_channel(ah, channel);
1067 break;
1068 case AR5K_RF5111:
1069 ret = ath5k_hw_rf5111_channel(ah, channel);
1070 break;
1071 case AR5K_RF2425:
1072 ret = ath5k_hw_rf2425_channel(ah, channel);
1073 break;
1074 default:
1075 ret = ath5k_hw_rf5112_channel(ah, channel);
1076 break;
1077 }
1078
1079 if (ret)
1080 return ret;
1081
1082 /* Set JAPAN setting for channel 14 */
1083 if (channel->center_freq == 2484) {
1084 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1085 AR5K_PHY_CCKTXCTL_JAPAN);
1086 } else {
1087 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1088 AR5K_PHY_CCKTXCTL_WORLD);
1089 }
1090
1091 ah->ah_current_channel.center_freq = channel->center_freq;
1092 ah->ah_current_channel.hw_value = channel->hw_value;
1093 ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
1094
1095 return 0;
1096 }
1097
1098 /*****************\
1099 PHY calibration
1100 \*****************/
1101
1102 /**
1103 * ath5k_hw_noise_floor_calibration - perform PHY noise floor calibration
1104 *
1105 * @ah: struct ath5k_hw pointer we are operating on
1106 * @freq: the channel frequency, just used for error logging
1107 *
1108 * This function performs a noise floor calibration of the PHY and waits for
1109 * it to complete. Then the noise floor value is compared to some maximum
1110 * noise floor we consider valid.
1111 *
1112 * Note that this is different from what the madwifi HAL does: it reads the
1113 * noise floor and afterwards initiates the calibration. Since the noise floor
1114 * calibration can take some time to finish, depending on the current channel
1115 * use, that avoids the occasional timeout warnings we are seeing now.
1116 *
1117 * See the following link for an Atheros patent on noise floor calibration:
1118 * http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL \
1119 * &p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7245893.PN.&OS=PN/7
1120 *
1121 * XXX: Since during noise floor calibration antennas are detached according to
1122 * the patent, we should stop tx queues here.
1123 */
1124 int
1125 ath5k_hw_noise_floor_calibration(struct ath5k_hw *ah, short freq)
1126 {
1127 int ret;
1128 unsigned int i;
1129 s32 noise_floor;
1130
1131 /*
1132 * Enable noise floor calibration
1133 */
1134 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1135 AR5K_PHY_AGCCTL_NF);
1136
1137 ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1138 AR5K_PHY_AGCCTL_NF, 0, false);
1139 if (ret) {
1140 ATH5K_ERR(ah->ah_sc,
1141 "noise floor calibration timeout (%uMHz)\n", freq);
1142 return -EAGAIN;
1143 }
1144
1145 /* Wait until the noise floor is calibrated and read the value */
1146 for (i = 20; i > 0; i--) {
1147 mdelay(1);
1148 noise_floor = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1149 noise_floor = AR5K_PHY_NF_RVAL(noise_floor);
1150 if (noise_floor & AR5K_PHY_NF_ACTIVE) {
1151 noise_floor = AR5K_PHY_NF_AVAL(noise_floor);
1152
1153 if (noise_floor <= AR5K_TUNE_NOISE_FLOOR)
1154 break;
1155 }
1156 }
1157
1158 ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1159 "noise floor %d\n", noise_floor);
1160
1161 if (noise_floor > AR5K_TUNE_NOISE_FLOOR) {
1162 ATH5K_ERR(ah->ah_sc,
1163 "noise floor calibration failed (%uMHz)\n", freq);
1164 return -EAGAIN;
1165 }
1166
1167 ah->ah_noise_floor = noise_floor;
1168
1169 return 0;
1170 }
1171
1172 /*
1173 * Perform a PHY calibration on RF5110
1174 * -Fix BPSK/QAM Constellation (I/Q correction)
1175 * -Calculate Noise Floor
1176 */
1177 static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1178 struct ieee80211_channel *channel)
1179 {
1180 u32 phy_sig, phy_agc, phy_sat, beacon;
1181 int ret;
1182
1183 /*
1184 * Disable beacons and RX/TX queues, wait
1185 */
1186 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1187 AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1188 beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1189 ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1190
1191 mdelay(2);
1192
1193 /*
1194 * Set the channel (with AGC turned off)
1195 */
1196 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1197 udelay(10);
1198 ret = ath5k_hw_channel(ah, channel);
1199
1200 /*
1201 * Activate PHY and wait
1202 */
1203 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1204 mdelay(1);
1205
1206 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1207
1208 if (ret)
1209 return ret;
1210
1211 /*
1212 * Calibrate the radio chip
1213 */
1214
1215 /* Remember normal state */
1216 phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1217 phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1218 phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1219
1220 /* Update radio registers */
1221 ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1222 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1223
1224 ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1225 AR5K_PHY_AGCCOARSE_LO)) |
1226 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1227 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1228
1229 ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1230 AR5K_PHY_ADCSAT_THR)) |
1231 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1232 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1233
1234 udelay(20);
1235
1236 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1237 udelay(10);
1238 ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1239 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1240
1241 mdelay(1);
1242
1243 /*
1244 * Enable calibration and wait until completion
1245 */
1246 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1247
1248 ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1249 AR5K_PHY_AGCCTL_CAL, 0, false);
1250
1251 /* Reset to normal state */
1252 ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1253 ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1254 ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1255
1256 if (ret) {
1257 ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1258 channel->center_freq);
1259 return ret;
1260 }
1261
1262 ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1263
1264 /*
1265 * Re-enable RX/TX and beacons
1266 */
1267 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1268 AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1269 ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1270
1271 return 0;
1272 }
1273
1274 /*
1275 * Perform a PHY calibration on RF5111/5112 and newer chips
1276 */
1277 static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
1278 struct ieee80211_channel *channel)
1279 {
1280 u32 i_pwr, q_pwr;
1281 s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1282 int i;
