cpuidle: consolidate 2.6.22 cpuidle branch into one patch
[deliverable/linux.git] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
28
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <j@w1.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
43
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
106
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
110
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
114
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
118
119 The flow of data on the TX side is as follows:
120
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124 The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/version.h>
161 #include <linux/time.h>
162 #include <linux/firmware.h>
163 #include <linux/acpi.h>
164 #include <linux/ctype.h>
165 #include <linux/latency.h>
166
167 #include "ipw2100.h"
168
169 #define IPW2100_VERSION "git-1.2.2"
170
171 #define DRV_NAME "ipw2100"
172 #define DRV_VERSION IPW2100_VERSION
173 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
174 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
175
176 /* Debugging stuff */
177 #ifdef CONFIG_IPW2100_DEBUG
178 #define IPW2100_RX_DEBUG /* Reception debugging */
179 #endif
180
181 MODULE_DESCRIPTION(DRV_DESCRIPTION);
182 MODULE_VERSION(DRV_VERSION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
185
186 static int debug = 0;
187 static int mode = 0;
188 static int channel = 0;
189 static int associate = 1;
190 static int disable = 0;
191 #ifdef CONFIG_PM
192 static struct ipw2100_fw ipw2100_firmware;
193 #endif
194
195 #include <linux/moduleparam.h>
196 module_param(debug, int, 0444);
197 module_param(mode, int, 0444);
198 module_param(channel, int, 0444);
199 module_param(associate, int, 0444);
200 module_param(disable, int, 0444);
201
202 MODULE_PARM_DESC(debug, "debug level");
203 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
204 MODULE_PARM_DESC(channel, "channel");
205 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
206 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
207
208 static u32 ipw2100_debug_level = IPW_DL_NONE;
209
210 #ifdef CONFIG_IPW2100_DEBUG
211 #define IPW_DEBUG(level, message...) \
212 do { \
213 if (ipw2100_debug_level & (level)) { \
214 printk(KERN_DEBUG "ipw2100: %c %s ", \
215 in_interrupt() ? 'I' : 'U', __FUNCTION__); \
216 printk(message); \
217 } \
218 } while (0)
219 #else
220 #define IPW_DEBUG(level, message...) do {} while (0)
221 #endif /* CONFIG_IPW2100_DEBUG */
222
223 #ifdef CONFIG_IPW2100_DEBUG
224 static const char *command_types[] = {
225 "undefined",
226 "unused", /* HOST_ATTENTION */
227 "HOST_COMPLETE",
228 "unused", /* SLEEP */
229 "unused", /* HOST_POWER_DOWN */
230 "unused",
231 "SYSTEM_CONFIG",
232 "unused", /* SET_IMR */
233 "SSID",
234 "MANDATORY_BSSID",
235 "AUTHENTICATION_TYPE",
236 "ADAPTER_ADDRESS",
237 "PORT_TYPE",
238 "INTERNATIONAL_MODE",
239 "CHANNEL",
240 "RTS_THRESHOLD",
241 "FRAG_THRESHOLD",
242 "POWER_MODE",
243 "TX_RATES",
244 "BASIC_TX_RATES",
245 "WEP_KEY_INFO",
246 "unused",
247 "unused",
248 "unused",
249 "unused",
250 "WEP_KEY_INDEX",
251 "WEP_FLAGS",
252 "ADD_MULTICAST",
253 "CLEAR_ALL_MULTICAST",
254 "BEACON_INTERVAL",
255 "ATIM_WINDOW",
256 "CLEAR_STATISTICS",
257 "undefined",
258 "undefined",
259 "undefined",
260 "undefined",
261 "TX_POWER_INDEX",
262 "undefined",
263 "undefined",
264 "undefined",
265 "undefined",
266 "undefined",
267 "undefined",
268 "BROADCAST_SCAN",
269 "CARD_DISABLE",
270 "PREFERRED_BSSID",
271 "SET_SCAN_OPTIONS",
272 "SCAN_DWELL_TIME",
273 "SWEEP_TABLE",
274 "AP_OR_STATION_TABLE",
275 "GROUP_ORDINALS",
276 "SHORT_RETRY_LIMIT",
277 "LONG_RETRY_LIMIT",
278 "unused", /* SAVE_CALIBRATION */
279 "unused", /* RESTORE_CALIBRATION */
280 "undefined",
281 "undefined",
282 "undefined",
283 "HOST_PRE_POWER_DOWN",
284 "unused", /* HOST_INTERRUPT_COALESCING */
285 "undefined",
286 "CARD_DISABLE_PHY_OFF",
287 "MSDU_TX_RATES" "undefined",
288 "undefined",
289 "SET_STATION_STAT_BITS",
290 "CLEAR_STATIONS_STAT_BITS",
291 "LEAP_ROGUE_MODE",
292 "SET_SECURITY_INFORMATION",
293 "DISASSOCIATION_BSSID",
294 "SET_WPA_ASS_IE"
295 };
296 #endif
297
298 /* Pre-decl until we get the code solid and then we can clean it up */
299 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
300 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
301 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
302
303 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
304 static void ipw2100_queues_free(struct ipw2100_priv *priv);
305 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
306
307 static int ipw2100_fw_download(struct ipw2100_priv *priv,
308 struct ipw2100_fw *fw);
309 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
310 struct ipw2100_fw *fw);
311 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
312 size_t max);
313 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
314 size_t max);
315 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
316 struct ipw2100_fw *fw);
317 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
318 struct ipw2100_fw *fw);
319 static void ipw2100_wx_event_work(struct work_struct *work);
320 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
321 static struct iw_handler_def ipw2100_wx_handler_def;
322
323 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
324 {
325 *val = readl((void __iomem *)(dev->base_addr + reg));
326 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
327 }
328
329 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
330 {
331 writel(val, (void __iomem *)(dev->base_addr + reg));
332 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
333 }
334
335 static inline void read_register_word(struct net_device *dev, u32 reg,
336 u16 * val)
337 {
338 *val = readw((void __iomem *)(dev->base_addr + reg));
339 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
340 }
341
342 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
343 {
344 *val = readb((void __iomem *)(dev->base_addr + reg));
345 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
346 }
347
348 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
349 {
350 writew(val, (void __iomem *)(dev->base_addr + reg));
351 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
352 }
353
354 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
355 {
356 writeb(val, (void __iomem *)(dev->base_addr + reg));
357 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
358 }
359
360 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
361 {
362 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
363 addr & IPW_REG_INDIRECT_ADDR_MASK);
364 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
365 }
366
367 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
368 {
369 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
370 addr & IPW_REG_INDIRECT_ADDR_MASK);
371 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
372 }
373
374 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
375 {
376 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
377 addr & IPW_REG_INDIRECT_ADDR_MASK);
378 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
379 }
380
381 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
382 {
383 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
384 addr & IPW_REG_INDIRECT_ADDR_MASK);
385 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
386 }
387
388 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
389 {
390 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
391 addr & IPW_REG_INDIRECT_ADDR_MASK);
392 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
393 }
394
395 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
396 {
397 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
398 addr & IPW_REG_INDIRECT_ADDR_MASK);
399 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
400 }
401
402 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
403 {
404 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
405 addr & IPW_REG_INDIRECT_ADDR_MASK);
406 }
407
408 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
409 {
410 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
411 }
412
413 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
414 const u8 * buf)
415 {
416 u32 aligned_addr;
417 u32 aligned_len;
418 u32 dif_len;
419 u32 i;
420
421 /* read first nibble byte by byte */
422 aligned_addr = addr & (~0x3);
423 dif_len = addr - aligned_addr;
424 if (dif_len) {
425 /* Start reading at aligned_addr + dif_len */
426 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
427 aligned_addr);
428 for (i = dif_len; i < 4; i++, buf++)
429 write_register_byte(dev,
430 IPW_REG_INDIRECT_ACCESS_DATA + i,
431 *buf);
432
433 len -= dif_len;
434 aligned_addr += 4;
435 }
436
437 /* read DWs through autoincrement registers */
438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
439 aligned_len = len & (~0x3);
440 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
441 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
442
443 /* copy the last nibble */
444 dif_len = len - aligned_len;
445 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
446 for (i = 0; i < dif_len; i++, buf++)
447 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
448 *buf);
449 }
450
451 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
452 u8 * buf)
453 {
454 u32 aligned_addr;
455 u32 aligned_len;
456 u32 dif_len;
457 u32 i;
458
459 /* read first nibble byte by byte */
460 aligned_addr = addr & (~0x3);
461 dif_len = addr - aligned_addr;
462 if (dif_len) {
463 /* Start reading at aligned_addr + dif_len */
464 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
465 aligned_addr);
466 for (i = dif_len; i < 4; i++, buf++)
467 read_register_byte(dev,
468 IPW_REG_INDIRECT_ACCESS_DATA + i,
469 buf);
470
471 len -= dif_len;
472 aligned_addr += 4;
473 }
474
475 /* read DWs through autoincrement registers */
476 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
477 aligned_len = len & (~0x3);
478 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
479 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
480
481 /* copy the last nibble */
482 dif_len = len - aligned_len;
483 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
484 for (i = 0; i < dif_len; i++, buf++)
485 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
486 }
487
488 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
489 {
490 return (dev->base_addr &&
491 (readl
492 ((void __iomem *)(dev->base_addr +
493 IPW_REG_DOA_DEBUG_AREA_START))
494 == IPW_DATA_DOA_DEBUG_VALUE));
495 }
496
497 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
498 void *val, u32 * len)
499 {
500 struct ipw2100_ordinals *ordinals = &priv->ordinals;
501 u32 addr;
502 u32 field_info;
503 u16 field_len;
504 u16 field_count;
505 u32 total_length;
506
507 if (ordinals->table1_addr == 0) {
508 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
509 "before they have been loaded.\n");
510 return -EINVAL;
511 }
512
513 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
514 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
515 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
516
517 printk(KERN_WARNING DRV_NAME
518 ": ordinal buffer length too small, need %zd\n",
519 IPW_ORD_TAB_1_ENTRY_SIZE);
520
521 return -EINVAL;
522 }
523
524 read_nic_dword(priv->net_dev,
525 ordinals->table1_addr + (ord << 2), &addr);
526 read_nic_dword(priv->net_dev, addr, val);
527
528 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
529
530 return 0;
531 }
532
533 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
534
535 ord -= IPW_START_ORD_TAB_2;
536
537 /* get the address of statistic */
538 read_nic_dword(priv->net_dev,
539 ordinals->table2_addr + (ord << 3), &addr);
540
541 /* get the second DW of statistics ;
542 * two 16-bit words - first is length, second is count */
543 read_nic_dword(priv->net_dev,
544 ordinals->table2_addr + (ord << 3) + sizeof(u32),
545 &field_info);
546
547 /* get each entry length */
548 field_len = *((u16 *) & field_info);
549
550 /* get number of entries */
551 field_count = *(((u16 *) & field_info) + 1);
552
553 /* abort if no enought memory */
554 total_length = field_len * field_count;
555 if (total_length > *len) {
556 *len = total_length;
557 return -EINVAL;
558 }
559
560 *len = total_length;
561 if (!total_length)
562 return 0;
563
564 /* read the ordinal data from the SRAM */
565 read_nic_memory(priv->net_dev, addr, total_length, val);
566
567 return 0;
568 }
569
570 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
571 "in table 2\n", ord);
572
573 return -EINVAL;
574 }
575
576 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
577 u32 * len)
578 {
579 struct ipw2100_ordinals *ordinals = &priv->ordinals;
580 u32 addr;
581
582 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
583 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
584 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
585 IPW_DEBUG_INFO("wrong size\n");
586 return -EINVAL;
587 }
588
589 read_nic_dword(priv->net_dev,
590 ordinals->table1_addr + (ord << 2), &addr);
591
592 write_nic_dword(priv->net_dev, addr, *val);
593
594 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
595
596 return 0;
597 }
598
599 IPW_DEBUG_INFO("wrong table\n");
600 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
601 return -EINVAL;
602
603 return -EINVAL;
604 }
605
606 static char *snprint_line(char *buf, size_t count,
607 const u8 * data, u32 len, u32 ofs)
608 {
609 int out, i, j, l;
610 char c;
611
612 out = snprintf(buf, count, "%08X", ofs);
613
614 for (l = 0, i = 0; i < 2; i++) {
615 out += snprintf(buf + out, count - out, " ");
616 for (j = 0; j < 8 && l < len; j++, l++)
617 out += snprintf(buf + out, count - out, "%02X ",
618 data[(i * 8 + j)]);
619 for (; j < 8; j++)
620 out += snprintf(buf + out, count - out, " ");
621 }
622
623 out += snprintf(buf + out, count - out, " ");
624 for (l = 0, i = 0; i < 2; i++) {
625 out += snprintf(buf + out, count - out, " ");
626 for (j = 0; j < 8 && l < len; j++, l++) {
627 c = data[(i * 8 + j)];
628 if (!isascii(c) || !isprint(c))
629 c = '.';
630
631 out += snprintf(buf + out, count - out, "%c", c);
632 }
633
634 for (; j < 8; j++)
635 out += snprintf(buf + out, count - out, " ");
636 }
637
638 return buf;
639 }
640
641 static void printk_buf(int level, const u8 * data, u32 len)
642 {
643 char line[81];
644 u32 ofs = 0;
645 if (!(ipw2100_debug_level & level))
646 return;
647
648 while (len) {
649 printk(KERN_DEBUG "%s\n",
650 snprint_line(line, sizeof(line), &data[ofs],
651 min(len, 16U), ofs));
652 ofs += 16;
653 len -= min(len, 16U);
654 }
655 }
656
657 #define MAX_RESET_BACKOFF 10
658
659 static void schedule_reset(struct ipw2100_priv *priv)
660 {
661 unsigned long now = get_seconds();
662
663 /* If we haven't received a reset request within the backoff period,
664 * then we can reset the backoff interval so this reset occurs
665 * immediately */
666 if (priv->reset_backoff &&
667 (now - priv->last_reset > priv->reset_backoff))
668 priv->reset_backoff = 0;
669
670 priv->last_reset = get_seconds();
671
672 if (!(priv->status & STATUS_RESET_PENDING)) {
673 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
674 priv->net_dev->name, priv->reset_backoff);
675 netif_carrier_off(priv->net_dev);
676 netif_stop_queue(priv->net_dev);
677 priv->status |= STATUS_RESET_PENDING;
678 if (priv->reset_backoff)
679 queue_delayed_work(priv->workqueue, &priv->reset_work,
680 priv->reset_backoff * HZ);
681 else
682 queue_delayed_work(priv->workqueue, &priv->reset_work,
683 0);
684
685 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686 priv->reset_backoff++;
687
688 wake_up_interruptible(&priv->wait_command_queue);
689 } else
690 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691 priv->net_dev->name);
692
693 }
694
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697 struct host_command *cmd)
698 {
699 struct list_head *element;
700 struct ipw2100_tx_packet *packet;
701 unsigned long flags;
702 int err = 0;
703
704 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705 command_types[cmd->host_command], cmd->host_command,
706 cmd->host_command_length);
707 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708 cmd->host_command_length);
709
710 spin_lock_irqsave(&priv->low_lock, flags);
711
712 if (priv->fatal_error) {
713 IPW_DEBUG_INFO
714 ("Attempt to send command while hardware in fatal error condition.\n");
715 err = -EIO;
716 goto fail_unlock;
717 }
718
719 if (!(priv->status & STATUS_RUNNING)) {
720 IPW_DEBUG_INFO
721 ("Attempt to send command while hardware is not running.\n");
722 err = -EIO;
723 goto fail_unlock;
724 }
725
726 if (priv->status & STATUS_CMD_ACTIVE) {
727 IPW_DEBUG_INFO
728 ("Attempt to send command while another command is pending.\n");
729 err = -EBUSY;
730 goto fail_unlock;
731 }
732
733 if (list_empty(&priv->msg_free_list)) {
734 IPW_DEBUG_INFO("no available msg buffers\n");
735 goto fail_unlock;
736 }
737
738 priv->status |= STATUS_CMD_ACTIVE;
739 priv->messages_sent++;
740
741 element = priv->msg_free_list.next;
742
743 packet = list_entry(element, struct ipw2100_tx_packet, list);
744 packet->jiffy_start = jiffies;
745
746 /* initialize the firmware command packet */
747 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749 packet->info.c_struct.cmd->host_command_len_reg =
750 cmd->host_command_length;
751 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
752
753 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754 cmd->host_command_parameters,
755 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
756
757 list_del(element);
758 DEC_STAT(&priv->msg_free_stat);
759
760 list_add_tail(element, &priv->msg_pend_list);
761 INC_STAT(&priv->msg_pend_stat);
762
763 ipw2100_tx_send_commands(priv);
764 ipw2100_tx_send_data(priv);
765
766 spin_unlock_irqrestore(&priv->low_lock, flags);
767
768 /*
769 * We must wait for this command to complete before another
770 * command can be sent... but if we wait more than 3 seconds
771 * then there is a problem.
772 */
773
774 err =
775 wait_event_interruptible_timeout(priv->wait_command_queue,
776 !(priv->
777 status & STATUS_CMD_ACTIVE),
778 HOST_COMPLETE_TIMEOUT);
779
780 if (err == 0) {
781 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784 priv->status &= ~STATUS_CMD_ACTIVE;
785 schedule_reset(priv);
786 return -EIO;
787 }
788
789 if (priv->fatal_error) {
790 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791 priv->net_dev->name);
792 return -EIO;
793 }
794
795 /* !!!!! HACK TEST !!!!!
796 * When lots of debug trace statements are enabled, the driver
797 * doesn't seem to have as many firmware restart cycles...
798 *
799 * As a test, we're sticking in a 1/100s delay here */
800 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
801
802 return 0;
803
804 fail_unlock:
805 spin_unlock_irqrestore(&priv->low_lock, flags);
806
807 return err;
808 }
809
810 /*
811 * Verify the values and data access of the hardware
812 * No locks needed or used. No functions called.
813 */
814 static int ipw2100_verify(struct ipw2100_priv *priv)
815 {
816 u32 data1, data2;
817 u32 address;
818
819 u32 val1 = 0x76543210;
820 u32 val2 = 0xFEDCBA98;
821
822 /* Domain 0 check - all values should be DOA_DEBUG */
823 for (address = IPW_REG_DOA_DEBUG_AREA_START;
824 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825 read_register(priv->net_dev, address, &data1);
826 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827 return -EIO;
828 }
829
830 /* Domain 1 check - use arbitrary read/write compare */
831 for (address = 0; address < 5; address++) {
832 /* The memory area is not used now */
833 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834 val1);
835 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836 val2);
837 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838 &data1);
839 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840 &data2);
841 if (val1 == data1 && val2 == data2)
842 return 0;
843 }
844
845 return -EIO;
846 }
847
848 /*
849 *
850 * Loop until the CARD_DISABLED bit is the same value as the
851 * supplied parameter
852 *
853 * TODO: See if it would be more efficient to do a wait/wake
854 * cycle and have the completion event trigger the wakeup
855 *
856 */
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
859 {
860 int i;
861 u32 card_state;
862 u32 len = sizeof(card_state);
863 int err;
864
865 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867 &card_state, &len);
868 if (err) {
869 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870 "failed.\n");
871 return 0;
872 }
873
874 /* We'll break out if either the HW state says it is
875 * in the state we want, or if HOST_COMPLETE command
876 * finishes */
877 if ((card_state == state) ||
878 ((priv->status & STATUS_ENABLED) ?
879 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880 if (state == IPW_HW_STATE_ENABLED)
881 priv->status |= STATUS_ENABLED;
882 else
883 priv->status &= ~STATUS_ENABLED;
884
885 return 0;
886 }
887
888 udelay(50);
889 }
890
891 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892 state ? "DISABLED" : "ENABLED");
893 return -EIO;
894 }
895
896 /*********************************************************************
897 Procedure : sw_reset_and_clock
898 Purpose : Asserts s/w reset, asserts clock initialization
899 and waits for clock stabilization
900 ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
902 {
903 int i;
904 u32 r;
905
906 // assert s/w reset
907 write_register(priv->net_dev, IPW_REG_RESET_REG,
908 IPW_AUX_HOST_RESET_REG_SW_RESET);
909
910 // wait for clock stabilization
911 for (i = 0; i < 1000; i++) {
912 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
913
914 // check clock ready bit
915 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917 break;
918 }
919
920 if (i == 1000)
921 return -EIO; // TODO: better error value
922
923 /* set "initialization complete" bit to move adapter to
924 * D0 state */
925 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
927
928 /* wait for clock stabilization */
929 for (i = 0; i < 10000; i++) {
930 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
931
932 /* check clock ready bit */
933 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935 break;
936 }
937
938 if (i == 10000)
939 return -EIO; /* TODO: better error value */
940
941 /* set D0 standby bit */
942 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
945
946 return 0;
947 }
948
949 /*********************************************************************
950 Procedure : ipw2100_download_firmware
951 Purpose : Initiaze adapter after power on.
952 The sequence is:
953 1. assert s/w reset first!
954 2. awake clocks & wait for clock stabilization
955 3. hold ARC (don't ask me why...)
956 4. load Dino ucode and reset/clock init again
957 5. zero-out shared mem
958 6. download f/w
959 *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
961 {
962 u32 address;
963 int err;
964
965 #ifndef CONFIG_PM
966 /* Fetch the firmware and microcode */
967 struct ipw2100_fw ipw2100_firmware;
968 #endif
969
970 if (priv->fatal_error) {
971 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972 "fatal error %d. Interface must be brought down.\n",
973 priv->net_dev->name, priv->fatal_error);
974 return -EINVAL;
975 }
976 #ifdef CONFIG_PM
977 if (!ipw2100_firmware.version) {
978 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979 if (err) {
980 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981 priv->net_dev->name, err);
982 priv->fatal_error = IPW2100_ERR_FW_LOAD;
983 goto fail;
984 }
985 }
986 #else
987 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988 if (err) {
989 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990 priv->net_dev->name, err);
991 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992 goto fail;
993 }
994 #endif
995 priv->firmware_version = ipw2100_firmware.version;
996
997 /* s/w reset and clock stabilization */
998 err = sw_reset_and_clock(priv);
999 if (err) {
1000 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001 priv->net_dev->name, err);
1002 goto fail;
1003 }
1004
1005 err = ipw2100_verify(priv);
1006 if (err) {
1007 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008 priv->net_dev->name, err);
1009 goto fail;
1010 }
1011
1012 /* Hold ARC */
1013 write_nic_dword(priv->net_dev,
1014 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1015
1016 /* allow ARC to run */
1017 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1018
1019 /* load microcode */
1020 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021 if (err) {
1022 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023 priv->net_dev->name, err);
1024 goto fail;
1025 }
1026
1027 /* release ARC */
1028 write_nic_dword(priv->net_dev,
1029 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1030
1031 /* s/w reset and clock stabilization (again!!!) */
1032 err = sw_reset_and_clock(priv);
1033 if (err) {
1034 printk(KERN_ERR DRV_NAME
1035 ": %s: sw_reset_and_clock failed: %d\n",
1036 priv->net_dev->name, err);
1037 goto fail;
1038 }
1039
1040 /* load f/w */
1041 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042 if (err) {
1043 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044 priv->net_dev->name, err);
1045 goto fail;
1046 }
1047 #ifndef CONFIG_PM
1048 /*
1049 * When the .resume method of the driver is called, the other
1050 * part of the system, i.e. the ide driver could still stay in
1051 * the suspend stage. This prevents us from loading the firmware
1052 * from the disk. --YZ
1053 */
1054
1055 /* free any storage allocated for firmware image */
1056 ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1058
1059 /* zero out Domain 1 area indirectly (Si requirement) */
1060 for (address = IPW_HOST_FW_SHARED_AREA0;
1061 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062 write_nic_dword(priv->net_dev, address, 0);
1063 for (address = IPW_HOST_FW_SHARED_AREA1;
1064 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065 write_nic_dword(priv->net_dev, address, 0);
1066 for (address = IPW_HOST_FW_SHARED_AREA2;
1067 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068 write_nic_dword(priv->net_dev, address, 0);
1069 for (address = IPW_HOST_FW_SHARED_AREA3;
1070 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071 write_nic_dword(priv->net_dev, address, 0);
1072 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074 write_nic_dword(priv->net_dev, address, 0);
1075
1076 return 0;
1077
1078 fail:
1079 ipw2100_release_firmware(priv, &ipw2100_firmware);
1080 return err;
1081 }
1082
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1084 {
1085 if (priv->status & STATUS_INT_ENABLED)
1086 return;
1087 priv->status |= STATUS_INT_ENABLED;
1088 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1089 }
1090
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1092 {
1093 if (!(priv->status & STATUS_INT_ENABLED))
1094 return;
1095 priv->status &= ~STATUS_INT_ENABLED;
1096 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1097 }
1098
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1100 {
1101 struct ipw2100_ordinals *ord = &priv->ordinals;
1102
1103 IPW_DEBUG_INFO("enter\n");
1104
1105 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106 &ord->table1_addr);
1107
1108 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109 &ord->table2_addr);
1110
1111 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1113
1114 ord->table2_size &= 0x0000FFFF;
1115
1116 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118 IPW_DEBUG_INFO("exit\n");
1119 }
1120
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1122 {
1123 u32 reg = 0;
1124 /*
1125 * Set GPIO 3 writable by FW; GPIO 1 writable
1126 * by driver and enable clock
1127 */
1128 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129 IPW_BIT_GPIO_LED_OFF);
1130 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1131 }
1132
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1134 {
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1137
1138 unsigned short value = 0;
1139 u32 reg = 0;
1140 int i;
1141
1142 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143 priv->status &= ~STATUS_RF_KILL_HW;
1144 return 0;
1145 }
1146
1147 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148 udelay(RF_KILL_CHECK_DELAY);
1149 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1151 }
1152
1153 if (value == 0)
1154 priv->status |= STATUS_RF_KILL_HW;
1155 else
1156 priv->status &= ~STATUS_RF_KILL_HW;
1157
1158 return (value == 0);
1159 }
1160
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1162 {
1163 u32 addr, len;
1164 u32 val;
1165
1166 /*
1167 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1168 */
1169 len = sizeof(addr);
1170 if (ipw2100_get_ordinal
1171 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173 __LINE__);
1174 return -EIO;
1175 }
1176
1177 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1178
1179 /*
1180 * EEPROM version is the byte at offset 0xfd in firmware
1181 * We read 4 bytes, then shift out the byte we actually want */
1182 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183 priv->eeprom_version = (val >> 24) & 0xFF;
1184 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1185
1186 /*
1187 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1188 *
1189 * notice that the EEPROM bit is reverse polarity, i.e.
1190 * bit = 0 signifies HW RF kill switch is supported
1191 * bit = 1 signifies HW RF kill switch is NOT supported
1192 */
1193 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194 if (!((val >> 24) & 0x01))
1195 priv->hw_features |= HW_FEATURE_RFKILL;
1196
1197 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1199
1200 return 0;
1201 }
1202
1203 /*
1204 * Start firmware execution after power on and intialization
1205 * The sequence is:
1206 * 1. Release ARC
1207 * 2. Wait for f/w initialization completes;
1208 */
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1210 {
1211 int i;
1212 u32 inta, inta_mask, gpio;
1213
1214 IPW_DEBUG_INFO("enter\n");
1215
1216 if (priv->status & STATUS_RUNNING)
1217 return 0;
1218
1219 /*
1220 * Initialize the hw - drive adapter to DO state by setting
1221 * init_done bit. Wait for clk_ready bit and Download
1222 * fw & dino ucode
1223 */
1224 if (ipw2100_download_firmware(priv)) {
1225 printk(KERN_ERR DRV_NAME
1226 ": %s: Failed to power on the adapter.\n",
1227 priv->net_dev->name);
1228 return -EIO;
1229 }
1230
1231 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232 * in the firmware RBD and TBD ring queue */
1233 ipw2100_queues_initialize(priv);
1234
1235 ipw2100_hw_set_gpio(priv);
1236
1237 /* TODO -- Look at disabling interrupts here to make sure none
1238 * get fired during FW initialization */
1239
1240 /* Release ARC - clear reset bit */
1241 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1242
1243 /* wait for f/w intialization complete */
1244 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245 i = 5000;
1246 do {
1247 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248 /* Todo... wait for sync command ... */
1249
1250 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1251
1252 /* check "init done" bit */
1253 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254 /* reset "init done" bit */
1255 write_register(priv->net_dev, IPW_REG_INTA,
1256 IPW2100_INTA_FW_INIT_DONE);
1257 break;
1258 }
1259
1260 /* check error conditions : we check these after the firmware
1261 * check so that if there is an error, the interrupt handler
1262 * will see it and the adapter will be reset */
1263 if (inta &
1264 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265 /* clear error conditions */
1266 write_register(priv->net_dev, IPW_REG_INTA,
1267 IPW2100_INTA_FATAL_ERROR |
1268 IPW2100_INTA_PARITY_ERROR);
1269 }
1270 } while (i--);
1271
1272 /* Clear out any pending INTAs since we aren't supposed to have
1273 * interrupts enabled at this point... */
1274 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276 inta &= IPW_INTERRUPT_MASK;
1277 /* Clear out any pending interrupts */
1278 if (inta & inta_mask)
1279 write_register(priv->net_dev, IPW_REG_INTA, inta);
1280
1281 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282 i ? "SUCCESS" : "FAILED");
1283
1284 if (!i) {
1285 printk(KERN_WARNING DRV_NAME
1286 ": %s: Firmware did not initialize.\n",
1287 priv->net_dev->name);
1288 return -EIO;
1289 }
1290
1291 /* allow firmware to write to GPIO1 & GPIO3 */
1292 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1293
1294 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1295
1296 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1297
1298 /* Ready to receive commands */
1299 priv->status |= STATUS_RUNNING;
1300
1301 /* The adapter has been reset; we are not associated */
1302 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1303
1304 IPW_DEBUG_INFO("exit\n");
1305
1306 return 0;
1307 }
1308
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1310 {
1311 if (!priv->fatal_error)
1312 return;
1313
1314 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316 priv->fatal_error = 0;
1317 }
1318
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1321 {
1322 u32 reg;
1323 int i;
1324
1325 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1326
1327 ipw2100_hw_set_gpio(priv);
1328
1329 /* Step 1. Stop Master Assert */
1330 write_register(priv->net_dev, IPW_REG_RESET_REG,
1331 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1332
1333 /* Step 2. Wait for stop Master Assert
1334 * (not more then 50us, otherwise ret error */
1335 i = 5;
1336 do {
1337 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1339
1340 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341 break;
1342 } while (i--);
1343
1344 priv->status &= ~STATUS_RESET_PENDING;
1345
1346 if (!i) {
1347 IPW_DEBUG_INFO
1348 ("exit - waited too long for master assert stop\n");
1349 return -EIO;
1350 }
1351
1352 write_register(priv->net_dev, IPW_REG_RESET_REG,
1353 IPW_AUX_HOST_RESET_REG_SW_RESET);
1354
1355 /* Reset any fatal_error conditions */
1356 ipw2100_reset_fatalerror(priv);
1357
1358 /* At this point, the adapter is now stopped and disabled */
1359 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360 STATUS_ASSOCIATED | STATUS_ENABLED);
1361
1362 return 0;
1363 }
1364
1365 /*
1366 * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1367 *
1368 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1369 *
1370 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371 * if STATUS_ASSN_LOST is sent.
