net: convert print_mac to %pM
[deliverable/linux.git] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
28
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <j@w1.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
43
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
106
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
110
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
114
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
118
119 The flow of data on the TX side is as follows:
120
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124 The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos_params.h>
165
166 #include "ipw2100.h"
167
168 #define IPW2100_VERSION "git-1.2.2"
169
170 #define DRV_NAME "ipw2100"
171 #define DRV_VERSION IPW2100_VERSION
172 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
173 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
174
175 /* Debugging stuff */
176 #ifdef CONFIG_IPW2100_DEBUG
177 #define IPW2100_RX_DEBUG /* Reception debugging */
178 #endif
179
180 MODULE_DESCRIPTION(DRV_DESCRIPTION);
181 MODULE_VERSION(DRV_VERSION);
182 MODULE_AUTHOR(DRV_COPYRIGHT);
183 MODULE_LICENSE("GPL");
184
185 static int debug = 0;
186 static int mode = 0;
187 static int channel = 0;
188 static int associate = 1;
189 static int disable = 0;
190 #ifdef CONFIG_PM
191 static struct ipw2100_fw ipw2100_firmware;
192 #endif
193
194 #include <linux/moduleparam.h>
195 module_param(debug, int, 0444);
196 module_param(mode, int, 0444);
197 module_param(channel, int, 0444);
198 module_param(associate, int, 0444);
199 module_param(disable, int, 0444);
200
201 MODULE_PARM_DESC(debug, "debug level");
202 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
203 MODULE_PARM_DESC(channel, "channel");
204 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
205 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
206
207 static u32 ipw2100_debug_level = IPW_DL_NONE;
208
209 #ifdef CONFIG_IPW2100_DEBUG
210 #define IPW_DEBUG(level, message...) \
211 do { \
212 if (ipw2100_debug_level & (level)) { \
213 printk(KERN_DEBUG "ipw2100: %c %s ", \
214 in_interrupt() ? 'I' : 'U', __func__); \
215 printk(message); \
216 } \
217 } while (0)
218 #else
219 #define IPW_DEBUG(level, message...) do {} while (0)
220 #endif /* CONFIG_IPW2100_DEBUG */
221
222 #ifdef CONFIG_IPW2100_DEBUG
223 static const char *command_types[] = {
224 "undefined",
225 "unused", /* HOST_ATTENTION */
226 "HOST_COMPLETE",
227 "unused", /* SLEEP */
228 "unused", /* HOST_POWER_DOWN */
229 "unused",
230 "SYSTEM_CONFIG",
231 "unused", /* SET_IMR */
232 "SSID",
233 "MANDATORY_BSSID",
234 "AUTHENTICATION_TYPE",
235 "ADAPTER_ADDRESS",
236 "PORT_TYPE",
237 "INTERNATIONAL_MODE",
238 "CHANNEL",
239 "RTS_THRESHOLD",
240 "FRAG_THRESHOLD",
241 "POWER_MODE",
242 "TX_RATES",
243 "BASIC_TX_RATES",
244 "WEP_KEY_INFO",
245 "unused",
246 "unused",
247 "unused",
248 "unused",
249 "WEP_KEY_INDEX",
250 "WEP_FLAGS",
251 "ADD_MULTICAST",
252 "CLEAR_ALL_MULTICAST",
253 "BEACON_INTERVAL",
254 "ATIM_WINDOW",
255 "CLEAR_STATISTICS",
256 "undefined",
257 "undefined",
258 "undefined",
259 "undefined",
260 "TX_POWER_INDEX",
261 "undefined",
262 "undefined",
263 "undefined",
264 "undefined",
265 "undefined",
266 "undefined",
267 "BROADCAST_SCAN",
268 "CARD_DISABLE",
269 "PREFERRED_BSSID",
270 "SET_SCAN_OPTIONS",
271 "SCAN_DWELL_TIME",
272 "SWEEP_TABLE",
273 "AP_OR_STATION_TABLE",
274 "GROUP_ORDINALS",
275 "SHORT_RETRY_LIMIT",
276 "LONG_RETRY_LIMIT",
277 "unused", /* SAVE_CALIBRATION */
278 "unused", /* RESTORE_CALIBRATION */
279 "undefined",
280 "undefined",
281 "undefined",
282 "HOST_PRE_POWER_DOWN",
283 "unused", /* HOST_INTERRUPT_COALESCING */
284 "undefined",
285 "CARD_DISABLE_PHY_OFF",
286 "MSDU_TX_RATES" "undefined",
287 "undefined",
288 "SET_STATION_STAT_BITS",
289 "CLEAR_STATIONS_STAT_BITS",
290 "LEAP_ROGUE_MODE",
291 "SET_SECURITY_INFORMATION",
292 "DISASSOCIATION_BSSID",
293 "SET_WPA_ASS_IE"
294 };
295 #endif
296
297 /* Pre-decl until we get the code solid and then we can clean it up */
298 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
299 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
300 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
301
302 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
303 static void ipw2100_queues_free(struct ipw2100_priv *priv);
304 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
305
306 static int ipw2100_fw_download(struct ipw2100_priv *priv,
307 struct ipw2100_fw *fw);
308 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
309 struct ipw2100_fw *fw);
310 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
311 size_t max);
312 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
313 size_t max);
314 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
315 struct ipw2100_fw *fw);
316 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
317 struct ipw2100_fw *fw);
318 static void ipw2100_wx_event_work(struct work_struct *work);
319 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
320 static struct iw_handler_def ipw2100_wx_handler_def;
321
322 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
323 {
324 *val = readl((void __iomem *)(dev->base_addr + reg));
325 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
326 }
327
328 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
329 {
330 writel(val, (void __iomem *)(dev->base_addr + reg));
331 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
332 }
333
334 static inline void read_register_word(struct net_device *dev, u32 reg,
335 u16 * val)
336 {
337 *val = readw((void __iomem *)(dev->base_addr + reg));
338 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
339 }
340
341 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
342 {
343 *val = readb((void __iomem *)(dev->base_addr + reg));
344 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
345 }
346
347 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
348 {
349 writew(val, (void __iomem *)(dev->base_addr + reg));
350 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
351 }
352
353 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
354 {
355 writeb(val, (void __iomem *)(dev->base_addr + reg));
356 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
357 }
358
359 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
360 {
361 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
362 addr & IPW_REG_INDIRECT_ADDR_MASK);
363 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
364 }
365
366 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
367 {
368 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
369 addr & IPW_REG_INDIRECT_ADDR_MASK);
370 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
371 }
372
373 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
374 {
375 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
376 addr & IPW_REG_INDIRECT_ADDR_MASK);
377 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
378 }
379
380 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
381 {
382 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
383 addr & IPW_REG_INDIRECT_ADDR_MASK);
384 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
385 }
386
387 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
388 {
389 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
390 addr & IPW_REG_INDIRECT_ADDR_MASK);
391 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
392 }
393
394 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
395 {
396 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397 addr & IPW_REG_INDIRECT_ADDR_MASK);
398 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400
401 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
402 {
403 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
404 addr & IPW_REG_INDIRECT_ADDR_MASK);
405 }
406
407 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
408 {
409 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
410 }
411
412 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
413 const u8 * buf)
414 {
415 u32 aligned_addr;
416 u32 aligned_len;
417 u32 dif_len;
418 u32 i;
419
420 /* read first nibble byte by byte */
421 aligned_addr = addr & (~0x3);
422 dif_len = addr - aligned_addr;
423 if (dif_len) {
424 /* Start reading at aligned_addr + dif_len */
425 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
426 aligned_addr);
427 for (i = dif_len; i < 4; i++, buf++)
428 write_register_byte(dev,
429 IPW_REG_INDIRECT_ACCESS_DATA + i,
430 *buf);
431
432 len -= dif_len;
433 aligned_addr += 4;
434 }
435
436 /* read DWs through autoincrement registers */
437 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
438 aligned_len = len & (~0x3);
439 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
440 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
441
442 /* copy the last nibble */
443 dif_len = len - aligned_len;
444 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
445 for (i = 0; i < dif_len; i++, buf++)
446 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
447 *buf);
448 }
449
450 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
451 u8 * buf)
452 {
453 u32 aligned_addr;
454 u32 aligned_len;
455 u32 dif_len;
456 u32 i;
457
458 /* read first nibble byte by byte */
459 aligned_addr = addr & (~0x3);
460 dif_len = addr - aligned_addr;
461 if (dif_len) {
462 /* Start reading at aligned_addr + dif_len */
463 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
464 aligned_addr);
465 for (i = dif_len; i < 4; i++, buf++)
466 read_register_byte(dev,
467 IPW_REG_INDIRECT_ACCESS_DATA + i,
468 buf);
469
470 len -= dif_len;
471 aligned_addr += 4;
472 }
473
474 /* read DWs through autoincrement registers */
475 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
476 aligned_len = len & (~0x3);
477 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
478 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
479
480 /* copy the last nibble */
481 dif_len = len - aligned_len;
482 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
483 for (i = 0; i < dif_len; i++, buf++)
484 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
485 }
486
487 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
488 {
489 return (dev->base_addr &&
490 (readl
491 ((void __iomem *)(dev->base_addr +
492 IPW_REG_DOA_DEBUG_AREA_START))
493 == IPW_DATA_DOA_DEBUG_VALUE));
494 }
495
496 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
497 void *val, u32 * len)
498 {
499 struct ipw2100_ordinals *ordinals = &priv->ordinals;
500 u32 addr;
501 u32 field_info;
502 u16 field_len;
503 u16 field_count;
504 u32 total_length;
505
506 if (ordinals->table1_addr == 0) {
507 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
508 "before they have been loaded.\n");
509 return -EINVAL;
510 }
511
512 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
513 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
514 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
515
516 printk(KERN_WARNING DRV_NAME
517 ": ordinal buffer length too small, need %zd\n",
518 IPW_ORD_TAB_1_ENTRY_SIZE);
519
520 return -EINVAL;
521 }
522
523 read_nic_dword(priv->net_dev,
524 ordinals->table1_addr + (ord << 2), &addr);
525 read_nic_dword(priv->net_dev, addr, val);
526
527 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
528
529 return 0;
530 }
531
532 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
533
534 ord -= IPW_START_ORD_TAB_2;
535
536 /* get the address of statistic */
537 read_nic_dword(priv->net_dev,
538 ordinals->table2_addr + (ord << 3), &addr);
539
540 /* get the second DW of statistics ;
541 * two 16-bit words - first is length, second is count */
542 read_nic_dword(priv->net_dev,
543 ordinals->table2_addr + (ord << 3) + sizeof(u32),
544 &field_info);
545
546 /* get each entry length */
547 field_len = *((u16 *) & field_info);
548
549 /* get number of entries */
550 field_count = *(((u16 *) & field_info) + 1);
551
552 /* abort if no enought memory */
553 total_length = field_len * field_count;
554 if (total_length > *len) {
555 *len = total_length;
556 return -EINVAL;
557 }
558
559 *len = total_length;
560 if (!total_length)
561 return 0;
562
563 /* read the ordinal data from the SRAM */
564 read_nic_memory(priv->net_dev, addr, total_length, val);
565
566 return 0;
567 }
568
569 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
570 "in table 2\n", ord);
571
572 return -EINVAL;
573 }
574
575 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
576 u32 * len)
577 {
578 struct ipw2100_ordinals *ordinals = &priv->ordinals;
579 u32 addr;
580
581 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
582 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
583 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
584 IPW_DEBUG_INFO("wrong size\n");
585 return -EINVAL;
586 }
587
588 read_nic_dword(priv->net_dev,
589 ordinals->table1_addr + (ord << 2), &addr);
590
591 write_nic_dword(priv->net_dev, addr, *val);
592
593 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
594
595 return 0;
596 }
597
598 IPW_DEBUG_INFO("wrong table\n");
599 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
600 return -EINVAL;
601
602 return -EINVAL;
603 }
604
605 static char *snprint_line(char *buf, size_t count,
606 const u8 * data, u32 len, u32 ofs)
607 {
608 int out, i, j, l;
609 char c;
610
611 out = snprintf(buf, count, "%08X", ofs);
612
613 for (l = 0, i = 0; i < 2; i++) {
614 out += snprintf(buf + out, count - out, " ");
615 for (j = 0; j < 8 && l < len; j++, l++)
616 out += snprintf(buf + out, count - out, "%02X ",
617 data[(i * 8 + j)]);
618 for (; j < 8; j++)
619 out += snprintf(buf + out, count - out, " ");
620 }
621
622 out += snprintf(buf + out, count - out, " ");
623 for (l = 0, i = 0; i < 2; i++) {
624 out += snprintf(buf + out, count - out, " ");
625 for (j = 0; j < 8 && l < len; j++, l++) {
626 c = data[(i * 8 + j)];
627 if (!isascii(c) || !isprint(c))
628 c = '.';
629
630 out += snprintf(buf + out, count - out, "%c", c);
631 }
632
633 for (; j < 8; j++)
634 out += snprintf(buf + out, count - out, " ");
635 }
636
637 return buf;
638 }
639
640 static void printk_buf(int level, const u8 * data, u32 len)
641 {
642 char line[81];
643 u32 ofs = 0;
644 if (!(ipw2100_debug_level & level))
645 return;
646
647 while (len) {
648 printk(KERN_DEBUG "%s\n",
649 snprint_line(line, sizeof(line), &data[ofs],
650 min(len, 16U), ofs));
651 ofs += 16;
652 len -= min(len, 16U);
653 }
654 }
655
656 #define MAX_RESET_BACKOFF 10
657
658 static void schedule_reset(struct ipw2100_priv *priv)
659 {
660 unsigned long now = get_seconds();
661
662 /* If we haven't received a reset request within the backoff period,
663 * then we can reset the backoff interval so this reset occurs
664 * immediately */
665 if (priv->reset_backoff &&
666 (now - priv->last_reset > priv->reset_backoff))
667 priv->reset_backoff = 0;
668
669 priv->last_reset = get_seconds();
670
671 if (!(priv->status & STATUS_RESET_PENDING)) {
672 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
673 priv->net_dev->name, priv->reset_backoff);
674 netif_carrier_off(priv->net_dev);
675 netif_stop_queue(priv->net_dev);
676 priv->status |= STATUS_RESET_PENDING;
677 if (priv->reset_backoff)
678 queue_delayed_work(priv->workqueue, &priv->reset_work,
679 priv->reset_backoff * HZ);
680 else
681 queue_delayed_work(priv->workqueue, &priv->reset_work,
682 0);
683
684 if (priv->reset_backoff < MAX_RESET_BACKOFF)
685 priv->reset_backoff++;
686
687 wake_up_interruptible(&priv->wait_command_queue);
688 } else
689 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
690 priv->net_dev->name);
691
692 }
693
694 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
695 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
696 struct host_command *cmd)
697 {
698 struct list_head *element;
699 struct ipw2100_tx_packet *packet;
700 unsigned long flags;
701 int err = 0;
702
703 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
704 command_types[cmd->host_command], cmd->host_command,
705 cmd->host_command_length);
706 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
707 cmd->host_command_length);
708
709 spin_lock_irqsave(&priv->low_lock, flags);
710
711 if (priv->fatal_error) {
712 IPW_DEBUG_INFO
713 ("Attempt to send command while hardware in fatal error condition.\n");
714 err = -EIO;
715 goto fail_unlock;
716 }
717
718 if (!(priv->status & STATUS_RUNNING)) {
719 IPW_DEBUG_INFO
720 ("Attempt to send command while hardware is not running.\n");
721 err = -EIO;
722 goto fail_unlock;
723 }
724
725 if (priv->status & STATUS_CMD_ACTIVE) {
726 IPW_DEBUG_INFO
727 ("Attempt to send command while another command is pending.\n");
728 err = -EBUSY;
729 goto fail_unlock;
730 }
731
732 if (list_empty(&priv->msg_free_list)) {
733 IPW_DEBUG_INFO("no available msg buffers\n");
734 goto fail_unlock;
735 }
736
737 priv->status |= STATUS_CMD_ACTIVE;
738 priv->messages_sent++;
739
740 element = priv->msg_free_list.next;
741
742 packet = list_entry(element, struct ipw2100_tx_packet, list);
743 packet->jiffy_start = jiffies;
744
745 /* initialize the firmware command packet */
746 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
747 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
748 packet->info.c_struct.cmd->host_command_len_reg =
749 cmd->host_command_length;
750 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
751
752 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
753 cmd->host_command_parameters,
754 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
755
756 list_del(element);
757 DEC_STAT(&priv->msg_free_stat);
758
759 list_add_tail(element, &priv->msg_pend_list);
760 INC_STAT(&priv->msg_pend_stat);
761
762 ipw2100_tx_send_commands(priv);
763 ipw2100_tx_send_data(priv);
764
765 spin_unlock_irqrestore(&priv->low_lock, flags);
766
767 /*
768 * We must wait for this command to complete before another
769 * command can be sent... but if we wait more than 3 seconds
770 * then there is a problem.
771 */
772
773 err =
774 wait_event_interruptible_timeout(priv->wait_command_queue,
775 !(priv->
776 status & STATUS_CMD_ACTIVE),
777 HOST_COMPLETE_TIMEOUT);
778
779 if (err == 0) {
780 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
781 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
782 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
783 priv->status &= ~STATUS_CMD_ACTIVE;
784 schedule_reset(priv);
785 return -EIO;
786 }
787
788 if (priv->fatal_error) {
789 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
790 priv->net_dev->name);
791 return -EIO;
792 }
793
794 /* !!!!! HACK TEST !!!!!
795 * When lots of debug trace statements are enabled, the driver
796 * doesn't seem to have as many firmware restart cycles...
797 *
798 * As a test, we're sticking in a 1/100s delay here */
799 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
800
801 return 0;
802
803 fail_unlock:
804 spin_unlock_irqrestore(&priv->low_lock, flags);
805
806 return err;
807 }
808
809 /*
810 * Verify the values and data access of the hardware
811 * No locks needed or used. No functions called.
812 */
813 static int ipw2100_verify(struct ipw2100_priv *priv)
814 {
815 u32 data1, data2;
816 u32 address;
817
818 u32 val1 = 0x76543210;
819 u32 val2 = 0xFEDCBA98;
820
821 /* Domain 0 check - all values should be DOA_DEBUG */
822 for (address = IPW_REG_DOA_DEBUG_AREA_START;
823 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
824 read_register(priv->net_dev, address, &data1);
825 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
826 return -EIO;
827 }
828
829 /* Domain 1 check - use arbitrary read/write compare */
830 for (address = 0; address < 5; address++) {
831 /* The memory area is not used now */
832 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
833 val1);
834 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
835 val2);
836 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
837 &data1);
838 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
839 &data2);
840 if (val1 == data1 && val2 == data2)
841 return 0;
842 }
843
844 return -EIO;
845 }
846
847 /*
848 *
849 * Loop until the CARD_DISABLED bit is the same value as the
850 * supplied parameter
851 *
852 * TODO: See if it would be more efficient to do a wait/wake
853 * cycle and have the completion event trigger the wakeup
854 *
855 */
856 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
857 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
858 {
859 int i;
860 u32 card_state;
861 u32 len = sizeof(card_state);
862 int err;
863
864 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
865 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
866 &card_state, &len);
867 if (err) {
868 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
869 "failed.\n");
870 return 0;
871 }
872
873 /* We'll break out if either the HW state says it is
874 * in the state we want, or if HOST_COMPLETE command
875 * finishes */
876 if ((card_state == state) ||
877 ((priv->status & STATUS_ENABLED) ?
878 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
879 if (state == IPW_HW_STATE_ENABLED)
880 priv->status |= STATUS_ENABLED;
881 else
882 priv->status &= ~STATUS_ENABLED;
883
884 return 0;
885 }
886
887 udelay(50);
888 }
889
890 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
891 state ? "DISABLED" : "ENABLED");
892 return -EIO;
893 }
894
895 /*********************************************************************
896 Procedure : sw_reset_and_clock
897 Purpose : Asserts s/w reset, asserts clock initialization
898 and waits for clock stabilization
899 ********************************************************************/
900 static int sw_reset_and_clock(struct ipw2100_priv *priv)
901 {
902 int i;
903 u32 r;
904
905 // assert s/w reset
906 write_register(priv->net_dev, IPW_REG_RESET_REG,
907 IPW_AUX_HOST_RESET_REG_SW_RESET);
908
909 // wait for clock stabilization
910 for (i = 0; i < 1000; i++) {
911 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
912
913 // check clock ready bit
914 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
915 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
916 break;
917 }
918
919 if (i == 1000)
920 return -EIO; // TODO: better error value
921
922 /* set "initialization complete" bit to move adapter to
923 * D0 state */
924 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
925 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
926
927 /* wait for clock stabilization */
928 for (i = 0; i < 10000; i++) {
929 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
930
931 /* check clock ready bit */
932 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
933 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
934 break;
935 }
936
937 if (i == 10000)
938 return -EIO; /* TODO: better error value */
939
940 /* set D0 standby bit */
941 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
942 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
943 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
944
945 return 0;
946 }
947
948 /*********************************************************************
949 Procedure : ipw2100_download_firmware
950 Purpose : Initiaze adapter after power on.
951 The sequence is:
952 1. assert s/w reset first!
953 2. awake clocks & wait for clock stabilization
954 3. hold ARC (don't ask me why...)
955 4. load Dino ucode and reset/clock init again
956 5. zero-out shared mem
957 6. download f/w
958 *******************************************************************/
959 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
960 {
961 u32 address;
962 int err;
963
964 #ifndef CONFIG_PM
965 /* Fetch the firmware and microcode */
966 struct ipw2100_fw ipw2100_firmware;
967 #endif
968
969 if (priv->fatal_error) {
970 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
971 "fatal error %d. Interface must be brought down.\n",
972 priv->net_dev->name, priv->fatal_error);
973 return -EINVAL;
974 }
975 #ifdef CONFIG_PM
976 if (!ipw2100_firmware.version) {
977 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
978 if (err) {
979 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
980 priv->net_dev->name, err);
981 priv->fatal_error = IPW2100_ERR_FW_LOAD;
982 goto fail;
983 }
984 }
985 #else
986 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
987 if (err) {
988 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
989 priv->net_dev->name, err);
990 priv->fatal_error = IPW2100_ERR_FW_LOAD;
991 goto fail;
992 }
993 #endif
994 priv->firmware_version = ipw2100_firmware.version;
995
996 /* s/w reset and clock stabilization */
997 err = sw_reset_and_clock(priv);
998 if (err) {
999 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1000 priv->net_dev->name, err);
1001 goto fail;
1002 }
1003
1004 err = ipw2100_verify(priv);
1005 if (err) {
1006 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1007 priv->net_dev->name, err);
1008 goto fail;
1009 }
1010
1011 /* Hold ARC */
1012 write_nic_dword(priv->net_dev,
1013 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1014
1015 /* allow ARC to run */
1016 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1017
1018 /* load microcode */
1019 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1020 if (err) {
1021 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1022 priv->net_dev->name, err);
1023 goto fail;
1024 }
1025
1026 /* release ARC */
1027 write_nic_dword(priv->net_dev,
1028 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1029
1030 /* s/w reset and clock stabilization (again!!!) */
1031 err = sw_reset_and_clock(priv);
1032 if (err) {
1033 printk(KERN_ERR DRV_NAME
1034 ": %s: sw_reset_and_clock failed: %d\n",
1035 priv->net_dev->name, err);
1036 goto fail;
1037 }
1038
1039 /* load f/w */
1040 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1041 if (err) {
1042 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1043 priv->net_dev->name, err);
1044 goto fail;
1045 }
1046 #ifndef CONFIG_PM
1047 /*
1048 * When the .resume method of the driver is called, the other
1049 * part of the system, i.e. the ide driver could still stay in
1050 * the suspend stage. This prevents us from loading the firmware
1051 * from the disk. --YZ
1052 */
1053
1054 /* free any storage allocated for firmware image */
1055 ipw2100_release_firmware(priv, &ipw2100_firmware);
1056 #endif
1057
1058 /* zero out Domain 1 area indirectly (Si requirement) */
1059 for (address = IPW_HOST_FW_SHARED_AREA0;
1060 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1061 write_nic_dword(priv->net_dev, address, 0);
1062 for (address = IPW_HOST_FW_SHARED_AREA1;
1063 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1064 write_nic_dword(priv->net_dev, address, 0);
1065 for (address = IPW_HOST_FW_SHARED_AREA2;
1066 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1067 write_nic_dword(priv->net_dev, address, 0);
1068 for (address = IPW_HOST_FW_SHARED_AREA3;
1069 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1070 write_nic_dword(priv->net_dev, address, 0);
1071 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1072 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1073 write_nic_dword(priv->net_dev, address, 0);
1074
1075 return 0;
1076
1077 fail:
1078 ipw2100_release_firmware(priv, &ipw2100_firmware);
1079 return err;
1080 }
1081
1082 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1083 {
1084 if (priv->status & STATUS_INT_ENABLED)
1085 return;
1086 priv->status |= STATUS_INT_ENABLED;
1087 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1088 }
1089
1090 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1091 {
1092 if (!(priv->status & STATUS_INT_ENABLED))
1093 return;
1094 priv->status &= ~STATUS_INT_ENABLED;
1095 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1096 }
1097
1098 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1099 {
1100 struct ipw2100_ordinals *ord = &priv->ordinals;
1101
1102 IPW_DEBUG_INFO("enter\n");
1103
1104 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1105 &ord->table1_addr);
1106
1107 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1108 &ord->table2_addr);
1109
1110 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1111 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1112
1113 ord->table2_size &= 0x0000FFFF;
1114
1115 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1116 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1117 IPW_DEBUG_INFO("exit\n");
1118 }
1119
1120 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1121 {
1122 u32 reg = 0;
1123 /*
1124 * Set GPIO 3 writable by FW; GPIO 1 writable
1125 * by driver and enable clock
1126 */
1127 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1128 IPW_BIT_GPIO_LED_OFF);
1129 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1130 }
1131
1132 static int rf_kill_active(struct ipw2100_priv *priv)
1133 {
1134 #define MAX_RF_KILL_CHECKS 5
1135 #define RF_KILL_CHECK_DELAY 40
1136
1137 unsigned short value = 0;
1138 u32 reg = 0;
1139 int i;
1140
1141 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1142 priv->status &= ~STATUS_RF_KILL_HW;
1143 return 0;
1144 }
1145
1146 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1147 udelay(RF_KILL_CHECK_DELAY);
1148 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1149 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1150 }
1151
1152 if (value == 0)
1153 priv->status |= STATUS_RF_KILL_HW;
1154 else
1155 priv->status &= ~STATUS_RF_KILL_HW;
1156
1157 return (value == 0);
1158 }
1159
1160 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1161 {
1162 u32 addr, len;
1163 u32 val;
1164
1165 /*
1166 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1167 */
1168 len = sizeof(addr);
1169 if (ipw2100_get_ordinal
1170 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1171 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1172 __LINE__);
1173 return -EIO;
1174 }
1175
1176 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1177
1178 /*
1179 * EEPROM version is the byte at offset 0xfd in firmware
1180 * We read 4 bytes, then shift out the byte we actually want */
1181 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1182 priv->eeprom_version = (val >> 24) & 0xFF;
1183 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1184
1185 /*
1186 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1187 *
1188 * notice that the EEPROM bit is reverse polarity, i.e.
1189 * bit = 0 signifies HW RF kill switch is supported
1190 * bit = 1 signifies HW RF kill switch is NOT supported
1191 */
1192 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1193 if (!((val >> 24) & 0x01))
1194 priv->hw_features |= HW_FEATURE_RFKILL;
1195
1196 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1197 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1198
1199 return 0;
1200 }
1201
1202 /*
1203 * Start firmware execution after power on and intialization
1204 * The sequence is:
1205 * 1. Release ARC
1206 * 2. Wait for f/w initialization completes;
1207 */
1208 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1209 {
1210 int i;
1211 u32 inta, inta_mask, gpio;
1212
1213 IPW_DEBUG_INFO("enter\n");
1214
1215 if (priv->status & STATUS_RUNNING)
1216 return 0;
1217
1218 /*
1219 * Initialize the hw - drive adapter to DO state by setting
1220 * init_done bit. Wait for clk_ready bit and Download
1221 * fw & dino ucode
1222 */
1223 if (ipw2100_download_firmware(priv)) {
1224 printk(KERN_ERR DRV_NAME
1225 ": %s: Failed to power on the adapter.\n",
1226 priv->net_dev->name);
1227 return -EIO;
1228 }
1229
1230 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1231 * in the firmware RBD and TBD ring queue */
1232 ipw2100_queues_initialize(priv);
1233
1234 ipw2100_hw_set_gpio(priv);
1235
1236 /* TODO -- Look at disabling interrupts here to make sure none
1237 * get fired during FW initialization */
1238
1239 /* Release ARC - clear reset bit */
1240 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1241
1242 /* wait for f/w intialization complete */
1243 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1244 i = 5000;
1245 do {
1246 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1247 /* Todo... wait for sync command ... */
1248
1249 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1250
1251 /* check "init done" bit */
1252 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1253 /* reset "init done" bit */
1254 write_register(priv->net_dev, IPW_REG_INTA,
1255 IPW2100_INTA_FW_INIT_DONE);
1256 break;
1257 }
1258
1259 /* check error conditions : we check these after the firmware
1260 * check so that if there is an error, the interrupt handler
1261 * will see it and the adapter will be reset */
1262 if (inta &
1263 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1264 /* clear error conditions */
1265 write_register(priv->net_dev, IPW_REG_INTA,
1266 IPW2100_INTA_FATAL_ERROR |
1267 IPW2100_INTA_PARITY_ERROR);
1268 }
1269 } while (--i);
1270
1271 /* Clear out any pending INTAs since we aren't supposed to have
1272 * interrupts enabled at this point... */
1273 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1274 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1275 inta &= IPW_INTERRUPT_MASK;
1276 /* Clear out any pending interrupts */
1277 if (inta & inta_mask)
1278 write_register(priv->net_dev, IPW_REG_INTA, inta);
1279
1280 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1281 i ? "SUCCESS" : "FAILED");
1282
1283 if (!i) {
1284 printk(KERN_WARNING DRV_NAME
1285 ": %s: Firmware did not initialize.\n",
1286 priv->net_dev->name);
1287 return -EIO;
1288 }
1289
1290 /* allow firmware to write to GPIO1 & GPIO3 */
1291 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1292
1293 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1294
1295 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1296
1297 /* Ready to receive commands */
1298 priv->status |= STATUS_RUNNING;
1299
1300 /* The adapter has been reset; we are not associated */
1301 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1302
1303 IPW_DEBUG_INFO("exit\n");
1304
1305 return 0;
1306 }
1307
1308 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1309 {
1310 if (!priv->fatal_error)
1311 return;
1312
1313 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1314 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1315 priv->fatal_error = 0;
1316 }
1317
1318 /* NOTE: Our interrupt is disabled when this method is called */
1319 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1320 {
1321 u32 reg;
1322 int i;
1323
1324 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1325
1326 ipw2100_hw_set_gpio(priv);
1327
1328 /* Step 1. Stop Master Assert */
1329 write_register(priv->net_dev, IPW_REG_RESET_REG,
1330 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1331
1332 /* Step 2. Wait for stop Master Assert
1333 * (not more then 50us, otherwise ret error */
1334 i = 5;
1335 do {
1336 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1337 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1338
1339 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1340 break;
1341 } while (--i);
1342
1343 priv->status &= ~STATUS_RESET_PENDING;
1344
1345 if (!i) {
1346 IPW_DEBUG_INFO
1347 ("exit - waited too long for master assert stop\n");
1348 return -EIO;
1349 }
1350
1351 write_register(priv->net_dev, IPW_REG_RESET_REG,
1352 IPW_AUX_HOST_RESET_REG_SW_RESET);
1353
1354 /* Reset any fatal_error conditions */
1355 ipw2100_reset_fatalerror(priv);
1356
1357 /* At this point, the adapter is now stopped and disabled */
1358 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1359 STATUS_ASSOCIATED | STATUS_ENABLED);
1360
1361 return 0;
1362 }
1363
1364 /*
1365 * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1366 *
1367 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1368 *
1369 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1370 * if STATUS_ASSN_LOST is sent.
