iwlwifi: mvm: enable VHT MU-MIMO for supported hardware
[deliverable/linux.git] / drivers / net / wireless / intel / iwlwifi / iwl-nvm-parse.c
1 /******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of version 2 of the GNU General Public License as
13 * published by the Free Software Foundation.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
23 * USA
24 *
25 * The full GNU General Public License is included in this distribution
26 * in the file called COPYING.
27 *
28 * Contact Information:
29 * Intel Linux Wireless <linuxwifi@intel.com>
30 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 *
32 * BSD LICENSE
33 *
34 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
35 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
36 * All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 *
42 * * Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * * Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in
46 * the documentation and/or other materials provided with the
47 * distribution.
48 * * Neither the name Intel Corporation nor the names of its
49 * contributors may be used to endorse or promote products derived
50 * from this software without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
53 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
54 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
55 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
56 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
57 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
58 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
59 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
60 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
61 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
62 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
63 *****************************************************************************/
64 #include <linux/types.h>
65 #include <linux/slab.h>
66 #include <linux/export.h>
67 #include <linux/etherdevice.h>
68 #include <linux/pci.h>
69 #include "iwl-drv.h"
70 #include "iwl-modparams.h"
71 #include "iwl-nvm-parse.h"
72
73 /* NVM offsets (in words) definitions */
74 enum wkp_nvm_offsets {
75 /* NVM HW-Section offset (in words) definitions */
76 HW_ADDR = 0x15,
77
78 /* NVM SW-Section offset (in words) definitions */
79 NVM_SW_SECTION = 0x1C0,
80 NVM_VERSION = 0,
81 RADIO_CFG = 1,
82 SKU = 2,
83 N_HW_ADDRS = 3,
84 NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
85
86 /* NVM calibration section offset (in words) definitions */
87 NVM_CALIB_SECTION = 0x2B8,
88 XTAL_CALIB = 0x316 - NVM_CALIB_SECTION
89 };
90
91 enum family_8000_nvm_offsets {
92 /* NVM HW-Section offset (in words) definitions */
93 HW_ADDR0_WFPM_FAMILY_8000 = 0x12,
94 HW_ADDR1_WFPM_FAMILY_8000 = 0x16,
95 HW_ADDR0_PCIE_FAMILY_8000 = 0x8A,
96 HW_ADDR1_PCIE_FAMILY_8000 = 0x8E,
97 MAC_ADDRESS_OVERRIDE_FAMILY_8000 = 1,
98
99 /* NVM SW-Section offset (in words) definitions */
100 NVM_SW_SECTION_FAMILY_8000 = 0x1C0,
101 NVM_VERSION_FAMILY_8000 = 0,
102 RADIO_CFG_FAMILY_8000 = 0,
103 SKU_FAMILY_8000 = 2,
104 N_HW_ADDRS_FAMILY_8000 = 3,
105
106 /* NVM REGULATORY -Section offset (in words) definitions */
107 NVM_CHANNELS_FAMILY_8000 = 0,
108 NVM_LAR_OFFSET_FAMILY_8000_OLD = 0x4C7,
109 NVM_LAR_OFFSET_FAMILY_8000 = 0x507,
110 NVM_LAR_ENABLED_FAMILY_8000 = 0x7,
111
112 /* NVM calibration section offset (in words) definitions */
113 NVM_CALIB_SECTION_FAMILY_8000 = 0x2B8,
114 XTAL_CALIB_FAMILY_8000 = 0x316 - NVM_CALIB_SECTION_FAMILY_8000
115 };
116
117 /* SKU Capabilities (actual values from NVM definition) */
118 enum nvm_sku_bits {
119 NVM_SKU_CAP_BAND_24GHZ = BIT(0),
120 NVM_SKU_CAP_BAND_52GHZ = BIT(1),
121 NVM_SKU_CAP_11N_ENABLE = BIT(2),
122 NVM_SKU_CAP_11AC_ENABLE = BIT(3),
123 NVM_SKU_CAP_MIMO_DISABLE = BIT(5),
124 };
125
126 /*
127 * These are the channel numbers in the order that they are stored in the NVM
128 */
129 static const u8 iwl_nvm_channels[] = {
130 /* 2.4 GHz */
131 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
132 /* 5 GHz */
133 36, 40, 44 , 48, 52, 56, 60, 64,
134 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
135 149, 153, 157, 161, 165
136 };
137
138 static const u8 iwl_nvm_channels_family_8000[] = {
139 /* 2.4 GHz */
140 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
141 /* 5 GHz */