1372 */
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1374 {
1375
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1377
1378 struct host_command cmd = {
1379 .host_command = CARD_DISABLE_PHY_OFF,
1380 .host_command_sequence = 0,
1381 .host_command_length = 0,
1382 };
1383 int err, i;
1384 u32 val1, val2;
1385
1386 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1387
1388 /* Turn off the radio */
1389 err = ipw2100_hw_send_command(priv, &cmd);
1390 if (err)
1391 return err;
1392
1393 for (i = 0; i < 2500; i++) {
1394 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1396
1397 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398 (val2 & IPW2100_COMMAND_PHY_OFF))
1399 return 0;
1400
1401 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1402 }
1403
1404 return -EIO;
1405 }
1406
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1408 {
1409 struct host_command cmd = {
1410 .host_command = HOST_COMPLETE,
1411 .host_command_sequence = 0,
1412 .host_command_length = 0
1413 };
1414 int err = 0;
1415
1416 IPW_DEBUG_HC("HOST_COMPLETE\n");
1417
1418 if (priv->status & STATUS_ENABLED)
1419 return 0;
1420
1421 mutex_lock(&priv->adapter_mutex);
1422
1423 if (rf_kill_active(priv)) {
1424 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425 goto fail_up;
1426 }
1427
1428 err = ipw2100_hw_send_command(priv, &cmd);
1429 if (err) {
1430 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431 goto fail_up;
1432 }
1433
1434 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435 if (err) {
1436 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437 priv->net_dev->name);
1438 goto fail_up;
1439 }
1440
1441 if (priv->stop_hang_check) {
1442 priv->stop_hang_check = 0;
1443 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1444 }
1445
1446 fail_up:
1447 mutex_unlock(&priv->adapter_mutex);
1448 return err;
1449 }
1450
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1452 {
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1454
1455 struct host_command cmd = {
1456 .host_command = HOST_PRE_POWER_DOWN,
1457 .host_command_sequence = 0,
1458 .host_command_length = 0,
1459 };
1460 int err, i;
1461 u32 reg;
1462
1463 if (!(priv->status & STATUS_RUNNING))
1464 return 0;
1465
1466 priv->status |= STATUS_STOPPING;
1467
1468 /* We can only shut down the card if the firmware is operational. So,
1469 * if we haven't reset since a fatal_error, then we can not send the
1470 * shutdown commands. */
1471 if (!priv->fatal_error) {
1472 /* First, make sure the adapter is enabled so that the PHY_OFF
1473 * command can shut it down */
1474 ipw2100_enable_adapter(priv);
1475
1476 err = ipw2100_hw_phy_off(priv);
1477 if (err)
1478 printk(KERN_WARNING DRV_NAME
1479 ": Error disabling radio %d\n", err);
1480
1481 /*
1482 * If in D0-standby mode going directly to D3 may cause a
1483 * PCI bus violation. Therefore we must change out of the D0
1484 * state.
1485 *
1486 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487 * hardware from going into standby mode and will transition
1488 * out of D0-standby if it is already in that state.
1489 *
1490 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491 * driver upon completion. Once received, the driver can
1492 * proceed to the D3 state.
1493 *
1494 * Prepare for power down command to fw. This command would
1495 * take HW out of D0-standby and prepare it for D3 state.
1496 *
1497 * Currently FW does not support event notification for this
1498 * event. Therefore, skip waiting for it. Just wait a fixed
1499 * 100ms
1500 */
1501 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1502
1503 err = ipw2100_hw_send_command(priv, &cmd);
1504 if (err)
1505 printk(KERN_WARNING DRV_NAME ": "
1506 "%s: Power down command failed: Error %d\n",
1507 priv->net_dev->name, err);
1508 else
1509 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1510 }
1511
1512 priv->status &= ~STATUS_ENABLED;
1513
1514 /*
1515 * Set GPIO 3 writable by FW; GPIO 1 writable
1516 * by driver and enable clock
1517 */
1518 ipw2100_hw_set_gpio(priv);
1519
1520 /*
1521 * Power down adapter. Sequence:
1522 * 1. Stop master assert (RESET_REG[9]=1)
1523 * 2. Wait for stop master (RESET_REG[8]==1)
1524 * 3. S/w reset assert (RESET_REG[7] = 1)
1525 */
1526
1527 /* Stop master assert */
1528 write_register(priv->net_dev, IPW_REG_RESET_REG,
1529 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1530
1531 /* wait stop master not more than 50 usec.
1532 * Otherwise return error. */
1533 for (i = 5; i > 0; i--) {
1534 udelay(10);
1535
1536 /* Check master stop bit */
1537 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1538
1539 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540 break;
1541 }
1542
1543 if (i == 0)
1544 printk(KERN_WARNING DRV_NAME
1545 ": %s: Could now power down adapter.\n",
1546 priv->net_dev->name);
1547
1548 /* assert s/w reset */
1549 write_register(priv->net_dev, IPW_REG_RESET_REG,
1550 IPW_AUX_HOST_RESET_REG_SW_RESET);
1551
1552 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1553
1554 return 0;
1555 }
1556
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1558 {
1559 struct host_command cmd = {
1560 .host_command = CARD_DISABLE,
1561 .host_command_sequence = 0,
1562 .host_command_length = 0
1563 };
1564 int err = 0;
1565
1566 IPW_DEBUG_HC("CARD_DISABLE\n");
1567
1568 if (!(priv->status & STATUS_ENABLED))
1569 return 0;
1570
1571 /* Make sure we clear the associated state */
1572 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1573
1574 if (!priv->stop_hang_check) {
1575 priv->stop_hang_check = 1;
1576 cancel_delayed_work(&priv->hang_check);
1577 }
1578
1579 mutex_lock(&priv->adapter_mutex);
1580
1581 err = ipw2100_hw_send_command(priv, &cmd);
1582 if (err) {
1583 printk(KERN_WARNING DRV_NAME
1584 ": exit - failed to send CARD_DISABLE command\n");
1585 goto fail_up;
1586 }
1587
1588 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589 if (err) {
1590 printk(KERN_WARNING DRV_NAME
1591 ": exit - card failed to change to DISABLED\n");
1592 goto fail_up;
1593 }
1594
1595 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1596
1597 fail_up:
1598 mutex_unlock(&priv->adapter_mutex);
1599 return err;
1600 }
1601
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1603 {
1604 struct host_command cmd = {
1605 .host_command = SET_SCAN_OPTIONS,
1606 .host_command_sequence = 0,
1607 .host_command_length = 8
1608 };
1609 int err;
1610
1611 IPW_DEBUG_INFO("enter\n");
1612
1613 IPW_DEBUG_SCAN("setting scan options\n");
1614
1615 cmd.host_command_parameters[0] = 0;
1616
1617 if (!(priv->config & CFG_ASSOCIATE))
1618 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621 if (priv->config & CFG_PASSIVE_SCAN)
1622 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1623
1624 cmd.host_command_parameters[1] = priv->channel_mask;
1625
1626 err = ipw2100_hw_send_command(priv, &cmd);
1627
1628 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629 cmd.host_command_parameters[0]);
1630
1631 return err;
1632 }
1633
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1635 {
1636 struct host_command cmd = {
1637 .host_command = BROADCAST_SCAN,
1638 .host_command_sequence = 0,
1639 .host_command_length = 4
1640 };
1641 int err;
1642
1643 IPW_DEBUG_HC("START_SCAN\n");
1644
1645 cmd.host_command_parameters[0] = 0;
1646
1647 /* No scanning if in monitor mode */
1648 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649 return 1;
1650
1651 if (priv->status & STATUS_SCANNING) {
1652 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653 return 0;
1654 }
1655
1656 IPW_DEBUG_INFO("enter\n");
1657
1658 /* Not clearing here; doing so makes iwlist always return nothing...
1659 *
1660 * We should modify the table logic to use aging tables vs. clearing
1661 * the table on each scan start.
1662 */
1663 IPW_DEBUG_SCAN("starting scan\n");
1664
1665 priv->status |= STATUS_SCANNING;
1666 err = ipw2100_hw_send_command(priv, &cmd);
1667 if (err)
1668 priv->status &= ~STATUS_SCANNING;
1669
1670 IPW_DEBUG_INFO("exit\n");
1671
1672 return err;
1673 }
1674
1675 static const struct ieee80211_geo ipw_geos[] = {
1676 { /* Restricted */
1677 "---",
1678 .bg_channels = 14,
1679 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1680 {2427, 4}, {2432, 5}, {2437, 6},
1681 {2442, 7}, {2447, 8}, {2452, 9},
1682 {2457, 10}, {2462, 11}, {2467, 12},
1683 {2472, 13}, {2484, 14}},
1684 },
1685 };
1686
1687 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1688 {
1689 unsigned long flags;
1690 int rc = 0;
1691 u32 lock;
1692 u32 ord_len = sizeof(lock);
1693
1694 /* Quite if manually disabled. */
1695 if (priv->status & STATUS_RF_KILL_SW) {
1696 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1697 "switch\n", priv->net_dev->name);
1698 return 0;
1699 }
1700
1701 /* the ipw2100 hardware really doesn't want power management delays
1702 * longer than 175usec
1703 */
1704 modify_acceptable_latency("ipw2100", 175);
1705
1706 /* If the interrupt is enabled, turn it off... */
1707 spin_lock_irqsave(&priv->low_lock, flags);
1708 ipw2100_disable_interrupts(priv);
1709
1710 /* Reset any fatal_error conditions */
1711 ipw2100_reset_fatalerror(priv);
1712 spin_unlock_irqrestore(&priv->low_lock, flags);
1713
1714 if (priv->status & STATUS_POWERED ||
1715 (priv->status & STATUS_RESET_PENDING)) {
1716 /* Power cycle the card ... */
1717 if (ipw2100_power_cycle_adapter(priv)) {
1718 printk(KERN_WARNING DRV_NAME
1719 ": %s: Could not cycle adapter.\n",
1720 priv->net_dev->name);
1721 rc = 1;
1722 goto exit;
1723 }
1724 } else
1725 priv->status |= STATUS_POWERED;
1726
1727 /* Load the firmware, start the clocks, etc. */
1728 if (ipw2100_start_adapter(priv)) {
1729 printk(KERN_ERR DRV_NAME
1730 ": %s: Failed to start the firmware.\n",
1731 priv->net_dev->name);
1732 rc = 1;
1733 goto exit;
1734 }
1735
1736 ipw2100_initialize_ordinals(priv);
1737
1738 /* Determine capabilities of this particular HW configuration */
1739 if (ipw2100_get_hw_features(priv)) {
1740 printk(KERN_ERR DRV_NAME
1741 ": %s: Failed to determine HW features.\n",
1742 priv->net_dev->name);
1743 rc = 1;
1744 goto exit;
1745 }
1746
1747 /* Initialize the geo */
1748 if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1749 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1750 return 0;
1751 }
1752 priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1753
1754 lock = LOCK_NONE;
1755 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1756 printk(KERN_ERR DRV_NAME
1757 ": %s: Failed to clear ordinal lock.\n",
1758 priv->net_dev->name);
1759 rc = 1;
1760 goto exit;
1761 }
1762
1763 priv->status &= ~STATUS_SCANNING;
1764
1765 if (rf_kill_active(priv)) {
1766 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1767 priv->net_dev->name);
1768
1769 if (priv->stop_rf_kill) {
1770 priv->stop_rf_kill = 0;
1771 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1772 round_jiffies(HZ));
1773 }
1774
1775 deferred = 1;
1776 }
1777
1778 /* Turn on the interrupt so that commands can be processed */
1779 ipw2100_enable_interrupts(priv);
1780
1781 /* Send all of the commands that must be sent prior to
1782 * HOST_COMPLETE */
1783 if (ipw2100_adapter_setup(priv)) {
1784 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1785 priv->net_dev->name);
1786 rc = 1;
1787 goto exit;
1788 }
1789
1790 if (!deferred) {
1791 /* Enable the adapter - sends HOST_COMPLETE */
1792 if (ipw2100_enable_adapter(priv)) {
1793 printk(KERN_ERR DRV_NAME ": "
1794 "%s: failed in call to enable adapter.\n",
1795 priv->net_dev->name);
1796 ipw2100_hw_stop_adapter(priv);
1797 rc = 1;
1798 goto exit;
1799 }
1800
1801 /* Start a scan . . . */
1802 ipw2100_set_scan_options(priv);
1803 ipw2100_start_scan(priv);
1804 }
1805
1806 exit:
1807 return rc;
1808 }
1809
1810 /* Called by register_netdev() */
1811 static int ipw2100_net_init(struct net_device *dev)
1812 {
1813 struct ipw2100_priv *priv = ieee80211_priv(dev);
1814 return ipw2100_up(priv, 1);
1815 }
1816
1817 static void ipw2100_down(struct ipw2100_priv *priv)
1818 {
1819 unsigned long flags;
1820 union iwreq_data wrqu = {
1821 .ap_addr = {
1822 .sa_family = ARPHRD_ETHER}
1823 };
1824 int associated = priv->status & STATUS_ASSOCIATED;
1825
1826 /* Kill the RF switch timer */
1827 if (!priv->stop_rf_kill) {
1828 priv->stop_rf_kill = 1;
1829 cancel_delayed_work(&priv->rf_kill);
1830 }
1831
1832 /* Kill the firmare hang check timer */
1833 if (!priv->stop_hang_check) {
1834 priv->stop_hang_check = 1;
1835 cancel_delayed_work(&priv->hang_check);
1836 }
1837
1838 /* Kill any pending resets */
1839 if (priv->status & STATUS_RESET_PENDING)
1840 cancel_delayed_work(&priv->reset_work);
1841
1842 /* Make sure the interrupt is on so that FW commands will be
1843 * processed correctly */
1844 spin_lock_irqsave(&priv->low_lock, flags);
1845 ipw2100_enable_interrupts(priv);
1846 spin_unlock_irqrestore(&priv->low_lock, flags);
1847
1848 if (ipw2100_hw_stop_adapter(priv))
1849 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1850 priv->net_dev->name);
1851
1852 /* Do not disable the interrupt until _after_ we disable
1853 * the adaptor. Otherwise the CARD_DISABLE command will never
1854 * be ack'd by the firmware */
1855 spin_lock_irqsave(&priv->low_lock, flags);
1856 ipw2100_disable_interrupts(priv);
1857 spin_unlock_irqrestore(&priv->low_lock, flags);
1858
1859 modify_acceptable_latency("ipw2100", INFINITE_LATENCY);
1860
1861 /* We have to signal any supplicant if we are disassociating */
1862 if (associated)
1863 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1864
1865 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1866 netif_carrier_off(priv->net_dev);
1867 netif_stop_queue(priv->net_dev);
1868 }
1869
1870 static void ipw2100_reset_adapter(struct work_struct *work)
1871 {
1872 struct ipw2100_priv *priv =
1873 container_of(work, struct ipw2100_priv, reset_work.work);
1874 unsigned long flags;
1875 union iwreq_data wrqu = {
1876 .ap_addr = {
1877 .sa_family = ARPHRD_ETHER}
1878 };
1879 int associated = priv->status & STATUS_ASSOCIATED;
1880
1881 spin_lock_irqsave(&priv->low_lock, flags);
1882 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1883 priv->resets++;
1884 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1885 priv->status |= STATUS_SECURITY_UPDATED;
1886
1887 /* Force a power cycle even if interface hasn't been opened
1888 * yet */
1889 cancel_delayed_work(&priv->reset_work);
1890 priv->status |= STATUS_RESET_PENDING;
1891 spin_unlock_irqrestore(&priv->low_lock, flags);
1892
1893 mutex_lock(&priv->action_mutex);
1894 /* stop timed checks so that they don't interfere with reset */
1895 priv->stop_hang_check = 1;
1896 cancel_delayed_work(&priv->hang_check);
1897
1898 /* We have to signal any supplicant if we are disassociating */
1899 if (associated)
1900 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1901
1902 ipw2100_up(priv, 0);
1903 mutex_unlock(&priv->action_mutex);
1904
1905 }
1906
1907 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1908 {
1909
1910 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1911 int ret, len, essid_len;
1912 char essid[IW_ESSID_MAX_SIZE];
1913 u32 txrate;
1914 u32 chan;
1915 char *txratename;
1916 u8 bssid[ETH_ALEN];
1917
1918 /*
1919 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1920 * an actual MAC of the AP. Seems like FW sets this
1921 * address too late. Read it later and expose through
1922 * /proc or schedule a later task to query and update
1923 */
1924
1925 essid_len = IW_ESSID_MAX_SIZE;
1926 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1927 essid, &essid_len);
1928 if (ret) {
1929 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1930 __LINE__);
1931 return;
1932 }
1933
1934 len = sizeof(u32);
1935 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1936 if (ret) {
1937 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1938 __LINE__);
1939 return;
1940 }
1941
1942 len = sizeof(u32);
1943 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1944 if (ret) {
1945 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1946 __LINE__);
1947 return;
1948 }
1949 len = ETH_ALEN;
1950 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1951 if (ret) {
1952 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1953 __LINE__);
1954 return;
1955 }
1956 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1957
1958 switch (txrate) {
1959 case TX_RATE_1_MBIT:
1960 txratename = "1Mbps";
1961 break;
1962 case TX_RATE_2_MBIT:
1963 txratename = "2Mbsp";
1964 break;
1965 case TX_RATE_5_5_MBIT:
1966 txratename = "5.5Mbps";
1967 break;
1968 case TX_RATE_11_MBIT:
1969 txratename = "11Mbps";
1970 break;
1971 default:
1972 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1973 txratename = "unknown rate";
1974 break;
1975 }
1976
1977 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1978 MAC_FMT ")\n",
1979 priv->net_dev->name, escape_essid(essid, essid_len),
1980 txratename, chan, MAC_ARG(bssid));
1981
1982 /* now we copy read ssid into dev */
1983 if (!(priv->config & CFG_STATIC_ESSID)) {
1984 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1985 memcpy(priv->essid, essid, priv->essid_len);
1986 }
1987 priv->channel = chan;
1988 memcpy(priv->bssid, bssid, ETH_ALEN);
1989
1990 priv->status |= STATUS_ASSOCIATING;
1991 priv->connect_start = get_seconds();
1992
1993 queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
1994 }
1995
1996 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
1997 int length, int batch_mode)
1998 {
1999 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2000 struct host_command cmd = {
2001 .host_command = SSID,
2002 .host_command_sequence = 0,
2003 .host_command_length = ssid_len
2004 };
2005 int err;
2006
2007 IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2008
2009 if (ssid_len)
2010 memcpy(cmd.host_command_parameters, essid, ssid_len);
2011
2012 if (!batch_mode) {
2013 err = ipw2100_disable_adapter(priv);
2014 if (err)
2015 return err;
2016 }
2017
2018 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2019 * disable auto association -- so we cheat by setting a bogus SSID */
2020 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2021 int i;
2022 u8 *bogus = (u8 *) cmd.host_command_parameters;
2023 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2024 bogus[i] = 0x18 + i;
2025 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2026 }
2027
2028 /* NOTE: We always send the SSID command even if the provided ESSID is
2029 * the same as what we currently think is set. */
2030
2031 err = ipw2100_hw_send_command(priv, &cmd);
2032 if (!err) {
2033 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2034 memcpy(priv->essid, essid, ssid_len);
2035 priv->essid_len = ssid_len;
2036 }
2037
2038 if (!batch_mode) {
2039 if (ipw2100_enable_adapter(priv))
2040 err = -EIO;
2041 }
2042
2043 return err;
2044 }
2045
2046 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2047 {
2048 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2049 "disassociated: '%s' " MAC_FMT " \n",
2050 escape_essid(priv->essid, priv->essid_len),
2051 MAC_ARG(priv->bssid));
2052
2053 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2054
2055 if (priv->status & STATUS_STOPPING) {
2056 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2057 return;
2058 }
2059
2060 memset(priv->bssid, 0, ETH_ALEN);
2061 memset(priv->ieee->bssid, 0, ETH_ALEN);
2062
2063 netif_carrier_off(priv->net_dev);
2064 netif_stop_queue(priv->net_dev);
2065
2066 if (!(priv->status & STATUS_RUNNING))
2067 return;
2068
2069 if (priv->status & STATUS_SECURITY_UPDATED)
2070 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2071
2072 queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2073 }
2074
2075 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2076 {
2077 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2078 priv->net_dev->name);
2079
2080 /* RF_KILL is now enabled (else we wouldn't be here) */
2081 priv->status |= STATUS_RF_KILL_HW;
2082
2083 /* Make sure the RF Kill check timer is running */
2084 priv->stop_rf_kill = 0;
2085 cancel_delayed_work(&priv->rf_kill);
2086 queue_delayed_work(priv->workqueue, &priv->rf_kill, round_jiffies(HZ));
2087 }
2088
2089 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2090 {
2091 IPW_DEBUG_SCAN("scan complete\n");
2092 /* Age the scan results... */
2093 priv->ieee->scans++;
2094 priv->status &= ~STATUS_SCANNING;
2095 }
2096
2097 #ifdef CONFIG_IPW2100_DEBUG
2098 #define IPW2100_HANDLER(v, f) { v, f, # v }
2099 struct ipw2100_status_indicator {
2100 int status;
2101 void (*cb) (struct ipw2100_priv * priv, u32 status);
2102 char *name;
2103 };
2104 #else
2105 #define IPW2100_HANDLER(v, f) { v, f }
2106 struct ipw2100_status_indicator {
2107 int status;
2108 void (*cb) (struct ipw2100_priv * priv, u32 status);
2109 };
2110 #endif /* CONFIG_IPW2100_DEBUG */
2111
2112 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2113 {
2114 IPW_DEBUG_SCAN("Scanning...\n");
2115 priv->status |= STATUS_SCANNING;
2116 }
2117
2118 static const struct ipw2100_status_indicator status_handlers[] = {
2119 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2120 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2121 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2122 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2123 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2124 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2125 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2126 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2127 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2128 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2129 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2130 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2131 IPW2100_HANDLER(-1, NULL)
2132 };
2133
2134 static void isr_status_change(struct ipw2100_priv *priv, int status)
2135 {
2136 int i;
2137
2138 if (status == IPW_STATE_SCANNING &&
2139 priv->status & STATUS_ASSOCIATED &&
2140 !(priv->status & STATUS_SCANNING)) {
2141 IPW_DEBUG_INFO("Scan detected while associated, with "
2142 "no scan request. Restarting firmware.\n");
2143
2144 /* Wake up any sleeping jobs */
2145 schedule_reset(priv);
2146 }
2147
2148 for (i = 0; status_handlers[i].status != -1; i++) {
2149 if (status == status_handlers[i].status) {
2150 IPW_DEBUG_NOTIF("Status change: %s\n",
2151 status_handlers[i].name);
2152 if (status_handlers[i].cb)
2153 status_handlers[i].cb(priv, status);
2154 priv->wstats.status = status;
2155 return;
2156 }
2157 }
2158
2159 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2160 }
2161
2162 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2163 struct ipw2100_cmd_header *cmd)
2164 {
2165 #ifdef CONFIG_IPW2100_DEBUG
2166 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2167 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2168 command_types[cmd->host_command_reg],
2169 cmd->host_command_reg);
2170 }
2171 #endif
2172 if (cmd->host_command_reg == HOST_COMPLETE)
2173 priv->status |= STATUS_ENABLED;
2174
2175 if (cmd->host_command_reg == CARD_DISABLE)
2176 priv->status &= ~STATUS_ENABLED;
2177
2178 priv->status &= ~STATUS_CMD_ACTIVE;
2179
2180 wake_up_interruptible(&priv->wait_command_queue);
2181 }
2182
2183 #ifdef CONFIG_IPW2100_DEBUG
2184 static const char *frame_types[] = {
2185 "COMMAND_STATUS_VAL",
2186 "STATUS_CHANGE_VAL",
2187 "P80211_DATA_VAL",
2188 "P8023_DATA_VAL",
2189 "HOST_NOTIFICATION_VAL"
2190 };
2191 #endif
2192
2193 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2194 struct ipw2100_rx_packet *packet)
2195 {
2196 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2197 if (!packet->skb)
2198 return -ENOMEM;
2199
2200 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2201 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2202 sizeof(struct ipw2100_rx),
2203 PCI_DMA_FROMDEVICE);
2204 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2205 * dma_addr */
2206
2207 return 0;
2208 }
2209
2210 #define SEARCH_ERROR 0xffffffff
2211 #define SEARCH_FAIL 0xfffffffe
2212 #define SEARCH_SUCCESS 0xfffffff0
2213 #define SEARCH_DISCARD 0
2214 #define SEARCH_SNAPSHOT 1
2215
2216 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2217 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2218 {
2219 int i;
2220 if (!priv->snapshot[0])
2221 return;
2222 for (i = 0; i < 0x30; i++)
2223 kfree(priv->snapshot[i]);
2224 priv->snapshot[0] = NULL;
2225 }
2226
2227 #ifdef IPW2100_DEBUG_C3
2228 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2229 {
2230 int i;
2231 if (priv->snapshot[0])
2232 return 1;
2233 for (i = 0; i < 0x30; i++) {
2234 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2235 if (!priv->snapshot[i]) {
2236 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2237 "buffer %d\n", priv->net_dev->name, i);
2238 while (i > 0)
2239 kfree(priv->snapshot[--i]);
2240 priv->snapshot[0] = NULL;
2241 return 0;
2242 }
2243 }
2244
2245 return 1;
2246 }
2247
2248 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2249 size_t len, int mode)
2250 {
2251 u32 i, j;
2252 u32 tmp;
2253 u8 *s, *d;
2254 u32 ret;
2255
2256 s = in_buf;
2257 if (mode == SEARCH_SNAPSHOT) {
2258 if (!ipw2100_snapshot_alloc(priv))
2259 mode = SEARCH_DISCARD;
2260 }
2261
2262 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2263 read_nic_dword(priv->net_dev, i, &tmp);
2264 if (mode == SEARCH_SNAPSHOT)
2265 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2266 if (ret == SEARCH_FAIL) {
2267 d = (u8 *) & tmp;
2268 for (j = 0; j < 4; j++) {
2269 if (*s != *d) {
2270 s = in_buf;
2271 continue;
2272 }
2273
2274 s++;
2275 d++;
2276
2277 if ((s - in_buf) == len)
2278 ret = (i + j) - len + 1;
2279 }
2280 } else if (mode == SEARCH_DISCARD)
2281 return ret;
2282 }
2283
2284 return ret;
2285 }
2286 #endif
2287
2288 /*
2289 *
2290 * 0) Disconnect the SKB from the firmware (just unmap)
2291 * 1) Pack the ETH header into the SKB
2292 * 2) Pass the SKB to the network stack
2293 *
2294 * When packet is provided by the firmware, it contains the following:
2295 *
2296 * . ieee80211_hdr
2297 * . ieee80211_snap_hdr
2298 *
2299 * The size of the constructed ethernet
2300 *
2301 */
2302 #ifdef IPW2100_RX_DEBUG
2303 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2304 #endif
2305
2306 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2307 {
2308 #ifdef IPW2100_DEBUG_C3
2309 struct ipw2100_status *status = &priv->status_queue.drv[i];
2310 u32 match, reg;
2311 int j;
2312 #endif
2313
2314 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2315 i * sizeof(struct ipw2100_status));
2316
2317 #ifdef IPW2100_DEBUG_C3
2318 /* Halt the fimrware so we can get a good image */
2319 write_register(priv->net_dev, IPW_REG_RESET_REG,
2320 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2321 j = 5;
2322 do {
2323 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2324 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2325
2326 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2327 break;
2328 } while (j--);
2329
2330 match = ipw2100_match_buf(priv, (u8 *) status,
2331 sizeof(struct ipw2100_status),
2332 SEARCH_SNAPSHOT);
2333 if (match < SEARCH_SUCCESS)
2334 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2335 "offset 0x%06X, length %d:\n",
2336 priv->net_dev->name, match,
2337 sizeof(struct ipw2100_status));
2338 else
2339 IPW_DEBUG_INFO("%s: No DMA status match in "
2340 "Firmware.\n", priv->net_dev->name);
2341
2342 printk_buf((u8 *) priv->status_queue.drv,
2343 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2344 #endif
2345
2346 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2347 priv->ieee->stats.rx_errors++;
2348 schedule_reset(priv);
2349 }
2350
2351 static void isr_rx(struct ipw2100_priv *priv, int i,
2352 struct ieee80211_rx_stats *stats)
2353 {
2354 struct ipw2100_status *status = &priv->status_queue.drv[i];
2355 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2356
2357 IPW_DEBUG_RX("Handler...\n");
2358
2359 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2360 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2361 " Dropping.\n",
2362 priv->net_dev->name,
2363 status->frame_size, skb_tailroom(packet->skb));
2364 priv->ieee->stats.rx_errors++;
2365 return;
2366 }
2367
2368 if (unlikely(!netif_running(priv->net_dev))) {
2369 priv->ieee->stats.rx_errors++;
2370 priv->wstats.discard.misc++;
2371 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2372 return;
2373 }
2374
2375 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2376 !(priv->status & STATUS_ASSOCIATED))) {
2377 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2378 priv->wstats.discard.misc++;
2379 return;
2380 }
2381
2382 pci_unmap_single(priv->pci_dev,
2383 packet->dma_addr,
2384 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2385
2386 skb_put(packet->skb, status->frame_size);
2387
2388 #ifdef IPW2100_RX_DEBUG
2389 /* Make a copy of the frame so we can dump it to the logs if
2390 * ieee80211_rx fails */
2391 skb_copy_from_linear_data(packet->skb, packet_data,
2392 min_t(u32, status->frame_size,
2393 IPW_RX_NIC_BUFFER_LENGTH));
2394 #endif
2395
2396 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2397 #ifdef IPW2100_RX_DEBUG
2398 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2399 priv->net_dev->name);
2400 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2401 #endif
2402 priv->ieee->stats.rx_errors++;
2403
2404 /* ieee80211_rx failed, so it didn't free the SKB */
2405 dev_kfree_skb_any(packet->skb);
2406 packet->skb = NULL;
2407 }
2408
2409 /* We need to allocate a new SKB and attach it to the RDB. */
2410 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2411 printk(KERN_WARNING DRV_NAME ": "
2412 "%s: Unable to allocate SKB onto RBD ring - disabling "
2413 "adapter.\n", priv->net_dev->name);
2414 /* TODO: schedule adapter shutdown */
2415 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2416 }
2417
2418 /* Update the RDB entry */
2419 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2420 }
2421
2422 #ifdef CONFIG_IPW2100_MONITOR
2423
2424 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2425 struct ieee80211_rx_stats *stats)
2426 {
2427 struct ipw2100_status *status = &priv->status_queue.drv[i];
2428 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2429
2430 /* Magic struct that slots into the radiotap header -- no reason
2431 * to build this manually element by element, we can write it much
2432 * more efficiently than we can parse it. ORDER MATTERS HERE */
2433 struct ipw_rt_hdr {
2434 struct ieee80211_radiotap_header rt_hdr;
2435 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2436 } *ipw_rt;
2437
2438 IPW_DEBUG_RX("Handler...\n");
2439
2440 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2441 sizeof(struct ipw_rt_hdr))) {
2442 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2443 " Dropping.\n",
2444 priv->net_dev->name,
2445 status->frame_size,
2446 skb_tailroom(packet->skb));
2447 priv->ieee->stats.rx_errors++;
2448 return;
2449 }
2450
2451 if (unlikely(!netif_running(priv->net_dev))) {
2452 priv->ieee->stats.rx_errors++;
2453 priv->wstats.discard.misc++;
2454 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2455 return;
2456 }
2457
2458 if (unlikely(priv->config & CFG_CRC_CHECK &&
2459 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2460 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2461 priv->ieee->stats.rx_errors++;
2462 return;
2463 }
2464
2465 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2466 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2467 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2468 packet->skb->data, status->frame_size);
2469
2470 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2471
2472 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2473 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2474 ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total hdr+data */
2475
2476 ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2477
2478 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2479
2480 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2481
2482 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2483 priv->ieee->stats.rx_errors++;
2484
2485 /* ieee80211_rx failed, so it didn't free the SKB */
2486 dev_kfree_skb_any(packet->skb);
2487 packet->skb = NULL;
2488 }
2489
2490 /* We need to allocate a new SKB and attach it to the RDB. */
2491 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2492 IPW_DEBUG_WARNING(
2493 "%s: Unable to allocate SKB onto RBD ring - disabling "
2494 "adapter.\n", priv->net_dev->name);
2495 /* TODO: schedule adapter shutdown */
2496 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2497 }
2498
2499 /* Update the RDB entry */
2500 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2501 }
2502
2503 #endif
2504
2505 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2506 {
2507 struct ipw2100_status *status = &priv->status_queue.drv[i];
2508 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2509 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2510
2511 switch (frame_type) {
2512 case COMMAND_STATUS_VAL:
2513 return (status->frame_size != sizeof(u->rx_data.command));
2514 case STATUS_CHANGE_VAL:
2515 return (status->frame_size != sizeof(u->rx_data.status));
2516 case HOST_NOTIFICATION_VAL:
2517 return (status->frame_size < sizeof(u->rx_data.notification));
2518 case P80211_DATA_VAL:
2519 case P8023_DATA_VAL:
2520 #ifdef CONFIG_IPW2100_MONITOR
2521 return 0;
2522 #else
2523 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2524 case IEEE80211_FTYPE_MGMT:
2525 case IEEE80211_FTYPE_CTL:
2526 return 0;
2527 case IEEE80211_FTYPE_DATA:
2528 return (status->frame_size >
2529 IPW_MAX_802_11_PAYLOAD_LENGTH);
2530 }
2531 #endif
2532 }
2533
2534 return 1;
2535 }
2536
2537 /*
2538 * ipw2100 interrupts are disabled at this point, and the ISR
2539 * is the only code that calls this method. So, we do not need
2540 * to play with any locks.