1371 */
1372 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1373 {
1374
1375 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1376
1377 struct host_command cmd = {
1378 .host_command = CARD_DISABLE_PHY_OFF,
1379 .host_command_sequence = 0,
1380 .host_command_length = 0,
1381 };
1382 int err, i;
1383 u32 val1, val2;
1384
1385 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1386
1387 /* Turn off the radio */
1388 err = ipw2100_hw_send_command(priv, &cmd);
1389 if (err)
1390 return err;
1391
1392 for (i = 0; i < 2500; i++) {
1393 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1394 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1395
1396 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1397 (val2 & IPW2100_COMMAND_PHY_OFF))
1398 return 0;
1399
1400 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1401 }
1402
1403 return -EIO;
1404 }
1405
1406 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1407 {
1408 struct host_command cmd = {
1409 .host_command = HOST_COMPLETE,
1410 .host_command_sequence = 0,
1411 .host_command_length = 0
1412 };
1413 int err = 0;
1414
1415 IPW_DEBUG_HC("HOST_COMPLETE\n");
1416
1417 if (priv->status & STATUS_ENABLED)
1418 return 0;
1419
1420 mutex_lock(&priv->adapter_mutex);
1421
1422 if (rf_kill_active(priv)) {
1423 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1424 goto fail_up;
1425 }
1426
1427 err = ipw2100_hw_send_command(priv, &cmd);
1428 if (err) {
1429 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1430 goto fail_up;
1431 }
1432
1433 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1434 if (err) {
1435 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1436 priv->net_dev->name);
1437 goto fail_up;
1438 }
1439
1440 if (priv->stop_hang_check) {
1441 priv->stop_hang_check = 0;
1442 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1443 }
1444
1445 fail_up:
1446 mutex_unlock(&priv->adapter_mutex);
1447 return err;
1448 }
1449
1450 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1451 {
1452 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1453
1454 struct host_command cmd = {
1455 .host_command = HOST_PRE_POWER_DOWN,
1456 .host_command_sequence = 0,
1457 .host_command_length = 0,
1458 };
1459 int err, i;
1460 u32 reg;
1461
1462 if (!(priv->status & STATUS_RUNNING))
1463 return 0;
1464
1465 priv->status |= STATUS_STOPPING;
1466
1467 /* We can only shut down the card if the firmware is operational. So,
1468 * if we haven't reset since a fatal_error, then we can not send the
1469 * shutdown commands. */
1470 if (!priv->fatal_error) {
1471 /* First, make sure the adapter is enabled so that the PHY_OFF
1472 * command can shut it down */
1473 ipw2100_enable_adapter(priv);
1474
1475 err = ipw2100_hw_phy_off(priv);
1476 if (err)
1477 printk(KERN_WARNING DRV_NAME
1478 ": Error disabling radio %d\n", err);
1479
1480 /*
1481 * If in D0-standby mode going directly to D3 may cause a
1482 * PCI bus violation. Therefore we must change out of the D0
1483 * state.
1484 *
1485 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1486 * hardware from going into standby mode and will transition
1487 * out of D0-standby if it is already in that state.
1488 *
1489 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1490 * driver upon completion. Once received, the driver can
1491 * proceed to the D3 state.
1492 *
1493 * Prepare for power down command to fw. This command would
1494 * take HW out of D0-standby and prepare it for D3 state.
1495 *
1496 * Currently FW does not support event notification for this
1497 * event. Therefore, skip waiting for it. Just wait a fixed
1498 * 100ms
1499 */
1500 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1501
1502 err = ipw2100_hw_send_command(priv, &cmd);
1503 if (err)
1504 printk(KERN_WARNING DRV_NAME ": "
1505 "%s: Power down command failed: Error %d\n",
1506 priv->net_dev->name, err);
1507 else
1508 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1509 }
1510
1511 priv->status &= ~STATUS_ENABLED;
1512
1513 /*
1514 * Set GPIO 3 writable by FW; GPIO 1 writable
1515 * by driver and enable clock
1516 */
1517 ipw2100_hw_set_gpio(priv);
1518
1519 /*
1520 * Power down adapter. Sequence:
1521 * 1. Stop master assert (RESET_REG[9]=1)
1522 * 2. Wait for stop master (RESET_REG[8]==1)
1523 * 3. S/w reset assert (RESET_REG[7] = 1)
1524 */
1525
1526 /* Stop master assert */
1527 write_register(priv->net_dev, IPW_REG_RESET_REG,
1528 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1529
1530 /* wait stop master not more than 50 usec.
1531 * Otherwise return error. */
1532 for (i = 5; i > 0; i--) {
1533 udelay(10);
1534
1535 /* Check master stop bit */
1536 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1537
1538 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1539 break;
1540 }
1541
1542 if (i == 0)
1543 printk(KERN_WARNING DRV_NAME
1544 ": %s: Could now power down adapter.\n",
1545 priv->net_dev->name);
1546
1547 /* assert s/w reset */
1548 write_register(priv->net_dev, IPW_REG_RESET_REG,
1549 IPW_AUX_HOST_RESET_REG_SW_RESET);
1550
1551 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1552
1553 return 0;
1554 }
1555
1556 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1557 {
1558 struct host_command cmd = {
1559 .host_command = CARD_DISABLE,
1560 .host_command_sequence = 0,
1561 .host_command_length = 0
1562 };
1563 int err = 0;
1564
1565 IPW_DEBUG_HC("CARD_DISABLE\n");
1566
1567 if (!(priv->status & STATUS_ENABLED))
1568 return 0;
1569
1570 /* Make sure we clear the associated state */
1571 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1572
1573 if (!priv->stop_hang_check) {
1574 priv->stop_hang_check = 1;
1575 cancel_delayed_work(&priv->hang_check);
1576 }
1577
1578 mutex_lock(&priv->adapter_mutex);
1579
1580 err = ipw2100_hw_send_command(priv, &cmd);
1581 if (err) {
1582 printk(KERN_WARNING DRV_NAME
1583 ": exit - failed to send CARD_DISABLE command\n");
1584 goto fail_up;
1585 }
1586
1587 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1588 if (err) {
1589 printk(KERN_WARNING DRV_NAME
1590 ": exit - card failed to change to DISABLED\n");
1591 goto fail_up;
1592 }
1593
1594 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1595
1596 fail_up:
1597 mutex_unlock(&priv->adapter_mutex);
1598 return err;
1599 }
1600
1601 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1602 {
1603 struct host_command cmd = {
1604 .host_command = SET_SCAN_OPTIONS,
1605 .host_command_sequence = 0,
1606 .host_command_length = 8
1607 };
1608 int err;
1609
1610 IPW_DEBUG_INFO("enter\n");
1611
1612 IPW_DEBUG_SCAN("setting scan options\n");
1613
1614 cmd.host_command_parameters[0] = 0;
1615
1616 if (!(priv->config & CFG_ASSOCIATE))
1617 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1618 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1619 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1620 if (priv->config & CFG_PASSIVE_SCAN)
1621 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1622
1623 cmd.host_command_parameters[1] = priv->channel_mask;
1624
1625 err = ipw2100_hw_send_command(priv, &cmd);
1626
1627 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1628 cmd.host_command_parameters[0]);
1629
1630 return err;
1631 }
1632
1633 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1634 {
1635 struct host_command cmd = {
1636 .host_command = BROADCAST_SCAN,
1637 .host_command_sequence = 0,
1638 .host_command_length = 4
1639 };
1640 int err;
1641
1642 IPW_DEBUG_HC("START_SCAN\n");
1643
1644 cmd.host_command_parameters[0] = 0;
1645
1646 /* No scanning if in monitor mode */
1647 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1648 return 1;
1649
1650 if (priv->status & STATUS_SCANNING) {
1651 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1652 return 0;
1653 }
1654
1655 IPW_DEBUG_INFO("enter\n");
1656
1657 /* Not clearing here; doing so makes iwlist always return nothing...
1658 *
1659 * We should modify the table logic to use aging tables vs. clearing
1660 * the table on each scan start.
1661 */
1662 IPW_DEBUG_SCAN("starting scan\n");
1663
1664 priv->status |= STATUS_SCANNING;
1665 err = ipw2100_hw_send_command(priv, &cmd);
1666 if (err)
1667 priv->status &= ~STATUS_SCANNING;
1668
1669 IPW_DEBUG_INFO("exit\n");
1670
1671 return err;
1672 }
1673
1674 static const struct ieee80211_geo ipw_geos[] = {
1675 { /* Restricted */
1676 "---",
1677 .bg_channels = 14,
1678 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1679 {2427, 4}, {2432, 5}, {2437, 6},
1680 {2442, 7}, {2447, 8}, {2452, 9},
1681 {2457, 10}, {2462, 11}, {2467, 12},
1682 {2472, 13}, {2484, 14}},
1683 },
1684 };
1685
1686 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1687 {
1688 unsigned long flags;
1689 int rc = 0;
1690 u32 lock;
1691 u32 ord_len = sizeof(lock);
1692
1693 /* Quite if manually disabled. */
1694 if (priv->status & STATUS_RF_KILL_SW) {
1695 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1696 "switch\n", priv->net_dev->name);
1697 return 0;
1698 }
1699
1700 /* the ipw2100 hardware really doesn't want power management delays
1701 * longer than 175usec
1702 */
1703 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100", 175);
1704
1705 /* If the interrupt is enabled, turn it off... */
1706 spin_lock_irqsave(&priv->low_lock, flags);
1707 ipw2100_disable_interrupts(priv);
1708
1709 /* Reset any fatal_error conditions */
1710 ipw2100_reset_fatalerror(priv);
1711 spin_unlock_irqrestore(&priv->low_lock, flags);
1712
1713 if (priv->status & STATUS_POWERED ||
1714 (priv->status & STATUS_RESET_PENDING)) {
1715 /* Power cycle the card ... */
1716 if (ipw2100_power_cycle_adapter(priv)) {
1717 printk(KERN_WARNING DRV_NAME
1718 ": %s: Could not cycle adapter.\n",
1719 priv->net_dev->name);
1720 rc = 1;
1721 goto exit;
1722 }
1723 } else
1724 priv->status |= STATUS_POWERED;
1725
1726 /* Load the firmware, start the clocks, etc. */
1727 if (ipw2100_start_adapter(priv)) {
1728 printk(KERN_ERR DRV_NAME
1729 ": %s: Failed to start the firmware.\n",
1730 priv->net_dev->name);
1731 rc = 1;
1732 goto exit;
1733 }
1734
1735 ipw2100_initialize_ordinals(priv);
1736
1737 /* Determine capabilities of this particular HW configuration */
1738 if (ipw2100_get_hw_features(priv)) {
1739 printk(KERN_ERR DRV_NAME
1740 ": %s: Failed to determine HW features.\n",
1741 priv->net_dev->name);
1742 rc = 1;
1743 goto exit;
1744 }
1745
1746 /* Initialize the geo */
1747 if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1748 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1749 return 0;
1750 }
1751 priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1752
1753 lock = LOCK_NONE;
1754 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1755 printk(KERN_ERR DRV_NAME
1756 ": %s: Failed to clear ordinal lock.\n",
1757 priv->net_dev->name);
1758 rc = 1;
1759 goto exit;
1760 }
1761
1762 priv->status &= ~STATUS_SCANNING;
1763
1764 if (rf_kill_active(priv)) {
1765 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1766 priv->net_dev->name);
1767
1768 if (priv->stop_rf_kill) {
1769 priv->stop_rf_kill = 0;
1770 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1771 round_jiffies_relative(HZ));
1772 }
1773
1774 deferred = 1;
1775 }
1776
1777 /* Turn on the interrupt so that commands can be processed */
1778 ipw2100_enable_interrupts(priv);
1779
1780 /* Send all of the commands that must be sent prior to
1781 * HOST_COMPLETE */
1782 if (ipw2100_adapter_setup(priv)) {
1783 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1784 priv->net_dev->name);
1785 rc = 1;
1786 goto exit;
1787 }
1788
1789 if (!deferred) {
1790 /* Enable the adapter - sends HOST_COMPLETE */
1791 if (ipw2100_enable_adapter(priv)) {
1792 printk(KERN_ERR DRV_NAME ": "
1793 "%s: failed in call to enable adapter.\n",
1794 priv->net_dev->name);
1795 ipw2100_hw_stop_adapter(priv);
1796 rc = 1;
1797 goto exit;
1798 }
1799
1800 /* Start a scan . . . */
1801 ipw2100_set_scan_options(priv);
1802 ipw2100_start_scan(priv);
1803 }
1804
1805 exit:
1806 return rc;
1807 }
1808
1809 /* Called by register_netdev() */
1810 static int ipw2100_net_init(struct net_device *dev)
1811 {
1812 struct ipw2100_priv *priv = ieee80211_priv(dev);
1813 return ipw2100_up(priv, 1);
1814 }
1815
1816 static void ipw2100_down(struct ipw2100_priv *priv)
1817 {
1818 unsigned long flags;
1819 union iwreq_data wrqu = {
1820 .ap_addr = {
1821 .sa_family = ARPHRD_ETHER}
1822 };
1823 int associated = priv->status & STATUS_ASSOCIATED;
1824
1825 /* Kill the RF switch timer */
1826 if (!priv->stop_rf_kill) {
1827 priv->stop_rf_kill = 1;
1828 cancel_delayed_work(&priv->rf_kill);
1829 }
1830
1831 /* Kill the firmare hang check timer */
1832 if (!priv->stop_hang_check) {
1833 priv->stop_hang_check = 1;
1834 cancel_delayed_work(&priv->hang_check);
1835 }
1836
1837 /* Kill any pending resets */
1838 if (priv->status & STATUS_RESET_PENDING)
1839 cancel_delayed_work(&priv->reset_work);
1840
1841 /* Make sure the interrupt is on so that FW commands will be
1842 * processed correctly */
1843 spin_lock_irqsave(&priv->low_lock, flags);
1844 ipw2100_enable_interrupts(priv);
1845 spin_unlock_irqrestore(&priv->low_lock, flags);
1846
1847 if (ipw2100_hw_stop_adapter(priv))
1848 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1849 priv->net_dev->name);
1850
1851 /* Do not disable the interrupt until _after_ we disable
1852 * the adaptor. Otherwise the CARD_DISABLE command will never
1853 * be ack'd by the firmware */
1854 spin_lock_irqsave(&priv->low_lock, flags);
1855 ipw2100_disable_interrupts(priv);
1856 spin_unlock_irqrestore(&priv->low_lock, flags);
1857
1858 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100",
1859 PM_QOS_DEFAULT_VALUE);
1860
1861 /* We have to signal any supplicant if we are disassociating */
1862 if (associated)
1863 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1864
1865 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1866 netif_carrier_off(priv->net_dev);
1867 netif_stop_queue(priv->net_dev);
1868 }
1869
1870 static void ipw2100_reset_adapter(struct work_struct *work)
1871 {
1872 struct ipw2100_priv *priv =
1873 container_of(work, struct ipw2100_priv, reset_work.work);
1874 unsigned long flags;
1875 union iwreq_data wrqu = {
1876 .ap_addr = {
1877 .sa_family = ARPHRD_ETHER}
1878 };
1879 int associated = priv->status & STATUS_ASSOCIATED;
1880
1881 spin_lock_irqsave(&priv->low_lock, flags);
1882 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1883 priv->resets++;
1884 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1885 priv->status |= STATUS_SECURITY_UPDATED;
1886
1887 /* Force a power cycle even if interface hasn't been opened
1888 * yet */
1889 cancel_delayed_work(&priv->reset_work);
1890 priv->status |= STATUS_RESET_PENDING;
1891 spin_unlock_irqrestore(&priv->low_lock, flags);
1892
1893 mutex_lock(&priv->action_mutex);
1894 /* stop timed checks so that they don't interfere with reset */
1895 priv->stop_hang_check = 1;
1896 cancel_delayed_work(&priv->hang_check);
1897
1898 /* We have to signal any supplicant if we are disassociating */
1899 if (associated)
1900 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1901
1902 ipw2100_up(priv, 0);
1903 mutex_unlock(&priv->action_mutex);
1904
1905 }
1906
1907 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1908 {
1909
1910 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1911 int ret, len, essid_len;
1912 char essid[IW_ESSID_MAX_SIZE];
1913 u32 txrate;
1914 u32 chan;
1915 char *txratename;
1916 u8 bssid[ETH_ALEN];
1917
1918 /*
1919 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1920 * an actual MAC of the AP. Seems like FW sets this
1921 * address too late. Read it later and expose through
1922 * /proc or schedule a later task to query and update
1923 */
1924
1925 essid_len = IW_ESSID_MAX_SIZE;
1926 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1927 essid, &essid_len);
1928 if (ret) {
1929 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1930 __LINE__);
1931 return;
1932 }
1933
1934 len = sizeof(u32);
1935 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1936 if (ret) {
1937 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1938 __LINE__);
1939 return;
1940 }
1941
1942 len = sizeof(u32);
1943 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1944 if (ret) {
1945 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1946 __LINE__);
1947 return;
1948 }
1949 len = ETH_ALEN;
1950 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1951 if (ret) {
1952 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1953 __LINE__);
1954 return;
1955 }
1956 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1957
1958 switch (txrate) {
1959 case TX_RATE_1_MBIT:
1960 txratename = "1Mbps";
1961 break;
1962 case TX_RATE_2_MBIT:
1963 txratename = "2Mbsp";
1964 break;
1965 case TX_RATE_5_5_MBIT:
1966 txratename = "5.5Mbps";
1967 break;
1968 case TX_RATE_11_MBIT:
1969 txratename = "11Mbps";
1970 break;
1971 default:
1972 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1973 txratename = "unknown rate";
1974 break;
1975 }
1976
1977 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
1978 priv->net_dev->name, escape_essid(essid, essid_len),
1979 txratename, chan, bssid);
1980
1981 /* now we copy read ssid into dev */
1982 if (!(priv->config & CFG_STATIC_ESSID)) {
1983 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1984 memcpy(priv->essid, essid, priv->essid_len);
1985 }
1986 priv->channel = chan;
1987 memcpy(priv->bssid, bssid, ETH_ALEN);
1988
1989 priv->status |= STATUS_ASSOCIATING;
1990 priv->connect_start = get_seconds();
1991
1992 queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
1993 }
1994
1995 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
1996 int length, int batch_mode)
1997 {
1998 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
1999 struct host_command cmd = {
2000 .host_command = SSID,
2001 .host_command_sequence = 0,
2002 .host_command_length = ssid_len
2003 };
2004 int err;
2005
2006 IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2007
2008 if (ssid_len)
2009 memcpy(cmd.host_command_parameters, essid, ssid_len);
2010
2011 if (!batch_mode) {
2012 err = ipw2100_disable_adapter(priv);
2013 if (err)
2014 return err;
2015 }
2016
2017 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2018 * disable auto association -- so we cheat by setting a bogus SSID */
2019 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2020 int i;
2021 u8 *bogus = (u8 *) cmd.host_command_parameters;
2022 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2023 bogus[i] = 0x18 + i;
2024 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2025 }
2026
2027 /* NOTE: We always send the SSID command even if the provided ESSID is
2028 * the same as what we currently think is set. */
2029
2030 err = ipw2100_hw_send_command(priv, &cmd);
2031 if (!err) {
2032 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2033 memcpy(priv->essid, essid, ssid_len);
2034 priv->essid_len = ssid_len;
2035 }
2036
2037 if (!batch_mode) {
2038 if (ipw2100_enable_adapter(priv))
2039 err = -EIO;
2040 }
2041
2042 return err;
2043 }
2044
2045 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2046 {
2047 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2048 "disassociated: '%s' %pM \n",
2049 escape_essid(priv->essid, priv->essid_len),
2050 priv->bssid);
2051
2052 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2053
2054 if (priv->status & STATUS_STOPPING) {
2055 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2056 return;
2057 }
2058
2059 memset(priv->bssid, 0, ETH_ALEN);
2060 memset(priv->ieee->bssid, 0, ETH_ALEN);
2061
2062 netif_carrier_off(priv->net_dev);
2063 netif_stop_queue(priv->net_dev);
2064
2065 if (!(priv->status & STATUS_RUNNING))
2066 return;
2067
2068 if (priv->status & STATUS_SECURITY_UPDATED)
2069 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2070
2071 queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2072 }
2073
2074 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2075 {
2076 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2077 priv->net_dev->name);
2078
2079 /* RF_KILL is now enabled (else we wouldn't be here) */
2080 priv->status |= STATUS_RF_KILL_HW;
2081
2082 /* Make sure the RF Kill check timer is running */
2083 priv->stop_rf_kill = 0;
2084 cancel_delayed_work(&priv->rf_kill);
2085 queue_delayed_work(priv->workqueue, &priv->rf_kill,
2086 round_jiffies_relative(HZ));
2087 }
2088
2089 static void send_scan_event(void *data)
2090 {
2091 struct ipw2100_priv *priv = data;
2092 union iwreq_data wrqu;
2093
2094 wrqu.data.length = 0;
2095 wrqu.data.flags = 0;
2096 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2097 }
2098
2099 static void ipw2100_scan_event_later(struct work_struct *work)
2100 {
2101 send_scan_event(container_of(work, struct ipw2100_priv,
2102 scan_event_later.work));
2103 }
2104
2105 static void ipw2100_scan_event_now(struct work_struct *work)
2106 {
2107 send_scan_event(container_of(work, struct ipw2100_priv,
2108 scan_event_now));
2109 }
2110
2111 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2112 {
2113 IPW_DEBUG_SCAN("scan complete\n");
2114 /* Age the scan results... */
2115 priv->ieee->scans++;
2116 priv->status &= ~STATUS_SCANNING;
2117
2118 /* Only userspace-requested scan completion events go out immediately */
2119 if (!priv->user_requested_scan) {
2120 if (!delayed_work_pending(&priv->scan_event_later))
2121 queue_delayed_work(priv->workqueue,
2122 &priv->scan_event_later,
2123 round_jiffies_relative(msecs_to_jiffies(4000)));
2124 } else {
2125 priv->user_requested_scan = 0;
2126 cancel_delayed_work(&priv->scan_event_later);
2127 queue_work(priv->workqueue, &priv->scan_event_now);
2128 }
2129 }
2130
2131 #ifdef CONFIG_IPW2100_DEBUG
2132 #define IPW2100_HANDLER(v, f) { v, f, # v }
2133 struct ipw2100_status_indicator {
2134 int status;
2135 void (*cb) (struct ipw2100_priv * priv, u32 status);
2136 char *name;
2137 };
2138 #else
2139 #define IPW2100_HANDLER(v, f) { v, f }
2140 struct ipw2100_status_indicator {
2141 int status;
2142 void (*cb) (struct ipw2100_priv * priv, u32 status);
2143 };
2144 #endif /* CONFIG_IPW2100_DEBUG */
2145
2146 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2147 {
2148 IPW_DEBUG_SCAN("Scanning...\n");
2149 priv->status |= STATUS_SCANNING;
2150 }
2151
2152 static const struct ipw2100_status_indicator status_handlers[] = {
2153 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2154 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2155 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2156 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2157 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2158 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2159 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2160 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2161 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2162 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2163 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2164 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2165 IPW2100_HANDLER(-1, NULL)
2166 };
2167
2168 static void isr_status_change(struct ipw2100_priv *priv, int status)
2169 {
2170 int i;
2171
2172 if (status == IPW_STATE_SCANNING &&
2173 priv->status & STATUS_ASSOCIATED &&
2174 !(priv->status & STATUS_SCANNING)) {
2175 IPW_DEBUG_INFO("Scan detected while associated, with "
2176 "no scan request. Restarting firmware.\n");
2177
2178 /* Wake up any sleeping jobs */
2179 schedule_reset(priv);
2180 }
2181
2182 for (i = 0; status_handlers[i].status != -1; i++) {
2183 if (status == status_handlers[i].status) {
2184 IPW_DEBUG_NOTIF("Status change: %s\n",
2185 status_handlers[i].name);
2186 if (status_handlers[i].cb)
2187 status_handlers[i].cb(priv, status);
2188 priv->wstats.status = status;
2189 return;
2190 }
2191 }
2192
2193 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2194 }
2195
2196 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2197 struct ipw2100_cmd_header *cmd)
2198 {
2199 #ifdef CONFIG_IPW2100_DEBUG
2200 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2201 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2202 command_types[cmd->host_command_reg],
2203 cmd->host_command_reg);
2204 }
2205 #endif
2206 if (cmd->host_command_reg == HOST_COMPLETE)
2207 priv->status |= STATUS_ENABLED;
2208
2209 if (cmd->host_command_reg == CARD_DISABLE)
2210 priv->status &= ~STATUS_ENABLED;
2211
2212 priv->status &= ~STATUS_CMD_ACTIVE;
2213
2214 wake_up_interruptible(&priv->wait_command_queue);
2215 }
2216
2217 #ifdef CONFIG_IPW2100_DEBUG
2218 static const char *frame_types[] = {
2219 "COMMAND_STATUS_VAL",
2220 "STATUS_CHANGE_VAL",
2221 "P80211_DATA_VAL",
2222 "P8023_DATA_VAL",
2223 "HOST_NOTIFICATION_VAL"
2224 };
2225 #endif
2226
2227 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2228 struct ipw2100_rx_packet *packet)
2229 {
2230 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2231 if (!packet->skb)
2232 return -ENOMEM;
2233
2234 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2235 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2236 sizeof(struct ipw2100_rx),
2237 PCI_DMA_FROMDEVICE);
2238 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2239 * dma_addr */
2240
2241 return 0;
2242 }
2243
2244 #define SEARCH_ERROR 0xffffffff
2245 #define SEARCH_FAIL 0xfffffffe
2246 #define SEARCH_SUCCESS 0xfffffff0
2247 #define SEARCH_DISCARD 0
2248 #define SEARCH_SNAPSHOT 1
2249
2250 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2251 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2252 {
2253 int i;
2254 if (!priv->snapshot[0])
2255 return;
2256 for (i = 0; i < 0x30; i++)
2257 kfree(priv->snapshot[i]);
2258 priv->snapshot[0] = NULL;
2259 }
2260
2261 #ifdef IPW2100_DEBUG_C3
2262 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2263 {
2264 int i;
2265 if (priv->snapshot[0])
2266 return 1;
2267 for (i = 0; i < 0x30; i++) {
2268 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2269 if (!priv->snapshot[i]) {
2270 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2271 "buffer %d\n", priv->net_dev->name, i);
2272 while (i > 0)
2273 kfree(priv->snapshot[--i]);
2274 priv->snapshot[0] = NULL;
2275 return 0;
2276 }
2277 }
2278
2279 return 1;
2280 }
2281
2282 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2283 size_t len, int mode)
2284 {
2285 u32 i, j;
2286 u32 tmp;
2287 u8 *s, *d;
2288 u32 ret;
2289
2290 s = in_buf;
2291 if (mode == SEARCH_SNAPSHOT) {
2292 if (!ipw2100_snapshot_alloc(priv))
2293 mode = SEARCH_DISCARD;
2294 }
2295
2296 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2297 read_nic_dword(priv->net_dev, i, &tmp);
2298 if (mode == SEARCH_SNAPSHOT)
2299 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2300 if (ret == SEARCH_FAIL) {
2301 d = (u8 *) & tmp;
2302 for (j = 0; j < 4; j++) {
2303 if (*s != *d) {
2304 s = in_buf;
2305 continue;
2306 }
2307
2308 s++;
2309 d++;
2310
2311 if ((s - in_buf) == len)
2312 ret = (i + j) - len + 1;
2313 }
2314 } else if (mode == SEARCH_DISCARD)
2315 return ret;
2316 }
2317
2318 return ret;
2319 }
2320 #endif
2321
2322 /*
2323 *
2324 * 0) Disconnect the SKB from the firmware (just unmap)
2325 * 1) Pack the ETH header into the SKB
2326 * 2) Pass the SKB to the network stack
2327 *
2328 * When packet is provided by the firmware, it contains the following:
2329 *
2330 * . ieee80211_hdr
2331 * . ieee80211_snap_hdr
2332 *
2333 * The size of the constructed ethernet
2334 *
2335 */
2336 #ifdef IPW2100_RX_DEBUG
2337 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2338 #endif
2339
2340 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2341 {
2342 #ifdef IPW2100_DEBUG_C3
2343 struct ipw2100_status *status = &priv->status_queue.drv[i];
2344 u32 match, reg;
2345 int j;
2346 #endif
2347
2348 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2349 i * sizeof(struct ipw2100_status));
2350
2351 #ifdef IPW2100_DEBUG_C3
2352 /* Halt the fimrware so we can get a good image */
2353 write_register(priv->net_dev, IPW_REG_RESET_REG,
2354 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2355 j = 5;
2356 do {
2357 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2358 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2359
2360 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2361 break;
2362 } while (j--);
2363
2364 match = ipw2100_match_buf(priv, (u8 *) status,
2365 sizeof(struct ipw2100_status),
2366 SEARCH_SNAPSHOT);
2367 if (match < SEARCH_SUCCESS)
2368 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2369 "offset 0x%06X, length %d:\n",
2370 priv->net_dev->name, match,
2371 sizeof(struct ipw2100_status));
2372 else
2373 IPW_DEBUG_INFO("%s: No DMA status match in "
2374 "Firmware.\n", priv->net_dev->name);
2375
2376 printk_buf((u8 *) priv->status_queue.drv,
2377 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2378 #endif
2379
2380 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2381 priv->ieee->stats.rx_errors++;
2382 schedule_reset(priv);
2383 }
2384
2385 static void isr_rx(struct ipw2100_priv *priv, int i,
2386 struct ieee80211_rx_stats *stats)
2387 {
2388 struct ipw2100_status *status = &priv->status_queue.drv[i];
2389 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2390
2391 IPW_DEBUG_RX("Handler...\n");
2392
2393 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2394 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2395 " Dropping.\n",
2396 priv->net_dev->name,
2397 status->frame_size, skb_tailroom(packet->skb));
2398 priv->ieee->stats.rx_errors++;
2399 return;
2400 }
2401
2402 if (unlikely(!netif_running(priv->net_dev))) {
2403 priv->ieee->stats.rx_errors++;
2404 priv->wstats.discard.misc++;
2405 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2406 return;
2407 }
2408
2409 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2410 !(priv->status & STATUS_ASSOCIATED))) {
2411 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2412 priv->wstats.discard.misc++;
2413 return;
2414 }
2415
2416 pci_unmap_single(priv->pci_dev,
2417 packet->dma_addr,
2418 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2419
2420 skb_put(packet->skb, status->frame_size);
2421
2422 #ifdef IPW2100_RX_DEBUG
2423 /* Make a copy of the frame so we can dump it to the logs if
2424 * ieee80211_rx fails */
2425 skb_copy_from_linear_data(packet->skb, packet_data,
2426 min_t(u32, status->frame_size,
2427 IPW_RX_NIC_BUFFER_LENGTH));
2428 #endif
2429
2430 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2431 #ifdef IPW2100_RX_DEBUG
2432 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2433 priv->net_dev->name);
2434 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2435 #endif
2436 priv->ieee->stats.rx_errors++;
2437
2438 /* ieee80211_rx failed, so it didn't free the SKB */
2439 dev_kfree_skb_any(packet->skb);
2440 packet->skb = NULL;
2441 }
2442
2443 /* We need to allocate a new SKB and attach it to the RDB. */
2444 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2445 printk(KERN_WARNING DRV_NAME ": "
2446 "%s: Unable to allocate SKB onto RBD ring - disabling "
2447 "adapter.\n", priv->net_dev->name);
2448 /* TODO: schedule adapter shutdown */
2449 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2450 }
2451
2452 /* Update the RDB entry */
2453 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2454 }
2455
2456 #ifdef CONFIG_IPW2100_MONITOR
2457
2458 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2459 struct ieee80211_rx_stats *stats)
2460 {
2461 struct ipw2100_status *status = &priv->status_queue.drv[i];
2462 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2463
2464 /* Magic struct that slots into the radiotap header -- no reason
2465 * to build this manually element by element, we can write it much
2466 * more efficiently than we can parse it. ORDER MATTERS HERE */
2467 struct ipw_rt_hdr {
2468 struct ieee80211_radiotap_header rt_hdr;
2469 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2470 } *ipw_rt;
2471
2472 IPW_DEBUG_RX("Handler...\n");
2473
2474 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2475 sizeof(struct ipw_rt_hdr))) {
2476 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2477 " Dropping.\n",
2478 priv->net_dev->name,
2479 status->frame_size,
2480 skb_tailroom(packet->skb));
2481 priv->ieee->stats.rx_errors++;
2482 return;
2483 }
2484
2485 if (unlikely(!netif_running(priv->net_dev))) {
2486 priv->ieee->stats.rx_errors++;
2487 priv->wstats.discard.misc++;
2488 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2489 return;
2490 }
2491
2492 if (unlikely(priv->config & CFG_CRC_CHECK &&
2493 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2494 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2495 priv->ieee->stats.rx_errors++;
2496 return;
2497 }
2498
2499 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2500 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2501 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2502 packet->skb->data, status->frame_size);
2503
2504 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2505
2506 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2507 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2508 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2509
2510 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2511
2512 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2513
2514 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2515
2516 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2517 priv->ieee->stats.rx_errors++;
2518
2519 /* ieee80211_rx failed, so it didn't free the SKB */
2520 dev_kfree_skb_any(packet->skb);
2521 packet->skb = NULL;
2522 }
2523
2524 /* We need to allocate a new SKB and attach it to the RDB. */
2525 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2526 IPW_DEBUG_WARNING(
2527 "%s: Unable to allocate SKB onto RBD ring - disabling "
2528 "adapter.\n", priv->net_dev->name);
2529 /* TODO: schedule adapter shutdown */
2530 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2531 }
2532
2533 /* Update the RDB entry */
2534 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2535 }
2536
2537 #endif
2538
2539 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2540 {
2541 struct ipw2100_status *status = &priv->status_queue.drv[i];
2542 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2543 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2544
2545 switch (frame_type) {
2546 case COMMAND_STATUS_VAL:
2547 return (status->frame_size != sizeof(u->rx_data.command));
2548 case STATUS_CHANGE_VAL:
2549 return (status->frame_size != sizeof(u->rx_data.status));
2550 case HOST_NOTIFICATION_VAL:
2551 return (status->frame_size < sizeof(u->rx_data.notification));
2552 case P80211_DATA_VAL:
2553 case P8023_DATA_VAL:
2554 #ifdef CONFIG_IPW2100_MONITOR
2555 return 0;
2556 #else
2557 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2558 case IEEE80211_FTYPE_MGMT:
2559 case IEEE80211_FTYPE_CTL:
2560 return 0;
2561 case IEEE80211_FTYPE_DATA:
2562 return (status->frame_size >
2563 IPW_MAX_802_11_PAYLOAD_LENGTH);
2564 }
2565 #endif
2566 }
2567
2568 return 1;
2569 }
2570
2571 /*
2572 * ipw2100 interrupts are disabled at this point, and the ISR
2573 * is the only code that calls this method. So, we do not need
2574 * to play with any locks.
