Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[deliverable/linux.git] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
28
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <j@w1.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
43
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
106
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
110
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
114
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
118
119 The flow of data on the TX side is as follows:
120
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124 The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/version.h>
161 #include <linux/time.h>
162 #include <linux/firmware.h>
163 #include <linux/acpi.h>
164 #include <linux/ctype.h>
165 #include <linux/pm_qos_params.h>
166
167 #include "ipw2100.h"
168
169 #define IPW2100_VERSION "git-1.2.2"
170
171 #define DRV_NAME "ipw2100"
172 #define DRV_VERSION IPW2100_VERSION
173 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
174 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
175
176 /* Debugging stuff */
177 #ifdef CONFIG_IPW2100_DEBUG
178 #define IPW2100_RX_DEBUG /* Reception debugging */
179 #endif
180
181 MODULE_DESCRIPTION(DRV_DESCRIPTION);
182 MODULE_VERSION(DRV_VERSION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
185
186 static int debug = 0;
187 static int mode = 0;
188 static int channel = 0;
189 static int associate = 1;
190 static int disable = 0;
191 #ifdef CONFIG_PM
192 static struct ipw2100_fw ipw2100_firmware;
193 #endif
194
195 #include <linux/moduleparam.h>
196 module_param(debug, int, 0444);
197 module_param(mode, int, 0444);
198 module_param(channel, int, 0444);
199 module_param(associate, int, 0444);
200 module_param(disable, int, 0444);
201
202 MODULE_PARM_DESC(debug, "debug level");
203 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
204 MODULE_PARM_DESC(channel, "channel");
205 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
206 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
207
208 static u32 ipw2100_debug_level = IPW_DL_NONE;
209
210 #ifdef CONFIG_IPW2100_DEBUG
211 #define IPW_DEBUG(level, message...) \
212 do { \
213 if (ipw2100_debug_level & (level)) { \
214 printk(KERN_DEBUG "ipw2100: %c %s ", \
215 in_interrupt() ? 'I' : 'U', __FUNCTION__); \
216 printk(message); \
217 } \
218 } while (0)
219 #else
220 #define IPW_DEBUG(level, message...) do {} while (0)
221 #endif /* CONFIG_IPW2100_DEBUG */
222
223 #ifdef CONFIG_IPW2100_DEBUG
224 static const char *command_types[] = {
225 "undefined",
226 "unused", /* HOST_ATTENTION */
227 "HOST_COMPLETE",
228 "unused", /* SLEEP */
229 "unused", /* HOST_POWER_DOWN */
230 "unused",
231 "SYSTEM_CONFIG",
232 "unused", /* SET_IMR */
233 "SSID",
234 "MANDATORY_BSSID",
235 "AUTHENTICATION_TYPE",
236 "ADAPTER_ADDRESS",
237 "PORT_TYPE",
238 "INTERNATIONAL_MODE",
239 "CHANNEL",
240 "RTS_THRESHOLD",
241 "FRAG_THRESHOLD",
242 "POWER_MODE",
243 "TX_RATES",
244 "BASIC_TX_RATES",
245 "WEP_KEY_INFO",
246 "unused",
247 "unused",
248 "unused",
249 "unused",
250 "WEP_KEY_INDEX",
251 "WEP_FLAGS",
252 "ADD_MULTICAST",
253 "CLEAR_ALL_MULTICAST",
254 "BEACON_INTERVAL",
255 "ATIM_WINDOW",
256 "CLEAR_STATISTICS",
257 "undefined",
258 "undefined",
259 "undefined",
260 "undefined",
261 "TX_POWER_INDEX",
262 "undefined",
263 "undefined",
264 "undefined",
265 "undefined",
266 "undefined",
267 "undefined",
268 "BROADCAST_SCAN",
269 "CARD_DISABLE",
270 "PREFERRED_BSSID",
271 "SET_SCAN_OPTIONS",
272 "SCAN_DWELL_TIME",
273 "SWEEP_TABLE",
274 "AP_OR_STATION_TABLE",
275 "GROUP_ORDINALS",
276 "SHORT_RETRY_LIMIT",
277 "LONG_RETRY_LIMIT",
278 "unused", /* SAVE_CALIBRATION */
279 "unused", /* RESTORE_CALIBRATION */
280 "undefined",
281 "undefined",
282 "undefined",
283 "HOST_PRE_POWER_DOWN",
284 "unused", /* HOST_INTERRUPT_COALESCING */
285 "undefined",
286 "CARD_DISABLE_PHY_OFF",
287 "MSDU_TX_RATES" "undefined",
288 "undefined",
289 "SET_STATION_STAT_BITS",
290 "CLEAR_STATIONS_STAT_BITS",
291 "LEAP_ROGUE_MODE",
292 "SET_SECURITY_INFORMATION",
293 "DISASSOCIATION_BSSID",
294 "SET_WPA_ASS_IE"
295 };
296 #endif
297
298 /* Pre-decl until we get the code solid and then we can clean it up */
299 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
300 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
301 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
302
303 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
304 static void ipw2100_queues_free(struct ipw2100_priv *priv);
305 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
306
307 static int ipw2100_fw_download(struct ipw2100_priv *priv,
308 struct ipw2100_fw *fw);
309 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
310 struct ipw2100_fw *fw);
311 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
312 size_t max);
313 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
314 size_t max);
315 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
316 struct ipw2100_fw *fw);
317 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
318 struct ipw2100_fw *fw);
319 static void ipw2100_wx_event_work(struct work_struct *work);
320 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
321 static struct iw_handler_def ipw2100_wx_handler_def;
322
323 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
324 {
325 *val = readl((void __iomem *)(dev->base_addr + reg));
326 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
327 }
328
329 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
330 {
331 writel(val, (void __iomem *)(dev->base_addr + reg));
332 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
333 }
334
335 static inline void read_register_word(struct net_device *dev, u32 reg,
336 u16 * val)
337 {
338 *val = readw((void __iomem *)(dev->base_addr + reg));
339 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
340 }
341
342 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
343 {
344 *val = readb((void __iomem *)(dev->base_addr + reg));
345 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
346 }
347
348 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
349 {
350 writew(val, (void __iomem *)(dev->base_addr + reg));
351 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
352 }
353
354 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
355 {
356 writeb(val, (void __iomem *)(dev->base_addr + reg));
357 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
358 }
359
360 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
361 {
362 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
363 addr & IPW_REG_INDIRECT_ADDR_MASK);
364 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
365 }
366
367 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
368 {
369 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
370 addr & IPW_REG_INDIRECT_ADDR_MASK);
371 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
372 }
373
374 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
375 {
376 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
377 addr & IPW_REG_INDIRECT_ADDR_MASK);
378 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
379 }
380
381 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
382 {
383 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
384 addr & IPW_REG_INDIRECT_ADDR_MASK);
385 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
386 }
387
388 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
389 {
390 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
391 addr & IPW_REG_INDIRECT_ADDR_MASK);
392 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
393 }
394
395 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
396 {
397 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
398 addr & IPW_REG_INDIRECT_ADDR_MASK);
399 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
400 }
401
402 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
403 {
404 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
405 addr & IPW_REG_INDIRECT_ADDR_MASK);
406 }
407
408 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
409 {
410 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
411 }
412
413 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
414 const u8 * buf)
415 {
416 u32 aligned_addr;
417 u32 aligned_len;
418 u32 dif_len;
419 u32 i;
420
421 /* read first nibble byte by byte */
422 aligned_addr = addr & (~0x3);
423 dif_len = addr - aligned_addr;
424 if (dif_len) {
425 /* Start reading at aligned_addr + dif_len */
426 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
427 aligned_addr);
428 for (i = dif_len; i < 4; i++, buf++)
429 write_register_byte(dev,
430 IPW_REG_INDIRECT_ACCESS_DATA + i,
431 *buf);
432
433 len -= dif_len;
434 aligned_addr += 4;
435 }
436
437 /* read DWs through autoincrement registers */
438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
439 aligned_len = len & (~0x3);
440 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
441 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
442
443 /* copy the last nibble */
444 dif_len = len - aligned_len;
445 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
446 for (i = 0; i < dif_len; i++, buf++)
447 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
448 *buf);
449 }
450
451 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
452 u8 * buf)
453 {
454 u32 aligned_addr;
455 u32 aligned_len;
456 u32 dif_len;
457 u32 i;
458
459 /* read first nibble byte by byte */
460 aligned_addr = addr & (~0x3);
461 dif_len = addr - aligned_addr;
462 if (dif_len) {
463 /* Start reading at aligned_addr + dif_len */
464 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
465 aligned_addr);
466 for (i = dif_len; i < 4; i++, buf++)
467 read_register_byte(dev,
468 IPW_REG_INDIRECT_ACCESS_DATA + i,
469 buf);
470
471 len -= dif_len;
472 aligned_addr += 4;
473 }
474
475 /* read DWs through autoincrement registers */
476 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
477 aligned_len = len & (~0x3);
478 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
479 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
480
481 /* copy the last nibble */
482 dif_len = len - aligned_len;
483 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
484 for (i = 0; i < dif_len; i++, buf++)
485 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
486 }
487
488 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
489 {
490 return (dev->base_addr &&
491 (readl
492 ((void __iomem *)(dev->base_addr +
493 IPW_REG_DOA_DEBUG_AREA_START))
494 == IPW_DATA_DOA_DEBUG_VALUE));
495 }
496
497 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
498 void *val, u32 * len)
499 {
500 struct ipw2100_ordinals *ordinals = &priv->ordinals;
501 u32 addr;
502 u32 field_info;
503 u16 field_len;
504 u16 field_count;
505 u32 total_length;
506
507 if (ordinals->table1_addr == 0) {
508 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
509 "before they have been loaded.\n");
510 return -EINVAL;
511 }
512
513 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
514 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
515 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
516
517 printk(KERN_WARNING DRV_NAME
518 ": ordinal buffer length too small, need %zd\n",
519 IPW_ORD_TAB_1_ENTRY_SIZE);
520
521 return -EINVAL;
522 }
523
524 read_nic_dword(priv->net_dev,
525 ordinals->table1_addr + (ord << 2), &addr);
526 read_nic_dword(priv->net_dev, addr, val);
527
528 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
529
530 return 0;
531 }
532
533 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
534
535 ord -= IPW_START_ORD_TAB_2;
536
537 /* get the address of statistic */
538 read_nic_dword(priv->net_dev,
539 ordinals->table2_addr + (ord << 3), &addr);
540
541 /* get the second DW of statistics ;
542 * two 16-bit words - first is length, second is count */
543 read_nic_dword(priv->net_dev,
544 ordinals->table2_addr + (ord << 3) + sizeof(u32),
545 &field_info);
546
547 /* get each entry length */
548 field_len = *((u16 *) & field_info);
549
550 /* get number of entries */
551 field_count = *(((u16 *) & field_info) + 1);
552
553 /* abort if no enought memory */
554 total_length = field_len * field_count;
555 if (total_length > *len) {
556 *len = total_length;
557 return -EINVAL;
558 }
559
560 *len = total_length;
561 if (!total_length)
562 return 0;
563
564 /* read the ordinal data from the SRAM */
565 read_nic_memory(priv->net_dev, addr, total_length, val);
566
567 return 0;
568 }
569
570 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
571 "in table 2\n", ord);
572
573 return -EINVAL;
574 }
575
576 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
577 u32 * len)
578 {
579 struct ipw2100_ordinals *ordinals = &priv->ordinals;
580 u32 addr;
581
582 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
583 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
584 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
585 IPW_DEBUG_INFO("wrong size\n");
586 return -EINVAL;
587 }
588
589 read_nic_dword(priv->net_dev,
590 ordinals->table1_addr + (ord << 2), &addr);
591
592 write_nic_dword(priv->net_dev, addr, *val);
593
594 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
595
596 return 0;
597 }
598
599 IPW_DEBUG_INFO("wrong table\n");
600 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
601 return -EINVAL;
602
603 return -EINVAL;
604 }
605
606 static char *snprint_line(char *buf, size_t count,
607 const u8 * data, u32 len, u32 ofs)
608 {
609 int out, i, j, l;
610 char c;
611
612 out = snprintf(buf, count, "%08X", ofs);
613
614 for (l = 0, i = 0; i < 2; i++) {
615 out += snprintf(buf + out, count - out, " ");
616 for (j = 0; j < 8 && l < len; j++, l++)
617 out += snprintf(buf + out, count - out, "%02X ",
618 data[(i * 8 + j)]);
619 for (; j < 8; j++)
620 out += snprintf(buf + out, count - out, " ");
621 }
622
623 out += snprintf(buf + out, count - out, " ");
624 for (l = 0, i = 0; i < 2; i++) {
625 out += snprintf(buf + out, count - out, " ");
626 for (j = 0; j < 8 && l < len; j++, l++) {
627 c = data[(i * 8 + j)];
628 if (!isascii(c) || !isprint(c))
629 c = '.';
630
631 out += snprintf(buf + out, count - out, "%c", c);
632 }
633
634 for (; j < 8; j++)
635 out += snprintf(buf + out, count - out, " ");
636 }
637
638 return buf;
639 }
640
641 static void printk_buf(int level, const u8 * data, u32 len)
642 {
643 char line[81];
644 u32 ofs = 0;
645 if (!(ipw2100_debug_level & level))
646 return;
647
648 while (len) {
649 printk(KERN_DEBUG "%s\n",
650 snprint_line(line, sizeof(line), &data[ofs],
651 min(len, 16U), ofs));
652 ofs += 16;
653 len -= min(len, 16U);
654 }
655 }
656
657 #define MAX_RESET_BACKOFF 10
658
659 static void schedule_reset(struct ipw2100_priv *priv)
660 {
661 unsigned long now = get_seconds();
662
663 /* If we haven't received a reset request within the backoff period,
664 * then we can reset the backoff interval so this reset occurs
665 * immediately */
666 if (priv->reset_backoff &&
667 (now - priv->last_reset > priv->reset_backoff))
668 priv->reset_backoff = 0;
669
670 priv->last_reset = get_seconds();
671
672 if (!(priv->status & STATUS_RESET_PENDING)) {
673 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
674 priv->net_dev->name, priv->reset_backoff);
675 netif_carrier_off(priv->net_dev);
676 netif_stop_queue(priv->net_dev);
677 priv->status |= STATUS_RESET_PENDING;
678 if (priv->reset_backoff)
679 queue_delayed_work(priv->workqueue, &priv->reset_work,
680 priv->reset_backoff * HZ);
681 else
682 queue_delayed_work(priv->workqueue, &priv->reset_work,
683 0);
684
685 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686 priv->reset_backoff++;
687
688 wake_up_interruptible(&priv->wait_command_queue);
689 } else
690 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691 priv->net_dev->name);
692
693 }
694
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697 struct host_command *cmd)
698 {
699 struct list_head *element;
700 struct ipw2100_tx_packet *packet;
701 unsigned long flags;
702 int err = 0;
703
704 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705 command_types[cmd->host_command], cmd->host_command,
706 cmd->host_command_length);
707 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708 cmd->host_command_length);
709
710 spin_lock_irqsave(&priv->low_lock, flags);
711
712 if (priv->fatal_error) {
713 IPW_DEBUG_INFO
714 ("Attempt to send command while hardware in fatal error condition.\n");
715 err = -EIO;
716 goto fail_unlock;
717 }
718
719 if (!(priv->status & STATUS_RUNNING)) {
720 IPW_DEBUG_INFO
721 ("Attempt to send command while hardware is not running.\n");
722 err = -EIO;
723 goto fail_unlock;
724 }
725
726 if (priv->status & STATUS_CMD_ACTIVE) {
727 IPW_DEBUG_INFO
728 ("Attempt to send command while another command is pending.\n");
729 err = -EBUSY;
730 goto fail_unlock;
731 }
732
733 if (list_empty(&priv->msg_free_list)) {
734 IPW_DEBUG_INFO("no available msg buffers\n");
735 goto fail_unlock;
736 }
737
738 priv->status |= STATUS_CMD_ACTIVE;
739 priv->messages_sent++;
740
741 element = priv->msg_free_list.next;
742
743 packet = list_entry(element, struct ipw2100_tx_packet, list);
744 packet->jiffy_start = jiffies;
745
746 /* initialize the firmware command packet */
747 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749 packet->info.c_struct.cmd->host_command_len_reg =
750 cmd->host_command_length;
751 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
752
753 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754 cmd->host_command_parameters,
755 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
756
757 list_del(element);
758 DEC_STAT(&priv->msg_free_stat);
759
760 list_add_tail(element, &priv->msg_pend_list);
761 INC_STAT(&priv->msg_pend_stat);
762
763 ipw2100_tx_send_commands(priv);
764 ipw2100_tx_send_data(priv);
765
766 spin_unlock_irqrestore(&priv->low_lock, flags);
767
768 /*
769 * We must wait for this command to complete before another
770 * command can be sent... but if we wait more than 3 seconds
771 * then there is a problem.
772 */
773
774 err =
775 wait_event_interruptible_timeout(priv->wait_command_queue,
776 !(priv->
777 status & STATUS_CMD_ACTIVE),
778 HOST_COMPLETE_TIMEOUT);
779
780 if (err == 0) {
781 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784 priv->status &= ~STATUS_CMD_ACTIVE;
785 schedule_reset(priv);
786 return -EIO;
787 }
788
789 if (priv->fatal_error) {
790 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791 priv->net_dev->name);
792 return -EIO;
793 }
794
795 /* !!!!! HACK TEST !!!!!
796 * When lots of debug trace statements are enabled, the driver
797 * doesn't seem to have as many firmware restart cycles...
798 *
799 * As a test, we're sticking in a 1/100s delay here */
800 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
801
802 return 0;
803
804 fail_unlock:
805 spin_unlock_irqrestore(&priv->low_lock, flags);
806
807 return err;
808 }
809
810 /*
811 * Verify the values and data access of the hardware
812 * No locks needed or used. No functions called.
813 */
814 static int ipw2100_verify(struct ipw2100_priv *priv)
815 {
816 u32 data1, data2;
817 u32 address;
818
819 u32 val1 = 0x76543210;
820 u32 val2 = 0xFEDCBA98;
821
822 /* Domain 0 check - all values should be DOA_DEBUG */
823 for (address = IPW_REG_DOA_DEBUG_AREA_START;
824 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825 read_register(priv->net_dev, address, &data1);
826 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827 return -EIO;
828 }
829
830 /* Domain 1 check - use arbitrary read/write compare */
831 for (address = 0; address < 5; address++) {
832 /* The memory area is not used now */
833 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834 val1);
835 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836 val2);
837 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838 &data1);
839 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840 &data2);
841 if (val1 == data1 && val2 == data2)
842 return 0;
843 }
844
845 return -EIO;
846 }
847
848 /*
849 *
850 * Loop until the CARD_DISABLED bit is the same value as the
851 * supplied parameter
852 *
853 * TODO: See if it would be more efficient to do a wait/wake
854 * cycle and have the completion event trigger the wakeup
855 *
856 */
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
859 {
860 int i;
861 u32 card_state;
862 u32 len = sizeof(card_state);
863 int err;
864
865 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867 &card_state, &len);
868 if (err) {
869 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870 "failed.\n");
871 return 0;
872 }
873
874 /* We'll break out if either the HW state says it is
875 * in the state we want, or if HOST_COMPLETE command
876 * finishes */
877 if ((card_state == state) ||
878 ((priv->status & STATUS_ENABLED) ?
879 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880 if (state == IPW_HW_STATE_ENABLED)
881 priv->status |= STATUS_ENABLED;
882 else
883 priv->status &= ~STATUS_ENABLED;
884
885 return 0;
886 }
887
888 udelay(50);
889 }
890
891 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892 state ? "DISABLED" : "ENABLED");
893 return -EIO;
894 }
895
896 /*********************************************************************
897 Procedure : sw_reset_and_clock
898 Purpose : Asserts s/w reset, asserts clock initialization
899 and waits for clock stabilization
900 ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
902 {
903 int i;
904 u32 r;
905
906 // assert s/w reset
907 write_register(priv->net_dev, IPW_REG_RESET_REG,
908 IPW_AUX_HOST_RESET_REG_SW_RESET);
909
910 // wait for clock stabilization
911 for (i = 0; i < 1000; i++) {
912 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
913
914 // check clock ready bit
915 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917 break;
918 }
919
920 if (i == 1000)
921 return -EIO; // TODO: better error value
922
923 /* set "initialization complete" bit to move adapter to
924 * D0 state */
925 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
927
928 /* wait for clock stabilization */
929 for (i = 0; i < 10000; i++) {
930 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
931
932 /* check clock ready bit */
933 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935 break;
936 }
937
938 if (i == 10000)
939 return -EIO; /* TODO: better error value */
940
941 /* set D0 standby bit */
942 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
945
946 return 0;
947 }
948
949 /*********************************************************************
950 Procedure : ipw2100_download_firmware
951 Purpose : Initiaze adapter after power on.
952 The sequence is:
953 1. assert s/w reset first!
954 2. awake clocks & wait for clock stabilization
955 3. hold ARC (don't ask me why...)
956 4. load Dino ucode and reset/clock init again
957 5. zero-out shared mem
958 6. download f/w
959 *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
961 {
962 u32 address;
963 int err;
964
965 #ifndef CONFIG_PM
966 /* Fetch the firmware and microcode */
967 struct ipw2100_fw ipw2100_firmware;
968 #endif
969
970 if (priv->fatal_error) {
971 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972 "fatal error %d. Interface must be brought down.\n",
973 priv->net_dev->name, priv->fatal_error);
974 return -EINVAL;
975 }
976 #ifdef CONFIG_PM
977 if (!ipw2100_firmware.version) {
978 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979 if (err) {
980 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981 priv->net_dev->name, err);
982 priv->fatal_error = IPW2100_ERR_FW_LOAD;
983 goto fail;
984 }
985 }
986 #else
987 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988 if (err) {
989 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990 priv->net_dev->name, err);
991 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992 goto fail;
993 }
994 #endif
995 priv->firmware_version = ipw2100_firmware.version;
996
997 /* s/w reset and clock stabilization */
998 err = sw_reset_and_clock(priv);
999 if (err) {
1000 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001 priv->net_dev->name, err);
1002 goto fail;
1003 }
1004
1005 err = ipw2100_verify(priv);
1006 if (err) {
1007 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008 priv->net_dev->name, err);
1009 goto fail;
1010 }
1011
1012 /* Hold ARC */
1013 write_nic_dword(priv->net_dev,
1014 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1015
1016 /* allow ARC to run */
1017 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1018
1019 /* load microcode */
1020 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021 if (err) {
1022 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023 priv->net_dev->name, err);
1024 goto fail;
1025 }
1026
1027 /* release ARC */
1028 write_nic_dword(priv->net_dev,
1029 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1030
1031 /* s/w reset and clock stabilization (again!!!) */
1032 err = sw_reset_and_clock(priv);
1033 if (err) {
1034 printk(KERN_ERR DRV_NAME
1035 ": %s: sw_reset_and_clock failed: %d\n",
1036 priv->net_dev->name, err);
1037 goto fail;
1038 }
1039
1040 /* load f/w */
1041 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042 if (err) {
1043 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044 priv->net_dev->name, err);
1045 goto fail;
1046 }
1047 #ifndef CONFIG_PM
1048 /*
1049 * When the .resume method of the driver is called, the other
1050 * part of the system, i.e. the ide driver could still stay in
1051 * the suspend stage. This prevents us from loading the firmware
1052 * from the disk. --YZ
1053 */
1054
1055 /* free any storage allocated for firmware image */
1056 ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1058
1059 /* zero out Domain 1 area indirectly (Si requirement) */
1060 for (address = IPW_HOST_FW_SHARED_AREA0;
1061 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062 write_nic_dword(priv->net_dev, address, 0);
1063 for (address = IPW_HOST_FW_SHARED_AREA1;
1064 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065 write_nic_dword(priv->net_dev, address, 0);
1066 for (address = IPW_HOST_FW_SHARED_AREA2;
1067 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068 write_nic_dword(priv->net_dev, address, 0);
1069 for (address = IPW_HOST_FW_SHARED_AREA3;
1070 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071 write_nic_dword(priv->net_dev, address, 0);
1072 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074 write_nic_dword(priv->net_dev, address, 0);
1075
1076 return 0;
1077
1078 fail:
1079 ipw2100_release_firmware(priv, &ipw2100_firmware);
1080 return err;
1081 }
1082
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1084 {
1085 if (priv->status & STATUS_INT_ENABLED)
1086 return;
1087 priv->status |= STATUS_INT_ENABLED;
1088 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1089 }
1090
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1092 {
1093 if (!(priv->status & STATUS_INT_ENABLED))
1094 return;
1095 priv->status &= ~STATUS_INT_ENABLED;
1096 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1097 }
1098
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1100 {
1101 struct ipw2100_ordinals *ord = &priv->ordinals;
1102
1103 IPW_DEBUG_INFO("enter\n");
1104
1105 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106 &ord->table1_addr);
1107
1108 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109 &ord->table2_addr);
1110
1111 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1113
1114 ord->table2_size &= 0x0000FFFF;
1115
1116 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118 IPW_DEBUG_INFO("exit\n");
1119 }
1120
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1122 {
1123 u32 reg = 0;
1124 /*
1125 * Set GPIO 3 writable by FW; GPIO 1 writable
1126 * by driver and enable clock
1127 */
1128 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129 IPW_BIT_GPIO_LED_OFF);
1130 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1131 }
1132
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1134 {
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1137
1138 unsigned short value = 0;
1139 u32 reg = 0;
1140 int i;
1141
1142 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143 priv->status &= ~STATUS_RF_KILL_HW;
1144 return 0;
1145 }
1146
1147 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148 udelay(RF_KILL_CHECK_DELAY);
1149 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1151 }
1152
1153 if (value == 0)
1154 priv->status |= STATUS_RF_KILL_HW;
1155 else
1156 priv->status &= ~STATUS_RF_KILL_HW;
1157
1158 return (value == 0);
1159 }
1160
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1162 {
1163 u32 addr, len;
1164 u32 val;
1165
1166 /*
1167 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1168 */
1169 len = sizeof(addr);
1170 if (ipw2100_get_ordinal
1171 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173 __LINE__);
1174 return -EIO;
1175 }
1176
1177 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1178
1179 /*
1180 * EEPROM version is the byte at offset 0xfd in firmware
1181 * We read 4 bytes, then shift out the byte we actually want */
1182 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183 priv->eeprom_version = (val >> 24) & 0xFF;
1184 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1185
1186 /*
1187 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1188 *
1189 * notice that the EEPROM bit is reverse polarity, i.e.
1190 * bit = 0 signifies HW RF kill switch is supported
1191 * bit = 1 signifies HW RF kill switch is NOT supported
1192 */
1193 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194 if (!((val >> 24) & 0x01))
1195 priv->hw_features |= HW_FEATURE_RFKILL;
1196
1197 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1199
1200 return 0;
1201 }
1202
1203 /*
1204 * Start firmware execution after power on and intialization
1205 * The sequence is:
1206 * 1. Release ARC
1207 * 2. Wait for f/w initialization completes;
1208 */
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1210 {
1211 int i;
1212 u32 inta, inta_mask, gpio;
1213
1214 IPW_DEBUG_INFO("enter\n");
1215
1216 if (priv->status & STATUS_RUNNING)
1217 return 0;
1218
1219 /*
1220 * Initialize the hw - drive adapter to DO state by setting
1221 * init_done bit. Wait for clk_ready bit and Download
1222 * fw & dino ucode
1223 */
1224 if (ipw2100_download_firmware(priv)) {
1225 printk(KERN_ERR DRV_NAME
1226 ": %s: Failed to power on the adapter.\n",
1227 priv->net_dev->name);
1228 return -EIO;
1229 }
1230
1231 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232 * in the firmware RBD and TBD ring queue */
1233 ipw2100_queues_initialize(priv);
1234
1235 ipw2100_hw_set_gpio(priv);
1236
1237 /* TODO -- Look at disabling interrupts here to make sure none
1238 * get fired during FW initialization */
1239
1240 /* Release ARC - clear reset bit */
1241 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1242
1243 /* wait for f/w intialization complete */
1244 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245 i = 5000;
1246 do {
1247 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248 /* Todo... wait for sync command ... */
1249
1250 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1251
1252 /* check "init done" bit */
1253 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254 /* reset "init done" bit */
1255 write_register(priv->net_dev, IPW_REG_INTA,
1256 IPW2100_INTA_FW_INIT_DONE);
1257 break;
1258 }
1259
1260 /* check error conditions : we check these after the firmware
1261 * check so that if there is an error, the interrupt handler
1262 * will see it and the adapter will be reset */
1263 if (inta &
1264 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265 /* clear error conditions */
1266 write_register(priv->net_dev, IPW_REG_INTA,
1267 IPW2100_INTA_FATAL_ERROR |
1268 IPW2100_INTA_PARITY_ERROR);
1269 }
1270 } while (--i);
1271
1272 /* Clear out any pending INTAs since we aren't supposed to have
1273 * interrupts enabled at this point... */
1274 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276 inta &= IPW_INTERRUPT_MASK;
1277 /* Clear out any pending interrupts */
1278 if (inta & inta_mask)
1279 write_register(priv->net_dev, IPW_REG_INTA, inta);
1280
1281 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282 i ? "SUCCESS" : "FAILED");
1283
1284 if (!i) {
1285 printk(KERN_WARNING DRV_NAME
1286 ": %s: Firmware did not initialize.\n",
1287 priv->net_dev->name);
1288 return -EIO;
1289 }
1290
1291 /* allow firmware to write to GPIO1 & GPIO3 */
1292 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1293
1294 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1295
1296 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1297
1298 /* Ready to receive commands */
1299 priv->status |= STATUS_RUNNING;
1300
1301 /* The adapter has been reset; we are not associated */
1302 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1303
1304 IPW_DEBUG_INFO("exit\n");
1305
1306 return 0;
1307 }
1308
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1310 {
1311 if (!priv->fatal_error)
1312 return;
1313
1314 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316 priv->fatal_error = 0;
1317 }
1318
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1321 {
1322 u32 reg;
1323 int i;
1324
1325 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1326
1327 ipw2100_hw_set_gpio(priv);
1328
1329 /* Step 1. Stop Master Assert */
1330 write_register(priv->net_dev, IPW_REG_RESET_REG,
1331 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1332
1333 /* Step 2. Wait for stop Master Assert
1334 * (not more then 50us, otherwise ret error */
1335 i = 5;
1336 do {
1337 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1339
1340 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341 break;
1342 } while (--i);
1343
1344 priv->status &= ~STATUS_RESET_PENDING;
1345
1346 if (!i) {
1347 IPW_DEBUG_INFO
1348 ("exit - waited too long for master assert stop\n");
1349 return -EIO;
1350 }
1351
1352 write_register(priv->net_dev, IPW_REG_RESET_REG,
1353 IPW_AUX_HOST_RESET_REG_SW_RESET);
1354
1355 /* Reset any fatal_error conditions */
1356 ipw2100_reset_fatalerror(priv);
1357
1358 /* At this point, the adapter is now stopped and disabled */
1359 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360 STATUS_ASSOCIATED | STATUS_ENABLED);
1361
1362 return 0;
1363 }
1364
1365 /*
1366 * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1367 *
1368 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1369 *
1370 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371 * if STATUS_ASSN_LOST is sent.