2541 *
2542 * RX Queue works as follows:
2543 *
2544 * Read index - firmware places packet in entry identified by the
2545 * Read index and advances Read index. In this manner,
2546 * Read index will always point to the next packet to
2547 * be filled--but not yet valid.
2548 *
2549 * Write index - driver fills this entry with an unused RBD entry.
2550 * This entry has not filled by the firmware yet.
2551 *
2552 * In between the W and R indexes are the RBDs that have been received
2553 * but not yet processed.
2554 *
2555 * The process of handling packets will start at WRITE + 1 and advance
2556 * until it reaches the READ index.
2557 *
2558 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2559 *
2560 */
2561 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2562 {
2563 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2564 struct ipw2100_status_queue *sq = &priv->status_queue;
2565 struct ipw2100_rx_packet *packet;
2566 u16 frame_type;
2567 u32 r, w, i, s;
2568 struct ipw2100_rx *u;
2569 struct ieee80211_rx_stats stats = {
2570 .mac_time = jiffies,
2571 };
2572
2573 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2574 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2575
2576 if (r >= rxq->entries) {
2577 IPW_DEBUG_RX("exit - bad read index\n");
2578 return;
2579 }
2580
2581 i = (rxq->next + 1) % rxq->entries;
2582 s = i;
2583 while (i != r) {
2584 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2585 r, rxq->next, i); */
2586
2587 packet = &priv->rx_buffers[i];
2588
2589 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2590 * the correct values */
2591 pci_dma_sync_single_for_cpu(priv->pci_dev,
2592 sq->nic +
2593 sizeof(struct ipw2100_status) * i,
2594 sizeof(struct ipw2100_status),
2595 PCI_DMA_FROMDEVICE);
2596
2597 /* Sync the DMA for the RX buffer so CPU is sure to get
2598 * the correct values */
2599 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2600 sizeof(struct ipw2100_rx),
2601 PCI_DMA_FROMDEVICE);
2602
2603 if (unlikely(ipw2100_corruption_check(priv, i))) {
2604 ipw2100_corruption_detected(priv, i);
2605 goto increment;
2606 }
2607
2608 u = packet->rxp;
2609 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2610 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2611 stats.len = sq->drv[i].frame_size;
2612
2613 stats.mask = 0;
2614 if (stats.rssi != 0)
2615 stats.mask |= IEEE80211_STATMASK_RSSI;
2616 stats.freq = IEEE80211_24GHZ_BAND;
2617
2618 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2619 priv->net_dev->name, frame_types[frame_type],
2620 stats.len);
2621
2622 switch (frame_type) {
2623 case COMMAND_STATUS_VAL:
2624 /* Reset Rx watchdog */
2625 isr_rx_complete_command(priv, &u->rx_data.command);
2626 break;
2627
2628 case STATUS_CHANGE_VAL:
2629 isr_status_change(priv, u->rx_data.status);
2630 break;
2631
2632 case P80211_DATA_VAL:
2633 case P8023_DATA_VAL:
2634 #ifdef CONFIG_IPW2100_MONITOR
2635 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2636 isr_rx_monitor(priv, i, &stats);
2637 break;
2638 }
2639 #endif
2640 if (stats.len < sizeof(struct ieee80211_hdr_3addr))
2641 break;
2642 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2643 case IEEE80211_FTYPE_MGMT:
2644 ieee80211_rx_mgt(priv->ieee,
2645 &u->rx_data.header, &stats);
2646 break;
2647
2648 case IEEE80211_FTYPE_CTL:
2649 break;
2650
2651 case IEEE80211_FTYPE_DATA:
2652 isr_rx(priv, i, &stats);
2653 break;
2654
2655 }
2656 break;
2657 }
2658
2659 increment:
2660 /* clear status field associated with this RBD */
2661 rxq->drv[i].status.info.field = 0;
2662
2663 i = (i + 1) % rxq->entries;
2664 }
2665
2666 if (i != s) {
2667 /* backtrack one entry, wrapping to end if at 0 */
2668 rxq->next = (i ? i : rxq->entries) - 1;
2669
2670 write_register(priv->net_dev,
2671 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2672 }
2673 }
2674
2675 /*
2676 * __ipw2100_tx_process
2677 *
2678 * This routine will determine whether the next packet on
2679 * the fw_pend_list has been processed by the firmware yet.
2680 *
2681 * If not, then it does nothing and returns.
2682 *
2683 * If so, then it removes the item from the fw_pend_list, frees
2684 * any associated storage, and places the item back on the
2685 * free list of its source (either msg_free_list or tx_free_list)
2686 *
2687 * TX Queue works as follows:
2688 *
2689 * Read index - points to the next TBD that the firmware will
2690 * process. The firmware will read the data, and once
2691 * done processing, it will advance the Read index.
2692 *
2693 * Write index - driver fills this entry with an constructed TBD
2694 * entry. The Write index is not advanced until the
2695 * packet has been configured.
2696 *
2697 * In between the W and R indexes are the TBDs that have NOT been
2698 * processed. Lagging behind the R index are packets that have
2699 * been processed but have not been freed by the driver.
2700 *
2701 * In order to free old storage, an internal index will be maintained
2702 * that points to the next packet to be freed. When all used
2703 * packets have been freed, the oldest index will be the same as the
2704 * firmware's read index.
2705 *
2706 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2707 *
2708 * Because the TBD structure can not contain arbitrary data, the
2709 * driver must keep an internal queue of cached allocations such that
2710 * it can put that data back into the tx_free_list and msg_free_list
2711 * for use by future command and data packets.
2712 *
2713 */
2714 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2715 {
2716 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2717 struct ipw2100_bd *tbd;
2718 struct list_head *element;
2719 struct ipw2100_tx_packet *packet;
2720 int descriptors_used;
2721 int e, i;
2722 u32 r, w, frag_num = 0;
2723
2724 if (list_empty(&priv->fw_pend_list))
2725 return 0;
2726
2727 element = priv->fw_pend_list.next;
2728
2729 packet = list_entry(element, struct ipw2100_tx_packet, list);
2730 tbd = &txq->drv[packet->index];
2731
2732 /* Determine how many TBD entries must be finished... */
2733 switch (packet->type) {
2734 case COMMAND:
2735 /* COMMAND uses only one slot; don't advance */
2736 descriptors_used = 1;
2737 e = txq->oldest;
2738 break;
2739
2740 case DATA:
2741 /* DATA uses two slots; advance and loop position. */
2742 descriptors_used = tbd->num_fragments;
2743 frag_num = tbd->num_fragments - 1;
2744 e = txq->oldest + frag_num;
2745 e %= txq->entries;
2746 break;
2747
2748 default:
2749 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2750 priv->net_dev->name);
2751 return 0;
2752 }
2753
2754 /* if the last TBD is not done by NIC yet, then packet is
2755 * not ready to be released.
2756 *
2757 */
2758 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2759 &r);
2760 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2761 &w);
2762 if (w != txq->next)
2763 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2764 priv->net_dev->name);
2765
2766 /*
2767 * txq->next is the index of the last packet written txq->oldest is
2768 * the index of the r is the index of the next packet to be read by
2769 * firmware
2770 */
2771
2772 /*
2773 * Quick graphic to help you visualize the following
2774 * if / else statement
2775 *
2776 * ===>| s---->|===============
2777 * e>|
2778 * | a | b | c | d | e | f | g | h | i | j | k | l
2779 * r---->|
2780 * w
2781 *
2782 * w - updated by driver
2783 * r - updated by firmware
2784 * s - start of oldest BD entry (txq->oldest)
2785 * e - end of oldest BD entry
2786 *
2787 */
2788 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2789 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2790 return 0;
2791 }
2792
2793 list_del(element);
2794 DEC_STAT(&priv->fw_pend_stat);
2795
2796 #ifdef CONFIG_IPW2100_DEBUG
2797 {
2798 int i = txq->oldest;
2799 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2800 &txq->drv[i],
2801 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2802 txq->drv[i].host_addr, txq->drv[i].buf_length);
2803
2804 if (packet->type == DATA) {
2805 i = (i + 1) % txq->entries;
2806
2807 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2808 &txq->drv[i],
2809 (u32) (txq->nic + i *
2810 sizeof(struct ipw2100_bd)),
2811 (u32) txq->drv[i].host_addr,
2812 txq->drv[i].buf_length);
2813 }
2814 }
2815 #endif
2816
2817 switch (packet->type) {
2818 case DATA:
2819 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2820 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2821 "Expecting DATA TBD but pulled "
2822 "something else: ids %d=%d.\n",
2823 priv->net_dev->name, txq->oldest, packet->index);
2824
2825 /* DATA packet; we have to unmap and free the SKB */
2826 for (i = 0; i < frag_num; i++) {
2827 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2828
2829 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2830 (packet->index + 1 + i) % txq->entries,
2831 tbd->host_addr, tbd->buf_length);
2832
2833 pci_unmap_single(priv->pci_dev,
2834 tbd->host_addr,
2835 tbd->buf_length, PCI_DMA_TODEVICE);
2836 }
2837
2838 ieee80211_txb_free(packet->info.d_struct.txb);
2839 packet->info.d_struct.txb = NULL;
2840
2841 list_add_tail(element, &priv->tx_free_list);
2842 INC_STAT(&priv->tx_free_stat);
2843
2844 /* We have a free slot in the Tx queue, so wake up the
2845 * transmit layer if it is stopped. */
2846 if (priv->status & STATUS_ASSOCIATED)
2847 netif_wake_queue(priv->net_dev);
2848
2849 /* A packet was processed by the hardware, so update the
2850 * watchdog */
2851 priv->net_dev->trans_start = jiffies;
2852
2853 break;
2854
2855 case COMMAND:
2856 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2857 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2858 "Expecting COMMAND TBD but pulled "
2859 "something else: ids %d=%d.\n",
2860 priv->net_dev->name, txq->oldest, packet->index);
2861
2862 #ifdef CONFIG_IPW2100_DEBUG
2863 if (packet->info.c_struct.cmd->host_command_reg <
2864 ARRAY_SIZE(command_types))
2865 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2866 command_types[packet->info.c_struct.cmd->
2867 host_command_reg],
2868 packet->info.c_struct.cmd->
2869 host_command_reg,
2870 packet->info.c_struct.cmd->cmd_status_reg);
2871 #endif
2872
2873 list_add_tail(element, &priv->msg_free_list);
2874 INC_STAT(&priv->msg_free_stat);
2875 break;
2876 }
2877
2878 /* advance oldest used TBD pointer to start of next entry */
2879 txq->oldest = (e + 1) % txq->entries;
2880 /* increase available TBDs number */
2881 txq->available += descriptors_used;
2882 SET_STAT(&priv->txq_stat, txq->available);
2883
2884 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2885 jiffies - packet->jiffy_start);
2886
2887 return (!list_empty(&priv->fw_pend_list));
2888 }
2889
2890 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2891 {
2892 int i = 0;
2893
2894 while (__ipw2100_tx_process(priv) && i < 200)
2895 i++;
2896
2897 if (i == 200) {
2898 printk(KERN_WARNING DRV_NAME ": "
2899 "%s: Driver is running slow (%d iters).\n",
2900 priv->net_dev->name, i);
2901 }
2902 }
2903
2904 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2905 {
2906 struct list_head *element;
2907 struct ipw2100_tx_packet *packet;
2908 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2909 struct ipw2100_bd *tbd;
2910 int next = txq->next;
2911
2912 while (!list_empty(&priv->msg_pend_list)) {
2913 /* if there isn't enough space in TBD queue, then
2914 * don't stuff a new one in.
2915 * NOTE: 3 are needed as a command will take one,
2916 * and there is a minimum of 2 that must be
2917 * maintained between the r and w indexes
2918 */
2919 if (txq->available <= 3) {
2920 IPW_DEBUG_TX("no room in tx_queue\n");
2921 break;
2922 }
2923
2924 element = priv->msg_pend_list.next;
2925 list_del(element);
2926 DEC_STAT(&priv->msg_pend_stat);
2927
2928 packet = list_entry(element, struct ipw2100_tx_packet, list);
2929
2930 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2931 &txq->drv[txq->next],
2932 (void *)(txq->nic + txq->next *
2933 sizeof(struct ipw2100_bd)));
2934
2935 packet->index = txq->next;
2936
2937 tbd = &txq->drv[txq->next];
2938
2939 /* initialize TBD */
2940 tbd->host_addr = packet->info.c_struct.cmd_phys;
2941 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2942 /* not marking number of fragments causes problems
2943 * with f/w debug version */
2944 tbd->num_fragments = 1;
2945 tbd->status.info.field =
2946 IPW_BD_STATUS_TX_FRAME_COMMAND |
2947 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2948
2949 /* update TBD queue counters */
2950 txq->next++;
2951 txq->next %= txq->entries;
2952 txq->available--;
2953 DEC_STAT(&priv->txq_stat);
2954
2955 list_add_tail(element, &priv->fw_pend_list);
2956 INC_STAT(&priv->fw_pend_stat);
2957 }
2958
2959 if (txq->next != next) {
2960 /* kick off the DMA by notifying firmware the
2961 * write index has moved; make sure TBD stores are sync'd */
2962 wmb();
2963 write_register(priv->net_dev,
2964 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2965 txq->next);
2966 }
2967 }
2968
2969 /*
2970 * ipw2100_tx_send_data
2971 *
2972 */
2973 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
2974 {
2975 struct list_head *element;
2976 struct ipw2100_tx_packet *packet;
2977 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2978 struct ipw2100_bd *tbd;
2979 int next = txq->next;
2980 int i = 0;
2981 struct ipw2100_data_header *ipw_hdr;
2982 struct ieee80211_hdr_3addr *hdr;
2983
2984 while (!list_empty(&priv->tx_pend_list)) {
2985 /* if there isn't enough space in TBD queue, then
2986 * don't stuff a new one in.
2987 * NOTE: 4 are needed as a data will take two,
2988 * and there is a minimum of 2 that must be
2989 * maintained between the r and w indexes
2990 */
2991 element = priv->tx_pend_list.next;
2992 packet = list_entry(element, struct ipw2100_tx_packet, list);
2993
2994 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
2995 IPW_MAX_BDS)) {
2996 /* TODO: Support merging buffers if more than
2997 * IPW_MAX_BDS are used */
2998 IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded. "
2999 "Increase fragmentation level.\n",
3000 priv->net_dev->name);
3001 }
3002
3003 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3004 IPW_DEBUG_TX("no room in tx_queue\n");
3005 break;
3006 }
3007
3008 list_del(element);
3009 DEC_STAT(&priv->tx_pend_stat);
3010
3011 tbd = &txq->drv[txq->next];
3012
3013 packet->index = txq->next;
3014
3015 ipw_hdr = packet->info.d_struct.data;
3016 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3017 fragments[0]->data;
3018
3019 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3020 /* To DS: Addr1 = BSSID, Addr2 = SA,
3021 Addr3 = DA */
3022 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3023 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3024 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3025 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3026 Addr3 = BSSID */
3027 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3028 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3029 }
3030
3031 ipw_hdr->host_command_reg = SEND;
3032 ipw_hdr->host_command_reg1 = 0;
3033
3034 /* For now we only support host based encryption */
3035 ipw_hdr->needs_encryption = 0;
3036 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3037 if (packet->info.d_struct.txb->nr_frags > 1)
3038 ipw_hdr->fragment_size =
3039 packet->info.d_struct.txb->frag_size -
3040 IEEE80211_3ADDR_LEN;
3041 else
3042 ipw_hdr->fragment_size = 0;
3043
3044 tbd->host_addr = packet->info.d_struct.data_phys;
3045 tbd->buf_length = sizeof(struct ipw2100_data_header);
3046 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3047 tbd->status.info.field =
3048 IPW_BD_STATUS_TX_FRAME_802_3 |
3049 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3050 txq->next++;
3051 txq->next %= txq->entries;
3052
3053 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3054 packet->index, tbd->host_addr, tbd->buf_length);
3055 #ifdef CONFIG_IPW2100_DEBUG
3056 if (packet->info.d_struct.txb->nr_frags > 1)
3057 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3058 packet->info.d_struct.txb->nr_frags);
3059 #endif
3060
3061 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3062 tbd = &txq->drv[txq->next];
3063 if (i == packet->info.d_struct.txb->nr_frags - 1)
3064 tbd->status.info.field =
3065 IPW_BD_STATUS_TX_FRAME_802_3 |
3066 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3067 else
3068 tbd->status.info.field =
3069 IPW_BD_STATUS_TX_FRAME_802_3 |
3070 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3071
3072 tbd->buf_length = packet->info.d_struct.txb->
3073 fragments[i]->len - IEEE80211_3ADDR_LEN;
3074
3075 tbd->host_addr = pci_map_single(priv->pci_dev,
3076 packet->info.d_struct.
3077 txb->fragments[i]->
3078 data +
3079 IEEE80211_3ADDR_LEN,
3080 tbd->buf_length,
3081 PCI_DMA_TODEVICE);
3082
3083 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3084 txq->next, tbd->host_addr,
3085 tbd->buf_length);
3086
3087 pci_dma_sync_single_for_device(priv->pci_dev,
3088 tbd->host_addr,
3089 tbd->buf_length,
3090 PCI_DMA_TODEVICE);
3091
3092 txq->next++;
3093 txq->next %= txq->entries;
3094 }
3095
3096 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3097 SET_STAT(&priv->txq_stat, txq->available);
3098
3099 list_add_tail(element, &priv->fw_pend_list);
3100 INC_STAT(&priv->fw_pend_stat);
3101 }
3102
3103 if (txq->next != next) {
3104 /* kick off the DMA by notifying firmware the
3105 * write index has moved; make sure TBD stores are sync'd */
3106 write_register(priv->net_dev,
3107 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3108 txq->next);
3109 }
3110 return;
3111 }
3112
3113 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3114 {
3115 struct net_device *dev = priv->net_dev;
3116 unsigned long flags;
3117 u32 inta, tmp;
3118
3119 spin_lock_irqsave(&priv->low_lock, flags);
3120 ipw2100_disable_interrupts(priv);
3121
3122 read_register(dev, IPW_REG_INTA, &inta);
3123
3124 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3125 (unsigned long)inta & IPW_INTERRUPT_MASK);
3126
3127 priv->in_isr++;
3128 priv->interrupts++;
3129
3130 /* We do not loop and keep polling for more interrupts as this
3131 * is frowned upon and doesn't play nicely with other potentially
3132 * chained IRQs */
3133 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3134 (unsigned long)inta & IPW_INTERRUPT_MASK);
3135
3136 if (inta & IPW2100_INTA_FATAL_ERROR) {
3137 printk(KERN_WARNING DRV_NAME
3138 ": Fatal interrupt. Scheduling firmware restart.\n");
3139 priv->inta_other++;
3140 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3141
3142 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3143 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3144 priv->net_dev->name, priv->fatal_error);
3145
3146 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3147 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3148 priv->net_dev->name, tmp);
3149
3150 /* Wake up any sleeping jobs */
3151 schedule_reset(priv);
3152 }
3153
3154 if (inta & IPW2100_INTA_PARITY_ERROR) {
3155 printk(KERN_ERR DRV_NAME
3156 ": ***** PARITY ERROR INTERRUPT !!!! \n");
3157 priv->inta_other++;
3158 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3159 }
3160
3161 if (inta & IPW2100_INTA_RX_TRANSFER) {
3162 IPW_DEBUG_ISR("RX interrupt\n");
3163
3164 priv->rx_interrupts++;
3165
3166 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3167
3168 __ipw2100_rx_process(priv);
3169 __ipw2100_tx_complete(priv);
3170 }
3171
3172 if (inta & IPW2100_INTA_TX_TRANSFER) {
3173 IPW_DEBUG_ISR("TX interrupt\n");
3174
3175 priv->tx_interrupts++;
3176
3177 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3178
3179 __ipw2100_tx_complete(priv);
3180 ipw2100_tx_send_commands(priv);
3181 ipw2100_tx_send_data(priv);
3182 }
3183
3184 if (inta & IPW2100_INTA_TX_COMPLETE) {
3185 IPW_DEBUG_ISR("TX complete\n");
3186 priv->inta_other++;
3187 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3188
3189 __ipw2100_tx_complete(priv);
3190 }
3191
3192 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3193 /* ipw2100_handle_event(dev); */
3194 priv->inta_other++;
3195 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3196 }
3197
3198 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3199 IPW_DEBUG_ISR("FW init done interrupt\n");
3200 priv->inta_other++;
3201
3202 read_register(dev, IPW_REG_INTA, &tmp);
3203 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3204 IPW2100_INTA_PARITY_ERROR)) {
3205 write_register(dev, IPW_REG_INTA,
3206 IPW2100_INTA_FATAL_ERROR |
3207 IPW2100_INTA_PARITY_ERROR);
3208 }
3209
3210 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3211 }
3212
3213 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3214 IPW_DEBUG_ISR("Status change interrupt\n");
3215 priv->inta_other++;
3216 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3217 }
3218
3219 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3220 IPW_DEBUG_ISR("slave host mode interrupt\n");
3221 priv->inta_other++;
3222 write_register(dev, IPW_REG_INTA,
3223 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3224 }
3225
3226 priv->in_isr--;
3227 ipw2100_enable_interrupts(priv);
3228
3229 spin_unlock_irqrestore(&priv->low_lock, flags);
3230
3231 IPW_DEBUG_ISR("exit\n");
3232 }
3233
3234 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3235 {
3236 struct ipw2100_priv *priv = data;
3237 u32 inta, inta_mask;
3238
3239 if (!data)
3240 return IRQ_NONE;
3241
3242 spin_lock(&priv->low_lock);
3243
3244 /* We check to see if we should be ignoring interrupts before
3245 * we touch the hardware. During ucode load if we try and handle
3246 * an interrupt we can cause keyboard problems as well as cause
3247 * the ucode to fail to initialize */
3248 if (!(priv->status & STATUS_INT_ENABLED)) {
3249 /* Shared IRQ */
3250 goto none;
3251 }
3252
3253 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3254 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3255
3256 if (inta == 0xFFFFFFFF) {
3257 /* Hardware disappeared */
3258 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3259 goto none;
3260 }
3261
3262 inta &= IPW_INTERRUPT_MASK;
3263
3264 if (!(inta & inta_mask)) {
3265 /* Shared interrupt */
3266 goto none;
3267 }
3268
3269 /* We disable the hardware interrupt here just to prevent unneeded
3270 * calls to be made. We disable this again within the actual
3271 * work tasklet, so if another part of the code re-enables the
3272 * interrupt, that is fine */
3273 ipw2100_disable_interrupts(priv);
3274
3275 tasklet_schedule(&priv->irq_tasklet);
3276 spin_unlock(&priv->low_lock);
3277
3278 return IRQ_HANDLED;
3279 none:
3280 spin_unlock(&priv->low_lock);
3281 return IRQ_NONE;
3282 }
3283
3284 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3285 int pri)
3286 {
3287 struct ipw2100_priv *priv = ieee80211_priv(dev);
3288 struct list_head *element;
3289 struct ipw2100_tx_packet *packet;
3290 unsigned long flags;
3291
3292 spin_lock_irqsave(&priv->low_lock, flags);
3293
3294 if (!(priv->status & STATUS_ASSOCIATED)) {
3295 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3296 priv->ieee->stats.tx_carrier_errors++;
3297 netif_stop_queue(dev);
3298 goto fail_unlock;
3299 }
3300
3301 if (list_empty(&priv->tx_free_list))
3302 goto fail_unlock;
3303
3304 element = priv->tx_free_list.next;
3305 packet = list_entry(element, struct ipw2100_tx_packet, list);
3306
3307 packet->info.d_struct.txb = txb;
3308
3309 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3310 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3311
3312 packet->jiffy_start = jiffies;
3313
3314 list_del(element);
3315 DEC_STAT(&priv->tx_free_stat);
3316
3317 list_add_tail(element, &priv->tx_pend_list);
3318 INC_STAT(&priv->tx_pend_stat);
3319
3320 ipw2100_tx_send_data(priv);
3321
3322 spin_unlock_irqrestore(&priv->low_lock, flags);
3323 return 0;
3324
3325 fail_unlock:
3326 netif_stop_queue(dev);
3327 spin_unlock_irqrestore(&priv->low_lock, flags);
3328 return 1;
3329 }
3330
3331 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3332 {
3333 int i, j, err = -EINVAL;
3334 void *v;
3335 dma_addr_t p;
3336
3337 priv->msg_buffers =
3338 (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3339 sizeof(struct
3340 ipw2100_tx_packet),
3341 GFP_KERNEL);
3342 if (!priv->msg_buffers) {
3343 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3344 "buffers.\n", priv->net_dev->name);
3345 return -ENOMEM;
3346 }
3347
3348 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3349 v = pci_alloc_consistent(priv->pci_dev,
3350 sizeof(struct ipw2100_cmd_header), &p);
3351 if (!v) {
3352 printk(KERN_ERR DRV_NAME ": "
3353 "%s: PCI alloc failed for msg "
3354 "buffers.\n", priv->net_dev->name);
3355 err = -ENOMEM;
3356 break;
3357 }
3358
3359 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3360
3361 priv->msg_buffers[i].type = COMMAND;
3362 priv->msg_buffers[i].info.c_struct.cmd =
3363 (struct ipw2100_cmd_header *)v;
3364 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3365 }
3366
3367 if (i == IPW_COMMAND_POOL_SIZE)
3368 return 0;
3369
3370 for (j = 0; j < i; j++) {
3371 pci_free_consistent(priv->pci_dev,
3372 sizeof(struct ipw2100_cmd_header),
3373 priv->msg_buffers[j].info.c_struct.cmd,
3374 priv->msg_buffers[j].info.c_struct.