2575 *
2576 * RX Queue works as follows:
2577 *
2578 * Read index - firmware places packet in entry identified by the
2579 * Read index and advances Read index. In this manner,
2580 * Read index will always point to the next packet to
2581 * be filled--but not yet valid.
2582 *
2583 * Write index - driver fills this entry with an unused RBD entry.
2584 * This entry has not filled by the firmware yet.
2585 *
2586 * In between the W and R indexes are the RBDs that have been received
2587 * but not yet processed.
2588 *
2589 * The process of handling packets will start at WRITE + 1 and advance
2590 * until it reaches the READ index.
2591 *
2592 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2593 *
2594 */
2595 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2596 {
2597 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2598 struct ipw2100_status_queue *sq = &priv->status_queue;
2599 struct ipw2100_rx_packet *packet;
2600 u16 frame_type;
2601 u32 r, w, i, s;
2602 struct ipw2100_rx *u;
2603 struct ieee80211_rx_stats stats = {
2604 .mac_time = jiffies,
2605 };
2606
2607 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2608 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2609
2610 if (r >= rxq->entries) {
2611 IPW_DEBUG_RX("exit - bad read index\n");
2612 return;
2613 }
2614
2615 i = (rxq->next + 1) % rxq->entries;
2616 s = i;
2617 while (i != r) {
2618 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2619 r, rxq->next, i); */
2620
2621 packet = &priv->rx_buffers[i];
2622
2623 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2624 * the correct values */
2625 pci_dma_sync_single_for_cpu(priv->pci_dev,
2626 sq->nic +
2627 sizeof(struct ipw2100_status) * i,
2628 sizeof(struct ipw2100_status),
2629 PCI_DMA_FROMDEVICE);
2630
2631 /* Sync the DMA for the RX buffer so CPU is sure to get
2632 * the correct values */
2633 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2634 sizeof(struct ipw2100_rx),
2635 PCI_DMA_FROMDEVICE);
2636
2637 if (unlikely(ipw2100_corruption_check(priv, i))) {
2638 ipw2100_corruption_detected(priv, i);
2639 goto increment;
2640 }
2641
2642 u = packet->rxp;
2643 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2644 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2645 stats.len = sq->drv[i].frame_size;
2646
2647 stats.mask = 0;
2648 if (stats.rssi != 0)
2649 stats.mask |= IEEE80211_STATMASK_RSSI;
2650 stats.freq = IEEE80211_24GHZ_BAND;
2651
2652 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2653 priv->net_dev->name, frame_types[frame_type],
2654 stats.len);
2655
2656 switch (frame_type) {
2657 case COMMAND_STATUS_VAL:
2658 /* Reset Rx watchdog */
2659 isr_rx_complete_command(priv, &u->rx_data.command);
2660 break;
2661
2662 case STATUS_CHANGE_VAL:
2663 isr_status_change(priv, u->rx_data.status);
2664 break;
2665
2666 case P80211_DATA_VAL:
2667 case P8023_DATA_VAL:
2668 #ifdef CONFIG_IPW2100_MONITOR
2669 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2670 isr_rx_monitor(priv, i, &stats);
2671 break;
2672 }
2673 #endif
2674 if (stats.len < sizeof(struct ieee80211_hdr_3addr))
2675 break;
2676 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2677 case IEEE80211_FTYPE_MGMT:
2678 ieee80211_rx_mgt(priv->ieee,
2679 &u->rx_data.header, &stats);
2680 break;
2681
2682 case IEEE80211_FTYPE_CTL:
2683 break;
2684
2685 case IEEE80211_FTYPE_DATA:
2686 isr_rx(priv, i, &stats);
2687 break;
2688
2689 }
2690 break;
2691 }
2692
2693 increment:
2694 /* clear status field associated with this RBD */
2695 rxq->drv[i].status.info.field = 0;
2696
2697 i = (i + 1) % rxq->entries;
2698 }
2699
2700 if (i != s) {
2701 /* backtrack one entry, wrapping to end if at 0 */
2702 rxq->next = (i ? i : rxq->entries) - 1;
2703
2704 write_register(priv->net_dev,
2705 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2706 }
2707 }
2708
2709 /*
2710 * __ipw2100_tx_process
2711 *
2712 * This routine will determine whether the next packet on
2713 * the fw_pend_list has been processed by the firmware yet.
2714 *
2715 * If not, then it does nothing and returns.
2716 *
2717 * If so, then it removes the item from the fw_pend_list, frees
2718 * any associated storage, and places the item back on the
2719 * free list of its source (either msg_free_list or tx_free_list)
2720 *
2721 * TX Queue works as follows:
2722 *
2723 * Read index - points to the next TBD that the firmware will
2724 * process. The firmware will read the data, and once
2725 * done processing, it will advance the Read index.
2726 *
2727 * Write index - driver fills this entry with an constructed TBD
2728 * entry. The Write index is not advanced until the
2729 * packet has been configured.
2730 *
2731 * In between the W and R indexes are the TBDs that have NOT been
2732 * processed. Lagging behind the R index are packets that have
2733 * been processed but have not been freed by the driver.
2734 *
2735 * In order to free old storage, an internal index will be maintained
2736 * that points to the next packet to be freed. When all used
2737 * packets have been freed, the oldest index will be the same as the
2738 * firmware's read index.
2739 *
2740 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2741 *
2742 * Because the TBD structure can not contain arbitrary data, the
2743 * driver must keep an internal queue of cached allocations such that
2744 * it can put that data back into the tx_free_list and msg_free_list
2745 * for use by future command and data packets.
2746 *
2747 */
2748 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2749 {
2750 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2751 struct ipw2100_bd *tbd;
2752 struct list_head *element;
2753 struct ipw2100_tx_packet *packet;
2754 int descriptors_used;
2755 int e, i;
2756 u32 r, w, frag_num = 0;
2757
2758 if (list_empty(&priv->fw_pend_list))
2759 return 0;
2760
2761 element = priv->fw_pend_list.next;
2762
2763 packet = list_entry(element, struct ipw2100_tx_packet, list);
2764 tbd = &txq->drv[packet->index];
2765
2766 /* Determine how many TBD entries must be finished... */
2767 switch (packet->type) {
2768 case COMMAND:
2769 /* COMMAND uses only one slot; don't advance */
2770 descriptors_used = 1;
2771 e = txq->oldest;
2772 break;
2773
2774 case DATA:
2775 /* DATA uses two slots; advance and loop position. */
2776 descriptors_used = tbd->num_fragments;
2777 frag_num = tbd->num_fragments - 1;
2778 e = txq->oldest + frag_num;
2779 e %= txq->entries;
2780 break;
2781
2782 default:
2783 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2784 priv->net_dev->name);
2785 return 0;
2786 }
2787
2788 /* if the last TBD is not done by NIC yet, then packet is
2789 * not ready to be released.
2790 *
2791 */
2792 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2793 &r);
2794 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2795 &w);
2796 if (w != txq->next)
2797 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2798 priv->net_dev->name);
2799
2800 /*
2801 * txq->next is the index of the last packet written txq->oldest is
2802 * the index of the r is the index of the next packet to be read by
2803 * firmware
2804 */
2805
2806 /*
2807 * Quick graphic to help you visualize the following
2808 * if / else statement
2809 *
2810 * ===>| s---->|===============
2811 * e>|
2812 * | a | b | c | d | e | f | g | h | i | j | k | l
2813 * r---->|
2814 * w
2815 *
2816 * w - updated by driver
2817 * r - updated by firmware
2818 * s - start of oldest BD entry (txq->oldest)
2819 * e - end of oldest BD entry
2820 *
2821 */
2822 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2823 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2824 return 0;
2825 }
2826
2827 list_del(element);
2828 DEC_STAT(&priv->fw_pend_stat);
2829
2830 #ifdef CONFIG_IPW2100_DEBUG
2831 {
2832 int i = txq->oldest;
2833 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2834 &txq->drv[i],
2835 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2836 txq->drv[i].host_addr, txq->drv[i].buf_length);
2837
2838 if (packet->type == DATA) {
2839 i = (i + 1) % txq->entries;
2840
2841 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2842 &txq->drv[i],
2843 (u32) (txq->nic + i *
2844 sizeof(struct ipw2100_bd)),
2845 (u32) txq->drv[i].host_addr,
2846 txq->drv[i].buf_length);
2847 }
2848 }
2849 #endif
2850
2851 switch (packet->type) {
2852 case DATA:
2853 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2854 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2855 "Expecting DATA TBD but pulled "
2856 "something else: ids %d=%d.\n",
2857 priv->net_dev->name, txq->oldest, packet->index);
2858
2859 /* DATA packet; we have to unmap and free the SKB */
2860 for (i = 0; i < frag_num; i++) {
2861 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2862
2863 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2864 (packet->index + 1 + i) % txq->entries,
2865 tbd->host_addr, tbd->buf_length);
2866
2867 pci_unmap_single(priv->pci_dev,
2868 tbd->host_addr,
2869 tbd->buf_length, PCI_DMA_TODEVICE);
2870 }
2871
2872 ieee80211_txb_free(packet->info.d_struct.txb);
2873 packet->info.d_struct.txb = NULL;
2874
2875 list_add_tail(element, &priv->tx_free_list);
2876 INC_STAT(&priv->tx_free_stat);
2877
2878 /* We have a free slot in the Tx queue, so wake up the
2879 * transmit layer if it is stopped. */
2880 if (priv->status & STATUS_ASSOCIATED)
2881 netif_wake_queue(priv->net_dev);
2882
2883 /* A packet was processed by the hardware, so update the
2884 * watchdog */
2885 priv->net_dev->trans_start = jiffies;
2886
2887 break;
2888
2889 case COMMAND:
2890 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2891 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2892 "Expecting COMMAND TBD but pulled "
2893 "something else: ids %d=%d.\n",
2894 priv->net_dev->name, txq->oldest, packet->index);
2895
2896 #ifdef CONFIG_IPW2100_DEBUG
2897 if (packet->info.c_struct.cmd->host_command_reg <
2898 ARRAY_SIZE(command_types))
2899 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2900 command_types[packet->info.c_struct.cmd->
2901 host_command_reg],
2902 packet->info.c_struct.cmd->
2903 host_command_reg,
2904 packet->info.c_struct.cmd->cmd_status_reg);
2905 #endif
2906
2907 list_add_tail(element, &priv->msg_free_list);
2908 INC_STAT(&priv->msg_free_stat);
2909 break;
2910 }
2911
2912 /* advance oldest used TBD pointer to start of next entry */
2913 txq->oldest = (e + 1) % txq->entries;
2914 /* increase available TBDs number */
2915 txq->available += descriptors_used;
2916 SET_STAT(&priv->txq_stat, txq->available);
2917
2918 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2919 jiffies - packet->jiffy_start);
2920
2921 return (!list_empty(&priv->fw_pend_list));
2922 }
2923
2924 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2925 {
2926 int i = 0;
2927
2928 while (__ipw2100_tx_process(priv) && i < 200)
2929 i++;
2930
2931 if (i == 200) {
2932 printk(KERN_WARNING DRV_NAME ": "
2933 "%s: Driver is running slow (%d iters).\n",
2934 priv->net_dev->name, i);
2935 }
2936 }
2937
2938 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2939 {
2940 struct list_head *element;
2941 struct ipw2100_tx_packet *packet;
2942 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2943 struct ipw2100_bd *tbd;
2944 int next = txq->next;
2945
2946 while (!list_empty(&priv->msg_pend_list)) {
2947 /* if there isn't enough space in TBD queue, then
2948 * don't stuff a new one in.
2949 * NOTE: 3 are needed as a command will take one,
2950 * and there is a minimum of 2 that must be
2951 * maintained between the r and w indexes
2952 */
2953 if (txq->available <= 3) {
2954 IPW_DEBUG_TX("no room in tx_queue\n");
2955 break;
2956 }
2957
2958 element = priv->msg_pend_list.next;
2959 list_del(element);
2960 DEC_STAT(&priv->msg_pend_stat);
2961
2962 packet = list_entry(element, struct ipw2100_tx_packet, list);
2963
2964 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2965 &txq->drv[txq->next],
2966 (void *)(txq->nic + txq->next *
2967 sizeof(struct ipw2100_bd)));
2968
2969 packet->index = txq->next;
2970
2971 tbd = &txq->drv[txq->next];
2972
2973 /* initialize TBD */
2974 tbd->host_addr = packet->info.c_struct.cmd_phys;
2975 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2976 /* not marking number of fragments causes problems
2977 * with f/w debug version */
2978 tbd->num_fragments = 1;
2979 tbd->status.info.field =
2980 IPW_BD_STATUS_TX_FRAME_COMMAND |
2981 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2982
2983 /* update TBD queue counters */
2984 txq->next++;
2985 txq->next %= txq->entries;
2986 txq->available--;
2987 DEC_STAT(&priv->txq_stat);
2988
2989 list_add_tail(element, &priv->fw_pend_list);
2990 INC_STAT(&priv->fw_pend_stat);
2991 }
2992
2993 if (txq->next != next) {
2994 /* kick off the DMA by notifying firmware the
2995 * write index has moved; make sure TBD stores are sync'd */
2996 wmb();
2997 write_register(priv->net_dev,
2998 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2999 txq->next);
3000 }
3001 }
3002
3003 /*
3004 * ipw2100_tx_send_data
3005 *
3006 */
3007 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3008 {
3009 struct list_head *element;
3010 struct ipw2100_tx_packet *packet;
3011 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3012 struct ipw2100_bd *tbd;
3013 int next = txq->next;
3014 int i = 0;
3015 struct ipw2100_data_header *ipw_hdr;
3016 struct ieee80211_hdr_3addr *hdr;
3017
3018 while (!list_empty(&priv->tx_pend_list)) {
3019 /* if there isn't enough space in TBD queue, then
3020 * don't stuff a new one in.
3021 * NOTE: 4 are needed as a data will take two,
3022 * and there is a minimum of 2 that must be
3023 * maintained between the r and w indexes
3024 */
3025 element = priv->tx_pend_list.next;
3026 packet = list_entry(element, struct ipw2100_tx_packet, list);
3027
3028 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3029 IPW_MAX_BDS)) {
3030 /* TODO: Support merging buffers if more than
3031 * IPW_MAX_BDS are used */
3032 IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded. "
3033 "Increase fragmentation level.\n",
3034 priv->net_dev->name);
3035 }
3036
3037 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3038 IPW_DEBUG_TX("no room in tx_queue\n");
3039 break;
3040 }
3041
3042 list_del(element);
3043 DEC_STAT(&priv->tx_pend_stat);
3044
3045 tbd = &txq->drv[txq->next];
3046
3047 packet->index = txq->next;
3048
3049 ipw_hdr = packet->info.d_struct.data;
3050 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3051 fragments[0]->data;
3052
3053 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3054 /* To DS: Addr1 = BSSID, Addr2 = SA,
3055 Addr3 = DA */
3056 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3057 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3058 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3059 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3060 Addr3 = BSSID */
3061 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3062 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3063 }
3064
3065 ipw_hdr->host_command_reg = SEND;
3066 ipw_hdr->host_command_reg1 = 0;
3067
3068 /* For now we only support host based encryption */
3069 ipw_hdr->needs_encryption = 0;
3070 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3071 if (packet->info.d_struct.txb->nr_frags > 1)
3072 ipw_hdr->fragment_size =
3073 packet->info.d_struct.txb->frag_size -
3074 IEEE80211_3ADDR_LEN;
3075 else
3076 ipw_hdr->fragment_size = 0;
3077
3078 tbd->host_addr = packet->info.d_struct.data_phys;
3079 tbd->buf_length = sizeof(struct ipw2100_data_header);
3080 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3081 tbd->status.info.field =
3082 IPW_BD_STATUS_TX_FRAME_802_3 |
3083 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3084 txq->next++;
3085 txq->next %= txq->entries;
3086
3087 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3088 packet->index, tbd->host_addr, tbd->buf_length);
3089 #ifdef CONFIG_IPW2100_DEBUG
3090 if (packet->info.d_struct.txb->nr_frags > 1)
3091 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3092 packet->info.d_struct.txb->nr_frags);
3093 #endif
3094
3095 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3096 tbd = &txq->drv[txq->next];
3097 if (i == packet->info.d_struct.txb->nr_frags - 1)
3098 tbd->status.info.field =
3099 IPW_BD_STATUS_TX_FRAME_802_3 |
3100 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3101 else
3102 tbd->status.info.field =
3103 IPW_BD_STATUS_TX_FRAME_802_3 |
3104 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3105
3106 tbd->buf_length = packet->info.d_struct.txb->
3107 fragments[i]->len - IEEE80211_3ADDR_LEN;
3108
3109 tbd->host_addr = pci_map_single(priv->pci_dev,
3110 packet->info.d_struct.
3111 txb->fragments[i]->
3112 data +
3113 IEEE80211_3ADDR_LEN,
3114 tbd->buf_length,
3115 PCI_DMA_TODEVICE);
3116
3117 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3118 txq->next, tbd->host_addr,
3119 tbd->buf_length);
3120
3121 pci_dma_sync_single_for_device(priv->pci_dev,
3122 tbd->host_addr,
3123 tbd->buf_length,
3124 PCI_DMA_TODEVICE);
3125
3126 txq->next++;
3127 txq->next %= txq->entries;
3128 }
3129
3130 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3131 SET_STAT(&priv->txq_stat, txq->available);
3132
3133 list_add_tail(element, &priv->fw_pend_list);
3134 INC_STAT(&priv->fw_pend_stat);
3135 }
3136
3137 if (txq->next != next) {
3138 /* kick off the DMA by notifying firmware the
3139 * write index has moved; make sure TBD stores are sync'd */
3140 write_register(priv->net_dev,
3141 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3142 txq->next);
3143 }
3144 return;
3145 }
3146
3147 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3148 {
3149 struct net_device *dev = priv->net_dev;
3150 unsigned long flags;
3151 u32 inta, tmp;
3152
3153 spin_lock_irqsave(&priv->low_lock, flags);
3154 ipw2100_disable_interrupts(priv);
3155
3156 read_register(dev, IPW_REG_INTA, &inta);
3157
3158 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3159 (unsigned long)inta & IPW_INTERRUPT_MASK);
3160
3161 priv->in_isr++;
3162 priv->interrupts++;
3163
3164 /* We do not loop and keep polling for more interrupts as this
3165 * is frowned upon and doesn't play nicely with other potentially
3166 * chained IRQs */
3167 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3168 (unsigned long)inta & IPW_INTERRUPT_MASK);
3169
3170 if (inta & IPW2100_INTA_FATAL_ERROR) {
3171 printk(KERN_WARNING DRV_NAME
3172 ": Fatal interrupt. Scheduling firmware restart.\n");
3173 priv->inta_other++;
3174 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3175
3176 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3177 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3178 priv->net_dev->name, priv->fatal_error);
3179
3180 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3181 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3182 priv->net_dev->name, tmp);
3183
3184 /* Wake up any sleeping jobs */
3185 schedule_reset(priv);
3186 }
3187
3188 if (inta & IPW2100_INTA_PARITY_ERROR) {
3189 printk(KERN_ERR DRV_NAME
3190 ": ***** PARITY ERROR INTERRUPT !!!! \n");
3191 priv->inta_other++;
3192 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3193 }
3194
3195 if (inta & IPW2100_INTA_RX_TRANSFER) {
3196 IPW_DEBUG_ISR("RX interrupt\n");
3197
3198 priv->rx_interrupts++;
3199
3200 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3201
3202 __ipw2100_rx_process(priv);
3203 __ipw2100_tx_complete(priv);
3204 }
3205
3206 if (inta & IPW2100_INTA_TX_TRANSFER) {
3207 IPW_DEBUG_ISR("TX interrupt\n");
3208
3209 priv->tx_interrupts++;
3210
3211 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3212
3213 __ipw2100_tx_complete(priv);
3214 ipw2100_tx_send_commands(priv);
3215 ipw2100_tx_send_data(priv);
3216 }
3217
3218 if (inta & IPW2100_INTA_TX_COMPLETE) {
3219 IPW_DEBUG_ISR("TX complete\n");
3220 priv->inta_other++;
3221 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3222
3223 __ipw2100_tx_complete(priv);
3224 }
3225
3226 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3227 /* ipw2100_handle_event(dev); */
3228 priv->inta_other++;
3229 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3230 }
3231
3232 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3233 IPW_DEBUG_ISR("FW init done interrupt\n");
3234 priv->inta_other++;
3235
3236 read_register(dev, IPW_REG_INTA, &tmp);
3237 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3238 IPW2100_INTA_PARITY_ERROR)) {
3239 write_register(dev, IPW_REG_INTA,
3240 IPW2100_INTA_FATAL_ERROR |
3241 IPW2100_INTA_PARITY_ERROR);
3242 }
3243
3244 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3245 }
3246
3247 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3248 IPW_DEBUG_ISR("Status change interrupt\n");
3249 priv->inta_other++;
3250 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3251 }
3252
3253 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3254 IPW_DEBUG_ISR("slave host mode interrupt\n");
3255 priv->inta_other++;
3256 write_register(dev, IPW_REG_INTA,
3257 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3258 }
3259
3260 priv->in_isr--;
3261 ipw2100_enable_interrupts(priv);
3262
3263 spin_unlock_irqrestore(&priv->low_lock, flags);
3264
3265 IPW_DEBUG_ISR("exit\n");
3266 }
3267
3268 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3269 {
3270 struct ipw2100_priv *priv = data;
3271 u32 inta, inta_mask;
3272
3273 if (!data)
3274 return IRQ_NONE;
3275
3276 spin_lock(&priv->low_lock);
3277
3278 /* We check to see if we should be ignoring interrupts before
3279 * we touch the hardware. During ucode load if we try and handle
3280 * an interrupt we can cause keyboard problems as well as cause
3281 * the ucode to fail to initialize */
3282 if (!(priv->status & STATUS_INT_ENABLED)) {
3283 /* Shared IRQ */
3284 goto none;
3285 }
3286
3287 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3288 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3289
3290 if (inta == 0xFFFFFFFF) {
3291 /* Hardware disappeared */
3292 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3293 goto none;
3294 }
3295
3296 inta &= IPW_INTERRUPT_MASK;
3297
3298 if (!(inta & inta_mask)) {
3299 /* Shared interrupt */
3300 goto none;
3301 }
3302
3303 /* We disable the hardware interrupt here just to prevent unneeded
3304 * calls to be made. We disable this again within the actual
3305 * work tasklet, so if another part of the code re-enables the
3306 * interrupt, that is fine */
3307 ipw2100_disable_interrupts(priv);
3308
3309 tasklet_schedule(&priv->irq_tasklet);
3310 spin_unlock(&priv->low_lock);
3311
3312 return IRQ_HANDLED;
3313 none:
3314 spin_unlock(&priv->low_lock);
3315 return IRQ_NONE;
3316 }
3317
3318 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3319 int pri)
3320 {
3321 struct ipw2100_priv *priv = ieee80211_priv(dev);
3322 struct list_head *element;
3323 struct ipw2100_tx_packet *packet;
3324 unsigned long flags;
3325
3326 spin_lock_irqsave(&priv->low_lock, flags);
3327
3328 if (!(priv->status & STATUS_ASSOCIATED)) {
3329 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3330 priv->ieee->stats.tx_carrier_errors++;
3331 netif_stop_queue(dev);
3332 goto fail_unlock;
3333 }
3334
3335 if (list_empty(&priv->tx_free_list))
3336 goto fail_unlock;
3337
3338 element = priv->tx_free_list.next;
3339 packet = list_entry(element, struct ipw2100_tx_packet, list);
3340
3341 packet->info.d_struct.txb = txb;
3342
3343 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3344 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3345
3346 packet->jiffy_start = jiffies;
3347
3348 list_del(element);
3349 DEC_STAT(&priv->tx_free_stat);
3350
3351 list_add_tail(element, &priv->tx_pend_list);
3352 INC_STAT(&priv->tx_pend_stat);
3353
3354 ipw2100_tx_send_data(priv);
3355
3356 spin_unlock_irqrestore(&priv->low_lock, flags);
3357 return 0;
3358
3359 fail_unlock:
3360 netif_stop_queue(dev);
3361 spin_unlock_irqrestore(&priv->low_lock, flags);
3362 return 1;
3363 }
3364
3365 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3366 {
3367 int i, j, err = -EINVAL;
3368 void *v;
3369 dma_addr_t p;
3370
3371 priv->msg_buffers =
3372 (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3373 sizeof(struct
3374 ipw2100_tx_packet),
3375 GFP_KERNEL);
3376 if (!priv->msg_buffers) {
3377 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3378 "buffers.\n", priv->net_dev->name);
3379 return -ENOMEM;
3380 }
3381
3382 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3383 v = pci_alloc_consistent(priv->pci_dev,
3384 sizeof(struct ipw2100_cmd_header), &p);
3385 if (!v) {
3386 printk(KERN_ERR DRV_NAME ": "
3387 "%s: PCI alloc failed for msg "
3388 "buffers.\n", priv->net_dev->name);
3389 err = -ENOMEM;
3390 break;
3391 }
3392
3393 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3394
3395 priv->msg_buffers[i].type = COMMAND;
3396 priv->msg_buffers[i].info.c_struct.cmd =
3397 (struct ipw2100_cmd_header *)v;
3398 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3399 }
3400
3401 if (i == IPW_COMMAND_POOL_SIZE)
3402 return 0;
3403
3404 for (j = 0; j < i; j++) {
3405 pci_free_consistent(priv->pci_dev,
3406 sizeof(struct ipw2100_cmd_header),
3407 priv->msg_buffers[j].info.c_struct.cmd,
3408 priv->msg_buffers[j].info.c_struct.