142 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
143 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
144 149, 153, 157, 161, 165, 169, 173, 177, 181
145 };
146
147 #define IWL_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels)
148 #define IWL_NUM_CHANNELS_FAMILY_8000 ARRAY_SIZE(iwl_nvm_channels_family_8000)
149 #define NUM_2GHZ_CHANNELS 14
150 #define NUM_2GHZ_CHANNELS_FAMILY_8000 14
151 #define FIRST_2GHZ_HT_MINUS 5
152 #define LAST_2GHZ_HT_PLUS 9
153 #define LAST_5GHZ_HT 165
154 #define LAST_5GHZ_HT_FAMILY_8000 181
155 #define N_HW_ADDR_MASK 0xF
156
157 /* rate data (static) */
158 static struct ieee80211_rate iwl_cfg80211_rates[] = {
159 { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
160 { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
161 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
162 { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
163 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
164 { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
165 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
166 { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
167 { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
168 { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
169 { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
170 { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
171 { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
172 { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
173 { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
174 };
175 #define RATES_24_OFFS 0
176 #define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates)
177 #define RATES_52_OFFS 4
178 #define N_RATES_52 (N_RATES_24 - RATES_52_OFFS)
179
180 /**
181 * enum iwl_nvm_channel_flags - channel flags in NVM
182 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
183 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
184 * @NVM_CHANNEL_ACTIVE: active scanning allowed
185 * @NVM_CHANNEL_RADAR: radar detection required
186 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
187 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
188 * on same channel on 2.4 or same UNII band on 5.2
189 * @NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
190 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
191 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
192 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
193 */
194 enum iwl_nvm_channel_flags {
195 NVM_CHANNEL_VALID = BIT(0),
196 NVM_CHANNEL_IBSS = BIT(1),
197 NVM_CHANNEL_ACTIVE = BIT(3),
198 NVM_CHANNEL_RADAR = BIT(4),
199 NVM_CHANNEL_INDOOR_ONLY = BIT(5),
200 NVM_CHANNEL_GO_CONCURRENT = BIT(6),
201 NVM_CHANNEL_WIDE = BIT(8),
202 NVM_CHANNEL_40MHZ = BIT(9),
203 NVM_CHANNEL_80MHZ = BIT(10),
204 NVM_CHANNEL_160MHZ = BIT(11),
205 };
206
207 #define CHECK_AND_PRINT_I(x) \
208 ((ch_flags & NVM_CHANNEL_##x) ? # x " " : "")
209
210 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz,
211 u16 nvm_flags, const struct iwl_cfg *cfg)
212 {
213 u32 flags = IEEE80211_CHAN_NO_HT40;
214 u32 last_5ghz_ht = LAST_5GHZ_HT;
215
216 if (cfg->device_family == IWL_DEVICE_FAMILY_8000)
217 last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
218
219 if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) {
220 if (ch_num <= LAST_2GHZ_HT_PLUS)
221 flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
222 if (ch_num >= FIRST_2GHZ_HT_MINUS)
223 flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
224 } else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) {
225 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
226 flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
227 else
228 flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
229 }
230 if (!(nvm_flags & NVM_CHANNEL_80MHZ))
231 flags |= IEEE80211_CHAN_NO_80MHZ;
232 if (!(nvm_flags & NVM_CHANNEL_160MHZ))
233 flags |= IEEE80211_CHAN_NO_160MHZ;
234
235 if (!(nvm_flags & NVM_CHANNEL_IBSS))
236 flags |= IEEE80211_CHAN_NO_IR;
237
238 if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
239 flags |= IEEE80211_CHAN_NO_IR;
240
241 if (nvm_flags & NVM_CHANNEL_RADAR)
242 flags |= IEEE80211_CHAN_RADAR;
243
244 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
245 flags |= IEEE80211_CHAN_INDOOR_ONLY;
246
247 /* Set the GO concurrent flag only in case that NO_IR is set.