3375 cmd_phys);
3376 }
3377
3378 kfree(priv->msg_buffers);
3379 priv->msg_buffers = NULL;
3380
3381 return err;
3382 }
3383
3384 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3385 {
3386 int i;
3387
3388 INIT_LIST_HEAD(&priv->msg_free_list);
3389 INIT_LIST_HEAD(&priv->msg_pend_list);
3390
3391 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3392 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3393 SET_STAT(&priv->msg_free_stat, i);
3394
3395 return 0;
3396 }
3397
3398 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3399 {
3400 int i;
3401
3402 if (!priv->msg_buffers)
3403 return;
3404
3405 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3406 pci_free_consistent(priv->pci_dev,
3407 sizeof(struct ipw2100_cmd_header),
3408 priv->msg_buffers[i].info.c_struct.cmd,
3409 priv->msg_buffers[i].info.c_struct.
3410 cmd_phys);
3411 }
3412
3413 kfree(priv->msg_buffers);
3414 priv->msg_buffers = NULL;
3415 }
3416
3417 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3418 char *buf)
3419 {
3420 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3421 char *out = buf;
3422 int i, j;
3423 u32 val;
3424
3425 for (i = 0; i < 16; i++) {
3426 out += sprintf(out, "[%08X] ", i * 16);
3427 for (j = 0; j < 16; j += 4) {
3428 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3429 out += sprintf(out, "%08X ", val);
3430 }
3431 out += sprintf(out, "\n");
3432 }
3433
3434 return out - buf;
3435 }
3436
3437 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3438
3439 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3440 char *buf)
3441 {
3442 struct ipw2100_priv *p = d->driver_data;
3443 return sprintf(buf, "0x%08x\n", (int)p->config);
3444 }
3445
3446 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3447
3448 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3449 char *buf)
3450 {
3451 struct ipw2100_priv *p = d->driver_data;
3452 return sprintf(buf, "0x%08x\n", (int)p->status);
3453 }
3454
3455 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3456
3457 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3458 char *buf)
3459 {
3460 struct ipw2100_priv *p = d->driver_data;
3461 return sprintf(buf, "0x%08x\n", (int)p->capability);
3462 }
3463
3464 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3465
3466 #define IPW2100_REG(x) { IPW_ ##x, #x }
3467 static const struct {
3468 u32 addr;
3469 const char *name;
3470 } hw_data[] = {
3471 IPW2100_REG(REG_GP_CNTRL),
3472 IPW2100_REG(REG_GPIO),
3473 IPW2100_REG(REG_INTA),
3474 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3475 #define IPW2100_NIC(x, s) { x, #x, s }
3476 static const struct {
3477 u32 addr;
3478 const char *name;
3479 size_t size;
3480 } nic_data[] = {
3481 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3482 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3483 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3484 static const struct {
3485 u8 index;
3486 const char *name;
3487 const char *desc;
3488 } ord_data[] = {
3489 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3490 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3491 "successful Host Tx's (MSDU)"),
3492 IPW2100_ORD(STAT_TX_DIR_DATA,
3493 "successful Directed Tx's (MSDU)"),
3494 IPW2100_ORD(STAT_TX_DIR_DATA1,
3495 "successful Directed Tx's (MSDU) @ 1MB"),
3496 IPW2100_ORD(STAT_TX_DIR_DATA2,
3497 "successful Directed Tx's (MSDU) @ 2MB"),
3498 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3499 "successful Directed Tx's (MSDU) @ 5_5MB"),
3500 IPW2100_ORD(STAT_TX_DIR_DATA11,
3501 "successful Directed Tx's (MSDU) @ 11MB"),
3502 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3503 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3504 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3505 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3506 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3507 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3508 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3509 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3510 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3511 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3512 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3513 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3514 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3515 IPW2100_ORD(STAT_TX_ASSN_RESP,
3516 "successful Association response Tx's"),
3517 IPW2100_ORD(STAT_TX_REASSN,
3518 "successful Reassociation Tx's"),
3519 IPW2100_ORD(STAT_TX_REASSN_RESP,
3520 "successful Reassociation response Tx's"),
3521 IPW2100_ORD(STAT_TX_PROBE,
3522 "probes successfully transmitted"),
3523 IPW2100_ORD(STAT_TX_PROBE_RESP,
3524 "probe responses successfully transmitted"),
3525 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3526 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3527 IPW2100_ORD(STAT_TX_DISASSN,
3528 "successful Disassociation TX"),
3529 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3530 IPW2100_ORD(STAT_TX_DEAUTH,
3531 "successful Deauthentication TX"),
3532 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3533 "Total successful Tx data bytes"),
3534 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3535 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3536 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3537 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3538 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3539 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3540 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3541 "times max tries in a hop failed"),
3542 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3543 "times disassociation failed"),
3544 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3545 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3546 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3547 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3548 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3549 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3550 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3551 "directed packets at 5.5MB"),
3552 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3553 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3554 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3555 "nondirected packets at 1MB"),
3556 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3557 "nondirected packets at 2MB"),
3558 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3559 "nondirected packets at 5.5MB"),
3560 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3561 "nondirected packets at 11MB"),
3562 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3563 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3564 "Rx CTS"),
3565 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3566 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3567 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3568 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3569 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3570 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3571 IPW2100_ORD(STAT_RX_REASSN_RESP,
3572 "Reassociation response Rx's"),
3573 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3574 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3575 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3576 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3577 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3578 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3579 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3580 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3581 "Total rx data bytes received"),
3582 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3583 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3584 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3585 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3586 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3587 IPW2100_ORD(STAT_RX_DUPLICATE1,
3588 "duplicate rx packets at 1MB"),
3589 IPW2100_ORD(STAT_RX_DUPLICATE2,
3590 "duplicate rx packets at 2MB"),
3591 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3592 "duplicate rx packets at 5.5MB"),
3593 IPW2100_ORD(STAT_RX_DUPLICATE11,
3594 "duplicate rx packets at 11MB"),
3595 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3596 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3597 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3598 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3599 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3600 "rx frames with invalid protocol"),
3601 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3602 IPW2100_ORD(STAT_RX_NO_BUFFER,
3603 "rx frames rejected due to no buffer"),
3604 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3605 "rx frames dropped due to missing fragment"),
3606 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3607 "rx frames dropped due to non-sequential fragment"),
3608 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3609 "rx frames dropped due to unmatched 1st frame"),
3610 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3611 "rx frames dropped due to uncompleted frame"),
3612 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3613 "ICV errors during decryption"),
3614 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3615 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3616 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3617 "poll response timeouts"),
3618 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3619 "timeouts waiting for last {broad,multi}cast pkt"),
3620 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3621 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3622 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3623 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3624 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3625 "current calculation of % missed beacons"),
3626 IPW2100_ORD(STAT_PERCENT_RETRIES,
3627 "current calculation of % missed tx retries"),
3628 IPW2100_ORD(ASSOCIATED_AP_PTR,
3629 "0 if not associated, else pointer to AP table entry"),
3630 IPW2100_ORD(AVAILABLE_AP_CNT,
3631 "AP's decsribed in the AP table"),
3632 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3633 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3634 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3635 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3636 "failures due to response fail"),
3637 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3638 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3639 IPW2100_ORD(STAT_ROAM_INHIBIT,
3640 "times roaming was inhibited due to activity"),
3641 IPW2100_ORD(RSSI_AT_ASSN,
3642 "RSSI of associated AP at time of association"),
3643 IPW2100_ORD(STAT_ASSN_CAUSE1,
3644 "reassociation: no probe response or TX on hop"),
3645 IPW2100_ORD(STAT_ASSN_CAUSE2,
3646 "reassociation: poor tx/rx quality"),
3647 IPW2100_ORD(STAT_ASSN_CAUSE3,
3648 "reassociation: tx/rx quality (excessive AP load"),
3649 IPW2100_ORD(STAT_ASSN_CAUSE4,
3650 "reassociation: AP RSSI level"),
3651 IPW2100_ORD(STAT_ASSN_CAUSE5,
3652 "reassociations due to load leveling"),
3653 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3654 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3655 "times authentication response failed"),
3656 IPW2100_ORD(STATION_TABLE_CNT,
3657 "entries in association table"),
3658 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3659 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3660 IPW2100_ORD(COUNTRY_CODE,
3661 "IEEE country code as recv'd from beacon"),
3662 IPW2100_ORD(COUNTRY_CHANNELS,
3663 "channels suported by country"),
3664 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3665 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3666 IPW2100_ORD(ANTENNA_DIVERSITY,
3667 "TRUE if antenna diversity is disabled"),
3668 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3669 IPW2100_ORD(OUR_FREQ,
3670 "current radio freq lower digits - channel ID"),
3671 IPW2100_ORD(RTC_TIME, "current RTC time"),
3672 IPW2100_ORD(PORT_TYPE, "operating mode"),
3673 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3674 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3675 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3676 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3677 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3678 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3679 IPW2100_ORD(CAPABILITIES,
3680 "Management frame capability field"),
3681 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3682 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3683 IPW2100_ORD(RTS_THRESHOLD,
3684 "Min packet length for RTS handshaking"),
3685 IPW2100_ORD(INT_MODE, "International mode"),
3686 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3687 "protocol frag threshold"),
3688 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3689 "EEPROM offset in SRAM"),
3690 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3691 "EEPROM size in SRAM"),
3692 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3693 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3694 "EEPROM IBSS 11b channel set"),
3695 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3696 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3697 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3698 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3699 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3700
3701 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3702 char *buf)
3703 {
3704 int i;
3705 struct ipw2100_priv *priv = dev_get_drvdata(d);
3706 struct net_device *dev = priv->net_dev;
3707 char *out = buf;
3708 u32 val = 0;
3709
3710 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3711
3712 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3713 read_register(dev, hw_data[i].addr, &val);
3714 out += sprintf(out, "%30s [%08X] : %08X\n",
3715 hw_data[i].name, hw_data[i].addr, val);
3716 }
3717
3718 return out - buf;
3719 }
3720
3721 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3722
3723 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3724 char *buf)
3725 {
3726 struct ipw2100_priv *priv = dev_get_drvdata(d);
3727 struct net_device *dev = priv->net_dev;
3728 char *out = buf;
3729 int i;
3730
3731 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3732
3733 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3734 u8 tmp8;
3735 u16 tmp16;
3736 u32 tmp32;
3737
3738 switch (nic_data[i].size) {
3739 case 1:
3740 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3741 out += sprintf(out, "%30s [%08X] : %02X\n",
3742 nic_data[i].name, nic_data[i].addr,
3743 tmp8);
3744 break;
3745 case 2:
3746 read_nic_word(dev, nic_data[i].addr, &tmp16);
3747 out += sprintf(out, "%30s [%08X] : %04X\n",
3748 nic_data[i].name, nic_data[i].addr,
3749 tmp16);
3750 break;
3751 case 4:
3752 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3753 out += sprintf(out, "%30s [%08X] : %08X\n",
3754 nic_data[i].name, nic_data[i].addr,
3755 tmp32);
3756 break;
3757 }
3758 }
3759 return out - buf;
3760 }
3761
3762 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3763
3764 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3765 char *buf)
3766 {
3767 struct ipw2100_priv *priv = dev_get_drvdata(d);
3768 struct net_device *dev = priv->net_dev;
3769 static unsigned long loop = 0;
3770 int len = 0;
3771 u32 buffer[4];
3772 int i;
3773 char line[81];
3774
3775 if (loop >= 0x30000)
3776 loop = 0;
3777
3778 /* sysfs provides us PAGE_SIZE buffer */
3779 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3780
3781 if (priv->snapshot[0])
3782 for (i = 0; i < 4; i++)
3783 buffer[i] =
3784 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3785 else
3786 for (i = 0; i < 4; i++)
3787 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3788
3789 if (priv->dump_raw)
3790 len += sprintf(buf + len,
3791 "%c%c%c%c"
3792 "%c%c%c%c"
3793 "%c%c%c%c"
3794 "%c%c%c%c",
3795 ((u8 *) buffer)[0x0],
3796 ((u8 *) buffer)[0x1],
3797 ((u8 *) buffer)[0x2],
3798 ((u8 *) buffer)[0x3],
3799 ((u8 *) buffer)[0x4],
3800 ((u8 *) buffer)[0x5],
3801 ((u8 *) buffer)[0x6],
3802 ((u8 *) buffer)[0x7],
3803 ((u8 *) buffer)[0x8],
3804 ((u8 *) buffer)[0x9],
3805 ((u8 *) buffer)[0xa],
3806 ((u8 *) buffer)[0xb],
3807 ((u8 *) buffer)[0xc],
3808 ((u8 *) buffer)[0xd],
3809 ((u8 *) buffer)[0xe],
3810 ((u8 *) buffer)[0xf]);
3811 else
3812 len += sprintf(buf + len, "%s\n",
3813 snprint_line(line, sizeof(line),
3814 (u8 *) buffer, 16, loop));
3815 loop += 16;
3816 }
3817
3818 return len;
3819 }
3820
3821 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3822 const char *buf, size_t count)
3823 {
3824 struct ipw2100_priv *priv = dev_get_drvdata(d);
3825 struct net_device *dev = priv->net_dev;
3826 const char *p = buf;
3827
3828 (void)dev; /* kill unused-var warning for debug-only code */
3829
3830 if (count < 1)
3831 return count;
3832
3833 if (p[0] == '1' ||
3834 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3835 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3836 dev->name);
3837 priv->dump_raw = 1;
3838
3839 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3840 tolower(p[1]) == 'f')) {
3841 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3842 dev->name);
3843 priv->dump_raw = 0;
3844
3845 } else if (tolower(p[0]) == 'r') {
3846 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3847 ipw2100_snapshot_free(priv);
3848
3849 } else
3850 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3851 "reset = clear memory snapshot\n", dev->name);
3852
3853 return count;
3854 }
3855
3856 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3857
3858 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3859 char *buf)
3860 {
3861 struct ipw2100_priv *priv = dev_get_drvdata(d);
3862 u32 val = 0;
3863 int len = 0;
3864 u32 val_len;
3865 static int loop = 0;
3866
3867 if (priv->status & STATUS_RF_KILL_MASK)
3868 return 0;
3869
3870 if (loop >= ARRAY_SIZE(ord_data))
3871 loop = 0;
3872
3873 /* sysfs provides us PAGE_SIZE buffer */
3874 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3875 val_len = sizeof(u32);
3876
3877 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3878 &val_len))
3879 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3880 ord_data[loop].index,
3881 ord_data[loop].desc);
3882 else
3883 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3884 ord_data[loop].index, val,
3885 ord_data[loop].desc);
3886 loop++;
3887 }
3888
3889 return len;
3890 }
3891
3892 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3893
3894 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3895 char *buf)
3896 {
3897 struct ipw2100_priv *priv = dev_get_drvdata(d);
3898 char *out = buf;
3899
3900 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3901 priv->interrupts, priv->tx_interrupts,
3902 priv->rx_interrupts, priv->inta_other);
3903 out += sprintf(out, "firmware resets: %d\n", priv->resets);
3904 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3905 #ifdef CONFIG_IPW2100_DEBUG
3906 out += sprintf(out, "packet mismatch image: %s\n",
3907 priv->snapshot[0] ? "YES" : "NO");
3908 #endif
3909
3910 return out - buf;
3911 }
3912
3913 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3914
3915 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3916 {
3917 int err;
3918
3919 if (mode == priv->ieee->iw_mode)
3920 return 0;
3921
3922 err = ipw2100_disable_adapter(priv);
3923 if (err) {
3924 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3925 priv->net_dev->name, err);
3926 return err;
3927 }
3928
3929 switch (mode) {
3930 case IW_MODE_INFRA:
3931 priv->net_dev->type = ARPHRD_ETHER;
3932 break;
3933 case IW_MODE_ADHOC:
3934 priv->net_dev->type = ARPHRD_ETHER;
3935 break;
3936 #ifdef CONFIG_IPW2100_MONITOR
3937 case IW_MODE_MONITOR:
3938 priv->last_mode = priv->ieee->iw_mode;
3939 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3940 break;
3941 #endif /* CONFIG_IPW2100_MONITOR */
3942 }
3943
3944 priv->ieee->iw_mode = mode;
3945
3946 #ifdef CONFIG_PM
3947 /* Indicate ipw2100_download_firmware download firmware
3948 * from disk instead of memory. */
3949 ipw2100_firmware.version = 0;
3950 #endif
3951
3952 printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3953 priv->reset_backoff = 0;
3954 schedule_reset(priv);
3955
3956 return 0;
3957 }
3958
3959 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3960 char *buf)
3961 {
3962 struct ipw2100_priv *priv = dev_get_drvdata(d);
3963 int len = 0;
3964
3965 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3966
3967 if (priv->status & STATUS_ASSOCIATED)
3968 len += sprintf(buf + len, "connected: %lu\n",
3969 get_seconds() - priv->connect_start);
3970 else
3971 len += sprintf(buf + len, "not connected\n");
3972
3973 DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
3974 DUMP_VAR(status, "08lx");
3975 DUMP_VAR(config, "08lx");
3976 DUMP_VAR(capability, "08lx");
3977
3978 len +=
3979 sprintf(buf + len, "last_rtc: %lu\n",
3980 (unsigned long)priv->last_rtc);
3981
3982 DUMP_VAR(fatal_error, "d");
3983 DUMP_VAR(stop_hang_check, "d");
3984 DUMP_VAR(stop_rf_kill, "d");
3985 DUMP_VAR(messages_sent, "d");
3986
3987 DUMP_VAR(tx_pend_stat.value, "d");
3988 DUMP_VAR(tx_pend_stat.hi, "d");
3989
3990 DUMP_VAR(tx_free_stat.value, "d");
3991 DUMP_VAR(tx_free_stat.lo, "d");
3992
3993 DUMP_VAR(msg_free_stat.value, "d");
3994 DUMP_VAR(msg_free_stat.lo, "d");
3995
3996 DUMP_VAR(msg_pend_stat.value, "d");
3997 DUMP_VAR(msg_pend_stat.hi, "d");
3998
3999 DUMP_VAR(fw_pend_stat.value, "d");
4000 DUMP_VAR(fw_pend_stat.hi, "d");
4001
4002 DUMP_VAR(txq_stat.value, "d");
4003 DUMP_VAR(txq_stat.lo, "d");
4004
4005 DUMP_VAR(ieee->scans, "d");
4006 DUMP_VAR(reset_backoff, "d");
4007
4008 return len;
4009 }
4010
4011 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4012
4013 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4014 char *buf)
4015 {
4016 struct ipw2100_priv *priv = dev_get_drvdata(d);
4017 char essid[IW_ESSID_MAX_SIZE + 1];
4018 u8 bssid[ETH_ALEN];
4019 u32 chan = 0;
4020 char *out = buf;
4021 int length;
4022 int ret;
4023
4024 if (priv->status & STATUS_RF_KILL_MASK)
4025 return 0;
4026
4027 memset(essid, 0, sizeof(essid));
4028 memset(bssid, 0, sizeof(bssid));
4029
4030 length = IW_ESSID_MAX_SIZE;
4031 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4032 if (ret)
4033 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4034 __LINE__);
4035
4036 length = sizeof(bssid);
4037 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4038 bssid, &length);
4039 if (ret)
4040 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4041 __LINE__);
4042
4043 length = sizeof(u32);
4044 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4045 if (ret)
4046 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4047 __LINE__);
4048
4049 out += sprintf(out, "ESSID: %s\n", essid);
4050 out += sprintf(out, "BSSID: %02x:%02x:%02x:%02x:%02x:%02x\n",
4051 bssid[0], bssid[1], bssid[2],
4052 bssid[3], bssid[4], bssid[5]);
4053 out += sprintf(out, "Channel: %d\n", chan);
4054
4055 return out - buf;
4056 }
4057
4058 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4059
4060 #ifdef CONFIG_IPW2100_DEBUG
4061 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4062 {
4063 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4064 }
4065
4066 static ssize_t store_debug_level(struct device_driver *d,
4067 const char *buf, size_t count)
4068 {
4069 char *p = (char *)buf;
4070 u32 val;
4071
4072 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4073 p++;
4074 if (p[0] == 'x' || p[0] == 'X')
4075 p++;
4076 val = simple_strtoul(p, &p, 16);
4077 } else
4078 val = simple_strtoul(p, &p, 10);
4079 if (p == buf)
4080 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4081 else
4082 ipw2100_debug_level = val;
4083
4084 return strnlen(buf, count);
4085 }
4086
4087 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4088 store_debug_level);
4089 #endif /* CONFIG_IPW2100_DEBUG */
4090
4091 static ssize_t show_fatal_error(struct device *d,
4092 struct device_attribute *attr, char *buf)
4093 {
4094 struct ipw2100_priv *priv = dev_get_drvdata(d);
4095 char *out = buf;
4096 int i;
4097
4098 if (priv->fatal_error)
4099 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4100 else
4101 out += sprintf(out, "0\n");
4102
4103 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4104 if (!priv->fatal_errors[(priv->fatal_index - i) %
4105 IPW2100_ERROR_QUEUE])
4106 continue;
4107
4108 out += sprintf(out, "%d. 0x%08X\n", i,
4109 priv->fatal_errors[(priv->fatal_index - i) %
4110 IPW2100_ERROR_QUEUE]);
4111 }
4112
4113 return out - buf;
4114 }
4115
4116 static ssize_t store_fatal_error(struct device *d,
4117 struct device_attribute *attr, const char *buf,
4118 size_t count)
4119 {
4120 struct ipw2100_priv *priv = dev_get_drvdata(d);
4121 schedule_reset(priv);
4122 return count;
4123 }
4124
4125 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4126 store_fatal_error);
4127
4128 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4129 char *buf)
4130 {
4131 struct ipw2100_priv *priv = dev_get_drvdata(d);
4132 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4133 }
4134
4135 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4136 const char *buf, size_t count)
4137 {
4138 struct ipw2100_priv *priv = dev_get_drvdata(d);
4139 struct net_device *dev = priv->net_dev;
4140 char buffer[] = "00000000";
4141 unsigned long len =
4142 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4143 unsigned long val;
4144 char *p = buffer;
4145
4146 (void)dev; /* kill unused-var warning for debug-only code */
4147
4148 IPW_DEBUG_INFO("enter\n");
4149
4150 strncpy(buffer, buf, len);
4151 buffer[len] = 0;
4152
4153 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4154 p++;
4155 if (p[0] == 'x' || p[0] == 'X')
4156 p++;
4157 val = simple_strtoul(p, &p, 16);
4158 } else
4159 val = simple_strtoul(p, &p, 10);
4160 if (p == buffer) {
4161 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4162 } else {
4163 priv->ieee->scan_age = val;
4164 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4165 }
4166
4167 IPW_DEBUG_INFO("exit\n");
4168 return len;
4169 }
4170
4171 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4172
4173 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4174 char *buf)
4175 {
4176 /* 0 - RF kill not enabled
4177 1 - SW based RF kill active (sysfs)
4178 2 - HW based RF kill active
4179 3 - Both HW and SW baed RF kill active */
4180 struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4181 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4182 (rf_kill_active(priv) ? 0x2 : 0x0);
4183 return sprintf(buf, "%i\n", val);
4184 }
4185
4186 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4187 {
4188 if ((disable_radio ? 1 : 0) ==
4189 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4190 return 0;
4191
4192 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4193 disable_radio ? "OFF" : "ON");
4194
4195 mutex_lock(&priv->action_mutex);
4196
4197 if (disable_radio) {
4198 priv->status |= STATUS_RF_KILL_SW;
4199 ipw2100_down(priv);
4200 } else {
4201 priv->status &= ~STATUS_RF_KILL_SW;
4202 if (rf_kill_active(priv)) {
4203 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4204 "disabled by HW switch\n");
4205 /* Make sure the RF_KILL check timer is running */
4206 priv->stop_rf_kill = 0;
4207 cancel_delayed_work(&priv->rf_kill);
4208 queue_delayed_work(priv->workqueue, &priv->rf_kill,
4209 round_jiffies(HZ));
4210 } else
4211 schedule_reset(priv);
4212 }
4213
4214 mutex_unlock(&priv->action_mutex);
4215 return 1;
4216 }
4217
4218 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4219 const char *buf, size_t count)
4220 {
4221 struct ipw2100_priv *priv = dev_get_drvdata(d);
4222 ipw_radio_kill_sw(priv, buf[0] == '1');
4223 return count;
4224 }
4225
4226 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4227
4228 static struct attribute *ipw2100_sysfs_entries[] = {
4229 &dev_attr_hardware.attr,
4230 &dev_attr_registers.attr,
4231 &dev_attr_ordinals.attr,
4232 &dev_attr_pci.attr,
4233 &dev_attr_stats.attr,
4234 &dev_attr_internals.attr,
4235 &dev_attr_bssinfo.attr,
4236 &dev_attr_memory.attr,
4237 &dev_attr_scan_age.attr,
4238 &dev_attr_fatal_error.attr,
4239 &dev_attr_rf_kill.attr,
4240 &dev_attr_cfg.attr,
4241 &dev_attr_status.attr,
4242 &dev_attr_capability.attr,
4243 NULL,
4244 };
4245
4246 static struct attribute_group ipw2100_attribute_group = {
4247 .attrs = ipw2100_sysfs_entries,
4248 };
4249
4250 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4251 {
4252 struct ipw2100_status_queue *q = &priv->status_queue;
4253
4254 IPW_DEBUG_INFO("enter\n");
4255
4256 q->size = entries * sizeof(struct ipw2100_status);
4257 q->drv =
4258 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4259 q->size, &q->nic);
4260 if (!q->drv) {
4261 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4262 return -ENOMEM;
4263 }
4264
4265 memset(q->drv, 0, q->size);
4266
4267 IPW_DEBUG_INFO("exit\n");
4268
4269 return 0;
4270 }
4271
4272 static void status_queue_free(struct ipw2100_priv *priv)
4273 {
4274 IPW_DEBUG_INFO("enter\n");
4275
4276 if (priv->status_queue.drv) {
4277 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4278 priv->status_queue.drv,
4279 priv->status_queue.nic);
4280 priv->status_queue.drv = NULL;
4281 }
4282
4283 IPW_DEBUG_INFO("exit\n");
4284 }
4285
4286 static int bd_queue_allocate(struct ipw2100_priv *priv,
4287 struct ipw2100_bd_queue *q, int entries)
4288 {
4289 IPW_DEBUG_INFO("enter\n");
4290
4291 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4292
4293 q->entries = entries;
4294 q->size = entries * sizeof(struct ipw2100_bd);
4295 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4296 if (!q->drv) {
4297 IPW_DEBUG_INFO
4298 ("can't allocate shared memory for buffer descriptors\n");
4299 return -ENOMEM;
4300 }
4301 memset(q->drv, 0, q->size);
4302
4303 IPW_DEBUG_INFO("exit\n");
4304
4305 return 0;
4306 }
4307
4308 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4309 {
4310 IPW_DEBUG_INFO("enter\n");
4311
4312 if (!q)
4313 return;
4314
4315 if (q->drv) {
4316 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4317 q->drv = NULL;
4318 }
4319
4320 IPW_DEBUG_INFO("exit\n");
4321 }
4322
4323 static void bd_queue_initialize(struct ipw2100_priv *priv,
4324 struct ipw2100_bd_queue *q, u32 base, u32 size,
4325 u32 r, u32 w)
4326 {
4327 IPW_DEBUG_INFO("enter\n");
4328
4329 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4330 (u32) q->nic);
4331
4332 write_register(priv->net_dev, base, q->nic);
4333 write_register(priv->net_dev, size, q->entries);
4334 write_register(priv->net_dev, r, q->oldest);
4335 write_register(priv->net_dev, w, q->next);
4336
4337 IPW_DEBUG_INFO("exit\n");
4338 }
4339
4340 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4341 {
4342 if (priv->workqueue) {
4343 priv->stop_rf_kill = 1;
4344 priv->stop_hang_check = 1;
4345 cancel_delayed_work(&priv->reset_work);
4346 cancel_delayed_work(&priv->security_work);
4347 cancel_delayed_work(&priv->wx_event_work);
4348 cancel_delayed_work(&priv->hang_check);
4349 cancel_delayed_work(&priv->rf_kill);
4350 destroy_workqueue(priv->workqueue);
4351 priv->workqueue = NULL;
4352 }
4353 }
4354
4355 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4356 {
4357 int i, j, err = -EINVAL;
4358 void *v;
4359 dma_addr_t p;
4360
4361 IPW_DEBUG_INFO("enter\n");
4362
4363 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4364 if (err) {
4365 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4366 priv->net_dev->name);
4367 return err;
4368 }
4369
4370 priv->tx_buffers =
4371 (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4372 sizeof(struct
4373 ipw2100_tx_packet),
4374 GFP_ATOMIC);
4375 if (!priv->tx_buffers) {
4376 printk(KERN_ERR DRV_NAME
4377 ": %s: alloc failed form tx buffers.\n",
4378 priv->net_dev->name);
4379 bd_queue_free(priv, &priv->tx_queue);
4380 return -ENOMEM;
4381 }
4382
4383 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4384 v = pci_alloc_consistent(priv->pci_dev,
4385 sizeof(struct ipw2100_data_header),
4386 &p);
4387 if (!v) {
4388 printk(KERN_ERR DRV_NAME
4389 ": %s: PCI alloc failed for tx " "buffers.\n",
4390 priv->net_dev->name);
4391 err = -ENOMEM;
4392 break;
4393 }
4394
4395 priv->tx_buffers[i].type = DATA;
4396 priv->tx_buffers[i].info.d_struct.data =
4397 (struct ipw2100_data_header *)v;
4398 priv->tx_buffers[i].info.d_struct.data_phys = p;
4399 priv->tx_buffers[i].info.d_struct.txb = NULL;
4400 }
4401
4402 if (i == TX_PENDED_QUEUE_LENGTH)
4403 return 0;
4404
4405 for (j = 0; j < i; j++) {
4406 pci_free_consistent(priv->pci_dev,
4407 sizeof(struct ipw2100_data_header),
4408 priv->tx_buffers[j].info.d_struct.data,
4409 priv->tx_buffers[j].info.d_struct.