3409 cmd_phys);
3410 }
3411
3412 kfree(priv->msg_buffers);
3413 priv->msg_buffers = NULL;
3414
3415 return err;
3416 }
3417
3418 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3419 {
3420 int i;
3421
3422 INIT_LIST_HEAD(&priv->msg_free_list);
3423 INIT_LIST_HEAD(&priv->msg_pend_list);
3424
3425 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3426 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3427 SET_STAT(&priv->msg_free_stat, i);
3428
3429 return 0;
3430 }
3431
3432 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3433 {
3434 int i;
3435
3436 if (!priv->msg_buffers)
3437 return;
3438
3439 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3440 pci_free_consistent(priv->pci_dev,
3441 sizeof(struct ipw2100_cmd_header),
3442 priv->msg_buffers[i].info.c_struct.cmd,
3443 priv->msg_buffers[i].info.c_struct.
3444 cmd_phys);
3445 }
3446
3447 kfree(priv->msg_buffers);
3448 priv->msg_buffers = NULL;
3449 }
3450
3451 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3452 char *buf)
3453 {
3454 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3455 char *out = buf;
3456 int i, j;
3457 u32 val;
3458
3459 for (i = 0; i < 16; i++) {
3460 out += sprintf(out, "[%08X] ", i * 16);
3461 for (j = 0; j < 16; j += 4) {
3462 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3463 out += sprintf(out, "%08X ", val);
3464 }
3465 out += sprintf(out, "\n");
3466 }
3467
3468 return out - buf;
3469 }
3470
3471 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3472
3473 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3474 char *buf)
3475 {
3476 struct ipw2100_priv *p = d->driver_data;
3477 return sprintf(buf, "0x%08x\n", (int)p->config);
3478 }
3479
3480 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3481
3482 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3483 char *buf)
3484 {
3485 struct ipw2100_priv *p = d->driver_data;
3486 return sprintf(buf, "0x%08x\n", (int)p->status);
3487 }
3488
3489 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3490
3491 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3492 char *buf)
3493 {
3494 struct ipw2100_priv *p = d->driver_data;
3495 return sprintf(buf, "0x%08x\n", (int)p->capability);
3496 }
3497
3498 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3499
3500 #define IPW2100_REG(x) { IPW_ ##x, #x }
3501 static const struct {
3502 u32 addr;
3503 const char *name;
3504 } hw_data[] = {
3505 IPW2100_REG(REG_GP_CNTRL),
3506 IPW2100_REG(REG_GPIO),
3507 IPW2100_REG(REG_INTA),
3508 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3509 #define IPW2100_NIC(x, s) { x, #x, s }
3510 static const struct {
3511 u32 addr;
3512 const char *name;
3513 size_t size;
3514 } nic_data[] = {
3515 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3516 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3517 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3518 static const struct {
3519 u8 index;
3520 const char *name;
3521 const char *desc;
3522 } ord_data[] = {
3523 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3524 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3525 "successful Host Tx's (MSDU)"),
3526 IPW2100_ORD(STAT_TX_DIR_DATA,
3527 "successful Directed Tx's (MSDU)"),
3528 IPW2100_ORD(STAT_TX_DIR_DATA1,
3529 "successful Directed Tx's (MSDU) @ 1MB"),
3530 IPW2100_ORD(STAT_TX_DIR_DATA2,
3531 "successful Directed Tx's (MSDU) @ 2MB"),
3532 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3533 "successful Directed Tx's (MSDU) @ 5_5MB"),
3534 IPW2100_ORD(STAT_TX_DIR_DATA11,
3535 "successful Directed Tx's (MSDU) @ 11MB"),
3536 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3537 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3538 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3539 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3540 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3541 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3542 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3543 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3544 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3545 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3546 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3547 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3548 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3549 IPW2100_ORD(STAT_TX_ASSN_RESP,
3550 "successful Association response Tx's"),
3551 IPW2100_ORD(STAT_TX_REASSN,
3552 "successful Reassociation Tx's"),
3553 IPW2100_ORD(STAT_TX_REASSN_RESP,
3554 "successful Reassociation response Tx's"),
3555 IPW2100_ORD(STAT_TX_PROBE,
3556 "probes successfully transmitted"),
3557 IPW2100_ORD(STAT_TX_PROBE_RESP,
3558 "probe responses successfully transmitted"),
3559 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3560 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3561 IPW2100_ORD(STAT_TX_DISASSN,
3562 "successful Disassociation TX"),
3563 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3564 IPW2100_ORD(STAT_TX_DEAUTH,
3565 "successful Deauthentication TX"),
3566 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3567 "Total successful Tx data bytes"),
3568 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3569 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3570 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3571 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3572 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3573 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3574 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3575 "times max tries in a hop failed"),
3576 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3577 "times disassociation failed"),
3578 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3579 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3580 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3581 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3582 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3583 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3584 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3585 "directed packets at 5.5MB"),
3586 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3587 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3588 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3589 "nondirected packets at 1MB"),
3590 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3591 "nondirected packets at 2MB"),
3592 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3593 "nondirected packets at 5.5MB"),
3594 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3595 "nondirected packets at 11MB"),
3596 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3597 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3598 "Rx CTS"),
3599 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3600 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3601 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3602 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3603 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3604 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3605 IPW2100_ORD(STAT_RX_REASSN_RESP,
3606 "Reassociation response Rx's"),
3607 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3608 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3609 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3610 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3611 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3612 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3613 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3614 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3615 "Total rx data bytes received"),
3616 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3617 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3618 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3619 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3620 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3621 IPW2100_ORD(STAT_RX_DUPLICATE1,
3622 "duplicate rx packets at 1MB"),
3623 IPW2100_ORD(STAT_RX_DUPLICATE2,
3624 "duplicate rx packets at 2MB"),
3625 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3626 "duplicate rx packets at 5.5MB"),
3627 IPW2100_ORD(STAT_RX_DUPLICATE11,
3628 "duplicate rx packets at 11MB"),
3629 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3630 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3631 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3632 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3633 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3634 "rx frames with invalid protocol"),
3635 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3636 IPW2100_ORD(STAT_RX_NO_BUFFER,
3637 "rx frames rejected due to no buffer"),
3638 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3639 "rx frames dropped due to missing fragment"),
3640 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3641 "rx frames dropped due to non-sequential fragment"),
3642 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3643 "rx frames dropped due to unmatched 1st frame"),
3644 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3645 "rx frames dropped due to uncompleted frame"),
3646 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3647 "ICV errors during decryption"),
3648 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3649 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3650 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3651 "poll response timeouts"),
3652 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3653 "timeouts waiting for last {broad,multi}cast pkt"),
3654 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3655 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3656 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3657 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3658 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3659 "current calculation of % missed beacons"),
3660 IPW2100_ORD(STAT_PERCENT_RETRIES,
3661 "current calculation of % missed tx retries"),
3662 IPW2100_ORD(ASSOCIATED_AP_PTR,
3663 "0 if not associated, else pointer to AP table entry"),
3664 IPW2100_ORD(AVAILABLE_AP_CNT,
3665 "AP's decsribed in the AP table"),
3666 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3667 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3668 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3669 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3670 "failures due to response fail"),
3671 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3672 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3673 IPW2100_ORD(STAT_ROAM_INHIBIT,
3674 "times roaming was inhibited due to activity"),
3675 IPW2100_ORD(RSSI_AT_ASSN,
3676 "RSSI of associated AP at time of association"),
3677 IPW2100_ORD(STAT_ASSN_CAUSE1,
3678 "reassociation: no probe response or TX on hop"),
3679 IPW2100_ORD(STAT_ASSN_CAUSE2,
3680 "reassociation: poor tx/rx quality"),
3681 IPW2100_ORD(STAT_ASSN_CAUSE3,
3682 "reassociation: tx/rx quality (excessive AP load"),
3683 IPW2100_ORD(STAT_ASSN_CAUSE4,
3684 "reassociation: AP RSSI level"),
3685 IPW2100_ORD(STAT_ASSN_CAUSE5,
3686 "reassociations due to load leveling"),
3687 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3688 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3689 "times authentication response failed"),
3690 IPW2100_ORD(STATION_TABLE_CNT,
3691 "entries in association table"),
3692 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3693 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3694 IPW2100_ORD(COUNTRY_CODE,
3695 "IEEE country code as recv'd from beacon"),
3696 IPW2100_ORD(COUNTRY_CHANNELS,
3697 "channels suported by country"),
3698 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3699 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3700 IPW2100_ORD(ANTENNA_DIVERSITY,
3701 "TRUE if antenna diversity is disabled"),
3702 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3703 IPW2100_ORD(OUR_FREQ,
3704 "current radio freq lower digits - channel ID"),
3705 IPW2100_ORD(RTC_TIME, "current RTC time"),
3706 IPW2100_ORD(PORT_TYPE, "operating mode"),
3707 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3708 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3709 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3710 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3711 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3712 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3713 IPW2100_ORD(CAPABILITIES,
3714 "Management frame capability field"),
3715 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3716 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3717 IPW2100_ORD(RTS_THRESHOLD,
3718 "Min packet length for RTS handshaking"),
3719 IPW2100_ORD(INT_MODE, "International mode"),
3720 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3721 "protocol frag threshold"),
3722 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3723 "EEPROM offset in SRAM"),
3724 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3725 "EEPROM size in SRAM"),
3726 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3727 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3728 "EEPROM IBSS 11b channel set"),
3729 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3730 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3731 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3732 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3733 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3734
3735 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3736 char *buf)
3737 {
3738 int i;
3739 struct ipw2100_priv *priv = dev_get_drvdata(d);
3740 struct net_device *dev = priv->net_dev;
3741 char *out = buf;
3742 u32 val = 0;
3743
3744 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3745
3746 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3747 read_register(dev, hw_data[i].addr, &val);
3748 out += sprintf(out, "%30s [%08X] : %08X\n",
3749 hw_data[i].name, hw_data[i].addr, val);
3750 }
3751
3752 return out - buf;
3753 }
3754
3755 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3756
3757 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3758 char *buf)
3759 {
3760 struct ipw2100_priv *priv = dev_get_drvdata(d);
3761 struct net_device *dev = priv->net_dev;
3762 char *out = buf;
3763 int i;
3764
3765 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3766
3767 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3768 u8 tmp8;
3769 u16 tmp16;
3770 u32 tmp32;
3771
3772 switch (nic_data[i].size) {
3773 case 1:
3774 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3775 out += sprintf(out, "%30s [%08X] : %02X\n",
3776 nic_data[i].name, nic_data[i].addr,
3777 tmp8);
3778 break;
3779 case 2:
3780 read_nic_word(dev, nic_data[i].addr, &tmp16);
3781 out += sprintf(out, "%30s [%08X] : %04X\n",
3782 nic_data[i].name, nic_data[i].addr,
3783 tmp16);
3784 break;
3785 case 4:
3786 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3787 out += sprintf(out, "%30s [%08X] : %08X\n",
3788 nic_data[i].name, nic_data[i].addr,
3789 tmp32);
3790 break;
3791 }
3792 }
3793 return out - buf;
3794 }
3795
3796 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3797
3798 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3799 char *buf)
3800 {
3801 struct ipw2100_priv *priv = dev_get_drvdata(d);
3802 struct net_device *dev = priv->net_dev;
3803 static unsigned long loop = 0;
3804 int len = 0;
3805 u32 buffer[4];
3806 int i;
3807 char line[81];
3808
3809 if (loop >= 0x30000)
3810 loop = 0;
3811
3812 /* sysfs provides us PAGE_SIZE buffer */
3813 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3814
3815 if (priv->snapshot[0])
3816 for (i = 0; i < 4; i++)
3817 buffer[i] =
3818 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3819 else
3820 for (i = 0; i < 4; i++)
3821 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3822
3823 if (priv->dump_raw)
3824 len += sprintf(buf + len,
3825 "%c%c%c%c"
3826 "%c%c%c%c"
3827 "%c%c%c%c"
3828 "%c%c%c%c",
3829 ((u8 *) buffer)[0x0],
3830 ((u8 *) buffer)[0x1],
3831 ((u8 *) buffer)[0x2],
3832 ((u8 *) buffer)[0x3],
3833 ((u8 *) buffer)[0x4],
3834 ((u8 *) buffer)[0x5],
3835 ((u8 *) buffer)[0x6],
3836 ((u8 *) buffer)[0x7],
3837 ((u8 *) buffer)[0x8],
3838 ((u8 *) buffer)[0x9],
3839 ((u8 *) buffer)[0xa],
3840 ((u8 *) buffer)[0xb],
3841 ((u8 *) buffer)[0xc],
3842 ((u8 *) buffer)[0xd],
3843 ((u8 *) buffer)[0xe],
3844 ((u8 *) buffer)[0xf]);
3845 else
3846 len += sprintf(buf + len, "%s\n",
3847 snprint_line(line, sizeof(line),
3848 (u8 *) buffer, 16, loop));
3849 loop += 16;
3850 }
3851
3852 return len;
3853 }
3854
3855 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3856 const char *buf, size_t count)
3857 {
3858 struct ipw2100_priv *priv = dev_get_drvdata(d);
3859 struct net_device *dev = priv->net_dev;
3860 const char *p = buf;
3861
3862 (void)dev; /* kill unused-var warning for debug-only code */
3863
3864 if (count < 1)
3865 return count;
3866
3867 if (p[0] == '1' ||
3868 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3869 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3870 dev->name);
3871 priv->dump_raw = 1;
3872
3873 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3874 tolower(p[1]) == 'f')) {
3875 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3876 dev->name);
3877 priv->dump_raw = 0;
3878
3879 } else if (tolower(p[0]) == 'r') {
3880 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3881 ipw2100_snapshot_free(priv);
3882
3883 } else
3884 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3885 "reset = clear memory snapshot\n", dev->name);
3886
3887 return count;
3888 }
3889
3890 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3891
3892 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3893 char *buf)
3894 {
3895 struct ipw2100_priv *priv = dev_get_drvdata(d);
3896 u32 val = 0;
3897 int len = 0;
3898 u32 val_len;
3899 static int loop = 0;
3900
3901 if (priv->status & STATUS_RF_KILL_MASK)
3902 return 0;
3903
3904 if (loop >= ARRAY_SIZE(ord_data))
3905 loop = 0;
3906
3907 /* sysfs provides us PAGE_SIZE buffer */
3908 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3909 val_len = sizeof(u32);
3910
3911 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3912 &val_len))
3913 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3914 ord_data[loop].index,
3915 ord_data[loop].desc);
3916 else
3917 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3918 ord_data[loop].index, val,
3919 ord_data[loop].desc);
3920 loop++;
3921 }
3922
3923 return len;
3924 }
3925
3926 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3927
3928 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3929 char *buf)
3930 {
3931 struct ipw2100_priv *priv = dev_get_drvdata(d);
3932 char *out = buf;
3933
3934 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3935 priv->interrupts, priv->tx_interrupts,
3936 priv->rx_interrupts, priv->inta_other);
3937 out += sprintf(out, "firmware resets: %d\n", priv->resets);
3938 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3939 #ifdef CONFIG_IPW2100_DEBUG
3940 out += sprintf(out, "packet mismatch image: %s\n",
3941 priv->snapshot[0] ? "YES" : "NO");
3942 #endif
3943
3944 return out - buf;
3945 }
3946
3947 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3948
3949 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3950 {
3951 int err;
3952
3953 if (mode == priv->ieee->iw_mode)
3954 return 0;
3955
3956 err = ipw2100_disable_adapter(priv);
3957 if (err) {
3958 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3959 priv->net_dev->name, err);
3960 return err;
3961 }
3962
3963 switch (mode) {
3964 case IW_MODE_INFRA:
3965 priv->net_dev->type = ARPHRD_ETHER;
3966 break;
3967 case IW_MODE_ADHOC:
3968 priv->net_dev->type = ARPHRD_ETHER;
3969 break;
3970 #ifdef CONFIG_IPW2100_MONITOR
3971 case IW_MODE_MONITOR:
3972 priv->last_mode = priv->ieee->iw_mode;
3973 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3974 break;
3975 #endif /* CONFIG_IPW2100_MONITOR */
3976 }
3977
3978 priv->ieee->iw_mode = mode;
3979
3980 #ifdef CONFIG_PM
3981 /* Indicate ipw2100_download_firmware download firmware
3982 * from disk instead of memory. */
3983 ipw2100_firmware.version = 0;
3984 #endif
3985
3986 printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3987 priv->reset_backoff = 0;
3988 schedule_reset(priv);
3989
3990 return 0;
3991 }
3992
3993 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3994 char *buf)
3995 {
3996 struct ipw2100_priv *priv = dev_get_drvdata(d);
3997 int len = 0;
3998
3999 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4000
4001 if (priv->status & STATUS_ASSOCIATED)
4002 len += sprintf(buf + len, "connected: %lu\n",
4003 get_seconds() - priv->connect_start);
4004 else
4005 len += sprintf(buf + len, "not connected\n");
4006
4007 DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
4008 DUMP_VAR(status, "08lx");
4009 DUMP_VAR(config, "08lx");
4010 DUMP_VAR(capability, "08lx");
4011
4012 len +=
4013 sprintf(buf + len, "last_rtc: %lu\n",
4014 (unsigned long)priv->last_rtc);
4015
4016 DUMP_VAR(fatal_error, "d");
4017 DUMP_VAR(stop_hang_check, "d");
4018 DUMP_VAR(stop_rf_kill, "d");
4019 DUMP_VAR(messages_sent, "d");
4020
4021 DUMP_VAR(tx_pend_stat.value, "d");
4022 DUMP_VAR(tx_pend_stat.hi, "d");
4023
4024 DUMP_VAR(tx_free_stat.value, "d");
4025 DUMP_VAR(tx_free_stat.lo, "d");
4026
4027 DUMP_VAR(msg_free_stat.value, "d");
4028 DUMP_VAR(msg_free_stat.lo, "d");
4029
4030 DUMP_VAR(msg_pend_stat.value, "d");
4031 DUMP_VAR(msg_pend_stat.hi, "d");
4032
4033 DUMP_VAR(fw_pend_stat.value, "d");
4034 DUMP_VAR(fw_pend_stat.hi, "d");
4035
4036 DUMP_VAR(txq_stat.value, "d");
4037 DUMP_VAR(txq_stat.lo, "d");
4038
4039 DUMP_VAR(ieee->scans, "d");
4040 DUMP_VAR(reset_backoff, "d");
4041
4042 return len;
4043 }
4044
4045 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4046
4047 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4048 char *buf)
4049 {
4050 struct ipw2100_priv *priv = dev_get_drvdata(d);
4051 char essid[IW_ESSID_MAX_SIZE + 1];
4052 u8 bssid[ETH_ALEN];
4053 u32 chan = 0;
4054 char *out = buf;
4055 int length;
4056 int ret;
4057
4058 if (priv->status & STATUS_RF_KILL_MASK)
4059 return 0;
4060
4061 memset(essid, 0, sizeof(essid));
4062 memset(bssid, 0, sizeof(bssid));
4063
4064 length = IW_ESSID_MAX_SIZE;
4065 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4066 if (ret)
4067 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4068 __LINE__);
4069
4070 length = sizeof(bssid);
4071 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4072 bssid, &length);
4073 if (ret)
4074 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4075 __LINE__);
4076
4077 length = sizeof(u32);
4078 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4079 if (ret)
4080 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4081 __LINE__);
4082
4083 out += sprintf(out, "ESSID: %s\n", essid);
4084 out += sprintf(out, "BSSID: %pM\n", bssid);
4085 out += sprintf(out, "Channel: %d\n", chan);
4086
4087 return out - buf;
4088 }
4089
4090 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4091
4092 #ifdef CONFIG_IPW2100_DEBUG
4093 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4094 {
4095 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4096 }
4097
4098 static ssize_t store_debug_level(struct device_driver *d,
4099 const char *buf, size_t count)
4100 {
4101 char *p = (char *)buf;
4102 u32 val;
4103
4104 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4105 p++;
4106 if (p[0] == 'x' || p[0] == 'X')
4107 p++;
4108 val = simple_strtoul(p, &p, 16);
4109 } else
4110 val = simple_strtoul(p, &p, 10);
4111 if (p == buf)
4112 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4113 else
4114 ipw2100_debug_level = val;
4115
4116 return strnlen(buf, count);
4117 }
4118
4119 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4120 store_debug_level);
4121 #endif /* CONFIG_IPW2100_DEBUG */
4122
4123 static ssize_t show_fatal_error(struct device *d,
4124 struct device_attribute *attr, char *buf)
4125 {
4126 struct ipw2100_priv *priv = dev_get_drvdata(d);
4127 char *out = buf;
4128 int i;
4129
4130 if (priv->fatal_error)
4131 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4132 else
4133 out += sprintf(out, "0\n");
4134
4135 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4136 if (!priv->fatal_errors[(priv->fatal_index - i) %
4137 IPW2100_ERROR_QUEUE])
4138 continue;
4139
4140 out += sprintf(out, "%d. 0x%08X\n", i,
4141 priv->fatal_errors[(priv->fatal_index - i) %
4142 IPW2100_ERROR_QUEUE]);
4143 }
4144
4145 return out - buf;
4146 }
4147
4148 static ssize_t store_fatal_error(struct device *d,
4149 struct device_attribute *attr, const char *buf,
4150 size_t count)
4151 {
4152 struct ipw2100_priv *priv = dev_get_drvdata(d);
4153 schedule_reset(priv);
4154 return count;
4155 }
4156
4157 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4158 store_fatal_error);
4159
4160 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4161 char *buf)
4162 {
4163 struct ipw2100_priv *priv = dev_get_drvdata(d);
4164 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4165 }
4166
4167 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4168 const char *buf, size_t count)
4169 {
4170 struct ipw2100_priv *priv = dev_get_drvdata(d);
4171 struct net_device *dev = priv->net_dev;
4172 char buffer[] = "00000000";
4173 unsigned long len =
4174 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4175 unsigned long val;
4176 char *p = buffer;
4177
4178 (void)dev; /* kill unused-var warning for debug-only code */
4179
4180 IPW_DEBUG_INFO("enter\n");
4181
4182 strncpy(buffer, buf, len);
4183 buffer[len] = 0;
4184
4185 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4186 p++;
4187 if (p[0] == 'x' || p[0] == 'X')
4188 p++;
4189 val = simple_strtoul(p, &p, 16);
4190 } else
4191 val = simple_strtoul(p, &p, 10);
4192 if (p == buffer) {
4193 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4194 } else {
4195 priv->ieee->scan_age = val;
4196 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4197 }
4198
4199 IPW_DEBUG_INFO("exit\n");
4200 return len;
4201 }
4202
4203 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4204
4205 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4206 char *buf)
4207 {
4208 /* 0 - RF kill not enabled
4209 1 - SW based RF kill active (sysfs)
4210 2 - HW based RF kill active
4211 3 - Both HW and SW baed RF kill active */
4212 struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4213 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4214 (rf_kill_active(priv) ? 0x2 : 0x0);
4215 return sprintf(buf, "%i\n", val);
4216 }
4217
4218 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4219 {
4220 if ((disable_radio ? 1 : 0) ==
4221 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4222 return 0;
4223
4224 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4225 disable_radio ? "OFF" : "ON");
4226
4227 mutex_lock(&priv->action_mutex);
4228
4229 if (disable_radio) {
4230 priv->status |= STATUS_RF_KILL_SW;
4231 ipw2100_down(priv);
4232 } else {
4233 priv->status &= ~STATUS_RF_KILL_SW;
4234 if (rf_kill_active(priv)) {
4235 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4236 "disabled by HW switch\n");
4237 /* Make sure the RF_KILL check timer is running */
4238 priv->stop_rf_kill = 0;
4239 cancel_delayed_work(&priv->rf_kill);
4240 queue_delayed_work(priv->workqueue, &priv->rf_kill,
4241 round_jiffies_relative(HZ));
4242 } else
4243 schedule_reset(priv);
4244 }
4245
4246 mutex_unlock(&priv->action_mutex);
4247 return 1;
4248 }
4249
4250 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4251 const char *buf, size_t count)
4252 {
4253 struct ipw2100_priv *priv = dev_get_drvdata(d);
4254 ipw_radio_kill_sw(priv, buf[0] == '1');
4255 return count;
4256 }
4257
4258 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4259
4260 static struct attribute *ipw2100_sysfs_entries[] = {
4261 &dev_attr_hardware.attr,
4262 &dev_attr_registers.attr,
4263 &dev_attr_ordinals.attr,
4264 &dev_attr_pci.attr,
4265 &dev_attr_stats.attr,
4266 &dev_attr_internals.attr,
4267 &dev_attr_bssinfo.attr,
4268 &dev_attr_memory.attr,
4269 &dev_attr_scan_age.attr,
4270 &dev_attr_fatal_error.attr,
4271 &dev_attr_rf_kill.attr,
4272 &dev_attr_cfg.attr,
4273 &dev_attr_status.attr,
4274 &dev_attr_capability.attr,
4275 NULL,
4276 };
4277
4278 static struct attribute_group ipw2100_attribute_group = {
4279 .attrs = ipw2100_sysfs_entries,
4280 };
4281
4282 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4283 {
4284 struct ipw2100_status_queue *q = &priv->status_queue;
4285
4286 IPW_DEBUG_INFO("enter\n");
4287
4288 q->size = entries * sizeof(struct ipw2100_status);
4289 q->drv =
4290 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4291 q->size, &q->nic);
4292 if (!q->drv) {
4293 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4294 return -ENOMEM;
4295 }
4296
4297 memset(q->drv, 0, q->size);
4298
4299 IPW_DEBUG_INFO("exit\n");
4300
4301 return 0;
4302 }
4303
4304 static void status_queue_free(struct ipw2100_priv *priv)
4305 {
4306 IPW_DEBUG_INFO("enter\n");
4307
4308 if (priv->status_queue.drv) {
4309 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4310 priv->status_queue.drv,
4311 priv->status_queue.nic);
4312 priv->status_queue.drv = NULL;
4313 }
4314
4315 IPW_DEBUG_INFO("exit\n");
4316 }
4317
4318 static int bd_queue_allocate(struct ipw2100_priv *priv,
4319 struct ipw2100_bd_queue *q, int entries)
4320 {
4321 IPW_DEBUG_INFO("enter\n");
4322
4323 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4324
4325 q->entries = entries;
4326 q->size = entries * sizeof(struct ipw2100_bd);
4327 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4328 if (!q->drv) {
4329 IPW_DEBUG_INFO
4330 ("can't allocate shared memory for buffer descriptors\n");
4331 return -ENOMEM;
4332 }
4333 memset(q->drv, 0, q->size);
4334
4335 IPW_DEBUG_INFO("exit\n");
4336
4337 return 0;
4338 }
4339
4340 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4341 {
4342 IPW_DEBUG_INFO("enter\n");
4343
4344 if (!q)
4345 return;
4346
4347 if (q->drv) {
4348 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4349 q->drv = NULL;
4350 }
4351
4352 IPW_DEBUG_INFO("exit\n");
4353 }
4354
4355 static void bd_queue_initialize(struct ipw2100_priv *priv,
4356 struct ipw2100_bd_queue *q, u32 base, u32 size,
4357 u32 r, u32 w)
4358 {
4359 IPW_DEBUG_INFO("enter\n");
4360
4361 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4362 (u32) q->nic);
4363
4364 write_register(priv->net_dev, base, q->nic);
4365 write_register(priv->net_dev, size, q->entries);
4366 write_register(priv->net_dev, r, q->oldest);
4367 write_register(priv->net_dev, w, q->next);
4368
4369 IPW_DEBUG_INFO("exit\n");
4370 }
4371
4372 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4373 {
4374 if (priv->workqueue) {
4375 priv->stop_rf_kill = 1;
4376 priv->stop_hang_check = 1;
4377 cancel_delayed_work(&priv->reset_work);
4378 cancel_delayed_work(&priv->security_work);
4379 cancel_delayed_work(&priv->wx_event_work);
4380 cancel_delayed_work(&priv->hang_check);
4381 cancel_delayed_work(&priv->rf_kill);
4382 cancel_delayed_work(&priv->scan_event_later);
4383 destroy_workqueue(priv->workqueue);
4384 priv->workqueue = NULL;
4385 }
4386 }
4387
4388 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4389 {
4390 int i, j, err = -EINVAL;
4391 void *v;
4392 dma_addr_t p;
4393
4394 IPW_DEBUG_INFO("enter\n");
4395
4396 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4397 if (err) {
4398 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4399 priv->net_dev->name);
4400 return err;
4401 }
4402
4403 priv->tx_buffers =
4404 (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4405 sizeof(struct
4406 ipw2100_tx_packet),
4407 GFP_ATOMIC);
4408 if (!priv->tx_buffers) {
4409 printk(KERN_ERR DRV_NAME
4410 ": %s: alloc failed form tx buffers.\n",
4411 priv->net_dev->name);
4412 bd_queue_free(priv, &priv->tx_queue);
4413 return -ENOMEM;
4414 }
4415
4416 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4417 v = pci_alloc_consistent(priv->pci_dev,
4418 sizeof(struct ipw2100_data_header),
4419 &p);
4420 if (!v) {
4421 printk(KERN_ERR DRV_NAME
4422 ": %s: PCI alloc failed for tx " "buffers.\n",
4423 priv->net_dev->name);
4424 err = -ENOMEM;
4425 break;
4426 }
4427
4428 priv->tx_buffers[i].type = DATA;
4429 priv->tx_buffers[i].info.d_struct.data =
4430 (struct ipw2100_data_header *)v;
4431 priv->tx_buffers[i].info.d_struct.data_phys = p;
4432 priv->tx_buffers[i].info.d_struct.txb = NULL;
4433 }
4434
4435 if (i == TX_PENDED_QUEUE_LENGTH)
4436 return 0;
4437
4438 for (j = 0; j < i; j++) {
4439 pci_free_consistent(priv->pci_dev,
4440 sizeof(struct ipw2100_data_header),
4441 priv->tx_buffers[j].info.d_struct.data,
4442 priv->tx_buffers[j].info.d_struct.