1283 ATH5K_TRACE(ah->ah_sc);
1284
1285 if (!ah->ah_calibration ||
1286 ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1287 goto done;
1288
1289 /* Calibration has finished, get the results and re-run */
1290 for (i = 0; i <= 10; i++) {
1291 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1292 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1293 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1294 }
1295
1296 i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1297 q_coffd = q_pwr >> 7;
1298
1299 /* No correction */
1300 if (i_coffd == 0 || q_coffd == 0)
1301 goto done;
1302
1303 i_coff = ((-iq_corr) / i_coffd) & 0x3f;
1304
1305 /* Boundary check */
1306 if (i_coff > 31)
1307 i_coff = 31;
1308 if (i_coff < -32)
1309 i_coff = -32;
1310
1311 q_coff = (((s32)i_pwr / q_coffd) - 128) & 0x1f;
1312
1313 /* Boundary check */
1314 if (q_coff > 15)
1315 q_coff = 15;
1316 if (q_coff < -16)
1317 q_coff = -16;
1318
1319 /* Commit new I/Q value */
1320 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE |
1321 ((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S));
1322
1323 /* Re-enable calibration -if we don't we'll commit
1324 * the same values again and again */
1325 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1326 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1327 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1328
1329 done:
1330
1331 /* TODO: Separate noise floor calibration from I/Q calibration
1332 * since noise floor calibration interrupts rx path while I/Q
1333 * calibration doesn't. We don't need to run noise floor calibration
1334 * as often as I/Q calibration.*/
1335 ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1336
1337 /* Initiate a gain_F calibration */
1338 ath5k_hw_request_rfgain_probe(ah);
1339
1340 return 0;
1341 }
1342
1343 /*
1344 * Perform a PHY calibration
1345 */
1346 int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1347 struct ieee80211_channel *channel)
1348 {
1349 int ret;
1350
1351 if (ah->ah_radio == AR5K_RF5110)
1352 ret = ath5k_hw_rf5110_calibrate(ah, channel);
1353 else
1354 ret = ath5k_hw_rf511x_calibrate(ah, channel);
1355
1356 return ret;
1357 }
1358
1359 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1360 {
1361 ATH5K_TRACE(ah->ah_sc);
1362 /*Just a try M.F.*/
1363 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1364
1365 return 0;
1366 }
1367
1368 /********************\
1369 Misc PHY functions
1370 \********************/
1371
1372 /*
1373 * Get the PHY Chip revision
1374 */
1375 u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1376 {
1377 unsigned int i;
1378 u32 srev;
1379 u16 ret;
1380
1381 ATH5K_TRACE(ah->ah_sc);
1382
1383 /*
1384 * Set the radio chip access register
1385 */
1386 switch (chan) {
1387 case CHANNEL_2GHZ:
1388 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1389 break;
1390 case CHANNEL_5GHZ:
1391 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1392 break;
1393 default:
1394 return 0;
1395 }
1396
1397 mdelay(2);
1398
1399 /* ...wait until PHY is ready and read the selected radio revision */
1400 ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1401
1402 for (i = 0; i < 8; i++)
1403 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1404
1405 if (ah->ah_version == AR5K_AR5210) {
1406 srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1407 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1408 } else {
1409 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1410 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1411 ((srev & 0x0f) << 4), 8);
1412 }
1413
1414 /* Reset to the 5GHz mode */
1415 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1416
1417 return ret;
1418 }
1419
1420 void /*TODO:Boundary check*/
1421 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, unsigned int ant)
1422 {
1423 ATH5K_TRACE(ah->ah_sc);
1424 /*Just a try M.F.*/
1425 if (ah->ah_version != AR5K_AR5210)
1426 ath5k_hw_reg_write(ah, ant, AR5K_DEFAULT_ANTENNA);
1427 }
1428
1429 unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah)
1430 {
1431 ATH5K_TRACE(ah->ah_sc);
1432 /*Just a try M.F.*/
1433 if (ah->ah_version != AR5K_AR5210)
1434 return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA);
1435
1436 return false; /*XXX: What do we return for 5210 ?*/
1437 }
1438
1439
1440 /****************\
1441 * TX power setup *
1442 \****************/
1443
1444 /*
1445 * Helper functions
1446 */
1447
1448 /*
1449 * Do linear interpolation between two given (x, y) points
1450 */
1451 static s16
1452 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1453 s16 y_left, s16 y_right)
1454 {
1455 s16 ratio, result;
1456
1457 /* Avoid divide by zero and skip interpolation
1458 * if we have the same point */
1459 if ((x_left == x_right) || (y_left == y_right))
1460 return y_left;
1461
1462 /*
1463 * Since we use ints and not fps, we need to scale up in
1464 * order to get a sane ratio value (or else we 'll eg. get
1465 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1466 * to have some accuracy both for 0.5 and 0.25 steps.
1467 */
1468 ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
1469
1470 /* Now scale down to be in range */
1471 result = y_left + (ratio * (target - x_left) / 100);
1472
1473 return result;
1474 }
1475
1476 /*
1477 * Find vertical boundary (min pwr) for the linear PCDAC curve.
1478 *
1479 * Since we have the top of the curve and we draw the line below
1480 * until we reach 1 (1 pcdac step) we need to know which point
1481 * (x value) that is so that we don't go below y axis and have negative
1482 * pcdac values when creating the curve, or fill the table with zeroes.
1483 */
1484 static s16
1485 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1486 const s16 *pwrL, const s16 *pwrR)
1487 {
1488 s8 tmp;
1489 s16 min_pwrL, min_pwrR;
1490 s16 pwr_i;
1491
1492 if (pwrL[0] == pwrL[1])
1493 min_pwrL = pwrL[0];
1494 else {
1495 pwr_i = pwrL[0];
1496 do {
1497 pwr_i--;
1498 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1499 pwrL[0], pwrL[1],
1500 stepL[0], stepL[1]);
1501 } while (tmp > 1);
1502
1503 min_pwrL = pwr_i;
1504 }
1505
1506 if (pwrR[0] == pwrR[1])
1507 min_pwrR = pwrR[0];
1508 else {
1509 pwr_i = pwrR[0];
1510 do {
1511 pwr_i--;
1512 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1513 pwrR[0], pwrR[1],
1514 stepR[0], stepR[1]);
1515 } while (tmp > 1);
1516
1517 min_pwrR = pwr_i;
1518 }
1519
1520 /* Keep the right boundary so that it works for both curves */
1521 return max(min_pwrL, min_pwrR);
1522 }
1523
1524 /*
1525 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
1526 * Power to PCDAC curve.