4410 data_phys);
4411 }
4412
4413 kfree(priv->tx_buffers);
4414 priv->tx_buffers = NULL;
4415
4416 return err;
4417 }
4418
4419 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4420 {
4421 int i;
4422
4423 IPW_DEBUG_INFO("enter\n");
4424
4425 /*
4426 * reinitialize packet info lists
4427 */
4428 INIT_LIST_HEAD(&priv->fw_pend_list);
4429 INIT_STAT(&priv->fw_pend_stat);
4430
4431 /*
4432 * reinitialize lists
4433 */
4434 INIT_LIST_HEAD(&priv->tx_pend_list);
4435 INIT_LIST_HEAD(&priv->tx_free_list);
4436 INIT_STAT(&priv->tx_pend_stat);
4437 INIT_STAT(&priv->tx_free_stat);
4438
4439 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4440 /* We simply drop any SKBs that have been queued for
4441 * transmit */
4442 if (priv->tx_buffers[i].info.d_struct.txb) {
4443 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4444 txb);
4445 priv->tx_buffers[i].info.d_struct.txb = NULL;
4446 }
4447
4448 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4449 }
4450
4451 SET_STAT(&priv->tx_free_stat, i);
4452
4453 priv->tx_queue.oldest = 0;
4454 priv->tx_queue.available = priv->tx_queue.entries;
4455 priv->tx_queue.next = 0;
4456 INIT_STAT(&priv->txq_stat);
4457 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4458
4459 bd_queue_initialize(priv, &priv->tx_queue,
4460 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4461 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4462 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4463 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4464
4465 IPW_DEBUG_INFO("exit\n");
4466
4467 }
4468
4469 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4470 {
4471 int i;
4472
4473 IPW_DEBUG_INFO("enter\n");
4474
4475 bd_queue_free(priv, &priv->tx_queue);
4476
4477 if (!priv->tx_buffers)
4478 return;
4479
4480 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4481 if (priv->tx_buffers[i].info.d_struct.txb) {
4482 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4483 txb);
4484 priv->tx_buffers[i].info.d_struct.txb = NULL;
4485 }
4486 if (priv->tx_buffers[i].info.d_struct.data)
4487 pci_free_consistent(priv->pci_dev,
4488 sizeof(struct ipw2100_data_header),
4489 priv->tx_buffers[i].info.d_struct.
4490 data,
4491 priv->tx_buffers[i].info.d_struct.
4492 data_phys);
4493 }
4494
4495 kfree(priv->tx_buffers);
4496 priv->tx_buffers = NULL;
4497
4498 IPW_DEBUG_INFO("exit\n");
4499 }
4500
4501 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4502 {
4503 int i, j, err = -EINVAL;
4504
4505 IPW_DEBUG_INFO("enter\n");
4506
4507 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4508 if (err) {
4509 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4510 return err;
4511 }
4512
4513 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4514 if (err) {
4515 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4516 bd_queue_free(priv, &priv->rx_queue);
4517 return err;
4518 }
4519
4520 /*
4521 * allocate packets
4522 */
4523 priv->rx_buffers = (struct ipw2100_rx_packet *)
4524 kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4525 GFP_KERNEL);
4526 if (!priv->rx_buffers) {
4527 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4528
4529 bd_queue_free(priv, &priv->rx_queue);
4530
4531 status_queue_free(priv);
4532
4533 return -ENOMEM;
4534 }
4535
4536 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4537 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4538
4539 err = ipw2100_alloc_skb(priv, packet);
4540 if (unlikely(err)) {
4541 err = -ENOMEM;
4542 break;
4543 }
4544
4545 /* The BD holds the cache aligned address */
4546 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4547 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4548 priv->status_queue.drv[i].status_fields = 0;
4549 }
4550
4551 if (i == RX_QUEUE_LENGTH)
4552 return 0;
4553
4554 for (j = 0; j < i; j++) {
4555 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4556 sizeof(struct ipw2100_rx_packet),
4557 PCI_DMA_FROMDEVICE);
4558 dev_kfree_skb(priv->rx_buffers[j].skb);
4559 }
4560
4561 kfree(priv->rx_buffers);
4562 priv->rx_buffers = NULL;
4563
4564 bd_queue_free(priv, &priv->rx_queue);
4565
4566 status_queue_free(priv);
4567
4568 return err;
4569 }
4570
4571 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4572 {
4573 IPW_DEBUG_INFO("enter\n");
4574
4575 priv->rx_queue.oldest = 0;
4576 priv->rx_queue.available = priv->rx_queue.entries - 1;
4577 priv->rx_queue.next = priv->rx_queue.entries - 1;
4578
4579 INIT_STAT(&priv->rxq_stat);
4580 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4581
4582 bd_queue_initialize(priv, &priv->rx_queue,
4583 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4584 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4585 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4586 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4587
4588 /* set up the status queue */
4589 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4590 priv->status_queue.nic);
4591
4592 IPW_DEBUG_INFO("exit\n");
4593 }
4594
4595 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4596 {
4597 int i;
4598
4599 IPW_DEBUG_INFO("enter\n");
4600
4601 bd_queue_free(priv, &priv->rx_queue);
4602 status_queue_free(priv);
4603
4604 if (!priv->rx_buffers)
4605 return;
4606
4607 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4608 if (priv->rx_buffers[i].rxp) {
4609 pci_unmap_single(priv->pci_dev,
4610 priv->rx_buffers[i].dma_addr,
4611 sizeof(struct ipw2100_rx),
4612 PCI_DMA_FROMDEVICE);
4613 dev_kfree_skb(priv->rx_buffers[i].skb);
4614 }
4615 }
4616
4617 kfree(priv->rx_buffers);
4618 priv->rx_buffers = NULL;
4619
4620 IPW_DEBUG_INFO("exit\n");
4621 }
4622
4623 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4624 {
4625 u32 length = ETH_ALEN;
4626 u8 mac[ETH_ALEN];
4627
4628 int err;
4629
4630 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4631 if (err) {
4632 IPW_DEBUG_INFO("MAC address read failed\n");
4633 return -EIO;
4634 }
4635 IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4636 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4637
4638 memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4639
4640 return 0;
4641 }
4642
4643 /********************************************************************
4644 *
4645 * Firmware Commands
4646 *
4647 ********************************************************************/
4648
4649 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4650 {
4651 struct host_command cmd = {
4652 .host_command = ADAPTER_ADDRESS,
4653 .host_command_sequence = 0,
4654 .host_command_length = ETH_ALEN
4655 };
4656 int err;
4657
4658 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4659
4660 IPW_DEBUG_INFO("enter\n");
4661
4662 if (priv->config & CFG_CUSTOM_MAC) {
4663 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4664 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4665 } else
4666 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4667 ETH_ALEN);
4668
4669 err = ipw2100_hw_send_command(priv, &cmd);
4670
4671 IPW_DEBUG_INFO("exit\n");
4672 return err;
4673 }
4674
4675 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4676 int batch_mode)
4677 {
4678 struct host_command cmd = {
4679 .host_command = PORT_TYPE,
4680 .host_command_sequence = 0,
4681 .host_command_length = sizeof(u32)
4682 };
4683 int err;
4684
4685 switch (port_type) {
4686 case IW_MODE_INFRA:
4687 cmd.host_command_parameters[0] = IPW_BSS;
4688 break;
4689 case IW_MODE_ADHOC:
4690 cmd.host_command_parameters[0] = IPW_IBSS;
4691 break;
4692 }
4693
4694 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4695 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4696
4697 if (!batch_mode) {
4698 err = ipw2100_disable_adapter(priv);
4699 if (err) {
4700 printk(KERN_ERR DRV_NAME
4701 ": %s: Could not disable adapter %d\n",
4702 priv->net_dev->name, err);
4703 return err;
4704 }
4705 }
4706
4707 /* send cmd to firmware */
4708 err = ipw2100_hw_send_command(priv, &cmd);
4709
4710 if (!batch_mode)
4711 ipw2100_enable_adapter(priv);
4712
4713 return err;
4714 }
4715
4716 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4717 int batch_mode)
4718 {
4719 struct host_command cmd = {
4720 .host_command = CHANNEL,
4721 .host_command_sequence = 0,
4722 .host_command_length = sizeof(u32)
4723 };
4724 int err;
4725
4726 cmd.host_command_parameters[0] = channel;
4727
4728 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4729
4730 /* If BSS then we don't support channel selection */
4731 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4732 return 0;
4733
4734 if ((channel != 0) &&
4735 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4736 return -EINVAL;
4737
4738 if (!batch_mode) {
4739 err = ipw2100_disable_adapter(priv);
4740 if (err)
4741 return err;
4742 }
4743
4744 err = ipw2100_hw_send_command(priv, &cmd);
4745 if (err) {
4746 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4747 return err;
4748 }
4749
4750 if (channel)
4751 priv->config |= CFG_STATIC_CHANNEL;
4752 else
4753 priv->config &= ~CFG_STATIC_CHANNEL;
4754
4755 priv->channel = channel;
4756
4757 if (!batch_mode) {
4758 err = ipw2100_enable_adapter(priv);
4759 if (err)
4760 return err;
4761 }
4762
4763 return 0;
4764 }
4765
4766 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4767 {
4768 struct host_command cmd = {
4769 .host_command = SYSTEM_CONFIG,
4770 .host_command_sequence = 0,
4771 .host_command_length = 12,
4772 };
4773 u32 ibss_mask, len = sizeof(u32);
4774 int err;
4775
4776 /* Set system configuration */
4777
4778 if (!batch_mode) {
4779 err = ipw2100_disable_adapter(priv);
4780 if (err)
4781 return err;
4782 }
4783
4784 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4785 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4786
4787 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4788 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4789
4790 if (!(priv->config & CFG_LONG_PREAMBLE))
4791 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4792
4793 err = ipw2100_get_ordinal(priv,
4794 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4795 &ibss_mask, &len);
4796 if (err)
4797 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4798
4799 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4800 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4801
4802 /* 11b only */
4803 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4804
4805 err = ipw2100_hw_send_command(priv, &cmd);
4806 if (err)
4807 return err;
4808
4809 /* If IPv6 is configured in the kernel then we don't want to filter out all
4810 * of the multicast packets as IPv6 needs some. */
4811 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4812 cmd.host_command = ADD_MULTICAST;
4813 cmd.host_command_sequence = 0;
4814 cmd.host_command_length = 0;
4815
4816 ipw2100_hw_send_command(priv, &cmd);
4817 #endif
4818 if (!batch_mode) {
4819 err = ipw2100_enable_adapter(priv);
4820 if (err)
4821 return err;
4822 }
4823
4824 return 0;
4825 }
4826
4827 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4828 int batch_mode)
4829 {
4830 struct host_command cmd = {
4831 .host_command = BASIC_TX_RATES,
4832 .host_command_sequence = 0,
4833 .host_command_length = 4
4834 };
4835 int err;
4836
4837 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4838
4839 if (!batch_mode) {
4840 err = ipw2100_disable_adapter(priv);
4841 if (err)
4842 return err;
4843 }
4844
4845 /* Set BASIC TX Rate first */
4846 ipw2100_hw_send_command(priv, &cmd);
4847
4848 /* Set TX Rate */
4849 cmd.host_command = TX_RATES;
4850 ipw2100_hw_send_command(priv, &cmd);
4851
4852 /* Set MSDU TX Rate */
4853 cmd.host_command = MSDU_TX_RATES;
4854 ipw2100_hw_send_command(priv, &cmd);
4855
4856 if (!batch_mode) {
4857 err = ipw2100_enable_adapter(priv);
4858 if (err)
4859 return err;
4860 }
4861
4862 priv->tx_rates = rate;
4863
4864 return 0;
4865 }
4866
4867 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4868 {
4869 struct host_command cmd = {
4870 .host_command = POWER_MODE,
4871 .host_command_sequence = 0,
4872 .host_command_length = 4
4873 };
4874 int err;
4875
4876 cmd.host_command_parameters[0] = power_level;
4877
4878 err = ipw2100_hw_send_command(priv, &cmd);
4879 if (err)
4880 return err;
4881
4882 if (power_level == IPW_POWER_MODE_CAM)
4883 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4884 else
4885 priv->power_mode = IPW_POWER_ENABLED | power_level;
4886
4887 #ifdef IPW2100_TX_POWER
4888 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4889 /* Set beacon interval */
4890 cmd.host_command = TX_POWER_INDEX;
4891 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4892
4893 err = ipw2100_hw_send_command(priv, &cmd);
4894 if (err)
4895 return err;
4896 }
4897 #endif
4898
4899 return 0;
4900 }
4901
4902 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4903 {
4904 struct host_command cmd = {
4905 .host_command = RTS_THRESHOLD,
4906 .host_command_sequence = 0,
4907 .host_command_length = 4
4908 };
4909 int err;
4910
4911 if (threshold & RTS_DISABLED)
4912 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4913 else
4914 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4915
4916 err = ipw2100_hw_send_command(priv, &cmd);
4917 if (err)
4918 return err;
4919
4920 priv->rts_threshold = threshold;
4921
4922 return 0;
4923 }
4924
4925 #if 0
4926 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4927 u32 threshold, int batch_mode)
4928 {
4929 struct host_command cmd = {
4930 .host_command = FRAG_THRESHOLD,
4931 .host_command_sequence = 0,
4932 .host_command_length = 4,
4933 .host_command_parameters[0] = 0,
4934 };
4935 int err;
4936
4937 if (!batch_mode) {
4938 err = ipw2100_disable_adapter(priv);
4939 if (err)
4940 return err;
4941 }
4942
4943 if (threshold == 0)
4944 threshold = DEFAULT_FRAG_THRESHOLD;
4945 else {
4946 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4947 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4948 }
4949
4950 cmd.host_command_parameters[0] = threshold;
4951
4952 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4953
4954 err = ipw2100_hw_send_command(priv, &cmd);
4955
4956 if (!batch_mode)
4957 ipw2100_enable_adapter(priv);
4958
4959 if (!err)
4960 priv->frag_threshold = threshold;
4961
4962 return err;
4963 }
4964 #endif
4965
4966 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4967 {
4968 struct host_command cmd = {
4969 .host_command = SHORT_RETRY_LIMIT,
4970 .host_command_sequence = 0,
4971 .host_command_length = 4
4972 };
4973 int err;
4974
4975 cmd.host_command_parameters[0] = retry;
4976
4977 err = ipw2100_hw_send_command(priv, &cmd);
4978 if (err)
4979 return err;
4980
4981 priv->short_retry_limit = retry;
4982
4983 return 0;
4984 }
4985
4986 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
4987 {
4988 struct host_command cmd = {
4989 .host_command = LONG_RETRY_LIMIT,
4990 .host_command_sequence = 0,
4991 .host_command_length = 4
4992 };
4993 int err;
4994
4995 cmd.host_command_parameters[0] = retry;
4996
4997 err = ipw2100_hw_send_command(priv, &cmd);
4998 if (err)
4999 return err;
5000
5001 priv->long_retry_limit = retry;
5002
5003 return 0;
5004 }
5005
5006 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5007 int batch_mode)
5008 {
5009 struct host_command cmd = {
5010 .host_command = MANDATORY_BSSID,
5011 .host_command_sequence = 0,
5012 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5013 };
5014 int err;
5015
5016 #ifdef CONFIG_IPW2100_DEBUG
5017 if (bssid != NULL)
5018 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
5019 bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
5020 bssid[5]);
5021 else
5022 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5023 #endif
5024 /* if BSSID is empty then we disable mandatory bssid mode */
5025 if (bssid != NULL)
5026 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5027
5028 if (!batch_mode) {
5029 err = ipw2100_disable_adapter(priv);
5030 if (err)
5031 return err;
5032 }
5033
5034 err = ipw2100_hw_send_command(priv, &cmd);
5035
5036 if (!batch_mode)
5037 ipw2100_enable_adapter(priv);
5038
5039 return err;
5040 }
5041
5042 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5043 {
5044 struct host_command cmd = {
5045 .host_command = DISASSOCIATION_BSSID,
5046 .host_command_sequence = 0,
5047 .host_command_length = ETH_ALEN
5048 };
5049 int err;
5050 int len;
5051
5052 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5053
5054 len = ETH_ALEN;
5055 /* The Firmware currently ignores the BSSID and just disassociates from
5056 * the currently associated AP -- but in the off chance that a future
5057 * firmware does use the BSSID provided here, we go ahead and try and
5058 * set it to the currently associated AP's BSSID */
5059 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5060
5061 err = ipw2100_hw_send_command(priv, &cmd);
5062
5063 return err;
5064 }
5065
5066 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5067 struct ipw2100_wpa_assoc_frame *, int)
5068 __attribute__ ((unused));
5069
5070 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5071 struct ipw2100_wpa_assoc_frame *wpa_frame,
5072 int batch_mode)
5073 {
5074 struct host_command cmd = {
5075 .host_command = SET_WPA_IE,
5076 .host_command_sequence = 0,
5077 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5078 };
5079 int err;
5080
5081 IPW_DEBUG_HC("SET_WPA_IE\n");
5082
5083 if (!batch_mode) {
5084 err = ipw2100_disable_adapter(priv);
5085 if (err)
5086 return err;
5087 }
5088
5089 memcpy(cmd.host_command_parameters, wpa_frame,
5090 sizeof(struct ipw2100_wpa_assoc_frame));
5091
5092 err = ipw2100_hw_send_command(priv, &cmd);
5093
5094 if (!batch_mode) {
5095 if (ipw2100_enable_adapter(priv))
5096 err = -EIO;
5097 }
5098
5099 return err;
5100 }
5101
5102 struct security_info_params {
5103 u32 allowed_ciphers;
5104 u16 version;
5105 u8 auth_mode;
5106 u8 replay_counters_number;
5107 u8 unicast_using_group;
5108 } __attribute__ ((packed));
5109
5110 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5111 int auth_mode,
5112 int security_level,
5113 int unicast_using_group,
5114 int batch_mode)
5115 {
5116 struct host_command cmd = {
5117 .host_command = SET_SECURITY_INFORMATION,
5118 .host_command_sequence = 0,
5119 .host_command_length = sizeof(struct security_info_params)
5120 };
5121 struct security_info_params *security =
5122 (struct security_info_params *)&cmd.host_command_parameters;
5123 int err;
5124 memset(security, 0, sizeof(*security));
5125
5126 /* If shared key AP authentication is turned on, then we need to
5127 * configure the firmware to try and use it.
5128 *
5129 * Actual data encryption/decryption is handled by the host. */
5130 security->auth_mode = auth_mode;
5131 security->unicast_using_group = unicast_using_group;
5132
5133 switch (security_level) {
5134 default:
5135 case SEC_LEVEL_0:
5136 security->allowed_ciphers = IPW_NONE_CIPHER;
5137 break;
5138 case SEC_LEVEL_1:
5139 security->allowed_ciphers = IPW_WEP40_CIPHER |
5140 IPW_WEP104_CIPHER;
5141 break;
5142 case SEC_LEVEL_2:
5143 security->allowed_ciphers = IPW_WEP40_CIPHER |
5144 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5145 break;
5146 case SEC_LEVEL_2_CKIP:
5147 security->allowed_ciphers = IPW_WEP40_CIPHER |
5148 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5149 break;
5150 case SEC_LEVEL_3:
5151 security->allowed_ciphers = IPW_WEP40_CIPHER |
5152 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5153 break;
5154 }
5155
5156 IPW_DEBUG_HC
5157 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5158 security->auth_mode, security->allowed_ciphers, security_level);
5159
5160 security->replay_counters_number = 0;
5161
5162 if (!batch_mode) {
5163 err = ipw2100_disable_adapter(priv);
5164 if (err)
5165 return err;
5166 }
5167
5168 err = ipw2100_hw_send_command(priv, &cmd);
5169
5170 if (!batch_mode)
5171 ipw2100_enable_adapter(priv);
5172
5173 return err;
5174 }
5175
5176 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5177 {
5178 struct host_command cmd = {
5179 .host_command = TX_POWER_INDEX,
5180 .host_command_sequence = 0,
5181 .host_command_length = 4
5182 };
5183 int err = 0;
5184 u32 tmp = tx_power;
5185
5186 if (tx_power != IPW_TX_POWER_DEFAULT)
5187 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5188 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5189
5190 cmd.host_command_parameters[0] = tmp;
5191
5192 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5193 err = ipw2100_hw_send_command(priv, &cmd);
5194 if (!err)
5195 priv->tx_power = tx_power;
5196
5197 return 0;
5198 }
5199
5200 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5201 u32 interval, int batch_mode)
5202 {
5203 struct host_command cmd = {
5204 .host_command = BEACON_INTERVAL,
5205 .host_command_sequence = 0,
5206 .host_command_length = 4
5207 };
5208 int err;
5209
5210 cmd.host_command_parameters[0] = interval;
5211
5212 IPW_DEBUG_INFO("enter\n");
5213
5214 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5215 if (!batch_mode) {
5216 err = ipw2100_disable_adapter(priv);
5217 if (err)
5218 return err;
5219 }
5220
5221 ipw2100_hw_send_command(priv, &cmd);
5222
5223 if (!batch_mode) {
5224 err = ipw2100_enable_adapter(priv);
5225 if (err)
5226 return err;
5227 }
5228 }
5229
5230 IPW_DEBUG_INFO("exit\n");
5231
5232 return 0;
5233 }
5234
5235 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5236 {
5237 ipw2100_tx_initialize(priv);
5238 ipw2100_rx_initialize(priv);
5239 ipw2100_msg_initialize(priv);
5240 }
5241
5242 void ipw2100_queues_free(struct ipw2100_priv *priv)
5243 {
5244 ipw2100_tx_free(priv);
5245 ipw2100_rx_free(priv);
5246 ipw2100_msg_free(priv);
5247 }
5248
5249 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5250 {
5251 if (ipw2100_tx_allocate(priv) ||
5252 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5253 goto fail;
5254
5255 return 0;
5256
5257 fail:
5258 ipw2100_tx_free(priv);
5259 ipw2100_rx_free(priv);
5260 ipw2100_msg_free(priv);
5261 return -ENOMEM;
5262 }
5263
5264 #define IPW_PRIVACY_CAPABLE 0x0008
5265
5266 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5267 int batch_mode)
5268 {
5269 struct host_command cmd = {
5270 .host_command = WEP_FLAGS,
5271 .host_command_sequence = 0,
5272 .host_command_length = 4
5273 };
5274 int err;
5275
5276 cmd.host_command_parameters[0] = flags;
5277
5278 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5279
5280 if (!batch_mode) {
5281 err = ipw2100_disable_adapter(priv);
5282 if (err) {
5283 printk(KERN_ERR DRV_NAME
5284 ": %s: Could not disable adapter %d\n",
5285 priv->net_dev->name, err);
5286 return err;
5287 }
5288 }
5289
5290 /* send cmd to firmware */
5291 err = ipw2100_hw_send_command(priv, &cmd);
5292
5293 if (!batch_mode)
5294 ipw2100_enable_adapter(priv);
5295
5296 return err;
5297 }
5298
5299 struct ipw2100_wep_key {
5300 u8 idx;
5301 u8 len;
5302 u8 key[13];
5303 };
5304
5305 /* Macros to ease up priting WEP keys */
5306 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5307 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5308 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5309 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5310
5311 /**
5312 * Set a the wep key
5313 *
5314 * @priv: struct to work on
5315 * @idx: index of the key we want to set
5316 * @key: ptr to the key data to set
5317 * @len: length of the buffer at @key
5318 * @batch_mode: FIXME perform the operation in batch mode, not
5319 * disabling the device.
5320 *
5321 * @returns 0 if OK, < 0 errno code on error.
5322 *
5323 * Fill out a command structure with the new wep key, length an
5324 * index and send it down the wire.
5325 */
5326 static int ipw2100_set_key(struct ipw2100_priv *priv,
5327 int idx, char *key, int len, int batch_mode)
5328 {
5329 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5330 struct host_command cmd = {
5331 .host_command = WEP_KEY_INFO,
5332 .host_command_sequence = 0,
5333 .host_command_length = sizeof(struct ipw2100_wep_key),
5334 };
5335 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5336 int err;
5337
5338 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5339 idx, keylen, len);
5340
5341 /* NOTE: We don't check cached values in case the firmware was reset
5342 * or some other problem is occurring. If the user is setting the key,
5343 * then we push the change */
5344
5345 wep_key->idx = idx;
5346 wep_key->len = keylen;
5347
5348 if (keylen) {
5349 memcpy(wep_key->key, key, len);
5350 memset(wep_key->key + len, 0, keylen - len);
5351 }
5352
5353 /* Will be optimized out on debug not being configured in */
5354 if (keylen == 0)
5355 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5356 priv->net_dev->name, wep_key->idx);
5357 else if (keylen == 5)
5358 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5359 priv->net_dev->name, wep_key->idx, wep_key->len,
5360 WEP_STR_64(wep_key->key));
5361 else
5362 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5363 "\n",
5364 priv->net_dev->name, wep_key->idx, wep_key->len,
5365 WEP_STR_128(wep_key->key));
5366
5367 if (!batch_mode) {
5368 err = ipw2100_disable_adapter(priv);
5369 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5370 if (err) {
5371 printk(KERN_ERR DRV_NAME
5372 ": %s: Could not disable adapter %d\n",
5373 priv->net_dev->name, err);
5374 return err;
5375 }
5376 }
5377
5378 /* send cmd to firmware */
5379 err = ipw2100_hw_send_command(priv, &cmd);
5380
5381 if (!batch_mode) {
5382 int err2 = ipw2100_enable_adapter(priv);
5383 if (err == 0)
5384 err = err2;
5385 }
5386 return err;
5387 }
5388
5389 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5390 int idx, int batch_mode)
5391 {
5392 struct host_command cmd = {
5393 .host_command = WEP_KEY_INDEX,
5394 .host_command_sequence = 0,
5395 .host_command_length = 4,
5396 .host_command_parameters = {idx},
5397 };
5398 int err;
5399
5400 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5401
5402 if (idx < 0 || idx > 3)
5403 return -EINVAL;
5404
5405 if (!batch_mode) {
5406 err = ipw2100_disable_adapter(priv);
5407 if (err) {
5408 printk(KERN_ERR DRV_NAME
5409 ": %s: Could not disable adapter %d\n",
5410 priv->net_dev->name, err);
5411 return err;
5412 }
5413 }
5414
5415 /* send cmd to firmware */
5416 err = ipw2100_hw_send_command(priv, &cmd);
5417
5418 if (!batch_mode)
5419 ipw2100_enable_adapter(priv);
5420
5421 return err;
5422 }
5423
5424 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5425 {
5426 int i, err, auth_mode, sec_level, use_group;
5427
5428 if (!(priv->status & STATUS_RUNNING))
5429 return 0;
5430
5431 if (!batch_mode) {
5432 err = ipw2100_disable_adapter(priv);
5433 if (err)
5434 return err;
5435 }
5436
5437 if (!priv->ieee->sec.enabled) {
5438 err =
5439 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5440 SEC_LEVEL_0, 0, 1);
5441 } else {
5442 auth_mode = IPW_AUTH_OPEN;
5443 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5444 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5445 auth_mode = IPW_AUTH_SHARED;
5446 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5447 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5448 }
5449
5450 sec_level = SEC_LEVEL_0;
5451 if (priv->ieee->sec.flags & SEC_LEVEL)
5452 sec_level = priv->ieee->sec.level;
5453
5454 use_group = 0;
5455 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5456 use_group = priv->ieee->sec.unicast_uses_group;
5457
5458 err =
5459 ipw2100_set_security_information(priv, auth_mode, sec_level,
5460 use_group, 1);
5461 }
5462
5463 if (err)
5464 goto exit;
5465
5466 if (priv->ieee->sec.enabled) {
5467 for (i = 0; i < 4; i++) {
5468 if (!(priv->ieee->sec.flags & (1 << i))) {
5469 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5470 priv->ieee->sec.key_sizes[i] = 0;
5471 } else {
5472 err = ipw2100_set_key(priv, i,
5473 priv->ieee->sec.keys[i],
5474 priv->ieee->sec.
5475 key_sizes[i], 1);
5476 if (err)
5477 goto exit;
5478 }
5479 }
5480
5481 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5482 }
5483
5484 /* Always enable privacy so the Host can filter WEP packets if
5485 * encrypted data is sent up */
5486 err =
5487 ipw2100_set_wep_flags(priv,
5488 priv->ieee->sec.