4443 data_phys);
4444 }
4445
4446 kfree(priv->tx_buffers);
4447 priv->tx_buffers = NULL;
4448
4449 return err;
4450 }
4451
4452 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4453 {
4454 int i;
4455
4456 IPW_DEBUG_INFO("enter\n");
4457
4458 /*
4459 * reinitialize packet info lists
4460 */
4461 INIT_LIST_HEAD(&priv->fw_pend_list);
4462 INIT_STAT(&priv->fw_pend_stat);
4463
4464 /*
4465 * reinitialize lists
4466 */
4467 INIT_LIST_HEAD(&priv->tx_pend_list);
4468 INIT_LIST_HEAD(&priv->tx_free_list);
4469 INIT_STAT(&priv->tx_pend_stat);
4470 INIT_STAT(&priv->tx_free_stat);
4471
4472 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4473 /* We simply drop any SKBs that have been queued for
4474 * transmit */
4475 if (priv->tx_buffers[i].info.d_struct.txb) {
4476 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4477 txb);
4478 priv->tx_buffers[i].info.d_struct.txb = NULL;
4479 }
4480
4481 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4482 }
4483
4484 SET_STAT(&priv->tx_free_stat, i);
4485
4486 priv->tx_queue.oldest = 0;
4487 priv->tx_queue.available = priv->tx_queue.entries;
4488 priv->tx_queue.next = 0;
4489 INIT_STAT(&priv->txq_stat);
4490 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4491
4492 bd_queue_initialize(priv, &priv->tx_queue,
4493 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4494 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4495 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4496 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4497
4498 IPW_DEBUG_INFO("exit\n");
4499
4500 }
4501
4502 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4503 {
4504 int i;
4505
4506 IPW_DEBUG_INFO("enter\n");
4507
4508 bd_queue_free(priv, &priv->tx_queue);
4509
4510 if (!priv->tx_buffers)
4511 return;
4512
4513 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4514 if (priv->tx_buffers[i].info.d_struct.txb) {
4515 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4516 txb);
4517 priv->tx_buffers[i].info.d_struct.txb = NULL;
4518 }
4519 if (priv->tx_buffers[i].info.d_struct.data)
4520 pci_free_consistent(priv->pci_dev,
4521 sizeof(struct ipw2100_data_header),
4522 priv->tx_buffers[i].info.d_struct.
4523 data,
4524 priv->tx_buffers[i].info.d_struct.
4525 data_phys);
4526 }
4527
4528 kfree(priv->tx_buffers);
4529 priv->tx_buffers = NULL;
4530
4531 IPW_DEBUG_INFO("exit\n");
4532 }
4533
4534 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4535 {
4536 int i, j, err = -EINVAL;
4537
4538 IPW_DEBUG_INFO("enter\n");
4539
4540 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4541 if (err) {
4542 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4543 return err;
4544 }
4545
4546 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4547 if (err) {
4548 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4549 bd_queue_free(priv, &priv->rx_queue);
4550 return err;
4551 }
4552
4553 /*
4554 * allocate packets
4555 */
4556 priv->rx_buffers = (struct ipw2100_rx_packet *)
4557 kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4558 GFP_KERNEL);
4559 if (!priv->rx_buffers) {
4560 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4561
4562 bd_queue_free(priv, &priv->rx_queue);
4563
4564 status_queue_free(priv);
4565
4566 return -ENOMEM;
4567 }
4568
4569 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4570 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4571
4572 err = ipw2100_alloc_skb(priv, packet);
4573 if (unlikely(err)) {
4574 err = -ENOMEM;
4575 break;
4576 }
4577
4578 /* The BD holds the cache aligned address */
4579 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4580 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4581 priv->status_queue.drv[i].status_fields = 0;
4582 }
4583
4584 if (i == RX_QUEUE_LENGTH)
4585 return 0;
4586
4587 for (j = 0; j < i; j++) {
4588 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4589 sizeof(struct ipw2100_rx_packet),
4590 PCI_DMA_FROMDEVICE);
4591 dev_kfree_skb(priv->rx_buffers[j].skb);
4592 }
4593
4594 kfree(priv->rx_buffers);
4595 priv->rx_buffers = NULL;
4596
4597 bd_queue_free(priv, &priv->rx_queue);
4598
4599 status_queue_free(priv);
4600
4601 return err;
4602 }
4603
4604 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4605 {
4606 IPW_DEBUG_INFO("enter\n");
4607
4608 priv->rx_queue.oldest = 0;
4609 priv->rx_queue.available = priv->rx_queue.entries - 1;
4610 priv->rx_queue.next = priv->rx_queue.entries - 1;
4611
4612 INIT_STAT(&priv->rxq_stat);
4613 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4614
4615 bd_queue_initialize(priv, &priv->rx_queue,
4616 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4617 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4618 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4619 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4620
4621 /* set up the status queue */
4622 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4623 priv->status_queue.nic);
4624
4625 IPW_DEBUG_INFO("exit\n");
4626 }
4627
4628 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4629 {
4630 int i;
4631
4632 IPW_DEBUG_INFO("enter\n");
4633
4634 bd_queue_free(priv, &priv->rx_queue);
4635 status_queue_free(priv);
4636
4637 if (!priv->rx_buffers)
4638 return;
4639
4640 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4641 if (priv->rx_buffers[i].rxp) {
4642 pci_unmap_single(priv->pci_dev,
4643 priv->rx_buffers[i].dma_addr,
4644 sizeof(struct ipw2100_rx),
4645 PCI_DMA_FROMDEVICE);
4646 dev_kfree_skb(priv->rx_buffers[i].skb);
4647 }
4648 }
4649
4650 kfree(priv->rx_buffers);
4651 priv->rx_buffers = NULL;
4652
4653 IPW_DEBUG_INFO("exit\n");
4654 }
4655
4656 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4657 {
4658 u32 length = ETH_ALEN;
4659 u8 addr[ETH_ALEN];
4660
4661 int err;
4662
4663 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4664 if (err) {
4665 IPW_DEBUG_INFO("MAC address read failed\n");
4666 return -EIO;
4667 }
4668
4669 memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4670 IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4671
4672 return 0;
4673 }
4674
4675 /********************************************************************
4676 *
4677 * Firmware Commands
4678 *
4679 ********************************************************************/
4680
4681 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4682 {
4683 struct host_command cmd = {
4684 .host_command = ADAPTER_ADDRESS,
4685 .host_command_sequence = 0,
4686 .host_command_length = ETH_ALEN
4687 };
4688 int err;
4689
4690 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4691
4692 IPW_DEBUG_INFO("enter\n");
4693
4694 if (priv->config & CFG_CUSTOM_MAC) {
4695 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4696 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4697 } else
4698 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4699 ETH_ALEN);
4700
4701 err = ipw2100_hw_send_command(priv, &cmd);
4702
4703 IPW_DEBUG_INFO("exit\n");
4704 return err;
4705 }
4706
4707 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4708 int batch_mode)
4709 {
4710 struct host_command cmd = {
4711 .host_command = PORT_TYPE,
4712 .host_command_sequence = 0,
4713 .host_command_length = sizeof(u32)
4714 };
4715 int err;
4716
4717 switch (port_type) {
4718 case IW_MODE_INFRA:
4719 cmd.host_command_parameters[0] = IPW_BSS;
4720 break;
4721 case IW_MODE_ADHOC:
4722 cmd.host_command_parameters[0] = IPW_IBSS;
4723 break;
4724 }
4725
4726 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4727 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4728
4729 if (!batch_mode) {
4730 err = ipw2100_disable_adapter(priv);
4731 if (err) {
4732 printk(KERN_ERR DRV_NAME
4733 ": %s: Could not disable adapter %d\n",
4734 priv->net_dev->name, err);
4735 return err;
4736 }
4737 }
4738
4739 /* send cmd to firmware */
4740 err = ipw2100_hw_send_command(priv, &cmd);
4741
4742 if (!batch_mode)
4743 ipw2100_enable_adapter(priv);
4744
4745 return err;
4746 }
4747
4748 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4749 int batch_mode)
4750 {
4751 struct host_command cmd = {
4752 .host_command = CHANNEL,
4753 .host_command_sequence = 0,
4754 .host_command_length = sizeof(u32)
4755 };
4756 int err;
4757
4758 cmd.host_command_parameters[0] = channel;
4759
4760 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4761
4762 /* If BSS then we don't support channel selection */
4763 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4764 return 0;
4765
4766 if ((channel != 0) &&
4767 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4768 return -EINVAL;
4769
4770 if (!batch_mode) {
4771 err = ipw2100_disable_adapter(priv);
4772 if (err)
4773 return err;
4774 }
4775
4776 err = ipw2100_hw_send_command(priv, &cmd);
4777 if (err) {
4778 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4779 return err;
4780 }
4781
4782 if (channel)
4783 priv->config |= CFG_STATIC_CHANNEL;
4784 else
4785 priv->config &= ~CFG_STATIC_CHANNEL;
4786
4787 priv->channel = channel;
4788
4789 if (!batch_mode) {
4790 err = ipw2100_enable_adapter(priv);
4791 if (err)
4792 return err;
4793 }
4794
4795 return 0;
4796 }
4797
4798 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4799 {
4800 struct host_command cmd = {
4801 .host_command = SYSTEM_CONFIG,
4802 .host_command_sequence = 0,
4803 .host_command_length = 12,
4804 };
4805 u32 ibss_mask, len = sizeof(u32);
4806 int err;
4807
4808 /* Set system configuration */
4809
4810 if (!batch_mode) {
4811 err = ipw2100_disable_adapter(priv);
4812 if (err)
4813 return err;
4814 }
4815
4816 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4817 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4818
4819 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4820 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4821
4822 if (!(priv->config & CFG_LONG_PREAMBLE))
4823 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4824
4825 err = ipw2100_get_ordinal(priv,
4826 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4827 &ibss_mask, &len);
4828 if (err)
4829 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4830
4831 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4832 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4833
4834 /* 11b only */
4835 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4836
4837 err = ipw2100_hw_send_command(priv, &cmd);
4838 if (err)
4839 return err;
4840
4841 /* If IPv6 is configured in the kernel then we don't want to filter out all
4842 * of the multicast packets as IPv6 needs some. */
4843 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4844 cmd.host_command = ADD_MULTICAST;
4845 cmd.host_command_sequence = 0;
4846 cmd.host_command_length = 0;
4847
4848 ipw2100_hw_send_command(priv, &cmd);
4849 #endif
4850 if (!batch_mode) {
4851 err = ipw2100_enable_adapter(priv);
4852 if (err)
4853 return err;
4854 }
4855
4856 return 0;
4857 }
4858
4859 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4860 int batch_mode)
4861 {
4862 struct host_command cmd = {
4863 .host_command = BASIC_TX_RATES,
4864 .host_command_sequence = 0,
4865 .host_command_length = 4
4866 };
4867 int err;
4868
4869 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4870
4871 if (!batch_mode) {
4872 err = ipw2100_disable_adapter(priv);
4873 if (err)
4874 return err;
4875 }
4876
4877 /* Set BASIC TX Rate first */
4878 ipw2100_hw_send_command(priv, &cmd);
4879
4880 /* Set TX Rate */
4881 cmd.host_command = TX_RATES;
4882 ipw2100_hw_send_command(priv, &cmd);
4883
4884 /* Set MSDU TX Rate */
4885 cmd.host_command = MSDU_TX_RATES;
4886 ipw2100_hw_send_command(priv, &cmd);
4887
4888 if (!batch_mode) {
4889 err = ipw2100_enable_adapter(priv);
4890 if (err)
4891 return err;
4892 }
4893
4894 priv->tx_rates = rate;
4895
4896 return 0;
4897 }
4898
4899 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4900 {
4901 struct host_command cmd = {
4902 .host_command = POWER_MODE,
4903 .host_command_sequence = 0,
4904 .host_command_length = 4
4905 };
4906 int err;
4907
4908 cmd.host_command_parameters[0] = power_level;
4909
4910 err = ipw2100_hw_send_command(priv, &cmd);
4911 if (err)
4912 return err;
4913
4914 if (power_level == IPW_POWER_MODE_CAM)
4915 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4916 else
4917 priv->power_mode = IPW_POWER_ENABLED | power_level;
4918
4919 #ifdef IPW2100_TX_POWER
4920 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4921 /* Set beacon interval */
4922 cmd.host_command = TX_POWER_INDEX;
4923 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4924
4925 err = ipw2100_hw_send_command(priv, &cmd);
4926 if (err)
4927 return err;
4928 }
4929 #endif
4930
4931 return 0;
4932 }
4933
4934 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4935 {
4936 struct host_command cmd = {
4937 .host_command = RTS_THRESHOLD,
4938 .host_command_sequence = 0,
4939 .host_command_length = 4
4940 };
4941 int err;
4942
4943 if (threshold & RTS_DISABLED)
4944 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4945 else
4946 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4947
4948 err = ipw2100_hw_send_command(priv, &cmd);
4949 if (err)
4950 return err;
4951
4952 priv->rts_threshold = threshold;
4953
4954 return 0;
4955 }
4956
4957 #if 0
4958 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4959 u32 threshold, int batch_mode)
4960 {
4961 struct host_command cmd = {
4962 .host_command = FRAG_THRESHOLD,
4963 .host_command_sequence = 0,
4964 .host_command_length = 4,
4965 .host_command_parameters[0] = 0,
4966 };
4967 int err;
4968
4969 if (!batch_mode) {
4970 err = ipw2100_disable_adapter(priv);
4971 if (err)
4972 return err;
4973 }
4974
4975 if (threshold == 0)
4976 threshold = DEFAULT_FRAG_THRESHOLD;
4977 else {
4978 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4979 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4980 }
4981
4982 cmd.host_command_parameters[0] = threshold;
4983
4984 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4985
4986 err = ipw2100_hw_send_command(priv, &cmd);
4987
4988 if (!batch_mode)
4989 ipw2100_enable_adapter(priv);
4990
4991 if (!err)
4992 priv->frag_threshold = threshold;
4993
4994 return err;
4995 }
4996 #endif
4997
4998 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4999 {
5000 struct host_command cmd = {
5001 .host_command = SHORT_RETRY_LIMIT,
5002 .host_command_sequence = 0,
5003 .host_command_length = 4
5004 };
5005 int err;
5006
5007 cmd.host_command_parameters[0] = retry;
5008
5009 err = ipw2100_hw_send_command(priv, &cmd);
5010 if (err)
5011 return err;
5012
5013 priv->short_retry_limit = retry;
5014
5015 return 0;
5016 }
5017
5018 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5019 {
5020 struct host_command cmd = {
5021 .host_command = LONG_RETRY_LIMIT,
5022 .host_command_sequence = 0,
5023 .host_command_length = 4
5024 };
5025 int err;
5026
5027 cmd.host_command_parameters[0] = retry;
5028
5029 err = ipw2100_hw_send_command(priv, &cmd);
5030 if (err)
5031 return err;
5032
5033 priv->long_retry_limit = retry;
5034
5035 return 0;
5036 }
5037
5038 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5039 int batch_mode)
5040 {
5041 struct host_command cmd = {
5042 .host_command = MANDATORY_BSSID,
5043 .host_command_sequence = 0,
5044 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5045 };
5046 int err;
5047
5048 #ifdef CONFIG_IPW2100_DEBUG
5049 if (bssid != NULL)
5050 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5051 else
5052 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5053 #endif
5054 /* if BSSID is empty then we disable mandatory bssid mode */
5055 if (bssid != NULL)
5056 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5057
5058 if (!batch_mode) {
5059 err = ipw2100_disable_adapter(priv);
5060 if (err)
5061 return err;
5062 }
5063
5064 err = ipw2100_hw_send_command(priv, &cmd);
5065
5066 if (!batch_mode)
5067 ipw2100_enable_adapter(priv);
5068
5069 return err;
5070 }
5071
5072 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5073 {
5074 struct host_command cmd = {
5075 .host_command = DISASSOCIATION_BSSID,
5076 .host_command_sequence = 0,
5077 .host_command_length = ETH_ALEN
5078 };
5079 int err;
5080 int len;
5081
5082 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5083
5084 len = ETH_ALEN;
5085 /* The Firmware currently ignores the BSSID and just disassociates from
5086 * the currently associated AP -- but in the off chance that a future
5087 * firmware does use the BSSID provided here, we go ahead and try and
5088 * set it to the currently associated AP's BSSID */
5089 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5090
5091 err = ipw2100_hw_send_command(priv, &cmd);
5092
5093 return err;
5094 }
5095
5096 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5097 struct ipw2100_wpa_assoc_frame *, int)
5098 __attribute__ ((unused));
5099
5100 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5101 struct ipw2100_wpa_assoc_frame *wpa_frame,
5102 int batch_mode)
5103 {
5104 struct host_command cmd = {
5105 .host_command = SET_WPA_IE,
5106 .host_command_sequence = 0,
5107 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5108 };
5109 int err;
5110
5111 IPW_DEBUG_HC("SET_WPA_IE\n");
5112
5113 if (!batch_mode) {
5114 err = ipw2100_disable_adapter(priv);
5115 if (err)
5116 return err;
5117 }
5118
5119 memcpy(cmd.host_command_parameters, wpa_frame,
5120 sizeof(struct ipw2100_wpa_assoc_frame));
5121
5122 err = ipw2100_hw_send_command(priv, &cmd);
5123
5124 if (!batch_mode) {
5125 if (ipw2100_enable_adapter(priv))
5126 err = -EIO;
5127 }
5128
5129 return err;
5130 }
5131
5132 struct security_info_params {
5133 u32 allowed_ciphers;
5134 u16 version;
5135 u8 auth_mode;
5136 u8 replay_counters_number;
5137 u8 unicast_using_group;
5138 } __attribute__ ((packed));
5139
5140 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5141 int auth_mode,
5142 int security_level,
5143 int unicast_using_group,
5144 int batch_mode)
5145 {
5146 struct host_command cmd = {
5147 .host_command = SET_SECURITY_INFORMATION,
5148 .host_command_sequence = 0,
5149 .host_command_length = sizeof(struct security_info_params)
5150 };
5151 struct security_info_params *security =
5152 (struct security_info_params *)&cmd.host_command_parameters;
5153 int err;
5154 memset(security, 0, sizeof(*security));
5155
5156 /* If shared key AP authentication is turned on, then we need to
5157 * configure the firmware to try and use it.
5158 *
5159 * Actual data encryption/decryption is handled by the host. */
5160 security->auth_mode = auth_mode;
5161 security->unicast_using_group = unicast_using_group;
5162
5163 switch (security_level) {
5164 default:
5165 case SEC_LEVEL_0:
5166 security->allowed_ciphers = IPW_NONE_CIPHER;
5167 break;
5168 case SEC_LEVEL_1:
5169 security->allowed_ciphers = IPW_WEP40_CIPHER |
5170 IPW_WEP104_CIPHER;
5171 break;
5172 case SEC_LEVEL_2:
5173 security->allowed_ciphers = IPW_WEP40_CIPHER |
5174 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5175 break;
5176 case SEC_LEVEL_2_CKIP:
5177 security->allowed_ciphers = IPW_WEP40_CIPHER |
5178 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5179 break;
5180 case SEC_LEVEL_3:
5181 security->allowed_ciphers = IPW_WEP40_CIPHER |
5182 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5183 break;
5184 }
5185
5186 IPW_DEBUG_HC
5187 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5188 security->auth_mode, security->allowed_ciphers, security_level);
5189
5190 security->replay_counters_number = 0;
5191
5192 if (!batch_mode) {
5193 err = ipw2100_disable_adapter(priv);
5194 if (err)
5195 return err;
5196 }
5197
5198 err = ipw2100_hw_send_command(priv, &cmd);
5199
5200 if (!batch_mode)
5201 ipw2100_enable_adapter(priv);
5202
5203 return err;
5204 }
5205
5206 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5207 {
5208 struct host_command cmd = {
5209 .host_command = TX_POWER_INDEX,
5210 .host_command_sequence = 0,
5211 .host_command_length = 4
5212 };
5213 int err = 0;
5214 u32 tmp = tx_power;
5215
5216 if (tx_power != IPW_TX_POWER_DEFAULT)
5217 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5218 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5219
5220 cmd.host_command_parameters[0] = tmp;
5221
5222 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5223 err = ipw2100_hw_send_command(priv, &cmd);
5224 if (!err)
5225 priv->tx_power = tx_power;
5226
5227 return 0;
5228 }
5229
5230 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5231 u32 interval, int batch_mode)
5232 {
5233 struct host_command cmd = {
5234 .host_command = BEACON_INTERVAL,
5235 .host_command_sequence = 0,
5236 .host_command_length = 4
5237 };
5238 int err;
5239
5240 cmd.host_command_parameters[0] = interval;
5241
5242 IPW_DEBUG_INFO("enter\n");
5243
5244 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5245 if (!batch_mode) {
5246 err = ipw2100_disable_adapter(priv);
5247 if (err)
5248 return err;
5249 }
5250
5251 ipw2100_hw_send_command(priv, &cmd);
5252
5253 if (!batch_mode) {
5254 err = ipw2100_enable_adapter(priv);
5255 if (err)
5256 return err;
5257 }
5258 }
5259
5260 IPW_DEBUG_INFO("exit\n");
5261
5262 return 0;
5263 }
5264
5265 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5266 {
5267 ipw2100_tx_initialize(priv);
5268 ipw2100_rx_initialize(priv);
5269 ipw2100_msg_initialize(priv);
5270 }
5271
5272 void ipw2100_queues_free(struct ipw2100_priv *priv)
5273 {
5274 ipw2100_tx_free(priv);
5275 ipw2100_rx_free(priv);
5276 ipw2100_msg_free(priv);
5277 }
5278
5279 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5280 {
5281 if (ipw2100_tx_allocate(priv) ||
5282 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5283 goto fail;
5284
5285 return 0;
5286
5287 fail:
5288 ipw2100_tx_free(priv);
5289 ipw2100_rx_free(priv);
5290 ipw2100_msg_free(priv);
5291 return -ENOMEM;
5292 }
5293
5294 #define IPW_PRIVACY_CAPABLE 0x0008
5295
5296 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5297 int batch_mode)
5298 {
5299 struct host_command cmd = {
5300 .host_command = WEP_FLAGS,
5301 .host_command_sequence = 0,
5302 .host_command_length = 4
5303 };
5304 int err;
5305
5306 cmd.host_command_parameters[0] = flags;
5307
5308 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5309
5310 if (!batch_mode) {
5311 err = ipw2100_disable_adapter(priv);
5312 if (err) {
5313 printk(KERN_ERR DRV_NAME
5314 ": %s: Could not disable adapter %d\n",
5315 priv->net_dev->name, err);
5316 return err;
5317 }
5318 }
5319
5320 /* send cmd to firmware */
5321 err = ipw2100_hw_send_command(priv, &cmd);
5322
5323 if (!batch_mode)
5324 ipw2100_enable_adapter(priv);
5325
5326 return err;
5327 }
5328
5329 struct ipw2100_wep_key {
5330 u8 idx;
5331 u8 len;
5332 u8 key[13];
5333 };
5334
5335 /* Macros to ease up priting WEP keys */
5336 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5337 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5338 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5339 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5340
5341 /**
5342 * Set a the wep key
5343 *
5344 * @priv: struct to work on
5345 * @idx: index of the key we want to set
5346 * @key: ptr to the key data to set
5347 * @len: length of the buffer at @key
5348 * @batch_mode: FIXME perform the operation in batch mode, not
5349 * disabling the device.
5350 *
5351 * @returns 0 if OK, < 0 errno code on error.
5352 *
5353 * Fill out a command structure with the new wep key, length an
5354 * index and send it down the wire.
5355 */
5356 static int ipw2100_set_key(struct ipw2100_priv *priv,
5357 int idx, char *key, int len, int batch_mode)
5358 {
5359 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5360 struct host_command cmd = {
5361 .host_command = WEP_KEY_INFO,
5362 .host_command_sequence = 0,
5363 .host_command_length = sizeof(struct ipw2100_wep_key),
5364 };
5365 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5366 int err;
5367
5368 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5369 idx, keylen, len);
5370
5371 /* NOTE: We don't check cached values in case the firmware was reset
5372 * or some other problem is occurring. If the user is setting the key,
5373 * then we push the change */
5374
5375 wep_key->idx = idx;
5376 wep_key->len = keylen;
5377
5378 if (keylen) {
5379 memcpy(wep_key->key, key, len);
5380 memset(wep_key->key + len, 0, keylen - len);
5381 }
5382
5383 /* Will be optimized out on debug not being configured in */
5384 if (keylen == 0)
5385 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5386 priv->net_dev->name, wep_key->idx);
5387 else if (keylen == 5)
5388 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5389 priv->net_dev->name, wep_key->idx, wep_key->len,
5390 WEP_STR_64(wep_key->key));
5391 else
5392 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5393 "\n",
5394 priv->net_dev->name, wep_key->idx, wep_key->len,
5395 WEP_STR_128(wep_key->key));
5396
5397 if (!batch_mode) {
5398 err = ipw2100_disable_adapter(priv);
5399 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5400 if (err) {
5401 printk(KERN_ERR DRV_NAME
5402 ": %s: Could not disable adapter %d\n",
5403 priv->net_dev->name, err);
5404 return err;
5405 }
5406 }
5407
5408 /* send cmd to firmware */
5409 err = ipw2100_hw_send_command(priv, &cmd);
5410
5411 if (!batch_mode) {
5412 int err2 = ipw2100_enable_adapter(priv);
5413 if (err == 0)
5414 err = err2;
5415 }
5416 return err;
5417 }
5418
5419 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5420 int idx, int batch_mode)
5421 {
5422 struct host_command cmd = {
5423 .host_command = WEP_KEY_INDEX,
5424 .host_command_sequence = 0,
5425 .host_command_length = 4,
5426 .host_command_parameters = {idx},
5427 };
5428 int err;
5429
5430 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5431
5432 if (idx < 0 || idx > 3)
5433 return -EINVAL;
5434
5435 if (!batch_mode) {
5436 err = ipw2100_disable_adapter(priv);
5437 if (err) {
5438 printk(KERN_ERR DRV_NAME
5439 ": %s: Could not disable adapter %d\n",
5440 priv->net_dev->name, err);
5441 return err;
5442 }
5443 }
5444
5445 /* send cmd to firmware */
5446 err = ipw2100_hw_send_command(priv, &cmd);
5447
5448 if (!batch_mode)
5449 ipw2100_enable_adapter(priv);
5450
5451 return err;
5452 }
5453
5454 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5455 {
5456 int i, err, auth_mode, sec_level, use_group;
5457
5458 if (!(priv->status & STATUS_RUNNING))
5459 return 0;
5460
5461 if (!batch_mode) {
5462 err = ipw2100_disable_adapter(priv);
5463 if (err)
5464 return err;
5465 }
5466
5467 if (!priv->ieee->sec.enabled) {
5468 err =
5469 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5470 SEC_LEVEL_0, 0, 1);
5471 } else {
5472 auth_mode = IPW_AUTH_OPEN;
5473 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5474 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5475 auth_mode = IPW_AUTH_SHARED;
5476 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5477 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5478 }
5479
5480 sec_level = SEC_LEVEL_0;
5481 if (priv->ieee->sec.flags & SEC_LEVEL)
5482 sec_level = priv->ieee->sec.level;
5483
5484 use_group = 0;
5485 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5486 use_group = priv->ieee->sec.unicast_uses_group;
5487
5488 err =
5489 ipw2100_set_security_information(priv, auth_mode, sec_level,
5490 use_group, 1);
5491 }
5492
5493 if (err)
5494 goto exit;
5495
5496 if (priv->ieee->sec.enabled) {
5497 for (i = 0; i < 4; i++) {
5498 if (!(priv->ieee->sec.flags & (1 << i))) {
5499 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5500 priv->ieee->sec.key_sizes[i] = 0;
5501 } else {
5502 err = ipw2100_set_key(priv, i,
5503 priv->ieee->sec.keys[i],
5504 priv->ieee->sec.
5505 key_sizes[i], 1);
5506 if (err)
5507 goto exit;
5508 }
5509 }
5510
5511 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5512 }
5513
5514 /* Always enable privacy so the Host can filter WEP packets if
5515 * encrypted data is sent up */
5516 err =
5517 ipw2100_set_wep_flags(priv,
5518 priv->ieee->sec.
5519 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5520 if (err)
5521 goto exit;
5522
5523 priv->status &= ~STATUS_SECURITY_UPDATED;
5524
5525 exit:
5526 if (!batch_mode)
5527 ipw2100_enable_adapter(priv);
5528
5529 return err;
5530 }
5531
5532 static void ipw2100_security_work(struct work_struct *work)
5533 {
5534 struct ipw2100_priv *priv =
5535 container_of(work, struct ipw2100_priv, security_work.work);
5536
5537 /* If we happen to have reconnected before we get a chance to
5538 * process this, then update the security settings--which causes
5539 * a disassociation to occur */
5540 if (!(priv->status & STATUS_ASSOCIATED) &&
5541 priv->status & STATUS_SECURITY_UPDATED)
5542 ipw2100_configure_security(priv, 0);
5543 }
5544
5545 static void shim__set_security(struct net_device *dev,
5546 struct ieee80211_security *sec)
5547 {
5548 struct ipw2100_priv *priv = ieee80211_priv(dev);
5549 int i, force_update = 0;
5550
5551 mutex_lock(&priv->action_mutex);
5552 if (!(priv->status & STATUS_INITIALIZED))
5553 goto done;
5554
5555 for (i = 0; i < 4; i++) {
5556 if (sec->flags & (1 << i)) {
5557 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5558 if (sec->key_sizes[i] == 0)
5559 priv->ieee->sec.flags &= ~(1 << i);
5560 else
5561 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5562 sec->key_sizes[i]);
5563 if (sec->level == SEC_LEVEL_1) {
5564 priv->ieee->sec.flags |= (1 << i);
5565 priv->status |= STATUS_SECURITY_UPDATED;
5566 } else
5567 priv->ieee->sec.flags &= ~(1 << i);
5568 }
5569 }
5570
5571 if ((sec->flags & SEC_ACTIVE_KEY) &&
5572 priv->ieee->sec.active_key != sec->active_key) {
5573 if (sec->active_key <= 3) {
5574 priv->ieee->sec.active_key = sec->active_key;
5575 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5576 } else
5577 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5578
5579 priv->status |= STATUS_SECURITY_UPDATED;
5580 }
5581
5582 if ((sec->flags & SEC_AUTH_MODE) &&
5583 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5584 priv->ieee->sec.auth_mode = sec->auth_mode;
5585 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5586 priv->status |= STATUS_SECURITY_UPDATED;
5587 }
5588
5589 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5590 priv->ieee->sec.flags |= SEC_ENABLED;
5591 priv->ieee->sec.enabled = sec->enabled;
5592 priv->status |= STATUS_SECURITY_UPDATED;
5593 force_update = 1;
5594 }
5595
5596 if (sec->flags & SEC_ENCRYPT)
5597 priv->ieee->sec.encrypt = sec->encrypt;
5598
5599 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5600 priv->ieee->sec.level = sec->level;
5601 priv->ieee->sec.flags |= SEC_LEVEL;
5602 priv->status |= STATUS_SECURITY_UPDATED;
5603 }
5604
5605 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5606 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5607 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5608 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5609 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5610 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5611 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5612 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5613 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5614 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5615
5616 /* As a temporary work around to enable WPA until we figure out why
5617 * wpa_supplicant toggles the security capability of the driver, which
5618 * forces a disassocation with force_update...
