ath9k: Handle mac80211's FIF_CONTROL flag properly
[deliverable/linux.git] / drivers / net / wireless / ath9k / recv.c
1 /*
2 * Copyright (c) 2008 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "core.h"
18
19 /*
20 * Setup and link descriptors.
21 *
22 * 11N: we can no longer afford to self link the last descriptor.
23 * MAC acknowledges BA status as long as it copies frames to host
24 * buffer (or rx fifo). This can incorrectly acknowledge packets
25 * to a sender if last desc is self-linked.
26 */
27 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf)
28 {
29 struct ath_hal *ah = sc->sc_ah;
30 struct ath_desc *ds;
31 struct sk_buff *skb;
32
33 ATH_RXBUF_RESET(bf);
34
35 ds = bf->bf_desc;
36 ds->ds_link = 0; /* link to null */
37 ds->ds_data = bf->bf_buf_addr;
38
39 /* virtual addr of the beginning of the buffer. */
40 skb = bf->bf_mpdu;
41 ASSERT(skb != NULL);
42 ds->ds_vdata = skb->data;
43
44 /* setup rx descriptors. The rx.bufsize here tells the harware
45 * how much data it can DMA to us and that we are prepared
46 * to process */
47 ath9k_hw_setuprxdesc(ah, ds,
48 sc->rx.bufsize,
49 0);
50
51 if (sc->rx.rxlink == NULL)
52 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
53 else
54 *sc->rx.rxlink = bf->bf_daddr;
55
56 sc->rx.rxlink = &ds->ds_link;
57 ath9k_hw_rxena(ah);
58 }
59
60 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
61 {
62 /* XXX block beacon interrupts */
63 ath9k_hw_setantenna(sc->sc_ah, antenna);
64 sc->rx.defant = antenna;
65 sc->rx.rxotherant = 0;
66 }
67
68 /*
69 * Extend 15-bit time stamp from rx descriptor to
70 * a full 64-bit TSF using the current h/w TSF.
71 */
72 static u64 ath_extend_tsf(struct ath_softc *sc, u32 rstamp)
73 {
74 u64 tsf;
75
76 tsf = ath9k_hw_gettsf64(sc->sc_ah);
77 if ((tsf & 0x7fff) < rstamp)
78 tsf -= 0x8000;
79 return (tsf & ~0x7fff) | rstamp;
80 }
81
82 static struct sk_buff *ath_rxbuf_alloc(struct ath_softc *sc, u32 len)
83 {
84 struct sk_buff *skb;
85 u32 off;
86
87 /*
88 * Cache-line-align. This is important (for the
89 * 5210 at least) as not doing so causes bogus data
90 * in rx'd frames.
91 */
92
93 /* Note: the kernel can allocate a value greater than
94 * what we ask it to give us. We really only need 4 KB as that
95 * is this hardware supports and in fact we need at least 3849
96 * as that is the MAX AMSDU size this hardware supports.
97 * Unfortunately this means we may get 8 KB here from the
98 * kernel... and that is actually what is observed on some
99 * systems :( */
100 skb = dev_alloc_skb(len + sc->sc_cachelsz - 1);
101 if (skb != NULL) {
102 off = ((unsigned long) skb->data) % sc->sc_cachelsz;
103 if (off != 0)
104 skb_reserve(skb, sc->sc_cachelsz - off);
105 } else {
106 DPRINTF(sc, ATH_DBG_FATAL,
107 "skbuff alloc of size %u failed\n", len);
108 return NULL;
109 }
110
111 return skb;
112 }
113
114 /*
115 * For Decrypt or Demic errors, we only mark packet status here and always push
116 * up the frame up to let mac80211 handle the actual error case, be it no
117 * decryption key or real decryption error. This let us keep statistics there.