1372 */
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1374 {
1375
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1377
1378 struct host_command cmd = {
1379 .host_command = CARD_DISABLE_PHY_OFF,
1380 .host_command_sequence = 0,
1381 .host_command_length = 0,
1382 };
1383 int err, i;
1384 u32 val1, val2;
1385
1386 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1387
1388 /* Turn off the radio */
1389 err = ipw2100_hw_send_command(priv, &cmd);
1390 if (err)
1391 return err;
1392
1393 for (i = 0; i < 2500; i++) {
1394 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1396
1397 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398 (val2 & IPW2100_COMMAND_PHY_OFF))
1399 return 0;
1400
1401 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1402 }
1403
1404 return -EIO;
1405 }
1406
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1408 {
1409 struct host_command cmd = {
1410 .host_command = HOST_COMPLETE,
1411 .host_command_sequence = 0,
1412 .host_command_length = 0
1413 };
1414 int err = 0;
1415
1416 IPW_DEBUG_HC("HOST_COMPLETE\n");
1417
1418 if (priv->status & STATUS_ENABLED)
1419 return 0;
1420
1421 mutex_lock(&priv->adapter_mutex);
1422
1423 if (rf_kill_active(priv)) {
1424 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425 goto fail_up;
1426 }
1427
1428 err = ipw2100_hw_send_command(priv, &cmd);
1429 if (err) {
1430 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431 goto fail_up;
1432 }
1433
1434 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435 if (err) {
1436 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437 priv->net_dev->name);
1438 goto fail_up;
1439 }
1440
1441 if (priv->stop_hang_check) {
1442 priv->stop_hang_check = 0;
1443 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1444 }
1445
1446 fail_up:
1447 mutex_unlock(&priv->adapter_mutex);
1448 return err;
1449 }
1450
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1452 {
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1454
1455 struct host_command cmd = {
1456 .host_command = HOST_PRE_POWER_DOWN,
1457 .host_command_sequence = 0,
1458 .host_command_length = 0,
1459 };
1460 int err, i;
1461 u32 reg;
1462
1463 if (!(priv->status & STATUS_RUNNING))
1464 return 0;
1465
1466 priv->status |= STATUS_STOPPING;
1467
1468 /* We can only shut down the card if the firmware is operational. So,
1469 * if we haven't reset since a fatal_error, then we can not send the
1470 * shutdown commands. */
1471 if (!priv->fatal_error) {
1472 /* First, make sure the adapter is enabled so that the PHY_OFF
1473 * command can shut it down */
1474 ipw2100_enable_adapter(priv);
1475
1476 err = ipw2100_hw_phy_off(priv);
1477 if (err)
1478 printk(KERN_WARNING DRV_NAME
1479 ": Error disabling radio %d\n", err);
1480
1481 /*
1482 * If in D0-standby mode going directly to D3 may cause a
1483 * PCI bus violation. Therefore we must change out of the D0
1484 * state.
1485 *
1486 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487 * hardware from going into standby mode and will transition
1488 * out of D0-standby if it is already in that state.
1489 *
1490 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491 * driver upon completion. Once received, the driver can
1492 * proceed to the D3 state.
1493 *
1494 * Prepare for power down command to fw. This command would
1495 * take HW out of D0-standby and prepare it for D3 state.
1496 *
1497 * Currently FW does not support event notification for this
1498 * event. Therefore, skip waiting for it. Just wait a fixed
1499 * 100ms
1500 */
1501 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1502
1503 err = ipw2100_hw_send_command(priv, &cmd);
1504 if (err)
1505 printk(KERN_WARNING DRV_NAME ": "
1506 "%s: Power down command failed: Error %d\n",
1507 priv->net_dev->name, err);
1508 else
1509 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1510 }
1511
1512 priv->status &= ~STATUS_ENABLED;
1513
1514 /*
1515 * Set GPIO 3 writable by FW; GPIO 1 writable
1516 * by driver and enable clock
1517 */
1518 ipw2100_hw_set_gpio(priv);
1519
1520 /*
1521 * Power down adapter. Sequence:
1522 * 1. Stop master assert (RESET_REG[9]=1)
1523 * 2. Wait for stop master (RESET_REG[8]==1)
1524 * 3. S/w reset assert (RESET_REG[7] = 1)
1525 */
1526
1527 /* Stop master assert */
1528 write_register(priv->net_dev, IPW_REG_RESET_REG,
1529 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1530
1531 /* wait stop master not more than 50 usec.
1532 * Otherwise return error. */
1533 for (i = 5; i > 0; i--) {
1534 udelay(10);
1535
1536 /* Check master stop bit */
1537 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1538
1539 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540 break;
1541 }
1542
1543 if (i == 0)
1544 printk(KERN_WARNING DRV_NAME
1545 ": %s: Could now power down adapter.\n",
1546 priv->net_dev->name);
1547
1548 /* assert s/w reset */
1549 write_register(priv->net_dev, IPW_REG_RESET_REG,
1550 IPW_AUX_HOST_RESET_REG_SW_RESET);
1551
1552 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1553
1554 return 0;
1555 }
1556
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1558 {
1559 struct host_command cmd = {
1560 .host_command = CARD_DISABLE,
1561 .host_command_sequence = 0,
1562 .host_command_length = 0
1563 };
1564 int err = 0;
1565
1566 IPW_DEBUG_HC("CARD_DISABLE\n");
1567
1568 if (!(priv->status & STATUS_ENABLED))
1569 return 0;
1570
1571 /* Make sure we clear the associated state */
1572 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1573
1574 if (!priv->stop_hang_check) {
1575 priv->stop_hang_check = 1;
1576 cancel_delayed_work(&priv->hang_check);
1577 }
1578
1579 mutex_lock(&priv->adapter_mutex);
1580
1581 err = ipw2100_hw_send_command(priv, &cmd);
1582 if (err) {
1583 printk(KERN_WARNING DRV_NAME
1584 ": exit - failed to send CARD_DISABLE command\n");
1585 goto fail_up;
1586 }
1587
1588 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589 if (err) {
1590 printk(KERN_WARNING DRV_NAME
1591 ": exit - card failed to change to DISABLED\n");
1592 goto fail_up;
1593 }
1594
1595 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1596
1597 fail_up:
1598 mutex_unlock(&priv->adapter_mutex);
1599 return err;
1600 }
1601
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1603 {
1604 struct host_command cmd = {
1605 .host_command = SET_SCAN_OPTIONS,
1606 .host_command_sequence = 0,
1607 .host_command_length = 8
1608 };
1609 int err;
1610
1611 IPW_DEBUG_INFO("enter\n");
1612
1613 IPW_DEBUG_SCAN("setting scan options\n");
1614
1615 cmd.host_command_parameters[0] = 0;
1616
1617 if (!(priv->config & CFG_ASSOCIATE))
1618 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621 if (priv->config & CFG_PASSIVE_SCAN)
1622 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1623
1624 cmd.host_command_parameters[1] = priv->channel_mask;
1625
1626 err = ipw2100_hw_send_command(priv, &cmd);
1627
1628 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629 cmd.host_command_parameters[0]);
1630
1631 return err;
1632 }
1633
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1635 {
1636 struct host_command cmd = {
1637 .host_command = BROADCAST_SCAN,
1638 .host_command_sequence = 0,
1639 .host_command_length = 4
1640 };
1641 int err;
1642
1643 IPW_DEBUG_HC("START_SCAN\n");
1644
1645 cmd.host_command_parameters[0] = 0;
1646
1647 /* No scanning if in monitor mode */
1648 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649 return 1;
1650
1651 if (priv->status & STATUS_SCANNING) {
1652 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653 return 0;
1654 }
1655
1656 IPW_DEBUG_INFO("enter\n");
1657
1658 /* Not clearing here; doing so makes iwlist always return nothing...
1659 *
1660 * We should modify the table logic to use aging tables vs. clearing
1661 * the table on each scan start.
1662 */
1663 IPW_DEBUG_SCAN("starting scan\n");
1664
1665 priv->status |= STATUS_SCANNING;
1666 err = ipw2100_hw_send_command(priv, &cmd);
1667 if (err)
1668 priv->status &= ~STATUS_SCANNING;
1669
1670 IPW_DEBUG_INFO("exit\n");
1671
1672 return err;
1673 }
1674
1675 static const struct ieee80211_geo ipw_geos[] = {
1676 { /* Restricted */
1677 "---",
1678 .bg_channels = 14,
1679 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1680 {2427, 4}, {2432, 5}, {2437, 6},
1681 {2442, 7}, {2447, 8}, {2452, 9},
1682 {2457, 10}, {2462, 11}, {2467, 12},
1683 {2472, 13}, {2484, 14}},
1684 },
1685 };
1686
1687 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1688 {
1689 unsigned long flags;
1690 int rc = 0;
1691 u32 lock;
1692 u32 ord_len = sizeof(lock);
1693
1694 /* Quite if manually disabled. */
1695 if (priv->status & STATUS_RF_KILL_SW) {
1696 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1697 "switch\n", priv->net_dev->name);
1698 return 0;
1699 }
1700
1701 /* the ipw2100 hardware really doesn't want power management delays
1702 * longer than 175usec
1703 */
1704 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100", 175);
1705
1706 /* If the interrupt is enabled, turn it off... */
1707 spin_lock_irqsave(&priv->low_lock, flags);
1708 ipw2100_disable_interrupts(priv);
1709
1710 /* Reset any fatal_error conditions */
1711 ipw2100_reset_fatalerror(priv);
1712 spin_unlock_irqrestore(&priv->low_lock, flags);
1713
1714 if (priv->status & STATUS_POWERED ||
1715 (priv->status & STATUS_RESET_PENDING)) {
1716 /* Power cycle the card ... */
1717 if (ipw2100_power_cycle_adapter(priv)) {
1718 printk(KERN_WARNING DRV_NAME
1719 ": %s: Could not cycle adapter.\n",
1720 priv->net_dev->name);
1721 rc = 1;
1722 goto exit;
1723 }
1724 } else
1725 priv->status |= STATUS_POWERED;
1726
1727 /* Load the firmware, start the clocks, etc. */
1728 if (ipw2100_start_adapter(priv)) {
1729 printk(KERN_ERR DRV_NAME
1730 ": %s: Failed to start the firmware.\n",
1731 priv->net_dev->name);
1732 rc = 1;
1733 goto exit;
1734 }
1735
1736 ipw2100_initialize_ordinals(priv);
1737
1738 /* Determine capabilities of this particular HW configuration */
1739 if (ipw2100_get_hw_features(priv)) {
1740 printk(KERN_ERR DRV_NAME
1741 ": %s: Failed to determine HW features.\n",
1742 priv->net_dev->name);
1743 rc = 1;
1744 goto exit;
1745 }
1746
1747 /* Initialize the geo */
1748 if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1749 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1750 return 0;
1751 }
1752 priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1753
1754 lock = LOCK_NONE;
1755 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1756 printk(KERN_ERR DRV_NAME
1757 ": %s: Failed to clear ordinal lock.\n",
1758 priv->net_dev->name);
1759 rc = 1;
1760 goto exit;
1761 }
1762
1763 priv->status &= ~STATUS_SCANNING;
1764
1765 if (rf_kill_active(priv)) {
1766 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1767 priv->net_dev->name);
1768
1769 if (priv->stop_rf_kill) {
1770 priv->stop_rf_kill = 0;
1771 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1772 round_jiffies_relative(HZ));
1773 }
1774
1775 deferred = 1;
1776 }
1777
1778 /* Turn on the interrupt so that commands can be processed */
1779 ipw2100_enable_interrupts(priv);
1780
1781 /* Send all of the commands that must be sent prior to
1782 * HOST_COMPLETE */
1783 if (ipw2100_adapter_setup(priv)) {
1784 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1785 priv->net_dev->name);
1786 rc = 1;
1787 goto exit;
1788 }
1789
1790 if (!deferred) {
1791 /* Enable the adapter - sends HOST_COMPLETE */
1792 if (ipw2100_enable_adapter(priv)) {
1793 printk(KERN_ERR DRV_NAME ": "
1794 "%s: failed in call to enable adapter.\n",
1795 priv->net_dev->name);
1796 ipw2100_hw_stop_adapter(priv);
1797 rc = 1;
1798 goto exit;
1799 }
1800
1801 /* Start a scan . . . */
1802 ipw2100_set_scan_options(priv);
1803 ipw2100_start_scan(priv);
1804 }
1805
1806 exit:
1807 return rc;
1808 }
1809
1810 /* Called by register_netdev() */
1811 static int ipw2100_net_init(struct net_device *dev)
1812 {
1813 struct ipw2100_priv *priv = ieee80211_priv(dev);
1814 return ipw2100_up(priv, 1);
1815 }
1816
1817 static void ipw2100_down(struct ipw2100_priv *priv)
1818 {
1819 unsigned long flags;
1820 union iwreq_data wrqu = {
1821 .ap_addr = {
1822 .sa_family = ARPHRD_ETHER}
1823 };
1824 int associated = priv->status & STATUS_ASSOCIATED;
1825
1826 /* Kill the RF switch timer */
1827 if (!priv->stop_rf_kill) {
1828 priv->stop_rf_kill = 1;
1829 cancel_delayed_work(&priv->rf_kill);
1830 }
1831
1832 /* Kill the firmare hang check timer */
1833 if (!priv->stop_hang_check) {
1834 priv->stop_hang_check = 1;
1835 cancel_delayed_work(&priv->hang_check);
1836 }
1837
1838 /* Kill any pending resets */
1839 if (priv->status & STATUS_RESET_PENDING)
1840 cancel_delayed_work(&priv->reset_work);
1841
1842 /* Make sure the interrupt is on so that FW commands will be
1843 * processed correctly */
1844 spin_lock_irqsave(&priv->low_lock, flags);
1845 ipw2100_enable_interrupts(priv);
1846 spin_unlock_irqrestore(&priv->low_lock, flags);
1847
1848 if (ipw2100_hw_stop_adapter(priv))
1849 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1850 priv->net_dev->name);
1851
1852 /* Do not disable the interrupt until _after_ we disable
1853 * the adaptor. Otherwise the CARD_DISABLE command will never
1854 * be ack'd by the firmware */
1855 spin_lock_irqsave(&priv->low_lock, flags);
1856 ipw2100_disable_interrupts(priv);
1857 spin_unlock_irqrestore(&priv->low_lock, flags);
1858
1859 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100",
1860 PM_QOS_DEFAULT_VALUE);
1861
1862 /* We have to signal any supplicant if we are disassociating */
1863 if (associated)
1864 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1865
1866 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1867 netif_carrier_off(priv->net_dev);
1868 netif_stop_queue(priv->net_dev);
1869 }
1870
1871 static void ipw2100_reset_adapter(struct work_struct *work)
1872 {
1873 struct ipw2100_priv *priv =
1874 container_of(work, struct ipw2100_priv, reset_work.work);
1875 unsigned long flags;
1876 union iwreq_data wrqu = {
1877 .ap_addr = {
1878 .sa_family = ARPHRD_ETHER}
1879 };
1880 int associated = priv->status & STATUS_ASSOCIATED;
1881
1882 spin_lock_irqsave(&priv->low_lock, flags);
1883 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1884 priv->resets++;
1885 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1886 priv->status |= STATUS_SECURITY_UPDATED;
1887
1888 /* Force a power cycle even if interface hasn't been opened
1889 * yet */
1890 cancel_delayed_work(&priv->reset_work);
1891 priv->status |= STATUS_RESET_PENDING;
1892 spin_unlock_irqrestore(&priv->low_lock, flags);
1893
1894 mutex_lock(&priv->action_mutex);
1895 /* stop timed checks so that they don't interfere with reset */
1896 priv->stop_hang_check = 1;
1897 cancel_delayed_work(&priv->hang_check);
1898
1899 /* We have to signal any supplicant if we are disassociating */
1900 if (associated)
1901 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1902
1903 ipw2100_up(priv, 0);
1904 mutex_unlock(&priv->action_mutex);
1905
1906 }
1907
1908 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1909 {
1910
1911 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1912 int ret, len, essid_len;
1913 char essid[IW_ESSID_MAX_SIZE];
1914 u32 txrate;
1915 u32 chan;
1916 char *txratename;
1917 u8 bssid[ETH_ALEN];
1918 DECLARE_MAC_BUF(mac);
1919
1920 /*
1921 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1922 * an actual MAC of the AP. Seems like FW sets this
1923 * address too late. Read it later and expose through
1924 * /proc or schedule a later task to query and update
1925 */
1926
1927 essid_len = IW_ESSID_MAX_SIZE;
1928 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1929 essid, &essid_len);
1930 if (ret) {
1931 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1932 __LINE__);
1933 return;
1934 }
1935
1936 len = sizeof(u32);
1937 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1938 if (ret) {
1939 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1940 __LINE__);
1941 return;
1942 }
1943
1944 len = sizeof(u32);
1945 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1946 if (ret) {
1947 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1948 __LINE__);
1949 return;
1950 }
1951 len = ETH_ALEN;
1952 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1953 if (ret) {
1954 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1955 __LINE__);
1956 return;
1957 }
1958 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1959
1960 switch (txrate) {
1961 case TX_RATE_1_MBIT:
1962 txratename = "1Mbps";
1963 break;
1964 case TX_RATE_2_MBIT:
1965 txratename = "2Mbsp";
1966 break;
1967 case TX_RATE_5_5_MBIT:
1968 txratename = "5.5Mbps";
1969 break;
1970 case TX_RATE_11_MBIT:
1971 txratename = "11Mbps";
1972 break;
1973 default:
1974 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1975 txratename = "unknown rate";
1976 break;
1977 }
1978
1979 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1980 "%s)\n",
1981 priv->net_dev->name, escape_essid(essid, essid_len),
1982 txratename, chan, print_mac(mac, bssid));
1983
1984 /* now we copy read ssid into dev */
1985 if (!(priv->config & CFG_STATIC_ESSID)) {
1986 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1987 memcpy(priv->essid, essid, priv->essid_len);
1988 }
1989 priv->channel = chan;
1990 memcpy(priv->bssid, bssid, ETH_ALEN);
1991
1992 priv->status |= STATUS_ASSOCIATING;
1993 priv->connect_start = get_seconds();
1994
1995 queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
1996 }
1997
1998 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
1999 int length, int batch_mode)
2000 {
2001 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2002 struct host_command cmd = {
2003 .host_command = SSID,
2004 .host_command_sequence = 0,
2005 .host_command_length = ssid_len
2006 };
2007 int err;
2008
2009 IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2010
2011 if (ssid_len)
2012 memcpy(cmd.host_command_parameters, essid, ssid_len);
2013
2014 if (!batch_mode) {
2015 err = ipw2100_disable_adapter(priv);
2016 if (err)
2017 return err;
2018 }
2019
2020 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2021 * disable auto association -- so we cheat by setting a bogus SSID */
2022 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2023 int i;
2024 u8 *bogus = (u8 *) cmd.host_command_parameters;
2025 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2026 bogus[i] = 0x18 + i;
2027 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2028 }
2029
2030 /* NOTE: We always send the SSID command even if the provided ESSID is
2031 * the same as what we currently think is set. */
2032
2033 err = ipw2100_hw_send_command(priv, &cmd);
2034 if (!err) {
2035 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2036 memcpy(priv->essid, essid, ssid_len);
2037 priv->essid_len = ssid_len;
2038 }
2039
2040 if (!batch_mode) {
2041 if (ipw2100_enable_adapter(priv))
2042 err = -EIO;
2043 }
2044
2045 return err;
2046 }
2047
2048 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2049 {
2050 DECLARE_MAC_BUF(mac);
2051
2052 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2053 "disassociated: '%s' %s \n",
2054 escape_essid(priv->essid, priv->essid_len),
2055 print_mac(mac, priv->bssid));
2056
2057 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2058
2059 if (priv->status & STATUS_STOPPING) {
2060 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2061 return;
2062 }
2063
2064 memset(priv->bssid, 0, ETH_ALEN);
2065 memset(priv->ieee->bssid, 0, ETH_ALEN);
2066
2067 netif_carrier_off(priv->net_dev);
2068 netif_stop_queue(priv->net_dev);
2069
2070 if (!(priv->status & STATUS_RUNNING))
2071 return;
2072
2073 if (priv->status & STATUS_SECURITY_UPDATED)
2074 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2075
2076 queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2077 }
2078
2079 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2080 {
2081 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2082 priv->net_dev->name);
2083
2084 /* RF_KILL is now enabled (else we wouldn't be here) */
2085 priv->status |= STATUS_RF_KILL_HW;
2086
2087 /* Make sure the RF Kill check timer is running */
2088 priv->stop_rf_kill = 0;
2089 cancel_delayed_work(&priv->rf_kill);
2090 queue_delayed_work(priv->workqueue, &priv->rf_kill,
2091 round_jiffies_relative(HZ));
2092 }
2093
2094 static void send_scan_event(void *data)
2095 {
2096 struct ipw2100_priv *priv = data;
2097 union iwreq_data wrqu;
2098
2099 wrqu.data.length = 0;
2100 wrqu.data.flags = 0;
2101 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2102 }
2103
2104 static void ipw2100_scan_event_later(struct work_struct *work)
2105 {
2106 send_scan_event(container_of(work, struct ipw2100_priv,
2107 scan_event_later.work));
2108 }
2109
2110 static void ipw2100_scan_event_now(struct work_struct *work)
2111 {
2112 send_scan_event(container_of(work, struct ipw2100_priv,
2113 scan_event_now));
2114 }
2115
2116 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2117 {
2118 IPW_DEBUG_SCAN("scan complete\n");
2119 /* Age the scan results... */
2120 priv->ieee->scans++;
2121 priv->status &= ~STATUS_SCANNING;
2122
2123 /* Only userspace-requested scan completion events go out immediately */
2124 if (!priv->user_requested_scan) {
2125 if (!delayed_work_pending(&priv->scan_event_later))
2126 queue_delayed_work(priv->workqueue,
2127 &priv->scan_event_later,
2128 round_jiffies_relative(msecs_to_jiffies(4000)));
2129 } else {
2130 priv->user_requested_scan = 0;
2131 cancel_delayed_work(&priv->scan_event_later);
2132 queue_work(priv->workqueue, &priv->scan_event_now);
2133 }
2134 }
2135
2136 #ifdef CONFIG_IPW2100_DEBUG
2137 #define IPW2100_HANDLER(v, f) { v, f, # v }
2138 struct ipw2100_status_indicator {
2139 int status;
2140 void (*cb) (struct ipw2100_priv * priv, u32 status);
2141 char *name;
2142 };
2143 #else
2144 #define IPW2100_HANDLER(v, f) { v, f }
2145 struct ipw2100_status_indicator {
2146 int status;
2147 void (*cb) (struct ipw2100_priv * priv, u32 status);
2148 };
2149 #endif /* CONFIG_IPW2100_DEBUG */
2150
2151 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2152 {
2153 IPW_DEBUG_SCAN("Scanning...\n");
2154 priv->status |= STATUS_SCANNING;
2155 }
2156
2157 static const struct ipw2100_status_indicator status_handlers[] = {
2158 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2159 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2160 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2161 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2162 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2163 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2164 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2165 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2166 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2167 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2168 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2169 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2170 IPW2100_HANDLER(-1, NULL)
2171 };
2172
2173 static void isr_status_change(struct ipw2100_priv *priv, int status)
2174 {
2175 int i;
2176
2177 if (status == IPW_STATE_SCANNING &&
2178 priv->status & STATUS_ASSOCIATED &&
2179 !(priv->status & STATUS_SCANNING)) {
2180 IPW_DEBUG_INFO("Scan detected while associated, with "
2181 "no scan request. Restarting firmware.\n");
2182
2183 /* Wake up any sleeping jobs */
2184 schedule_reset(priv);
2185 }
2186
2187 for (i = 0; status_handlers[i].status != -1; i++) {
2188 if (status == status_handlers[i].status) {
2189 IPW_DEBUG_NOTIF("Status change: %s\n",
2190 status_handlers[i].name);
2191 if (status_handlers[i].cb)
2192 status_handlers[i].cb(priv, status);
2193 priv->wstats.status = status;
2194 return;
2195 }
2196 }
2197
2198 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2199 }
2200
2201 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2202 struct ipw2100_cmd_header *cmd)
2203 {
2204 #ifdef CONFIG_IPW2100_DEBUG
2205 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2206 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2207 command_types[cmd->host_command_reg],
2208 cmd->host_command_reg);
2209 }
2210 #endif
2211 if (cmd->host_command_reg == HOST_COMPLETE)
2212 priv->status |= STATUS_ENABLED;
2213
2214 if (cmd->host_command_reg == CARD_DISABLE)
2215 priv->status &= ~STATUS_ENABLED;
2216
2217 priv->status &= ~STATUS_CMD_ACTIVE;
2218
2219 wake_up_interruptible(&priv->wait_command_queue);
2220 }
2221
2222 #ifdef CONFIG_IPW2100_DEBUG
2223 static const char *frame_types[] = {
2224 "COMMAND_STATUS_VAL",
2225 "STATUS_CHANGE_VAL",
2226 "P80211_DATA_VAL",
2227 "P8023_DATA_VAL",
2228 "HOST_NOTIFICATION_VAL"
2229 };
2230 #endif
2231
2232 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2233 struct ipw2100_rx_packet *packet)
2234 {
2235 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2236 if (!packet->skb)
2237 return -ENOMEM;
2238
2239 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2240 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2241 sizeof(struct ipw2100_rx),
2242 PCI_DMA_FROMDEVICE);
2243 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2244 * dma_addr */
2245
2246 return 0;
2247 }
2248
2249 #define SEARCH_ERROR 0xffffffff
2250 #define SEARCH_FAIL 0xfffffffe
2251 #define SEARCH_SUCCESS 0xfffffff0
2252 #define SEARCH_DISCARD 0
2253 #define SEARCH_SNAPSHOT 1
2254
2255 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2256 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2257 {
2258 int i;
2259 if (!priv->snapshot[0])
2260 return;
2261 for (i = 0; i < 0x30; i++)
2262 kfree(priv->snapshot[i]);
2263 priv->snapshot[0] = NULL;
2264 }
2265
2266 #ifdef IPW2100_DEBUG_C3
2267 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2268 {
2269 int i;
2270 if (priv->snapshot[0])
2271 return 1;
2272 for (i = 0; i < 0x30; i++) {
2273 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2274 if (!priv->snapshot[i]) {
2275 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2276 "buffer %d\n", priv->net_dev->name, i);
2277 while (i > 0)
2278 kfree(priv->snapshot[--i]);
2279 priv->snapshot[0] = NULL;
2280 return 0;
2281 }
2282 }
2283
2284 return 1;
2285 }
2286
2287 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2288 size_t len, int mode)
2289 {
2290 u32 i, j;
2291 u32 tmp;
2292 u8 *s, *d;
2293 u32 ret;
2294
2295 s = in_buf;
2296 if (mode == SEARCH_SNAPSHOT) {
2297 if (!ipw2100_snapshot_alloc(priv))
2298 mode = SEARCH_DISCARD;
2299 }
2300
2301 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2302 read_nic_dword(priv->net_dev, i, &tmp);
2303 if (mode == SEARCH_SNAPSHOT)
2304 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2305 if (ret == SEARCH_FAIL) {
2306 d = (u8 *) & tmp;
2307 for (j = 0; j < 4; j++) {
2308 if (*s != *d) {
2309 s = in_buf;
2310 continue;
2311 }
2312
2313 s++;
2314 d++;
2315
2316 if ((s - in_buf) == len)
2317 ret = (i + j) - len + 1;
2318 }
2319 } else if (mode == SEARCH_DISCARD)
2320 return ret;
2321 }
2322
2323 return ret;
2324 }
2325 #endif
2326
2327 /*
2328 *
2329 * 0) Disconnect the SKB from the firmware (just unmap)
2330 * 1) Pack the ETH header into the SKB
2331 * 2) Pass the SKB to the network stack
2332 *
2333 * When packet is provided by the firmware, it contains the following:
2334 *
2335 * . ieee80211_hdr
2336 * . ieee80211_snap_hdr
2337 *
2338 * The size of the constructed ethernet
2339 *
2340 */
2341 #ifdef IPW2100_RX_DEBUG
2342 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2343 #endif
2344
2345 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2346 {
2347 #ifdef IPW2100_DEBUG_C3
2348 struct ipw2100_status *status = &priv->status_queue.drv[i];
2349 u32 match, reg;
2350 int j;
2351 #endif
2352
2353 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2354 i * sizeof(struct ipw2100_status));
2355
2356 #ifdef IPW2100_DEBUG_C3
2357 /* Halt the fimrware so we can get a good image */
2358 write_register(priv->net_dev, IPW_REG_RESET_REG,
2359 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2360 j = 5;
2361 do {
2362 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2363 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2364
2365 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2366 break;
2367 } while (j--);
2368
2369 match = ipw2100_match_buf(priv, (u8 *) status,
2370 sizeof(struct ipw2100_status),
2371 SEARCH_SNAPSHOT);
2372 if (match < SEARCH_SUCCESS)
2373 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2374 "offset 0x%06X, length %d:\n",
2375 priv->net_dev->name, match,
2376 sizeof(struct ipw2100_status));
2377 else
2378 IPW_DEBUG_INFO("%s: No DMA status match in "
2379 "Firmware.\n", priv->net_dev->name);
2380
2381 printk_buf((u8 *) priv->status_queue.drv,
2382 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2383 #endif
2384
2385 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2386 priv->ieee->stats.rx_errors++;
2387 schedule_reset(priv);
2388 }
2389
2390 static void isr_rx(struct ipw2100_priv *priv, int i,
2391 struct ieee80211_rx_stats *stats)
2392 {
2393 struct ipw2100_status *status = &priv->status_queue.drv[i];
2394 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2395
2396 IPW_DEBUG_RX("Handler...\n");
2397
2398 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2399 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2400 " Dropping.\n",
2401 priv->net_dev->name,
2402 status->frame_size, skb_tailroom(packet->skb));
2403 priv->ieee->stats.rx_errors++;
2404 return;
2405 }
2406
2407 if (unlikely(!netif_running(priv->net_dev))) {
2408 priv->ieee->stats.rx_errors++;
2409 priv->wstats.discard.misc++;
2410 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2411 return;
2412 }
2413
2414 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2415 !(priv->status & STATUS_ASSOCIATED))) {
2416 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2417 priv->wstats.discard.misc++;
2418 return;
2419 }
2420
2421 pci_unmap_single(priv->pci_dev,
2422 packet->dma_addr,
2423 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2424
2425 skb_put(packet->skb, status->frame_size);
2426
2427 #ifdef IPW2100_RX_DEBUG
2428 /* Make a copy of the frame so we can dump it to the logs if
2429 * ieee80211_rx fails */
2430 skb_copy_from_linear_data(packet->skb, packet_data,
2431 min_t(u32, status->frame_size,
2432 IPW_RX_NIC_BUFFER_LENGTH));
2433 #endif
2434
2435 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2436 #ifdef IPW2100_RX_DEBUG
2437 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2438 priv->net_dev->name);
2439 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2440 #endif
2441 priv->ieee->stats.rx_errors++;
2442
2443 /* ieee80211_rx failed, so it didn't free the SKB */
2444 dev_kfree_skb_any(packet->skb);
2445 packet->skb = NULL;
2446 }
2447
2448 /* We need to allocate a new SKB and attach it to the RDB. */
2449 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2450 printk(KERN_WARNING DRV_NAME ": "
2451 "%s: Unable to allocate SKB onto RBD ring - disabling "
2452 "adapter.\n", priv->net_dev->name);
2453 /* TODO: schedule adapter shutdown */
2454 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2455 }
2456
2457 /* Update the RDB entry */
2458 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2459 }
2460
2461 #ifdef CONFIG_IPW2100_MONITOR
2462
2463 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2464 struct ieee80211_rx_stats *stats)
2465 {
2466 struct ipw2100_status *status = &priv->status_queue.drv[i];
2467 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2468
2469 /* Magic struct that slots into the radiotap header -- no reason
2470 * to build this manually element by element, we can write it much
2471 * more efficiently than we can parse it. ORDER MATTERS HERE */
2472 struct ipw_rt_hdr {
2473 struct ieee80211_radiotap_header rt_hdr;
2474 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2475 } *ipw_rt;
2476
2477 IPW_DEBUG_RX("Handler...\n");
2478
2479 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2480 sizeof(struct ipw_rt_hdr))) {
2481 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2482 " Dropping.\n",
2483 priv->net_dev->name,
2484 status->frame_size,
2485 skb_tailroom(packet->skb));
2486 priv->ieee->stats.rx_errors++;
2487 return;
2488 }
2489
2490 if (unlikely(!netif_running(priv->net_dev))) {
2491 priv->ieee->stats.rx_errors++;
2492 priv->wstats.discard.misc++;
2493 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2494 return;
2495 }
2496
2497 if (unlikely(priv->config & CFG_CRC_CHECK &&
2498 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2499 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2500 priv->ieee->stats.rx_errors++;
2501 return;
2502 }
2503
2504 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2505 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2506 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2507 packet->skb->data, status->frame_size);
2508
2509 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2510
2511 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2512 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2513 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2514
2515 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2516
2517 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2518
2519 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2520
2521 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2522 priv->ieee->stats.rx_errors++;
2523
2524 /* ieee80211_rx failed, so it didn't free the SKB */
2525 dev_kfree_skb_any(packet->skb);
2526 packet->skb = NULL;
2527 }
2528
2529 /* We need to allocate a new SKB and attach it to the RDB. */
2530 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2531 IPW_DEBUG_WARNING(
2532 "%s: Unable to allocate SKB onto RBD ring - disabling "
2533 "adapter.\n", priv->net_dev->name);
2534 /* TODO: schedule adapter shutdown */
2535 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2536 }
2537
2538 /* Update the RDB entry */
2539 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2540 }
2541
2542 #endif
2543
2544 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2545 {
2546 struct ipw2100_status *status = &priv->status_queue.drv[i];
2547 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2548 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2549
2550 switch (frame_type) {
2551 case COMMAND_STATUS_VAL:
2552 return (status->frame_size != sizeof(u->rx_data.command));
2553 case STATUS_CHANGE_VAL:
2554 return (status->frame_size != sizeof(u->rx_data.status));
2555 case HOST_NOTIFICATION_VAL:
2556 return (status->frame_size < sizeof(u->rx_data.notification));
2557 case P80211_DATA_VAL:
2558 case P8023_DATA_VAL:
2559 #ifdef CONFIG_IPW2100_MONITOR
2560 return 0;
2561 #else
2562 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2563 case IEEE80211_FTYPE_MGMT:
2564 case IEEE80211_FTYPE_CTL:
2565 return 0;
2566 case IEEE80211_FTYPE_DATA:
2567 return (status->frame_size >
2568 IPW_MAX_802_11_PAYLOAD_LENGTH);
2569 }
2570 #endif
2571 }
2572
2573 return 1;
2574 }
2575
2576 /*
2577 * ipw2100 interrupts are disabled at this point, and the ISR
2578 * is the only code that calls this method. So, we do not need
2579 * to play with any locks.