248 * Otherwise it is meaningless
249 */
250 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
251 (flags & IEEE80211_CHAN_NO_IR))
252 flags |= IEEE80211_CHAN_IR_CONCURRENT;
253
254 return flags;
255 }
256
257 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
258 struct iwl_nvm_data *data,
259 const __le16 * const nvm_ch_flags,
260 bool lar_supported)
261 {
262 int ch_idx;
263 int n_channels = 0;
264 struct ieee80211_channel *channel;
265 u16 ch_flags;
266 bool is_5ghz;
267 int num_of_ch, num_2ghz_channels;
268 const u8 *nvm_chan;
269
270 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
271 num_of_ch = IWL_NUM_CHANNELS;
272 nvm_chan = &iwl_nvm_channels[0];
273 num_2ghz_channels = NUM_2GHZ_CHANNELS;
274 } else {
275 num_of_ch = IWL_NUM_CHANNELS_FAMILY_8000;
276 nvm_chan = &iwl_nvm_channels_family_8000[0];
277 num_2ghz_channels = NUM_2GHZ_CHANNELS_FAMILY_8000;
278 }
279
280 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
281 ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);
282
283 if (ch_idx >= num_2ghz_channels &&
284 !data->sku_cap_band_52GHz_enable)
285 continue;
286
287 if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) {
288 /*
289 * Channels might become valid later if lar is
290 * supported, hence we still want to add them to
291 * the list of supported channels to cfg80211.
292 */
293 IWL_DEBUG_EEPROM(dev,
294 "Ch. %d Flags %x [%sGHz] - No traffic\n",
295 nvm_chan[ch_idx],
296 ch_flags,
297 (ch_idx >= num_2ghz_channels) ?
298 "5.2" : "2.4");
299 continue;
300 }
301
302 channel = &data->channels[n_channels];
303 n_channels++;
304
305 channel->hw_value = nvm_chan[ch_idx];
306 channel->band = (ch_idx < num_2ghz_channels) ?
307 IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
308 channel->center_freq =
309 ieee80211_channel_to_frequency(
310 channel->hw_value, channel->band);
311
312 /* Initialize regulatory-based run-time data */
313
314 /*
315 * Default value - highest tx power value. max_power
316 * is not used in mvm, and is used for backwards compatibility
317 */
318 channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
319 is_5ghz = channel->band == IEEE80211_BAND_5GHZ;
320
321 /* don't put limitations in case we're using LAR */
322 if (!lar_supported)
323 channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
324 ch_idx, is_5ghz,
325 ch_flags, cfg);
326 else
327 channel->flags = 0;
328
329 IWL_DEBUG_EEPROM(dev,
330 "Ch. %d [%sGHz] %s%s%s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n",
331 channel->hw_value,
332 is_5ghz ? "5.2" : "2.4",
333 CHECK_AND_PRINT_I(VALID),
334 CHECK_AND_PRINT_I(IBSS),
335 CHECK_AND_PRINT_I(ACTIVE),
336 CHECK_AND_PRINT_I(RADAR),
337 CHECK_AND_PRINT_I(WIDE),
338 CHECK_AND_PRINT_I(INDOOR_ONLY),
339 CHECK_AND_PRINT_I(GO_CONCURRENT),
340 ch_flags,
341 channel->max_power,
342 ((ch_flags & NVM_CHANNEL_IBSS) &&
343 !(ch_flags & NVM_CHANNEL_RADAR))
344 ? "" : "not ");
345 }
346
347 return n_channels;
348 }
349
350 static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg,
351 struct iwl_nvm_data *data,
352 struct ieee80211_sta_vht_cap *vht_cap,
353 u8 tx_chains, u8 rx_chains)
354 {
355 int num_rx_ants = num_of_ant(rx_chains);
356 int num_tx_ants = num_of_ant(tx_chains);
357 unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
358 IEEE80211_VHT_MAX_AMPDU_1024K);
359
360 vht_cap->vht_supported = true;
361
362 vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
363 IEEE80211_VHT_CAP_RXSTBC_1 |
364 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
365 3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
366 max_ampdu_exponent <<
367 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
368
369 if (cfg->vht_mu_mimo_supported)
370 vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
371
372 if (cfg->ht_params->ldpc)
373 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
374
375 if (data->sku_cap_mimo_disabled) {
376 num_rx_ants = 1;
377 num_tx_ants = 1;
378 }
379
380 if (num_tx_ants > 1)
381 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
382 else
383 vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
384
385 switch (iwlwifi_mod_params.amsdu_size) {
386 case IWL_AMSDU_4K:
387 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
388 break;
389 case IWL_AMSDU_8K:
390 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
391 break;
392 case IWL_AMSDU_12K:
393 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
394 break;
395 default:
396 break;
397 }
398