1527 *
1528 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
1529 * steps (offsets) on y axis. Power can go up to 31.5dB and max
1530 * PCDAC/PDADC step for each curve is 64 but we can write more than
1531 * one curves on hw so we can go up to 128 (which is the max step we
1532 * can write on the final table).
1533 *
1534 * We write y values (PCDAC/PDADC steps) on hw.
1535 */
1536 static void
1537 ath5k_create_power_curve(s16 pmin, s16 pmax,
1538 const s16 *pwr, const u8 *vpd,
1539 u8 num_points,
1540 u8 *vpd_table, u8 type)
1541 {
1542 u8 idx[2] = { 0, 1 };
1543 s16 pwr_i = 2*pmin;
1544 int i;
1545
1546 if (num_points < 2)
1547 return;
1548
1549 /* We want the whole line, so adjust boundaries
1550 * to cover the entire power range. Note that
1551 * power values are already 0.25dB so no need
1552 * to multiply pwr_i by 2 */
1553 if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
1554 pwr_i = pmin;
1555 pmin = 0;
1556 pmax = 63;
1557 }
1558
1559 /* Find surrounding turning points (TPs)
1560 * and interpolate between them */
1561 for (i = 0; (i <= (u16) (pmax - pmin)) &&
1562 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
1563
1564 /* We passed the right TP, move to the next set of TPs
1565 * if we pass the last TP, extrapolate above using the last
1566 * two TPs for ratio */
1567 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
1568 idx[0]++;
1569 idx[1]++;
1570 }
1571
1572 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
1573 pwr[idx[0]], pwr[idx[1]],
1574 vpd[idx[0]], vpd[idx[1]]);
1575
1576 /* Increase by 0.5dB
1577 * (0.25 dB units) */
1578 pwr_i += 2;
1579 }
1580 }
1581
1582 /*
1583 * Get the surrounding per-channel power calibration piers
1584 * for a given frequency so that we can interpolate between
1585 * them and come up with an apropriate dataset for our current
1586 * channel.
1587 */
1588 static void
1589 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
1590 struct ieee80211_channel *channel,
1591 struct ath5k_chan_pcal_info **pcinfo_l,
1592 struct ath5k_chan_pcal_info **pcinfo_r)
1593 {
1594 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1595 struct ath5k_chan_pcal_info *pcinfo;
1596 u8 idx_l, idx_r;
1597 u8 mode, max, i;
1598 u32 target = channel->center_freq;
1599
1600 idx_l = 0;
1601 idx_r = 0;
1602
1603 if (!(channel->hw_value & CHANNEL_OFDM)) {
1604 pcinfo = ee->ee_pwr_cal_b;
1605 mode = AR5K_EEPROM_MODE_11B;
1606 } else if (channel->hw_value & CHANNEL_2GHZ) {
1607 pcinfo = ee->ee_pwr_cal_g;
1608 mode = AR5K_EEPROM_MODE_11G;
1609 } else {
1610 pcinfo = ee->ee_pwr_cal_a;
1611 mode = AR5K_EEPROM_MODE_11A;
1612 }
1613 max = ee->ee_n_piers[mode] - 1;
1614
1615 /* Frequency is below our calibrated
1616 * range. Use the lowest power curve
1617 * we have */
1618 if (target < pcinfo[0].freq) {
1619 idx_l = idx_r = 0;
1620 goto done;
1621 }
1622
1623 /* Frequency is above our calibrated
1624 * range. Use the highest power curve
1625 * we have */
1626 if (target > pcinfo[max].freq) {
1627 idx_l = idx_r = max;
1628 goto done;
1629 }
1630
1631 /* Frequency is inside our calibrated
1632 * channel range. Pick the surrounding
1633 * calibration piers so that we can
1634 * interpolate */
1635 for (i = 0; i <= max; i++) {
1636
1637 /* Frequency matches one of our calibration
1638 * piers, no need to interpolate, just use
1639 * that calibration pier */
1640 if (pcinfo[i].freq == target) {
1641 idx_l = idx_r = i;
1642 goto done;
1643 }
1644
1645 /* We found a calibration pier that's above
1646 * frequency, use this pier and the previous
1647 * one to interpolate */
1648 if (target < pcinfo[i].freq) {
1649 idx_r = i;
1650 idx_l = idx_r - 1;
1651 goto done;
1652 }
1653 }
1654
1655 done:
1656 *pcinfo_l = &pcinfo[idx_l];
1657 *pcinfo_r = &pcinfo[idx_r];
1658
1659 return;
1660 }
1661
1662 /*
1663 * Get the surrounding per-rate power calibration data
1664 * for a given frequency and interpolate between power
1665 * values to set max target power supported by hw for
1666 * each rate.