2580 *
2581 * RX Queue works as follows:
2582 *
2583 * Read index - firmware places packet in entry identified by the
2584 * Read index and advances Read index. In this manner,
2585 * Read index will always point to the next packet to
2586 * be filled--but not yet valid.
2587 *
2588 * Write index - driver fills this entry with an unused RBD entry.
2589 * This entry has not filled by the firmware yet.
2590 *
2591 * In between the W and R indexes are the RBDs that have been received
2592 * but not yet processed.
2593 *
2594 * The process of handling packets will start at WRITE + 1 and advance
2595 * until it reaches the READ index.
2596 *
2597 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2598 *
2599 */
2600 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2601 {
2602 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2603 struct ipw2100_status_queue *sq = &priv->status_queue;
2604 struct ipw2100_rx_packet *packet;
2605 u16 frame_type;
2606 u32 r, w, i, s;
2607 struct ipw2100_rx *u;
2608 struct ieee80211_rx_stats stats = {
2609 .mac_time = jiffies,
2610 };
2611
2612 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2613 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2614
2615 if (r >= rxq->entries) {
2616 IPW_DEBUG_RX("exit - bad read index\n");
2617 return;
2618 }
2619
2620 i = (rxq->next + 1) % rxq->entries;
2621 s = i;
2622 while (i != r) {
2623 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2624 r, rxq->next, i); */
2625
2626 packet = &priv->rx_buffers[i];
2627
2628 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2629 * the correct values */
2630 pci_dma_sync_single_for_cpu(priv->pci_dev,
2631 sq->nic +
2632 sizeof(struct ipw2100_status) * i,
2633 sizeof(struct ipw2100_status),
2634 PCI_DMA_FROMDEVICE);
2635
2636 /* Sync the DMA for the RX buffer so CPU is sure to get
2637 * the correct values */
2638 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2639 sizeof(struct ipw2100_rx),
2640 PCI_DMA_FROMDEVICE);
2641
2642 if (unlikely(ipw2100_corruption_check(priv, i))) {
2643 ipw2100_corruption_detected(priv, i);
2644 goto increment;
2645 }
2646
2647 u = packet->rxp;
2648 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2649 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2650 stats.len = sq->drv[i].frame_size;
2651
2652 stats.mask = 0;
2653 if (stats.rssi != 0)
2654 stats.mask |= IEEE80211_STATMASK_RSSI;
2655 stats.freq = IEEE80211_24GHZ_BAND;
2656
2657 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2658 priv->net_dev->name, frame_types[frame_type],
2659 stats.len);
2660
2661 switch (frame_type) {
2662 case COMMAND_STATUS_VAL:
2663 /* Reset Rx watchdog */
2664 isr_rx_complete_command(priv, &u->rx_data.command);
2665 break;
2666
2667 case STATUS_CHANGE_VAL:
2668 isr_status_change(priv, u->rx_data.status);
2669 break;
2670
2671 case P80211_DATA_VAL:
2672 case P8023_DATA_VAL:
2673 #ifdef CONFIG_IPW2100_MONITOR
2674 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2675 isr_rx_monitor(priv, i, &stats);
2676 break;
2677 }
2678 #endif
2679 if (stats.len < sizeof(struct ieee80211_hdr_3addr))
2680 break;
2681 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2682 case IEEE80211_FTYPE_MGMT:
2683 ieee80211_rx_mgt(priv->ieee,
2684 &u->rx_data.header, &stats);
2685 break;
2686
2687 case IEEE80211_FTYPE_CTL:
2688 break;
2689
2690 case IEEE80211_FTYPE_DATA:
2691 isr_rx(priv, i, &stats);
2692 break;
2693
2694 }
2695 break;
2696 }
2697
2698 increment:
2699 /* clear status field associated with this RBD */
2700 rxq->drv[i].status.info.field = 0;
2701
2702 i = (i + 1) % rxq->entries;
2703 }
2704
2705 if (i != s) {
2706 /* backtrack one entry, wrapping to end if at 0 */
2707 rxq->next = (i ? i : rxq->entries) - 1;
2708
2709 write_register(priv->net_dev,
2710 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2711 }
2712 }
2713
2714 /*
2715 * __ipw2100_tx_process
2716 *
2717 * This routine will determine whether the next packet on
2718 * the fw_pend_list has been processed by the firmware yet.
2719 *
2720 * If not, then it does nothing and returns.
2721 *
2722 * If so, then it removes the item from the fw_pend_list, frees
2723 * any associated storage, and places the item back on the
2724 * free list of its source (either msg_free_list or tx_free_list)
2725 *
2726 * TX Queue works as follows:
2727 *
2728 * Read index - points to the next TBD that the firmware will
2729 * process. The firmware will read the data, and once
2730 * done processing, it will advance the Read index.
2731 *
2732 * Write index - driver fills this entry with an constructed TBD
2733 * entry. The Write index is not advanced until the
2734 * packet has been configured.
2735 *
2736 * In between the W and R indexes are the TBDs that have NOT been
2737 * processed. Lagging behind the R index are packets that have
2738 * been processed but have not been freed by the driver.
2739 *
2740 * In order to free old storage, an internal index will be maintained
2741 * that points to the next packet to be freed. When all used
2742 * packets have been freed, the oldest index will be the same as the
2743 * firmware's read index.
2744 *
2745 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2746 *
2747 * Because the TBD structure can not contain arbitrary data, the
2748 * driver must keep an internal queue of cached allocations such that
2749 * it can put that data back into the tx_free_list and msg_free_list
2750 * for use by future command and data packets.
2751 *
2752 */
2753 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2754 {
2755 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2756 struct ipw2100_bd *tbd;
2757 struct list_head *element;
2758 struct ipw2100_tx_packet *packet;
2759 int descriptors_used;
2760 int e, i;
2761 u32 r, w, frag_num = 0;
2762
2763 if (list_empty(&priv->fw_pend_list))
2764 return 0;
2765
2766 element = priv->fw_pend_list.next;
2767
2768 packet = list_entry(element, struct ipw2100_tx_packet, list);
2769 tbd = &txq->drv[packet->index];
2770
2771 /* Determine how many TBD entries must be finished... */
2772 switch (packet->type) {
2773 case COMMAND:
2774 /* COMMAND uses only one slot; don't advance */
2775 descriptors_used = 1;
2776 e = txq->oldest;
2777 break;
2778
2779 case DATA:
2780 /* DATA uses two slots; advance and loop position. */
2781 descriptors_used = tbd->num_fragments;
2782 frag_num = tbd->num_fragments - 1;
2783 e = txq->oldest + frag_num;
2784 e %= txq->entries;
2785 break;
2786
2787 default:
2788 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2789 priv->net_dev->name);
2790 return 0;
2791 }
2792
2793 /* if the last TBD is not done by NIC yet, then packet is
2794 * not ready to be released.
2795 *
2796 */
2797 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2798 &r);
2799 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2800 &w);
2801 if (w != txq->next)
2802 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2803 priv->net_dev->name);
2804
2805 /*
2806 * txq->next is the index of the last packet written txq->oldest is
2807 * the index of the r is the index of the next packet to be read by
2808 * firmware
2809 */
2810
2811 /*
2812 * Quick graphic to help you visualize the following
2813 * if / else statement
2814 *
2815 * ===>| s---->|===============
2816 * e>|
2817 * | a | b | c | d | e | f | g | h | i | j | k | l
2818 * r---->|
2819 * w
2820 *
2821 * w - updated by driver
2822 * r - updated by firmware
2823 * s - start of oldest BD entry (txq->oldest)
2824 * e - end of oldest BD entry
2825 *
2826 */
2827 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2828 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2829 return 0;
2830 }
2831
2832 list_del(element);
2833 DEC_STAT(&priv->fw_pend_stat);
2834
2835 #ifdef CONFIG_IPW2100_DEBUG
2836 {
2837 int i = txq->oldest;
2838 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2839 &txq->drv[i],
2840 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2841 txq->drv[i].host_addr, txq->drv[i].buf_length);
2842
2843 if (packet->type == DATA) {
2844 i = (i + 1) % txq->entries;
2845
2846 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2847 &txq->drv[i],
2848 (u32) (txq->nic + i *
2849 sizeof(struct ipw2100_bd)),
2850 (u32) txq->drv[i].host_addr,
2851 txq->drv[i].buf_length);
2852 }
2853 }
2854 #endif
2855
2856 switch (packet->type) {
2857 case DATA:
2858 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2859 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2860 "Expecting DATA TBD but pulled "
2861 "something else: ids %d=%d.\n",
2862 priv->net_dev->name, txq->oldest, packet->index);
2863
2864 /* DATA packet; we have to unmap and free the SKB */
2865 for (i = 0; i < frag_num; i++) {
2866 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2867
2868 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2869 (packet->index + 1 + i) % txq->entries,
2870 tbd->host_addr, tbd->buf_length);
2871
2872 pci_unmap_single(priv->pci_dev,
2873 tbd->host_addr,
2874 tbd->buf_length, PCI_DMA_TODEVICE);
2875 }
2876
2877 ieee80211_txb_free(packet->info.d_struct.txb);
2878 packet->info.d_struct.txb = NULL;
2879
2880 list_add_tail(element, &priv->tx_free_list);
2881 INC_STAT(&priv->tx_free_stat);
2882
2883 /* We have a free slot in the Tx queue, so wake up the
2884 * transmit layer if it is stopped. */
2885 if (priv->status & STATUS_ASSOCIATED)
2886 netif_wake_queue(priv->net_dev);
2887
2888 /* A packet was processed by the hardware, so update the
2889 * watchdog */
2890 priv->net_dev->trans_start = jiffies;
2891
2892 break;
2893
2894 case COMMAND:
2895 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2896 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2897 "Expecting COMMAND TBD but pulled "
2898 "something else: ids %d=%d.\n",
2899 priv->net_dev->name, txq->oldest, packet->index);
2900
2901 #ifdef CONFIG_IPW2100_DEBUG
2902 if (packet->info.c_struct.cmd->host_command_reg <
2903 ARRAY_SIZE(command_types))
2904 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2905 command_types[packet->info.c_struct.cmd->
2906 host_command_reg],
2907 packet->info.c_struct.cmd->
2908 host_command_reg,
2909 packet->info.c_struct.cmd->cmd_status_reg);
2910 #endif
2911
2912 list_add_tail(element, &priv->msg_free_list);
2913 INC_STAT(&priv->msg_free_stat);
2914 break;
2915 }
2916
2917 /* advance oldest used TBD pointer to start of next entry */
2918 txq->oldest = (e + 1) % txq->entries;
2919 /* increase available TBDs number */
2920 txq->available += descriptors_used;
2921 SET_STAT(&priv->txq_stat, txq->available);
2922
2923 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2924 jiffies - packet->jiffy_start);
2925
2926 return (!list_empty(&priv->fw_pend_list));
2927 }
2928
2929 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2930 {
2931 int i = 0;
2932
2933 while (__ipw2100_tx_process(priv) && i < 200)
2934 i++;
2935
2936 if (i == 200) {
2937 printk(KERN_WARNING DRV_NAME ": "
2938 "%s: Driver is running slow (%d iters).\n",
2939 priv->net_dev->name, i);
2940 }
2941 }
2942
2943 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2944 {
2945 struct list_head *element;
2946 struct ipw2100_tx_packet *packet;
2947 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2948 struct ipw2100_bd *tbd;
2949 int next = txq->next;
2950
2951 while (!list_empty(&priv->msg_pend_list)) {
2952 /* if there isn't enough space in TBD queue, then
2953 * don't stuff a new one in.
2954 * NOTE: 3 are needed as a command will take one,
2955 * and there is a minimum of 2 that must be
2956 * maintained between the r and w indexes
2957 */
2958 if (txq->available <= 3) {
2959 IPW_DEBUG_TX("no room in tx_queue\n");
2960 break;
2961 }
2962
2963 element = priv->msg_pend_list.next;
2964 list_del(element);
2965 DEC_STAT(&priv->msg_pend_stat);
2966
2967 packet = list_entry(element, struct ipw2100_tx_packet, list);
2968
2969 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2970 &txq->drv[txq->next],
2971 (void *)(txq->nic + txq->next *
2972 sizeof(struct ipw2100_bd)));
2973
2974 packet->index = txq->next;
2975
2976 tbd = &txq->drv[txq->next];
2977
2978 /* initialize TBD */
2979 tbd->host_addr = packet->info.c_struct.cmd_phys;
2980 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2981 /* not marking number of fragments causes problems
2982 * with f/w debug version */
2983 tbd->num_fragments = 1;
2984 tbd->status.info.field =
2985 IPW_BD_STATUS_TX_FRAME_COMMAND |
2986 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2987
2988 /* update TBD queue counters */
2989 txq->next++;
2990 txq->next %= txq->entries;
2991 txq->available--;
2992 DEC_STAT(&priv->txq_stat);
2993
2994 list_add_tail(element, &priv->fw_pend_list);
2995 INC_STAT(&priv->fw_pend_stat);
2996 }
2997
2998 if (txq->next != next) {
2999 /* kick off the DMA by notifying firmware the
3000 * write index has moved; make sure TBD stores are sync'd */
3001 wmb();
3002 write_register(priv->net_dev,
3003 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3004 txq->next);
3005 }
3006 }
3007
3008 /*
3009 * ipw2100_tx_send_data
3010 *
3011 */
3012 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3013 {
3014 struct list_head *element;
3015 struct ipw2100_tx_packet *packet;
3016 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3017 struct ipw2100_bd *tbd;
3018 int next = txq->next;
3019 int i = 0;
3020 struct ipw2100_data_header *ipw_hdr;
3021 struct ieee80211_hdr_3addr *hdr;
3022
3023 while (!list_empty(&priv->tx_pend_list)) {
3024 /* if there isn't enough space in TBD queue, then
3025 * don't stuff a new one in.
3026 * NOTE: 4 are needed as a data will take two,
3027 * and there is a minimum of 2 that must be
3028 * maintained between the r and w indexes
3029 */
3030 element = priv->tx_pend_list.next;
3031 packet = list_entry(element, struct ipw2100_tx_packet, list);
3032
3033 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3034 IPW_MAX_BDS)) {
3035 /* TODO: Support merging buffers if more than
3036 * IPW_MAX_BDS are used */
3037 IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded. "
3038 "Increase fragmentation level.\n",
3039 priv->net_dev->name);
3040 }
3041
3042 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3043 IPW_DEBUG_TX("no room in tx_queue\n");
3044 break;
3045 }
3046
3047 list_del(element);
3048 DEC_STAT(&priv->tx_pend_stat);
3049
3050 tbd = &txq->drv[txq->next];
3051
3052 packet->index = txq->next;
3053
3054 ipw_hdr = packet->info.d_struct.data;
3055 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3056 fragments[0]->data;
3057
3058 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3059 /* To DS: Addr1 = BSSID, Addr2 = SA,
3060 Addr3 = DA */
3061 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3062 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3063 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3064 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3065 Addr3 = BSSID */
3066 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3067 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3068 }
3069
3070 ipw_hdr->host_command_reg = SEND;
3071 ipw_hdr->host_command_reg1 = 0;
3072
3073 /* For now we only support host based encryption */
3074 ipw_hdr->needs_encryption = 0;
3075 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3076 if (packet->info.d_struct.txb->nr_frags > 1)
3077 ipw_hdr->fragment_size =
3078 packet->info.d_struct.txb->frag_size -
3079 IEEE80211_3ADDR_LEN;
3080 else
3081 ipw_hdr->fragment_size = 0;
3082
3083 tbd->host_addr = packet->info.d_struct.data_phys;
3084 tbd->buf_length = sizeof(struct ipw2100_data_header);
3085 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3086 tbd->status.info.field =
3087 IPW_BD_STATUS_TX_FRAME_802_3 |
3088 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3089 txq->next++;
3090 txq->next %= txq->entries;
3091
3092 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3093 packet->index, tbd->host_addr, tbd->buf_length);
3094 #ifdef CONFIG_IPW2100_DEBUG
3095 if (packet->info.d_struct.txb->nr_frags > 1)
3096 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3097 packet->info.d_struct.txb->nr_frags);
3098 #endif
3099
3100 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3101 tbd = &txq->drv[txq->next];
3102 if (i == packet->info.d_struct.txb->nr_frags - 1)
3103 tbd->status.info.field =
3104 IPW_BD_STATUS_TX_FRAME_802_3 |
3105 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3106 else
3107 tbd->status.info.field =
3108 IPW_BD_STATUS_TX_FRAME_802_3 |
3109 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3110
3111 tbd->buf_length = packet->info.d_struct.txb->
3112 fragments[i]->len - IEEE80211_3ADDR_LEN;
3113
3114 tbd->host_addr = pci_map_single(priv->pci_dev,
3115 packet->info.d_struct.
3116 txb->fragments[i]->
3117 data +
3118 IEEE80211_3ADDR_LEN,
3119 tbd->buf_length,
3120 PCI_DMA_TODEVICE);
3121
3122 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3123 txq->next, tbd->host_addr,
3124 tbd->buf_length);
3125
3126 pci_dma_sync_single_for_device(priv->pci_dev,
3127 tbd->host_addr,
3128 tbd->buf_length,
3129 PCI_DMA_TODEVICE);
3130
3131 txq->next++;
3132 txq->next %= txq->entries;
3133 }
3134
3135 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3136 SET_STAT(&priv->txq_stat, txq->available);
3137
3138 list_add_tail(element, &priv->fw_pend_list);
3139 INC_STAT(&priv->fw_pend_stat);
3140 }
3141
3142 if (txq->next != next) {
3143 /* kick off the DMA by notifying firmware the
3144 * write index has moved; make sure TBD stores are sync'd */
3145 write_register(priv->net_dev,
3146 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3147 txq->next);
3148 }
3149 return;
3150 }
3151
3152 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3153 {
3154 struct net_device *dev = priv->net_dev;
3155 unsigned long flags;
3156 u32 inta, tmp;
3157
3158 spin_lock_irqsave(&priv->low_lock, flags);
3159 ipw2100_disable_interrupts(priv);
3160
3161 read_register(dev, IPW_REG_INTA, &inta);
3162
3163 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3164 (unsigned long)inta & IPW_INTERRUPT_MASK);
3165
3166 priv->in_isr++;
3167 priv->interrupts++;
3168
3169 /* We do not loop and keep polling for more interrupts as this
3170 * is frowned upon and doesn't play nicely with other potentially
3171 * chained IRQs */
3172 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3173 (unsigned long)inta & IPW_INTERRUPT_MASK);
3174
3175 if (inta & IPW2100_INTA_FATAL_ERROR) {
3176 printk(KERN_WARNING DRV_NAME
3177 ": Fatal interrupt. Scheduling firmware restart.\n");
3178 priv->inta_other++;
3179 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3180
3181 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3182 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3183 priv->net_dev->name, priv->fatal_error);
3184
3185 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3186 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3187 priv->net_dev->name, tmp);
3188
3189 /* Wake up any sleeping jobs */
3190 schedule_reset(priv);
3191 }
3192
3193 if (inta & IPW2100_INTA_PARITY_ERROR) {
3194 printk(KERN_ERR DRV_NAME
3195 ": ***** PARITY ERROR INTERRUPT !!!! \n");
3196 priv->inta_other++;
3197 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3198 }
3199
3200 if (inta & IPW2100_INTA_RX_TRANSFER) {
3201 IPW_DEBUG_ISR("RX interrupt\n");
3202
3203 priv->rx_interrupts++;
3204
3205 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3206
3207 __ipw2100_rx_process(priv);
3208 __ipw2100_tx_complete(priv);
3209 }
3210
3211 if (inta & IPW2100_INTA_TX_TRANSFER) {
3212 IPW_DEBUG_ISR("TX interrupt\n");
3213
3214 priv->tx_interrupts++;
3215
3216 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3217
3218 __ipw2100_tx_complete(priv);
3219 ipw2100_tx_send_commands(priv);
3220 ipw2100_tx_send_data(priv);
3221 }
3222
3223 if (inta & IPW2100_INTA_TX_COMPLETE) {
3224 IPW_DEBUG_ISR("TX complete\n");
3225 priv->inta_other++;
3226 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3227
3228 __ipw2100_tx_complete(priv);
3229 }
3230
3231 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3232 /* ipw2100_handle_event(dev); */
3233 priv->inta_other++;
3234 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3235 }
3236
3237 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3238 IPW_DEBUG_ISR("FW init done interrupt\n");
3239 priv->inta_other++;
3240
3241 read_register(dev, IPW_REG_INTA, &tmp);
3242 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3243 IPW2100_INTA_PARITY_ERROR)) {
3244 write_register(dev, IPW_REG_INTA,
3245 IPW2100_INTA_FATAL_ERROR |
3246 IPW2100_INTA_PARITY_ERROR);
3247 }
3248
3249 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3250 }
3251
3252 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3253 IPW_DEBUG_ISR("Status change interrupt\n");
3254 priv->inta_other++;
3255 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3256 }
3257
3258 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3259 IPW_DEBUG_ISR("slave host mode interrupt\n");
3260 priv->inta_other++;
3261 write_register(dev, IPW_REG_INTA,
3262 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3263 }
3264
3265 priv->in_isr--;
3266 ipw2100_enable_interrupts(priv);
3267
3268 spin_unlock_irqrestore(&priv->low_lock, flags);
3269
3270 IPW_DEBUG_ISR("exit\n");
3271 }
3272
3273 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3274 {
3275 struct ipw2100_priv *priv = data;
3276 u32 inta, inta_mask;
3277
3278 if (!data)
3279 return IRQ_NONE;
3280
3281 spin_lock(&priv->low_lock);
3282
3283 /* We check to see if we should be ignoring interrupts before
3284 * we touch the hardware. During ucode load if we try and handle
3285 * an interrupt we can cause keyboard problems as well as cause
3286 * the ucode to fail to initialize */
3287 if (!(priv->status & STATUS_INT_ENABLED)) {
3288 /* Shared IRQ */
3289 goto none;
3290 }
3291
3292 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3293 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3294
3295 if (inta == 0xFFFFFFFF) {
3296 /* Hardware disappeared */
3297 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3298 goto none;
3299 }
3300
3301 inta &= IPW_INTERRUPT_MASK;
3302
3303 if (!(inta & inta_mask)) {
3304 /* Shared interrupt */
3305 goto none;
3306 }
3307
3308 /* We disable the hardware interrupt here just to prevent unneeded
3309 * calls to be made. We disable this again within the actual
3310 * work tasklet, so if another part of the code re-enables the
3311 * interrupt, that is fine */
3312 ipw2100_disable_interrupts(priv);
3313
3314 tasklet_schedule(&priv->irq_tasklet);
3315 spin_unlock(&priv->low_lock);
3316
3317 return IRQ_HANDLED;
3318 none:
3319 spin_unlock(&priv->low_lock);
3320 return IRQ_NONE;
3321 }
3322
3323 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3324 int pri)
3325 {
3326 struct ipw2100_priv *priv = ieee80211_priv(dev);
3327 struct list_head *element;
3328 struct ipw2100_tx_packet *packet;
3329 unsigned long flags;
3330
3331 spin_lock_irqsave(&priv->low_lock, flags);
3332
3333 if (!(priv->status & STATUS_ASSOCIATED)) {
3334 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3335 priv->ieee->stats.tx_carrier_errors++;
3336 netif_stop_queue(dev);
3337 goto fail_unlock;
3338 }
3339
3340 if (list_empty(&priv->tx_free_list))
3341 goto fail_unlock;
3342
3343 element = priv->tx_free_list.next;
3344 packet = list_entry(element, struct ipw2100_tx_packet, list);
3345
3346 packet->info.d_struct.txb = txb;
3347
3348 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3349 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3350
3351 packet->jiffy_start = jiffies;
3352
3353 list_del(element);
3354 DEC_STAT(&priv->tx_free_stat);
3355
3356 list_add_tail(element, &priv->tx_pend_list);
3357 INC_STAT(&priv->tx_pend_stat);
3358
3359 ipw2100_tx_send_data(priv);
3360
3361 spin_unlock_irqrestore(&priv->low_lock, flags);
3362 return 0;
3363
3364 fail_unlock:
3365 netif_stop_queue(dev);
3366 spin_unlock_irqrestore(&priv->low_lock, flags);
3367 return 1;
3368 }
3369
3370 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3371 {
3372 int i, j, err = -EINVAL;
3373 void *v;
3374 dma_addr_t p;
3375
3376 priv->msg_buffers =
3377 (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3378 sizeof(struct
3379 ipw2100_tx_packet),
3380 GFP_KERNEL);
3381 if (!priv->msg_buffers) {
3382 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3383 "buffers.\n", priv->net_dev->name);
3384 return -ENOMEM;
3385 }
3386
3387 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3388 v = pci_alloc_consistent(priv->pci_dev,
3389 sizeof(struct ipw2100_cmd_header), &p);
3390 if (!v) {
3391 printk(KERN_ERR DRV_NAME ": "
3392 "%s: PCI alloc failed for msg "
3393 "buffers.\n", priv->net_dev->name);
3394 err = -ENOMEM;
3395 break;
3396 }
3397
3398 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3399
3400 priv->msg_buffers[i].type = COMMAND;
3401 priv->msg_buffers[i].info.c_struct.cmd =
3402 (struct ipw2100_cmd_header *)v;
3403 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3404 }
3405
3406 if (i == IPW_COMMAND_POOL_SIZE)
3407 return 0;
3408
3409 for (j = 0; j < i; j++) {
3410 pci_free_consistent(priv->pci_dev,
3411 sizeof(struct ipw2100_cmd_header),
3412 priv->msg_buffers[j].info.c_struct.cmd,
3413 priv->msg_buffers[j].info.c_struct.