118 */
119 static int ath_rx_prepare(struct sk_buff *skb, struct ath_desc *ds,
120 struct ieee80211_rx_status *rx_status, bool *decrypt_error,
121 struct ath_softc *sc)
122 {
123 struct ieee80211_hdr *hdr;
124 u8 ratecode;
125 __le16 fc;
126
127 hdr = (struct ieee80211_hdr *)skb->data;
128 fc = hdr->frame_control;
129 memset(rx_status, 0, sizeof(struct ieee80211_rx_status));
130
131 if (ds->ds_rxstat.rs_more) {
132 /*
133 * Frame spans multiple descriptors; this cannot happen yet
134 * as we don't support jumbograms. If not in monitor mode,
135 * discard the frame. Enable this if you want to see
136 * error frames in Monitor mode.
137 */
138 if (sc->sc_ah->ah_opmode != NL80211_IFTYPE_MONITOR)
139 goto rx_next;
140 } else if (ds->ds_rxstat.rs_status != 0) {
141 if (ds->ds_rxstat.rs_status & ATH9K_RXERR_CRC)
142 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
143 if (ds->ds_rxstat.rs_status & ATH9K_RXERR_PHY)
144 goto rx_next;
145
146 if (ds->ds_rxstat.rs_status & ATH9K_RXERR_DECRYPT) {
147 *decrypt_error = true;
148 } else if (ds->ds_rxstat.rs_status & ATH9K_RXERR_MIC) {
149 if (ieee80211_is_ctl(fc))
150 /*
151 * Sometimes, we get invalid
152 * MIC failures on valid control frames.
153 * Remove these mic errors.
154 */
155 ds->ds_rxstat.rs_status &= ~ATH9K_RXERR_MIC;
156 else
157 rx_status->flag |= RX_FLAG_MMIC_ERROR;
158 }
159 /*
160 * Reject error frames with the exception of
161 * decryption and MIC failures. For monitor mode,
162 * we also ignore the CRC error.
163 */
164 if (sc->sc_ah->ah_opmode == NL80211_IFTYPE_MONITOR) {
165 if (ds->ds_rxstat.rs_status &
166 ~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC |
167 ATH9K_RXERR_CRC))
168 goto rx_next;
169 } else {
170 if (ds->ds_rxstat.rs_status &
171 ~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC)) {
172 goto rx_next;
173 }
174 }
175 }
176
177 ratecode = ds->ds_rxstat.rs_rate;
178
179 if (ratecode & 0x80) {
180 /* HT rate */
181 rx_status->flag |= RX_FLAG_HT;
182 if (ds->ds_rxstat.rs_flags & ATH9K_RX_2040)
183 rx_status->flag |= RX_FLAG_40MHZ;
184 if (ds->ds_rxstat.rs_flags & ATH9K_RX_GI)
185 rx_status->flag |= RX_FLAG_SHORT_GI;
186 rx_status->rate_idx = ratecode & 0x7f;
187 } else {
188 int i = 0, cur_band, n_rates;
189 struct ieee80211_hw *hw = sc->hw;
190
191 cur_band = hw->conf.channel->band;
192 n_rates = sc->sbands[cur_band].n_bitrates;
193
194 for (i = 0; i < n_rates; i++) {
195 if (sc->sbands[cur_band].bitrates[i].hw_value ==
196 ratecode) {
197 rx_status->rate_idx = i;
198 break;
199 }
200
201 if (sc->sbands[cur_band].bitrates[i].hw_value_short ==
202 ratecode) {
203 rx_status->rate_idx = i;
204 rx_status->flag |= RX_FLAG_SHORTPRE;
205 break;
206 }
207 }
208 }
209
210 rx_status->mactime = ath_extend_tsf(sc, ds->ds_rxstat.rs_tstamp);
211 rx_status->band = sc->hw->conf.channel->band;
212 rx_status->freq = sc->hw->conf.channel->center_freq;
213 rx_status->noise = sc->sc_ani.sc_noise_floor;
214 rx_status->signal = rx_status->noise + ds->ds_rxstat.rs_rssi;