1667 */
1668 static void
1669 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
1670 struct ieee80211_channel *channel,
1671 struct ath5k_rate_pcal_info *rates)
1672 {
1673 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1674 struct ath5k_rate_pcal_info *rpinfo;
1675 u8 idx_l, idx_r;
1676 u8 mode, max, i;
1677 u32 target = channel->center_freq;
1678
1679 idx_l = 0;
1680 idx_r = 0;
1681
1682 if (!(channel->hw_value & CHANNEL_OFDM)) {
1683 rpinfo = ee->ee_rate_tpwr_b;
1684 mode = AR5K_EEPROM_MODE_11B;
1685 } else if (channel->hw_value & CHANNEL_2GHZ) {
1686 rpinfo = ee->ee_rate_tpwr_g;
1687 mode = AR5K_EEPROM_MODE_11G;
1688 } else {
1689 rpinfo = ee->ee_rate_tpwr_a;
1690 mode = AR5K_EEPROM_MODE_11A;
1691 }
1692 max = ee->ee_rate_target_pwr_num[mode] - 1;
1693
1694 /* Get the surrounding calibration
1695 * piers - same as above */
1696 if (target < rpinfo[0].freq) {
1697 idx_l = idx_r = 0;
1698 goto done;
1699 }
1700
1701 if (target > rpinfo[max].freq) {
1702 idx_l = idx_r = max;
1703 goto done;
1704 }
1705
1706 for (i = 0; i <= max; i++) {
1707
1708 if (rpinfo[i].freq == target) {
1709 idx_l = idx_r = i;
1710 goto done;
1711 }
1712
1713 if (target < rpinfo[i].freq) {
1714 idx_r = i;
1715 idx_l = idx_r - 1;
1716 goto done;
1717 }
1718 }
1719
1720 done:
1721 /* Now interpolate power value, based on the frequency */
1722 rates->freq = target;
1723
1724 rates->target_power_6to24 =
1725 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1726 rpinfo[idx_r].freq,
1727 rpinfo[idx_l].target_power_6to24,
1728 rpinfo[idx_r].target_power_6to24);
1729
1730 rates->target_power_36 =
1731 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1732 rpinfo[idx_r].freq,
1733 rpinfo[idx_l].target_power_36,
1734 rpinfo[idx_r].target_power_36);
1735
1736 rates->target_power_48 =
1737 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1738 rpinfo[idx_r].freq,
1739 rpinfo[idx_l].target_power_48,
1740 rpinfo[idx_r].target_power_48);
1741
1742 rates->target_power_54 =
1743 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1744 rpinfo[idx_r].freq,
1745 rpinfo[idx_l].target_power_54,
1746 rpinfo[idx_r].target_power_54);
1747 }
1748
1749 /*
1750 * Get the max edge power for this channel if
1751 * we have such data from EEPROM's Conformance Test
1752 * Limits (CTL), and limit max power if needed.
1753 *
1754 * FIXME: Only works for world regulatory domains
1755 */
1756 static void
1757 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
1758 struct ieee80211_channel *channel)
1759 {
1760 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1761 struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
1762 u8 *ctl_val = ee->ee_ctl;
1763 s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
1764 s16 edge_pwr = 0;
1765 u8 rep_idx;
1766 u8 i, ctl_mode;
1767 u8 ctl_idx = 0xFF;
1768 u32 target = channel->center_freq;
1769
1770 /* Find out a CTL for our mode that's not mapped
1771 * on a specific reg domain.
1772 *
1773 * TODO: Map our current reg domain to one of the 3 available
1774 * reg domain ids so that we can support more CTLs. */
1775 switch (channel->hw_value & CHANNEL_MODES) {
1776 case CHANNEL_A:
1777 ctl_mode = AR5K_CTL_11A | AR5K_CTL_NO_REGDOMAIN;
1778 break;
1779 case CHANNEL_G:
1780 ctl_mode = AR5K_CTL_11G | AR5K_CTL_NO_REGDOMAIN;
1781 break;
1782 case CHANNEL_B:
1783 ctl_mode = AR5K_CTL_11B | AR5K_CTL_NO_REGDOMAIN;
1784 break;
1785 case CHANNEL_T:
1786 ctl_mode = AR5K_CTL_TURBO | AR5K_CTL_NO_REGDOMAIN;
1787 break;
1788 case CHANNEL_TG:
1789 ctl_mode = AR5K_CTL_TURBOG | AR5K_CTL_NO_REGDOMAIN;
1790 break;
1791 case CHANNEL_XR:
1792 /* Fall through */
1793 default:
1794 return;
1795 }
1796
1797 for (i = 0; i < ee->ee_ctls; i++) {
1798 if (ctl_val[i] == ctl_mode) {
1799 ctl_idx = i;
1800 break;
1801 }
1802 }
1803
1804 /* If we have a CTL dataset available grab it and find the
1805 * edge power for our frequency */
1806 if (ctl_idx == 0xFF)
1807 return;
1808
1809 /* Edge powers are sorted by frequency from lower
1810 * to higher. Each CTL corresponds to 8 edge power
1811 * measurements. */
1812 rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
1813
1814 /* Don't do boundaries check because we
1815 * might have more that one bands defined
1816 * for this mode */
1817
1818 /* Get the edge power that's closer to our
1819 * frequency */
1820 for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
1821 rep_idx += i;
1822 if (target <= rep[rep_idx].freq)
1823 edge_pwr = (s16) rep[rep_idx].edge;
1824 }
1825
1826 if (edge_pwr)
1827 ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
1828 }
1829
1830
1831 /*
1832 * Power to PCDAC table functions
1833 */
1834
1835 /*
1836 * Fill Power to PCDAC table on RF5111
1837 *
1838 * No further processing is needed for RF5111, the only thing we have to
1839 * do is fill the values below and above calibration range since eeprom data
1840 * may not cover the entire PCDAC table.