3414 cmd_phys);
3415 }
3416
3417 kfree(priv->msg_buffers);
3418 priv->msg_buffers = NULL;
3419
3420 return err;
3421 }
3422
3423 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3424 {
3425 int i;
3426
3427 INIT_LIST_HEAD(&priv->msg_free_list);
3428 INIT_LIST_HEAD(&priv->msg_pend_list);
3429
3430 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3431 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3432 SET_STAT(&priv->msg_free_stat, i);
3433
3434 return 0;
3435 }
3436
3437 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3438 {
3439 int i;
3440
3441 if (!priv->msg_buffers)
3442 return;
3443
3444 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3445 pci_free_consistent(priv->pci_dev,
3446 sizeof(struct ipw2100_cmd_header),
3447 priv->msg_buffers[i].info.c_struct.cmd,
3448 priv->msg_buffers[i].info.c_struct.
3449 cmd_phys);
3450 }
3451
3452 kfree(priv->msg_buffers);
3453 priv->msg_buffers = NULL;
3454 }
3455
3456 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3457 char *buf)
3458 {
3459 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3460 char *out = buf;
3461 int i, j;
3462 u32 val;
3463
3464 for (i = 0; i < 16; i++) {
3465 out += sprintf(out, "[%08X] ", i * 16);
3466 for (j = 0; j < 16; j += 4) {
3467 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3468 out += sprintf(out, "%08X ", val);
3469 }
3470 out += sprintf(out, "\n");
3471 }
3472
3473 return out - buf;
3474 }
3475
3476 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3477
3478 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3479 char *buf)
3480 {
3481 struct ipw2100_priv *p = d->driver_data;
3482 return sprintf(buf, "0x%08x\n", (int)p->config);
3483 }
3484
3485 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3486
3487 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3488 char *buf)
3489 {
3490 struct ipw2100_priv *p = d->driver_data;
3491 return sprintf(buf, "0x%08x\n", (int)p->status);
3492 }
3493
3494 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3495
3496 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3497 char *buf)
3498 {
3499 struct ipw2100_priv *p = d->driver_data;
3500 return sprintf(buf, "0x%08x\n", (int)p->capability);
3501 }
3502
3503 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3504
3505 #define IPW2100_REG(x) { IPW_ ##x, #x }
3506 static const struct {
3507 u32 addr;
3508 const char *name;
3509 } hw_data[] = {
3510 IPW2100_REG(REG_GP_CNTRL),
3511 IPW2100_REG(REG_GPIO),
3512 IPW2100_REG(REG_INTA),
3513 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3514 #define IPW2100_NIC(x, s) { x, #x, s }
3515 static const struct {
3516 u32 addr;
3517 const char *name;
3518 size_t size;
3519 } nic_data[] = {
3520 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3521 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3522 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3523 static const struct {
3524 u8 index;
3525 const char *name;
3526 const char *desc;
3527 } ord_data[] = {
3528 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3529 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3530 "successful Host Tx's (MSDU)"),
3531 IPW2100_ORD(STAT_TX_DIR_DATA,
3532 "successful Directed Tx's (MSDU)"),
3533 IPW2100_ORD(STAT_TX_DIR_DATA1,
3534 "successful Directed Tx's (MSDU) @ 1MB"),
3535 IPW2100_ORD(STAT_TX_DIR_DATA2,
3536 "successful Directed Tx's (MSDU) @ 2MB"),
3537 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3538 "successful Directed Tx's (MSDU) @ 5_5MB"),
3539 IPW2100_ORD(STAT_TX_DIR_DATA11,
3540 "successful Directed Tx's (MSDU) @ 11MB"),
3541 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3542 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3543 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3544 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3545 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3546 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3547 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3548 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3549 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3550 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3551 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3552 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3553 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3554 IPW2100_ORD(STAT_TX_ASSN_RESP,
3555 "successful Association response Tx's"),
3556 IPW2100_ORD(STAT_TX_REASSN,
3557 "successful Reassociation Tx's"),
3558 IPW2100_ORD(STAT_TX_REASSN_RESP,
3559 "successful Reassociation response Tx's"),
3560 IPW2100_ORD(STAT_TX_PROBE,
3561 "probes successfully transmitted"),
3562 IPW2100_ORD(STAT_TX_PROBE_RESP,
3563 "probe responses successfully transmitted"),
3564 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3565 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3566 IPW2100_ORD(STAT_TX_DISASSN,
3567 "successful Disassociation TX"),
3568 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3569 IPW2100_ORD(STAT_TX_DEAUTH,
3570 "successful Deauthentication TX"),
3571 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3572 "Total successful Tx data bytes"),
3573 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3574 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3575 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3576 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3577 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3578 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3579 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3580 "times max tries in a hop failed"),
3581 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3582 "times disassociation failed"),
3583 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3584 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3585 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3586 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3587 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3588 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3589 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3590 "directed packets at 5.5MB"),
3591 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3592 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3593 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3594 "nondirected packets at 1MB"),
3595 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3596 "nondirected packets at 2MB"),
3597 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3598 "nondirected packets at 5.5MB"),
3599 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3600 "nondirected packets at 11MB"),
3601 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3602 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3603 "Rx CTS"),
3604 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3605 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3606 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3607 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3608 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3609 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3610 IPW2100_ORD(STAT_RX_REASSN_RESP,
3611 "Reassociation response Rx's"),
3612 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3613 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3614 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3615 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3616 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3617 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3618 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3619 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3620 "Total rx data bytes received"),
3621 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3622 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3623 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3624 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3625 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3626 IPW2100_ORD(STAT_RX_DUPLICATE1,
3627 "duplicate rx packets at 1MB"),
3628 IPW2100_ORD(STAT_RX_DUPLICATE2,
3629 "duplicate rx packets at 2MB"),
3630 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3631 "duplicate rx packets at 5.5MB"),
3632 IPW2100_ORD(STAT_RX_DUPLICATE11,
3633 "duplicate rx packets at 11MB"),
3634 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3635 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3636 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3637 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3638 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3639 "rx frames with invalid protocol"),
3640 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3641 IPW2100_ORD(STAT_RX_NO_BUFFER,
3642 "rx frames rejected due to no buffer"),
3643 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3644 "rx frames dropped due to missing fragment"),
3645 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3646 "rx frames dropped due to non-sequential fragment"),
3647 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3648 "rx frames dropped due to unmatched 1st frame"),
3649 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3650 "rx frames dropped due to uncompleted frame"),
3651 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3652 "ICV errors during decryption"),
3653 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3654 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3655 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3656 "poll response timeouts"),
3657 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3658 "timeouts waiting for last {broad,multi}cast pkt"),
3659 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3660 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3661 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3662 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3663 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3664 "current calculation of % missed beacons"),
3665 IPW2100_ORD(STAT_PERCENT_RETRIES,
3666 "current calculation of % missed tx retries"),
3667 IPW2100_ORD(ASSOCIATED_AP_PTR,
3668 "0 if not associated, else pointer to AP table entry"),
3669 IPW2100_ORD(AVAILABLE_AP_CNT,
3670 "AP's decsribed in the AP table"),
3671 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3672 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3673 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3674 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3675 "failures due to response fail"),
3676 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3677 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3678 IPW2100_ORD(STAT_ROAM_INHIBIT,
3679 "times roaming was inhibited due to activity"),
3680 IPW2100_ORD(RSSI_AT_ASSN,
3681 "RSSI of associated AP at time of association"),
3682 IPW2100_ORD(STAT_ASSN_CAUSE1,
3683 "reassociation: no probe response or TX on hop"),
3684 IPW2100_ORD(STAT_ASSN_CAUSE2,
3685 "reassociation: poor tx/rx quality"),
3686 IPW2100_ORD(STAT_ASSN_CAUSE3,
3687 "reassociation: tx/rx quality (excessive AP load"),
3688 IPW2100_ORD(STAT_ASSN_CAUSE4,
3689 "reassociation: AP RSSI level"),
3690 IPW2100_ORD(STAT_ASSN_CAUSE5,
3691 "reassociations due to load leveling"),
3692 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3693 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3694 "times authentication response failed"),
3695 IPW2100_ORD(STATION_TABLE_CNT,
3696 "entries in association table"),
3697 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3698 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3699 IPW2100_ORD(COUNTRY_CODE,
3700 "IEEE country code as recv'd from beacon"),
3701 IPW2100_ORD(COUNTRY_CHANNELS,
3702 "channels suported by country"),
3703 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3704 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3705 IPW2100_ORD(ANTENNA_DIVERSITY,
3706 "TRUE if antenna diversity is disabled"),
3707 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3708 IPW2100_ORD(OUR_FREQ,
3709 "current radio freq lower digits - channel ID"),
3710 IPW2100_ORD(RTC_TIME, "current RTC time"),
3711 IPW2100_ORD(PORT_TYPE, "operating mode"),
3712 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3713 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3714 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3715 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3716 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3717 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3718 IPW2100_ORD(CAPABILITIES,
3719 "Management frame capability field"),
3720 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3721 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3722 IPW2100_ORD(RTS_THRESHOLD,
3723 "Min packet length for RTS handshaking"),
3724 IPW2100_ORD(INT_MODE, "International mode"),
3725 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3726 "protocol frag threshold"),
3727 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3728 "EEPROM offset in SRAM"),
3729 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3730 "EEPROM size in SRAM"),
3731 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3732 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3733 "EEPROM IBSS 11b channel set"),
3734 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3735 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3736 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3737 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3738 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3739
3740 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3741 char *buf)
3742 {
3743 int i;
3744 struct ipw2100_priv *priv = dev_get_drvdata(d);
3745 struct net_device *dev = priv->net_dev;
3746 char *out = buf;
3747 u32 val = 0;
3748
3749 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3750
3751 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3752 read_register(dev, hw_data[i].addr, &val);
3753 out += sprintf(out, "%30s [%08X] : %08X\n",
3754 hw_data[i].name, hw_data[i].addr, val);
3755 }
3756
3757 return out - buf;
3758 }
3759
3760 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3761
3762 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3763 char *buf)
3764 {
3765 struct ipw2100_priv *priv = dev_get_drvdata(d);
3766 struct net_device *dev = priv->net_dev;
3767 char *out = buf;
3768 int i;
3769
3770 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3771
3772 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3773 u8 tmp8;
3774 u16 tmp16;
3775 u32 tmp32;
3776
3777 switch (nic_data[i].size) {
3778 case 1:
3779 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3780 out += sprintf(out, "%30s [%08X] : %02X\n",
3781 nic_data[i].name, nic_data[i].addr,
3782 tmp8);
3783 break;
3784 case 2:
3785 read_nic_word(dev, nic_data[i].addr, &tmp16);
3786 out += sprintf(out, "%30s [%08X] : %04X\n",
3787 nic_data[i].name, nic_data[i].addr,
3788 tmp16);
3789 break;
3790 case 4:
3791 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3792 out += sprintf(out, "%30s [%08X] : %08X\n",
3793 nic_data[i].name, nic_data[i].addr,
3794 tmp32);
3795 break;
3796 }
3797 }
3798 return out - buf;
3799 }
3800
3801 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3802
3803 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3804 char *buf)
3805 {
3806 struct ipw2100_priv *priv = dev_get_drvdata(d);
3807 struct net_device *dev = priv->net_dev;
3808 static unsigned long loop = 0;
3809 int len = 0;
3810 u32 buffer[4];
3811 int i;
3812 char line[81];
3813
3814 if (loop >= 0x30000)
3815 loop = 0;
3816
3817 /* sysfs provides us PAGE_SIZE buffer */
3818 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3819
3820 if (priv->snapshot[0])
3821 for (i = 0; i < 4; i++)
3822 buffer[i] =
3823 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3824 else
3825 for (i = 0; i < 4; i++)
3826 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3827
3828 if (priv->dump_raw)
3829 len += sprintf(buf + len,
3830 "%c%c%c%c"
3831 "%c%c%c%c"
3832 "%c%c%c%c"
3833 "%c%c%c%c",
3834 ((u8 *) buffer)[0x0],
3835 ((u8 *) buffer)[0x1],
3836 ((u8 *) buffer)[0x2],
3837 ((u8 *) buffer)[0x3],
3838 ((u8 *) buffer)[0x4],
3839 ((u8 *) buffer)[0x5],
3840 ((u8 *) buffer)[0x6],
3841 ((u8 *) buffer)[0x7],
3842 ((u8 *) buffer)[0x8],
3843 ((u8 *) buffer)[0x9],
3844 ((u8 *) buffer)[0xa],
3845 ((u8 *) buffer)[0xb],
3846 ((u8 *) buffer)[0xc],
3847 ((u8 *) buffer)[0xd],
3848 ((u8 *) buffer)[0xe],
3849 ((u8 *) buffer)[0xf]);
3850 else
3851 len += sprintf(buf + len, "%s\n",
3852 snprint_line(line, sizeof(line),
3853 (u8 *) buffer, 16, loop));
3854 loop += 16;
3855 }
3856
3857 return len;
3858 }
3859
3860 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3861 const char *buf, size_t count)
3862 {
3863 struct ipw2100_priv *priv = dev_get_drvdata(d);
3864 struct net_device *dev = priv->net_dev;
3865 const char *p = buf;
3866
3867 (void)dev; /* kill unused-var warning for debug-only code */
3868
3869 if (count < 1)
3870 return count;
3871
3872 if (p[0] == '1' ||
3873 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3874 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3875 dev->name);
3876 priv->dump_raw = 1;
3877
3878 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3879 tolower(p[1]) == 'f')) {
3880 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3881 dev->name);
3882 priv->dump_raw = 0;
3883
3884 } else if (tolower(p[0]) == 'r') {
3885 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3886 ipw2100_snapshot_free(priv);
3887
3888 } else
3889 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3890 "reset = clear memory snapshot\n", dev->name);
3891
3892 return count;
3893 }
3894
3895 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3896
3897 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3898 char *buf)
3899 {
3900 struct ipw2100_priv *priv = dev_get_drvdata(d);
3901 u32 val = 0;
3902 int len = 0;
3903 u32 val_len;
3904 static int loop = 0;
3905
3906 if (priv->status & STATUS_RF_KILL_MASK)
3907 return 0;
3908
3909 if (loop >= ARRAY_SIZE(ord_data))
3910 loop = 0;
3911
3912 /* sysfs provides us PAGE_SIZE buffer */
3913 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3914 val_len = sizeof(u32);
3915
3916 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3917 &val_len))
3918 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3919 ord_data[loop].index,
3920 ord_data[loop].desc);
3921 else
3922 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3923 ord_data[loop].index, val,
3924 ord_data[loop].desc);
3925 loop++;
3926 }
3927
3928 return len;
3929 }
3930
3931 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3932
3933 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3934 char *buf)
3935 {
3936 struct ipw2100_priv *priv = dev_get_drvdata(d);
3937 char *out = buf;
3938
3939 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3940 priv->interrupts, priv->tx_interrupts,
3941 priv->rx_interrupts, priv->inta_other);
3942 out += sprintf(out, "firmware resets: %d\n", priv->resets);
3943 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3944 #ifdef CONFIG_IPW2100_DEBUG
3945 out += sprintf(out, "packet mismatch image: %s\n",
3946 priv->snapshot[0] ? "YES" : "NO");
3947 #endif
3948
3949 return out - buf;
3950 }
3951
3952 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3953
3954 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3955 {
3956 int err;
3957
3958 if (mode == priv->ieee->iw_mode)
3959 return 0;
3960
3961 err = ipw2100_disable_adapter(priv);
3962 if (err) {
3963 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3964 priv->net_dev->name, err);
3965 return err;
3966 }
3967
3968 switch (mode) {
3969 case IW_MODE_INFRA:
3970 priv->net_dev->type = ARPHRD_ETHER;
3971 break;
3972 case IW_MODE_ADHOC:
3973 priv->net_dev->type = ARPHRD_ETHER;
3974 break;
3975 #ifdef CONFIG_IPW2100_MONITOR
3976 case IW_MODE_MONITOR:
3977 priv->last_mode = priv->ieee->iw_mode;
3978 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3979 break;
3980 #endif /* CONFIG_IPW2100_MONITOR */
3981 }
3982
3983 priv->ieee->iw_mode = mode;
3984
3985 #ifdef CONFIG_PM
3986 /* Indicate ipw2100_download_firmware download firmware
3987 * from disk instead of memory. */
3988 ipw2100_firmware.version = 0;
3989 #endif
3990
3991 printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3992 priv->reset_backoff = 0;
3993 schedule_reset(priv);
3994
3995 return 0;
3996 }
3997
3998 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3999 char *buf)
4000 {
4001 struct ipw2100_priv *priv = dev_get_drvdata(d);
4002 int len = 0;
4003
4004 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4005
4006 if (priv->status & STATUS_ASSOCIATED)
4007 len += sprintf(buf + len, "connected: %lu\n",
4008 get_seconds() - priv->connect_start);
4009 else
4010 len += sprintf(buf + len, "not connected\n");
4011
4012 DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
4013 DUMP_VAR(status, "08lx");
4014 DUMP_VAR(config, "08lx");
4015 DUMP_VAR(capability, "08lx");
4016
4017 len +=
4018 sprintf(buf + len, "last_rtc: %lu\n",
4019 (unsigned long)priv->last_rtc);
4020
4021 DUMP_VAR(fatal_error, "d");
4022 DUMP_VAR(stop_hang_check, "d");
4023 DUMP_VAR(stop_rf_kill, "d");
4024 DUMP_VAR(messages_sent, "d");
4025
4026 DUMP_VAR(tx_pend_stat.value, "d");
4027 DUMP_VAR(tx_pend_stat.hi, "d");
4028
4029 DUMP_VAR(tx_free_stat.value, "d");
4030 DUMP_VAR(tx_free_stat.lo, "d");
4031
4032 DUMP_VAR(msg_free_stat.value, "d");
4033 DUMP_VAR(msg_free_stat.lo, "d");
4034
4035 DUMP_VAR(msg_pend_stat.value, "d");
4036 DUMP_VAR(msg_pend_stat.hi, "d");
4037
4038 DUMP_VAR(fw_pend_stat.value, "d");
4039 DUMP_VAR(fw_pend_stat.hi, "d");
4040
4041 DUMP_VAR(txq_stat.value, "d");
4042 DUMP_VAR(txq_stat.lo, "d");
4043
4044 DUMP_VAR(ieee->scans, "d");
4045 DUMP_VAR(reset_backoff, "d");
4046
4047 return len;
4048 }
4049
4050 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4051
4052 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4053 char *buf)
4054 {
4055 struct ipw2100_priv *priv = dev_get_drvdata(d);
4056 char essid[IW_ESSID_MAX_SIZE + 1];
4057 u8 bssid[ETH_ALEN];
4058 u32 chan = 0;
4059 char *out = buf;
4060 int length;
4061 int ret;
4062 DECLARE_MAC_BUF(mac);
4063
4064 if (priv->status & STATUS_RF_KILL_MASK)
4065 return 0;
4066
4067 memset(essid, 0, sizeof(essid));
4068 memset(bssid, 0, sizeof(bssid));
4069
4070 length = IW_ESSID_MAX_SIZE;
4071 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4072 if (ret)
4073 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4074 __LINE__);
4075
4076 length = sizeof(bssid);
4077 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4078 bssid, &length);
4079 if (ret)
4080 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4081 __LINE__);
4082
4083 length = sizeof(u32);
4084 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4085 if (ret)
4086 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4087 __LINE__);
4088
4089 out += sprintf(out, "ESSID: %s\n", essid);
4090 out += sprintf(out, "BSSID: %s\n", print_mac(mac, bssid));
4091 out += sprintf(out, "Channel: %d\n", chan);
4092
4093 return out - buf;
4094 }
4095
4096 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4097
4098 #ifdef CONFIG_IPW2100_DEBUG
4099 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4100 {
4101 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4102 }
4103
4104 static ssize_t store_debug_level(struct device_driver *d,
4105 const char *buf, size_t count)
4106 {
4107 char *p = (char *)buf;
4108 u32 val;
4109
4110 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4111 p++;
4112 if (p[0] == 'x' || p[0] == 'X')
4113 p++;
4114 val = simple_strtoul(p, &p, 16);
4115 } else
4116 val = simple_strtoul(p, &p, 10);
4117 if (p == buf)
4118 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4119 else
4120 ipw2100_debug_level = val;
4121
4122 return strnlen(buf, count);
4123 }
4124
4125 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4126 store_debug_level);
4127 #endif /* CONFIG_IPW2100_DEBUG */
4128
4129 static ssize_t show_fatal_error(struct device *d,
4130 struct device_attribute *attr, char *buf)
4131 {
4132 struct ipw2100_priv *priv = dev_get_drvdata(d);
4133 char *out = buf;
4134 int i;
4135
4136 if (priv->fatal_error)
4137 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4138 else
4139 out += sprintf(out, "0\n");
4140
4141 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4142 if (!priv->fatal_errors[(priv->fatal_index - i) %
4143 IPW2100_ERROR_QUEUE])
4144 continue;
4145
4146 out += sprintf(out, "%d. 0x%08X\n", i,
4147 priv->fatal_errors[(priv->fatal_index - i) %
4148 IPW2100_ERROR_QUEUE]);
4149 }
4150
4151 return out - buf;
4152 }
4153
4154 static ssize_t store_fatal_error(struct device *d,
4155 struct device_attribute *attr, const char *buf,
4156 size_t count)
4157 {
4158 struct ipw2100_priv *priv = dev_get_drvdata(d);
4159 schedule_reset(priv);
4160 return count;
4161 }
4162
4163 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4164 store_fatal_error);
4165
4166 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4167 char *buf)
4168 {
4169 struct ipw2100_priv *priv = dev_get_drvdata(d);
4170 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4171 }
4172
4173 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4174 const char *buf, size_t count)
4175 {
4176 struct ipw2100_priv *priv = dev_get_drvdata(d);
4177 struct net_device *dev = priv->net_dev;
4178 char buffer[] = "00000000";
4179 unsigned long len =
4180 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4181 unsigned long val;
4182 char *p = buffer;
4183
4184 (void)dev; /* kill unused-var warning for debug-only code */
4185
4186 IPW_DEBUG_INFO("enter\n");
4187
4188 strncpy(buffer, buf, len);
4189 buffer[len] = 0;
4190
4191 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4192 p++;
4193 if (p[0] == 'x' || p[0] == 'X')
4194 p++;
4195 val = simple_strtoul(p, &p, 16);
4196 } else
4197 val = simple_strtoul(p, &p, 10);
4198 if (p == buffer) {
4199 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4200 } else {
4201 priv->ieee->scan_age = val;
4202 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4203 }
4204
4205 IPW_DEBUG_INFO("exit\n");
4206 return len;
4207 }
4208
4209 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4210
4211 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4212 char *buf)
4213 {
4214 /* 0 - RF kill not enabled
4215 1 - SW based RF kill active (sysfs)
4216 2 - HW based RF kill active
4217 3 - Both HW and SW baed RF kill active */
4218 struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4219 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4220 (rf_kill_active(priv) ? 0x2 : 0x0);
4221 return sprintf(buf, "%i\n", val);
4222 }
4223
4224 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4225 {
4226 if ((disable_radio ? 1 : 0) ==
4227 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4228 return 0;
4229
4230 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4231 disable_radio ? "OFF" : "ON");
4232
4233 mutex_lock(&priv->action_mutex);
4234
4235 if (disable_radio) {
4236 priv->status |= STATUS_RF_KILL_SW;
4237 ipw2100_down(priv);
4238 } else {
4239 priv->status &= ~STATUS_RF_KILL_SW;
4240 if (rf_kill_active(priv)) {
4241 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4242 "disabled by HW switch\n");
4243 /* Make sure the RF_KILL check timer is running */
4244 priv->stop_rf_kill = 0;
4245 cancel_delayed_work(&priv->rf_kill);
4246 queue_delayed_work(priv->workqueue, &priv->rf_kill,
4247 round_jiffies_relative(HZ));
4248 } else
4249 schedule_reset(priv);
4250 }
4251
4252 mutex_unlock(&priv->action_mutex);
4253 return 1;
4254 }
4255
4256 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4257 const char *buf, size_t count)
4258 {
4259 struct ipw2100_priv *priv = dev_get_drvdata(d);
4260 ipw_radio_kill_sw(priv, buf[0] == '1');
4261 return count;
4262 }
4263
4264 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4265
4266 static struct attribute *ipw2100_sysfs_entries[] = {
4267 &dev_attr_hardware.attr,
4268 &dev_attr_registers.attr,
4269 &dev_attr_ordinals.attr,
4270 &dev_attr_pci.attr,
4271 &dev_attr_stats.attr,
4272 &dev_attr_internals.attr,
4273 &dev_attr_bssinfo.attr,
4274 &dev_attr_memory.attr,
4275 &dev_attr_scan_age.attr,
4276 &dev_attr_fatal_error.attr,
4277 &dev_attr_rf_kill.attr,
4278 &dev_attr_cfg.attr,
4279 &dev_attr_status.attr,
4280 &dev_attr_capability.attr,
4281 NULL,
4282 };
4283
4284 static struct attribute_group ipw2100_attribute_group = {
4285 .attrs = ipw2100_sysfs_entries,
4286 };
4287
4288 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4289 {
4290 struct ipw2100_status_queue *q = &priv->status_queue;
4291
4292 IPW_DEBUG_INFO("enter\n");
4293
4294 q->size = entries * sizeof(struct ipw2100_status);
4295 q->drv =
4296 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4297 q->size, &q->nic);
4298 if (!q->drv) {
4299 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4300 return -ENOMEM;
4301 }
4302
4303 memset(q->drv, 0, q->size);
4304
4305 IPW_DEBUG_INFO("exit\n");
4306
4307 return 0;
4308 }
4309
4310 static void status_queue_free(struct ipw2100_priv *priv)
4311 {
4312 IPW_DEBUG_INFO("enter\n");
4313
4314 if (priv->status_queue.drv) {
4315 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4316 priv->status_queue.drv,
4317 priv->status_queue.nic);
4318 priv->status_queue.drv = NULL;
4319 }
4320
4321 IPW_DEBUG_INFO("exit\n");
4322 }
4323
4324 static int bd_queue_allocate(struct ipw2100_priv *priv,
4325 struct ipw2100_bd_queue *q, int entries)
4326 {
4327 IPW_DEBUG_INFO("enter\n");
4328
4329 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4330
4331 q->entries = entries;
4332 q->size = entries * sizeof(struct ipw2100_bd);
4333 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4334 if (!q->drv) {
4335 IPW_DEBUG_INFO
4336 ("can't allocate shared memory for buffer descriptors\n");
4337 return -ENOMEM;
4338 }
4339 memset(q->drv, 0, q->size);
4340
4341 IPW_DEBUG_INFO("exit\n");
4342
4343 return 0;
4344 }
4345
4346 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4347 {
4348 IPW_DEBUG_INFO("enter\n");
4349
4350 if (!q)
4351 return;
4352
4353 if (q->drv) {
4354 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4355 q->drv = NULL;
4356 }
4357
4358 IPW_DEBUG_INFO("exit\n");
4359 }
4360
4361 static void bd_queue_initialize(struct ipw2100_priv *priv,
4362 struct ipw2100_bd_queue *q, u32 base, u32 size,
4363 u32 r, u32 w)
4364 {
4365 IPW_DEBUG_INFO("enter\n");
4366
4367 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4368 (u32) q->nic);
4369
4370 write_register(priv->net_dev, base, q->nic);
4371 write_register(priv->net_dev, size, q->entries);
4372 write_register(priv->net_dev, r, q->oldest);
4373 write_register(priv->net_dev, w, q->next);
4374
4375 IPW_DEBUG_INFO("exit\n");
4376 }
4377
4378 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4379 {
4380 if (priv->workqueue) {
4381 priv->stop_rf_kill = 1;
4382 priv->stop_hang_check = 1;
4383 cancel_delayed_work(&priv->reset_work);
4384 cancel_delayed_work(&priv->security_work);
4385 cancel_delayed_work(&priv->wx_event_work);
4386 cancel_delayed_work(&priv->hang_check);
4387 cancel_delayed_work(&priv->rf_kill);
4388 cancel_delayed_work(&priv->scan_event_later);
4389 destroy_workqueue(priv->workqueue);
4390 priv->workqueue = NULL;
4391 }
4392 }
4393
4394 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4395 {
4396 int i, j, err = -EINVAL;
4397 void *v;
4398 dma_addr_t p;
4399
4400 IPW_DEBUG_INFO("enter\n");
4401
4402 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4403 if (err) {
4404 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4405 priv->net_dev->name);
4406 return err;
4407 }
4408
4409 priv->tx_buffers =
4410 (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4411 sizeof(struct
4412 ipw2100_tx_packet),
4413 GFP_ATOMIC);
4414 if (!priv->tx_buffers) {
4415 printk(KERN_ERR DRV_NAME
4416 ": %s: alloc failed form tx buffers.\n",
4417 priv->net_dev->name);
4418 bd_queue_free(priv, &priv->tx_queue);
4419 return -ENOMEM;
4420 }
4421
4422 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4423 v = pci_alloc_consistent(priv->pci_dev,
4424 sizeof(struct ipw2100_data_header),
4425 &p);
4426 if (!v) {
4427 printk(KERN_ERR DRV_NAME
4428 ": %s: PCI alloc failed for tx " "buffers.\n",
4429 priv->net_dev->name);
4430 err = -ENOMEM;
4431 break;
4432 }
4433
4434 priv->tx_buffers[i].type = DATA;
4435 priv->tx_buffers[i].info.d_struct.data =
4436 (struct ipw2100_data_header *)v;
4437 priv->tx_buffers[i].info.d_struct.data_phys = p;
4438 priv->tx_buffers[i].info.d_struct.txb = NULL;
4439 }
4440
4441 if (i == TX_PENDED_QUEUE_LENGTH)
4442 return 0;
4443
4444 for (j = 0; j < i; j++) {
4445 pci_free_consistent(priv->pci_dev,
4446 sizeof(struct ipw2100_data_header),
4447 priv->tx_buffers[j].info.d_struct.data,
4448 priv->tx_buffers[j].info.d_struct.