215 rx_status->antenna = ds->ds_rxstat.rs_antenna;
216
217 /* at 45 you will be able to use MCS 15 reliably. A more elaborate
218 * scheme can be used here but it requires tables of SNR/throughput for
219 * each possible mode used. */
220 rx_status->qual = ds->ds_rxstat.rs_rssi * 100 / 45;
221
222 /* rssi can be more than 45 though, anything above that
223 * should be considered at 100% */
224 if (rx_status->qual > 100)
225 rx_status->qual = 100;
226
227 rx_status->flag |= RX_FLAG_TSFT;
228
229 return 1;
230 rx_next:
231 return 0;
232 }
233
234 static void ath_opmode_init(struct ath_softc *sc)
235 {
236 struct ath_hal *ah = sc->sc_ah;
237 u32 rfilt, mfilt[2];
238
239 /* configure rx filter */
240 rfilt = ath_calcrxfilter(sc);
241 ath9k_hw_setrxfilter(ah, rfilt);
242
243 /* configure bssid mask */
244 if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
245 ath9k_hw_setbssidmask(ah, sc->sc_bssidmask);
246
247 /* configure operational mode */
248 ath9k_hw_setopmode(ah);
249
250 /* Handle any link-level address change. */
251 ath9k_hw_setmac(ah, sc->sc_myaddr);
252
253 /* calculate and install multicast filter */
254 mfilt[0] = mfilt[1] = ~0;
255 ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
256 }
257
258 int ath_rx_init(struct ath_softc *sc, int nbufs)
259 {
260 struct sk_buff *skb;
261 struct ath_buf *bf;
262 int error = 0;
263
264 do {
265 spin_lock_init(&sc->rx.rxflushlock);
266 sc->sc_flags &= ~SC_OP_RXFLUSH;
267 spin_lock_init(&sc->rx.rxbuflock);
268
269 sc->rx.bufsize = roundup(IEEE80211_MAX_MPDU_LEN,
270 min(sc->sc_cachelsz,
271 (u16)64));
272
273 DPRINTF(sc, ATH_DBG_CONFIG, "cachelsz %u rxbufsize %u\n",
274 sc->sc_cachelsz, sc->rx.bufsize);
275
276 /* Initialize rx descriptors */
277
278 error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
279 "rx", nbufs, 1);
280 if (error != 0) {
281 DPRINTF(sc, ATH_DBG_FATAL,
282 "failed to allocate rx descriptors: %d\n", error);
283 break;
284 }
285
286 list_for_each_entry(bf, &sc->rx.rxbuf, list) {
287 skb = ath_rxbuf_alloc(sc, sc->rx.bufsize);
288 if (skb == NULL) {
289 error = -ENOMEM;
290 break;
291 }
292
293 bf->bf_mpdu = skb;
294 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
295 sc->rx.bufsize,
296 DMA_FROM_DEVICE);
297 if (unlikely(dma_mapping_error(sc->dev,
298 bf->bf_buf_addr))) {
299 dev_kfree_skb_any(skb);
300 bf->bf_mpdu = NULL;
301 DPRINTF(sc, ATH_DBG_CONFIG,
302 "dma_mapping_error() on RX init\n");
303 error = -ENOMEM;
304 break;
305 }
306 bf->bf_dmacontext = bf->bf_buf_addr;
307 }
308 sc->rx.rxlink = NULL;
309
310 } while (0);
311
312 if (error)
313 ath_rx_cleanup(sc);
314
315 return error;
316 }
317
318 void ath_rx_cleanup(struct ath_softc *sc)
319 {
320 struct sk_buff *skb;
321 struct ath_buf *bf;
322
323 list_for_each_entry(bf, &sc->rx.rxbuf, list) {
324 skb = bf->bf_mpdu;
325 if (skb)
326 dev_kfree_skb(skb);
327 }
328
329 if (sc->rx.rxdma.dd_desc_len != 0)
330 ath_descdma_cleanup(sc, &sc->rx.rxdma, &sc->rx.rxbuf);
331 }
332
333 /*
334 * Calculate the receive filter according to the