1841 */
1842 static void
1843 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
1844 s16 *table_max)
1845 {
1846 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
1847 u8 *pcdac_tmp = ah->ah_txpower.tmpL[0];
1848 u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
1849 s16 min_pwr, max_pwr;
1850
1851 /* Get table boundaries */
1852 min_pwr = table_min[0];
1853 pcdac_0 = pcdac_tmp[0];
1854
1855 max_pwr = table_max[0];
1856 pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
1857
1858 /* Extrapolate below minimum using pcdac_0 */
1859 pcdac_i = 0;
1860 for (i = 0; i < min_pwr; i++)
1861 pcdac_out[pcdac_i++] = pcdac_0;
1862
1863 /* Copy values from pcdac_tmp */
1864 pwr_idx = min_pwr;
1865 for (i = 0 ; pwr_idx <= max_pwr &&
1866 pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
1867 pcdac_out[pcdac_i++] = pcdac_tmp[i];
1868 pwr_idx++;
1869 }
1870
1871 /* Extrapolate above maximum */
1872 while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
1873 pcdac_out[pcdac_i++] = pcdac_n;
1874
1875 }
1876
1877 /*
1878 * Combine available XPD Curves and fill Linear Power to PCDAC table
1879 * on RF5112
1880 *
1881 * RFX112 can have up to 2 curves (one for low txpower range and one for
1882 * higher txpower range). We need to put them both on pcdac_out and place
1883 * them in the correct location. In case we only have one curve available
1884 * just fit it on pcdac_out (it's supposed to cover the entire range of
1885 * available pwr levels since it's always the higher power curve). Extrapolate
1886 * below and above final table if needed.
1887 */
1888 static void
1889 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
1890 s16 *table_max, u8 pdcurves)
1891 {
1892 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
1893 u8 *pcdac_low_pwr;
1894 u8 *pcdac_high_pwr;
1895 u8 *pcdac_tmp;
1896 u8 pwr;
1897 s16 max_pwr_idx;
1898 s16 min_pwr_idx;
1899 s16 mid_pwr_idx = 0;
1900 /* Edge flag turs on the 7nth bit on the PCDAC
1901 * to delcare the higher power curve (force values
1902 * to be greater than 64). If we only have one curve
1903 * we don't need to set this, if we have 2 curves and
1904 * fill the table backwards this can also be used to
1905 * switch from higher power curve to lower power curve */
1906 u8 edge_flag;
1907 int i;
1908
1909 /* When we have only one curve available
1910 * that's the higher power curve. If we have
1911 * two curves the first is the high power curve
1912 * and the next is the low power curve. */
1913 if (pdcurves > 1) {
1914 pcdac_low_pwr = ah->ah_txpower.tmpL[1];
1915 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
1916 mid_pwr_idx = table_max[1] - table_min[1] - 1;
1917 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
1918
1919 /* If table size goes beyond 31.5dB, keep the
1920 * upper 31.5dB range when setting tx power.
1921 * Note: 126 = 31.5 dB in quarter dB steps */
1922 if (table_max[0] - table_min[1] > 126)
1923 min_pwr_idx = table_max[0] - 126;
1924 else
1925 min_pwr_idx = table_min[1];
1926
1927 /* Since we fill table backwards
1928 * start from high power curve */
1929 pcdac_tmp = pcdac_high_pwr;
1930
1931 edge_flag = 0x40;
1932 #if 0
1933 /* If both min and max power limits are in lower
1934 * power curve's range, only use the low power curve.
1935 * TODO: min/max levels are related to target
1936 * power values requested from driver/user
1937 * XXX: Is this really needed ? */
1938 if (min_pwr < table_max[1] &&
1939 max_pwr < table_max[1]) {
1940 edge_flag = 0;
1941 pcdac_tmp = pcdac_low_pwr;
1942 max_pwr_idx = (table_max[1] - table_min[1])/2;
1943 }
1944 #endif
1945 } else {
1946 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
1947 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
1948 min_pwr_idx = table_min[0];
1949 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
1950 pcdac_tmp = pcdac_high_pwr;
1951 edge_flag = 0;
1952 }
1953
1954 /* This is used when setting tx power*/
1955 ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
1956
1957 /* Fill Power to PCDAC table backwards */
1958 pwr = max_pwr_idx;
1959 for (i = 63; i >= 0; i--) {
1960 /* Entering lower power range, reset
1961 * edge flag and set pcdac_tmp to lower
1962 * power curve.*/
1963 if (edge_flag == 0x40 &&
1964 (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
1965 edge_flag = 0x00;
1966 pcdac_tmp = pcdac_low_pwr;
1967 pwr = mid_pwr_idx/2;
1968 }
1969
1970 /* Don't go below 1, extrapolate below if we have
1971 * already swithced to the lower power curve -or
1972 * we only have one curve and edge_flag is zero
1973 * anyway */
1974 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
1975 while (i >= 0) {
1976 pcdac_out[i] = pcdac_out[i + 1];
1977 i--;
1978 }
1979 break;
1980 }
1981
1982 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
1983
1984 /* Extrapolate above if pcdac is greater than
1985 * 126 -this can happen because we OR pcdac_out
1986 * value with edge_flag on high power curve */
1987 if (pcdac_out[i] > 126)
1988 pcdac_out[i] = 126;
1989
1990 /* Decrease by a 0.5dB step */
1991 pwr--;
1992 }
1993 }
1994
1995 /* Write PCDAC values on hw */
1996 static void
1997 ath5k_setup_pcdac_table(struct ath5k_hw *ah)
1998 {
1999 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2000 int i;
2001
2002 /*
2003 * Write TX power values
2004 */
2005 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2006 ath5k_hw_reg_write(ah,
2007 (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2008 (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2009 AR5K_PHY_PCDAC_TXPOWER(i));
2010 }
2011 }
2012
2013
2014 /*
2015 * Power to PDADC table functions
2016 */
2017
2018 /*
2019 * Set the gain boundaries and create final Power to PDADC table
2020 *
2021 * We can have up to 4 pd curves, we need to do a simmilar process
2022 * as we do for RF5112. This time we don't have an edge_flag but we
2023 * set the gain boundaries on a separate register.
2024 */
2025 static void
2026 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2027 s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2028 {
2029 u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2030 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2031 u8 *pdadc_tmp;
2032 s16 pdadc_0;
2033 u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2034 u8 pd_gain_overlap;
2035
2036 /* Note: Register value is initialized on initvals
2037 * there is no feedback from hw.