5489 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5490 if (err)
5491 goto exit;
5492
5493 priv->status &= ~STATUS_SECURITY_UPDATED;
5494
5495 exit:
5496 if (!batch_mode)
5497 ipw2100_enable_adapter(priv);
5498
5499 return err;
5500 }
5501
5502 static void ipw2100_security_work(struct work_struct *work)
5503 {
5504 struct ipw2100_priv *priv =
5505 container_of(work, struct ipw2100_priv, security_work.work);
5506
5507 /* If we happen to have reconnected before we get a chance to
5508 * process this, then update the security settings--which causes
5509 * a disassociation to occur */
5510 if (!(priv->status & STATUS_ASSOCIATED) &&
5511 priv->status & STATUS_SECURITY_UPDATED)
5512 ipw2100_configure_security(priv, 0);
5513 }
5514
5515 static void shim__set_security(struct net_device *dev,
5516 struct ieee80211_security *sec)
5517 {
5518 struct ipw2100_priv *priv = ieee80211_priv(dev);
5519 int i, force_update = 0;
5520
5521 mutex_lock(&priv->action_mutex);
5522 if (!(priv->status & STATUS_INITIALIZED))
5523 goto done;
5524
5525 for (i = 0; i < 4; i++) {
5526 if (sec->flags & (1 << i)) {
5527 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5528 if (sec->key_sizes[i] == 0)
5529 priv->ieee->sec.flags &= ~(1 << i);
5530 else
5531 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5532 sec->key_sizes[i]);
5533 if (sec->level == SEC_LEVEL_1) {
5534 priv->ieee->sec.flags |= (1 << i);
5535 priv->status |= STATUS_SECURITY_UPDATED;
5536 } else
5537 priv->ieee->sec.flags &= ~(1 << i);
5538 }
5539 }
5540
5541 if ((sec->flags & SEC_ACTIVE_KEY) &&
5542 priv->ieee->sec.active_key != sec->active_key) {
5543 if (sec->active_key <= 3) {
5544 priv->ieee->sec.active_key = sec->active_key;
5545 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5546 } else
5547 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5548
5549 priv->status |= STATUS_SECURITY_UPDATED;
5550 }
5551
5552 if ((sec->flags & SEC_AUTH_MODE) &&
5553 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5554 priv->ieee->sec.auth_mode = sec->auth_mode;
5555 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5556 priv->status |= STATUS_SECURITY_UPDATED;
5557 }
5558
5559 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5560 priv->ieee->sec.flags |= SEC_ENABLED;
5561 priv->ieee->sec.enabled = sec->enabled;
5562 priv->status |= STATUS_SECURITY_UPDATED;
5563 force_update = 1;
5564 }
5565
5566 if (sec->flags & SEC_ENCRYPT)
5567 priv->ieee->sec.encrypt = sec->encrypt;
5568
5569 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5570 priv->ieee->sec.level = sec->level;
5571 priv->ieee->sec.flags |= SEC_LEVEL;
5572 priv->status |= STATUS_SECURITY_UPDATED;
5573 }
5574
5575 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5576 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5577 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5578 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5579 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5580 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5581 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5582 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5583 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5584 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5585
5586 /* As a temporary work around to enable WPA until we figure out why
5587 * wpa_supplicant toggles the security capability of the driver, which
5588 * forces a disassocation with force_update...
5589 *
5590 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5591 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5592 ipw2100_configure_security(priv, 0);
5593 done:
5594 mutex_unlock(&priv->action_mutex);
5595 }
5596
5597 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5598 {
5599 int err;
5600 int batch_mode = 1;
5601 u8 *bssid;
5602
5603 IPW_DEBUG_INFO("enter\n");
5604
5605 err = ipw2100_disable_adapter(priv);
5606 if (err)
5607 return err;
5608 #ifdef CONFIG_IPW2100_MONITOR
5609 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5610 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5611 if (err)
5612 return err;
5613
5614 IPW_DEBUG_INFO("exit\n");
5615
5616 return 0;
5617 }
5618 #endif /* CONFIG_IPW2100_MONITOR */
5619
5620 err = ipw2100_read_mac_address(priv);
5621 if (err)
5622 return -EIO;
5623
5624 err = ipw2100_set_mac_address(priv, batch_mode);
5625 if (err)
5626 return err;
5627
5628 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5629 if (err)
5630 return err;
5631
5632 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5633 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5634 if (err)
5635 return err;
5636 }
5637
5638 err = ipw2100_system_config(priv, batch_mode);
5639 if (err)
5640 return err;
5641
5642 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5643 if (err)
5644 return err;
5645
5646 /* Default to power mode OFF */
5647 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5648 if (err)
5649 return err;
5650
5651 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5652 if (err)
5653 return err;
5654
5655 if (priv->config & CFG_STATIC_BSSID)
5656 bssid = priv->bssid;
5657 else
5658 bssid = NULL;
5659 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5660 if (err)
5661 return err;
5662
5663 if (priv->config & CFG_STATIC_ESSID)
5664 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5665 batch_mode);
5666 else
5667 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5668 if (err)
5669 return err;
5670
5671 err = ipw2100_configure_security(priv, batch_mode);
5672 if (err)
5673 return err;
5674
5675 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5676 err =
5677 ipw2100_set_ibss_beacon_interval(priv,
5678 priv->beacon_interval,
5679 batch_mode);
5680 if (err)
5681 return err;
5682
5683 err = ipw2100_set_tx_power(priv, priv->tx_power);
5684 if (err)
5685 return err;
5686 }
5687
5688 /*
5689 err = ipw2100_set_fragmentation_threshold(
5690 priv, priv->frag_threshold, batch_mode);
5691 if (err)
5692 return err;
5693 */
5694
5695 IPW_DEBUG_INFO("exit\n");
5696
5697 return 0;
5698 }
5699
5700 /*************************************************************************
5701 *
5702 * EXTERNALLY CALLED METHODS
5703 *
5704 *************************************************************************/
5705
5706 /* This method is called by the network layer -- not to be confused with
5707 * ipw2100_set_mac_address() declared above called by this driver (and this
5708 * method as well) to talk to the firmware */
5709 static int ipw2100_set_address(struct net_device *dev, void *p)
5710 {
5711 struct ipw2100_priv *priv = ieee80211_priv(dev);
5712 struct sockaddr *addr = p;
5713 int err = 0;
5714
5715 if (!is_valid_ether_addr(addr->sa_data))
5716 return -EADDRNOTAVAIL;
5717
5718 mutex_lock(&priv->action_mutex);
5719
5720 priv->config |= CFG_CUSTOM_MAC;
5721 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5722
5723 err = ipw2100_set_mac_address(priv, 0);
5724 if (err)
5725 goto done;
5726
5727 priv->reset_backoff = 0;
5728 mutex_unlock(&priv->action_mutex);
5729 ipw2100_reset_adapter(&priv->reset_work.work);
5730 return 0;
5731
5732 done:
5733 mutex_unlock(&priv->action_mutex);
5734 return err;
5735 }
5736
5737 static int ipw2100_open(struct net_device *dev)
5738 {
5739 struct ipw2100_priv *priv = ieee80211_priv(dev);
5740 unsigned long flags;
5741 IPW_DEBUG_INFO("dev->open\n");
5742
5743 spin_lock_irqsave(&priv->low_lock, flags);
5744 if (priv->status & STATUS_ASSOCIATED) {
5745 netif_carrier_on(dev);
5746 netif_start_queue(dev);
5747 }
5748 spin_unlock_irqrestore(&priv->low_lock, flags);
5749
5750 return 0;
5751 }
5752
5753 static int ipw2100_close(struct net_device *dev)
5754 {
5755 struct ipw2100_priv *priv = ieee80211_priv(dev);
5756 unsigned long flags;
5757 struct list_head *element;
5758 struct ipw2100_tx_packet *packet;
5759
5760 IPW_DEBUG_INFO("enter\n");
5761
5762 spin_lock_irqsave(&priv->low_lock, flags);
5763
5764 if (priv->status & STATUS_ASSOCIATED)
5765 netif_carrier_off(dev);
5766 netif_stop_queue(dev);
5767
5768 /* Flush the TX queue ... */
5769 while (!list_empty(&priv->tx_pend_list)) {
5770 element = priv->tx_pend_list.next;
5771 packet = list_entry(element, struct ipw2100_tx_packet, list);
5772
5773 list_del(element);
5774 DEC_STAT(&priv->tx_pend_stat);
5775
5776 ieee80211_txb_free(packet->info.d_struct.txb);
5777 packet->info.d_struct.txb = NULL;
5778
5779 list_add_tail(element, &priv->tx_free_list);
5780 INC_STAT(&priv->tx_free_stat);
5781 }
5782 spin_unlock_irqrestore(&priv->low_lock, flags);
5783
5784 IPW_DEBUG_INFO("exit\n");
5785
5786 return 0;
5787 }
5788
5789 /*
5790 * TODO: Fix this function... its just wrong
5791 */
5792 static void ipw2100_tx_timeout(struct net_device *dev)
5793 {
5794 struct ipw2100_priv *priv = ieee80211_priv(dev);
5795
5796 priv->ieee->stats.tx_errors++;
5797
5798 #ifdef CONFIG_IPW2100_MONITOR
5799 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5800 return;
5801 #endif
5802
5803 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5804 dev->name);
5805 schedule_reset(priv);
5806 }
5807
5808 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5809 {
5810 /* This is called when wpa_supplicant loads and closes the driver
5811 * interface. */
5812 priv->ieee->wpa_enabled = value;
5813 return 0;
5814 }
5815
5816 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5817 {
5818
5819 struct ieee80211_device *ieee = priv->ieee;
5820 struct ieee80211_security sec = {
5821 .flags = SEC_AUTH_MODE,
5822 };
5823 int ret = 0;
5824
5825 if (value & IW_AUTH_ALG_SHARED_KEY) {
5826 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5827 ieee->open_wep = 0;
5828 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5829 sec.auth_mode = WLAN_AUTH_OPEN;
5830 ieee->open_wep = 1;
5831 } else if (value & IW_AUTH_ALG_LEAP) {
5832 sec.auth_mode = WLAN_AUTH_LEAP;
5833 ieee->open_wep = 1;
5834 } else
5835 return -EINVAL;
5836
5837 if (ieee->set_security)
5838 ieee->set_security(ieee->dev, &sec);
5839 else
5840 ret = -EOPNOTSUPP;
5841
5842 return ret;
5843 }
5844
5845 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5846 char *wpa_ie, int wpa_ie_len)
5847 {
5848
5849 struct ipw2100_wpa_assoc_frame frame;
5850
5851 frame.fixed_ie_mask = 0;
5852
5853 /* copy WPA IE */
5854 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5855 frame.var_ie_len = wpa_ie_len;
5856
5857 /* make sure WPA is enabled */
5858 ipw2100_wpa_enable(priv, 1);
5859 ipw2100_set_wpa_ie(priv, &frame, 0);
5860 }
5861
5862 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5863 struct ethtool_drvinfo *info)
5864 {
5865 struct ipw2100_priv *priv = ieee80211_priv(dev);
5866 char fw_ver[64], ucode_ver[64];
5867
5868 strcpy(info->driver, DRV_NAME);
5869 strcpy(info->version, DRV_VERSION);
5870
5871 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5872 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5873
5874 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5875 fw_ver, priv->eeprom_version, ucode_ver);
5876
5877 strcpy(info->bus_info, pci_name(priv->pci_dev));
5878 }
5879
5880 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5881 {
5882 struct ipw2100_priv *priv = ieee80211_priv(dev);
5883 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5884 }
5885
5886 static const struct ethtool_ops ipw2100_ethtool_ops = {
5887 .get_link = ipw2100_ethtool_get_link,
5888 .get_drvinfo = ipw_ethtool_get_drvinfo,
5889 };
5890
5891 static void ipw2100_hang_check(struct work_struct *work)
5892 {
5893 struct ipw2100_priv *priv =
5894 container_of(work, struct ipw2100_priv, hang_check.work);
5895 unsigned long flags;
5896 u32 rtc = 0xa5a5a5a5;
5897 u32 len = sizeof(rtc);
5898 int restart = 0;
5899
5900 spin_lock_irqsave(&priv->low_lock, flags);
5901
5902 if (priv->fatal_error != 0) {
5903 /* If fatal_error is set then we need to restart */
5904 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5905 priv->net_dev->name);
5906
5907 restart = 1;
5908 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5909 (rtc == priv->last_rtc)) {
5910 /* Check if firmware is hung */
5911 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5912 priv->net_dev->name);
5913
5914 restart = 1;
5915 }
5916
5917 if (restart) {
5918 /* Kill timer */
5919 priv->stop_hang_check = 1;
5920 priv->hangs++;
5921
5922 /* Restart the NIC */
5923 schedule_reset(priv);
5924 }
5925
5926 priv->last_rtc = rtc;
5927
5928 if (!priv->stop_hang_check)
5929 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5930
5931 spin_unlock_irqrestore(&priv->low_lock, flags);
5932 }
5933
5934 static void ipw2100_rf_kill(struct work_struct *work)
5935 {
5936 struct ipw2100_priv *priv =
5937 container_of(work, struct ipw2100_priv, rf_kill.work);
5938 unsigned long flags;
5939
5940 spin_lock_irqsave(&priv->low_lock, flags);
5941
5942 if (rf_kill_active(priv)) {
5943 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5944 if (!priv->stop_rf_kill)
5945 queue_delayed_work(priv->workqueue, &priv->rf_kill,
5946 round_jiffies(HZ));
5947 goto exit_unlock;
5948 }
5949
5950 /* RF Kill is now disabled, so bring the device back up */
5951
5952 if (!(priv->status & STATUS_RF_KILL_MASK)) {
5953 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5954 "device\n");
5955 schedule_reset(priv);
5956 } else
5957 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
5958 "enabled\n");
5959
5960 exit_unlock:
5961 spin_unlock_irqrestore(&priv->low_lock, flags);
5962 }
5963
5964 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
5965
5966 /* Look into using netdev destructor to shutdown ieee80211? */
5967
5968 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
5969 void __iomem * base_addr,
5970 unsigned long mem_start,
5971 unsigned long mem_len)
5972 {
5973 struct ipw2100_priv *priv;
5974 struct net_device *dev;
5975
5976 dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
5977 if (!dev)
5978 return NULL;
5979 priv = ieee80211_priv(dev);
5980 priv->ieee = netdev_priv(dev);
5981 priv->pci_dev = pci_dev;
5982 priv->net_dev = dev;
5983
5984 priv->ieee->hard_start_xmit = ipw2100_tx;
5985 priv->ieee->set_security = shim__set_security;
5986
5987 priv->ieee->perfect_rssi = -20;
5988 priv->ieee->worst_rssi = -85;
5989
5990 dev->open = ipw2100_open;
5991 dev->stop = ipw2100_close;
5992 dev->init = ipw2100_net_init;
5993 dev->ethtool_ops = &ipw2100_ethtool_ops;
5994 dev->tx_timeout = ipw2100_tx_timeout;
5995 dev->wireless_handlers = &ipw2100_wx_handler_def;
5996 priv->wireless_data.ieee80211 = priv->ieee;
5997 dev->wireless_data = &priv->wireless_data;
5998 dev->set_mac_address = ipw2100_set_address;
5999 dev->watchdog_timeo = 3 * HZ;
6000 dev->irq = 0;
6001
6002 dev->base_addr = (unsigned long)base_addr;
6003 dev->mem_start = mem_start;
6004 dev->mem_end = dev->mem_start + mem_len - 1;
6005
6006 /* NOTE: We don't use the wireless_handlers hook
6007 * in dev as the system will start throwing WX requests
6008 * to us before we're actually initialized and it just
6009 * ends up causing problems. So, we just handle
6010 * the WX extensions through the ipw2100_ioctl interface */
6011
6012 /* memset() puts everything to 0, so we only have explicitely set
6013 * those values that need to be something else */
6014
6015 /* If power management is turned on, default to AUTO mode */
6016 priv->power_mode = IPW_POWER_AUTO;
6017
6018 #ifdef CONFIG_IPW2100_MONITOR
6019 priv->config |= CFG_CRC_CHECK;
6020 #endif
6021 priv->ieee->wpa_enabled = 0;
6022 priv->ieee->drop_unencrypted = 0;
6023 priv->ieee->privacy_invoked = 0;
6024 priv->ieee->ieee802_1x = 1;
6025
6026 /* Set module parameters */
6027 switch (mode) {
6028 case 1:
6029 priv->ieee->iw_mode = IW_MODE_ADHOC;
6030 break;
6031 #ifdef CONFIG_IPW2100_MONITOR
6032 case 2:
6033 priv->ieee->iw_mode = IW_MODE_MONITOR;
6034 break;
6035 #endif
6036 default:
6037 case 0:
6038 priv->ieee->iw_mode = IW_MODE_INFRA;
6039 break;
6040 }
6041
6042 if (disable == 1)
6043 priv->status |= STATUS_RF_KILL_SW;
6044
6045 if (channel != 0 &&
6046 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6047 priv->config |= CFG_STATIC_CHANNEL;
6048 priv->channel = channel;
6049 }
6050
6051 if (associate)
6052 priv->config |= CFG_ASSOCIATE;
6053
6054 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6055 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6056 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6057 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6058 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6059 priv->tx_power = IPW_TX_POWER_DEFAULT;
6060 priv->tx_rates = DEFAULT_TX_RATES;
6061
6062 strcpy(priv->nick, "ipw2100");
6063
6064 spin_lock_init(&priv->low_lock);
6065 mutex_init(&priv->action_mutex);
6066 mutex_init(&priv->adapter_mutex);
6067
6068 init_waitqueue_head(&priv->wait_command_queue);
6069
6070 netif_carrier_off(dev);
6071
6072 INIT_LIST_HEAD(&priv->msg_free_list);
6073 INIT_LIST_HEAD(&priv->msg_pend_list);
6074 INIT_STAT(&priv->msg_free_stat);
6075 INIT_STAT(&priv->msg_pend_stat);
6076
6077 INIT_LIST_HEAD(&priv->tx_free_list);
6078 INIT_LIST_HEAD(&priv->tx_pend_list);
6079 INIT_STAT(&priv->tx_free_stat);
6080 INIT_STAT(&priv->tx_pend_stat);
6081
6082 INIT_LIST_HEAD(&priv->fw_pend_list);
6083 INIT_STAT(&priv->fw_pend_stat);
6084
6085 priv->workqueue = create_workqueue(DRV_NAME);
6086
6087 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6088 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6089 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6090 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6091 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6092
6093 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6094 ipw2100_irq_tasklet, (unsigned long)priv);
6095
6096 /* NOTE: We do not start the deferred work for status checks yet */
6097 priv->stop_rf_kill = 1;
6098 priv->stop_hang_check = 1;
6099
6100 return dev;
6101 }
6102
6103 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6104 const struct pci_device_id *ent)
6105 {
6106 unsigned long mem_start, mem_len, mem_flags;
6107 void __iomem *base_addr = NULL;
6108 struct net_device *dev = NULL;
6109 struct ipw2100_priv *priv = NULL;
6110 int err = 0;
6111 int registered = 0;
6112 u32 val;
6113
6114 IPW_DEBUG_INFO("enter\n");
6115
6116 mem_start = pci_resource_start(pci_dev, 0);
6117 mem_len = pci_resource_len(pci_dev, 0);
6118 mem_flags = pci_resource_flags(pci_dev, 0);
6119
6120 if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6121 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6122 err = -ENODEV;
6123 goto fail;
6124 }
6125
6126 base_addr = ioremap_nocache(mem_start, mem_len);
6127 if (!base_addr) {
6128 printk(KERN_WARNING DRV_NAME
6129 "Error calling ioremap_nocache.\n");
6130 err = -EIO;
6131 goto fail;
6132 }
6133
6134 /* allocate and initialize our net_device */
6135 dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6136 if (!dev) {
6137 printk(KERN_WARNING DRV_NAME
6138 "Error calling ipw2100_alloc_device.\n");
6139 err = -ENOMEM;
6140 goto fail;
6141 }
6142
6143 /* set up PCI mappings for device */
6144 err = pci_enable_device(pci_dev);
6145 if (err) {
6146 printk(KERN_WARNING DRV_NAME
6147 "Error calling pci_enable_device.\n");
6148 return err;
6149 }
6150
6151 priv = ieee80211_priv(dev);
6152
6153 pci_set_master(pci_dev);
6154 pci_set_drvdata(pci_dev, priv);
6155
6156 err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6157 if (err) {
6158 printk(KERN_WARNING DRV_NAME
6159 "Error calling pci_set_dma_mask.\n");
6160 pci_disable_device(pci_dev);
6161 return err;
6162 }
6163
6164 err = pci_request_regions(pci_dev, DRV_NAME);
6165 if (err) {
6166 printk(KERN_WARNING DRV_NAME
6167 "Error calling pci_request_regions.\n");
6168 pci_disable_device(pci_dev);
6169 return err;
6170 }
6171
6172 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6173 * PCI Tx retries from interfering with C3 CPU state */
6174 pci_read_config_dword(pci_dev, 0x40, &val);
6175 if ((val & 0x0000ff00) != 0)
6176 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6177
6178 pci_set_power_state(pci_dev, PCI_D0);
6179
6180 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6181 printk(KERN_WARNING DRV_NAME
6182 "Device not found via register read.\n");
6183 err = -ENODEV;
6184 goto fail;
6185 }
6186
6187 SET_NETDEV_DEV(dev, &pci_dev->dev);
6188
6189 /* Force interrupts to be shut off on the device */
6190 priv->status |= STATUS_INT_ENABLED;
6191 ipw2100_disable_interrupts(priv);
6192
6193 /* Allocate and initialize the Tx/Rx queues and lists */
6194 if (ipw2100_queues_allocate(priv)) {
6195 printk(KERN_WARNING DRV_NAME
6196 "Error calling ipw2100_queues_allocate.\n");
6197 err = -ENOMEM;
6198 goto fail;
6199 }
6200 ipw2100_queues_initialize(priv);
6201
6202 err = request_irq(pci_dev->irq,
6203 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6204 if (err) {
6205 printk(KERN_WARNING DRV_NAME
6206 "Error calling request_irq: %d.\n", pci_dev->irq);
6207 goto fail;
6208 }
6209 dev->irq = pci_dev->irq;
6210
6211 IPW_DEBUG_INFO("Attempting to register device...\n");
6212
6213 SET_MODULE_OWNER(dev);
6214
6215 printk(KERN_INFO DRV_NAME
6216 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6217
6218 /* Bring up the interface. Pre 0.46, after we registered the
6219 * network device we would call ipw2100_up. This introduced a race
6220 * condition with newer hotplug configurations (network was coming
6221 * up and making calls before the device was initialized).
6222 *
6223 * If we called ipw2100_up before we registered the device, then the
6224 * device name wasn't registered. So, we instead use the net_dev->init
6225 * member to call a function that then just turns and calls ipw2100_up.
6226 * net_dev->init is called after name allocation but before the
6227 * notifier chain is called */
6228 err = register_netdev(dev);
6229 if (err) {
6230 printk(KERN_WARNING DRV_NAME
6231 "Error calling register_netdev.\n");
6232 goto fail;
6233 }
6234
6235 mutex_lock(&priv->action_mutex);
6236 registered = 1;
6237
6238 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6239
6240 /* perform this after register_netdev so that dev->name is set */
6241 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6242 if (err)
6243 goto fail_unlock;
6244
6245 /* If the RF Kill switch is disabled, go ahead and complete the
6246 * startup sequence */
6247 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6248 /* Enable the adapter - sends HOST_COMPLETE */
6249 if (ipw2100_enable_adapter(priv)) {
6250 printk(KERN_WARNING DRV_NAME
6251 ": %s: failed in call to enable adapter.\n",
6252 priv->net_dev->name);
6253 ipw2100_hw_stop_adapter(priv);
6254 err = -EIO;
6255 goto fail_unlock;
6256 }
6257
6258 /* Start a scan . . . */
6259 ipw2100_set_scan_options(priv);
6260 ipw2100_start_scan(priv);
6261 }
6262
6263 IPW_DEBUG_INFO("exit\n");
6264
6265 priv->status |= STATUS_INITIALIZED;
6266
6267 mutex_unlock(&priv->action_mutex);
6268
6269 return 0;
6270
6271 fail_unlock:
6272 mutex_unlock(&priv->action_mutex);
6273
6274 fail:
6275 if (dev) {
6276 if (registered)
6277 unregister_netdev(dev);
6278
6279 ipw2100_hw_stop_adapter(priv);
6280
6281 ipw2100_disable_interrupts(priv);
6282
6283 if (dev->irq)
6284 free_irq(dev->irq, priv);
6285
6286 ipw2100_kill_workqueue(priv);
6287
6288 /* These are safe to call even if they weren't allocated */
6289 ipw2100_queues_free(priv);
6290 sysfs_remove_group(&pci_dev->dev.kobj,
6291 &ipw2100_attribute_group);
6292
6293 free_ieee80211(dev);
6294 pci_set_drvdata(pci_dev, NULL);
6295 }
6296
6297 if (base_addr)
6298 iounmap(base_addr);
6299
6300 pci_release_regions(pci_dev);
6301 pci_disable_device(pci_dev);
6302
6303 return err;
6304 }
6305
6306 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6307 {
6308 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6309 struct net_device *dev;
6310
6311 if (priv) {
6312 mutex_lock(&priv->action_mutex);
6313
6314 priv->status &= ~STATUS_INITIALIZED;
6315
6316 dev = priv->net_dev;
6317 sysfs_remove_group(&pci_dev->dev.kobj,
6318 &ipw2100_attribute_group);
6319
6320 #ifdef CONFIG_PM
6321 if (ipw2100_firmware.version)
6322 ipw2100_release_firmware(priv, &ipw2100_firmware);
6323 #endif
6324 /* Take down the hardware */
6325 ipw2100_down(priv);
6326
6327 /* Release the mutex so that the network subsystem can
6328 * complete any needed calls into the driver... */
6329 mutex_unlock(&priv->action_mutex);
6330
6331 /* Unregister the device first - this results in close()
6332 * being called if the device is open. If we free storage
6333 * first, then close() will crash. */
6334 unregister_netdev(dev);
6335
6336 /* ipw2100_down will ensure that there is no more pending work
6337 * in the workqueue's, so we can safely remove them now. */
6338 ipw2100_kill_workqueue(priv);
6339
6340 ipw2100_queues_free(priv);
6341
6342 /* Free potential debugging firmware snapshot */
6343 ipw2100_snapshot_free(priv);
6344
6345 if (dev->irq)
6346 free_irq(dev->irq, priv);
6347
6348 if (dev->base_addr)
6349 iounmap((void __iomem *)dev->base_addr);
6350
6351 free_ieee80211(dev);
6352 }
6353
6354 pci_release_regions(pci_dev);
6355 pci_disable_device(pci_dev);
6356
6357 IPW_DEBUG_INFO("exit\n");
6358 }
6359
6360 #ifdef CONFIG_PM
6361 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6362 {
6363 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6364 struct net_device *dev = priv->net_dev;
6365
6366 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6367
6368 mutex_lock(&priv->action_mutex);
6369 if (priv->status & STATUS_INITIALIZED) {
6370 /* Take down the device; powers it off, etc. */
6371 ipw2100_down(priv);
6372 }
6373
6374 /* Remove the PRESENT state of the device */
6375 netif_device_detach(dev);
6376
6377 pci_save_state(pci_dev);
6378 pci_disable_device(pci_dev);
6379 pci_set_power_state(pci_dev, PCI_D3hot);
6380
6381 mutex_unlock(&priv->action_mutex);
6382
6383 return 0;
6384 }
6385
6386 static int ipw2100_resume(struct pci_dev *pci_dev)
6387 {
6388 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6389 struct net_device *dev = priv->net_dev;
6390 int err;
6391 u32 val;
6392
6393 if (IPW2100_PM_DISABLED)
6394 return 0;
6395
6396 mutex_lock(&priv->action_mutex);
6397
6398 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6399
6400 pci_set_power_state(pci_dev, PCI_D0);
6401 err = pci_enable_device(pci_dev);
6402 if (err) {
6403 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6404 dev->name);
6405 return err;
6406 }
6407 pci_restore_state(pci_dev);
6408
6409 /*
6410 * Suspend/Resume resets the PCI configuration space, so we have to
6411 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6412 * from interfering with C3 CPU state. pci_restore_state won't help
6413 * here since it only restores the first 64 bytes pci config header.
6414 */
6415 pci_read_config_dword(pci_dev, 0x40, &val);
6416 if ((val & 0x0000ff00) != 0)
6417 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6418
6419 /* Set the device back into the PRESENT state; this will also wake
6420 * the queue of needed */
6421 netif_device_attach(dev);
6422
6423 /* Bring the device back up */
6424 if (!(priv->status & STATUS_RF_KILL_SW))
6425 ipw2100_up(priv, 0);
6426
6427 mutex_unlock(&priv->action_mutex);
6428
6429 return 0;
6430 }
6431 #endif
6432
6433 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6434
6435 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6436 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6437 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6438 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6439 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6440 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6441 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6442 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6443 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6444 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6445 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6446 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6447 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6448 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6449
6450 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6451 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6452 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6453 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6454 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6455
6456 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6457 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6458 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6459 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6460 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6461 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6462 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6463
6464 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6465
6466 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6467 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6468 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6469 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6470 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6471 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6472 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6473
6474 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6475 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6476 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6477 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6478 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6479 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6480
6481 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6482 {0,},
6483 };
6484
6485 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6486
6487 static struct pci_driver ipw2100_pci_driver = {
6488 .name = DRV_NAME,
6489 .id_table = ipw2100_pci_id_table,
6490 .probe = ipw2100_pci_init_one,
6491 .remove = __devexit_p(ipw2100_pci_remove_one),
6492 #ifdef CONFIG_PM
6493 .suspend = ipw2100_suspend,
6494 .resume = ipw2100_resume,
6495 #endif
6496 };
6497
6498 /**
6499 * Initialize the ipw2100 driver/module
6500 *
6501 * @returns 0 if ok, < 0 errno node con error.
6502 *
6503 * Note: we cannot init the /proc stuff until the PCI driver is there,
6504 * or we risk an unlikely race condition on someone accessing
6505 * uninitialized data in the PCI dev struct through /proc.