335 * operating mode and state:
336 *
337 * o always accept unicast, broadcast, and multicast traffic
338 * o maintain current state of phy error reception (the hal
339 * may enable phy error frames for noise immunity work)
340 * o probe request frames are accepted only when operating in
341 * hostap, adhoc, or monitor modes
342 * o enable promiscuous mode according to the interface state
343 * o accept beacons:
344 * - when operating in adhoc mode so the 802.11 layer creates
345 * node table entries for peers,
346 * - when operating in station mode for collecting rssi data when
347 * the station is otherwise quiet, or
348 * - when operating as a repeater so we see repeater-sta beacons
349 * - when scanning
350 */
351
352 u32 ath_calcrxfilter(struct ath_softc *sc)
353 {
354 #define RX_FILTER_PRESERVE (ATH9K_RX_FILTER_PHYERR | ATH9K_RX_FILTER_PHYRADAR)
355
356 u32 rfilt;
357
358 rfilt = (ath9k_hw_getrxfilter(sc->sc_ah) & RX_FILTER_PRESERVE)
359 | ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
360 | ATH9K_RX_FILTER_MCAST;
361
362 /* If not a STA, enable processing of Probe Requests */
363 if (sc->sc_ah->ah_opmode != NL80211_IFTYPE_STATION)
364 rfilt |= ATH9K_RX_FILTER_PROBEREQ;
365
366 /* Can't set HOSTAP into promiscous mode */
367 if (((sc->sc_ah->ah_opmode != NL80211_IFTYPE_AP) &&
368 (sc->rx.rxfilter & FIF_PROMISC_IN_BSS)) ||
369 (sc->sc_ah->ah_opmode == NL80211_IFTYPE_MONITOR)) {
370 rfilt |= ATH9K_RX_FILTER_PROM;
371 /* ??? To prevent from sending ACK */
372 rfilt &= ~ATH9K_RX_FILTER_UCAST;
373 }
374
375 if (sc->rx.rxfilter & FIF_CONTROL)
376 rfilt |= ATH9K_RX_FILTER_CONTROL;
377
378 if (sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION ||
379 sc->sc_ah->ah_opmode == NL80211_IFTYPE_ADHOC)
380 rfilt |= ATH9K_RX_FILTER_BEACON;
381
382 /* If in HOSTAP mode, want to enable reception of PSPOLL frames
383 & beacon frames */
384 if (sc->sc_ah->ah_opmode == NL80211_IFTYPE_AP)
385 rfilt |= (ATH9K_RX_FILTER_BEACON | ATH9K_RX_FILTER_PSPOLL);
386
387 return rfilt;
388
389 #undef RX_FILTER_PRESERVE
390 }
391
392 int ath_startrecv(struct ath_softc *sc)
393 {
394 struct ath_hal *ah = sc->sc_ah;
395 struct ath_buf *bf, *tbf;
396
397 spin_lock_bh(&sc->rx.rxbuflock);
398 if (list_empty(&sc->rx.rxbuf))
399 goto start_recv;
400
401 sc->rx.rxlink = NULL;
402 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
403 ath_rx_buf_link(sc, bf);
404 }
405
406 /* We could have deleted elements so the list may be empty now */
407 if (list_empty(&sc->rx.rxbuf))
408 goto start_recv;
409
410 bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
411 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
412 ath9k_hw_rxena(ah);
413
414 start_recv:
415 spin_unlock_bh(&sc->rx.rxbuflock);
416 ath_opmode_init(sc);
417 ath9k_hw_startpcureceive(ah);
418
419 return 0;
420 }
421
422 bool ath_stoprecv(struct ath_softc *sc)
423 {
424 struct ath_hal *ah = sc->sc_ah;
425 bool stopped;
426
427 ath9k_hw_stoppcurecv(ah);
428 ath9k_hw_setrxfilter(ah, 0);
429 stopped = ath9k_hw_stopdmarecv(ah);