4449 data_phys);
4450 }
4451
4452 kfree(priv->tx_buffers);
4453 priv->tx_buffers = NULL;
4454
4455 return err;
4456 }
4457
4458 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4459 {
4460 int i;
4461
4462 IPW_DEBUG_INFO("enter\n");
4463
4464 /*
4465 * reinitialize packet info lists
4466 */
4467 INIT_LIST_HEAD(&priv->fw_pend_list);
4468 INIT_STAT(&priv->fw_pend_stat);
4469
4470 /*
4471 * reinitialize lists
4472 */
4473 INIT_LIST_HEAD(&priv->tx_pend_list);
4474 INIT_LIST_HEAD(&priv->tx_free_list);
4475 INIT_STAT(&priv->tx_pend_stat);
4476 INIT_STAT(&priv->tx_free_stat);
4477
4478 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4479 /* We simply drop any SKBs that have been queued for
4480 * transmit */
4481 if (priv->tx_buffers[i].info.d_struct.txb) {
4482 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4483 txb);
4484 priv->tx_buffers[i].info.d_struct.txb = NULL;
4485 }
4486
4487 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4488 }
4489
4490 SET_STAT(&priv->tx_free_stat, i);
4491
4492 priv->tx_queue.oldest = 0;
4493 priv->tx_queue.available = priv->tx_queue.entries;
4494 priv->tx_queue.next = 0;
4495 INIT_STAT(&priv->txq_stat);
4496 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4497
4498 bd_queue_initialize(priv, &priv->tx_queue,
4499 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4500 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4501 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4502 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4503
4504 IPW_DEBUG_INFO("exit\n");
4505
4506 }
4507
4508 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4509 {
4510 int i;
4511
4512 IPW_DEBUG_INFO("enter\n");
4513
4514 bd_queue_free(priv, &priv->tx_queue);
4515
4516 if (!priv->tx_buffers)
4517 return;
4518
4519 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4520 if (priv->tx_buffers[i].info.d_struct.txb) {
4521 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4522 txb);
4523 priv->tx_buffers[i].info.d_struct.txb = NULL;
4524 }
4525 if (priv->tx_buffers[i].info.d_struct.data)
4526 pci_free_consistent(priv->pci_dev,
4527 sizeof(struct ipw2100_data_header),
4528 priv->tx_buffers[i].info.d_struct.
4529 data,
4530 priv->tx_buffers[i].info.d_struct.
4531 data_phys);
4532 }
4533
4534 kfree(priv->tx_buffers);
4535 priv->tx_buffers = NULL;
4536
4537 IPW_DEBUG_INFO("exit\n");
4538 }
4539
4540 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4541 {
4542 int i, j, err = -EINVAL;
4543
4544 IPW_DEBUG_INFO("enter\n");
4545
4546 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4547 if (err) {
4548 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4549 return err;
4550 }
4551
4552 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4553 if (err) {
4554 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4555 bd_queue_free(priv, &priv->rx_queue);
4556 return err;
4557 }
4558
4559 /*
4560 * allocate packets
4561 */
4562 priv->rx_buffers = (struct ipw2100_rx_packet *)
4563 kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4564 GFP_KERNEL);
4565 if (!priv->rx_buffers) {
4566 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4567
4568 bd_queue_free(priv, &priv->rx_queue);
4569
4570 status_queue_free(priv);
4571
4572 return -ENOMEM;
4573 }
4574
4575 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4576 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4577
4578 err = ipw2100_alloc_skb(priv, packet);
4579 if (unlikely(err)) {
4580 err = -ENOMEM;
4581 break;
4582 }
4583
4584 /* The BD holds the cache aligned address */
4585 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4586 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4587 priv->status_queue.drv[i].status_fields = 0;
4588 }
4589
4590 if (i == RX_QUEUE_LENGTH)
4591 return 0;
4592
4593 for (j = 0; j < i; j++) {
4594 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4595 sizeof(struct ipw2100_rx_packet),
4596 PCI_DMA_FROMDEVICE);
4597 dev_kfree_skb(priv->rx_buffers[j].skb);
4598 }
4599
4600 kfree(priv->rx_buffers);
4601 priv->rx_buffers = NULL;
4602
4603 bd_queue_free(priv, &priv->rx_queue);
4604
4605 status_queue_free(priv);
4606
4607 return err;
4608 }
4609
4610 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4611 {
4612 IPW_DEBUG_INFO("enter\n");
4613
4614 priv->rx_queue.oldest = 0;
4615 priv->rx_queue.available = priv->rx_queue.entries - 1;
4616 priv->rx_queue.next = priv->rx_queue.entries - 1;
4617
4618 INIT_STAT(&priv->rxq_stat);
4619 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4620
4621 bd_queue_initialize(priv, &priv->rx_queue,
4622 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4623 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4624 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4625 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4626
4627 /* set up the status queue */
4628 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4629 priv->status_queue.nic);
4630
4631 IPW_DEBUG_INFO("exit\n");
4632 }
4633
4634 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4635 {
4636 int i;
4637
4638 IPW_DEBUG_INFO("enter\n");
4639
4640 bd_queue_free(priv, &priv->rx_queue);
4641 status_queue_free(priv);
4642
4643 if (!priv->rx_buffers)
4644 return;
4645
4646 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4647 if (priv->rx_buffers[i].rxp) {
4648 pci_unmap_single(priv->pci_dev,
4649 priv->rx_buffers[i].dma_addr,
4650 sizeof(struct ipw2100_rx),
4651 PCI_DMA_FROMDEVICE);
4652 dev_kfree_skb(priv->rx_buffers[i].skb);
4653 }
4654 }
4655
4656 kfree(priv->rx_buffers);
4657 priv->rx_buffers = NULL;
4658
4659 IPW_DEBUG_INFO("exit\n");
4660 }
4661
4662 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4663 {
4664 u32 length = ETH_ALEN;
4665 u8 addr[ETH_ALEN];
4666 DECLARE_MAC_BUF(mac);
4667
4668 int err;
4669
4670 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4671 if (err) {
4672 IPW_DEBUG_INFO("MAC address read failed\n");
4673 return -EIO;
4674 }
4675
4676 memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4677 IPW_DEBUG_INFO("card MAC is %s\n",
4678 print_mac(mac, priv->net_dev->dev_addr));
4679
4680 return 0;
4681 }
4682
4683 /********************************************************************
4684 *
4685 * Firmware Commands
4686 *
4687 ********************************************************************/
4688
4689 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4690 {
4691 struct host_command cmd = {
4692 .host_command = ADAPTER_ADDRESS,
4693 .host_command_sequence = 0,
4694 .host_command_length = ETH_ALEN
4695 };
4696 int err;
4697
4698 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4699
4700 IPW_DEBUG_INFO("enter\n");
4701
4702 if (priv->config & CFG_CUSTOM_MAC) {
4703 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4704 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4705 } else
4706 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4707 ETH_ALEN);
4708
4709 err = ipw2100_hw_send_command(priv, &cmd);
4710
4711 IPW_DEBUG_INFO("exit\n");
4712 return err;
4713 }
4714
4715 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4716 int batch_mode)
4717 {
4718 struct host_command cmd = {
4719 .host_command = PORT_TYPE,
4720 .host_command_sequence = 0,
4721 .host_command_length = sizeof(u32)
4722 };
4723 int err;
4724
4725 switch (port_type) {
4726 case IW_MODE_INFRA:
4727 cmd.host_command_parameters[0] = IPW_BSS;
4728 break;
4729 case IW_MODE_ADHOC:
4730 cmd.host_command_parameters[0] = IPW_IBSS;
4731 break;
4732 }
4733
4734 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4735 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4736
4737 if (!batch_mode) {
4738 err = ipw2100_disable_adapter(priv);
4739 if (err) {
4740 printk(KERN_ERR DRV_NAME
4741 ": %s: Could not disable adapter %d\n",
4742 priv->net_dev->name, err);
4743 return err;
4744 }
4745 }
4746
4747 /* send cmd to firmware */
4748 err = ipw2100_hw_send_command(priv, &cmd);
4749
4750 if (!batch_mode)
4751 ipw2100_enable_adapter(priv);
4752
4753 return err;
4754 }
4755
4756 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4757 int batch_mode)
4758 {
4759 struct host_command cmd = {
4760 .host_command = CHANNEL,
4761 .host_command_sequence = 0,
4762 .host_command_length = sizeof(u32)
4763 };
4764 int err;
4765
4766 cmd.host_command_parameters[0] = channel;
4767
4768 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4769
4770 /* If BSS then we don't support channel selection */
4771 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4772 return 0;
4773
4774 if ((channel != 0) &&
4775 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4776 return -EINVAL;
4777
4778 if (!batch_mode) {
4779 err = ipw2100_disable_adapter(priv);
4780 if (err)
4781 return err;
4782 }
4783
4784 err = ipw2100_hw_send_command(priv, &cmd);
4785 if (err) {
4786 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4787 return err;
4788 }
4789
4790 if (channel)
4791 priv->config |= CFG_STATIC_CHANNEL;
4792 else
4793 priv->config &= ~CFG_STATIC_CHANNEL;
4794
4795 priv->channel = channel;
4796
4797 if (!batch_mode) {
4798 err = ipw2100_enable_adapter(priv);
4799 if (err)
4800 return err;
4801 }
4802
4803 return 0;
4804 }
4805
4806 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4807 {
4808 struct host_command cmd = {
4809 .host_command = SYSTEM_CONFIG,
4810 .host_command_sequence = 0,
4811 .host_command_length = 12,
4812 };
4813 u32 ibss_mask, len = sizeof(u32);
4814 int err;
4815
4816 /* Set system configuration */
4817
4818 if (!batch_mode) {
4819 err = ipw2100_disable_adapter(priv);
4820 if (err)
4821 return err;
4822 }
4823
4824 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4825 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4826
4827 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4828 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4829
4830 if (!(priv->config & CFG_LONG_PREAMBLE))
4831 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4832
4833 err = ipw2100_get_ordinal(priv,
4834 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4835 &ibss_mask, &len);
4836 if (err)
4837 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4838
4839 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4840 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4841
4842 /* 11b only */
4843 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4844
4845 err = ipw2100_hw_send_command(priv, &cmd);
4846 if (err)
4847 return err;
4848
4849 /* If IPv6 is configured in the kernel then we don't want to filter out all
4850 * of the multicast packets as IPv6 needs some. */
4851 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4852 cmd.host_command = ADD_MULTICAST;
4853 cmd.host_command_sequence = 0;
4854 cmd.host_command_length = 0;
4855
4856 ipw2100_hw_send_command(priv, &cmd);
4857 #endif
4858 if (!batch_mode) {
4859 err = ipw2100_enable_adapter(priv);
4860 if (err)
4861 return err;
4862 }
4863
4864 return 0;
4865 }
4866
4867 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4868 int batch_mode)
4869 {
4870 struct host_command cmd = {
4871 .host_command = BASIC_TX_RATES,
4872 .host_command_sequence = 0,
4873 .host_command_length = 4
4874 };
4875 int err;
4876
4877 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4878
4879 if (!batch_mode) {
4880 err = ipw2100_disable_adapter(priv);
4881 if (err)
4882 return err;
4883 }
4884
4885 /* Set BASIC TX Rate first */
4886 ipw2100_hw_send_command(priv, &cmd);
4887
4888 /* Set TX Rate */
4889 cmd.host_command = TX_RATES;
4890 ipw2100_hw_send_command(priv, &cmd);
4891
4892 /* Set MSDU TX Rate */
4893 cmd.host_command = MSDU_TX_RATES;
4894 ipw2100_hw_send_command(priv, &cmd);
4895
4896 if (!batch_mode) {
4897 err = ipw2100_enable_adapter(priv);
4898 if (err)
4899 return err;
4900 }
4901
4902 priv->tx_rates = rate;
4903
4904 return 0;
4905 }
4906
4907 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4908 {
4909 struct host_command cmd = {
4910 .host_command = POWER_MODE,
4911 .host_command_sequence = 0,
4912 .host_command_length = 4
4913 };
4914 int err;
4915
4916 cmd.host_command_parameters[0] = power_level;
4917
4918 err = ipw2100_hw_send_command(priv, &cmd);
4919 if (err)
4920 return err;
4921
4922 if (power_level == IPW_POWER_MODE_CAM)
4923 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4924 else
4925 priv->power_mode = IPW_POWER_ENABLED | power_level;
4926
4927 #ifdef IPW2100_TX_POWER
4928 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4929 /* Set beacon interval */
4930 cmd.host_command = TX_POWER_INDEX;
4931 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4932
4933 err = ipw2100_hw_send_command(priv, &cmd);
4934 if (err)
4935 return err;
4936 }
4937 #endif
4938
4939 return 0;
4940 }
4941
4942 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4943 {
4944 struct host_command cmd = {
4945 .host_command = RTS_THRESHOLD,
4946 .host_command_sequence = 0,
4947 .host_command_length = 4
4948 };
4949 int err;
4950
4951 if (threshold & RTS_DISABLED)
4952 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4953 else
4954 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4955
4956 err = ipw2100_hw_send_command(priv, &cmd);
4957 if (err)
4958 return err;
4959
4960 priv->rts_threshold = threshold;
4961
4962 return 0;
4963 }
4964
4965 #if 0
4966 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4967 u32 threshold, int batch_mode)
4968 {
4969 struct host_command cmd = {
4970 .host_command = FRAG_THRESHOLD,
4971 .host_command_sequence = 0,
4972 .host_command_length = 4,
4973 .host_command_parameters[0] = 0,
4974 };
4975 int err;
4976
4977 if (!batch_mode) {
4978 err = ipw2100_disable_adapter(priv);
4979 if (err)
4980 return err;
4981 }
4982
4983 if (threshold == 0)
4984 threshold = DEFAULT_FRAG_THRESHOLD;
4985 else {
4986 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4987 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4988 }
4989
4990 cmd.host_command_parameters[0] = threshold;
4991
4992 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4993
4994 err = ipw2100_hw_send_command(priv, &cmd);
4995
4996 if (!batch_mode)
4997 ipw2100_enable_adapter(priv);
4998
4999 if (!err)
5000 priv->frag_threshold = threshold;
5001
5002 return err;
5003 }
5004 #endif
5005
5006 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5007 {
5008 struct host_command cmd = {
5009 .host_command = SHORT_RETRY_LIMIT,
5010 .host_command_sequence = 0,
5011 .host_command_length = 4
5012 };
5013 int err;
5014
5015 cmd.host_command_parameters[0] = retry;
5016
5017 err = ipw2100_hw_send_command(priv, &cmd);
5018 if (err)
5019 return err;
5020
5021 priv->short_retry_limit = retry;
5022
5023 return 0;
5024 }
5025
5026 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5027 {
5028 struct host_command cmd = {
5029 .host_command = LONG_RETRY_LIMIT,
5030 .host_command_sequence = 0,
5031 .host_command_length = 4
5032 };
5033 int err;
5034
5035 cmd.host_command_parameters[0] = retry;
5036
5037 err = ipw2100_hw_send_command(priv, &cmd);
5038 if (err)
5039 return err;
5040
5041 priv->long_retry_limit = retry;
5042
5043 return 0;
5044 }
5045
5046 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5047 int batch_mode)
5048 {
5049 struct host_command cmd = {
5050 .host_command = MANDATORY_BSSID,
5051 .host_command_sequence = 0,
5052 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5053 };
5054 int err;
5055
5056 #ifdef CONFIG_IPW2100_DEBUG
5057 DECLARE_MAC_BUF(mac);
5058 if (bssid != NULL)
5059 IPW_DEBUG_HC("MANDATORY_BSSID: %s\n",
5060 print_mac(mac, bssid));
5061 else
5062 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5063 #endif
5064 /* if BSSID is empty then we disable mandatory bssid mode */
5065 if (bssid != NULL)
5066 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5067
5068 if (!batch_mode) {
5069 err = ipw2100_disable_adapter(priv);
5070 if (err)
5071 return err;
5072 }
5073
5074 err = ipw2100_hw_send_command(priv, &cmd);
5075
5076 if (!batch_mode)
5077 ipw2100_enable_adapter(priv);
5078
5079 return err;
5080 }
5081
5082 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5083 {
5084 struct host_command cmd = {
5085 .host_command = DISASSOCIATION_BSSID,
5086 .host_command_sequence = 0,
5087 .host_command_length = ETH_ALEN
5088 };
5089 int err;
5090 int len;
5091
5092 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5093
5094 len = ETH_ALEN;
5095 /* The Firmware currently ignores the BSSID and just disassociates from
5096 * the currently associated AP -- but in the off chance that a future
5097 * firmware does use the BSSID provided here, we go ahead and try and
5098 * set it to the currently associated AP's BSSID */
5099 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5100
5101 err = ipw2100_hw_send_command(priv, &cmd);
5102
5103 return err;
5104 }
5105
5106 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5107 struct ipw2100_wpa_assoc_frame *, int)
5108 __attribute__ ((unused));
5109
5110 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5111 struct ipw2100_wpa_assoc_frame *wpa_frame,
5112 int batch_mode)
5113 {
5114 struct host_command cmd = {
5115 .host_command = SET_WPA_IE,
5116 .host_command_sequence = 0,
5117 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5118 };
5119 int err;
5120
5121 IPW_DEBUG_HC("SET_WPA_IE\n");
5122
5123 if (!batch_mode) {
5124 err = ipw2100_disable_adapter(priv);
5125 if (err)
5126 return err;
5127 }
5128
5129 memcpy(cmd.host_command_parameters, wpa_frame,
5130 sizeof(struct ipw2100_wpa_assoc_frame));
5131
5132 err = ipw2100_hw_send_command(priv, &cmd);
5133
5134 if (!batch_mode) {
5135 if (ipw2100_enable_adapter(priv))
5136 err = -EIO;
5137 }
5138
5139 return err;
5140 }
5141
5142 struct security_info_params {
5143 u32 allowed_ciphers;
5144 u16 version;
5145 u8 auth_mode;
5146 u8 replay_counters_number;
5147 u8 unicast_using_group;
5148 } __attribute__ ((packed));
5149
5150 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5151 int auth_mode,
5152 int security_level,
5153 int unicast_using_group,
5154 int batch_mode)
5155 {
5156 struct host_command cmd = {
5157 .host_command = SET_SECURITY_INFORMATION,
5158 .host_command_sequence = 0,
5159 .host_command_length = sizeof(struct security_info_params)
5160 };
5161 struct security_info_params *security =
5162 (struct security_info_params *)&cmd.host_command_parameters;
5163 int err;
5164 memset(security, 0, sizeof(*security));
5165
5166 /* If shared key AP authentication is turned on, then we need to
5167 * configure the firmware to try and use it.
5168 *
5169 * Actual data encryption/decryption is handled by the host. */
5170 security->auth_mode = auth_mode;
5171 security->unicast_using_group = unicast_using_group;
5172
5173 switch (security_level) {
5174 default:
5175 case SEC_LEVEL_0:
5176 security->allowed_ciphers = IPW_NONE_CIPHER;
5177 break;
5178 case SEC_LEVEL_1:
5179 security->allowed_ciphers = IPW_WEP40_CIPHER |
5180 IPW_WEP104_CIPHER;
5181 break;
5182 case SEC_LEVEL_2:
5183 security->allowed_ciphers = IPW_WEP40_CIPHER |
5184 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5185 break;
5186 case SEC_LEVEL_2_CKIP:
5187 security->allowed_ciphers = IPW_WEP40_CIPHER |
5188 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5189 break;
5190 case SEC_LEVEL_3:
5191 security->allowed_ciphers = IPW_WEP40_CIPHER |
5192 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5193 break;
5194 }
5195
5196 IPW_DEBUG_HC
5197 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5198 security->auth_mode, security->allowed_ciphers, security_level);
5199
5200 security->replay_counters_number = 0;
5201
5202 if (!batch_mode) {
5203 err = ipw2100_disable_adapter(priv);
5204 if (err)
5205 return err;
5206 }
5207
5208 err = ipw2100_hw_send_command(priv, &cmd);
5209
5210 if (!batch_mode)
5211 ipw2100_enable_adapter(priv);
5212
5213 return err;
5214 }
5215
5216 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5217 {
5218 struct host_command cmd = {
5219 .host_command = TX_POWER_INDEX,
5220 .host_command_sequence = 0,
5221 .host_command_length = 4
5222 };
5223 int err = 0;
5224 u32 tmp = tx_power;
5225
5226 if (tx_power != IPW_TX_POWER_DEFAULT)
5227 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5228 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5229
5230 cmd.host_command_parameters[0] = tmp;
5231
5232 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5233 err = ipw2100_hw_send_command(priv, &cmd);
5234 if (!err)
5235 priv->tx_power = tx_power;
5236
5237 return 0;
5238 }
5239
5240 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5241 u32 interval, int batch_mode)
5242 {
5243 struct host_command cmd = {
5244 .host_command = BEACON_INTERVAL,
5245 .host_command_sequence = 0,
5246 .host_command_length = 4
5247 };
5248 int err;
5249
5250 cmd.host_command_parameters[0] = interval;
5251
5252 IPW_DEBUG_INFO("enter\n");
5253
5254 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5255 if (!batch_mode) {
5256 err = ipw2100_disable_adapter(priv);
5257 if (err)
5258 return err;
5259 }
5260
5261 ipw2100_hw_send_command(priv, &cmd);
5262
5263 if (!batch_mode) {
5264 err = ipw2100_enable_adapter(priv);
5265 if (err)
5266 return err;
5267 }
5268 }
5269
5270 IPW_DEBUG_INFO("exit\n");
5271
5272 return 0;
5273 }
5274
5275 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5276 {
5277 ipw2100_tx_initialize(priv);
5278 ipw2100_rx_initialize(priv);
5279 ipw2100_msg_initialize(priv);
5280 }
5281
5282 void ipw2100_queues_free(struct ipw2100_priv *priv)
5283 {
5284 ipw2100_tx_free(priv);
5285 ipw2100_rx_free(priv);
5286 ipw2100_msg_free(priv);
5287 }
5288
5289 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5290 {
5291 if (ipw2100_tx_allocate(priv) ||
5292 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5293 goto fail;
5294
5295 return 0;
5296
5297 fail:
5298 ipw2100_tx_free(priv);
5299 ipw2100_rx_free(priv);
5300 ipw2100_msg_free(priv);
5301 return -ENOMEM;
5302 }
5303
5304 #define IPW_PRIVACY_CAPABLE 0x0008
5305
5306 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5307 int batch_mode)
5308 {
5309 struct host_command cmd = {
5310 .host_command = WEP_FLAGS,
5311 .host_command_sequence = 0,
5312 .host_command_length = 4
5313 };
5314 int err;
5315
5316 cmd.host_command_parameters[0] = flags;
5317
5318 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5319
5320 if (!batch_mode) {
5321 err = ipw2100_disable_adapter(priv);
5322 if (err) {
5323 printk(KERN_ERR DRV_NAME
5324 ": %s: Could not disable adapter %d\n",
5325 priv->net_dev->name, err);
5326 return err;
5327 }
5328 }
5329
5330 /* send cmd to firmware */
5331 err = ipw2100_hw_send_command(priv, &cmd);
5332
5333 if (!batch_mode)
5334 ipw2100_enable_adapter(priv);
5335
5336 return err;
5337 }
5338
5339 struct ipw2100_wep_key {
5340 u8 idx;
5341 u8 len;
5342 u8 key[13];
5343 };
5344
5345 /* Macros to ease up priting WEP keys */
5346 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5347 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5348 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5349 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5350
5351 /**
5352 * Set a the wep key
5353 *
5354 * @priv: struct to work on
5355 * @idx: index of the key we want to set
5356 * @key: ptr to the key data to set
5357 * @len: length of the buffer at @key
5358 * @batch_mode: FIXME perform the operation in batch mode, not
5359 * disabling the device.
5360 *
5361 * @returns 0 if OK, < 0 errno code on error.
5362 *
5363 * Fill out a command structure with the new wep key, length an
5364 * index and send it down the wire.
5365 */
5366 static int ipw2100_set_key(struct ipw2100_priv *priv,
5367 int idx, char *key, int len, int batch_mode)
5368 {
5369 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5370 struct host_command cmd = {
5371 .host_command = WEP_KEY_INFO,
5372 .host_command_sequence = 0,
5373 .host_command_length = sizeof(struct ipw2100_wep_key),
5374 };
5375 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5376 int err;
5377
5378 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5379 idx, keylen, len);
5380
5381 /* NOTE: We don't check cached values in case the firmware was reset
5382 * or some other problem is occurring. If the user is setting the key,
5383 * then we push the change */
5384
5385 wep_key->idx = idx;
5386 wep_key->len = keylen;
5387
5388 if (keylen) {
5389 memcpy(wep_key->key, key, len);
5390 memset(wep_key->key + len, 0, keylen - len);
5391 }
5392
5393 /* Will be optimized out on debug not being configured in */
5394 if (keylen == 0)
5395 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5396 priv->net_dev->name, wep_key->idx);
5397 else if (keylen == 5)
5398 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5399 priv->net_dev->name, wep_key->idx, wep_key->len,
5400 WEP_STR_64(wep_key->key));
5401 else
5402 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5403 "\n",
5404 priv->net_dev->name, wep_key->idx, wep_key->len,
5405 WEP_STR_128(wep_key->key));
5406
5407 if (!batch_mode) {
5408 err = ipw2100_disable_adapter(priv);
5409 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5410 if (err) {
5411 printk(KERN_ERR DRV_NAME
5412 ": %s: Could not disable adapter %d\n",
5413 priv->net_dev->name, err);
5414 return err;
5415 }
5416 }
5417
5418 /* send cmd to firmware */
5419 err = ipw2100_hw_send_command(priv, &cmd);
5420
5421 if (!batch_mode) {
5422 int err2 = ipw2100_enable_adapter(priv);
5423 if (err == 0)
5424 err = err2;
5425 }
5426 return err;
5427 }
5428
5429 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5430 int idx, int batch_mode)
5431 {
5432 struct host_command cmd = {
5433 .host_command = WEP_KEY_INDEX,
5434 .host_command_sequence = 0,
5435 .host_command_length = 4,
5436 .host_command_parameters = {idx},
5437 };
5438 int err;
5439
5440 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5441
5442 if (idx < 0 || idx > 3)
5443 return -EINVAL;
5444
5445 if (!batch_mode) {
5446 err = ipw2100_disable_adapter(priv);
5447 if (err) {
5448 printk(KERN_ERR DRV_NAME
5449 ": %s: Could not disable adapter %d\n",
5450 priv->net_dev->name, err);
5451 return err;
5452 }
5453 }
5454
5455 /* send cmd to firmware */
5456 err = ipw2100_hw_send_command(priv, &cmd);
5457
5458 if (!batch_mode)
5459 ipw2100_enable_adapter(priv);
5460
5461 return err;
5462 }
5463
5464 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5465 {
5466 int i, err, auth_mode, sec_level, use_group;
5467
5468 if (!(priv->status & STATUS_RUNNING))
5469 return 0;
5470
5471 if (!batch_mode) {
5472 err = ipw2100_disable_adapter(priv);
5473 if (err)
5474 return err;
5475 }
5476
5477 if (!priv->ieee->sec.enabled) {
5478 err =
5479 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5480 SEC_LEVEL_0, 0, 1);
5481 } else {
5482 auth_mode = IPW_AUTH_OPEN;
5483 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5484 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5485 auth_mode = IPW_AUTH_SHARED;
5486 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5487 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5488 }
5489
5490 sec_level = SEC_LEVEL_0;
5491 if (priv->ieee->sec.flags & SEC_LEVEL)
5492 sec_level = priv->ieee->sec.level;
5493
5494 use_group = 0;
5495 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5496 use_group = priv->ieee->sec.unicast_uses_group;
5497
5498 err =
5499 ipw2100_set_security_information(priv, auth_mode, sec_level,
5500 use_group, 1);
5501 }
5502
5503 if (err)
5504 goto exit;
5505
5506 if (priv->ieee->sec.enabled) {
5507 for (i = 0; i < 4; i++) {
5508 if (!(priv->ieee->sec.flags & (1 << i))) {
5509 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5510 priv->ieee->sec.key_sizes[i] = 0;
5511 } else {
5512 err = ipw2100_set_key(priv, i,
5513 priv->ieee->sec.keys[i],
5514 priv->ieee->sec.
5515 key_sizes[i], 1);
5516 if (err)
5517 goto exit;
5518 }
5519 }
5520
5521 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5522 }
5523
5524 /* Always enable privacy so the Host can filter WEP packets if
5525 * encrypted data is sent up */
5526 err =
5527 ipw2100_set_wep_flags(priv,
5528 priv->ieee->sec.
5529 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5530 if (err)
5531 goto exit;
5532
5533 priv->status &= ~STATUS_SECURITY_UPDATED;
5534
5535 exit:
5536 if (!batch_mode)
5537 ipw2100_enable_adapter(priv);
5538
5539 return err;
5540 }
5541
5542 static void ipw2100_security_work(struct work_struct *work)
5543 {
5544 struct ipw2100_priv *priv =
5545 container_of(work, struct ipw2100_priv, security_work.work);
5546
5547 /* If we happen to have reconnected before we get a chance to
5548 * process this, then update the security settings--which causes
5549 * a disassociation to occur */
5550 if (!(priv->status & STATUS_ASSOCIATED) &&
5551 priv->status & STATUS_SECURITY_UPDATED)
5552 ipw2100_configure_security(priv, 0);
5553 }
5554
5555 static void shim__set_security(struct net_device *dev,
5556 struct ieee80211_security *sec)
5557 {
5558 struct ipw2100_priv *priv = ieee80211_priv(dev);
5559 int i, force_update = 0;
5560
5561 mutex_lock(&priv->action_mutex);
5562 if (!(priv->status & STATUS_INITIALIZED))
5563 goto done;
5564
5565 for (i = 0; i < 4; i++) {
5566 if (sec->flags & (1 << i)) {
5567 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5568 if (sec->key_sizes[i] == 0)
5569 priv->ieee->sec.flags &= ~(1 << i);
5570 else
5571 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5572 sec->key_sizes[i]);
5573 if (sec->level == SEC_LEVEL_1) {
5574 priv->ieee->sec.flags |= (1 << i);
5575 priv->status |= STATUS_SECURITY_UPDATED;
5576 } else
5577 priv->ieee->sec.flags &= ~(1 << i);
5578 }
5579 }
5580
5581 if ((sec->flags & SEC_ACTIVE_KEY) &&
5582 priv->ieee->sec.active_key != sec->active_key) {
5583 if (sec->active_key <= 3) {
5584 priv->ieee->sec.active_key = sec->active_key;
5585 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5586 } else
5587 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5588
5589 priv->status |= STATUS_SECURITY_UPDATED;
5590 }
5591
5592 if ((sec->flags & SEC_AUTH_MODE) &&
5593 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5594 priv->ieee->sec.auth_mode = sec->auth_mode;
5595 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5596 priv->status |= STATUS_SECURITY_UPDATED;
5597 }
5598
5599 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5600 priv->ieee->sec.flags |= SEC_ENABLED;
5601 priv->ieee->sec.enabled = sec->enabled;
5602 priv->status |= STATUS_SECURITY_UPDATED;
5603 force_update = 1;
5604 }
5605
5606 if (sec->flags & SEC_ENCRYPT)
5607 priv->ieee->sec.encrypt = sec->encrypt;
5608
5609 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5610 priv->ieee->sec.level = sec->level;
5611 priv->ieee->sec.flags |= SEC_LEVEL;
5612 priv->status |= STATUS_SECURITY_UPDATED;
5613 }
5614
5615 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5616 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5617 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5618 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5619 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5620 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5621 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5622 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5623 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5624 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5625
5626 /* As a temporary work around to enable WPA until we figure out why
5627 * wpa_supplicant toggles the security capability of the driver, which
5628 * forces a disassocation with force_update...