6506 */
6507 static int __init ipw2100_init(void)
6508 {
6509 int ret;
6510
6511 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6512 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6513
6514 ret = pci_register_driver(&ipw2100_pci_driver);
6515 if (ret)
6516 goto out;
6517
6518 set_acceptable_latency("ipw2100", INFINITE_LATENCY);
6519 #ifdef CONFIG_IPW2100_DEBUG
6520 ipw2100_debug_level = debug;
6521 ret = driver_create_file(&ipw2100_pci_driver.driver,
6522 &driver_attr_debug_level);
6523 #endif
6524
6525 out:
6526 return ret;
6527 }
6528
6529 /**
6530 * Cleanup ipw2100 driver registration
6531 */
6532 static void __exit ipw2100_exit(void)
6533 {
6534 /* FIXME: IPG: check that we have no instances of the devices open */
6535 #ifdef CONFIG_IPW2100_DEBUG
6536 driver_remove_file(&ipw2100_pci_driver.driver,
6537 &driver_attr_debug_level);
6538 #endif
6539 pci_unregister_driver(&ipw2100_pci_driver);
6540 remove_acceptable_latency("ipw2100");
6541 }
6542
6543 module_init(ipw2100_init);
6544 module_exit(ipw2100_exit);
6545
6546 #define WEXT_USECHANNELS 1
6547
6548 static const long ipw2100_frequencies[] = {
6549 2412, 2417, 2422, 2427,
6550 2432, 2437, 2442, 2447,
6551 2452, 2457, 2462, 2467,
6552 2472, 2484
6553 };
6554
6555 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6556 sizeof(ipw2100_frequencies[0]))
6557
6558 static const long ipw2100_rates_11b[] = {
6559 1000000,
6560 2000000,
6561 5500000,
6562 11000000
6563 };
6564
6565 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
6566
6567 static int ipw2100_wx_get_name(struct net_device *dev,
6568 struct iw_request_info *info,
6569 union iwreq_data *wrqu, char *extra)
6570 {
6571 /*
6572 * This can be called at any time. No action lock required
6573 */
6574
6575 struct ipw2100_priv *priv = ieee80211_priv(dev);
6576 if (!(priv->status & STATUS_ASSOCIATED))
6577 strcpy(wrqu->name, "unassociated");
6578 else
6579 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6580
6581 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6582 return 0;
6583 }
6584
6585 static int ipw2100_wx_set_freq(struct net_device *dev,
6586 struct iw_request_info *info,
6587 union iwreq_data *wrqu, char *extra)
6588 {
6589 struct ipw2100_priv *priv = ieee80211_priv(dev);
6590 struct iw_freq *fwrq = &wrqu->freq;
6591 int err = 0;
6592
6593 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6594 return -EOPNOTSUPP;
6595
6596 mutex_lock(&priv->action_mutex);
6597 if (!(priv->status & STATUS_INITIALIZED)) {
6598 err = -EIO;
6599 goto done;
6600 }
6601
6602 /* if setting by freq convert to channel */
6603 if (fwrq->e == 1) {
6604 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6605 int f = fwrq->m / 100000;
6606 int c = 0;
6607
6608 while ((c < REG_MAX_CHANNEL) &&
6609 (f != ipw2100_frequencies[c]))
6610 c++;
6611
6612 /* hack to fall through */
6613 fwrq->e = 0;
6614 fwrq->m = c + 1;
6615 }
6616 }
6617
6618 if (fwrq->e > 0 || fwrq->m > 1000) {
6619 err = -EOPNOTSUPP;
6620 goto done;
6621 } else { /* Set the channel */
6622 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6623 err = ipw2100_set_channel(priv, fwrq->m, 0);
6624 }
6625
6626 done:
6627 mutex_unlock(&priv->action_mutex);
6628 return err;
6629 }
6630
6631 static int ipw2100_wx_get_freq(struct net_device *dev,
6632 struct iw_request_info *info,
6633 union iwreq_data *wrqu, char *extra)
6634 {
6635 /*
6636 * This can be called at any time. No action lock required
6637 */
6638
6639 struct ipw2100_priv *priv = ieee80211_priv(dev);
6640
6641 wrqu->freq.e = 0;
6642
6643 /* If we are associated, trying to associate, or have a statically
6644 * configured CHANNEL then return that; otherwise return ANY */
6645 if (priv->config & CFG_STATIC_CHANNEL ||
6646 priv->status & STATUS_ASSOCIATED)
6647 wrqu->freq.m = priv->channel;
6648 else
6649 wrqu->freq.m = 0;
6650
6651 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6652 return 0;
6653
6654 }
6655
6656 static int ipw2100_wx_set_mode(struct net_device *dev,
6657 struct iw_request_info *info,
6658 union iwreq_data *wrqu, char *extra)
6659 {
6660 struct ipw2100_priv *priv = ieee80211_priv(dev);
6661 int err = 0;
6662
6663 IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6664
6665 if (wrqu->mode == priv->ieee->iw_mode)
6666 return 0;
6667
6668 mutex_lock(&priv->action_mutex);
6669 if (!(priv->status & STATUS_INITIALIZED)) {
6670 err = -EIO;
6671 goto done;
6672 }
6673
6674 switch (wrqu->mode) {
6675 #ifdef CONFIG_IPW2100_MONITOR
6676 case IW_MODE_MONITOR:
6677 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6678 break;
6679 #endif /* CONFIG_IPW2100_MONITOR */
6680 case IW_MODE_ADHOC:
6681 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6682 break;
6683 case IW_MODE_INFRA:
6684 case IW_MODE_AUTO:
6685 default:
6686 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6687 break;
6688 }
6689
6690 done:
6691 mutex_unlock(&priv->action_mutex);
6692 return err;
6693 }
6694
6695 static int ipw2100_wx_get_mode(struct net_device *dev,
6696 struct iw_request_info *info,
6697 union iwreq_data *wrqu, char *extra)
6698 {
6699 /*
6700 * This can be called at any time. No action lock required
6701 */
6702
6703 struct ipw2100_priv *priv = ieee80211_priv(dev);
6704
6705 wrqu->mode = priv->ieee->iw_mode;
6706 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6707
6708 return 0;
6709 }
6710
6711 #define POWER_MODES 5
6712
6713 /* Values are in microsecond */
6714 static const s32 timeout_duration[POWER_MODES] = {
6715 350000,
6716 250000,
6717 75000,
6718 37000,
6719 25000,
6720 };
6721
6722 static const s32 period_duration[POWER_MODES] = {
6723 400000,
6724 700000,
6725 1000000,
6726 1000000,
6727 1000000
6728 };
6729
6730 static int ipw2100_wx_get_range(struct net_device *dev,
6731 struct iw_request_info *info,
6732 union iwreq_data *wrqu, char *extra)
6733 {
6734 /*
6735 * This can be called at any time. No action lock required
6736 */
6737
6738 struct ipw2100_priv *priv = ieee80211_priv(dev);
6739 struct iw_range *range = (struct iw_range *)extra;
6740 u16 val;
6741 int i, level;
6742
6743 wrqu->data.length = sizeof(*range);
6744 memset(range, 0, sizeof(*range));
6745
6746 /* Let's try to keep this struct in the same order as in
6747 * linux/include/wireless.h
6748 */
6749
6750 /* TODO: See what values we can set, and remove the ones we can't
6751 * set, or fill them with some default data.
6752 */
6753
6754 /* ~5 Mb/s real (802.11b) */
6755 range->throughput = 5 * 1000 * 1000;
6756
6757 // range->sensitivity; /* signal level threshold range */
6758
6759 range->max_qual.qual = 100;
6760 /* TODO: Find real max RSSI and stick here */
6761 range->max_qual.level = 0;
6762 range->max_qual.noise = 0;
6763 range->max_qual.updated = 7; /* Updated all three */
6764
6765 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6766 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6767 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6768 range->avg_qual.noise = 0;
6769 range->avg_qual.updated = 7; /* Updated all three */
6770
6771 range->num_bitrates = RATE_COUNT;
6772
6773 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6774 range->bitrate[i] = ipw2100_rates_11b[i];
6775 }
6776
6777 range->min_rts = MIN_RTS_THRESHOLD;
6778 range->max_rts = MAX_RTS_THRESHOLD;
6779 range->min_frag = MIN_FRAG_THRESHOLD;
6780 range->max_frag = MAX_FRAG_THRESHOLD;
6781
6782 range->min_pmp = period_duration[0]; /* Minimal PM period */
6783 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6784 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6785 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6786
6787 /* How to decode max/min PM period */
6788 range->pmp_flags = IW_POWER_PERIOD;
6789 /* How to decode max/min PM period */
6790 range->pmt_flags = IW_POWER_TIMEOUT;
6791 /* What PM options are supported */
6792 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6793
6794 range->encoding_size[0] = 5;
6795 range->encoding_size[1] = 13; /* Different token sizes */
6796 range->num_encoding_sizes = 2; /* Number of entry in the list */
6797 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6798 // range->encoding_login_index; /* token index for login token */
6799
6800 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6801 range->txpower_capa = IW_TXPOW_DBM;
6802 range->num_txpower = IW_MAX_TXPOWER;
6803 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6804 i < IW_MAX_TXPOWER;
6805 i++, level -=
6806 ((IPW_TX_POWER_MAX_DBM -
6807 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6808 range->txpower[i] = level / 16;
6809 } else {
6810 range->txpower_capa = 0;
6811 range->num_txpower = 0;
6812 }
6813
6814 /* Set the Wireless Extension versions */
6815 range->we_version_compiled = WIRELESS_EXT;
6816 range->we_version_source = 18;
6817
6818 // range->retry_capa; /* What retry options are supported */
6819 // range->retry_flags; /* How to decode max/min retry limit */
6820 // range->r_time_flags; /* How to decode max/min retry life */
6821 // range->min_retry; /* Minimal number of retries */
6822 // range->max_retry; /* Maximal number of retries */
6823 // range->min_r_time; /* Minimal retry lifetime */
6824 // range->max_r_time; /* Maximal retry lifetime */
6825
6826 range->num_channels = FREQ_COUNT;
6827
6828 val = 0;
6829 for (i = 0; i < FREQ_COUNT; i++) {
6830 // TODO: Include only legal frequencies for some countries
6831 // if (local->channel_mask & (1 << i)) {
6832 range->freq[val].i = i + 1;
6833 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6834 range->freq[val].e = 1;
6835 val++;
6836 // }
6837 if (val == IW_MAX_FREQUENCIES)
6838 break;
6839 }
6840 range->num_frequency = val;
6841
6842 /* Event capability (kernel + driver) */
6843 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6844 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6845 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6846
6847 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6848 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6849
6850 IPW_DEBUG_WX("GET Range\n");
6851
6852 return 0;
6853 }
6854
6855 static int ipw2100_wx_set_wap(struct net_device *dev,
6856 struct iw_request_info *info,
6857 union iwreq_data *wrqu, char *extra)
6858 {
6859 struct ipw2100_priv *priv = ieee80211_priv(dev);
6860 int err = 0;
6861
6862 static const unsigned char any[] = {
6863 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6864 };
6865 static const unsigned char off[] = {
6866 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6867 };
6868
6869 // sanity checks
6870 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6871 return -EINVAL;
6872
6873 mutex_lock(&priv->action_mutex);
6874 if (!(priv->status & STATUS_INITIALIZED)) {
6875 err = -EIO;
6876 goto done;
6877 }
6878
6879 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6880 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6881 /* we disable mandatory BSSID association */
6882 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6883 priv->config &= ~CFG_STATIC_BSSID;
6884 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6885 goto done;
6886 }
6887
6888 priv->config |= CFG_STATIC_BSSID;
6889 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6890
6891 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6892
6893 IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
6894 wrqu->ap_addr.sa_data[0] & 0xff,
6895 wrqu->ap_addr.sa_data[1] & 0xff,
6896 wrqu->ap_addr.sa_data[2] & 0xff,
6897 wrqu->ap_addr.sa_data[3] & 0xff,
6898 wrqu->ap_addr.sa_data[4] & 0xff,
6899 wrqu->ap_addr.sa_data[5] & 0xff);
6900
6901 done:
6902 mutex_unlock(&priv->action_mutex);
6903 return err;
6904 }
6905
6906 static int ipw2100_wx_get_wap(struct net_device *dev,
6907 struct iw_request_info *info,
6908 union iwreq_data *wrqu, char *extra)
6909 {
6910 /*
6911 * This can be called at any time. No action lock required
6912 */
6913
6914 struct ipw2100_priv *priv = ieee80211_priv(dev);
6915
6916 /* If we are associated, trying to associate, or have a statically
6917 * configured BSSID then return that; otherwise return ANY */
6918 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6919 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6920 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6921 } else
6922 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6923
6924 IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
6925 MAC_ARG(wrqu->ap_addr.sa_data));
6926 return 0;
6927 }
6928
6929 static int ipw2100_wx_set_essid(struct net_device *dev,
6930 struct iw_request_info *info,
6931 union iwreq_data *wrqu, char *extra)
6932 {
6933 struct ipw2100_priv *priv = ieee80211_priv(dev);
6934 char *essid = ""; /* ANY */
6935 int length = 0;
6936 int err = 0;
6937
6938 mutex_lock(&priv->action_mutex);
6939 if (!(priv->status & STATUS_INITIALIZED)) {
6940 err = -EIO;
6941 goto done;
6942 }
6943
6944 if (wrqu->essid.flags && wrqu->essid.length) {
6945 length = wrqu->essid.length;
6946 essid = extra;
6947 }
6948
6949 if (length == 0) {
6950 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6951 priv->config &= ~CFG_STATIC_ESSID;
6952 err = ipw2100_set_essid(priv, NULL, 0, 0);
6953 goto done;
6954 }
6955
6956 length = min(length, IW_ESSID_MAX_SIZE);
6957
6958 priv->config |= CFG_STATIC_ESSID;
6959
6960 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6961 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6962 err = 0;
6963 goto done;
6964 }
6965
6966 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
6967 length);
6968
6969 priv->essid_len = length;
6970 memcpy(priv->essid, essid, priv->essid_len);
6971
6972 err = ipw2100_set_essid(priv, essid, length, 0);
6973
6974 done:
6975 mutex_unlock(&priv->action_mutex);
6976 return err;
6977 }
6978
6979 static int ipw2100_wx_get_essid(struct net_device *dev,
6980 struct iw_request_info *info,
6981 union iwreq_data *wrqu, char *extra)
6982 {
6983 /*
6984 * This can be called at any time. No action lock required
6985 */
6986
6987 struct ipw2100_priv *priv = ieee80211_priv(dev);
6988
6989 /* If we are associated, trying to associate, or have a statically
6990 * configured ESSID then return that; otherwise return ANY */
6991 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
6992 IPW_DEBUG_WX("Getting essid: '%s'\n",
6993 escape_essid(priv->essid, priv->essid_len));
6994 memcpy(extra, priv->essid, priv->essid_len);
6995 wrqu->essid.length = priv->essid_len;
6996 wrqu->essid.flags = 1; /* active */
6997 } else {
6998 IPW_DEBUG_WX("Getting essid: ANY\n");
6999 wrqu->essid.length = 0;
7000 wrqu->essid.flags = 0; /* active */
7001 }
7002
7003 return 0;
7004 }
7005
7006 static int ipw2100_wx_set_nick(struct net_device *dev,
7007 struct iw_request_info *info,
7008 union iwreq_data *wrqu, char *extra)
7009 {
7010 /*
7011 * This can be called at any time. No action lock required
7012 */
7013
7014 struct ipw2100_priv *priv = ieee80211_priv(dev);
7015
7016 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7017 return -E2BIG;
7018
7019 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7020 memset(priv->nick, 0, sizeof(priv->nick));
7021 memcpy(priv->nick, extra, wrqu->data.length);
7022
7023 IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7024
7025 return 0;
7026 }
7027
7028 static int ipw2100_wx_get_nick(struct net_device *dev,
7029 struct iw_request_info *info,
7030 union iwreq_data *wrqu, char *extra)
7031 {
7032 /*
7033 * This can be called at any time. No action lock required
7034 */
7035
7036 struct ipw2100_priv *priv = ieee80211_priv(dev);
7037
7038 wrqu->data.length = strlen(priv->nick);
7039 memcpy(extra, priv->nick, wrqu->data.length);
7040 wrqu->data.flags = 1; /* active */
7041
7042 IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7043
7044 return 0;
7045 }
7046
7047 static int ipw2100_wx_set_rate(struct net_device *dev,
7048 struct iw_request_info *info,
7049 union iwreq_data *wrqu, char *extra)
7050 {
7051 struct ipw2100_priv *priv = ieee80211_priv(dev);
7052 u32 target_rate = wrqu->bitrate.value;
7053 u32 rate;
7054 int err = 0;
7055
7056 mutex_lock(&priv->action_mutex);
7057 if (!(priv->status & STATUS_INITIALIZED)) {
7058 err = -EIO;
7059 goto done;
7060 }
7061
7062 rate = 0;
7063
7064 if (target_rate == 1000000 ||
7065 (!wrqu->bitrate.fixed && target_rate > 1000000))
7066 rate |= TX_RATE_1_MBIT;
7067 if (target_rate == 2000000 ||
7068 (!wrqu->bitrate.fixed && target_rate > 2000000))
7069 rate |= TX_RATE_2_MBIT;
7070 if (target_rate == 5500000 ||
7071 (!wrqu->bitrate.fixed && target_rate > 5500000))
7072 rate |= TX_RATE_5_5_MBIT;
7073 if (target_rate == 11000000 ||
7074 (!wrqu->bitrate.fixed && target_rate > 11000000))
7075 rate |= TX_RATE_11_MBIT;
7076 if (rate == 0)
7077 rate = DEFAULT_TX_RATES;
7078
7079 err = ipw2100_set_tx_rates(priv, rate, 0);
7080
7081 IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7082 done:
7083 mutex_unlock(&priv->action_mutex);
7084 return err;
7085 }
7086
7087 static int ipw2100_wx_get_rate(struct net_device *dev,
7088 struct iw_request_info *info,
7089 union iwreq_data *wrqu, char *extra)
7090 {
7091 struct ipw2100_priv *priv = ieee80211_priv(dev);
7092 int val;
7093 int len = sizeof(val);
7094 int err = 0;
7095
7096 if (!(priv->status & STATUS_ENABLED) ||
7097 priv->status & STATUS_RF_KILL_MASK ||
7098 !(priv->status & STATUS_ASSOCIATED)) {
7099 wrqu->bitrate.value = 0;
7100 return 0;
7101 }
7102
7103 mutex_lock(&priv->action_mutex);
7104 if (!(priv->status & STATUS_INITIALIZED)) {
7105 err = -EIO;
7106 goto done;
7107 }
7108
7109 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7110 if (err) {
7111 IPW_DEBUG_WX("failed querying ordinals.\n");
7112 return err;
7113 }
7114
7115 switch (val & TX_RATE_MASK) {
7116 case TX_RATE_1_MBIT:
7117 wrqu->bitrate.value = 1000000;
7118 break;
7119 case TX_RATE_2_MBIT:
7120 wrqu->bitrate.value = 2000000;
7121 break;
7122 case TX_RATE_5_5_MBIT:
7123 wrqu->bitrate.value = 5500000;
7124 break;
7125 case TX_RATE_11_MBIT:
7126 wrqu->bitrate.value = 11000000;
7127 break;
7128 default:
7129 wrqu->bitrate.value = 0;
7130 }
7131
7132 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7133
7134 done:
7135 mutex_unlock(&priv->action_mutex);
7136 return err;
7137 }
7138
7139 static int ipw2100_wx_set_rts(struct net_device *dev,
7140 struct iw_request_info *info,
7141 union iwreq_data *wrqu, char *extra)
7142 {
7143 struct ipw2100_priv *priv = ieee80211_priv(dev);
7144 int value, err;
7145
7146 /* Auto RTS not yet supported */
7147 if (wrqu->rts.fixed == 0)
7148 return -EINVAL;
7149
7150 mutex_lock(&priv->action_mutex);
7151 if (!(priv->status & STATUS_INITIALIZED)) {
7152 err = -EIO;
7153 goto done;
7154 }
7155
7156 if (wrqu->rts.disabled)
7157 value = priv->rts_threshold | RTS_DISABLED;
7158 else {
7159 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7160 err = -EINVAL;
7161 goto done;
7162 }
7163 value = wrqu->rts.value;
7164 }
7165
7166 err = ipw2100_set_rts_threshold(priv, value);
7167
7168 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7169 done:
7170 mutex_unlock(&priv->action_mutex);
7171 return err;
7172 }
7173
7174 static int ipw2100_wx_get_rts(struct net_device *dev,
7175 struct iw_request_info *info,
7176 union iwreq_data *wrqu, char *extra)
7177 {
7178 /*
7179 * This can be called at any time. No action lock required
7180 */
7181
7182 struct ipw2100_priv *priv = ieee80211_priv(dev);
7183
7184 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7185 wrqu->rts.fixed = 1; /* no auto select */
7186
7187 /* If RTS is set to the default value, then it is disabled */
7188 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7189
7190 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7191
7192 return 0;
7193 }
7194
7195 static int ipw2100_wx_set_txpow(struct net_device *dev,
7196 struct iw_request_info *info,
7197 union iwreq_data *wrqu, char *extra)
7198 {
7199 struct ipw2100_priv *priv = ieee80211_priv(dev);
7200 int err = 0, value;
7201
7202 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7203 return -EINPROGRESS;
7204
7205 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7206 return 0;
7207
7208 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7209 return -EINVAL;
7210
7211 if (wrqu->txpower.fixed == 0)
7212 value = IPW_TX_POWER_DEFAULT;
7213 else {
7214 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7215 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7216 return -EINVAL;
7217
7218 value = wrqu->txpower.value;
7219 }
7220
7221 mutex_lock(&priv->action_mutex);
7222 if (!(priv->status & STATUS_INITIALIZED)) {
7223 err = -EIO;
7224 goto done;
7225 }
7226
7227 err = ipw2100_set_tx_power(priv, value);
7228
7229 IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7230
7231 done:
7232 mutex_unlock(&priv->action_mutex);
7233 return err;
7234 }
7235
7236 static int ipw2100_wx_get_txpow(struct net_device *dev,
7237 struct iw_request_info *info,
7238 union iwreq_data *wrqu, char *extra)
7239 {
7240 /*
7241 * This can be called at any time. No action lock required
7242 */
7243
7244 struct ipw2100_priv *priv = ieee80211_priv(dev);
7245
7246 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7247
7248 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7249 wrqu->txpower.fixed = 0;
7250 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7251 } else {
7252 wrqu->txpower.fixed = 1;
7253 wrqu->txpower.value = priv->tx_power;
7254 }
7255
7256 wrqu->txpower.flags = IW_TXPOW_DBM;
7257
7258 IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7259
7260 return 0;
7261 }
7262
7263 static int ipw2100_wx_set_frag(struct net_device *dev,
7264 struct iw_request_info *info,
7265 union iwreq_data *wrqu, char *extra)
7266 {
7267 /*
7268 * This can be called at any time. No action lock required
7269 */
7270
7271 struct ipw2100_priv *priv = ieee80211_priv(dev);
7272
7273 if (!wrqu->frag.fixed)
7274 return -EINVAL;
7275
7276 if (wrqu->frag.disabled) {
7277 priv->frag_threshold |= FRAG_DISABLED;
7278 priv->ieee->fts = DEFAULT_FTS;
7279 } else {
7280 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7281 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7282 return -EINVAL;
7283
7284 priv->ieee->fts = wrqu->frag.value & ~0x1;
7285 priv->frag_threshold = priv->ieee->fts;
7286 }
7287
7288 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7289
7290 return 0;
7291 }
7292
7293 static int ipw2100_wx_get_frag(struct net_device *dev,
7294 struct iw_request_info *info,
7295 union iwreq_data *wrqu, char *extra)
7296 {
7297 /*
7298 * This can be called at any time. No action lock required
7299 */
7300
7301 struct ipw2100_priv *priv = ieee80211_priv(dev);
7302 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7303 wrqu->frag.fixed = 0; /* no auto select */
7304 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7305
7306 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7307
7308 return 0;
7309 }
7310
7311 static int ipw2100_wx_set_retry(struct net_device *dev,
7312 struct iw_request_info *info,
7313 union iwreq_data *wrqu, char *extra)
7314 {
7315 struct ipw2100_priv *priv = ieee80211_priv(dev);
7316 int err = 0;
7317
7318 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7319 return -EINVAL;
7320
7321 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7322 return 0;
7323
7324 mutex_lock(&priv->action_mutex);
7325 if (!(priv->status & STATUS_INITIALIZED)) {
7326 err = -EIO;
7327 goto done;
7328 }
7329
7330 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7331 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7332 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7333 wrqu->retry.value);
7334 goto done;
7335 }
7336
7337 if (wrqu->retry.flags & IW_RETRY_LONG) {
7338 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7339 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7340 wrqu->retry.value);
7341 goto done;
7342 }
7343
7344 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7345 if (!err)
7346 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7347
7348 IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7349
7350 done:
7351 mutex_unlock(&priv->action_mutex);
7352 return err;
7353 }
7354
7355 static int ipw2100_wx_get_retry(struct net_device *dev,
7356 struct iw_request_info *info,
7357 union iwreq_data *wrqu, char *extra)
7358 {
7359 /*
7360 * This can be called at any time. No action lock required
7361 */
7362
7363 struct ipw2100_priv *priv = ieee80211_priv(dev);
7364
7365 wrqu->retry.disabled = 0; /* can't be disabled */
7366
7367 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7368 return -EINVAL;
7369
7370 if (wrqu->retry.flags & IW_RETRY_LONG) {
7371 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7372 wrqu->retry.value = priv->long_retry_limit;
7373 } else {
7374 wrqu->retry.flags =
7375 (priv->short_retry_limit !=
7376 priv->long_retry_limit) ?
7377 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7378
7379 wrqu->retry.value = priv->short_retry_limit;
7380 }
7381
7382 IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7383
7384 return 0;
7385 }
7386
7387 static int ipw2100_wx_set_scan(struct net_device *dev,
7388 struct iw_request_info *info,
7389 union iwreq_data *wrqu, char *extra)
7390 {
7391 struct ipw2100_priv *priv = ieee80211_priv(dev);
7392 int err = 0;
7393
7394 mutex_lock(&priv->action_mutex);
7395 if (!(priv->status & STATUS_INITIALIZED)) {
7396 err = -EIO;
7397 goto done;
7398 }
7399
7400 IPW_DEBUG_WX("Initiating scan...\n");
7401 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7402 IPW_DEBUG_WX("Start scan failed.\n");
7403
7404 /* TODO: Mark a scan as pending so when hardware initialized
7405 * a scan starts */
7406 }
7407
7408 done:
7409 mutex_unlock(&priv->action_mutex);
7410 return err;
7411 }
7412
7413 static int ipw2100_wx_get_scan(struct net_device *dev,
7414 struct iw_request_info *info,
7415 union iwreq_data *wrqu, char *extra)
7416 {
7417 /*
7418 * This can be called at any time. No action lock required
7419 */
7420
7421 struct ipw2100_priv *priv = ieee80211_priv(dev);
7422 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7423 }
7424
7425 /*
7426 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7427 */
7428 static int ipw2100_wx_set_encode(struct net_device *dev,
7429 struct iw_request_info *info,
7430 union iwreq_data *wrqu, char *key)
7431 {
7432 /*
7433 * No check of STATUS_INITIALIZED required
7434 */
7435
7436 struct ipw2100_priv *priv = ieee80211_priv(dev);
7437 return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7438 }
7439
7440 static int ipw2100_wx_get_encode(struct net_device *dev,
7441 struct iw_request_info *info,
7442 union iwreq_data *wrqu, char *key)
7443 {
7444 /*
7445 * This can be called at any time. No action lock required
7446 */
7447
7448 struct ipw2100_priv *priv = ieee80211_priv(dev);
7449 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7450 }
7451
7452 static int ipw2100_wx_set_power(struct net_device *dev,
7453 struct iw_request_info *info,
7454 union iwreq_data *wrqu, char *extra)
7455 {
7456 struct ipw2100_priv *priv = ieee80211_priv(dev);
7457 int err = 0;
7458
7459 mutex_lock(&priv->action_mutex);
7460 if (!(priv->status & STATUS_INITIALIZED)) {
7461 err = -EIO;
7462 goto done;
7463 }
7464
7465 if (wrqu->power.disabled) {
7466 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7467 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7468 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7469 goto done;
7470 }
7471
7472 switch (wrqu->power.flags & IW_POWER_MODE) {
7473 case IW_POWER_ON: /* If not specified */
7474 case IW_POWER_MODE: /* If set all mask */
7475 case IW_POWER_ALL_R: /* If explicitely state all */
7476 break;
7477 default: /* Otherwise we don't support it */
7478 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7479 wrqu->power.flags);
7480 err = -EOPNOTSUPP;
7481 goto done;
7482 }
7483
7484 /* If the user hasn't specified a power management mode yet, default
7485 * to BATTERY */
7486 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7487 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7488
7489 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7490
7491 done:
7492 mutex_unlock(&priv->action_mutex);
7493 return err;
7494
7495 }
7496
7497 static int ipw2100_wx_get_power(struct net_device *dev,
7498 struct iw_request_info *info,
7499 union iwreq_data *wrqu, char *extra)
7500 {
7501 /*
7502 * This can be called at any time. No action lock required
7503 */
7504
7505 struct ipw2100_priv *priv = ieee80211_priv(dev);
7506
7507 if (!(priv->power_mode & IPW_POWER_ENABLED))
7508 wrqu->power.disabled = 1;
7509 else {
7510 wrqu->power.disabled = 0;
7511 wrqu->power.flags = 0;
7512 }
7513
7514 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7515
7516 return 0;
7517 }
7518
7519 /*
7520 * WE-18 WPA support
7521 */
7522
7523 /* SIOCSIWGENIE */
7524 static int ipw2100_wx_set_genie(struct net_device *dev,
7525 struct iw_request_info *info,
7526 union iwreq_data *wrqu, char *extra)
7527 {
7528
7529 struct ipw2100_priv *priv = ieee80211_priv(dev);
7530 struct ieee80211_device *ieee = priv->ieee;
7531 u8 *buf;
7532
7533 if (!ieee->wpa_enabled)
7534 return -EOPNOTSUPP;
7535
7536 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7537 (wrqu->data.length && extra == NULL))
7538 return -EINVAL;
7539
7540 if (wrqu->data.length) {
7541 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7542 if (buf == NULL)
7543 return -ENOMEM;
7544
7545 kfree(ieee->wpa_ie);
7546 ieee->wpa_ie = buf;
7547 ieee->wpa_ie_len = wrqu->data.length;
7548 } else {
7549 kfree(ieee->wpa_ie);
7550 ieee->wpa_ie = NULL;
7551 ieee->wpa_ie_len = 0;
7552 }
7553
7554 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7555
7556 return 0;
7557 }
7558
7559 /* SIOCGIWGENIE */
7560 static int ipw2100_wx_get_genie(struct net_device *dev,
7561 struct iw_request_info *info,
7562 union iwreq_data *wrqu, char *extra)
7563 {
7564 struct ipw2100_priv *priv = ieee80211_priv(dev);
7565 struct ieee80211_device *ieee = priv->ieee;
7566
7567 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7568 wrqu->data.length = 0;
7569 return 0;
7570 }
7571
7572 if (wrqu->data.length < ieee->wpa_ie_len)
7573 return -E2BIG;
7574
7575 wrqu->data.length = ieee->wpa_ie_len;
7576 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7577
7578 return 0;
7579 }
7580
7581 /* SIOCSIWAUTH */
7582 static int ipw2100_wx_set_auth(struct net_device *dev,
7583 struct iw_request_info *info,
7584 union iwreq_data *wrqu, char *extra)
7585 {
7586 struct ipw2100_priv *priv = ieee80211_priv(dev);
7587 struct ieee80211_device *ieee = priv->ieee;
7588 struct iw_param *param = &wrqu->param;
7589 struct ieee80211_crypt_data *crypt;
7590 unsigned long flags;
7591 int ret = 0;
7592
7593 switch (param->flags & IW_AUTH_INDEX) {
7594 case IW_AUTH_WPA_VERSION:
7595 case IW_AUTH_CIPHER_PAIRWISE:
7596 case IW_AUTH_CIPHER_GROUP:
7597 case IW_AUTH_KEY_MGMT:
7598 /*
7599 * ipw2200 does not use these parameters
7600 */
7601 break;
7602
7603 case IW_AUTH_TKIP_COUNTERMEASURES:
7604 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7605 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7606 break;
7607
7608 flags = crypt->ops->get_flags(crypt->priv);
7609
7610 if (param->value)
7611 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7612 else
7613 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7614
7615 crypt->ops->set_flags(flags, crypt->priv);
7616
7617 break;
7618
7619 case IW_AUTH_DROP_UNENCRYPTED:{
7620 /* HACK:
7621 *
7622 * wpa_supplicant calls set_wpa_enabled when the driver
7623 * is loaded and unloaded, regardless of if WPA is being
7624 * used. No other calls are made which can be used to
7625 * determine if encryption will be used or not prior to
7626 * association being expected. If encryption is not being
7627 * used, drop_unencrypted is set to false, else true -- we
7628 * can use this to determine if the CAP_PRIVACY_ON bit should
7629 * be set.