399 vht_cap->vht_mcs.rx_mcs_map =
400 cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
401 IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
402 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
403 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
404 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
405 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
406 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
407 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
408
409 if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
410 vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
411 /* this works because NOT_SUPPORTED == 3 */
412 vht_cap->vht_mcs.rx_mcs_map |=
413 cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
414 }
415
416 vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
417 }
418
419 static void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
420 struct iwl_nvm_data *data,
421 const __le16 *ch_section,
422 u8 tx_chains, u8 rx_chains, bool lar_supported)
423 {
424 int n_channels;
425 int n_used = 0;
426 struct ieee80211_supported_band *sband;
427
428 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
429 n_channels = iwl_init_channel_map(
430 dev, cfg, data,
431 &ch_section[NVM_CHANNELS], lar_supported);
432 else
433 n_channels = iwl_init_channel_map(
434 dev, cfg, data,
435 &ch_section[NVM_CHANNELS_FAMILY_8000],
436 lar_supported);
437
438 sband = &data->bands[IEEE80211_BAND_2GHZ];
439 sband->band = IEEE80211_BAND_2GHZ;
440 sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
441 sband->n_bitrates = N_RATES_24;
442 n_used += iwl_init_sband_channels(data, sband, n_channels,
443 IEEE80211_BAND_2GHZ);
444 iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_2GHZ,
445 tx_chains, rx_chains);
446
447 sband = &data->bands[IEEE80211_BAND_5GHZ];
448 sband->band = IEEE80211_BAND_5GHZ;
449 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
450 sband->n_bitrates = N_RATES_52;
451 n_used += iwl_init_sband_channels(data, sband, n_channels,
452 IEEE80211_BAND_5GHZ);
453 iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_5GHZ,
454 tx_chains, rx_chains);
455 if (data->sku_cap_11ac_enable)
456 iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap,
457 tx_chains, rx_chains);
458
459 if (n_channels != n_used)
460 IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
461 n_used, n_channels);
462 }
463
464 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
465 const __le16 *phy_sku)
466 {
467 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
468 return le16_to_cpup(nvm_sw + SKU);
469
470 return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
471 }
472
473 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
474 {
475 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
476 return le16_to_cpup(nvm_sw + NVM_VERSION);
477 else
478 return le32_to_cpup((__le32 *)(nvm_sw +
479 NVM_VERSION_FAMILY_8000));
480 }
481
482 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
483 const __le16 *phy_sku)
484 {
485 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
486 return le16_to_cpup(nvm_sw + RADIO_CFG);
487
488 return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_8000));
489
490 }
491
492 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
493 {
494 int n_hw_addr;
495
496 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
497 return le16_to_cpup(nvm_sw + N_HW_ADDRS);
498
499 n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
500
501 return n_hw_addr & N_HW_ADDR_MASK;
502 }
503
504 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
505 struct iwl_nvm_data *data,
506 u32 radio_cfg)
507 {
508 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
509 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
510 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
511 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
512 data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
513 return;
514 }
515
516 /* set the radio configuration for family 8000 */
517 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK_FAMILY_8000(radio_cfg);
518 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK_FAMILY_8000(radio_cfg);
519 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK_FAMILY_8000(radio_cfg);
520 data->radio_cfg_pnum = NVM_RF_CFG_FLAVOR_MSK_FAMILY_8000(radio_cfg);
521 data->valid_tx_ant = NVM_RF_CFG_TX_ANT_MSK_FAMILY_8000(radio_cfg);
522 data->valid_rx_ant = NVM_RF_CFG_RX_ANT_MSK_FAMILY_8000(radio_cfg);