5629 *
5630 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5631 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5632 ipw2100_configure_security(priv, 0);
5633 done:
5634 mutex_unlock(&priv->action_mutex);
5635 }
5636
5637 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5638 {
5639 int err;
5640 int batch_mode = 1;
5641 u8 *bssid;
5642
5643 IPW_DEBUG_INFO("enter\n");
5644
5645 err = ipw2100_disable_adapter(priv);
5646 if (err)
5647 return err;
5648 #ifdef CONFIG_IPW2100_MONITOR
5649 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5650 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5651 if (err)
5652 return err;
5653
5654 IPW_DEBUG_INFO("exit\n");
5655
5656 return 0;
5657 }
5658 #endif /* CONFIG_IPW2100_MONITOR */
5659
5660 err = ipw2100_read_mac_address(priv);
5661 if (err)
5662 return -EIO;
5663
5664 err = ipw2100_set_mac_address(priv, batch_mode);
5665 if (err)
5666 return err;
5667
5668 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5669 if (err)
5670 return err;
5671
5672 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5673 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5674 if (err)
5675 return err;
5676 }
5677
5678 err = ipw2100_system_config(priv, batch_mode);
5679 if (err)
5680 return err;
5681
5682 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5683 if (err)
5684 return err;
5685
5686 /* Default to power mode OFF */
5687 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5688 if (err)
5689 return err;
5690
5691 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5692 if (err)
5693 return err;
5694
5695 if (priv->config & CFG_STATIC_BSSID)
5696 bssid = priv->bssid;
5697 else
5698 bssid = NULL;
5699 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5700 if (err)
5701 return err;
5702
5703 if (priv->config & CFG_STATIC_ESSID)
5704 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5705 batch_mode);
5706 else
5707 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5708 if (err)
5709 return err;
5710
5711 err = ipw2100_configure_security(priv, batch_mode);
5712 if (err)
5713 return err;
5714
5715 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5716 err =
5717 ipw2100_set_ibss_beacon_interval(priv,
5718 priv->beacon_interval,
5719 batch_mode);
5720 if (err)
5721 return err;
5722
5723 err = ipw2100_set_tx_power(priv, priv->tx_power);
5724 if (err)
5725 return err;
5726 }
5727
5728 /*
5729 err = ipw2100_set_fragmentation_threshold(
5730 priv, priv->frag_threshold, batch_mode);
5731 if (err)
5732 return err;
5733 */
5734
5735 IPW_DEBUG_INFO("exit\n");
5736
5737 return 0;
5738 }
5739
5740 /*************************************************************************
5741 *
5742 * EXTERNALLY CALLED METHODS
5743 *
5744 *************************************************************************/
5745
5746 /* This method is called by the network layer -- not to be confused with
5747 * ipw2100_set_mac_address() declared above called by this driver (and this
5748 * method as well) to talk to the firmware */
5749 static int ipw2100_set_address(struct net_device *dev, void *p)
5750 {
5751 struct ipw2100_priv *priv = ieee80211_priv(dev);
5752 struct sockaddr *addr = p;
5753 int err = 0;
5754
5755 if (!is_valid_ether_addr(addr->sa_data))
5756 return -EADDRNOTAVAIL;
5757
5758 mutex_lock(&priv->action_mutex);
5759
5760 priv->config |= CFG_CUSTOM_MAC;
5761 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5762
5763 err = ipw2100_set_mac_address(priv, 0);
5764 if (err)
5765 goto done;
5766
5767 priv->reset_backoff = 0;
5768 mutex_unlock(&priv->action_mutex);
5769 ipw2100_reset_adapter(&priv->reset_work.work);
5770 return 0;
5771
5772 done:
5773 mutex_unlock(&priv->action_mutex);
5774 return err;
5775 }
5776
5777 static int ipw2100_open(struct net_device *dev)
5778 {
5779 struct ipw2100_priv *priv = ieee80211_priv(dev);
5780 unsigned long flags;
5781 IPW_DEBUG_INFO("dev->open\n");
5782
5783 spin_lock_irqsave(&priv->low_lock, flags);
5784 if (priv->status & STATUS_ASSOCIATED) {
5785 netif_carrier_on(dev);
5786 netif_start_queue(dev);
5787 }
5788 spin_unlock_irqrestore(&priv->low_lock, flags);
5789
5790 return 0;
5791 }
5792
5793 static int ipw2100_close(struct net_device *dev)
5794 {
5795 struct ipw2100_priv *priv = ieee80211_priv(dev);
5796 unsigned long flags;
5797 struct list_head *element;
5798 struct ipw2100_tx_packet *packet;
5799
5800 IPW_DEBUG_INFO("enter\n");
5801
5802 spin_lock_irqsave(&priv->low_lock, flags);
5803
5804 if (priv->status & STATUS_ASSOCIATED)
5805 netif_carrier_off(dev);
5806 netif_stop_queue(dev);
5807
5808 /* Flush the TX queue ... */
5809 while (!list_empty(&priv->tx_pend_list)) {
5810 element = priv->tx_pend_list.next;
5811 packet = list_entry(element, struct ipw2100_tx_packet, list);
5812
5813 list_del(element);
5814 DEC_STAT(&priv->tx_pend_stat);
5815
5816 ieee80211_txb_free(packet->info.d_struct.txb);
5817 packet->info.d_struct.txb = NULL;
5818
5819 list_add_tail(element, &priv->tx_free_list);
5820 INC_STAT(&priv->tx_free_stat);
5821 }
5822 spin_unlock_irqrestore(&priv->low_lock, flags);
5823
5824 IPW_DEBUG_INFO("exit\n");
5825
5826 return 0;
5827 }
5828
5829 /*
5830 * TODO: Fix this function... its just wrong
5831 */
5832 static void ipw2100_tx_timeout(struct net_device *dev)
5833 {
5834 struct ipw2100_priv *priv = ieee80211_priv(dev);
5835
5836 priv->ieee->stats.tx_errors++;
5837
5838 #ifdef CONFIG_IPW2100_MONITOR
5839 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5840 return;
5841 #endif
5842
5843 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5844 dev->name);
5845 schedule_reset(priv);
5846 }
5847
5848 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5849 {
5850 /* This is called when wpa_supplicant loads and closes the driver
5851 * interface. */
5852 priv->ieee->wpa_enabled = value;
5853 return 0;
5854 }
5855
5856 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5857 {
5858
5859 struct ieee80211_device *ieee = priv->ieee;
5860 struct ieee80211_security sec = {
5861 .flags = SEC_AUTH_MODE,
5862 };
5863 int ret = 0;
5864
5865 if (value & IW_AUTH_ALG_SHARED_KEY) {
5866 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5867 ieee->open_wep = 0;
5868 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5869 sec.auth_mode = WLAN_AUTH_OPEN;
5870 ieee->open_wep = 1;
5871 } else if (value & IW_AUTH_ALG_LEAP) {
5872 sec.auth_mode = WLAN_AUTH_LEAP;
5873 ieee->open_wep = 1;
5874 } else
5875 return -EINVAL;
5876
5877 if (ieee->set_security)
5878 ieee->set_security(ieee->dev, &sec);
5879 else
5880 ret = -EOPNOTSUPP;
5881
5882 return ret;
5883 }
5884
5885 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5886 char *wpa_ie, int wpa_ie_len)
5887 {
5888
5889 struct ipw2100_wpa_assoc_frame frame;
5890
5891 frame.fixed_ie_mask = 0;
5892
5893 /* copy WPA IE */
5894 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5895 frame.var_ie_len = wpa_ie_len;
5896
5897 /* make sure WPA is enabled */
5898 ipw2100_wpa_enable(priv, 1);
5899 ipw2100_set_wpa_ie(priv, &frame, 0);
5900 }
5901
5902 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5903 struct ethtool_drvinfo *info)
5904 {
5905 struct ipw2100_priv *priv = ieee80211_priv(dev);
5906 char fw_ver[64], ucode_ver[64];
5907
5908 strcpy(info->driver, DRV_NAME);
5909 strcpy(info->version, DRV_VERSION);
5910
5911 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5912 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5913
5914 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5915 fw_ver, priv->eeprom_version, ucode_ver);
5916
5917 strcpy(info->bus_info, pci_name(priv->pci_dev));
5918 }
5919
5920 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5921 {
5922 struct ipw2100_priv *priv = ieee80211_priv(dev);
5923 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5924 }
5925
5926 static const struct ethtool_ops ipw2100_ethtool_ops = {
5927 .get_link = ipw2100_ethtool_get_link,
5928 .get_drvinfo = ipw_ethtool_get_drvinfo,
5929 };
5930
5931 static void ipw2100_hang_check(struct work_struct *work)
5932 {
5933 struct ipw2100_priv *priv =
5934 container_of(work, struct ipw2100_priv, hang_check.work);
5935 unsigned long flags;
5936 u32 rtc = 0xa5a5a5a5;
5937 u32 len = sizeof(rtc);
5938 int restart = 0;
5939
5940 spin_lock_irqsave(&priv->low_lock, flags);
5941
5942 if (priv->fatal_error != 0) {
5943 /* If fatal_error is set then we need to restart */
5944 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5945 priv->net_dev->name);
5946
5947 restart = 1;
5948 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5949 (rtc == priv->last_rtc)) {
5950 /* Check if firmware is hung */
5951 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5952 priv->net_dev->name);
5953
5954 restart = 1;
5955 }
5956
5957 if (restart) {
5958 /* Kill timer */
5959 priv->stop_hang_check = 1;
5960 priv->hangs++;
5961
5962 /* Restart the NIC */
5963 schedule_reset(priv);
5964 }
5965
5966 priv->last_rtc = rtc;
5967
5968 if (!priv->stop_hang_check)
5969 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5970
5971 spin_unlock_irqrestore(&priv->low_lock, flags);
5972 }
5973
5974 static void ipw2100_rf_kill(struct work_struct *work)
5975 {
5976 struct ipw2100_priv *priv =
5977 container_of(work, struct ipw2100_priv, rf_kill.work);
5978 unsigned long flags;
5979
5980 spin_lock_irqsave(&priv->low_lock, flags);
5981
5982 if (rf_kill_active(priv)) {
5983 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5984 if (!priv->stop_rf_kill)
5985 queue_delayed_work(priv->workqueue, &priv->rf_kill,
5986 round_jiffies_relative(HZ));
5987 goto exit_unlock;
5988 }
5989
5990 /* RF Kill is now disabled, so bring the device back up */
5991
5992 if (!(priv->status & STATUS_RF_KILL_MASK)) {
5993 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5994 "device\n");
5995 schedule_reset(priv);
5996 } else
5997 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
5998 "enabled\n");
5999
6000 exit_unlock:
6001 spin_unlock_irqrestore(&priv->low_lock, flags);
6002 }
6003
6004 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6005
6006 /* Look into using netdev destructor to shutdown ieee80211? */
6007
6008 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6009 void __iomem * base_addr,
6010 unsigned long mem_start,
6011 unsigned long mem_len)
6012 {
6013 struct ipw2100_priv *priv;
6014 struct net_device *dev;
6015
6016 dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6017 if (!dev)
6018 return NULL;
6019 priv = ieee80211_priv(dev);
6020 priv->ieee = netdev_priv(dev);
6021 priv->pci_dev = pci_dev;
6022 priv->net_dev = dev;
6023
6024 priv->ieee->hard_start_xmit = ipw2100_tx;
6025 priv->ieee->set_security = shim__set_security;
6026
6027 priv->ieee->perfect_rssi = -20;
6028 priv->ieee->worst_rssi = -85;
6029
6030 dev->open = ipw2100_open;
6031 dev->stop = ipw2100_close;
6032 dev->init = ipw2100_net_init;
6033 dev->ethtool_ops = &ipw2100_ethtool_ops;
6034 dev->tx_timeout = ipw2100_tx_timeout;
6035 dev->wireless_handlers = &ipw2100_wx_handler_def;
6036 priv->wireless_data.ieee80211 = priv->ieee;
6037 dev->wireless_data = &priv->wireless_data;
6038 dev->set_mac_address = ipw2100_set_address;
6039 dev->watchdog_timeo = 3 * HZ;
6040 dev->irq = 0;
6041
6042 dev->base_addr = (unsigned long)base_addr;
6043 dev->mem_start = mem_start;
6044 dev->mem_end = dev->mem_start + mem_len - 1;
6045
6046 /* NOTE: We don't use the wireless_handlers hook
6047 * in dev as the system will start throwing WX requests
6048 * to us before we're actually initialized and it just
6049 * ends up causing problems. So, we just handle
6050 * the WX extensions through the ipw2100_ioctl interface */
6051
6052 /* memset() puts everything to 0, so we only have explicitly set
6053 * those values that need to be something else */
6054
6055 /* If power management is turned on, default to AUTO mode */
6056 priv->power_mode = IPW_POWER_AUTO;
6057
6058 #ifdef CONFIG_IPW2100_MONITOR
6059 priv->config |= CFG_CRC_CHECK;
6060 #endif
6061 priv->ieee->wpa_enabled = 0;
6062 priv->ieee->drop_unencrypted = 0;
6063 priv->ieee->privacy_invoked = 0;
6064 priv->ieee->ieee802_1x = 1;
6065
6066 /* Set module parameters */
6067 switch (mode) {
6068 case 1:
6069 priv->ieee->iw_mode = IW_MODE_ADHOC;
6070 break;
6071 #ifdef CONFIG_IPW2100_MONITOR
6072 case 2:
6073 priv->ieee->iw_mode = IW_MODE_MONITOR;
6074 break;
6075 #endif
6076 default:
6077 case 0:
6078 priv->ieee->iw_mode = IW_MODE_INFRA;
6079 break;
6080 }
6081
6082 if (disable == 1)
6083 priv->status |= STATUS_RF_KILL_SW;
6084
6085 if (channel != 0 &&
6086 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6087 priv->config |= CFG_STATIC_CHANNEL;
6088 priv->channel = channel;
6089 }
6090
6091 if (associate)
6092 priv->config |= CFG_ASSOCIATE;
6093
6094 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6095 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6096 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6097 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6098 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6099 priv->tx_power = IPW_TX_POWER_DEFAULT;
6100 priv->tx_rates = DEFAULT_TX_RATES;
6101
6102 strcpy(priv->nick, "ipw2100");
6103
6104 spin_lock_init(&priv->low_lock);
6105 mutex_init(&priv->action_mutex);
6106 mutex_init(&priv->adapter_mutex);
6107
6108 init_waitqueue_head(&priv->wait_command_queue);
6109
6110 netif_carrier_off(dev);
6111
6112 INIT_LIST_HEAD(&priv->msg_free_list);
6113 INIT_LIST_HEAD(&priv->msg_pend_list);
6114 INIT_STAT(&priv->msg_free_stat);
6115 INIT_STAT(&priv->msg_pend_stat);
6116
6117 INIT_LIST_HEAD(&priv->tx_free_list);
6118 INIT_LIST_HEAD(&priv->tx_pend_list);
6119 INIT_STAT(&priv->tx_free_stat);
6120 INIT_STAT(&priv->tx_pend_stat);
6121
6122 INIT_LIST_HEAD(&priv->fw_pend_list);
6123 INIT_STAT(&priv->fw_pend_stat);
6124
6125 priv->workqueue = create_workqueue(DRV_NAME);
6126
6127 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6128 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6129 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6130 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6131 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6132 INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6133 INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6134
6135 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6136 ipw2100_irq_tasklet, (unsigned long)priv);
6137
6138 /* NOTE: We do not start the deferred work for status checks yet */
6139 priv->stop_rf_kill = 1;
6140 priv->stop_hang_check = 1;
6141
6142 return dev;
6143 }
6144
6145 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6146 const struct pci_device_id *ent)
6147 {
6148 unsigned long mem_start, mem_len, mem_flags;
6149 void __iomem *base_addr = NULL;
6150 struct net_device *dev = NULL;
6151 struct ipw2100_priv *priv = NULL;
6152 int err = 0;
6153 int registered = 0;
6154 u32 val;
6155
6156 IPW_DEBUG_INFO("enter\n");
6157
6158 mem_start = pci_resource_start(pci_dev, 0);
6159 mem_len = pci_resource_len(pci_dev, 0);
6160 mem_flags = pci_resource_flags(pci_dev, 0);
6161
6162 if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6163 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6164 err = -ENODEV;
6165 goto fail;
6166 }
6167
6168 base_addr = ioremap_nocache(mem_start, mem_len);
6169 if (!base_addr) {
6170 printk(KERN_WARNING DRV_NAME
6171 "Error calling ioremap_nocache.\n");
6172 err = -EIO;
6173 goto fail;
6174 }
6175
6176 /* allocate and initialize our net_device */
6177 dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6178 if (!dev) {
6179 printk(KERN_WARNING DRV_NAME
6180 "Error calling ipw2100_alloc_device.\n");
6181 err = -ENOMEM;
6182 goto fail;
6183 }
6184
6185 /* set up PCI mappings for device */
6186 err = pci_enable_device(pci_dev);
6187 if (err) {
6188 printk(KERN_WARNING DRV_NAME
6189 "Error calling pci_enable_device.\n");
6190 return err;
6191 }
6192
6193 priv = ieee80211_priv(dev);
6194
6195 pci_set_master(pci_dev);
6196 pci_set_drvdata(pci_dev, priv);
6197
6198 err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6199 if (err) {
6200 printk(KERN_WARNING DRV_NAME
6201 "Error calling pci_set_dma_mask.\n");
6202 pci_disable_device(pci_dev);
6203 return err;
6204 }
6205
6206 err = pci_request_regions(pci_dev, DRV_NAME);
6207 if (err) {
6208 printk(KERN_WARNING DRV_NAME
6209 "Error calling pci_request_regions.\n");
6210 pci_disable_device(pci_dev);
6211 return err;
6212 }
6213
6214 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6215 * PCI Tx retries from interfering with C3 CPU state */
6216 pci_read_config_dword(pci_dev, 0x40, &val);
6217 if ((val & 0x0000ff00) != 0)
6218 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6219
6220 pci_set_power_state(pci_dev, PCI_D0);
6221
6222 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6223 printk(KERN_WARNING DRV_NAME
6224 "Device not found via register read.\n");
6225 err = -ENODEV;
6226 goto fail;
6227 }
6228
6229 SET_NETDEV_DEV(dev, &pci_dev->dev);
6230
6231 /* Force interrupts to be shut off on the device */
6232 priv->status |= STATUS_INT_ENABLED;
6233 ipw2100_disable_interrupts(priv);
6234
6235 /* Allocate and initialize the Tx/Rx queues and lists */
6236 if (ipw2100_queues_allocate(priv)) {
6237 printk(KERN_WARNING DRV_NAME
6238 "Error calling ipw2100_queues_allocate.\n");
6239 err = -ENOMEM;
6240 goto fail;
6241 }
6242 ipw2100_queues_initialize(priv);
6243
6244 err = request_irq(pci_dev->irq,
6245 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6246 if (err) {
6247 printk(KERN_WARNING DRV_NAME
6248 "Error calling request_irq: %d.\n", pci_dev->irq);
6249 goto fail;
6250 }
6251 dev->irq = pci_dev->irq;
6252
6253 IPW_DEBUG_INFO("Attempting to register device...\n");
6254
6255 printk(KERN_INFO DRV_NAME
6256 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6257
6258 /* Bring up the interface. Pre 0.46, after we registered the
6259 * network device we would call ipw2100_up. This introduced a race
6260 * condition with newer hotplug configurations (network was coming
6261 * up and making calls before the device was initialized).
6262 *
6263 * If we called ipw2100_up before we registered the device, then the
6264 * device name wasn't registered. So, we instead use the net_dev->init
6265 * member to call a function that then just turns and calls ipw2100_up.
6266 * net_dev->init is called after name allocation but before the
6267 * notifier chain is called */
6268 err = register_netdev(dev);
6269 if (err) {
6270 printk(KERN_WARNING DRV_NAME
6271 "Error calling register_netdev.\n");
6272 goto fail;
6273 }
6274
6275 mutex_lock(&priv->action_mutex);
6276 registered = 1;
6277
6278 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6279
6280 /* perform this after register_netdev so that dev->name is set */
6281 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6282 if (err)
6283 goto fail_unlock;
6284
6285 /* If the RF Kill switch is disabled, go ahead and complete the
6286 * startup sequence */
6287 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6288 /* Enable the adapter - sends HOST_COMPLETE */
6289 if (ipw2100_enable_adapter(priv)) {
6290 printk(KERN_WARNING DRV_NAME
6291 ": %s: failed in call to enable adapter.\n",
6292 priv->net_dev->name);
6293 ipw2100_hw_stop_adapter(priv);
6294 err = -EIO;
6295 goto fail_unlock;
6296 }
6297
6298 /* Start a scan . . . */
6299 ipw2100_set_scan_options(priv);
6300 ipw2100_start_scan(priv);
6301 }
6302
6303 IPW_DEBUG_INFO("exit\n");
6304
6305 priv->status |= STATUS_INITIALIZED;
6306
6307 mutex_unlock(&priv->action_mutex);
6308
6309 return 0;
6310
6311 fail_unlock:
6312 mutex_unlock(&priv->action_mutex);
6313
6314 fail:
6315 if (dev) {
6316 if (registered)
6317 unregister_netdev(dev);
6318
6319 ipw2100_hw_stop_adapter(priv);
6320
6321 ipw2100_disable_interrupts(priv);
6322
6323 if (dev->irq)
6324 free_irq(dev->irq, priv);
6325
6326 ipw2100_kill_workqueue(priv);
6327
6328 /* These are safe to call even if they weren't allocated */
6329 ipw2100_queues_free(priv);
6330 sysfs_remove_group(&pci_dev->dev.kobj,
6331 &ipw2100_attribute_group);
6332
6333 free_ieee80211(dev);
6334 pci_set_drvdata(pci_dev, NULL);
6335 }
6336
6337 if (base_addr)
6338 iounmap(base_addr);
6339
6340 pci_release_regions(pci_dev);
6341 pci_disable_device(pci_dev);
6342
6343 return err;
6344 }
6345
6346 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6347 {
6348 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6349 struct net_device *dev;
6350
6351 if (priv) {
6352 mutex_lock(&priv->action_mutex);
6353
6354 priv->status &= ~STATUS_INITIALIZED;
6355
6356 dev = priv->net_dev;
6357 sysfs_remove_group(&pci_dev->dev.kobj,
6358 &ipw2100_attribute_group);
6359
6360 #ifdef CONFIG_PM
6361 if (ipw2100_firmware.version)
6362 ipw2100_release_firmware(priv, &ipw2100_firmware);
6363 #endif
6364 /* Take down the hardware */
6365 ipw2100_down(priv);
6366
6367 /* Release the mutex so that the network subsystem can
6368 * complete any needed calls into the driver... */
6369 mutex_unlock(&priv->action_mutex);
6370
6371 /* Unregister the device first - this results in close()
6372 * being called if the device is open. If we free storage
6373 * first, then close() will crash. */
6374 unregister_netdev(dev);
6375
6376 /* ipw2100_down will ensure that there is no more pending work
6377 * in the workqueue's, so we can safely remove them now. */
6378 ipw2100_kill_workqueue(priv);
6379
6380 ipw2100_queues_free(priv);
6381
6382 /* Free potential debugging firmware snapshot */
6383 ipw2100_snapshot_free(priv);
6384
6385 if (dev->irq)
6386 free_irq(dev->irq, priv);
6387
6388 if (dev->base_addr)
6389 iounmap((void __iomem *)dev->base_addr);
6390
6391 free_ieee80211(dev);
6392 }
6393
6394 pci_release_regions(pci_dev);
6395 pci_disable_device(pci_dev);
6396
6397 IPW_DEBUG_INFO("exit\n");
6398 }
6399
6400 #ifdef CONFIG_PM
6401 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6402 {
6403 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6404 struct net_device *dev = priv->net_dev;
6405
6406 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6407
6408 mutex_lock(&priv->action_mutex);
6409 if (priv->status & STATUS_INITIALIZED) {
6410 /* Take down the device; powers it off, etc. */
6411 ipw2100_down(priv);
6412 }
6413
6414 /* Remove the PRESENT state of the device */
6415 netif_device_detach(dev);
6416
6417 pci_save_state(pci_dev);
6418 pci_disable_device(pci_dev);
6419 pci_set_power_state(pci_dev, PCI_D3hot);
6420
6421 mutex_unlock(&priv->action_mutex);
6422
6423 return 0;
6424 }
6425
6426 static int ipw2100_resume(struct pci_dev *pci_dev)
6427 {
6428 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6429 struct net_device *dev = priv->net_dev;
6430 int err;
6431 u32 val;
6432
6433 if (IPW2100_PM_DISABLED)
6434 return 0;
6435
6436 mutex_lock(&priv->action_mutex);
6437
6438 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6439
6440 pci_set_power_state(pci_dev, PCI_D0);
6441 err = pci_enable_device(pci_dev);
6442 if (err) {
6443 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6444 dev->name);
6445 return err;
6446 }
6447 pci_restore_state(pci_dev);
6448
6449 /*
6450 * Suspend/Resume resets the PCI configuration space, so we have to
6451 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6452 * from interfering with C3 CPU state. pci_restore_state won't help
6453 * here since it only restores the first 64 bytes pci config header.
6454 */
6455 pci_read_config_dword(pci_dev, 0x40, &val);
6456 if ((val & 0x0000ff00) != 0)
6457 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6458
6459 /* Set the device back into the PRESENT state; this will also wake
6460 * the queue of needed */
6461 netif_device_attach(dev);
6462
6463 /* Bring the device back up */
6464 if (!(priv->status & STATUS_RF_KILL_SW))
6465 ipw2100_up(priv, 0);
6466
6467 mutex_unlock(&priv->action_mutex);
6468
6469 return 0;
6470 }
6471 #endif
6472
6473 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6474
6475 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6476 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6477 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6478 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6479 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6480 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6481 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6482 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6483 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6484 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6485 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6486 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6487 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6488 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6489
6490 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6491 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6492 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6493 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6494 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6495
6496 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6497 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6498 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6499 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6500 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6501 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6502 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6503
6504 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6505
6506 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6507 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6508 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6509 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6510 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6511 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6512 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6513
6514 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6515 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6516 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6517 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6518 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6519 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6520
6521 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6522 {0,},
6523 };
6524
6525 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6526
6527 static struct pci_driver ipw2100_pci_driver = {
6528 .name = DRV_NAME,
6529 .id_table = ipw2100_pci_id_table,
6530 .probe = ipw2100_pci_init_one,
6531 .remove = __devexit_p(ipw2100_pci_remove_one),
6532 #ifdef CONFIG_PM
6533 .suspend = ipw2100_suspend,
6534 .resume = ipw2100_resume,
6535 #endif
6536 };
6537
6538 /**
6539 * Initialize the ipw2100 driver/module
6540 *
6541 * @returns 0 if ok, < 0 errno node con error.
6542 *
6543 * Note: we cannot init the /proc stuff until the PCI driver is there,
6544 * or we risk an unlikely race condition on someone accessing
6545 * uninitialized data in the PCI dev struct through /proc.