5619 *
5620 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5621 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5622 ipw2100_configure_security(priv, 0);
5623 done:
5624 mutex_unlock(&priv->action_mutex);
5625 }
5626
5627 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5628 {
5629 int err;
5630 int batch_mode = 1;
5631 u8 *bssid;
5632
5633 IPW_DEBUG_INFO("enter\n");
5634
5635 err = ipw2100_disable_adapter(priv);
5636 if (err)
5637 return err;
5638 #ifdef CONFIG_IPW2100_MONITOR
5639 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5640 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5641 if (err)
5642 return err;
5643
5644 IPW_DEBUG_INFO("exit\n");
5645
5646 return 0;
5647 }
5648 #endif /* CONFIG_IPW2100_MONITOR */
5649
5650 err = ipw2100_read_mac_address(priv);
5651 if (err)
5652 return -EIO;
5653
5654 err = ipw2100_set_mac_address(priv, batch_mode);
5655 if (err)
5656 return err;
5657
5658 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5659 if (err)
5660 return err;
5661
5662 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5663 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5664 if (err)
5665 return err;
5666 }
5667
5668 err = ipw2100_system_config(priv, batch_mode);
5669 if (err)
5670 return err;
5671
5672 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5673 if (err)
5674 return err;
5675
5676 /* Default to power mode OFF */
5677 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5678 if (err)
5679 return err;
5680
5681 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5682 if (err)
5683 return err;
5684
5685 if (priv->config & CFG_STATIC_BSSID)
5686 bssid = priv->bssid;
5687 else
5688 bssid = NULL;
5689 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5690 if (err)
5691 return err;
5692
5693 if (priv->config & CFG_STATIC_ESSID)
5694 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5695 batch_mode);
5696 else
5697 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5698 if (err)
5699 return err;
5700
5701 err = ipw2100_configure_security(priv, batch_mode);
5702 if (err)
5703 return err;
5704
5705 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5706 err =
5707 ipw2100_set_ibss_beacon_interval(priv,
5708 priv->beacon_interval,
5709 batch_mode);
5710 if (err)
5711 return err;
5712
5713 err = ipw2100_set_tx_power(priv, priv->tx_power);
5714 if (err)
5715 return err;
5716 }
5717
5718 /*
5719 err = ipw2100_set_fragmentation_threshold(
5720 priv, priv->frag_threshold, batch_mode);
5721 if (err)
5722 return err;
5723 */
5724
5725 IPW_DEBUG_INFO("exit\n");
5726
5727 return 0;
5728 }
5729
5730 /*************************************************************************
5731 *
5732 * EXTERNALLY CALLED METHODS
5733 *
5734 *************************************************************************/
5735
5736 /* This method is called by the network layer -- not to be confused with
5737 * ipw2100_set_mac_address() declared above called by this driver (and this
5738 * method as well) to talk to the firmware */
5739 static int ipw2100_set_address(struct net_device *dev, void *p)
5740 {
5741 struct ipw2100_priv *priv = ieee80211_priv(dev);
5742 struct sockaddr *addr = p;
5743 int err = 0;
5744
5745 if (!is_valid_ether_addr(addr->sa_data))
5746 return -EADDRNOTAVAIL;
5747
5748 mutex_lock(&priv->action_mutex);
5749
5750 priv->config |= CFG_CUSTOM_MAC;
5751 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5752
5753 err = ipw2100_set_mac_address(priv, 0);
5754 if (err)
5755 goto done;
5756
5757 priv->reset_backoff = 0;
5758 mutex_unlock(&priv->action_mutex);
5759 ipw2100_reset_adapter(&priv->reset_work.work);
5760 return 0;
5761
5762 done:
5763 mutex_unlock(&priv->action_mutex);
5764 return err;
5765 }
5766
5767 static int ipw2100_open(struct net_device *dev)
5768 {
5769 struct ipw2100_priv *priv = ieee80211_priv(dev);
5770 unsigned long flags;
5771 IPW_DEBUG_INFO("dev->open\n");
5772
5773 spin_lock_irqsave(&priv->low_lock, flags);
5774 if (priv->status & STATUS_ASSOCIATED) {
5775 netif_carrier_on(dev);
5776 netif_start_queue(dev);
5777 }
5778 spin_unlock_irqrestore(&priv->low_lock, flags);
5779
5780 return 0;
5781 }
5782
5783 static int ipw2100_close(struct net_device *dev)
5784 {
5785 struct ipw2100_priv *priv = ieee80211_priv(dev);
5786 unsigned long flags;
5787 struct list_head *element;
5788 struct ipw2100_tx_packet *packet;
5789
5790 IPW_DEBUG_INFO("enter\n");
5791
5792 spin_lock_irqsave(&priv->low_lock, flags);
5793
5794 if (priv->status & STATUS_ASSOCIATED)
5795 netif_carrier_off(dev);
5796 netif_stop_queue(dev);
5797
5798 /* Flush the TX queue ... */
5799 while (!list_empty(&priv->tx_pend_list)) {
5800 element = priv->tx_pend_list.next;
5801 packet = list_entry(element, struct ipw2100_tx_packet, list);
5802
5803 list_del(element);
5804 DEC_STAT(&priv->tx_pend_stat);
5805
5806 ieee80211_txb_free(packet->info.d_struct.txb);
5807 packet->info.d_struct.txb = NULL;
5808
5809 list_add_tail(element, &priv->tx_free_list);
5810 INC_STAT(&priv->tx_free_stat);
5811 }
5812 spin_unlock_irqrestore(&priv->low_lock, flags);
5813
5814 IPW_DEBUG_INFO("exit\n");
5815
5816 return 0;
5817 }
5818
5819 /*
5820 * TODO: Fix this function... its just wrong
5821 */
5822 static void ipw2100_tx_timeout(struct net_device *dev)
5823 {
5824 struct ipw2100_priv *priv = ieee80211_priv(dev);
5825
5826 priv->ieee->stats.tx_errors++;
5827
5828 #ifdef CONFIG_IPW2100_MONITOR
5829 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5830 return;
5831 #endif
5832
5833 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5834 dev->name);
5835 schedule_reset(priv);
5836 }
5837
5838 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5839 {
5840 /* This is called when wpa_supplicant loads and closes the driver
5841 * interface. */
5842 priv->ieee->wpa_enabled = value;
5843 return 0;
5844 }
5845
5846 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5847 {
5848
5849 struct ieee80211_device *ieee = priv->ieee;
5850 struct ieee80211_security sec = {
5851 .flags = SEC_AUTH_MODE,
5852 };
5853 int ret = 0;
5854
5855 if (value & IW_AUTH_ALG_SHARED_KEY) {
5856 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5857 ieee->open_wep = 0;
5858 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5859 sec.auth_mode = WLAN_AUTH_OPEN;
5860 ieee->open_wep = 1;
5861 } else if (value & IW_AUTH_ALG_LEAP) {
5862 sec.auth_mode = WLAN_AUTH_LEAP;
5863 ieee->open_wep = 1;
5864 } else
5865 return -EINVAL;
5866
5867 if (ieee->set_security)
5868 ieee->set_security(ieee->dev, &sec);
5869 else
5870 ret = -EOPNOTSUPP;
5871
5872 return ret;
5873 }
5874
5875 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5876 char *wpa_ie, int wpa_ie_len)
5877 {
5878
5879 struct ipw2100_wpa_assoc_frame frame;
5880
5881 frame.fixed_ie_mask = 0;
5882
5883 /* copy WPA IE */
5884 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5885 frame.var_ie_len = wpa_ie_len;
5886
5887 /* make sure WPA is enabled */
5888 ipw2100_wpa_enable(priv, 1);
5889 ipw2100_set_wpa_ie(priv, &frame, 0);
5890 }
5891
5892 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5893 struct ethtool_drvinfo *info)
5894 {
5895 struct ipw2100_priv *priv = ieee80211_priv(dev);
5896 char fw_ver[64], ucode_ver[64];
5897
5898 strcpy(info->driver, DRV_NAME);
5899 strcpy(info->version, DRV_VERSION);
5900
5901 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5902 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5903
5904 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5905 fw_ver, priv->eeprom_version, ucode_ver);
5906
5907 strcpy(info->bus_info, pci_name(priv->pci_dev));
5908 }
5909
5910 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5911 {
5912 struct ipw2100_priv *priv = ieee80211_priv(dev);
5913 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5914 }
5915
5916 static const struct ethtool_ops ipw2100_ethtool_ops = {
5917 .get_link = ipw2100_ethtool_get_link,
5918 .get_drvinfo = ipw_ethtool_get_drvinfo,
5919 };
5920
5921 static void ipw2100_hang_check(struct work_struct *work)
5922 {
5923 struct ipw2100_priv *priv =
5924 container_of(work, struct ipw2100_priv, hang_check.work);
5925 unsigned long flags;
5926 u32 rtc = 0xa5a5a5a5;
5927 u32 len = sizeof(rtc);
5928 int restart = 0;
5929
5930 spin_lock_irqsave(&priv->low_lock, flags);
5931
5932 if (priv->fatal_error != 0) {
5933 /* If fatal_error is set then we need to restart */
5934 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5935 priv->net_dev->name);
5936
5937 restart = 1;
5938 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5939 (rtc == priv->last_rtc)) {
5940 /* Check if firmware is hung */
5941 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5942 priv->net_dev->name);
5943
5944 restart = 1;
5945 }
5946
5947 if (restart) {
5948 /* Kill timer */
5949 priv->stop_hang_check = 1;
5950 priv->hangs++;
5951
5952 /* Restart the NIC */
5953 schedule_reset(priv);
5954 }
5955
5956 priv->last_rtc = rtc;
5957
5958 if (!priv->stop_hang_check)
5959 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5960
5961 spin_unlock_irqrestore(&priv->low_lock, flags);
5962 }
5963
5964 static void ipw2100_rf_kill(struct work_struct *work)
5965 {
5966 struct ipw2100_priv *priv =
5967 container_of(work, struct ipw2100_priv, rf_kill.work);
5968 unsigned long flags;
5969
5970 spin_lock_irqsave(&priv->low_lock, flags);
5971
5972 if (rf_kill_active(priv)) {
5973 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5974 if (!priv->stop_rf_kill)
5975 queue_delayed_work(priv->workqueue, &priv->rf_kill,
5976 round_jiffies_relative(HZ));
5977 goto exit_unlock;
5978 }
5979
5980 /* RF Kill is now disabled, so bring the device back up */
5981
5982 if (!(priv->status & STATUS_RF_KILL_MASK)) {
5983 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5984 "device\n");
5985 schedule_reset(priv);
5986 } else
5987 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
5988 "enabled\n");
5989
5990 exit_unlock:
5991 spin_unlock_irqrestore(&priv->low_lock, flags);
5992 }
5993
5994 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
5995
5996 /* Look into using netdev destructor to shutdown ieee80211? */
5997
5998 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
5999 void __iomem * base_addr,
6000 unsigned long mem_start,
6001 unsigned long mem_len)
6002 {
6003 struct ipw2100_priv *priv;
6004 struct net_device *dev;
6005
6006 dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6007 if (!dev)
6008 return NULL;
6009 priv = ieee80211_priv(dev);
6010 priv->ieee = netdev_priv(dev);
6011 priv->pci_dev = pci_dev;
6012 priv->net_dev = dev;
6013
6014 priv->ieee->hard_start_xmit = ipw2100_tx;
6015 priv->ieee->set_security = shim__set_security;
6016
6017 priv->ieee->perfect_rssi = -20;
6018 priv->ieee->worst_rssi = -85;
6019
6020 dev->open = ipw2100_open;
6021 dev->stop = ipw2100_close;
6022 dev->init = ipw2100_net_init;
6023 dev->ethtool_ops = &ipw2100_ethtool_ops;
6024 dev->tx_timeout = ipw2100_tx_timeout;
6025 dev->wireless_handlers = &ipw2100_wx_handler_def;
6026 priv->wireless_data.ieee80211 = priv->ieee;
6027 dev->wireless_data = &priv->wireless_data;
6028 dev->set_mac_address = ipw2100_set_address;
6029 dev->watchdog_timeo = 3 * HZ;
6030 dev->irq = 0;
6031
6032 dev->base_addr = (unsigned long)base_addr;
6033 dev->mem_start = mem_start;
6034 dev->mem_end = dev->mem_start + mem_len - 1;
6035
6036 /* NOTE: We don't use the wireless_handlers hook
6037 * in dev as the system will start throwing WX requests
6038 * to us before we're actually initialized and it just
6039 * ends up causing problems. So, we just handle
6040 * the WX extensions through the ipw2100_ioctl interface */
6041
6042 /* memset() puts everything to 0, so we only have explicitly set
6043 * those values that need to be something else */
6044
6045 /* If power management is turned on, default to AUTO mode */
6046 priv->power_mode = IPW_POWER_AUTO;
6047
6048 #ifdef CONFIG_IPW2100_MONITOR
6049 priv->config |= CFG_CRC_CHECK;
6050 #endif
6051 priv->ieee->wpa_enabled = 0;
6052 priv->ieee->drop_unencrypted = 0;
6053 priv->ieee->privacy_invoked = 0;
6054 priv->ieee->ieee802_1x = 1;
6055
6056 /* Set module parameters */
6057 switch (mode) {
6058 case 1:
6059 priv->ieee->iw_mode = IW_MODE_ADHOC;
6060 break;
6061 #ifdef CONFIG_IPW2100_MONITOR
6062 case 2:
6063 priv->ieee->iw_mode = IW_MODE_MONITOR;
6064 break;
6065 #endif
6066 default:
6067 case 0:
6068 priv->ieee->iw_mode = IW_MODE_INFRA;
6069 break;
6070 }
6071
6072 if (disable == 1)
6073 priv->status |= STATUS_RF_KILL_SW;
6074
6075 if (channel != 0 &&
6076 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6077 priv->config |= CFG_STATIC_CHANNEL;
6078 priv->channel = channel;
6079 }
6080
6081 if (associate)
6082 priv->config |= CFG_ASSOCIATE;
6083
6084 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6085 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6086 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6087 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6088 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6089 priv->tx_power = IPW_TX_POWER_DEFAULT;
6090 priv->tx_rates = DEFAULT_TX_RATES;
6091
6092 strcpy(priv->nick, "ipw2100");
6093
6094 spin_lock_init(&priv->low_lock);
6095 mutex_init(&priv->action_mutex);
6096 mutex_init(&priv->adapter_mutex);
6097
6098 init_waitqueue_head(&priv->wait_command_queue);
6099
6100 netif_carrier_off(dev);
6101
6102 INIT_LIST_HEAD(&priv->msg_free_list);
6103 INIT_LIST_HEAD(&priv->msg_pend_list);
6104 INIT_STAT(&priv->msg_free_stat);
6105 INIT_STAT(&priv->msg_pend_stat);
6106
6107 INIT_LIST_HEAD(&priv->tx_free_list);
6108 INIT_LIST_HEAD(&priv->tx_pend_list);
6109 INIT_STAT(&priv->tx_free_stat);
6110 INIT_STAT(&priv->tx_pend_stat);
6111
6112 INIT_LIST_HEAD(&priv->fw_pend_list);
6113 INIT_STAT(&priv->fw_pend_stat);
6114
6115 priv->workqueue = create_workqueue(DRV_NAME);
6116
6117 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6118 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6119 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6120 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6121 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6122 INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6123 INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6124
6125 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6126 ipw2100_irq_tasklet, (unsigned long)priv);
6127
6128 /* NOTE: We do not start the deferred work for status checks yet */
6129 priv->stop_rf_kill = 1;
6130 priv->stop_hang_check = 1;
6131
6132 return dev;
6133 }
6134
6135 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6136 const struct pci_device_id *ent)
6137 {
6138 unsigned long mem_start, mem_len, mem_flags;
6139 void __iomem *base_addr = NULL;
6140 struct net_device *dev = NULL;
6141 struct ipw2100_priv *priv = NULL;
6142 int err = 0;
6143 int registered = 0;
6144 u32 val;
6145
6146 IPW_DEBUG_INFO("enter\n");
6147
6148 mem_start = pci_resource_start(pci_dev, 0);
6149 mem_len = pci_resource_len(pci_dev, 0);
6150 mem_flags = pci_resource_flags(pci_dev, 0);
6151
6152 if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6153 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6154 err = -ENODEV;
6155 goto fail;
6156 }
6157
6158 base_addr = ioremap_nocache(mem_start, mem_len);
6159 if (!base_addr) {
6160 printk(KERN_WARNING DRV_NAME
6161 "Error calling ioremap_nocache.\n");
6162 err = -EIO;
6163 goto fail;
6164 }
6165
6166 /* allocate and initialize our net_device */
6167 dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6168 if (!dev) {
6169 printk(KERN_WARNING DRV_NAME
6170 "Error calling ipw2100_alloc_device.\n");
6171 err = -ENOMEM;
6172 goto fail;
6173 }
6174
6175 /* set up PCI mappings for device */
6176 err = pci_enable_device(pci_dev);
6177 if (err) {
6178 printk(KERN_WARNING DRV_NAME
6179 "Error calling pci_enable_device.\n");
6180 return err;
6181 }
6182
6183 priv = ieee80211_priv(dev);
6184
6185 pci_set_master(pci_dev);
6186 pci_set_drvdata(pci_dev, priv);
6187
6188 err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6189 if (err) {
6190 printk(KERN_WARNING DRV_NAME
6191 "Error calling pci_set_dma_mask.\n");
6192 pci_disable_device(pci_dev);
6193 return err;
6194 }
6195
6196 err = pci_request_regions(pci_dev, DRV_NAME);
6197 if (err) {
6198 printk(KERN_WARNING DRV_NAME
6199 "Error calling pci_request_regions.\n");
6200 pci_disable_device(pci_dev);
6201 return err;
6202 }
6203
6204 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6205 * PCI Tx retries from interfering with C3 CPU state */
6206 pci_read_config_dword(pci_dev, 0x40, &val);
6207 if ((val & 0x0000ff00) != 0)
6208 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6209
6210 pci_set_power_state(pci_dev, PCI_D0);
6211
6212 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6213 printk(KERN_WARNING DRV_NAME
6214 "Device not found via register read.\n");
6215 err = -ENODEV;
6216 goto fail;
6217 }
6218
6219 SET_NETDEV_DEV(dev, &pci_dev->dev);
6220
6221 /* Force interrupts to be shut off on the device */
6222 priv->status |= STATUS_INT_ENABLED;
6223 ipw2100_disable_interrupts(priv);
6224
6225 /* Allocate and initialize the Tx/Rx queues and lists */
6226 if (ipw2100_queues_allocate(priv)) {
6227 printk(KERN_WARNING DRV_NAME
6228 "Error calling ipw2100_queues_allocate.\n");
6229 err = -ENOMEM;
6230 goto fail;
6231 }
6232 ipw2100_queues_initialize(priv);
6233
6234 err = request_irq(pci_dev->irq,
6235 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6236 if (err) {
6237 printk(KERN_WARNING DRV_NAME
6238 "Error calling request_irq: %d.\n", pci_dev->irq);
6239 goto fail;
6240 }
6241 dev->irq = pci_dev->irq;
6242
6243 IPW_DEBUG_INFO("Attempting to register device...\n");
6244
6245 printk(KERN_INFO DRV_NAME
6246 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6247
6248 /* Bring up the interface. Pre 0.46, after we registered the
6249 * network device we would call ipw2100_up. This introduced a race
6250 * condition with newer hotplug configurations (network was coming
6251 * up and making calls before the device was initialized).
6252 *
6253 * If we called ipw2100_up before we registered the device, then the
6254 * device name wasn't registered. So, we instead use the net_dev->init
6255 * member to call a function that then just turns and calls ipw2100_up.
6256 * net_dev->init is called after name allocation but before the
6257 * notifier chain is called */
6258 err = register_netdev(dev);
6259 if (err) {
6260 printk(KERN_WARNING DRV_NAME
6261 "Error calling register_netdev.\n");
6262 goto fail;
6263 }
6264
6265 mutex_lock(&priv->action_mutex);
6266 registered = 1;
6267
6268 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6269
6270 /* perform this after register_netdev so that dev->name is set */
6271 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6272 if (err)
6273 goto fail_unlock;
6274
6275 /* If the RF Kill switch is disabled, go ahead and complete the
6276 * startup sequence */
6277 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6278 /* Enable the adapter - sends HOST_COMPLETE */
6279 if (ipw2100_enable_adapter(priv)) {
6280 printk(KERN_WARNING DRV_NAME
6281 ": %s: failed in call to enable adapter.\n",
6282 priv->net_dev->name);
6283 ipw2100_hw_stop_adapter(priv);
6284 err = -EIO;
6285 goto fail_unlock;
6286 }
6287
6288 /* Start a scan . . . */
6289 ipw2100_set_scan_options(priv);
6290 ipw2100_start_scan(priv);
6291 }
6292
6293 IPW_DEBUG_INFO("exit\n");
6294
6295 priv->status |= STATUS_INITIALIZED;
6296
6297 mutex_unlock(&priv->action_mutex);
6298
6299 return 0;
6300
6301 fail_unlock:
6302 mutex_unlock(&priv->action_mutex);
6303
6304 fail:
6305 if (dev) {
6306 if (registered)
6307 unregister_netdev(dev);
6308
6309 ipw2100_hw_stop_adapter(priv);
6310
6311 ipw2100_disable_interrupts(priv);
6312
6313 if (dev->irq)
6314 free_irq(dev->irq, priv);
6315
6316 ipw2100_kill_workqueue(priv);
6317
6318 /* These are safe to call even if they weren't allocated */
6319 ipw2100_queues_free(priv);
6320 sysfs_remove_group(&pci_dev->dev.kobj,
6321 &ipw2100_attribute_group);
6322
6323 free_ieee80211(dev);
6324 pci_set_drvdata(pci_dev, NULL);
6325 }
6326
6327 if (base_addr)
6328 iounmap(base_addr);
6329
6330 pci_release_regions(pci_dev);
6331 pci_disable_device(pci_dev);
6332
6333 return err;
6334 }
6335
6336 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6337 {
6338 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6339 struct net_device *dev;
6340
6341 if (priv) {
6342 mutex_lock(&priv->action_mutex);
6343
6344 priv->status &= ~STATUS_INITIALIZED;
6345
6346 dev = priv->net_dev;
6347 sysfs_remove_group(&pci_dev->dev.kobj,
6348 &ipw2100_attribute_group);
6349
6350 #ifdef CONFIG_PM
6351 if (ipw2100_firmware.version)
6352 ipw2100_release_firmware(priv, &ipw2100_firmware);
6353 #endif
6354 /* Take down the hardware */
6355 ipw2100_down(priv);
6356
6357 /* Release the mutex so that the network subsystem can
6358 * complete any needed calls into the driver... */
6359 mutex_unlock(&priv->action_mutex);
6360
6361 /* Unregister the device first - this results in close()
6362 * being called if the device is open. If we free storage
6363 * first, then close() will crash. */
6364 unregister_netdev(dev);
6365
6366 /* ipw2100_down will ensure that there is no more pending work
6367 * in the workqueue's, so we can safely remove them now. */
6368 ipw2100_kill_workqueue(priv);
6369
6370 ipw2100_queues_free(priv);
6371
6372 /* Free potential debugging firmware snapshot */
6373 ipw2100_snapshot_free(priv);
6374
6375 if (dev->irq)
6376 free_irq(dev->irq, priv);
6377
6378 if (dev->base_addr)
6379 iounmap((void __iomem *)dev->base_addr);
6380
6381 free_ieee80211(dev);
6382 }
6383
6384 pci_release_regions(pci_dev);
6385 pci_disable_device(pci_dev);
6386
6387 IPW_DEBUG_INFO("exit\n");
6388 }
6389
6390 #ifdef CONFIG_PM
6391 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6392 {
6393 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6394 struct net_device *dev = priv->net_dev;
6395
6396 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6397
6398 mutex_lock(&priv->action_mutex);
6399 if (priv->status & STATUS_INITIALIZED) {
6400 /* Take down the device; powers it off, etc. */
6401 ipw2100_down(priv);
6402 }
6403
6404 /* Remove the PRESENT state of the device */
6405 netif_device_detach(dev);
6406
6407 pci_save_state(pci_dev);
6408 pci_disable_device(pci_dev);
6409 pci_set_power_state(pci_dev, PCI_D3hot);
6410
6411 mutex_unlock(&priv->action_mutex);
6412
6413 return 0;
6414 }
6415
6416 static int ipw2100_resume(struct pci_dev *pci_dev)
6417 {
6418 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6419 struct net_device *dev = priv->net_dev;
6420 int err;
6421 u32 val;
6422
6423 if (IPW2100_PM_DISABLED)
6424 return 0;
6425
6426 mutex_lock(&priv->action_mutex);
6427
6428 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6429
6430 pci_set_power_state(pci_dev, PCI_D0);
6431 err = pci_enable_device(pci_dev);
6432 if (err) {
6433 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6434 dev->name);
6435 mutex_unlock(&priv->action_mutex);
6436 return err;
6437 }
6438 pci_restore_state(pci_dev);
6439
6440 /*
6441 * Suspend/Resume resets the PCI configuration space, so we have to
6442 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6443 * from interfering with C3 CPU state. pci_restore_state won't help
6444 * here since it only restores the first 64 bytes pci config header.
6445 */
6446 pci_read_config_dword(pci_dev, 0x40, &val);
6447 if ((val & 0x0000ff00) != 0)
6448 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6449
6450 /* Set the device back into the PRESENT state; this will also wake
6451 * the queue of needed */
6452 netif_device_attach(dev);
6453
6454 /* Bring the device back up */
6455 if (!(priv->status & STATUS_RF_KILL_SW))
6456 ipw2100_up(priv, 0);
6457
6458 mutex_unlock(&priv->action_mutex);
6459
6460 return 0;
6461 }
6462 #endif
6463
6464 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6465
6466 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6467 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6468 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6469 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6470 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6471 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6472 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6473 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6474 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6475 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6476 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6477 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6478 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6479 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6480
6481 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6482 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6483 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6484 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6485 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6486
6487 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6488 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6489 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6490 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6491 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6492 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6493 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6494
6495 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6496
6497 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6498 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6499 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6500 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6501 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6502 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6503 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6504
6505 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6506 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6507 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6508 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6509 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6510 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6511
6512 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6513 {0,},
6514 };
6515
6516 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6517
6518 static struct pci_driver ipw2100_pci_driver = {
6519 .name = DRV_NAME,
6520 .id_table = ipw2100_pci_id_table,
6521 .probe = ipw2100_pci_init_one,
6522 .remove = __devexit_p(ipw2100_pci_remove_one),
6523 #ifdef CONFIG_PM
6524 .suspend = ipw2100_suspend,
6525 .resume = ipw2100_resume,
6526 #endif
6527 };
6528
6529 /**
6530 * Initialize the ipw2100 driver/module
6531 *
6532 * @returns 0 if ok, < 0 errno node con error.
6533 *
6534 * Note: we cannot init the /proc stuff until the PCI driver is there,
6535 * or we risk an unlikely race condition on someone accessing
6536 * uninitialized data in the PCI dev struct through /proc.