523 }
524
525 static void iwl_set_hw_address(const struct iwl_cfg *cfg,
526 struct iwl_nvm_data *data,
527 const __le16 *nvm_sec)
528 {
529 const u8 *hw_addr = (const u8 *)(nvm_sec + HW_ADDR);
530
531 /* The byte order is little endian 16 bit, meaning 214365 */
532 data->hw_addr[0] = hw_addr[1];
533 data->hw_addr[1] = hw_addr[0];
534 data->hw_addr[2] = hw_addr[3];
535 data->hw_addr[3] = hw_addr[2];
536 data->hw_addr[4] = hw_addr[5];
537 data->hw_addr[5] = hw_addr[4];
538 }
539
540 static void iwl_set_hw_address_family_8000(struct device *dev,
541 const struct iwl_cfg *cfg,
542 struct iwl_nvm_data *data,
543 const __le16 *mac_override,
544 const __le16 *nvm_hw,
545 __le32 mac_addr0, __le32 mac_addr1)
546 {
547 const u8 *hw_addr;
548
549 if (mac_override) {
550 static const u8 reserved_mac[] = {
551 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
552 };
553
554 hw_addr = (const u8 *)(mac_override +
555 MAC_ADDRESS_OVERRIDE_FAMILY_8000);
556
557 /*
558 * Store the MAC address from MAO section.
559 * No byte swapping is required in MAO section
560 */
561 memcpy(data->hw_addr, hw_addr, ETH_ALEN);
562
563 /*
564 * Force the use of the OTP MAC address in case of reserved MAC
565 * address in the NVM, or if address is given but invalid.
566 */
567 if (is_valid_ether_addr(data->hw_addr) &&
568 memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
569 return;
570
571 IWL_ERR_DEV(dev,
572 "mac address from nvm override section is not valid\n");
573 }
574
575 if (nvm_hw) {
576 /* read the MAC address from HW resisters */
577 hw_addr = (const u8 *)&mac_addr0;
578 data->hw_addr[0] = hw_addr[3];
579 data->hw_addr[1] = hw_addr[2];
580 data->hw_addr[2] = hw_addr[1];
581 data->hw_addr[3] = hw_addr[0];
582
583 hw_addr = (const u8 *)&mac_addr1;
584 data->hw_addr[4] = hw_addr[1];
585 data->hw_addr[5] = hw_addr[0];
586
587 if (!is_valid_ether_addr(data->hw_addr))
588 IWL_ERR_DEV(dev,
589 "mac address (%pM) from hw section is not valid\n",
590 data->hw_addr);
591
592 return;
593 }
594
595 IWL_ERR_DEV(dev, "mac address is not found\n");
596 }
597
598 struct iwl_nvm_data *
599 iwl_parse_nvm_data(struct device *dev, const struct iwl_cfg *cfg,
600 const __le16 *nvm_hw, const __le16 *nvm_sw,
601 const __le16 *nvm_calib, const __le16 *regulatory,
602 const __le16 *mac_override, const __le16 *phy_sku,
603 u8 tx_chains, u8 rx_chains, bool lar_fw_supported,
604 __le32 mac_addr0, __le32 mac_addr1)
605 {
606 struct iwl_nvm_data *data;
607 u32 sku;
608 u32 radio_cfg;
609 u16 lar_config;
610
611 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
612 data = kzalloc(sizeof(*data) +
613 sizeof(struct ieee80211_channel) *
614 IWL_NUM_CHANNELS,
615 GFP_KERNEL);
616 else
617 data = kzalloc(sizeof(*data) +
618 sizeof(struct ieee80211_channel) *
619 IWL_NUM_CHANNELS_FAMILY_8000,
620 GFP_KERNEL);
621 if (!data)
622 return NULL;
623
624 data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
625
626 radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
627 iwl_set_radio_cfg(cfg, data, radio_cfg);
628 if (data->valid_tx_ant)
629 tx_chains &= data->valid_tx_ant;
630 if (data->valid_rx_ant)
631 rx_chains &= data->valid_rx_ant;
632
633 sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
634 data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
635 data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
636 data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
637 if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
638 data->sku_cap_11n_enable = false;
639 data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
640 (sku & NVM_SKU_CAP_11AC_ENABLE);
641 data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
642
643 data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
644
645 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
646 /* Checking for required sections */
647 if (!nvm_calib) {
648 IWL_ERR_DEV(dev,
649 "Can't parse empty Calib NVM sections\n");
650 kfree(data);
651 return NULL;
652 }
653 /* in family 8000 Xtal calibration values moved to OTP */
654 data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
655 data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
656 }
657
658 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
659 iwl_set_hw_address(cfg, data, nvm_hw);
660
661 iwl_init_sbands(dev, cfg, data, nvm_sw,
662 tx_chains, rx_chains, lar_fw_supported);
663 } else {
664 u16 lar_offset = data->nvm_version < 0xE39 ?