2038 * XXX: What about pd_gain_overlap from EEPROM ? */
2039 pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2040 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2041
2042 /* Create final PDADC table */
2043 for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2044 pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2045
2046 if (pdg == pdcurves - 1)
2047 /* 2 dB boundary stretch for last
2048 * (higher power) curve */
2049 gain_boundaries[pdg] = pwr_max[pdg] + 4;
2050 else
2051 /* Set gain boundary in the middle
2052 * between this curve and the next one */
2053 gain_boundaries[pdg] =
2054 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2055
2056 /* Sanity check in case our 2 db stretch got out of
2057 * range. */
2058 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2059 gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2060
2061 /* For the first curve (lower power)
2062 * start from 0 dB */
2063 if (pdg == 0)
2064 pdadc_0 = 0;
2065 else
2066 /* For the other curves use the gain overlap */
2067 pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2068 pd_gain_overlap;
2069
2070 /* Force each power step to be at least 0.5 dB */
2071 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2072 pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2073 else
2074 pwr_step = 1;
2075
2076 /* If pdadc_0 is negative, we need to extrapolate
2077 * below this pdgain by a number of pwr_steps */
2078 while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2079 s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2080 pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2081 pdadc_0++;
2082 }
2083
2084 /* Set last pwr level, using gain boundaries */
2085 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2086 /* Limit it to be inside pwr range */
2087 table_size = pwr_max[pdg] - pwr_min[pdg];
2088 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2089
2090 /* Fill pdadc_out table */
2091 while (pdadc_0 < max_idx)
2092 pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2093
2094 /* Need to extrapolate above this pdgain? */
2095 if (pdadc_n <= max_idx)
2096 continue;
2097
2098 /* Force each power step to be at least 0.5 dB */
2099 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2100 pwr_step = pdadc_tmp[table_size - 1] -
2101 pdadc_tmp[table_size - 2];
2102 else
2103 pwr_step = 1;
2104
2105 /* Extrapolate above */
2106 while ((pdadc_0 < (s16) pdadc_n) &&
2107 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2108 s16 tmp = pdadc_tmp[table_size - 1] +
2109 (pdadc_0 - max_idx) * pwr_step;
2110 pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2111 pdadc_0++;
2112 }
2113 }
2114
2115 while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2116 gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2117 pdg++;
2118 }
2119
2120 while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2121 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2122 pdadc_i++;
2123 }
2124
2125 /* Set gain boundaries */
2126 ath5k_hw_reg_write(ah,
2127 AR5K_REG_SM(pd_gain_overlap,
2128 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2129 AR5K_REG_SM(gain_boundaries[0],
2130 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2131 AR5K_REG_SM(gain_boundaries[1],
2132 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2133 AR5K_REG_SM(gain_boundaries[2],
2134 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2135 AR5K_REG_SM(gain_boundaries[3],
2136 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2137 AR5K_PHY_TPC_RG5);
2138
2139 /* Used for setting rate power table */
2140 ah->ah_txpower.txp_min_idx = pwr_min[0];
2141
2142 }
2143
2144 /* Write PDADC values on hw */
2145 static void
2146 ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2147 u8 pdcurves, u8 *pdg_to_idx)
2148 {
2149 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2150 u32 reg;
2151 u8 i;
2152
2153 /* Select the right pdgain curves */
2154
2155 /* Clear current settings */
2156 reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2157 reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2158 AR5K_PHY_TPC_RG1_PDGAIN_2 |
2159 AR5K_PHY_TPC_RG1_PDGAIN_3 |
2160 AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2161
2162 /*
2163 * Use pd_gains curve from eeprom
2164 *
2165 * This overrides the default setting from initvals
2166 * in case some vendors (e.g. Zcomax) don't use the default
2167 * curves. If we don't honor their settings we 'll get a
2168 * 5dB (1 * gain overlap ?) drop.
2169 */
2170 reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2171
2172 switch (pdcurves) {
2173 case 3:
2174 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2175 /* Fall through */
2176 case 2:
2177 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2178 /* Fall through */
2179 case 1:
2180 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2181 break;
2182 }
2183 ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2184
2185 /*
2186 * Write TX power values
2187 */
2188 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2189 ath5k_hw_reg_write(ah,
2190 ((pdadc_out[4*i + 0] & 0xff) << 0) |
2191 ((pdadc_out[4*i + 1] & 0xff) << 8) |
2192 ((pdadc_out[4*i + 2] & 0xff) << 16) |
2193 ((pdadc_out[4*i + 3] & 0xff) << 24),
2194 AR5K_PHY_PDADC_TXPOWER(i));
2195 }
2196 }
2197
2198
2199 /*
2200 * Common code for PCDAC/PDADC tables
2201 */
2202
2203 /*
2204 * This is the main function that uses all of the above
2205 * to set PCDAC/PDADC table on hw for the current channel.