6537 */
6538 static int __init ipw2100_init(void)
6539 {
6540 int ret;
6541
6542 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6543 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6544
6545 ret = pci_register_driver(&ipw2100_pci_driver);
6546 if (ret)
6547 goto out;
6548
6549 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100",
6550 PM_QOS_DEFAULT_VALUE);
6551 #ifdef CONFIG_IPW2100_DEBUG
6552 ipw2100_debug_level = debug;
6553 ret = driver_create_file(&ipw2100_pci_driver.driver,
6554 &driver_attr_debug_level);
6555 #endif
6556
6557 out:
6558 return ret;
6559 }
6560
6561 /**
6562 * Cleanup ipw2100 driver registration
6563 */
6564 static void __exit ipw2100_exit(void)
6565 {
6566 /* FIXME: IPG: check that we have no instances of the devices open */
6567 #ifdef CONFIG_IPW2100_DEBUG
6568 driver_remove_file(&ipw2100_pci_driver.driver,
6569 &driver_attr_debug_level);
6570 #endif
6571 pci_unregister_driver(&ipw2100_pci_driver);
6572 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100");
6573 }
6574
6575 module_init(ipw2100_init);
6576 module_exit(ipw2100_exit);
6577
6578 #define WEXT_USECHANNELS 1
6579
6580 static const long ipw2100_frequencies[] = {
6581 2412, 2417, 2422, 2427,
6582 2432, 2437, 2442, 2447,
6583 2452, 2457, 2462, 2467,
6584 2472, 2484
6585 };
6586
6587 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies)
6588
6589 static const long ipw2100_rates_11b[] = {
6590 1000000,
6591 2000000,
6592 5500000,
6593 11000000
6594 };
6595
6596 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
6597
6598 static int ipw2100_wx_get_name(struct net_device *dev,
6599 struct iw_request_info *info,
6600 union iwreq_data *wrqu, char *extra)
6601 {
6602 /*
6603 * This can be called at any time. No action lock required
6604 */
6605
6606 struct ipw2100_priv *priv = ieee80211_priv(dev);
6607 if (!(priv->status & STATUS_ASSOCIATED))
6608 strcpy(wrqu->name, "unassociated");
6609 else
6610 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6611
6612 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6613 return 0;
6614 }
6615
6616 static int ipw2100_wx_set_freq(struct net_device *dev,
6617 struct iw_request_info *info,
6618 union iwreq_data *wrqu, char *extra)
6619 {
6620 struct ipw2100_priv *priv = ieee80211_priv(dev);
6621 struct iw_freq *fwrq = &wrqu->freq;
6622 int err = 0;
6623
6624 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6625 return -EOPNOTSUPP;
6626
6627 mutex_lock(&priv->action_mutex);
6628 if (!(priv->status & STATUS_INITIALIZED)) {
6629 err = -EIO;
6630 goto done;
6631 }
6632
6633 /* if setting by freq convert to channel */
6634 if (fwrq->e == 1) {
6635 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6636 int f = fwrq->m / 100000;
6637 int c = 0;
6638
6639 while ((c < REG_MAX_CHANNEL) &&
6640 (f != ipw2100_frequencies[c]))
6641 c++;
6642
6643 /* hack to fall through */
6644 fwrq->e = 0;
6645 fwrq->m = c + 1;
6646 }
6647 }
6648
6649 if (fwrq->e > 0 || fwrq->m > 1000) {
6650 err = -EOPNOTSUPP;
6651 goto done;
6652 } else { /* Set the channel */
6653 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6654 err = ipw2100_set_channel(priv, fwrq->m, 0);
6655 }
6656
6657 done:
6658 mutex_unlock(&priv->action_mutex);
6659 return err;
6660 }
6661
6662 static int ipw2100_wx_get_freq(struct net_device *dev,
6663 struct iw_request_info *info,
6664 union iwreq_data *wrqu, char *extra)
6665 {
6666 /*
6667 * This can be called at any time. No action lock required
6668 */
6669
6670 struct ipw2100_priv *priv = ieee80211_priv(dev);
6671
6672 wrqu->freq.e = 0;
6673
6674 /* If we are associated, trying to associate, or have a statically
6675 * configured CHANNEL then return that; otherwise return ANY */
6676 if (priv->config & CFG_STATIC_CHANNEL ||
6677 priv->status & STATUS_ASSOCIATED)
6678 wrqu->freq.m = priv->channel;
6679 else
6680 wrqu->freq.m = 0;
6681
6682 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6683 return 0;
6684
6685 }
6686
6687 static int ipw2100_wx_set_mode(struct net_device *dev,
6688 struct iw_request_info *info,
6689 union iwreq_data *wrqu, char *extra)
6690 {
6691 struct ipw2100_priv *priv = ieee80211_priv(dev);
6692 int err = 0;
6693
6694 IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6695
6696 if (wrqu->mode == priv->ieee->iw_mode)
6697 return 0;
6698
6699 mutex_lock(&priv->action_mutex);
6700 if (!(priv->status & STATUS_INITIALIZED)) {
6701 err = -EIO;
6702 goto done;
6703 }
6704
6705 switch (wrqu->mode) {
6706 #ifdef CONFIG_IPW2100_MONITOR
6707 case IW_MODE_MONITOR:
6708 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6709 break;
6710 #endif /* CONFIG_IPW2100_MONITOR */
6711 case IW_MODE_ADHOC:
6712 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6713 break;
6714 case IW_MODE_INFRA:
6715 case IW_MODE_AUTO:
6716 default:
6717 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6718 break;
6719 }
6720
6721 done:
6722 mutex_unlock(&priv->action_mutex);
6723 return err;
6724 }
6725
6726 static int ipw2100_wx_get_mode(struct net_device *dev,
6727 struct iw_request_info *info,
6728 union iwreq_data *wrqu, char *extra)
6729 {
6730 /*
6731 * This can be called at any time. No action lock required
6732 */
6733
6734 struct ipw2100_priv *priv = ieee80211_priv(dev);
6735
6736 wrqu->mode = priv->ieee->iw_mode;
6737 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6738
6739 return 0;
6740 }
6741
6742 #define POWER_MODES 5
6743
6744 /* Values are in microsecond */
6745 static const s32 timeout_duration[POWER_MODES] = {
6746 350000,
6747 250000,
6748 75000,
6749 37000,
6750 25000,
6751 };
6752
6753 static const s32 period_duration[POWER_MODES] = {
6754 400000,
6755 700000,
6756 1000000,
6757 1000000,
6758 1000000
6759 };
6760
6761 static int ipw2100_wx_get_range(struct net_device *dev,
6762 struct iw_request_info *info,
6763 union iwreq_data *wrqu, char *extra)
6764 {
6765 /*
6766 * This can be called at any time. No action lock required
6767 */
6768
6769 struct ipw2100_priv *priv = ieee80211_priv(dev);
6770 struct iw_range *range = (struct iw_range *)extra;
6771 u16 val;
6772 int i, level;
6773
6774 wrqu->data.length = sizeof(*range);
6775 memset(range, 0, sizeof(*range));
6776
6777 /* Let's try to keep this struct in the same order as in
6778 * linux/include/wireless.h
6779 */
6780
6781 /* TODO: See what values we can set, and remove the ones we can't
6782 * set, or fill them with some default data.
6783 */
6784
6785 /* ~5 Mb/s real (802.11b) */
6786 range->throughput = 5 * 1000 * 1000;
6787
6788 // range->sensitivity; /* signal level threshold range */
6789
6790 range->max_qual.qual = 100;
6791 /* TODO: Find real max RSSI and stick here */
6792 range->max_qual.level = 0;
6793 range->max_qual.noise = 0;
6794 range->max_qual.updated = 7; /* Updated all three */
6795
6796 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6797 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6798 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6799 range->avg_qual.noise = 0;
6800 range->avg_qual.updated = 7; /* Updated all three */
6801
6802 range->num_bitrates = RATE_COUNT;
6803
6804 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6805 range->bitrate[i] = ipw2100_rates_11b[i];
6806 }
6807
6808 range->min_rts = MIN_RTS_THRESHOLD;
6809 range->max_rts = MAX_RTS_THRESHOLD;
6810 range->min_frag = MIN_FRAG_THRESHOLD;
6811 range->max_frag = MAX_FRAG_THRESHOLD;
6812
6813 range->min_pmp = period_duration[0]; /* Minimal PM period */
6814 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6815 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6816 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6817
6818 /* How to decode max/min PM period */
6819 range->pmp_flags = IW_POWER_PERIOD;
6820 /* How to decode max/min PM period */
6821 range->pmt_flags = IW_POWER_TIMEOUT;
6822 /* What PM options are supported */
6823 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6824
6825 range->encoding_size[0] = 5;
6826 range->encoding_size[1] = 13; /* Different token sizes */
6827 range->num_encoding_sizes = 2; /* Number of entry in the list */
6828 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6829 // range->encoding_login_index; /* token index for login token */
6830
6831 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6832 range->txpower_capa = IW_TXPOW_DBM;
6833 range->num_txpower = IW_MAX_TXPOWER;
6834 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6835 i < IW_MAX_TXPOWER;
6836 i++, level -=
6837 ((IPW_TX_POWER_MAX_DBM -
6838 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6839 range->txpower[i] = level / 16;
6840 } else {
6841 range->txpower_capa = 0;
6842 range->num_txpower = 0;
6843 }
6844
6845 /* Set the Wireless Extension versions */
6846 range->we_version_compiled = WIRELESS_EXT;
6847 range->we_version_source = 18;
6848
6849 // range->retry_capa; /* What retry options are supported */
6850 // range->retry_flags; /* How to decode max/min retry limit */
6851 // range->r_time_flags; /* How to decode max/min retry life */
6852 // range->min_retry; /* Minimal number of retries */
6853 // range->max_retry; /* Maximal number of retries */
6854 // range->min_r_time; /* Minimal retry lifetime */
6855 // range->max_r_time; /* Maximal retry lifetime */
6856
6857 range->num_channels = FREQ_COUNT;
6858
6859 val = 0;
6860 for (i = 0; i < FREQ_COUNT; i++) {
6861 // TODO: Include only legal frequencies for some countries
6862 // if (local->channel_mask & (1 << i)) {
6863 range->freq[val].i = i + 1;
6864 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6865 range->freq[val].e = 1;
6866 val++;
6867 // }
6868 if (val == IW_MAX_FREQUENCIES)
6869 break;
6870 }
6871 range->num_frequency = val;
6872
6873 /* Event capability (kernel + driver) */
6874 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6875 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6876 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6877
6878 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6879 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6880
6881 IPW_DEBUG_WX("GET Range\n");
6882
6883 return 0;
6884 }
6885
6886 static int ipw2100_wx_set_wap(struct net_device *dev,
6887 struct iw_request_info *info,
6888 union iwreq_data *wrqu, char *extra)
6889 {
6890 struct ipw2100_priv *priv = ieee80211_priv(dev);
6891 int err = 0;
6892
6893 static const unsigned char any[] = {
6894 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6895 };
6896 static const unsigned char off[] = {
6897 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6898 };
6899
6900 // sanity checks
6901 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6902 return -EINVAL;
6903
6904 mutex_lock(&priv->action_mutex);
6905 if (!(priv->status & STATUS_INITIALIZED)) {
6906 err = -EIO;
6907 goto done;
6908 }
6909
6910 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6911 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6912 /* we disable mandatory BSSID association */
6913 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6914 priv->config &= ~CFG_STATIC_BSSID;
6915 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6916 goto done;
6917 }
6918
6919 priv->config |= CFG_STATIC_BSSID;
6920 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6921
6922 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6923
6924 IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6925
6926 done:
6927 mutex_unlock(&priv->action_mutex);
6928 return err;
6929 }
6930
6931 static int ipw2100_wx_get_wap(struct net_device *dev,
6932 struct iw_request_info *info,
6933 union iwreq_data *wrqu, char *extra)
6934 {
6935 /*
6936 * This can be called at any time. No action lock required
6937 */
6938
6939 struct ipw2100_priv *priv = ieee80211_priv(dev);
6940
6941 /* If we are associated, trying to associate, or have a statically
6942 * configured BSSID then return that; otherwise return ANY */
6943 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6944 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6945 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6946 } else
6947 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6948
6949 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6950 return 0;
6951 }
6952
6953 static int ipw2100_wx_set_essid(struct net_device *dev,
6954 struct iw_request_info *info,
6955 union iwreq_data *wrqu, char *extra)
6956 {
6957 struct ipw2100_priv *priv = ieee80211_priv(dev);
6958 char *essid = ""; /* ANY */
6959 int length = 0;
6960 int err = 0;
6961
6962 mutex_lock(&priv->action_mutex);
6963 if (!(priv->status & STATUS_INITIALIZED)) {
6964 err = -EIO;
6965 goto done;
6966 }
6967
6968 if (wrqu->essid.flags && wrqu->essid.length) {
6969 length = wrqu->essid.length;
6970 essid = extra;
6971 }
6972
6973 if (length == 0) {
6974 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6975 priv->config &= ~CFG_STATIC_ESSID;
6976 err = ipw2100_set_essid(priv, NULL, 0, 0);
6977 goto done;
6978 }
6979
6980 length = min(length, IW_ESSID_MAX_SIZE);
6981
6982 priv->config |= CFG_STATIC_ESSID;
6983
6984 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6985 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6986 err = 0;
6987 goto done;
6988 }
6989
6990 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
6991 length);
6992
6993 priv->essid_len = length;
6994 memcpy(priv->essid, essid, priv->essid_len);
6995
6996 err = ipw2100_set_essid(priv, essid, length, 0);
6997
6998 done:
6999 mutex_unlock(&priv->action_mutex);
7000 return err;
7001 }
7002
7003 static int ipw2100_wx_get_essid(struct net_device *dev,
7004 struct iw_request_info *info,
7005 union iwreq_data *wrqu, char *extra)
7006 {
7007 /*
7008 * This can be called at any time. No action lock required
7009 */
7010
7011 struct ipw2100_priv *priv = ieee80211_priv(dev);
7012
7013 /* If we are associated, trying to associate, or have a statically
7014 * configured ESSID then return that; otherwise return ANY */
7015 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7016 IPW_DEBUG_WX("Getting essid: '%s'\n",
7017 escape_essid(priv->essid, priv->essid_len));
7018 memcpy(extra, priv->essid, priv->essid_len);
7019 wrqu->essid.length = priv->essid_len;
7020 wrqu->essid.flags = 1; /* active */
7021 } else {
7022 IPW_DEBUG_WX("Getting essid: ANY\n");
7023 wrqu->essid.length = 0;
7024 wrqu->essid.flags = 0; /* active */
7025 }
7026
7027 return 0;
7028 }
7029
7030 static int ipw2100_wx_set_nick(struct net_device *dev,
7031 struct iw_request_info *info,
7032 union iwreq_data *wrqu, char *extra)
7033 {
7034 /*
7035 * This can be called at any time. No action lock required
7036 */
7037
7038 struct ipw2100_priv *priv = ieee80211_priv(dev);
7039
7040 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7041 return -E2BIG;
7042
7043 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7044 memset(priv->nick, 0, sizeof(priv->nick));
7045 memcpy(priv->nick, extra, wrqu->data.length);
7046
7047 IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7048
7049 return 0;
7050 }
7051
7052 static int ipw2100_wx_get_nick(struct net_device *dev,
7053 struct iw_request_info *info,
7054 union iwreq_data *wrqu, char *extra)
7055 {
7056 /*
7057 * This can be called at any time. No action lock required
7058 */
7059
7060 struct ipw2100_priv *priv = ieee80211_priv(dev);
7061
7062 wrqu->data.length = strlen(priv->nick);
7063 memcpy(extra, priv->nick, wrqu->data.length);
7064 wrqu->data.flags = 1; /* active */
7065
7066 IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7067
7068 return 0;
7069 }
7070
7071 static int ipw2100_wx_set_rate(struct net_device *dev,
7072 struct iw_request_info *info,
7073 union iwreq_data *wrqu, char *extra)
7074 {
7075 struct ipw2100_priv *priv = ieee80211_priv(dev);
7076 u32 target_rate = wrqu->bitrate.value;
7077 u32 rate;
7078 int err = 0;
7079
7080 mutex_lock(&priv->action_mutex);
7081 if (!(priv->status & STATUS_INITIALIZED)) {
7082 err = -EIO;
7083 goto done;
7084 }
7085
7086 rate = 0;
7087
7088 if (target_rate == 1000000 ||
7089 (!wrqu->bitrate.fixed && target_rate > 1000000))
7090 rate |= TX_RATE_1_MBIT;
7091 if (target_rate == 2000000 ||
7092 (!wrqu->bitrate.fixed && target_rate > 2000000))
7093 rate |= TX_RATE_2_MBIT;
7094 if (target_rate == 5500000 ||
7095 (!wrqu->bitrate.fixed && target_rate > 5500000))
7096 rate |= TX_RATE_5_5_MBIT;
7097 if (target_rate == 11000000 ||
7098 (!wrqu->bitrate.fixed && target_rate > 11000000))
7099 rate |= TX_RATE_11_MBIT;
7100 if (rate == 0)
7101 rate = DEFAULT_TX_RATES;
7102
7103 err = ipw2100_set_tx_rates(priv, rate, 0);
7104
7105 IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7106 done:
7107 mutex_unlock(&priv->action_mutex);
7108 return err;
7109 }
7110
7111 static int ipw2100_wx_get_rate(struct net_device *dev,
7112 struct iw_request_info *info,
7113 union iwreq_data *wrqu, char *extra)
7114 {
7115 struct ipw2100_priv *priv = ieee80211_priv(dev);
7116 int val;
7117 int len = sizeof(val);
7118 int err = 0;
7119
7120 if (!(priv->status & STATUS_ENABLED) ||
7121 priv->status & STATUS_RF_KILL_MASK ||
7122 !(priv->status & STATUS_ASSOCIATED)) {
7123 wrqu->bitrate.value = 0;
7124 return 0;
7125 }
7126
7127 mutex_lock(&priv->action_mutex);
7128 if (!(priv->status & STATUS_INITIALIZED)) {
7129 err = -EIO;
7130 goto done;
7131 }
7132
7133 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7134 if (err) {
7135 IPW_DEBUG_WX("failed querying ordinals.\n");
7136 goto done;
7137 }
7138
7139 switch (val & TX_RATE_MASK) {
7140 case TX_RATE_1_MBIT:
7141 wrqu->bitrate.value = 1000000;
7142 break;
7143 case TX_RATE_2_MBIT:
7144 wrqu->bitrate.value = 2000000;
7145 break;
7146 case TX_RATE_5_5_MBIT:
7147 wrqu->bitrate.value = 5500000;
7148 break;
7149 case TX_RATE_11_MBIT:
7150 wrqu->bitrate.value = 11000000;
7151 break;
7152 default:
7153 wrqu->bitrate.value = 0;
7154 }
7155
7156 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7157
7158 done:
7159 mutex_unlock(&priv->action_mutex);
7160 return err;
7161 }
7162
7163 static int ipw2100_wx_set_rts(struct net_device *dev,
7164 struct iw_request_info *info,
7165 union iwreq_data *wrqu, char *extra)
7166 {
7167 struct ipw2100_priv *priv = ieee80211_priv(dev);
7168 int value, err;
7169
7170 /* Auto RTS not yet supported */
7171 if (wrqu->rts.fixed == 0)
7172 return -EINVAL;
7173
7174 mutex_lock(&priv->action_mutex);
7175 if (!(priv->status & STATUS_INITIALIZED)) {
7176 err = -EIO;
7177 goto done;
7178 }
7179
7180 if (wrqu->rts.disabled)
7181 value = priv->rts_threshold | RTS_DISABLED;
7182 else {
7183 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7184 err = -EINVAL;
7185 goto done;
7186 }
7187 value = wrqu->rts.value;
7188 }
7189
7190 err = ipw2100_set_rts_threshold(priv, value);
7191
7192 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7193 done:
7194 mutex_unlock(&priv->action_mutex);
7195 return err;
7196 }
7197
7198 static int ipw2100_wx_get_rts(struct net_device *dev,
7199 struct iw_request_info *info,
7200 union iwreq_data *wrqu, char *extra)
7201 {
7202 /*
7203 * This can be called at any time. No action lock required
7204 */
7205
7206 struct ipw2100_priv *priv = ieee80211_priv(dev);
7207
7208 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7209 wrqu->rts.fixed = 1; /* no auto select */
7210
7211 /* If RTS is set to the default value, then it is disabled */
7212 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7213
7214 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7215
7216 return 0;
7217 }
7218
7219 static int ipw2100_wx_set_txpow(struct net_device *dev,
7220 struct iw_request_info *info,
7221 union iwreq_data *wrqu, char *extra)
7222 {
7223 struct ipw2100_priv *priv = ieee80211_priv(dev);
7224 int err = 0, value;
7225
7226 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7227 return -EINPROGRESS;
7228
7229 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7230 return 0;
7231
7232 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7233 return -EINVAL;
7234
7235 if (wrqu->txpower.fixed == 0)
7236 value = IPW_TX_POWER_DEFAULT;
7237 else {
7238 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7239 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7240 return -EINVAL;
7241
7242 value = wrqu->txpower.value;
7243 }
7244
7245 mutex_lock(&priv->action_mutex);
7246 if (!(priv->status & STATUS_INITIALIZED)) {
7247 err = -EIO;
7248 goto done;
7249 }
7250
7251 err = ipw2100_set_tx_power(priv, value);
7252
7253 IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7254
7255 done:
7256 mutex_unlock(&priv->action_mutex);
7257 return err;
7258 }
7259
7260 static int ipw2100_wx_get_txpow(struct net_device *dev,
7261 struct iw_request_info *info,
7262 union iwreq_data *wrqu, char *extra)
7263 {
7264 /*
7265 * This can be called at any time. No action lock required
7266 */
7267
7268 struct ipw2100_priv *priv = ieee80211_priv(dev);
7269
7270 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7271
7272 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7273 wrqu->txpower.fixed = 0;
7274 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7275 } else {
7276 wrqu->txpower.fixed = 1;
7277 wrqu->txpower.value = priv->tx_power;
7278 }
7279
7280 wrqu->txpower.flags = IW_TXPOW_DBM;
7281
7282 IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7283
7284 return 0;
7285 }
7286
7287 static int ipw2100_wx_set_frag(struct net_device *dev,
7288 struct iw_request_info *info,
7289 union iwreq_data *wrqu, char *extra)
7290 {
7291 /*
7292 * This can be called at any time. No action lock required
7293 */
7294
7295 struct ipw2100_priv *priv = ieee80211_priv(dev);
7296
7297 if (!wrqu->frag.fixed)
7298 return -EINVAL;
7299
7300 if (wrqu->frag.disabled) {
7301 priv->frag_threshold |= FRAG_DISABLED;
7302 priv->ieee->fts = DEFAULT_FTS;
7303 } else {
7304 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7305 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7306 return -EINVAL;
7307
7308 priv->ieee->fts = wrqu->frag.value & ~0x1;
7309 priv->frag_threshold = priv->ieee->fts;
7310 }
7311
7312 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7313
7314 return 0;
7315 }
7316
7317 static int ipw2100_wx_get_frag(struct net_device *dev,
7318 struct iw_request_info *info,
7319 union iwreq_data *wrqu, char *extra)
7320 {
7321 /*
7322 * This can be called at any time. No action lock required
7323 */
7324
7325 struct ipw2100_priv *priv = ieee80211_priv(dev);
7326 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7327 wrqu->frag.fixed = 0; /* no auto select */
7328 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7329
7330 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7331
7332 return 0;
7333 }
7334
7335 static int ipw2100_wx_set_retry(struct net_device *dev,
7336 struct iw_request_info *info,
7337 union iwreq_data *wrqu, char *extra)
7338 {
7339 struct ipw2100_priv *priv = ieee80211_priv(dev);
7340 int err = 0;
7341
7342 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7343 return -EINVAL;
7344
7345 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7346 return 0;
7347
7348 mutex_lock(&priv->action_mutex);
7349 if (!(priv->status & STATUS_INITIALIZED)) {
7350 err = -EIO;
7351 goto done;
7352 }
7353
7354 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7355 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7356 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7357 wrqu->retry.value);
7358 goto done;
7359 }
7360
7361 if (wrqu->retry.flags & IW_RETRY_LONG) {
7362 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7363 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7364 wrqu->retry.value);
7365 goto done;
7366 }
7367
7368 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7369 if (!err)
7370 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7371
7372 IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7373
7374 done:
7375 mutex_unlock(&priv->action_mutex);
7376 return err;
7377 }
7378
7379 static int ipw2100_wx_get_retry(struct net_device *dev,
7380 struct iw_request_info *info,
7381 union iwreq_data *wrqu, char *extra)
7382 {
7383 /*
7384 * This can be called at any time. No action lock required
7385 */
7386
7387 struct ipw2100_priv *priv = ieee80211_priv(dev);
7388
7389 wrqu->retry.disabled = 0; /* can't be disabled */
7390
7391 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7392 return -EINVAL;
7393
7394 if (wrqu->retry.flags & IW_RETRY_LONG) {
7395 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7396 wrqu->retry.value = priv->long_retry_limit;
7397 } else {
7398 wrqu->retry.flags =
7399 (priv->short_retry_limit !=
7400 priv->long_retry_limit) ?
7401 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7402
7403 wrqu->retry.value = priv->short_retry_limit;
7404 }
7405
7406 IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7407
7408 return 0;
7409 }
7410
7411 static int ipw2100_wx_set_scan(struct net_device *dev,
7412 struct iw_request_info *info,
7413 union iwreq_data *wrqu, char *extra)
7414 {
7415 struct ipw2100_priv *priv = ieee80211_priv(dev);
7416 int err = 0;
7417
7418 mutex_lock(&priv->action_mutex);
7419 if (!(priv->status & STATUS_INITIALIZED)) {
7420 err = -EIO;
7421 goto done;
7422 }
7423
7424 IPW_DEBUG_WX("Initiating scan...\n");
7425
7426 priv->user_requested_scan = 1;
7427 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7428 IPW_DEBUG_WX("Start scan failed.\n");
7429
7430 /* TODO: Mark a scan as pending so when hardware initialized
7431 * a scan starts */
7432 }
7433
7434 done:
7435 mutex_unlock(&priv->action_mutex);
7436 return err;
7437 }
7438
7439 static int ipw2100_wx_get_scan(struct net_device *dev,
7440 struct iw_request_info *info,
7441 union iwreq_data *wrqu, char *extra)
7442 {
7443 /*
7444 * This can be called at any time. No action lock required
7445 */
7446
7447 struct ipw2100_priv *priv = ieee80211_priv(dev);
7448 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7449 }
7450
7451 /*
7452 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7453 */
7454 static int ipw2100_wx_set_encode(struct net_device *dev,
7455 struct iw_request_info *info,
7456 union iwreq_data *wrqu, char *key)
7457 {
7458 /*
7459 * No check of STATUS_INITIALIZED required
7460 */
7461
7462 struct ipw2100_priv *priv = ieee80211_priv(dev);
7463 return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7464 }
7465
7466 static int ipw2100_wx_get_encode(struct net_device *dev,
7467 struct iw_request_info *info,
7468 union iwreq_data *wrqu, char *key)
7469 {
7470 /*
7471 * This can be called at any time. No action lock required
7472 */
7473
7474 struct ipw2100_priv *priv = ieee80211_priv(dev);
7475 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7476 }
7477
7478 static int ipw2100_wx_set_power(struct net_device *dev,
7479 struct iw_request_info *info,
7480 union iwreq_data *wrqu, char *extra)
7481 {
7482 struct ipw2100_priv *priv = ieee80211_priv(dev);
7483 int err = 0;
7484
7485 mutex_lock(&priv->action_mutex);
7486 if (!(priv->status & STATUS_INITIALIZED)) {
7487 err = -EIO;
7488 goto done;
7489 }
7490
7491 if (wrqu->power.disabled) {
7492 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7493 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7494 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7495 goto done;
7496 }
7497
7498 switch (wrqu->power.flags & IW_POWER_MODE) {
7499 case IW_POWER_ON: /* If not specified */
7500 case IW_POWER_MODE: /* If set all mask */
7501 case IW_POWER_ALL_R: /* If explicitly state all */
7502 break;
7503 default: /* Otherwise we don't support it */
7504 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7505 wrqu->power.flags);
7506 err = -EOPNOTSUPP;
7507 goto done;
7508 }
7509
7510 /* If the user hasn't specified a power management mode yet, default
7511 * to BATTERY */
7512 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7513 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7514
7515 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7516
7517 done:
7518 mutex_unlock(&priv->action_mutex);
7519 return err;
7520
7521 }
7522
7523 static int ipw2100_wx_get_power(struct net_device *dev,
7524 struct iw_request_info *info,
7525 union iwreq_data *wrqu, char *extra)
7526 {
7527 /*
7528 * This can be called at any time. No action lock required
7529 */
7530
7531 struct ipw2100_priv *priv = ieee80211_priv(dev);
7532
7533 if (!(priv->power_mode & IPW_POWER_ENABLED))
7534 wrqu->power.disabled = 1;
7535 else {
7536 wrqu->power.disabled = 0;
7537 wrqu->power.flags = 0;
7538 }
7539
7540 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7541
7542 return 0;
7543 }
7544
7545 /*
7546 * WE-18 WPA support
7547 */
7548
7549 /* SIOCSIWGENIE */
7550 static int ipw2100_wx_set_genie(struct net_device *dev,
7551 struct iw_request_info *info,
7552 union iwreq_data *wrqu, char *extra)
7553 {
7554
7555 struct ipw2100_priv *priv = ieee80211_priv(dev);
7556 struct ieee80211_device *ieee = priv->ieee;
7557 u8 *buf;
7558
7559 if (!ieee->wpa_enabled)
7560 return -EOPNOTSUPP;
7561
7562 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7563 (wrqu->data.length && extra == NULL))
7564 return -EINVAL;
7565
7566 if (wrqu->data.length) {
7567 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7568 if (buf == NULL)
7569 return -ENOMEM;
7570
7571 kfree(ieee->wpa_ie);
7572 ieee->wpa_ie = buf;
7573 ieee->wpa_ie_len = wrqu->data.length;
7574 } else {
7575 kfree(ieee->wpa_ie);
7576 ieee->wpa_ie = NULL;
7577 ieee->wpa_ie_len = 0;
7578 }
7579
7580 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7581
7582 return 0;
7583 }
7584
7585 /* SIOCGIWGENIE */
7586 static int ipw2100_wx_get_genie(struct net_device *dev,
7587 struct iw_request_info *info,
7588 union iwreq_data *wrqu, char *extra)
7589 {
7590 struct ipw2100_priv *priv = ieee80211_priv(dev);
7591 struct ieee80211_device *ieee = priv->ieee;
7592
7593 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7594 wrqu->data.length = 0;
7595 return 0;
7596 }
7597
7598 if (wrqu->data.length < ieee->wpa_ie_len)
7599 return -E2BIG;
7600
7601 wrqu->data.length = ieee->wpa_ie_len;
7602 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7603
7604 return 0;
7605 }
7606
7607 /* SIOCSIWAUTH */
7608 static int ipw2100_wx_set_auth(struct net_device *dev,
7609 struct iw_request_info *info,
7610 union iwreq_data *wrqu, char *extra)
7611 {
7612 struct ipw2100_priv *priv = ieee80211_priv(dev);
7613 struct ieee80211_device *ieee = priv->ieee;
7614 struct iw_param *param = &wrqu->param;
7615 struct ieee80211_crypt_data *crypt;
7616 unsigned long flags;
7617 int ret = 0;
7618
7619 switch (param->flags & IW_AUTH_INDEX) {
7620 case IW_AUTH_WPA_VERSION:
7621 case IW_AUTH_CIPHER_PAIRWISE:
7622 case IW_AUTH_CIPHER_GROUP:
7623 case IW_AUTH_KEY_MGMT:
7624 /*
7625 * ipw2200 does not use these parameters
7626 */
7627 break;
7628
7629 case IW_AUTH_TKIP_COUNTERMEASURES:
7630 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7631 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7632 break;
7633
7634 flags = crypt->ops->get_flags(crypt->priv);
7635
7636 if (param->value)
7637 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7638 else
7639 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7640
7641 crypt->ops->set_flags(flags, crypt->priv);
7642
7643 break;
7644
7645 case IW_AUTH_DROP_UNENCRYPTED:{
7646 /* HACK:
7647 *
7648 * wpa_supplicant calls set_wpa_enabled when the driver
7649 * is loaded and unloaded, regardless of if WPA is being
7650 * used. No other calls are made which can be used to
7651 * determine if encryption will be used or not prior to
7652 * association being expected. If encryption is not being
7653 * used, drop_unencrypted is set to false, else true -- we
7654 * can use this to determine if the CAP_PRIVACY_ON bit should
7655 * be set.
7656 */
7657 struct ieee80211_security sec = {
7658 .flags = SEC_ENABLED,
7659 .enabled = param->value,
7660 };
7661 priv->ieee->drop_unencrypted = param->value;
7662 /* We only change SEC_LEVEL for open mode. Others
7663 * are set by ipw_wpa_set_encryption.