6546 */
6547 static int __init ipw2100_init(void)
6548 {
6549 int ret;
6550
6551 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6552 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6553
6554 ret = pci_register_driver(&ipw2100_pci_driver);
6555 if (ret)
6556 goto out;
6557
6558 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100",
6559 PM_QOS_DEFAULT_VALUE);
6560 #ifdef CONFIG_IPW2100_DEBUG
6561 ipw2100_debug_level = debug;
6562 ret = driver_create_file(&ipw2100_pci_driver.driver,
6563 &driver_attr_debug_level);
6564 #endif
6565
6566 out:
6567 return ret;
6568 }
6569
6570 /**
6571 * Cleanup ipw2100 driver registration
6572 */
6573 static void __exit ipw2100_exit(void)
6574 {
6575 /* FIXME: IPG: check that we have no instances of the devices open */
6576 #ifdef CONFIG_IPW2100_DEBUG
6577 driver_remove_file(&ipw2100_pci_driver.driver,
6578 &driver_attr_debug_level);
6579 #endif
6580 pci_unregister_driver(&ipw2100_pci_driver);
6581 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100");
6582 }
6583
6584 module_init(ipw2100_init);
6585 module_exit(ipw2100_exit);
6586
6587 #define WEXT_USECHANNELS 1
6588
6589 static const long ipw2100_frequencies[] = {
6590 2412, 2417, 2422, 2427,
6591 2432, 2437, 2442, 2447,
6592 2452, 2457, 2462, 2467,
6593 2472, 2484
6594 };
6595
6596 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies)
6597
6598 static const long ipw2100_rates_11b[] = {
6599 1000000,
6600 2000000,
6601 5500000,
6602 11000000
6603 };
6604
6605 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
6606
6607 static int ipw2100_wx_get_name(struct net_device *dev,
6608 struct iw_request_info *info,
6609 union iwreq_data *wrqu, char *extra)
6610 {
6611 /*
6612 * This can be called at any time. No action lock required
6613 */
6614
6615 struct ipw2100_priv *priv = ieee80211_priv(dev);
6616 if (!(priv->status & STATUS_ASSOCIATED))
6617 strcpy(wrqu->name, "unassociated");
6618 else
6619 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6620
6621 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6622 return 0;
6623 }
6624
6625 static int ipw2100_wx_set_freq(struct net_device *dev,
6626 struct iw_request_info *info,
6627 union iwreq_data *wrqu, char *extra)
6628 {
6629 struct ipw2100_priv *priv = ieee80211_priv(dev);
6630 struct iw_freq *fwrq = &wrqu->freq;
6631 int err = 0;
6632
6633 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6634 return -EOPNOTSUPP;
6635
6636 mutex_lock(&priv->action_mutex);
6637 if (!(priv->status & STATUS_INITIALIZED)) {
6638 err = -EIO;
6639 goto done;
6640 }
6641
6642 /* if setting by freq convert to channel */
6643 if (fwrq->e == 1) {
6644 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6645 int f = fwrq->m / 100000;
6646 int c = 0;
6647
6648 while ((c < REG_MAX_CHANNEL) &&
6649 (f != ipw2100_frequencies[c]))
6650 c++;
6651
6652 /* hack to fall through */
6653 fwrq->e = 0;
6654 fwrq->m = c + 1;
6655 }
6656 }
6657
6658 if (fwrq->e > 0 || fwrq->m > 1000) {
6659 err = -EOPNOTSUPP;
6660 goto done;
6661 } else { /* Set the channel */
6662 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6663 err = ipw2100_set_channel(priv, fwrq->m, 0);
6664 }
6665
6666 done:
6667 mutex_unlock(&priv->action_mutex);
6668 return err;
6669 }
6670
6671 static int ipw2100_wx_get_freq(struct net_device *dev,
6672 struct iw_request_info *info,
6673 union iwreq_data *wrqu, char *extra)
6674 {
6675 /*
6676 * This can be called at any time. No action lock required
6677 */
6678
6679 struct ipw2100_priv *priv = ieee80211_priv(dev);
6680
6681 wrqu->freq.e = 0;
6682
6683 /* If we are associated, trying to associate, or have a statically
6684 * configured CHANNEL then return that; otherwise return ANY */
6685 if (priv->config & CFG_STATIC_CHANNEL ||
6686 priv->status & STATUS_ASSOCIATED)
6687 wrqu->freq.m = priv->channel;
6688 else
6689 wrqu->freq.m = 0;
6690
6691 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6692 return 0;
6693
6694 }
6695
6696 static int ipw2100_wx_set_mode(struct net_device *dev,
6697 struct iw_request_info *info,
6698 union iwreq_data *wrqu, char *extra)
6699 {
6700 struct ipw2100_priv *priv = ieee80211_priv(dev);
6701 int err = 0;
6702
6703 IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6704
6705 if (wrqu->mode == priv->ieee->iw_mode)
6706 return 0;
6707
6708 mutex_lock(&priv->action_mutex);
6709 if (!(priv->status & STATUS_INITIALIZED)) {
6710 err = -EIO;
6711 goto done;
6712 }
6713
6714 switch (wrqu->mode) {
6715 #ifdef CONFIG_IPW2100_MONITOR
6716 case IW_MODE_MONITOR:
6717 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6718 break;
6719 #endif /* CONFIG_IPW2100_MONITOR */
6720 case IW_MODE_ADHOC:
6721 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6722 break;
6723 case IW_MODE_INFRA:
6724 case IW_MODE_AUTO:
6725 default:
6726 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6727 break;
6728 }
6729
6730 done:
6731 mutex_unlock(&priv->action_mutex);
6732 return err;
6733 }
6734
6735 static int ipw2100_wx_get_mode(struct net_device *dev,
6736 struct iw_request_info *info,
6737 union iwreq_data *wrqu, char *extra)
6738 {
6739 /*
6740 * This can be called at any time. No action lock required
6741 */
6742
6743 struct ipw2100_priv *priv = ieee80211_priv(dev);
6744
6745 wrqu->mode = priv->ieee->iw_mode;
6746 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6747
6748 return 0;
6749 }
6750
6751 #define POWER_MODES 5
6752
6753 /* Values are in microsecond */
6754 static const s32 timeout_duration[POWER_MODES] = {
6755 350000,
6756 250000,
6757 75000,
6758 37000,
6759 25000,
6760 };
6761
6762 static const s32 period_duration[POWER_MODES] = {
6763 400000,
6764 700000,
6765 1000000,
6766 1000000,
6767 1000000
6768 };
6769
6770 static int ipw2100_wx_get_range(struct net_device *dev,
6771 struct iw_request_info *info,
6772 union iwreq_data *wrqu, char *extra)
6773 {
6774 /*
6775 * This can be called at any time. No action lock required
6776 */
6777
6778 struct ipw2100_priv *priv = ieee80211_priv(dev);
6779 struct iw_range *range = (struct iw_range *)extra;
6780 u16 val;
6781 int i, level;
6782
6783 wrqu->data.length = sizeof(*range);
6784 memset(range, 0, sizeof(*range));
6785
6786 /* Let's try to keep this struct in the same order as in
6787 * linux/include/wireless.h
6788 */
6789
6790 /* TODO: See what values we can set, and remove the ones we can't
6791 * set, or fill them with some default data.
6792 */
6793
6794 /* ~5 Mb/s real (802.11b) */
6795 range->throughput = 5 * 1000 * 1000;
6796
6797 // range->sensitivity; /* signal level threshold range */
6798
6799 range->max_qual.qual = 100;
6800 /* TODO: Find real max RSSI and stick here */
6801 range->max_qual.level = 0;
6802 range->max_qual.noise = 0;
6803 range->max_qual.updated = 7; /* Updated all three */
6804
6805 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6806 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6807 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6808 range->avg_qual.noise = 0;
6809 range->avg_qual.updated = 7; /* Updated all three */
6810
6811 range->num_bitrates = RATE_COUNT;
6812
6813 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6814 range->bitrate[i] = ipw2100_rates_11b[i];
6815 }
6816
6817 range->min_rts = MIN_RTS_THRESHOLD;
6818 range->max_rts = MAX_RTS_THRESHOLD;
6819 range->min_frag = MIN_FRAG_THRESHOLD;
6820 range->max_frag = MAX_FRAG_THRESHOLD;
6821
6822 range->min_pmp = period_duration[0]; /* Minimal PM period */
6823 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6824 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6825 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6826
6827 /* How to decode max/min PM period */
6828 range->pmp_flags = IW_POWER_PERIOD;
6829 /* How to decode max/min PM period */
6830 range->pmt_flags = IW_POWER_TIMEOUT;
6831 /* What PM options are supported */
6832 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6833
6834 range->encoding_size[0] = 5;
6835 range->encoding_size[1] = 13; /* Different token sizes */
6836 range->num_encoding_sizes = 2; /* Number of entry in the list */
6837 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6838 // range->encoding_login_index; /* token index for login token */
6839
6840 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6841 range->txpower_capa = IW_TXPOW_DBM;
6842 range->num_txpower = IW_MAX_TXPOWER;
6843 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6844 i < IW_MAX_TXPOWER;
6845 i++, level -=
6846 ((IPW_TX_POWER_MAX_DBM -
6847 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6848 range->txpower[i] = level / 16;
6849 } else {
6850 range->txpower_capa = 0;
6851 range->num_txpower = 0;
6852 }
6853
6854 /* Set the Wireless Extension versions */
6855 range->we_version_compiled = WIRELESS_EXT;
6856 range->we_version_source = 18;
6857
6858 // range->retry_capa; /* What retry options are supported */
6859 // range->retry_flags; /* How to decode max/min retry limit */
6860 // range->r_time_flags; /* How to decode max/min retry life */
6861 // range->min_retry; /* Minimal number of retries */
6862 // range->max_retry; /* Maximal number of retries */
6863 // range->min_r_time; /* Minimal retry lifetime */
6864 // range->max_r_time; /* Maximal retry lifetime */
6865
6866 range->num_channels = FREQ_COUNT;
6867
6868 val = 0;
6869 for (i = 0; i < FREQ_COUNT; i++) {
6870 // TODO: Include only legal frequencies for some countries
6871 // if (local->channel_mask & (1 << i)) {
6872 range->freq[val].i = i + 1;
6873 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6874 range->freq[val].e = 1;
6875 val++;
6876 // }
6877 if (val == IW_MAX_FREQUENCIES)
6878 break;
6879 }
6880 range->num_frequency = val;
6881
6882 /* Event capability (kernel + driver) */
6883 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6884 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6885 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6886
6887 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6888 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6889
6890 IPW_DEBUG_WX("GET Range\n");
6891
6892 return 0;
6893 }
6894
6895 static int ipw2100_wx_set_wap(struct net_device *dev,
6896 struct iw_request_info *info,
6897 union iwreq_data *wrqu, char *extra)
6898 {
6899 struct ipw2100_priv *priv = ieee80211_priv(dev);
6900 int err = 0;
6901
6902 static const unsigned char any[] = {
6903 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6904 };
6905 static const unsigned char off[] = {
6906 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6907 };
6908 DECLARE_MAC_BUF(mac);
6909
6910 // sanity checks
6911 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6912 return -EINVAL;
6913
6914 mutex_lock(&priv->action_mutex);
6915 if (!(priv->status & STATUS_INITIALIZED)) {
6916 err = -EIO;
6917 goto done;
6918 }
6919
6920 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6921 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6922 /* we disable mandatory BSSID association */
6923 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6924 priv->config &= ~CFG_STATIC_BSSID;
6925 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6926 goto done;
6927 }
6928
6929 priv->config |= CFG_STATIC_BSSID;
6930 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6931
6932 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6933
6934 IPW_DEBUG_WX("SET BSSID -> %s\n",
6935 print_mac(mac, wrqu->ap_addr.sa_data));
6936
6937 done:
6938 mutex_unlock(&priv->action_mutex);
6939 return err;
6940 }
6941
6942 static int ipw2100_wx_get_wap(struct net_device *dev,
6943 struct iw_request_info *info,
6944 union iwreq_data *wrqu, char *extra)
6945 {
6946 /*
6947 * This can be called at any time. No action lock required
6948 */
6949
6950 struct ipw2100_priv *priv = ieee80211_priv(dev);
6951 DECLARE_MAC_BUF(mac);
6952
6953 /* If we are associated, trying to associate, or have a statically
6954 * configured BSSID then return that; otherwise return ANY */
6955 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6956 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6957 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6958 } else
6959 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6960
6961 IPW_DEBUG_WX("Getting WAP BSSID: %s\n",
6962 print_mac(mac, wrqu->ap_addr.sa_data));
6963 return 0;
6964 }
6965
6966 static int ipw2100_wx_set_essid(struct net_device *dev,
6967 struct iw_request_info *info,
6968 union iwreq_data *wrqu, char *extra)
6969 {
6970 struct ipw2100_priv *priv = ieee80211_priv(dev);
6971 char *essid = ""; /* ANY */
6972 int length = 0;
6973 int err = 0;
6974
6975 mutex_lock(&priv->action_mutex);
6976 if (!(priv->status & STATUS_INITIALIZED)) {
6977 err = -EIO;
6978 goto done;
6979 }
6980
6981 if (wrqu->essid.flags && wrqu->essid.length) {
6982 length = wrqu->essid.length;
6983 essid = extra;
6984 }
6985
6986 if (length == 0) {
6987 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6988 priv->config &= ~CFG_STATIC_ESSID;
6989 err = ipw2100_set_essid(priv, NULL, 0, 0);
6990 goto done;
6991 }
6992
6993 length = min(length, IW_ESSID_MAX_SIZE);
6994
6995 priv->config |= CFG_STATIC_ESSID;
6996
6997 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6998 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6999 err = 0;
7000 goto done;
7001 }
7002
7003 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
7004 length);
7005
7006 priv->essid_len = length;
7007 memcpy(priv->essid, essid, priv->essid_len);
7008
7009 err = ipw2100_set_essid(priv, essid, length, 0);
7010
7011 done:
7012 mutex_unlock(&priv->action_mutex);
7013 return err;
7014 }
7015
7016 static int ipw2100_wx_get_essid(struct net_device *dev,
7017 struct iw_request_info *info,
7018 union iwreq_data *wrqu, char *extra)
7019 {
7020 /*
7021 * This can be called at any time. No action lock required
7022 */
7023
7024 struct ipw2100_priv *priv = ieee80211_priv(dev);
7025
7026 /* If we are associated, trying to associate, or have a statically
7027 * configured ESSID then return that; otherwise return ANY */
7028 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7029 IPW_DEBUG_WX("Getting essid: '%s'\n",
7030 escape_essid(priv->essid, priv->essid_len));
7031 memcpy(extra, priv->essid, priv->essid_len);
7032 wrqu->essid.length = priv->essid_len;
7033 wrqu->essid.flags = 1; /* active */
7034 } else {
7035 IPW_DEBUG_WX("Getting essid: ANY\n");
7036 wrqu->essid.length = 0;
7037 wrqu->essid.flags = 0; /* active */
7038 }
7039
7040 return 0;
7041 }
7042
7043 static int ipw2100_wx_set_nick(struct net_device *dev,
7044 struct iw_request_info *info,
7045 union iwreq_data *wrqu, char *extra)
7046 {
7047 /*
7048 * This can be called at any time. No action lock required
7049 */
7050
7051 struct ipw2100_priv *priv = ieee80211_priv(dev);
7052
7053 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7054 return -E2BIG;
7055
7056 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7057 memset(priv->nick, 0, sizeof(priv->nick));
7058 memcpy(priv->nick, extra, wrqu->data.length);
7059
7060 IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7061
7062 return 0;
7063 }
7064
7065 static int ipw2100_wx_get_nick(struct net_device *dev,
7066 struct iw_request_info *info,
7067 union iwreq_data *wrqu, char *extra)
7068 {
7069 /*
7070 * This can be called at any time. No action lock required
7071 */
7072
7073 struct ipw2100_priv *priv = ieee80211_priv(dev);
7074
7075 wrqu->data.length = strlen(priv->nick);
7076 memcpy(extra, priv->nick, wrqu->data.length);
7077 wrqu->data.flags = 1; /* active */
7078
7079 IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7080
7081 return 0;
7082 }
7083
7084 static int ipw2100_wx_set_rate(struct net_device *dev,
7085 struct iw_request_info *info,
7086 union iwreq_data *wrqu, char *extra)
7087 {
7088 struct ipw2100_priv *priv = ieee80211_priv(dev);
7089 u32 target_rate = wrqu->bitrate.value;
7090 u32 rate;
7091 int err = 0;
7092
7093 mutex_lock(&priv->action_mutex);
7094 if (!(priv->status & STATUS_INITIALIZED)) {
7095 err = -EIO;
7096 goto done;
7097 }
7098
7099 rate = 0;
7100
7101 if (target_rate == 1000000 ||
7102 (!wrqu->bitrate.fixed && target_rate > 1000000))
7103 rate |= TX_RATE_1_MBIT;
7104 if (target_rate == 2000000 ||
7105 (!wrqu->bitrate.fixed && target_rate > 2000000))
7106 rate |= TX_RATE_2_MBIT;
7107 if (target_rate == 5500000 ||
7108 (!wrqu->bitrate.fixed && target_rate > 5500000))
7109 rate |= TX_RATE_5_5_MBIT;
7110 if (target_rate == 11000000 ||
7111 (!wrqu->bitrate.fixed && target_rate > 11000000))
7112 rate |= TX_RATE_11_MBIT;
7113 if (rate == 0)
7114 rate = DEFAULT_TX_RATES;
7115
7116 err = ipw2100_set_tx_rates(priv, rate, 0);
7117
7118 IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7119 done:
7120 mutex_unlock(&priv->action_mutex);
7121 return err;
7122 }
7123
7124 static int ipw2100_wx_get_rate(struct net_device *dev,
7125 struct iw_request_info *info,
7126 union iwreq_data *wrqu, char *extra)
7127 {
7128 struct ipw2100_priv *priv = ieee80211_priv(dev);
7129 int val;
7130 int len = sizeof(val);
7131 int err = 0;
7132
7133 if (!(priv->status & STATUS_ENABLED) ||
7134 priv->status & STATUS_RF_KILL_MASK ||
7135 !(priv->status & STATUS_ASSOCIATED)) {
7136 wrqu->bitrate.value = 0;
7137 return 0;
7138 }
7139
7140 mutex_lock(&priv->action_mutex);
7141 if (!(priv->status & STATUS_INITIALIZED)) {
7142 err = -EIO;
7143 goto done;
7144 }
7145
7146 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7147 if (err) {
7148 IPW_DEBUG_WX("failed querying ordinals.\n");
7149 return err;
7150 }
7151
7152 switch (val & TX_RATE_MASK) {
7153 case TX_RATE_1_MBIT:
7154 wrqu->bitrate.value = 1000000;
7155 break;
7156 case TX_RATE_2_MBIT:
7157 wrqu->bitrate.value = 2000000;
7158 break;
7159 case TX_RATE_5_5_MBIT:
7160 wrqu->bitrate.value = 5500000;
7161 break;
7162 case TX_RATE_11_MBIT:
7163 wrqu->bitrate.value = 11000000;
7164 break;
7165 default:
7166 wrqu->bitrate.value = 0;
7167 }
7168
7169 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7170
7171 done:
7172 mutex_unlock(&priv->action_mutex);
7173 return err;
7174 }
7175
7176 static int ipw2100_wx_set_rts(struct net_device *dev,
7177 struct iw_request_info *info,
7178 union iwreq_data *wrqu, char *extra)
7179 {
7180 struct ipw2100_priv *priv = ieee80211_priv(dev);
7181 int value, err;
7182
7183 /* Auto RTS not yet supported */
7184 if (wrqu->rts.fixed == 0)
7185 return -EINVAL;
7186
7187 mutex_lock(&priv->action_mutex);
7188 if (!(priv->status & STATUS_INITIALIZED)) {
7189 err = -EIO;
7190 goto done;
7191 }
7192
7193 if (wrqu->rts.disabled)
7194 value = priv->rts_threshold | RTS_DISABLED;
7195 else {
7196 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7197 err = -EINVAL;
7198 goto done;
7199 }
7200 value = wrqu->rts.value;
7201 }
7202
7203 err = ipw2100_set_rts_threshold(priv, value);
7204
7205 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7206 done:
7207 mutex_unlock(&priv->action_mutex);
7208 return err;
7209 }
7210
7211 static int ipw2100_wx_get_rts(struct net_device *dev,
7212 struct iw_request_info *info,
7213 union iwreq_data *wrqu, char *extra)
7214 {
7215 /*
7216 * This can be called at any time. No action lock required
7217 */
7218
7219 struct ipw2100_priv *priv = ieee80211_priv(dev);
7220
7221 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7222 wrqu->rts.fixed = 1; /* no auto select */
7223
7224 /* If RTS is set to the default value, then it is disabled */
7225 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7226
7227 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7228
7229 return 0;
7230 }
7231
7232 static int ipw2100_wx_set_txpow(struct net_device *dev,
7233 struct iw_request_info *info,
7234 union iwreq_data *wrqu, char *extra)
7235 {
7236 struct ipw2100_priv *priv = ieee80211_priv(dev);
7237 int err = 0, value;
7238
7239 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7240 return -EINPROGRESS;
7241
7242 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7243 return 0;
7244
7245 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7246 return -EINVAL;
7247
7248 if (wrqu->txpower.fixed == 0)
7249 value = IPW_TX_POWER_DEFAULT;
7250 else {
7251 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7252 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7253 return -EINVAL;
7254
7255 value = wrqu->txpower.value;
7256 }
7257
7258 mutex_lock(&priv->action_mutex);
7259 if (!(priv->status & STATUS_INITIALIZED)) {
7260 err = -EIO;
7261 goto done;
7262 }
7263
7264 err = ipw2100_set_tx_power(priv, value);
7265
7266 IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7267
7268 done:
7269 mutex_unlock(&priv->action_mutex);
7270 return err;
7271 }
7272
7273 static int ipw2100_wx_get_txpow(struct net_device *dev,
7274 struct iw_request_info *info,
7275 union iwreq_data *wrqu, char *extra)
7276 {
7277 /*
7278 * This can be called at any time. No action lock required
7279 */
7280
7281 struct ipw2100_priv *priv = ieee80211_priv(dev);
7282
7283 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7284
7285 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7286 wrqu->txpower.fixed = 0;
7287 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7288 } else {
7289 wrqu->txpower.fixed = 1;
7290 wrqu->txpower.value = priv->tx_power;
7291 }
7292
7293 wrqu->txpower.flags = IW_TXPOW_DBM;
7294
7295 IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7296
7297 return 0;
7298 }
7299
7300 static int ipw2100_wx_set_frag(struct net_device *dev,
7301 struct iw_request_info *info,
7302 union iwreq_data *wrqu, char *extra)
7303 {
7304 /*
7305 * This can be called at any time. No action lock required
7306 */
7307
7308 struct ipw2100_priv *priv = ieee80211_priv(dev);
7309
7310 if (!wrqu->frag.fixed)
7311 return -EINVAL;
7312
7313 if (wrqu->frag.disabled) {
7314 priv->frag_threshold |= FRAG_DISABLED;
7315 priv->ieee->fts = DEFAULT_FTS;
7316 } else {
7317 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7318 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7319 return -EINVAL;
7320
7321 priv->ieee->fts = wrqu->frag.value & ~0x1;
7322 priv->frag_threshold = priv->ieee->fts;
7323 }
7324
7325 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7326
7327 return 0;
7328 }
7329
7330 static int ipw2100_wx_get_frag(struct net_device *dev,
7331 struct iw_request_info *info,
7332 union iwreq_data *wrqu, char *extra)
7333 {
7334 /*
7335 * This can be called at any time. No action lock required
7336 */
7337
7338 struct ipw2100_priv *priv = ieee80211_priv(dev);
7339 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7340 wrqu->frag.fixed = 0; /* no auto select */
7341 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7342
7343 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7344
7345 return 0;
7346 }
7347
7348 static int ipw2100_wx_set_retry(struct net_device *dev,
7349 struct iw_request_info *info,
7350 union iwreq_data *wrqu, char *extra)
7351 {
7352 struct ipw2100_priv *priv = ieee80211_priv(dev);
7353 int err = 0;
7354
7355 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7356 return -EINVAL;
7357
7358 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7359 return 0;
7360
7361 mutex_lock(&priv->action_mutex);
7362 if (!(priv->status & STATUS_INITIALIZED)) {
7363 err = -EIO;
7364 goto done;
7365 }
7366
7367 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7368 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7369 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7370 wrqu->retry.value);
7371 goto done;
7372 }
7373
7374 if (wrqu->retry.flags & IW_RETRY_LONG) {
7375 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7376 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7377 wrqu->retry.value);
7378 goto done;
7379 }
7380
7381 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7382 if (!err)
7383 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7384
7385 IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7386
7387 done:
7388 mutex_unlock(&priv->action_mutex);
7389 return err;
7390 }
7391
7392 static int ipw2100_wx_get_retry(struct net_device *dev,
7393 struct iw_request_info *info,
7394 union iwreq_data *wrqu, char *extra)
7395 {
7396 /*
7397 * This can be called at any time. No action lock required
7398 */
7399
7400 struct ipw2100_priv *priv = ieee80211_priv(dev);
7401
7402 wrqu->retry.disabled = 0; /* can't be disabled */
7403
7404 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7405 return -EINVAL;
7406
7407 if (wrqu->retry.flags & IW_RETRY_LONG) {
7408 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7409 wrqu->retry.value = priv->long_retry_limit;
7410 } else {
7411 wrqu->retry.flags =
7412 (priv->short_retry_limit !=
7413 priv->long_retry_limit) ?
7414 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7415
7416 wrqu->retry.value = priv->short_retry_limit;
7417 }
7418
7419 IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7420
7421 return 0;
7422 }
7423
7424 static int ipw2100_wx_set_scan(struct net_device *dev,
7425 struct iw_request_info *info,
7426 union iwreq_data *wrqu, char *extra)
7427 {
7428 struct ipw2100_priv *priv = ieee80211_priv(dev);
7429 int err = 0;
7430
7431 mutex_lock(&priv->action_mutex);
7432 if (!(priv->status & STATUS_INITIALIZED)) {
7433 err = -EIO;
7434 goto done;
7435 }
7436
7437 IPW_DEBUG_WX("Initiating scan...\n");
7438
7439 priv->user_requested_scan = 1;
7440 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7441 IPW_DEBUG_WX("Start scan failed.\n");
7442
7443 /* TODO: Mark a scan as pending so when hardware initialized
7444 * a scan starts */
7445 }
7446
7447 done:
7448 mutex_unlock(&priv->action_mutex);
7449 return err;
7450 }
7451
7452 static int ipw2100_wx_get_scan(struct net_device *dev,
7453 struct iw_request_info *info,
7454 union iwreq_data *wrqu, char *extra)
7455 {
7456 /*
7457 * This can be called at any time. No action lock required
7458 */
7459
7460 struct ipw2100_priv *priv = ieee80211_priv(dev);
7461 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7462 }
7463
7464 /*
7465 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7466 */
7467 static int ipw2100_wx_set_encode(struct net_device *dev,
7468 struct iw_request_info *info,
7469 union iwreq_data *wrqu, char *key)
7470 {
7471 /*
7472 * No check of STATUS_INITIALIZED required
7473 */
7474
7475 struct ipw2100_priv *priv = ieee80211_priv(dev);
7476 return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7477 }
7478
7479 static int ipw2100_wx_get_encode(struct net_device *dev,
7480 struct iw_request_info *info,
7481 union iwreq_data *wrqu, char *key)
7482 {
7483 /*
7484 * This can be called at any time. No action lock required
7485 */
7486
7487 struct ipw2100_priv *priv = ieee80211_priv(dev);
7488 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7489 }
7490
7491 static int ipw2100_wx_set_power(struct net_device *dev,
7492 struct iw_request_info *info,
7493 union iwreq_data *wrqu, char *extra)
7494 {
7495 struct ipw2100_priv *priv = ieee80211_priv(dev);
7496 int err = 0;
7497
7498 mutex_lock(&priv->action_mutex);
7499 if (!(priv->status & STATUS_INITIALIZED)) {
7500 err = -EIO;
7501 goto done;
7502 }
7503
7504 if (wrqu->power.disabled) {
7505 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7506 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7507 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7508 goto done;
7509 }
7510
7511 switch (wrqu->power.flags & IW_POWER_MODE) {
7512 case IW_POWER_ON: /* If not specified */
7513 case IW_POWER_MODE: /* If set all mask */
7514 case IW_POWER_ALL_R: /* If explicitly state all */
7515 break;
7516 default: /* Otherwise we don't support it */
7517 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7518 wrqu->power.flags);
7519 err = -EOPNOTSUPP;
7520 goto done;
7521 }
7522
7523 /* If the user hasn't specified a power management mode yet, default
7524 * to BATTERY */
7525 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7526 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7527
7528 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7529
7530 done:
7531 mutex_unlock(&priv->action_mutex);
7532 return err;
7533
7534 }
7535
7536 static int ipw2100_wx_get_power(struct net_device *dev,
7537 struct iw_request_info *info,
7538 union iwreq_data *wrqu, char *extra)
7539 {
7540 /*
7541 * This can be called at any time. No action lock required
7542 */
7543
7544 struct ipw2100_priv *priv = ieee80211_priv(dev);
7545
7546 if (!(priv->power_mode & IPW_POWER_ENABLED))
7547 wrqu->power.disabled = 1;
7548 else {
7549 wrqu->power.disabled = 0;
7550 wrqu->power.flags = 0;
7551 }
7552
7553 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7554
7555 return 0;
7556 }
7557
7558 /*
7559 * WE-18 WPA support
7560 */
7561
7562 /* SIOCSIWGENIE */
7563 static int ipw2100_wx_set_genie(struct net_device *dev,
7564 struct iw_request_info *info,
7565 union iwreq_data *wrqu, char *extra)
7566 {
7567
7568 struct ipw2100_priv *priv = ieee80211_priv(dev);
7569 struct ieee80211_device *ieee = priv->ieee;
7570 u8 *buf;
7571
7572 if (!ieee->wpa_enabled)
7573 return -EOPNOTSUPP;
7574
7575 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7576 (wrqu->data.length && extra == NULL))
7577 return -EINVAL;
7578
7579 if (wrqu->data.length) {
7580 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7581 if (buf == NULL)
7582 return -ENOMEM;
7583
7584 kfree(ieee->wpa_ie);
7585 ieee->wpa_ie = buf;
7586 ieee->wpa_ie_len = wrqu->data.length;
7587 } else {
7588 kfree(ieee->wpa_ie);
7589 ieee->wpa_ie = NULL;
7590 ieee->wpa_ie_len = 0;
7591 }
7592
7593 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7594
7595 return 0;
7596 }
7597
7598 /* SIOCGIWGENIE */
7599 static int ipw2100_wx_get_genie(struct net_device *dev,
7600 struct iw_request_info *info,
7601 union iwreq_data *wrqu, char *extra)
7602 {
7603 struct ipw2100_priv *priv = ieee80211_priv(dev);
7604 struct ieee80211_device *ieee = priv->ieee;
7605
7606 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7607 wrqu->data.length = 0;
7608 return 0;
7609 }
7610
7611 if (wrqu->data.length < ieee->wpa_ie_len)
7612 return -E2BIG;
7613
7614 wrqu->data.length = ieee->wpa_ie_len;
7615 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7616
7617 return 0;
7618 }
7619
7620 /* SIOCSIWAUTH */
7621 static int ipw2100_wx_set_auth(struct net_device *dev,
7622 struct iw_request_info *info,
7623 union iwreq_data *wrqu, char *extra)
7624 {
7625 struct ipw2100_priv *priv = ieee80211_priv(dev);
7626 struct ieee80211_device *ieee = priv->ieee;
7627 struct iw_param *param = &wrqu->param;
7628 struct ieee80211_crypt_data *crypt;
7629 unsigned long flags;
7630 int ret = 0;
7631
7632 switch (param->flags & IW_AUTH_INDEX) {
7633 case IW_AUTH_WPA_VERSION:
7634 case IW_AUTH_CIPHER_PAIRWISE:
7635 case IW_AUTH_CIPHER_GROUP:
7636 case IW_AUTH_KEY_MGMT:
7637 /*
7638 * ipw2200 does not use these parameters
7639 */
7640 break;
7641
7642 case IW_AUTH_TKIP_COUNTERMEASURES:
7643 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7644 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7645 break;
7646
7647 flags = crypt->ops->get_flags(crypt->priv);
7648
7649 if (param->value)
7650 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7651 else
7652 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7653
7654 crypt->ops->set_flags(flags, crypt->priv);
7655
7656 break;
7657
7658 case IW_AUTH_DROP_UNENCRYPTED:{
7659 /* HACK:
7660 *
7661 * wpa_supplicant calls set_wpa_enabled when the driver
7662 * is loaded and unloaded, regardless of if WPA is being
7663 * used. No other calls are made which can be used to
7664 * determine if encryption will be used or not prior to
7665 * association being expected. If encryption is not being
7666 * used, drop_unencrypted is set to false, else true -- we
7667 * can use this to determine if the CAP_PRIVACY_ON bit should
7668 * be set.
7669 */
7670 struct ieee80211_security sec = {
7671 .flags = SEC_ENABLED,
7672 .enabled = param->value,
7673 };
7674 priv->ieee->drop_unencrypted = param->value;
7675 /* We only change SEC_LEVEL for open mode. Others
7676 * are set by ipw_wpa_set_encryption.