2206 * This table is used for tx power calibration on the basband,
2207 * without it we get weird tx power levels and in some cases
2208 * distorted spectral mask
2209 */
2210 static int
2211 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2212 struct ieee80211_channel *channel,
2213 u8 ee_mode, u8 type)
2214 {
2215 struct ath5k_pdgain_info *pdg_L, *pdg_R;
2216 struct ath5k_chan_pcal_info *pcinfo_L;
2217 struct ath5k_chan_pcal_info *pcinfo_R;
2218 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2219 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2220 s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2221 s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2222 u8 *tmpL;
2223 u8 *tmpR;
2224 u32 target = channel->center_freq;
2225 int pdg, i;
2226
2227 /* Get surounding freq piers for this channel */
2228 ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2229 &pcinfo_L,
2230 &pcinfo_R);
2231
2232 /* Loop over pd gain curves on
2233 * surounding freq piers by index */
2234 for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2235
2236 /* Fill curves in reverse order
2237 * from lower power (max gain)
2238 * to higher power. Use curve -> idx
2239 * backmaping we did on eeprom init */
2240 u8 idx = pdg_curve_to_idx[pdg];
2241
2242 /* Grab the needed curves by index */
2243 pdg_L = &pcinfo_L->pd_curves[idx];
2244 pdg_R = &pcinfo_R->pd_curves[idx];
2245
2246 /* Initialize the temp tables */
2247 tmpL = ah->ah_txpower.tmpL[pdg];
2248 tmpR = ah->ah_txpower.tmpR[pdg];
2249
2250 /* Set curve's x boundaries and create
2251 * curves so that they cover the same
2252 * range (if we don't do that one table
2253 * will have values on some range and the
2254 * other one won't have any so interpolation
2255 * will fail) */
2256 table_min[pdg] = min(pdg_L->pd_pwr[0],
2257 pdg_R->pd_pwr[0]) / 2;
2258
2259 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2260 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2261
2262 /* Now create the curves on surrounding channels
2263 * and interpolate if needed to get the final
2264 * curve for this gain on this channel */
2265 switch (type) {
2266 case AR5K_PWRTABLE_LINEAR_PCDAC:
2267 /* Override min/max so that we don't loose
2268 * accuracy (don't divide by 2) */
2269 table_min[pdg] = min(pdg_L->pd_pwr[0],
2270 pdg_R->pd_pwr[0]);
2271
2272 table_max[pdg] =
2273 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2274 pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2275
2276 /* Override minimum so that we don't get
2277 * out of bounds while extrapolating
2278 * below. Don't do this when we have 2
2279 * curves and we are on the high power curve
2280 * because table_min is ok in this case */
2281 if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2282
2283 table_min[pdg] =
2284 ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2285 pdg_R->pd_step,
2286 pdg_L->pd_pwr,
2287 pdg_R->pd_pwr);
2288
2289 /* Don't go too low because we will
2290 * miss the upper part of the curve.
2291 * Note: 126 = 31.5dB (max power supported)
2292 * in 0.25dB units */
2293 if (table_max[pdg] - table_min[pdg] > 126)
2294 table_min[pdg] = table_max[pdg] - 126;
2295 }
2296
2297 /* Fall through */
2298 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2299 case AR5K_PWRTABLE_PWR_TO_PDADC:
2300
2301 ath5k_create_power_curve(table_min[pdg],
2302 table_max[pdg],
2303 pdg_L->pd_pwr,
2304 pdg_L->pd_step,
2305 pdg_L->pd_points, tmpL, type);
2306
2307 /* We are in a calibration
2308 * pier, no need to interpolate
2309 * between freq piers */
2310 if (pcinfo_L == pcinfo_R)
2311 continue;
2312
2313 ath5k_create_power_curve(table_min[pdg],
2314 table_max[pdg],
2315 pdg_R->pd_pwr,
2316 pdg_R->pd_step,
2317 pdg_R->pd_points, tmpR, type);
2318 break;
2319 default:
2320 return -EINVAL;
2321 }
2322
2323 /* Interpolate between curves
2324 * of surounding freq piers to
2325 * get the final curve for this
2326 * pd gain. Re-use tmpL for interpolation
2327 * output */
2328 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2329 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2330 tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2331 (s16) pcinfo_L->freq,
2332 (s16) pcinfo_R->freq,
2333 (s16) tmpL[i],
2334 (s16) tmpR[i]);
2335 }
2336 }
2337
2338 /* Now we have a set of curves for this
2339 * channel on tmpL (x range is table_max - table_min
2340 * and y values are tmpL[pdg][]) sorted in the same
2341 * order as EEPROM (because we've used the backmaping).
2342 * So for RF5112 it's from higher power to lower power
2343 * and for RF2413 it's from lower power to higher power.
2344 * For RF5111 we only have one curve. */
2345
2346 /* Fill min and max power levels for this
2347 * channel by interpolating the values on
2348 * surounding channels to complete the dataset */
2349 ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2350 (s16) pcinfo_L->freq,
2351 (s16) pcinfo_R->freq,
2352 pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2353
2354 ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2355 (s16) pcinfo_L->freq,
2356 (s16) pcinfo_R->freq,
2357 pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2358
2359 /* We are ready to go, fill PCDAC/PDADC
2360 * table and write settings on hardware */
2361 switch (type) {
2362 case AR5K_PWRTABLE_LINEAR_PCDAC:
2363 /* For RF5112 we can have one or two curves
2364 * and each curve covers a certain power lvl
2365 * range so we need to do some more processing */
2366 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2367 ee->ee_pd_gains[ee_mode]);
2368
2369 /* Set txp.offset so that we can
2370 * match max power value with max
2371 * table index */
2372 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2373
2374 /* Write settings on hw */
2375 ath5k_setup_pcdac_table(ah);
2376 break;
2377 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2378 /* We are done for RF5111 since it has only
2379 * one curve, just fit the curve on the table */
2380 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2381
2382 /* No rate powertable adjustment for RF5111 */
2383 ah->ah_txpower.txp_min_idx = 0;
2384 ah->ah_txpower.txp_offset = 0;
2385
2386 /* Write settings on hw */
2387 ath5k_setup_pcdac_table(ah);
2388 break;
2389 case AR5K_PWRTABLE_PWR_TO_PDADC:
2390 /* Set PDADC boundaries and fill
2391 * final PDADC table */
2392 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2393 ee->ee_pd_gains[ee_mode]);
2394
2395 /* Write settings on hw */
2396 ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2397
2398 /* Set txp.offset, note that table_min
2399 * can be negative */
2400 ah->ah_txpower.txp_offset = table_min[0];
2401 break;
2402 default:
2403 return -EINVAL;
2404 }
2405
2406 return 0;
2407 }
2408
2409
2410 /*
2411 * Per-rate tx power setting
2412 *
2413 * This is the code that sets the desired tx power (below
2414 * maximum) on hw for each rate (we also have TPC that sets
2415 * power per packet). We do that by providing an index on the
2416 * PCDAC/PDADC table we set up.