7664 */
7665 if (!param->value) {
7666 sec.flags |= SEC_LEVEL;
7667 sec.level = SEC_LEVEL_0;
7668 } else {
7669 sec.flags |= SEC_LEVEL;
7670 sec.level = SEC_LEVEL_1;
7671 }
7672 if (priv->ieee->set_security)
7673 priv->ieee->set_security(priv->ieee->dev, &sec);
7674 break;
7675 }
7676
7677 case IW_AUTH_80211_AUTH_ALG:
7678 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7679 break;
7680
7681 case IW_AUTH_WPA_ENABLED:
7682 ret = ipw2100_wpa_enable(priv, param->value);
7683 break;
7684
7685 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7686 ieee->ieee802_1x = param->value;
7687 break;
7688
7689 //case IW_AUTH_ROAMING_CONTROL:
7690 case IW_AUTH_PRIVACY_INVOKED:
7691 ieee->privacy_invoked = param->value;
7692 break;
7693
7694 default:
7695 return -EOPNOTSUPP;
7696 }
7697 return ret;
7698 }
7699
7700 /* SIOCGIWAUTH */
7701 static int ipw2100_wx_get_auth(struct net_device *dev,
7702 struct iw_request_info *info,
7703 union iwreq_data *wrqu, char *extra)
7704 {
7705 struct ipw2100_priv *priv = ieee80211_priv(dev);
7706 struct ieee80211_device *ieee = priv->ieee;
7707 struct ieee80211_crypt_data *crypt;
7708 struct iw_param *param = &wrqu->param;
7709 int ret = 0;
7710
7711 switch (param->flags & IW_AUTH_INDEX) {
7712 case IW_AUTH_WPA_VERSION:
7713 case IW_AUTH_CIPHER_PAIRWISE:
7714 case IW_AUTH_CIPHER_GROUP:
7715 case IW_AUTH_KEY_MGMT:
7716 /*
7717 * wpa_supplicant will control these internally
7718 */
7719 ret = -EOPNOTSUPP;
7720 break;
7721
7722 case IW_AUTH_TKIP_COUNTERMEASURES:
7723 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7724 if (!crypt || !crypt->ops->get_flags) {
7725 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7726 "crypt not set!\n");
7727 break;
7728 }
7729
7730 param->value = (crypt->ops->get_flags(crypt->priv) &
7731 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7732
7733 break;
7734
7735 case IW_AUTH_DROP_UNENCRYPTED:
7736 param->value = ieee->drop_unencrypted;
7737 break;
7738
7739 case IW_AUTH_80211_AUTH_ALG:
7740 param->value = priv->ieee->sec.auth_mode;
7741 break;
7742
7743 case IW_AUTH_WPA_ENABLED:
7744 param->value = ieee->wpa_enabled;
7745 break;
7746
7747 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7748 param->value = ieee->ieee802_1x;
7749 break;
7750
7751 case IW_AUTH_ROAMING_CONTROL:
7752 case IW_AUTH_PRIVACY_INVOKED:
7753 param->value = ieee->privacy_invoked;
7754 break;
7755
7756 default:
7757 return -EOPNOTSUPP;
7758 }
7759 return 0;
7760 }
7761
7762 /* SIOCSIWENCODEEXT */
7763 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7764 struct iw_request_info *info,
7765 union iwreq_data *wrqu, char *extra)
7766 {
7767 struct ipw2100_priv *priv = ieee80211_priv(dev);
7768 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7769 }
7770
7771 /* SIOCGIWENCODEEXT */
7772 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7773 struct iw_request_info *info,
7774 union iwreq_data *wrqu, char *extra)
7775 {
7776 struct ipw2100_priv *priv = ieee80211_priv(dev);
7777 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7778 }
7779
7780 /* SIOCSIWMLME */
7781 static int ipw2100_wx_set_mlme(struct net_device *dev,
7782 struct iw_request_info *info,
7783 union iwreq_data *wrqu, char *extra)
7784 {
7785 struct ipw2100_priv *priv = ieee80211_priv(dev);
7786 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7787 __le16 reason;
7788
7789 reason = cpu_to_le16(mlme->reason_code);
7790
7791 switch (mlme->cmd) {
7792 case IW_MLME_DEAUTH:
7793 // silently ignore
7794 break;
7795
7796 case IW_MLME_DISASSOC:
7797 ipw2100_disassociate_bssid(priv);
7798 break;
7799
7800 default:
7801 return -EOPNOTSUPP;
7802 }
7803 return 0;
7804 }
7805
7806 /*
7807 *
7808 * IWPRIV handlers
7809 *
7810 */
7811 #ifdef CONFIG_IPW2100_MONITOR
7812 static int ipw2100_wx_set_promisc(struct net_device *dev,
7813 struct iw_request_info *info,
7814 union iwreq_data *wrqu, char *extra)
7815 {
7816 struct ipw2100_priv *priv = ieee80211_priv(dev);
7817 int *parms = (int *)extra;
7818 int enable = (parms[0] > 0);
7819 int err = 0;
7820
7821 mutex_lock(&priv->action_mutex);
7822 if (!(priv->status & STATUS_INITIALIZED)) {
7823 err = -EIO;
7824 goto done;
7825 }
7826
7827 if (enable) {
7828 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7829 err = ipw2100_set_channel(priv, parms[1], 0);
7830 goto done;
7831 }
7832 priv->channel = parms[1];
7833 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7834 } else {
7835 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7836 err = ipw2100_switch_mode(priv, priv->last_mode);
7837 }
7838 done:
7839 mutex_unlock(&priv->action_mutex);
7840 return err;
7841 }
7842
7843 static int ipw2100_wx_reset(struct net_device *dev,
7844 struct iw_request_info *info,
7845 union iwreq_data *wrqu, char *extra)
7846 {
7847 struct ipw2100_priv *priv = ieee80211_priv(dev);
7848 if (priv->status & STATUS_INITIALIZED)
7849 schedule_reset(priv);
7850 return 0;
7851 }
7852
7853 #endif
7854
7855 static int ipw2100_wx_set_powermode(struct net_device *dev,
7856 struct iw_request_info *info,
7857 union iwreq_data *wrqu, char *extra)
7858 {
7859 struct ipw2100_priv *priv = ieee80211_priv(dev);
7860 int err = 0, mode = *(int *)extra;
7861
7862 mutex_lock(&priv->action_mutex);
7863 if (!(priv->status & STATUS_INITIALIZED)) {
7864 err = -EIO;
7865 goto done;
7866 }
7867
7868 if ((mode < 0) || (mode > POWER_MODES))
7869 mode = IPW_POWER_AUTO;
7870
7871 if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7872 err = ipw2100_set_power_mode(priv, mode);
7873 done:
7874 mutex_unlock(&priv->action_mutex);
7875 return err;
7876 }
7877
7878 #define MAX_POWER_STRING 80
7879 static int ipw2100_wx_get_powermode(struct net_device *dev,
7880 struct iw_request_info *info,
7881 union iwreq_data *wrqu, char *extra)
7882 {
7883 /*
7884 * This can be called at any time. No action lock required
7885 */
7886
7887 struct ipw2100_priv *priv = ieee80211_priv(dev);
7888 int level = IPW_POWER_LEVEL(priv->power_mode);
7889 s32 timeout, period;
7890
7891 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7892 snprintf(extra, MAX_POWER_STRING,
7893 "Power save level: %d (Off)", level);
7894 } else {
7895 switch (level) {
7896 case IPW_POWER_MODE_CAM:
7897 snprintf(extra, MAX_POWER_STRING,
7898 "Power save level: %d (None)", level);
7899 break;
7900 case IPW_POWER_AUTO:
7901 snprintf(extra, MAX_POWER_STRING,
7902 "Power save level: %d (Auto)", level);
7903 break;
7904 default:
7905 timeout = timeout_duration[level - 1] / 1000;
7906 period = period_duration[level - 1] / 1000;
7907 snprintf(extra, MAX_POWER_STRING,
7908 "Power save level: %d "
7909 "(Timeout %dms, Period %dms)",
7910 level, timeout, period);
7911 }
7912 }
7913
7914 wrqu->data.length = strlen(extra) + 1;
7915
7916 return 0;
7917 }
7918
7919 static int ipw2100_wx_set_preamble(struct net_device *dev,
7920 struct iw_request_info *info,
7921 union iwreq_data *wrqu, char *extra)
7922 {
7923 struct ipw2100_priv *priv = ieee80211_priv(dev);
7924 int err, mode = *(int *)extra;
7925
7926 mutex_lock(&priv->action_mutex);
7927 if (!(priv->status & STATUS_INITIALIZED)) {
7928 err = -EIO;
7929 goto done;
7930 }
7931
7932 if (mode == 1)
7933 priv->config |= CFG_LONG_PREAMBLE;
7934 else if (mode == 0)
7935 priv->config &= ~CFG_LONG_PREAMBLE;
7936 else {
7937 err = -EINVAL;
7938 goto done;
7939 }
7940
7941 err = ipw2100_system_config(priv, 0);
7942
7943 done:
7944 mutex_unlock(&priv->action_mutex);
7945 return err;
7946 }
7947
7948 static int ipw2100_wx_get_preamble(struct net_device *dev,
7949 struct iw_request_info *info,
7950 union iwreq_data *wrqu, char *extra)
7951 {
7952 /*
7953 * This can be called at any time. No action lock required
7954 */
7955
7956 struct ipw2100_priv *priv = ieee80211_priv(dev);
7957
7958 if (priv->config & CFG_LONG_PREAMBLE)
7959 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7960 else
7961 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7962
7963 return 0;
7964 }
7965
7966 #ifdef CONFIG_IPW2100_MONITOR
7967 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7968 struct iw_request_info *info,
7969 union iwreq_data *wrqu, char *extra)
7970 {
7971 struct ipw2100_priv *priv = ieee80211_priv(dev);
7972 int err, mode = *(int *)extra;
7973
7974 mutex_lock(&priv->action_mutex);
7975 if (!(priv->status & STATUS_INITIALIZED)) {
7976 err = -EIO;
7977 goto done;
7978 }
7979
7980 if (mode == 1)
7981 priv->config |= CFG_CRC_CHECK;
7982 else if (mode == 0)
7983 priv->config &= ~CFG_CRC_CHECK;
7984 else {
7985 err = -EINVAL;
7986 goto done;
7987 }
7988 err = 0;
7989
7990 done:
7991 mutex_unlock(&priv->action_mutex);
7992 return err;
7993 }
7994
7995 static int ipw2100_wx_get_crc_check(struct net_device *dev,
7996 struct iw_request_info *info,
7997 union iwreq_data *wrqu, char *extra)
7998 {
7999 /*
8000 * This can be called at any time. No action lock required
8001 */
8002
8003 struct ipw2100_priv *priv = ieee80211_priv(dev);
8004
8005 if (priv->config & CFG_CRC_CHECK)
8006 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8007 else
8008 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8009
8010 return 0;
8011 }
8012 #endif /* CONFIG_IPW2100_MONITOR */
8013
8014 static iw_handler ipw2100_wx_handlers[] = {
8015 NULL, /* SIOCSIWCOMMIT */
8016 ipw2100_wx_get_name, /* SIOCGIWNAME */
8017 NULL, /* SIOCSIWNWID */
8018 NULL, /* SIOCGIWNWID */
8019 ipw2100_wx_set_freq, /* SIOCSIWFREQ */
8020 ipw2100_wx_get_freq, /* SIOCGIWFREQ */
8021 ipw2100_wx_set_mode, /* SIOCSIWMODE */
8022 ipw2100_wx_get_mode, /* SIOCGIWMODE */
8023 NULL, /* SIOCSIWSENS */
8024 NULL, /* SIOCGIWSENS */
8025 NULL, /* SIOCSIWRANGE */
8026 ipw2100_wx_get_range, /* SIOCGIWRANGE */
8027 NULL, /* SIOCSIWPRIV */
8028 NULL, /* SIOCGIWPRIV */
8029 NULL, /* SIOCSIWSTATS */
8030 NULL, /* SIOCGIWSTATS */
8031 NULL, /* SIOCSIWSPY */
8032 NULL, /* SIOCGIWSPY */
8033 NULL, /* SIOCGIWTHRSPY */
8034 NULL, /* SIOCWIWTHRSPY */
8035 ipw2100_wx_set_wap, /* SIOCSIWAP */
8036 ipw2100_wx_get_wap, /* SIOCGIWAP */
8037 ipw2100_wx_set_mlme, /* SIOCSIWMLME */
8038 NULL, /* SIOCGIWAPLIST -- deprecated */
8039 ipw2100_wx_set_scan, /* SIOCSIWSCAN */
8040 ipw2100_wx_get_scan, /* SIOCGIWSCAN */
8041 ipw2100_wx_set_essid, /* SIOCSIWESSID */
8042 ipw2100_wx_get_essid, /* SIOCGIWESSID */
8043 ipw2100_wx_set_nick, /* SIOCSIWNICKN */
8044 ipw2100_wx_get_nick, /* SIOCGIWNICKN */
8045 NULL, /* -- hole -- */
8046 NULL, /* -- hole -- */
8047 ipw2100_wx_set_rate, /* SIOCSIWRATE */
8048 ipw2100_wx_get_rate, /* SIOCGIWRATE */
8049 ipw2100_wx_set_rts, /* SIOCSIWRTS */
8050 ipw2100_wx_get_rts, /* SIOCGIWRTS */
8051 ipw2100_wx_set_frag, /* SIOCSIWFRAG */
8052 ipw2100_wx_get_frag, /* SIOCGIWFRAG */
8053 ipw2100_wx_set_txpow, /* SIOCSIWTXPOW */
8054 ipw2100_wx_get_txpow, /* SIOCGIWTXPOW */
8055 ipw2100_wx_set_retry, /* SIOCSIWRETRY */
8056 ipw2100_wx_get_retry, /* SIOCGIWRETRY */
8057 ipw2100_wx_set_encode, /* SIOCSIWENCODE */
8058 ipw2100_wx_get_encode, /* SIOCGIWENCODE */
8059 ipw2100_wx_set_power, /* SIOCSIWPOWER */
8060 ipw2100_wx_get_power, /* SIOCGIWPOWER */
8061 NULL, /* -- hole -- */
8062 NULL, /* -- hole -- */
8063 ipw2100_wx_set_genie, /* SIOCSIWGENIE */
8064 ipw2100_wx_get_genie, /* SIOCGIWGENIE */
8065 ipw2100_wx_set_auth, /* SIOCSIWAUTH */
8066 ipw2100_wx_get_auth, /* SIOCGIWAUTH */
8067 ipw2100_wx_set_encodeext, /* SIOCSIWENCODEEXT */
8068 ipw2100_wx_get_encodeext, /* SIOCGIWENCODEEXT */
8069 NULL, /* SIOCSIWPMKSA */
8070 };
8071
8072 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8073 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8074 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8075 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8076 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8077 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8078 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8079 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8080
8081 static const struct iw_priv_args ipw2100_private_args[] = {
8082
8083 #ifdef CONFIG_IPW2100_MONITOR
8084 {
8085 IPW2100_PRIV_SET_MONITOR,
8086 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8087 {
8088 IPW2100_PRIV_RESET,
8089 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8090 #endif /* CONFIG_IPW2100_MONITOR */
8091
8092 {
8093 IPW2100_PRIV_SET_POWER,
8094 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8095 {
8096 IPW2100_PRIV_GET_POWER,
8097 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8098 "get_power"},
8099 {
8100 IPW2100_PRIV_SET_LONGPREAMBLE,
8101 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8102 {
8103 IPW2100_PRIV_GET_LONGPREAMBLE,
8104 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8105 #ifdef CONFIG_IPW2100_MONITOR
8106 {
8107 IPW2100_PRIV_SET_CRC_CHECK,
8108 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8109 {
8110 IPW2100_PRIV_GET_CRC_CHECK,
8111 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8112 #endif /* CONFIG_IPW2100_MONITOR */
8113 };
8114
8115 static iw_handler ipw2100_private_handler[] = {
8116 #ifdef CONFIG_IPW2100_MONITOR
8117 ipw2100_wx_set_promisc,
8118 ipw2100_wx_reset,
8119 #else /* CONFIG_IPW2100_MONITOR */
8120 NULL,
8121 NULL,
8122 #endif /* CONFIG_IPW2100_MONITOR */
8123 ipw2100_wx_set_powermode,
8124 ipw2100_wx_get_powermode,
8125 ipw2100_wx_set_preamble,
8126 ipw2100_wx_get_preamble,
8127 #ifdef CONFIG_IPW2100_MONITOR
8128 ipw2100_wx_set_crc_check,
8129 ipw2100_wx_get_crc_check,
8130 #else /* CONFIG_IPW2100_MONITOR */
8131 NULL,
8132 NULL,
8133 #endif /* CONFIG_IPW2100_MONITOR */
8134 };
8135
8136 /*
8137 * Get wireless statistics.
8138 * Called by /proc/net/wireless
8139 * Also called by SIOCGIWSTATS
8140 */
8141 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8142 {
8143 enum {
8144 POOR = 30,
8145 FAIR = 60,
8146 GOOD = 80,
8147 VERY_GOOD = 90,
8148 EXCELLENT = 95,
8149 PERFECT = 100
8150 };
8151 int rssi_qual;
8152 int tx_qual;
8153 int beacon_qual;
8154
8155 struct ipw2100_priv *priv = ieee80211_priv(dev);
8156 struct iw_statistics *wstats;
8157 u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8158 u32 ord_len = sizeof(u32);
8159
8160 if (!priv)
8161 return (struct iw_statistics *)NULL;
8162
8163 wstats = &priv->wstats;
8164
8165 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8166 * ipw2100_wx_wireless_stats seems to be called before fw is
8167 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8168 * and associated; if not associcated, the values are all meaningless
8169 * anyway, so set them all to NULL and INVALID */
8170 if (!(priv->status & STATUS_ASSOCIATED)) {
8171 wstats->miss.beacon = 0;
8172 wstats->discard.retries = 0;
8173 wstats->qual.qual = 0;
8174 wstats->qual.level = 0;
8175 wstats->qual.noise = 0;
8176 wstats->qual.updated = 7;
8177 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8178 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8179 return wstats;
8180 }
8181
8182 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8183 &missed_beacons, &ord_len))
8184 goto fail_get_ordinal;
8185
8186 /* If we don't have a connection the quality and level is 0 */
8187 if (!(priv->status & STATUS_ASSOCIATED)) {
8188 wstats->qual.qual = 0;
8189 wstats->qual.level = 0;
8190 } else {
8191 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8192 &rssi, &ord_len))
8193 goto fail_get_ordinal;
8194 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8195 if (rssi < 10)
8196 rssi_qual = rssi * POOR / 10;
8197 else if (rssi < 15)
8198 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8199 else if (rssi < 20)
8200 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8201 else if (rssi < 30)
8202 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8203 10 + GOOD;
8204 else
8205 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8206 10 + VERY_GOOD;
8207
8208 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8209 &tx_retries, &ord_len))
8210 goto fail_get_ordinal;
8211
8212 if (tx_retries > 75)
8213 tx_qual = (90 - tx_retries) * POOR / 15;
8214 else if (tx_retries > 70)
8215 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8216 else if (tx_retries > 65)
8217 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8218 else if (tx_retries > 50)
8219 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8220 15 + GOOD;
8221 else
8222 tx_qual = (50 - tx_retries) *
8223 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8224
8225 if (missed_beacons > 50)
8226 beacon_qual = (60 - missed_beacons) * POOR / 10;
8227 else if (missed_beacons > 40)
8228 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8229 10 + POOR;
8230 else if (missed_beacons > 32)
8231 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8232 18 + FAIR;
8233 else if (missed_beacons > 20)
8234 beacon_qual = (32 - missed_beacons) *
8235 (VERY_GOOD - GOOD) / 20 + GOOD;
8236 else
8237 beacon_qual = (20 - missed_beacons) *
8238 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8239
8240 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8241
8242 #ifdef CONFIG_IPW2100_DEBUG
8243 if (beacon_qual == quality)
8244 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8245 else if (tx_qual == quality)
8246 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8247 else if (quality != 100)
8248 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8249 else
8250 IPW_DEBUG_WX("Quality not clamped.\n");
8251 #endif
8252
8253 wstats->qual.qual = quality;
8254 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8255 }
8256
8257 wstats->qual.noise = 0;
8258 wstats->qual.updated = 7;
8259 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8260
8261 /* FIXME: this is percent and not a # */
8262 wstats->miss.beacon = missed_beacons;
8263
8264 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8265 &tx_failures, &ord_len))
8266 goto fail_get_ordinal;
8267 wstats->discard.retries = tx_failures;
8268
8269 return wstats;
8270
8271 fail_get_ordinal:
8272 IPW_DEBUG_WX("failed querying ordinals.\n");
8273
8274 return (struct iw_statistics *)NULL;
8275 }
8276
8277 static struct iw_handler_def ipw2100_wx_handler_def = {
8278 .standard = ipw2100_wx_handlers,
8279 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8280 .num_private = ARRAY_SIZE(ipw2100_private_handler),
8281 .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8282 .private = (iw_handler *) ipw2100_private_handler,
8283 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8284 .get_wireless_stats = ipw2100_wx_wireless_stats,
8285 };
8286
8287 static void ipw2100_wx_event_work(struct work_struct *work)
8288 {
8289 struct ipw2100_priv *priv =
8290 container_of(work, struct ipw2100_priv, wx_event_work.work);
8291 union iwreq_data wrqu;
8292 int len = ETH_ALEN;
8293
8294 if (priv->status & STATUS_STOPPING)
8295 return;
8296
8297 mutex_lock(&priv->action_mutex);
8298
8299 IPW_DEBUG_WX("enter\n");
8300
8301 mutex_unlock(&priv->action_mutex);
8302
8303 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8304
8305 /* Fetch BSSID from the hardware */
8306 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8307 priv->status & STATUS_RF_KILL_MASK ||
8308 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8309 &priv->bssid, &len)) {
8310 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8311 } else {
8312 /* We now have the BSSID, so can finish setting to the full
8313 * associated state */
8314 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8315 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8316 priv->status &= ~STATUS_ASSOCIATING;
8317 priv->status |= STATUS_ASSOCIATED;
8318 netif_carrier_on(priv->net_dev);
8319 netif_wake_queue(priv->net_dev);
8320 }
8321
8322 if (!(priv->status & STATUS_ASSOCIATED)) {
8323 IPW_DEBUG_WX("Configuring ESSID\n");
8324 mutex_lock(&priv->action_mutex);
8325 /* This is a disassociation event, so kick the firmware to
8326 * look for another AP */
8327 if (priv->config & CFG_STATIC_ESSID)
8328 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8329 0);
8330 else
8331 ipw2100_set_essid(priv, NULL, 0, 0);
8332 mutex_unlock(&priv->action_mutex);
8333 }
8334
8335 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8336 }
8337
8338 #define IPW2100_FW_MAJOR_VERSION 1
8339 #define IPW2100_FW_MINOR_VERSION 3
8340
8341 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8342 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8343
8344 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8345 IPW2100_FW_MAJOR_VERSION)
8346
8347 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8348 "." __stringify(IPW2100_FW_MINOR_VERSION)
8349
8350 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8351
8352 /*
8353
8354 BINARY FIRMWARE HEADER FORMAT
8355
8356 offset length desc
8357 0 2 version
8358 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8359 4 4 fw_len
8360 8 4 uc_len
8361 C fw_len firmware data
8362 12 + fw_len uc_len microcode data
8363
8364 */
8365
8366 struct ipw2100_fw_header {
8367 short version;
8368 short mode;
8369 unsigned int fw_size;
8370 unsigned int uc_size;
8371 } __attribute__ ((packed));
8372
8373 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8374 {
8375 struct ipw2100_fw_header *h =
8376 (struct ipw2100_fw_header *)fw->fw_entry->data;
8377
8378 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8379 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8380 "(detected version id of %u). "
8381 "See Documentation/networking/README.ipw2100\n",
8382 h->version);
8383 return 1;
8384 }
8385
8386 fw->version = h->version;
8387 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8388 fw->fw.size = h->fw_size;
8389 fw->uc.data = fw->fw.data + h->fw_size;
8390 fw->uc.size = h->uc_size;
8391
8392 return 0;
8393 }
8394
8395 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8396 struct ipw2100_fw *fw)
8397 {
8398 char *fw_name;
8399 int rc;
8400
8401 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8402 priv->net_dev->name);
8403
8404 switch (priv->ieee->iw_mode) {
8405 case IW_MODE_ADHOC:
8406 fw_name = IPW2100_FW_NAME("-i");
8407 break;
8408 #ifdef CONFIG_IPW2100_MONITOR
8409 case IW_MODE_MONITOR:
8410 fw_name = IPW2100_FW_NAME("-p");
8411 break;
8412 #endif
8413 case IW_MODE_INFRA:
8414 default:
8415 fw_name = IPW2100_FW_NAME("");
8416 break;
8417 }
8418
8419 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8420
8421 if (rc < 0) {
8422 printk(KERN_ERR DRV_NAME ": "
8423 "%s: Firmware '%s' not available or load failed.\n",
8424 priv->net_dev->name, fw_name);
8425 return rc;
8426 }
8427 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8428 fw->fw_entry->size);
8429
8430 ipw2100_mod_firmware_load(fw);
8431
8432 return 0;
8433 }
8434
8435 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8436 struct ipw2100_fw *fw)
8437 {
8438 fw->version = 0;
8439 if (fw->fw_entry)
8440 release_firmware(fw->fw_entry);
8441 fw->fw_entry = NULL;
8442 }
8443
8444 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8445 size_t max)
8446 {
8447 char ver[MAX_FW_VERSION_LEN];
8448 u32 len = MAX_FW_VERSION_LEN;
8449 u32 tmp;
8450 int i;
8451 /* firmware version is an ascii string (max len of 14) */
8452 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8453 return -EIO;
8454 tmp = max;
8455 if (len >= max)
8456 len = max - 1;
8457 for (i = 0; i < len; i++)
8458 buf[i] = ver[i];
8459 buf[i] = '\0';
8460 return tmp;
8461 }
8462
8463 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8464 size_t max)
8465 {
8466 u32 ver;
8467 u32 len = sizeof(ver);
8468 /* microcode version is a 32 bit integer */
8469 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8470 return -EIO;
8471 return snprintf(buf, max, "%08X", ver);
8472 }
8473
8474 /*
8475 * On exit, the firmware will have been freed from the fw list
8476 */
8477 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8478 {
8479 /* firmware is constructed of N contiguous entries, each entry is
8480 * structured as:
8481 *
8482 * offset sie desc
8483 * 0 4 address to write to
8484 * 4 2 length of data run
8485 * 6 length data
8486 */
8487 unsigned int addr;
8488 unsigned short len;
8489
8490 const unsigned char *firmware_data = fw->fw.data;
8491 unsigned int firmware_data_left = fw->fw.size;
8492
8493 while (firmware_data_left > 0) {
8494 addr = *(u32 *) (firmware_data);
8495 firmware_data += 4;
8496 firmware_data_left -= 4;
8497
8498 len = *(u16 *) (firmware_data);
8499 firmware_data += 2;
8500 firmware_data_left -= 2;
8501
8502 if (len > 32) {
8503 printk(KERN_ERR DRV_NAME ": "
8504 "Invalid firmware run-length of %d bytes\n",
8505 len);
8506 return -EINVAL;
8507 }
8508
8509 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8510 firmware_data += len;
8511 firmware_data_left -= len;
8512 }
8513
8514 return 0;
8515 }
8516
8517 struct symbol_alive_response {
8518 u8 cmd_id;
8519 u8 seq_num;
8520 u8 ucode_rev;
8521 u8 eeprom_valid;
8522 u16 valid_flags;
8523 u8 IEEE_addr[6];
8524 u16 flags;
8525 u16 pcb_rev;
8526 u16 clock_settle_time; // 1us LSB
8527 u16 powerup_settle_time; // 1us LSB
8528 u16 hop_settle_time; // 1us LSB
8529 u8 date[3]; // month, day, year
8530 u8 time[2]; // hours, minutes
8531 u8 ucode_valid;
8532 };
8533
8534 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8535 struct ipw2100_fw *fw)
8536 {
8537 struct net_device *dev = priv->net_dev;
8538 const unsigned char *microcode_data = fw->uc.data;
8539 unsigned int microcode_data_left = fw->uc.size;
8540 void __iomem *reg = (void __iomem *)dev->base_addr;
8541
8542 struct symbol_alive_response response;
8543 int i, j;
8544 u8 data;
8545
8546 /* Symbol control */
8547 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8548 readl(reg);
8549 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8550 readl(reg);
8551
8552 /* HW config */
8553 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8554 readl(reg);
8555 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8556 readl(reg);
8557
8558 /* EN_CS_ACCESS bit to reset control store pointer */
8559 write_nic_byte(dev, 0x210000, 0x40);
8560 readl(reg);
8561 write_nic_byte(dev, 0x210000, 0x0);
8562 readl(reg);
8563 write_nic_byte(dev, 0x210000, 0x40);
8564 readl(reg);
8565
8566 /* copy microcode from buffer into Symbol */
8567
8568 while (microcode_data_left > 0) {
8569 write_nic_byte(dev, 0x210010, *microcode_data++);
8570 write_nic_byte(dev, 0x210010, *microcode_data++);
8571 microcode_data_left -= 2;
8572 }
8573
8574 /* EN_CS_ACCESS bit to reset the control store pointer */
8575 write_nic_byte(dev, 0x210000, 0x0);
8576 readl(reg);
8577
8578 /* Enable System (Reg 0)
8579 * first enable causes garbage in RX FIFO */
8580 write_nic_byte(dev, 0x210000, 0x0);
8581 readl(reg);
8582 write_nic_byte(dev, 0x210000, 0x80);
8583 readl(reg);
8584
8585 /* Reset External Baseband Reg */
8586 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8587 readl(reg);
8588 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8589 readl(reg);
8590
8591 /* HW Config (Reg 5) */
8592 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8593 readl(reg);
8594 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8595 readl(reg);
8596
8597 /* Enable System (Reg 0)
8598 * second enable should be OK */
8599 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8600 readl(reg);
8601 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8602
8603 /* check Symbol is enabled - upped this from 5 as it wasn't always
8604 * catching the update */
8605 for (i = 0; i < 10; i++) {
8606 udelay(10);
8607
8608 /* check Dino is enabled bit */
8609 read_nic_byte(dev, 0x210000, &data);
8610 if (data & 0x1)
8611 break;
8612 }
8613
8614 if (i == 10) {
8615 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8616 dev->name);
8617 return -EIO;
8618 }
8619
8620 /* Get Symbol alive response */
8621 for (i = 0; i < 30; i++) {
8622 /* Read alive response structure */
8623 for (j = 0;
8624 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8625 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8626
8627 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8628 break;
8629 udelay(10);
8630 }
8631
8632 if (i == 30) {
8633 printk(KERN_ERR DRV_NAME
8634 ": %s: No response from Symbol - hw not alive\n",
8635 dev->name);
8636 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8637 return -EIO;
8638 }
8639
8640 return 0;
8641 }
This page took 0.23855 seconds and 5 git commands to generate.