430 mdelay(3); /* 3ms is long enough for 1 frame */
431 sc->rx.rxlink = NULL;
432
433 return stopped;
434 }
435
436 void ath_flushrecv(struct ath_softc *sc)
437 {
438 spin_lock_bh(&sc->rx.rxflushlock);
439 sc->sc_flags |= SC_OP_RXFLUSH;
440 ath_rx_tasklet(sc, 1);
441 sc->sc_flags &= ~SC_OP_RXFLUSH;
442 spin_unlock_bh(&sc->rx.rxflushlock);
443 }
444
445 int ath_rx_tasklet(struct ath_softc *sc, int flush)
446 {
447 #define PA2DESC(_sc, _pa) \
448 ((struct ath_desc *)((caddr_t)(_sc)->rx.rxdma.dd_desc + \
449 ((_pa) - (_sc)->rx.rxdma.dd_desc_paddr)))
450
451 struct ath_buf *bf;
452 struct ath_desc *ds;
453 struct sk_buff *skb = NULL, *requeue_skb;
454 struct ieee80211_rx_status rx_status;
455 struct ath_hal *ah = sc->sc_ah;
456 struct ieee80211_hdr *hdr;
457 int hdrlen, padsize, retval;
458 bool decrypt_error = false;
459 u8 keyix;
460
461 spin_lock_bh(&sc->rx.rxbuflock);
462
463 do {
464 /* If handling rx interrupt and flush is in progress => exit */
465 if ((sc->sc_flags & SC_OP_RXFLUSH) && (flush == 0))
466 break;
467
468 if (list_empty(&sc->rx.rxbuf)) {
469 sc->rx.rxlink = NULL;
470 break;
471 }
472
473 bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
474 ds = bf->bf_desc;
475
476 /*
477 * Must provide the virtual address of the current
478 * descriptor, the physical address, and the virtual
479 * address of the next descriptor in the h/w chain.
480 * This allows the HAL to look ahead to see if the
481 * hardware is done with a descriptor by checking the
482 * done bit in the following descriptor and the address
483 * of the current descriptor the DMA engine is working
484 * on. All this is necessary because of our use of
485 * a self-linked list to avoid rx overruns.
486 */
487 retval = ath9k_hw_rxprocdesc(ah, ds,
488 bf->bf_daddr,
489 PA2DESC(sc, ds->ds_link),
490 0);
491 if (retval == -EINPROGRESS) {
492 struct ath_buf *tbf;
493 struct ath_desc *tds;
494
495 if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
496 sc->rx.rxlink = NULL;
497 break;
498 }
499
500 tbf = list_entry(bf->list.next, struct ath_buf, list);
501
502 /*
503 * On some hardware the descriptor status words could
504 * get corrupted, including the done bit. Because of
505 * this, check if the next descriptor's done bit is
506 * set or not.
507 *
508 * If the next descriptor's done bit is set, the current
509 * descriptor has been corrupted. Force s/w to discard
510 * this descriptor and continue...
511 */
512
513 tds = tbf->bf_desc;
514 retval = ath9k_hw_rxprocdesc(ah, tds, tbf->bf_daddr,
515 PA2DESC(sc, tds->ds_link), 0);
516 if (retval == -EINPROGRESS) {
517 break;
518 }
519 }
520
521 skb = bf->bf_mpdu;
522 if (!skb)
523 continue;
524
525 /*
526 * Synchronize the DMA transfer with CPU before
527 * 1. accessing the frame
528 * 2. requeueing the same buffer to h/w
529 */
530 dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
531 sc->rx.bufsize,
532 DMA_FROM_DEVICE);
533
534 /*
535 * If we're asked to flush receive queue, directly
536 * chain it back at the queue without processing it.