2417 */
2418
2419 /*
2420 * Set rate power table
2421 *
2422 * For now we only limit txpower based on maximum tx power
2423 * supported by hw (what's inside rate_info). We need to limit
2424 * this even more, based on regulatory domain etc.
2425 *
2426 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2427 * and is indexed as follows:
2428 * rates[0] - rates[7] -> OFDM rates
2429 * rates[8] - rates[14] -> CCK rates
2430 * rates[15] -> XR rates (they all have the same power)
2431 */
2432 static void
2433 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2434 struct ath5k_rate_pcal_info *rate_info,
2435 u8 ee_mode)
2436 {
2437 unsigned int i;
2438 u16 *rates;
2439
2440 /* max_pwr is power level we got from driver/user in 0.5dB
2441 * units, switch to 0.25dB units so we can compare */
2442 max_pwr *= 2;
2443 max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2444
2445 /* apply rate limits */
2446 rates = ah->ah_txpower.txp_rates_power_table;
2447
2448 /* OFDM rates 6 to 24Mb/s */
2449 for (i = 0; i < 5; i++)
2450 rates[i] = min(max_pwr, rate_info->target_power_6to24);
2451
2452 /* Rest OFDM rates */
2453 rates[5] = min(rates[0], rate_info->target_power_36);
2454 rates[6] = min(rates[0], rate_info->target_power_48);
2455 rates[7] = min(rates[0], rate_info->target_power_54);
2456
2457 /* CCK rates */
2458 /* 1L */
2459 rates[8] = min(rates[0], rate_info->target_power_6to24);
2460 /* 2L */
2461 rates[9] = min(rates[0], rate_info->target_power_36);
2462 /* 2S */
2463 rates[10] = min(rates[0], rate_info->target_power_36);
2464 /* 5L */
2465 rates[11] = min(rates[0], rate_info->target_power_48);
2466 /* 5S */
2467 rates[12] = min(rates[0], rate_info->target_power_48);
2468 /* 11L */
2469 rates[13] = min(rates[0], rate_info->target_power_54);
2470 /* 11S */
2471 rates[14] = min(rates[0], rate_info->target_power_54);
2472
2473 /* XR rates */
2474 rates[15] = min(rates[0], rate_info->target_power_6to24);
2475
2476 /* CCK rates have different peak to average ratio
2477 * so we have to tweak their power so that gainf
2478 * correction works ok. For this we use OFDM to
2479 * CCK delta from eeprom */
2480 if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2481 (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2482 for (i = 8; i <= 15; i++)
2483 rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2484
2485 ah->ah_txpower.txp_min_pwr = rates[7];
2486 ah->ah_txpower.txp_max_pwr = rates[0];
2487 ah->ah_txpower.txp_ofdm = rates[7];
2488 }
2489
2490
2491 /*
2492 * Set transmition power
2493 */
2494 int
2495 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
2496 u8 ee_mode, u8 txpower)
2497 {
2498 struct ath5k_rate_pcal_info rate_info;
2499 u8 type;
2500 int ret;
2501
2502 ATH5K_TRACE(ah->ah_sc);
2503 if (txpower > AR5K_TUNE_MAX_TXPOWER) {
2504 ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
2505 return -EINVAL;
2506 }
2507 if (txpower == 0)
2508 txpower = AR5K_TUNE_DEFAULT_TXPOWER;
2509
2510 /* Reset TX power values */
2511 memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
2512 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
2513 ah->ah_txpower.txp_min_pwr = 0;
2514 ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
2515
2516 /* Initialize TX power table */
2517 switch (ah->ah_radio) {
2518 case AR5K_RF5111:
2519 type = AR5K_PWRTABLE_PWR_TO_PCDAC;
2520 break;
2521 case AR5K_RF5112:
2522 type = AR5K_PWRTABLE_LINEAR_PCDAC;
2523 break;
2524 case AR5K_RF2413:
2525 case AR5K_RF5413:
2526 case AR5K_RF2316:
2527 case AR5K_RF2317:
2528 case AR5K_RF2425:
2529 type = AR5K_PWRTABLE_PWR_TO_PDADC;
2530 break;
2531 default:
2532 return -EINVAL;
2533 }
2534
2535 /* FIXME: Only on channel/mode change */
2536 ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
2537 if (ret)
2538 return ret;
2539
2540 /* Limit max power if we have a CTL available */
2541 ath5k_get_max_ctl_power(ah, channel);
2542
2543 /* FIXME: Tx power limit for this regdomain
2544 * XXX: Mac80211/CRDA will do that anyway ? */
2545
2546 /* FIXME: Antenna reduction stuff */
2547
2548 /* FIXME: Limit power on turbo modes */
2549
2550 /* FIXME: TPC scale reduction */
2551
2552 /* Get surounding channels for per-rate power table
2553 * calibration */
2554 ath5k_get_rate_pcal_data(ah, channel, &rate_info);
2555
2556 /* Setup rate power table */
2557 ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
2558
2559 /* Write rate power table on hw */
2560 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
2561 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
2562 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
2563
2564 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
2565 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
2566 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
2567
2568 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
2569 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
2570 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
2571
2572 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
2573 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
2574 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
2575
2576 /* FIXME: TPC support */
2577 if (ah->ah_txpower.txp_tpc) {
2578 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
2579 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
2580
2581 ath5k_hw_reg_write(ah,
2582 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
2583 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
2584 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
2585 AR5K_TPC);
2586 } else {
2587 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
2588 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
2589 }
2590
2591 return 0;
2592 }
2593
2594 int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 mode, u8 txpower)
2595 {
2596 /*Just a try M.F.*/
2597 struct ieee80211_channel *channel = &ah->ah_current_channel;
2598
2599 ATH5K_TRACE(ah->ah_sc);
2600 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
2601 "changing txpower to %d\n", txpower);
2602
2603 return ath5k_hw_txpower(ah, channel, mode, txpower);
2604 }
2605
2606 #undef _ATH5K_PHY
This page took 0.142522 seconds and 5 git commands to generate.