665 NVM_LAR_OFFSET_FAMILY_8000_OLD :
666 NVM_LAR_OFFSET_FAMILY_8000;
667
668 lar_config = le16_to_cpup(regulatory + lar_offset);
669 data->lar_enabled = !!(lar_config &
670 NVM_LAR_ENABLED_FAMILY_8000);
671
672 /* MAC address in family 8000 */
673 iwl_set_hw_address_family_8000(dev, cfg, data, mac_override,
674 nvm_hw, mac_addr0, mac_addr1);
675
676 iwl_init_sbands(dev, cfg, data, regulatory,
677 tx_chains, rx_chains,
678 lar_fw_supported && data->lar_enabled);
679 }
680
681 data->calib_version = 255;
682
683 return data;
684 }
685 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
686
687 static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan,
688 int ch_idx, u16 nvm_flags,
689 const struct iwl_cfg *cfg)
690 {
691 u32 flags = NL80211_RRF_NO_HT40;
692 u32 last_5ghz_ht = LAST_5GHZ_HT;
693
694 if (cfg->device_family == IWL_DEVICE_FAMILY_8000)
695 last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
696
697 if (ch_idx < NUM_2GHZ_CHANNELS &&
698 (nvm_flags & NVM_CHANNEL_40MHZ)) {
699 if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
700 flags &= ~NL80211_RRF_NO_HT40PLUS;
701 if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
702 flags &= ~NL80211_RRF_NO_HT40MINUS;
703 } else if (nvm_chan[ch_idx] <= last_5ghz_ht &&
704 (nvm_flags & NVM_CHANNEL_40MHZ)) {
705 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
706 flags &= ~NL80211_RRF_NO_HT40PLUS;
707 else
708 flags &= ~NL80211_RRF_NO_HT40MINUS;
709 }
710
711 if (!(nvm_flags & NVM_CHANNEL_80MHZ))
712 flags |= NL80211_RRF_NO_80MHZ;
713 if (!(nvm_flags & NVM_CHANNEL_160MHZ))
714 flags |= NL80211_RRF_NO_160MHZ;
715
716 if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
717 flags |= NL80211_RRF_NO_IR;
718
719 if (nvm_flags & NVM_CHANNEL_RADAR)
720 flags |= NL80211_RRF_DFS;
721
722 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
723 flags |= NL80211_RRF_NO_OUTDOOR;
724
725 /* Set the GO concurrent flag only in case that NO_IR is set.
726 * Otherwise it is meaningless
727 */
728 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
729 (flags & NL80211_RRF_NO_IR))
730 flags |= NL80211_RRF_GO_CONCURRENT;
731
732 return flags;
733 }
734
735 struct ieee80211_regdomain *
736 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
737 int num_of_ch, __le32 *channels, u16 fw_mcc)
738 {
739 int ch_idx;
740 u16 ch_flags, prev_ch_flags = 0;
741 const u8 *nvm_chan = cfg->device_family == IWL_DEVICE_FAMILY_8000 ?