537 */
538 if (flush)
539 goto requeue;
540
541 if (!ds->ds_rxstat.rs_datalen)
542 goto requeue;
543
544 /* The status portion of the descriptor could get corrupted. */
545 if (sc->rx.bufsize < ds->ds_rxstat.rs_datalen)
546 goto requeue;
547
548 if (!ath_rx_prepare(skb, ds, &rx_status, &decrypt_error, sc))
549 goto requeue;
550
551 /* Ensure we always have an skb to requeue once we are done
552 * processing the current buffer's skb */
553 requeue_skb = ath_rxbuf_alloc(sc, sc->rx.bufsize);
554
555 /* If there is no memory we ignore the current RX'd frame,
556 * tell hardware it can give us a new frame using the old
557 * skb and put it at the tail of the sc->rx.rxbuf list for
558 * processing. */
559 if (!requeue_skb)
560 goto requeue;
561
562 /* Unmap the frame */
563 dma_unmap_single(sc->dev, bf->bf_buf_addr,
564 sc->rx.bufsize,
565 DMA_FROM_DEVICE);
566
567 skb_put(skb, ds->ds_rxstat.rs_datalen);
568 skb->protocol = cpu_to_be16(ETH_P_CONTROL);
569
570 /* see if any padding is done by the hw and remove it */
571 hdr = (struct ieee80211_hdr *)skb->data;
572 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
573
574 /* The MAC header is padded to have 32-bit boundary if the
575 * packet payload is non-zero. The general calculation for
576 * padsize would take into account odd header lengths:
577 * padsize = (4 - hdrlen % 4) % 4; However, since only
578 * even-length headers are used, padding can only be 0 or 2
579 * bytes and we can optimize this a bit. In addition, we must
580 * not try to remove padding from short control frames that do
581 * not have payload. */
582 padsize = hdrlen & 3;
583 if (padsize && hdrlen >= 24) {
584 memmove(skb->data + padsize, skb->data, hdrlen);
585 skb_pull(skb, padsize);
586 }
587
588 keyix = ds->ds_rxstat.rs_keyix;
589
590 if (!(keyix == ATH9K_RXKEYIX_INVALID) && !decrypt_error) {
591 rx_status.flag |= RX_FLAG_DECRYPTED;
592 } else if ((le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_PROTECTED)
593 && !decrypt_error && skb->len >= hdrlen + 4) {
594 keyix = skb->data[hdrlen + 3] >> 6;
595
596 if (test_bit(keyix, sc->sc_keymap))
597 rx_status.flag |= RX_FLAG_DECRYPTED;
598 }
599 if (ah->sw_mgmt_crypto &&
600 (rx_status.flag & RX_FLAG_DECRYPTED) &&
601 ieee80211_is_mgmt(hdr->frame_control)) {
602 /* Use software decrypt for management frames. */
603 rx_status.flag &= ~RX_FLAG_DECRYPTED;
604 }
605
606 /* Send the frame to mac80211 */
607 __ieee80211_rx(sc->hw, skb, &rx_status);
608
609 /* We will now give hardware our shiny new allocated skb */
610 bf->bf_mpdu = requeue_skb;
611 bf->bf_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
612 sc->rx.bufsize,
613 DMA_FROM_DEVICE);
614 if (unlikely(dma_mapping_error(sc->dev,
615 bf->bf_buf_addr))) {
616 dev_kfree_skb_any(requeue_skb);
617 bf->bf_mpdu = NULL;
618 DPRINTF(sc, ATH_DBG_CONFIG,
619 "dma_mapping_error() on RX\n");
620 break;
621 }
622 bf->bf_dmacontext = bf->bf_buf_addr;
623
624 /*
625 * change the default rx antenna if rx diversity chooses the
626 * other antenna 3 times in a row.
627 */
628 if (sc->rx.defant != ds->ds_rxstat.rs_antenna) {
629 if (++sc->rx.rxotherant >= 3)
630 ath_setdefantenna(sc, ds->ds_rxstat.rs_antenna);
631 } else {
632 sc->rx.rxotherant = 0;
633 }
634
635 if (ieee80211_is_beacon(hdr->frame_control) &&
636 (sc->sc_flags & SC_OP_WAIT_FOR_BEACON)) {
637 sc->sc_flags &= ~SC_OP_WAIT_FOR_BEACON;
638 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
639 }
640 requeue:
641 list_move_tail(&bf->list, &sc->rx.rxbuf);
642 ath_rx_buf_link(sc, bf);
643 } while (1);
644
645 spin_unlock_bh(&sc->rx.rxbuflock);
646
647 return 0;
648 #undef PA2DESC
649 }
This page took 0.045937 seconds and 6 git commands to generate.