7677 */
7678 if (!param->value) {
7679 sec.flags |= SEC_LEVEL;
7680 sec.level = SEC_LEVEL_0;
7681 } else {
7682 sec.flags |= SEC_LEVEL;
7683 sec.level = SEC_LEVEL_1;
7684 }
7685 if (priv->ieee->set_security)
7686 priv->ieee->set_security(priv->ieee->dev, &sec);
7687 break;
7688 }
7689
7690 case IW_AUTH_80211_AUTH_ALG:
7691 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7692 break;
7693
7694 case IW_AUTH_WPA_ENABLED:
7695 ret = ipw2100_wpa_enable(priv, param->value);
7696 break;
7697
7698 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7699 ieee->ieee802_1x = param->value;
7700 break;
7701
7702 //case IW_AUTH_ROAMING_CONTROL:
7703 case IW_AUTH_PRIVACY_INVOKED:
7704 ieee->privacy_invoked = param->value;
7705 break;
7706
7707 default:
7708 return -EOPNOTSUPP;
7709 }
7710 return ret;
7711 }
7712
7713 /* SIOCGIWAUTH */
7714 static int ipw2100_wx_get_auth(struct net_device *dev,
7715 struct iw_request_info *info,
7716 union iwreq_data *wrqu, char *extra)
7717 {
7718 struct ipw2100_priv *priv = ieee80211_priv(dev);
7719 struct ieee80211_device *ieee = priv->ieee;
7720 struct ieee80211_crypt_data *crypt;
7721 struct iw_param *param = &wrqu->param;
7722 int ret = 0;
7723
7724 switch (param->flags & IW_AUTH_INDEX) {
7725 case IW_AUTH_WPA_VERSION:
7726 case IW_AUTH_CIPHER_PAIRWISE:
7727 case IW_AUTH_CIPHER_GROUP:
7728 case IW_AUTH_KEY_MGMT:
7729 /*
7730 * wpa_supplicant will control these internally
7731 */
7732 ret = -EOPNOTSUPP;
7733 break;
7734
7735 case IW_AUTH_TKIP_COUNTERMEASURES:
7736 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7737 if (!crypt || !crypt->ops->get_flags) {
7738 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7739 "crypt not set!\n");
7740 break;
7741 }
7742
7743 param->value = (crypt->ops->get_flags(crypt->priv) &
7744 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7745
7746 break;
7747
7748 case IW_AUTH_DROP_UNENCRYPTED:
7749 param->value = ieee->drop_unencrypted;
7750 break;
7751
7752 case IW_AUTH_80211_AUTH_ALG:
7753 param->value = priv->ieee->sec.auth_mode;
7754 break;
7755
7756 case IW_AUTH_WPA_ENABLED:
7757 param->value = ieee->wpa_enabled;
7758 break;
7759
7760 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7761 param->value = ieee->ieee802_1x;
7762 break;
7763
7764 case IW_AUTH_ROAMING_CONTROL:
7765 case IW_AUTH_PRIVACY_INVOKED:
7766 param->value = ieee->privacy_invoked;
7767 break;
7768
7769 default:
7770 return -EOPNOTSUPP;
7771 }
7772 return 0;
7773 }
7774
7775 /* SIOCSIWENCODEEXT */
7776 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7777 struct iw_request_info *info,
7778 union iwreq_data *wrqu, char *extra)
7779 {
7780 struct ipw2100_priv *priv = ieee80211_priv(dev);
7781 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7782 }
7783
7784 /* SIOCGIWENCODEEXT */
7785 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7786 struct iw_request_info *info,
7787 union iwreq_data *wrqu, char *extra)
7788 {
7789 struct ipw2100_priv *priv = ieee80211_priv(dev);
7790 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7791 }
7792
7793 /* SIOCSIWMLME */
7794 static int ipw2100_wx_set_mlme(struct net_device *dev,
7795 struct iw_request_info *info,
7796 union iwreq_data *wrqu, char *extra)
7797 {
7798 struct ipw2100_priv *priv = ieee80211_priv(dev);
7799 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7800 __le16 reason;
7801
7802 reason = cpu_to_le16(mlme->reason_code);
7803
7804 switch (mlme->cmd) {
7805 case IW_MLME_DEAUTH:
7806 // silently ignore
7807 break;
7808
7809 case IW_MLME_DISASSOC:
7810 ipw2100_disassociate_bssid(priv);
7811 break;
7812
7813 default:
7814 return -EOPNOTSUPP;
7815 }
7816 return 0;
7817 }
7818
7819 /*
7820 *
7821 * IWPRIV handlers
7822 *
7823 */
7824 #ifdef CONFIG_IPW2100_MONITOR
7825 static int ipw2100_wx_set_promisc(struct net_device *dev,
7826 struct iw_request_info *info,
7827 union iwreq_data *wrqu, char *extra)
7828 {
7829 struct ipw2100_priv *priv = ieee80211_priv(dev);
7830 int *parms = (int *)extra;
7831 int enable = (parms[0] > 0);
7832 int err = 0;
7833
7834 mutex_lock(&priv->action_mutex);
7835 if (!(priv->status & STATUS_INITIALIZED)) {
7836 err = -EIO;
7837 goto done;
7838 }
7839
7840 if (enable) {
7841 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7842 err = ipw2100_set_channel(priv, parms[1], 0);
7843 goto done;
7844 }
7845 priv->channel = parms[1];
7846 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7847 } else {
7848 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7849 err = ipw2100_switch_mode(priv, priv->last_mode);
7850 }
7851 done:
7852 mutex_unlock(&priv->action_mutex);
7853 return err;
7854 }
7855
7856 static int ipw2100_wx_reset(struct net_device *dev,
7857 struct iw_request_info *info,
7858 union iwreq_data *wrqu, char *extra)
7859 {
7860 struct ipw2100_priv *priv = ieee80211_priv(dev);
7861 if (priv->status & STATUS_INITIALIZED)
7862 schedule_reset(priv);
7863 return 0;
7864 }
7865
7866 #endif
7867
7868 static int ipw2100_wx_set_powermode(struct net_device *dev,
7869 struct iw_request_info *info,
7870 union iwreq_data *wrqu, char *extra)
7871 {
7872 struct ipw2100_priv *priv = ieee80211_priv(dev);
7873 int err = 0, mode = *(int *)extra;
7874
7875 mutex_lock(&priv->action_mutex);
7876 if (!(priv->status & STATUS_INITIALIZED)) {
7877 err = -EIO;
7878 goto done;
7879 }
7880
7881 if ((mode < 0) || (mode > POWER_MODES))
7882 mode = IPW_POWER_AUTO;
7883
7884 if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7885 err = ipw2100_set_power_mode(priv, mode);
7886 done:
7887 mutex_unlock(&priv->action_mutex);
7888 return err;
7889 }
7890
7891 #define MAX_POWER_STRING 80
7892 static int ipw2100_wx_get_powermode(struct net_device *dev,
7893 struct iw_request_info *info,
7894 union iwreq_data *wrqu, char *extra)
7895 {
7896 /*
7897 * This can be called at any time. No action lock required
7898 */
7899
7900 struct ipw2100_priv *priv = ieee80211_priv(dev);
7901 int level = IPW_POWER_LEVEL(priv->power_mode);
7902 s32 timeout, period;
7903
7904 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7905 snprintf(extra, MAX_POWER_STRING,
7906 "Power save level: %d (Off)", level);
7907 } else {
7908 switch (level) {
7909 case IPW_POWER_MODE_CAM:
7910 snprintf(extra, MAX_POWER_STRING,
7911 "Power save level: %d (None)", level);
7912 break;
7913 case IPW_POWER_AUTO:
7914 snprintf(extra, MAX_POWER_STRING,
7915 "Power save level: %d (Auto)", level);
7916 break;
7917 default:
7918 timeout = timeout_duration[level - 1] / 1000;
7919 period = period_duration[level - 1] / 1000;
7920 snprintf(extra, MAX_POWER_STRING,
7921 "Power save level: %d "
7922 "(Timeout %dms, Period %dms)",
7923 level, timeout, period);
7924 }
7925 }
7926
7927 wrqu->data.length = strlen(extra) + 1;
7928
7929 return 0;
7930 }
7931
7932 static int ipw2100_wx_set_preamble(struct net_device *dev,
7933 struct iw_request_info *info,
7934 union iwreq_data *wrqu, char *extra)
7935 {
7936 struct ipw2100_priv *priv = ieee80211_priv(dev);
7937 int err, mode = *(int *)extra;
7938
7939 mutex_lock(&priv->action_mutex);
7940 if (!(priv->status & STATUS_INITIALIZED)) {
7941 err = -EIO;
7942 goto done;
7943 }
7944
7945 if (mode == 1)
7946 priv->config |= CFG_LONG_PREAMBLE;
7947 else if (mode == 0)
7948 priv->config &= ~CFG_LONG_PREAMBLE;
7949 else {
7950 err = -EINVAL;
7951 goto done;
7952 }
7953
7954 err = ipw2100_system_config(priv, 0);
7955
7956 done:
7957 mutex_unlock(&priv->action_mutex);
7958 return err;
7959 }
7960
7961 static int ipw2100_wx_get_preamble(struct net_device *dev,
7962 struct iw_request_info *info,
7963 union iwreq_data *wrqu, char *extra)
7964 {
7965 /*
7966 * This can be called at any time. No action lock required
7967 */
7968
7969 struct ipw2100_priv *priv = ieee80211_priv(dev);
7970
7971 if (priv->config & CFG_LONG_PREAMBLE)
7972 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7973 else
7974 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7975
7976 return 0;
7977 }
7978
7979 #ifdef CONFIG_IPW2100_MONITOR
7980 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7981 struct iw_request_info *info,
7982 union iwreq_data *wrqu, char *extra)
7983 {
7984 struct ipw2100_priv *priv = ieee80211_priv(dev);
7985 int err, mode = *(int *)extra;
7986
7987 mutex_lock(&priv->action_mutex);
7988 if (!(priv->status & STATUS_INITIALIZED)) {
7989 err = -EIO;
7990 goto done;
7991 }
7992
7993 if (mode == 1)
7994 priv->config |= CFG_CRC_CHECK;
7995 else if (mode == 0)
7996 priv->config &= ~CFG_CRC_CHECK;
7997 else {
7998 err = -EINVAL;
7999 goto done;
8000 }
8001 err = 0;
8002
8003 done:
8004 mutex_unlock(&priv->action_mutex);
8005 return err;
8006 }
8007
8008 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8009 struct iw_request_info *info,
8010 union iwreq_data *wrqu, char *extra)
8011 {
8012 /*
8013 * This can be called at any time. No action lock required
8014 */
8015
8016 struct ipw2100_priv *priv = ieee80211_priv(dev);
8017
8018 if (priv->config & CFG_CRC_CHECK)
8019 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8020 else
8021 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8022
8023 return 0;
8024 }
8025 #endif /* CONFIG_IPW2100_MONITOR */
8026
8027 static iw_handler ipw2100_wx_handlers[] = {
8028 NULL, /* SIOCSIWCOMMIT */
8029 ipw2100_wx_get_name, /* SIOCGIWNAME */
8030 NULL, /* SIOCSIWNWID */
8031 NULL, /* SIOCGIWNWID */
8032 ipw2100_wx_set_freq, /* SIOCSIWFREQ */
8033 ipw2100_wx_get_freq, /* SIOCGIWFREQ */
8034 ipw2100_wx_set_mode, /* SIOCSIWMODE */
8035 ipw2100_wx_get_mode, /* SIOCGIWMODE */
8036 NULL, /* SIOCSIWSENS */
8037 NULL, /* SIOCGIWSENS */
8038 NULL, /* SIOCSIWRANGE */
8039 ipw2100_wx_get_range, /* SIOCGIWRANGE */
8040 NULL, /* SIOCSIWPRIV */
8041 NULL, /* SIOCGIWPRIV */
8042 NULL, /* SIOCSIWSTATS */
8043 NULL, /* SIOCGIWSTATS */
8044 NULL, /* SIOCSIWSPY */
8045 NULL, /* SIOCGIWSPY */
8046 NULL, /* SIOCGIWTHRSPY */
8047 NULL, /* SIOCWIWTHRSPY */
8048 ipw2100_wx_set_wap, /* SIOCSIWAP */
8049 ipw2100_wx_get_wap, /* SIOCGIWAP */
8050 ipw2100_wx_set_mlme, /* SIOCSIWMLME */
8051 NULL, /* SIOCGIWAPLIST -- deprecated */
8052 ipw2100_wx_set_scan, /* SIOCSIWSCAN */
8053 ipw2100_wx_get_scan, /* SIOCGIWSCAN */
8054 ipw2100_wx_set_essid, /* SIOCSIWESSID */
8055 ipw2100_wx_get_essid, /* SIOCGIWESSID */
8056 ipw2100_wx_set_nick, /* SIOCSIWNICKN */
8057 ipw2100_wx_get_nick, /* SIOCGIWNICKN */
8058 NULL, /* -- hole -- */
8059 NULL, /* -- hole -- */
8060 ipw2100_wx_set_rate, /* SIOCSIWRATE */
8061 ipw2100_wx_get_rate, /* SIOCGIWRATE */
8062 ipw2100_wx_set_rts, /* SIOCSIWRTS */
8063 ipw2100_wx_get_rts, /* SIOCGIWRTS */
8064 ipw2100_wx_set_frag, /* SIOCSIWFRAG */
8065 ipw2100_wx_get_frag, /* SIOCGIWFRAG */
8066 ipw2100_wx_set_txpow, /* SIOCSIWTXPOW */
8067 ipw2100_wx_get_txpow, /* SIOCGIWTXPOW */
8068 ipw2100_wx_set_retry, /* SIOCSIWRETRY */
8069 ipw2100_wx_get_retry, /* SIOCGIWRETRY */
8070 ipw2100_wx_set_encode, /* SIOCSIWENCODE */
8071 ipw2100_wx_get_encode, /* SIOCGIWENCODE */
8072 ipw2100_wx_set_power, /* SIOCSIWPOWER */
8073 ipw2100_wx_get_power, /* SIOCGIWPOWER */
8074 NULL, /* -- hole -- */
8075 NULL, /* -- hole -- */
8076 ipw2100_wx_set_genie, /* SIOCSIWGENIE */
8077 ipw2100_wx_get_genie, /* SIOCGIWGENIE */
8078 ipw2100_wx_set_auth, /* SIOCSIWAUTH */
8079 ipw2100_wx_get_auth, /* SIOCGIWAUTH */
8080 ipw2100_wx_set_encodeext, /* SIOCSIWENCODEEXT */
8081 ipw2100_wx_get_encodeext, /* SIOCGIWENCODEEXT */
8082 NULL, /* SIOCSIWPMKSA */
8083 };
8084
8085 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8086 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8087 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8088 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8089 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8090 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8091 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8092 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8093
8094 static const struct iw_priv_args ipw2100_private_args[] = {
8095
8096 #ifdef CONFIG_IPW2100_MONITOR
8097 {
8098 IPW2100_PRIV_SET_MONITOR,
8099 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8100 {
8101 IPW2100_PRIV_RESET,
8102 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8103 #endif /* CONFIG_IPW2100_MONITOR */
8104
8105 {
8106 IPW2100_PRIV_SET_POWER,
8107 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8108 {
8109 IPW2100_PRIV_GET_POWER,
8110 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8111 "get_power"},
8112 {
8113 IPW2100_PRIV_SET_LONGPREAMBLE,
8114 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8115 {
8116 IPW2100_PRIV_GET_LONGPREAMBLE,
8117 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8118 #ifdef CONFIG_IPW2100_MONITOR
8119 {
8120 IPW2100_PRIV_SET_CRC_CHECK,
8121 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8122 {
8123 IPW2100_PRIV_GET_CRC_CHECK,
8124 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8125 #endif /* CONFIG_IPW2100_MONITOR */
8126 };
8127
8128 static iw_handler ipw2100_private_handler[] = {
8129 #ifdef CONFIG_IPW2100_MONITOR
8130 ipw2100_wx_set_promisc,
8131 ipw2100_wx_reset,
8132 #else /* CONFIG_IPW2100_MONITOR */
8133 NULL,
8134 NULL,
8135 #endif /* CONFIG_IPW2100_MONITOR */
8136 ipw2100_wx_set_powermode,
8137 ipw2100_wx_get_powermode,
8138 ipw2100_wx_set_preamble,
8139 ipw2100_wx_get_preamble,
8140 #ifdef CONFIG_IPW2100_MONITOR
8141 ipw2100_wx_set_crc_check,
8142 ipw2100_wx_get_crc_check,
8143 #else /* CONFIG_IPW2100_MONITOR */
8144 NULL,
8145 NULL,
8146 #endif /* CONFIG_IPW2100_MONITOR */
8147 };
8148
8149 /*
8150 * Get wireless statistics.
8151 * Called by /proc/net/wireless
8152 * Also called by SIOCGIWSTATS
8153 */
8154 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8155 {
8156 enum {
8157 POOR = 30,
8158 FAIR = 60,
8159 GOOD = 80,
8160 VERY_GOOD = 90,
8161 EXCELLENT = 95,
8162 PERFECT = 100
8163 };
8164 int rssi_qual;
8165 int tx_qual;
8166 int beacon_qual;
8167
8168 struct ipw2100_priv *priv = ieee80211_priv(dev);
8169 struct iw_statistics *wstats;
8170 u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8171 u32 ord_len = sizeof(u32);
8172
8173 if (!priv)
8174 return (struct iw_statistics *)NULL;
8175
8176 wstats = &priv->wstats;
8177
8178 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8179 * ipw2100_wx_wireless_stats seems to be called before fw is
8180 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8181 * and associated; if not associcated, the values are all meaningless
8182 * anyway, so set them all to NULL and INVALID */
8183 if (!(priv->status & STATUS_ASSOCIATED)) {
8184 wstats->miss.beacon = 0;
8185 wstats->discard.retries = 0;
8186 wstats->qual.qual = 0;
8187 wstats->qual.level = 0;
8188 wstats->qual.noise = 0;
8189 wstats->qual.updated = 7;
8190 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8191 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8192 return wstats;
8193 }
8194
8195 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8196 &missed_beacons, &ord_len))
8197 goto fail_get_ordinal;
8198
8199 /* If we don't have a connection the quality and level is 0 */
8200 if (!(priv->status & STATUS_ASSOCIATED)) {
8201 wstats->qual.qual = 0;
8202 wstats->qual.level = 0;
8203 } else {
8204 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8205 &rssi, &ord_len))
8206 goto fail_get_ordinal;
8207 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8208 if (rssi < 10)
8209 rssi_qual = rssi * POOR / 10;
8210 else if (rssi < 15)
8211 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8212 else if (rssi < 20)
8213 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8214 else if (rssi < 30)
8215 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8216 10 + GOOD;
8217 else
8218 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8219 10 + VERY_GOOD;
8220
8221 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8222 &tx_retries, &ord_len))
8223 goto fail_get_ordinal;
8224
8225 if (tx_retries > 75)
8226 tx_qual = (90 - tx_retries) * POOR / 15;
8227 else if (tx_retries > 70)
8228 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8229 else if (tx_retries > 65)
8230 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8231 else if (tx_retries > 50)
8232 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8233 15 + GOOD;
8234 else
8235 tx_qual = (50 - tx_retries) *
8236 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8237
8238 if (missed_beacons > 50)
8239 beacon_qual = (60 - missed_beacons) * POOR / 10;
8240 else if (missed_beacons > 40)
8241 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8242 10 + POOR;
8243 else if (missed_beacons > 32)
8244 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8245 18 + FAIR;
8246 else if (missed_beacons > 20)
8247 beacon_qual = (32 - missed_beacons) *
8248 (VERY_GOOD - GOOD) / 20 + GOOD;
8249 else
8250 beacon_qual = (20 - missed_beacons) *
8251 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8252
8253 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8254
8255 #ifdef CONFIG_IPW2100_DEBUG
8256 if (beacon_qual == quality)
8257 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8258 else if (tx_qual == quality)
8259 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8260 else if (quality != 100)
8261 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8262 else
8263 IPW_DEBUG_WX("Quality not clamped.\n");
8264 #endif
8265
8266 wstats->qual.qual = quality;
8267 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8268 }
8269
8270 wstats->qual.noise = 0;
8271 wstats->qual.updated = 7;
8272 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8273
8274 /* FIXME: this is percent and not a # */
8275 wstats->miss.beacon = missed_beacons;
8276
8277 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8278 &tx_failures, &ord_len))
8279 goto fail_get_ordinal;
8280 wstats->discard.retries = tx_failures;
8281
8282 return wstats;
8283
8284 fail_get_ordinal:
8285 IPW_DEBUG_WX("failed querying ordinals.\n");
8286
8287 return (struct iw_statistics *)NULL;
8288 }
8289
8290 static struct iw_handler_def ipw2100_wx_handler_def = {
8291 .standard = ipw2100_wx_handlers,
8292 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8293 .num_private = ARRAY_SIZE(ipw2100_private_handler),
8294 .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8295 .private = (iw_handler *) ipw2100_private_handler,
8296 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8297 .get_wireless_stats = ipw2100_wx_wireless_stats,
8298 };
8299
8300 static void ipw2100_wx_event_work(struct work_struct *work)
8301 {
8302 struct ipw2100_priv *priv =
8303 container_of(work, struct ipw2100_priv, wx_event_work.work);
8304 union iwreq_data wrqu;
8305 int len = ETH_ALEN;
8306
8307 if (priv->status & STATUS_STOPPING)
8308 return;
8309
8310 mutex_lock(&priv->action_mutex);
8311
8312 IPW_DEBUG_WX("enter\n");
8313
8314 mutex_unlock(&priv->action_mutex);
8315
8316 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8317
8318 /* Fetch BSSID from the hardware */
8319 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8320 priv->status & STATUS_RF_KILL_MASK ||
8321 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8322 &priv->bssid, &len)) {
8323 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8324 } else {
8325 /* We now have the BSSID, so can finish setting to the full
8326 * associated state */
8327 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8328 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8329 priv->status &= ~STATUS_ASSOCIATING;
8330 priv->status |= STATUS_ASSOCIATED;
8331 netif_carrier_on(priv->net_dev);
8332 netif_wake_queue(priv->net_dev);
8333 }
8334
8335 if (!(priv->status & STATUS_ASSOCIATED)) {
8336 IPW_DEBUG_WX("Configuring ESSID\n");
8337 mutex_lock(&priv->action_mutex);
8338 /* This is a disassociation event, so kick the firmware to
8339 * look for another AP */
8340 if (priv->config & CFG_STATIC_ESSID)
8341 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8342 0);
8343 else
8344 ipw2100_set_essid(priv, NULL, 0, 0);
8345 mutex_unlock(&priv->action_mutex);
8346 }
8347
8348 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8349 }
8350
8351 #define IPW2100_FW_MAJOR_VERSION 1
8352 #define IPW2100_FW_MINOR_VERSION 3
8353
8354 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8355 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8356
8357 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8358 IPW2100_FW_MAJOR_VERSION)
8359
8360 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8361 "." __stringify(IPW2100_FW_MINOR_VERSION)
8362
8363 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8364
8365 /*
8366
8367 BINARY FIRMWARE HEADER FORMAT
8368
8369 offset length desc
8370 0 2 version
8371 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8372 4 4 fw_len
8373 8 4 uc_len
8374 C fw_len firmware data
8375 12 + fw_len uc_len microcode data
8376
8377 */
8378
8379 struct ipw2100_fw_header {
8380 short version;
8381 short mode;
8382 unsigned int fw_size;
8383 unsigned int uc_size;
8384 } __attribute__ ((packed));
8385
8386 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8387 {
8388 struct ipw2100_fw_header *h =
8389 (struct ipw2100_fw_header *)fw->fw_entry->data;
8390
8391 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8392 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8393 "(detected version id of %u). "
8394 "See Documentation/networking/README.ipw2100\n",
8395 h->version);
8396 return 1;
8397 }
8398
8399 fw->version = h->version;
8400 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8401 fw->fw.size = h->fw_size;
8402 fw->uc.data = fw->fw.data + h->fw_size;
8403 fw->uc.size = h->uc_size;
8404
8405 return 0;
8406 }
8407
8408 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8409 struct ipw2100_fw *fw)
8410 {
8411 char *fw_name;
8412 int rc;
8413
8414 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8415 priv->net_dev->name);
8416
8417 switch (priv->ieee->iw_mode) {
8418 case IW_MODE_ADHOC:
8419 fw_name = IPW2100_FW_NAME("-i");
8420 break;
8421 #ifdef CONFIG_IPW2100_MONITOR
8422 case IW_MODE_MONITOR:
8423 fw_name = IPW2100_FW_NAME("-p");
8424 break;
8425 #endif
8426 case IW_MODE_INFRA:
8427 default:
8428 fw_name = IPW2100_FW_NAME("");
8429 break;
8430 }
8431
8432 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8433
8434 if (rc < 0) {
8435 printk(KERN_ERR DRV_NAME ": "
8436 "%s: Firmware '%s' not available or load failed.\n",
8437 priv->net_dev->name, fw_name);
8438 return rc;
8439 }
8440 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8441 fw->fw_entry->size);
8442
8443 ipw2100_mod_firmware_load(fw);
8444
8445 return 0;
8446 }
8447
8448 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8449 struct ipw2100_fw *fw)
8450 {
8451 fw->version = 0;
8452 if (fw->fw_entry)
8453 release_firmware(fw->fw_entry);
8454 fw->fw_entry = NULL;
8455 }
8456
8457 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8458 size_t max)
8459 {
8460 char ver[MAX_FW_VERSION_LEN];
8461 u32 len = MAX_FW_VERSION_LEN;
8462 u32 tmp;
8463 int i;
8464 /* firmware version is an ascii string (max len of 14) */
8465 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8466 return -EIO;
8467 tmp = max;
8468 if (len >= max)
8469 len = max - 1;
8470 for (i = 0; i < len; i++)
8471 buf[i] = ver[i];
8472 buf[i] = '\0';
8473 return tmp;
8474 }
8475
8476 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8477 size_t max)
8478 {
8479 u32 ver;
8480 u32 len = sizeof(ver);
8481 /* microcode version is a 32 bit integer */
8482 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8483 return -EIO;
8484 return snprintf(buf, max, "%08X", ver);
8485 }
8486
8487 /*
8488 * On exit, the firmware will have been freed from the fw list
8489 */
8490 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8491 {
8492 /* firmware is constructed of N contiguous entries, each entry is
8493 * structured as:
8494 *
8495 * offset sie desc
8496 * 0 4 address to write to
8497 * 4 2 length of data run
8498 * 6 length data
8499 */
8500 unsigned int addr;
8501 unsigned short len;
8502
8503 const unsigned char *firmware_data = fw->fw.data;
8504 unsigned int firmware_data_left = fw->fw.size;
8505
8506 while (firmware_data_left > 0) {
8507 addr = *(u32 *) (firmware_data);
8508 firmware_data += 4;
8509 firmware_data_left -= 4;
8510
8511 len = *(u16 *) (firmware_data);
8512 firmware_data += 2;
8513 firmware_data_left -= 2;
8514
8515 if (len > 32) {
8516 printk(KERN_ERR DRV_NAME ": "
8517 "Invalid firmware run-length of %d bytes\n",
8518 len);
8519 return -EINVAL;
8520 }
8521
8522 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8523 firmware_data += len;
8524 firmware_data_left -= len;
8525 }
8526
8527 return 0;
8528 }
8529
8530 struct symbol_alive_response {
8531 u8 cmd_id;
8532 u8 seq_num;
8533 u8 ucode_rev;
8534 u8 eeprom_valid;
8535 u16 valid_flags;
8536 u8 IEEE_addr[6];
8537 u16 flags;
8538 u16 pcb_rev;
8539 u16 clock_settle_time; // 1us LSB
8540 u16 powerup_settle_time; // 1us LSB
8541 u16 hop_settle_time; // 1us LSB
8542 u8 date[3]; // month, day, year
8543 u8 time[2]; // hours, minutes
8544 u8 ucode_valid;
8545 };
8546
8547 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8548 struct ipw2100_fw *fw)
8549 {
8550 struct net_device *dev = priv->net_dev;
8551 const unsigned char *microcode_data = fw->uc.data;
8552 unsigned int microcode_data_left = fw->uc.size;
8553 void __iomem *reg = (void __iomem *)dev->base_addr;
8554
8555 struct symbol_alive_response response;
8556 int i, j;
8557 u8 data;
8558
8559 /* Symbol control */
8560 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8561 readl(reg);
8562 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8563 readl(reg);
8564
8565 /* HW config */
8566 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8567 readl(reg);
8568 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8569 readl(reg);
8570
8571 /* EN_CS_ACCESS bit to reset control store pointer */
8572 write_nic_byte(dev, 0x210000, 0x40);
8573 readl(reg);
8574 write_nic_byte(dev, 0x210000, 0x0);
8575 readl(reg);
8576 write_nic_byte(dev, 0x210000, 0x40);
8577 readl(reg);
8578
8579 /* copy microcode from buffer into Symbol */
8580
8581 while (microcode_data_left > 0) {
8582 write_nic_byte(dev, 0x210010, *microcode_data++);
8583 write_nic_byte(dev, 0x210010, *microcode_data++);
8584 microcode_data_left -= 2;
8585 }
8586
8587 /* EN_CS_ACCESS bit to reset the control store pointer */
8588 write_nic_byte(dev, 0x210000, 0x0);
8589 readl(reg);
8590
8591 /* Enable System (Reg 0)
8592 * first enable causes garbage in RX FIFO */
8593 write_nic_byte(dev, 0x210000, 0x0);
8594 readl(reg);
8595 write_nic_byte(dev, 0x210000, 0x80);
8596 readl(reg);
8597
8598 /* Reset External Baseband Reg */
8599 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8600 readl(reg);
8601 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8602 readl(reg);
8603
8604 /* HW Config (Reg 5) */
8605 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8606 readl(reg);
8607 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8608 readl(reg);
8609
8610 /* Enable System (Reg 0)
8611 * second enable should be OK */
8612 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8613 readl(reg);
8614 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8615
8616 /* check Symbol is enabled - upped this from 5 as it wasn't always
8617 * catching the update */
8618 for (i = 0; i < 10; i++) {
8619 udelay(10);
8620
8621 /* check Dino is enabled bit */
8622 read_nic_byte(dev, 0x210000, &data);
8623 if (data & 0x1)
8624 break;
8625 }
8626
8627 if (i == 10) {
8628 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8629 dev->name);
8630 return -EIO;
8631 }
8632
8633 /* Get Symbol alive response */
8634 for (i = 0; i < 30; i++) {
8635 /* Read alive response structure */
8636 for (j = 0;
8637 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8638 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8639
8640 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8641 break;
8642 udelay(10);
8643 }
8644
8645 if (i == 30) {
8646 printk(KERN_ERR DRV_NAME
8647 ": %s: No response from Symbol - hw not alive\n",
8648 dev->name);
8649 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8650 return -EIO;
8651 }
8652
8653 return 0;
8654 }
This page took 0.309702 seconds and 5 git commands to generate.