742 iwl_nvm_channels_family_8000 : iwl_nvm_channels;
743 struct ieee80211_regdomain *regd;
744 int size_of_regd;
745 struct ieee80211_reg_rule *rule;
746 enum ieee80211_band band;
747 int center_freq, prev_center_freq = 0;
748 int valid_rules = 0;
749 bool new_rule;
750 int max_num_ch = cfg->device_family == IWL_DEVICE_FAMILY_8000 ?
751 IWL_NUM_CHANNELS_FAMILY_8000 : IWL_NUM_CHANNELS;
752
753 if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
754 return ERR_PTR(-EINVAL);
755
756 if (WARN_ON(num_of_ch > max_num_ch))
757 num_of_ch = max_num_ch;
758
759 IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
760 num_of_ch);
761
762 /* build a regdomain rule for every valid channel */
763 size_of_regd =
764 sizeof(struct ieee80211_regdomain) +
765 num_of_ch * sizeof(struct ieee80211_reg_rule);
766
767 regd = kzalloc(size_of_regd, GFP_KERNEL);
768 if (!regd)
769 return ERR_PTR(-ENOMEM);
770
771 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
772 ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
773 band = (ch_idx < NUM_2GHZ_CHANNELS) ?
774 IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
775 center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
776 band);
777 new_rule = false;
778
779 if (!(ch_flags & NVM_CHANNEL_VALID)) {
780 IWL_DEBUG_DEV(dev, IWL_DL_LAR,
781 "Ch. %d Flags %x [%sGHz] - No traffic\n",
782 nvm_chan[ch_idx],
783 ch_flags,
784 (ch_idx >= NUM_2GHZ_CHANNELS) ?
785 "5.2" : "2.4");
786 continue;
787 }
788
789 /* we can't continue the same rule */
790 if (ch_idx == 0 || prev_ch_flags != ch_flags ||
791 center_freq - prev_center_freq > 20) {
792 valid_rules++;
793 new_rule = true;
794 }
795
796 rule = &regd->reg_rules[valid_rules - 1];
797
798 if (new_rule)
799 rule->freq_range.start_freq_khz =
800 MHZ_TO_KHZ(center_freq - 10);
801
802 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
803
804 /* this doesn't matter - not used by FW */
805 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
806 rule->power_rule.max_eirp =
807 DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
808
809 rule->flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
810 ch_flags, cfg);
811
812 /* rely on auto-calculation to merge BW of contiguous chans */
813 rule->flags |= NL80211_RRF_AUTO_BW;
814 rule->freq_range.max_bandwidth_khz = 0;
815
816 prev_ch_flags = ch_flags;
817 prev_center_freq = center_freq;
818
819 IWL_DEBUG_DEV(dev, IWL_DL_LAR,
820 "Ch. %d [%sGHz] %s%s%s%s%s%s%s%s%s(0x%02x): Ad-Hoc %ssupported\n",
821 center_freq,
822 band == IEEE80211_BAND_5GHZ ? "5.2" : "2.4",
823 CHECK_AND_PRINT_I(VALID),
824 CHECK_AND_PRINT_I(ACTIVE),
825 CHECK_AND_PRINT_I(RADAR),
826 CHECK_AND_PRINT_I(WIDE),
827 CHECK_AND_PRINT_I(40MHZ),
828 CHECK_AND_PRINT_I(80MHZ),
829 CHECK_AND_PRINT_I(160MHZ),
830 CHECK_AND_PRINT_I(INDOOR_ONLY),
831 CHECK_AND_PRINT_I(GO_CONCURRENT),
832 ch_flags,
833 ((ch_flags & NVM_CHANNEL_ACTIVE) &&
834 !(ch_flags & NVM_CHANNEL_RADAR))
835 ? "" : "not ");
836 }
837
838 regd->n_reg_rules = valid_rules;
839
840 /* set alpha2 from FW. */
841 regd->alpha2[0] = fw_mcc >> 8;
842 regd->alpha2[1] = fw_mcc & 0xff;
843
844 return regd;
845 }
846 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
This page took 0.070007 seconds and 5 git commands to generate.