7630 */
7631 struct ieee80211_security sec = {
7632 .flags = SEC_ENABLED,
7633 .enabled = param->value,
7634 };
7635 priv->ieee->drop_unencrypted = param->value;
7636 /* We only change SEC_LEVEL for open mode. Others
7637 * are set by ipw_wpa_set_encryption.
7638 */
7639 if (!param->value) {
7640 sec.flags |= SEC_LEVEL;
7641 sec.level = SEC_LEVEL_0;
7642 } else {
7643 sec.flags |= SEC_LEVEL;
7644 sec.level = SEC_LEVEL_1;
7645 }
7646 if (priv->ieee->set_security)
7647 priv->ieee->set_security(priv->ieee->dev, &sec);
7648 break;
7649 }
7650
7651 case IW_AUTH_80211_AUTH_ALG:
7652 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7653 break;
7654
7655 case IW_AUTH_WPA_ENABLED:
7656 ret = ipw2100_wpa_enable(priv, param->value);
7657 break;
7658
7659 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7660 ieee->ieee802_1x = param->value;
7661 break;
7662
7663 //case IW_AUTH_ROAMING_CONTROL:
7664 case IW_AUTH_PRIVACY_INVOKED:
7665 ieee->privacy_invoked = param->value;
7666 break;
7667
7668 default:
7669 return -EOPNOTSUPP;
7670 }
7671 return ret;
7672 }
7673
7674 /* SIOCGIWAUTH */
7675 static int ipw2100_wx_get_auth(struct net_device *dev,
7676 struct iw_request_info *info,
7677 union iwreq_data *wrqu, char *extra)
7678 {
7679 struct ipw2100_priv *priv = ieee80211_priv(dev);
7680 struct ieee80211_device *ieee = priv->ieee;
7681 struct ieee80211_crypt_data *crypt;
7682 struct iw_param *param = &wrqu->param;
7683 int ret = 0;
7684
7685 switch (param->flags & IW_AUTH_INDEX) {
7686 case IW_AUTH_WPA_VERSION:
7687 case IW_AUTH_CIPHER_PAIRWISE:
7688 case IW_AUTH_CIPHER_GROUP:
7689 case IW_AUTH_KEY_MGMT:
7690 /*
7691 * wpa_supplicant will control these internally
7692 */
7693 ret = -EOPNOTSUPP;
7694 break;
7695
7696 case IW_AUTH_TKIP_COUNTERMEASURES:
7697 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7698 if (!crypt || !crypt->ops->get_flags) {
7699 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7700 "crypt not set!\n");
7701 break;
7702 }
7703
7704 param->value = (crypt->ops->get_flags(crypt->priv) &
7705 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7706
7707 break;
7708
7709 case IW_AUTH_DROP_UNENCRYPTED:
7710 param->value = ieee->drop_unencrypted;
7711 break;
7712
7713 case IW_AUTH_80211_AUTH_ALG:
7714 param->value = priv->ieee->sec.auth_mode;
7715 break;
7716
7717 case IW_AUTH_WPA_ENABLED:
7718 param->value = ieee->wpa_enabled;
7719 break;
7720
7721 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7722 param->value = ieee->ieee802_1x;
7723 break;
7724
7725 case IW_AUTH_ROAMING_CONTROL:
7726 case IW_AUTH_PRIVACY_INVOKED:
7727 param->value = ieee->privacy_invoked;
7728 break;
7729
7730 default:
7731 return -EOPNOTSUPP;
7732 }
7733 return 0;
7734 }
7735
7736 /* SIOCSIWENCODEEXT */
7737 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7738 struct iw_request_info *info,
7739 union iwreq_data *wrqu, char *extra)
7740 {
7741 struct ipw2100_priv *priv = ieee80211_priv(dev);
7742 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7743 }
7744
7745 /* SIOCGIWENCODEEXT */
7746 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7747 struct iw_request_info *info,
7748 union iwreq_data *wrqu, char *extra)
7749 {
7750 struct ipw2100_priv *priv = ieee80211_priv(dev);
7751 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7752 }
7753
7754 /* SIOCSIWMLME */
7755 static int ipw2100_wx_set_mlme(struct net_device *dev,
7756 struct iw_request_info *info,
7757 union iwreq_data *wrqu, char *extra)
7758 {
7759 struct ipw2100_priv *priv = ieee80211_priv(dev);
7760 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7761 u16 reason;
7762
7763 reason = cpu_to_le16(mlme->reason_code);
7764
7765 switch (mlme->cmd) {
7766 case IW_MLME_DEAUTH:
7767 // silently ignore
7768 break;
7769
7770 case IW_MLME_DISASSOC:
7771 ipw2100_disassociate_bssid(priv);
7772 break;
7773
7774 default:
7775 return -EOPNOTSUPP;
7776 }
7777 return 0;
7778 }
7779
7780 /*
7781 *
7782 * IWPRIV handlers
7783 *
7784 */
7785 #ifdef CONFIG_IPW2100_MONITOR
7786 static int ipw2100_wx_set_promisc(struct net_device *dev,
7787 struct iw_request_info *info,
7788 union iwreq_data *wrqu, char *extra)
7789 {
7790 struct ipw2100_priv *priv = ieee80211_priv(dev);
7791 int *parms = (int *)extra;
7792 int enable = (parms[0] > 0);
7793 int err = 0;
7794
7795 mutex_lock(&priv->action_mutex);
7796 if (!(priv->status & STATUS_INITIALIZED)) {
7797 err = -EIO;
7798 goto done;
7799 }
7800
7801 if (enable) {
7802 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7803 err = ipw2100_set_channel(priv, parms[1], 0);
7804 goto done;
7805 }
7806 priv->channel = parms[1];
7807 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7808 } else {
7809 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7810 err = ipw2100_switch_mode(priv, priv->last_mode);
7811 }
7812 done:
7813 mutex_unlock(&priv->action_mutex);
7814 return err;
7815 }
7816
7817 static int ipw2100_wx_reset(struct net_device *dev,
7818 struct iw_request_info *info,
7819 union iwreq_data *wrqu, char *extra)
7820 {
7821 struct ipw2100_priv *priv = ieee80211_priv(dev);
7822 if (priv->status & STATUS_INITIALIZED)
7823 schedule_reset(priv);
7824 return 0;
7825 }
7826
7827 #endif
7828
7829 static int ipw2100_wx_set_powermode(struct net_device *dev,
7830 struct iw_request_info *info,
7831 union iwreq_data *wrqu, char *extra)
7832 {
7833 struct ipw2100_priv *priv = ieee80211_priv(dev);
7834 int err = 0, mode = *(int *)extra;
7835
7836 mutex_lock(&priv->action_mutex);
7837 if (!(priv->status & STATUS_INITIALIZED)) {
7838 err = -EIO;
7839 goto done;
7840 }
7841
7842 if ((mode < 0) || (mode > POWER_MODES))
7843 mode = IPW_POWER_AUTO;
7844
7845 if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7846 err = ipw2100_set_power_mode(priv, mode);
7847 done:
7848 mutex_unlock(&priv->action_mutex);
7849 return err;
7850 }
7851
7852 #define MAX_POWER_STRING 80
7853 static int ipw2100_wx_get_powermode(struct net_device *dev,
7854 struct iw_request_info *info,
7855 union iwreq_data *wrqu, char *extra)
7856 {
7857 /*
7858 * This can be called at any time. No action lock required
7859 */
7860
7861 struct ipw2100_priv *priv = ieee80211_priv(dev);
7862 int level = IPW_POWER_LEVEL(priv->power_mode);
7863 s32 timeout, period;
7864
7865 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7866 snprintf(extra, MAX_POWER_STRING,
7867 "Power save level: %d (Off)", level);
7868 } else {
7869 switch (level) {
7870 case IPW_POWER_MODE_CAM:
7871 snprintf(extra, MAX_POWER_STRING,
7872 "Power save level: %d (None)", level);
7873 break;
7874 case IPW_POWER_AUTO:
7875 snprintf(extra, MAX_POWER_STRING,
7876 "Power save level: %d (Auto)", level);
7877 break;
7878 default:
7879 timeout = timeout_duration[level - 1] / 1000;
7880 period = period_duration[level - 1] / 1000;
7881 snprintf(extra, MAX_POWER_STRING,
7882 "Power save level: %d "
7883 "(Timeout %dms, Period %dms)",
7884 level, timeout, period);
7885 }
7886 }
7887
7888 wrqu->data.length = strlen(extra) + 1;
7889
7890 return 0;
7891 }
7892
7893 static int ipw2100_wx_set_preamble(struct net_device *dev,
7894 struct iw_request_info *info,
7895 union iwreq_data *wrqu, char *extra)
7896 {
7897 struct ipw2100_priv *priv = ieee80211_priv(dev);
7898 int err, mode = *(int *)extra;
7899
7900 mutex_lock(&priv->action_mutex);
7901 if (!(priv->status & STATUS_INITIALIZED)) {
7902 err = -EIO;
7903 goto done;
7904 }
7905
7906 if (mode == 1)
7907 priv->config |= CFG_LONG_PREAMBLE;
7908 else if (mode == 0)
7909 priv->config &= ~CFG_LONG_PREAMBLE;
7910 else {
7911 err = -EINVAL;
7912 goto done;
7913 }
7914
7915 err = ipw2100_system_config(priv, 0);
7916
7917 done:
7918 mutex_unlock(&priv->action_mutex);
7919 return err;
7920 }
7921
7922 static int ipw2100_wx_get_preamble(struct net_device *dev,
7923 struct iw_request_info *info,
7924 union iwreq_data *wrqu, char *extra)
7925 {
7926 /*
7927 * This can be called at any time. No action lock required
7928 */
7929
7930 struct ipw2100_priv *priv = ieee80211_priv(dev);
7931
7932 if (priv->config & CFG_LONG_PREAMBLE)
7933 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7934 else
7935 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7936
7937 return 0;
7938 }
7939
7940 #ifdef CONFIG_IPW2100_MONITOR
7941 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7942 struct iw_request_info *info,
7943 union iwreq_data *wrqu, char *extra)
7944 {
7945 struct ipw2100_priv *priv = ieee80211_priv(dev);
7946 int err, mode = *(int *)extra;
7947
7948 mutex_lock(&priv->action_mutex);
7949 if (!(priv->status & STATUS_INITIALIZED)) {
7950 err = -EIO;
7951 goto done;
7952 }
7953
7954 if (mode == 1)
7955 priv->config |= CFG_CRC_CHECK;
7956 else if (mode == 0)
7957 priv->config &= ~CFG_CRC_CHECK;
7958 else {
7959 err = -EINVAL;
7960 goto done;
7961 }
7962 err = 0;
7963
7964 done:
7965 mutex_unlock(&priv->action_mutex);
7966 return err;
7967 }
7968
7969 static int ipw2100_wx_get_crc_check(struct net_device *dev,
7970 struct iw_request_info *info,
7971 union iwreq_data *wrqu, char *extra)
7972 {
7973 /*
7974 * This can be called at any time. No action lock required
7975 */
7976
7977 struct ipw2100_priv *priv = ieee80211_priv(dev);
7978
7979 if (priv->config & CFG_CRC_CHECK)
7980 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
7981 else
7982 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
7983
7984 return 0;
7985 }
7986 #endif /* CONFIG_IPW2100_MONITOR */
7987
7988 static iw_handler ipw2100_wx_handlers[] = {
7989 NULL, /* SIOCSIWCOMMIT */
7990 ipw2100_wx_get_name, /* SIOCGIWNAME */
7991 NULL, /* SIOCSIWNWID */
7992 NULL, /* SIOCGIWNWID */
7993 ipw2100_wx_set_freq, /* SIOCSIWFREQ */
7994 ipw2100_wx_get_freq, /* SIOCGIWFREQ */
7995 ipw2100_wx_set_mode, /* SIOCSIWMODE */
7996 ipw2100_wx_get_mode, /* SIOCGIWMODE */
7997 NULL, /* SIOCSIWSENS */
7998 NULL, /* SIOCGIWSENS */
7999 NULL, /* SIOCSIWRANGE */
8000 ipw2100_wx_get_range, /* SIOCGIWRANGE */
8001 NULL, /* SIOCSIWPRIV */
8002 NULL, /* SIOCGIWPRIV */
8003 NULL, /* SIOCSIWSTATS */
8004 NULL, /* SIOCGIWSTATS */
8005 NULL, /* SIOCSIWSPY */
8006 NULL, /* SIOCGIWSPY */
8007 NULL, /* SIOCGIWTHRSPY */
8008 NULL, /* SIOCWIWTHRSPY */
8009 ipw2100_wx_set_wap, /* SIOCSIWAP */
8010 ipw2100_wx_get_wap, /* SIOCGIWAP */
8011 ipw2100_wx_set_mlme, /* SIOCSIWMLME */
8012 NULL, /* SIOCGIWAPLIST -- deprecated */
8013 ipw2100_wx_set_scan, /* SIOCSIWSCAN */
8014 ipw2100_wx_get_scan, /* SIOCGIWSCAN */
8015 ipw2100_wx_set_essid, /* SIOCSIWESSID */
8016 ipw2100_wx_get_essid, /* SIOCGIWESSID */
8017 ipw2100_wx_set_nick, /* SIOCSIWNICKN */
8018 ipw2100_wx_get_nick, /* SIOCGIWNICKN */
8019 NULL, /* -- hole -- */
8020 NULL, /* -- hole -- */
8021 ipw2100_wx_set_rate, /* SIOCSIWRATE */
8022 ipw2100_wx_get_rate, /* SIOCGIWRATE */
8023 ipw2100_wx_set_rts, /* SIOCSIWRTS */
8024 ipw2100_wx_get_rts, /* SIOCGIWRTS */
8025 ipw2100_wx_set_frag, /* SIOCSIWFRAG */
8026 ipw2100_wx_get_frag, /* SIOCGIWFRAG */
8027 ipw2100_wx_set_txpow, /* SIOCSIWTXPOW */
8028 ipw2100_wx_get_txpow, /* SIOCGIWTXPOW */
8029 ipw2100_wx_set_retry, /* SIOCSIWRETRY */
8030 ipw2100_wx_get_retry, /* SIOCGIWRETRY */
8031 ipw2100_wx_set_encode, /* SIOCSIWENCODE */
8032 ipw2100_wx_get_encode, /* SIOCGIWENCODE */
8033 ipw2100_wx_set_power, /* SIOCSIWPOWER */
8034 ipw2100_wx_get_power, /* SIOCGIWPOWER */
8035 NULL, /* -- hole -- */
8036 NULL, /* -- hole -- */
8037 ipw2100_wx_set_genie, /* SIOCSIWGENIE */
8038 ipw2100_wx_get_genie, /* SIOCGIWGENIE */
8039 ipw2100_wx_set_auth, /* SIOCSIWAUTH */
8040 ipw2100_wx_get_auth, /* SIOCGIWAUTH */
8041 ipw2100_wx_set_encodeext, /* SIOCSIWENCODEEXT */
8042 ipw2100_wx_get_encodeext, /* SIOCGIWENCODEEXT */
8043 NULL, /* SIOCSIWPMKSA */
8044 };
8045
8046 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8047 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8048 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8049 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8050 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8051 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8052 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8053 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8054
8055 static const struct iw_priv_args ipw2100_private_args[] = {
8056
8057 #ifdef CONFIG_IPW2100_MONITOR
8058 {
8059 IPW2100_PRIV_SET_MONITOR,
8060 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8061 {
8062 IPW2100_PRIV_RESET,
8063 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8064 #endif /* CONFIG_IPW2100_MONITOR */
8065
8066 {
8067 IPW2100_PRIV_SET_POWER,
8068 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8069 {
8070 IPW2100_PRIV_GET_POWER,
8071 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8072 "get_power"},
8073 {
8074 IPW2100_PRIV_SET_LONGPREAMBLE,
8075 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8076 {
8077 IPW2100_PRIV_GET_LONGPREAMBLE,
8078 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8079 #ifdef CONFIG_IPW2100_MONITOR
8080 {
8081 IPW2100_PRIV_SET_CRC_CHECK,
8082 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8083 {
8084 IPW2100_PRIV_GET_CRC_CHECK,
8085 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8086 #endif /* CONFIG_IPW2100_MONITOR */
8087 };
8088
8089 static iw_handler ipw2100_private_handler[] = {
8090 #ifdef CONFIG_IPW2100_MONITOR
8091 ipw2100_wx_set_promisc,
8092 ipw2100_wx_reset,
8093 #else /* CONFIG_IPW2100_MONITOR */
8094 NULL,
8095 NULL,
8096 #endif /* CONFIG_IPW2100_MONITOR */
8097 ipw2100_wx_set_powermode,
8098 ipw2100_wx_get_powermode,
8099 ipw2100_wx_set_preamble,
8100 ipw2100_wx_get_preamble,
8101 #ifdef CONFIG_IPW2100_MONITOR
8102 ipw2100_wx_set_crc_check,
8103 ipw2100_wx_get_crc_check,
8104 #else /* CONFIG_IPW2100_MONITOR */
8105 NULL,
8106 NULL,
8107 #endif /* CONFIG_IPW2100_MONITOR */
8108 };
8109
8110 /*
8111 * Get wireless statistics.
8112 * Called by /proc/net/wireless
8113 * Also called by SIOCGIWSTATS
8114 */
8115 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8116 {
8117 enum {
8118 POOR = 30,
8119 FAIR = 60,
8120 GOOD = 80,
8121 VERY_GOOD = 90,
8122 EXCELLENT = 95,
8123 PERFECT = 100
8124 };
8125 int rssi_qual;
8126 int tx_qual;
8127 int beacon_qual;
8128
8129 struct ipw2100_priv *priv = ieee80211_priv(dev);
8130 struct iw_statistics *wstats;
8131 u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8132 u32 ord_len = sizeof(u32);
8133
8134 if (!priv)
8135 return (struct iw_statistics *)NULL;
8136
8137 wstats = &priv->wstats;
8138
8139 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8140 * ipw2100_wx_wireless_stats seems to be called before fw is
8141 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8142 * and associated; if not associcated, the values are all meaningless
8143 * anyway, so set them all to NULL and INVALID */
8144 if (!(priv->status & STATUS_ASSOCIATED)) {
8145 wstats->miss.beacon = 0;
8146 wstats->discard.retries = 0;
8147 wstats->qual.qual = 0;
8148 wstats->qual.level = 0;
8149 wstats->qual.noise = 0;
8150 wstats->qual.updated = 7;
8151 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8152 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8153 return wstats;
8154 }
8155
8156 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8157 &missed_beacons, &ord_len))
8158 goto fail_get_ordinal;
8159
8160 /* If we don't have a connection the quality and level is 0 */
8161 if (!(priv->status & STATUS_ASSOCIATED)) {
8162 wstats->qual.qual = 0;
8163 wstats->qual.level = 0;
8164 } else {
8165 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8166 &rssi, &ord_len))
8167 goto fail_get_ordinal;
8168 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8169 if (rssi < 10)
8170 rssi_qual = rssi * POOR / 10;
8171 else if (rssi < 15)
8172 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8173 else if (rssi < 20)
8174 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8175 else if (rssi < 30)
8176 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8177 10 + GOOD;
8178 else
8179 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8180 10 + VERY_GOOD;
8181
8182 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8183 &tx_retries, &ord_len))
8184 goto fail_get_ordinal;
8185
8186 if (tx_retries > 75)
8187 tx_qual = (90 - tx_retries) * POOR / 15;
8188 else if (tx_retries > 70)
8189 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8190 else if (tx_retries > 65)
8191 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8192 else if (tx_retries > 50)
8193 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8194 15 + GOOD;
8195 else
8196 tx_qual = (50 - tx_retries) *
8197 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8198
8199 if (missed_beacons > 50)
8200 beacon_qual = (60 - missed_beacons) * POOR / 10;
8201 else if (missed_beacons > 40)
8202 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8203 10 + POOR;
8204 else if (missed_beacons > 32)
8205 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8206 18 + FAIR;
8207 else if (missed_beacons > 20)
8208 beacon_qual = (32 - missed_beacons) *
8209 (VERY_GOOD - GOOD) / 20 + GOOD;
8210 else
8211 beacon_qual = (20 - missed_beacons) *
8212 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8213
8214 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8215
8216 #ifdef CONFIG_IPW2100_DEBUG
8217 if (beacon_qual == quality)
8218 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8219 else if (tx_qual == quality)
8220 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8221 else if (quality != 100)
8222 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8223 else
8224 IPW_DEBUG_WX("Quality not clamped.\n");
8225 #endif
8226
8227 wstats->qual.qual = quality;
8228 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8229 }
8230
8231 wstats->qual.noise = 0;
8232 wstats->qual.updated = 7;
8233 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8234
8235 /* FIXME: this is percent and not a # */
8236 wstats->miss.beacon = missed_beacons;
8237
8238 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8239 &tx_failures, &ord_len))
8240 goto fail_get_ordinal;
8241 wstats->discard.retries = tx_failures;
8242
8243 return wstats;
8244
8245 fail_get_ordinal:
8246 IPW_DEBUG_WX("failed querying ordinals.\n");
8247
8248 return (struct iw_statistics *)NULL;
8249 }
8250
8251 static struct iw_handler_def ipw2100_wx_handler_def = {
8252 .standard = ipw2100_wx_handlers,
8253 .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8254 .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8255 .num_private_args = sizeof(ipw2100_private_args) /
8256 sizeof(struct iw_priv_args),
8257 .private = (iw_handler *) ipw2100_private_handler,
8258 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8259 .get_wireless_stats = ipw2100_wx_wireless_stats,
8260 };
8261
8262 static void ipw2100_wx_event_work(struct work_struct *work)
8263 {
8264 struct ipw2100_priv *priv =
8265 container_of(work, struct ipw2100_priv, wx_event_work.work);
8266 union iwreq_data wrqu;
8267 int len = ETH_ALEN;
8268
8269 if (priv->status & STATUS_STOPPING)
8270 return;
8271
8272 mutex_lock(&priv->action_mutex);
8273
8274 IPW_DEBUG_WX("enter\n");
8275
8276 mutex_unlock(&priv->action_mutex);
8277
8278 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8279
8280 /* Fetch BSSID from the hardware */
8281 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8282 priv->status & STATUS_RF_KILL_MASK ||
8283 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8284 &priv->bssid, &len)) {
8285 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8286 } else {
8287 /* We now have the BSSID, so can finish setting to the full
8288 * associated state */
8289 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8290 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8291 priv->status &= ~STATUS_ASSOCIATING;
8292 priv->status |= STATUS_ASSOCIATED;
8293 netif_carrier_on(priv->net_dev);
8294 netif_wake_queue(priv->net_dev);
8295 }
8296
8297 if (!(priv->status & STATUS_ASSOCIATED)) {
8298 IPW_DEBUG_WX("Configuring ESSID\n");
8299 mutex_lock(&priv->action_mutex);
8300 /* This is a disassociation event, so kick the firmware to
8301 * look for another AP */
8302 if (priv->config & CFG_STATIC_ESSID)
8303 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8304 0);
8305 else
8306 ipw2100_set_essid(priv, NULL, 0, 0);
8307 mutex_unlock(&priv->action_mutex);
8308 }
8309
8310 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8311 }
8312
8313 #define IPW2100_FW_MAJOR_VERSION 1
8314 #define IPW2100_FW_MINOR_VERSION 3
8315
8316 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8317 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8318
8319 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8320 IPW2100_FW_MAJOR_VERSION)
8321
8322 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8323 "." __stringify(IPW2100_FW_MINOR_VERSION)
8324
8325 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8326
8327 /*
8328
8329 BINARY FIRMWARE HEADER FORMAT
8330
8331 offset length desc
8332 0 2 version
8333 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8334 4 4 fw_len
8335 8 4 uc_len
8336 C fw_len firmware data
8337 12 + fw_len uc_len microcode data
8338
8339 */
8340
8341 struct ipw2100_fw_header {
8342 short version;
8343 short mode;
8344 unsigned int fw_size;
8345 unsigned int uc_size;
8346 } __attribute__ ((packed));
8347
8348 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8349 {
8350 struct ipw2100_fw_header *h =
8351 (struct ipw2100_fw_header *)fw->fw_entry->data;
8352
8353 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8354 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8355 "(detected version id of %u). "
8356 "See Documentation/networking/README.ipw2100\n",
8357 h->version);
8358 return 1;
8359 }
8360
8361 fw->version = h->version;
8362 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8363 fw->fw.size = h->fw_size;
8364 fw->uc.data = fw->fw.data + h->fw_size;
8365 fw->uc.size = h->uc_size;
8366
8367 return 0;
8368 }
8369
8370 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8371 struct ipw2100_fw *fw)
8372 {
8373 char *fw_name;
8374 int rc;
8375
8376 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8377 priv->net_dev->name);
8378
8379 switch (priv->ieee->iw_mode) {
8380 case IW_MODE_ADHOC:
8381 fw_name = IPW2100_FW_NAME("-i");
8382 break;
8383 #ifdef CONFIG_IPW2100_MONITOR
8384 case IW_MODE_MONITOR:
8385 fw_name = IPW2100_FW_NAME("-p");
8386 break;
8387 #endif
8388 case IW_MODE_INFRA:
8389 default:
8390 fw_name = IPW2100_FW_NAME("");
8391 break;
8392 }
8393
8394 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8395
8396 if (rc < 0) {
8397 printk(KERN_ERR DRV_NAME ": "
8398 "%s: Firmware '%s' not available or load failed.\n",
8399 priv->net_dev->name, fw_name);
8400 return rc;
8401 }
8402 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8403 fw->fw_entry->size);
8404
8405 ipw2100_mod_firmware_load(fw);
8406
8407 return 0;
8408 }
8409
8410 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8411 struct ipw2100_fw *fw)
8412 {
8413 fw->version = 0;
8414 if (fw->fw_entry)
8415 release_firmware(fw->fw_entry);
8416 fw->fw_entry = NULL;
8417 }
8418
8419 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8420 size_t max)
8421 {
8422 char ver[MAX_FW_VERSION_LEN];
8423 u32 len = MAX_FW_VERSION_LEN;
8424 u32 tmp;
8425 int i;
8426 /* firmware version is an ascii string (max len of 14) */
8427 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8428 return -EIO;
8429 tmp = max;
8430 if (len >= max)
8431 len = max - 1;
8432 for (i = 0; i < len; i++)
8433 buf[i] = ver[i];
8434 buf[i] = '\0';
8435 return tmp;
8436 }
8437
8438 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8439 size_t max)
8440 {
8441 u32 ver;
8442 u32 len = sizeof(ver);
8443 /* microcode version is a 32 bit integer */
8444 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8445 return -EIO;
8446 return snprintf(buf, max, "%08X", ver);
8447 }
8448
8449 /*
8450 * On exit, the firmware will have been freed from the fw list
8451 */
8452 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8453 {
8454 /* firmware is constructed of N contiguous entries, each entry is
8455 * structured as:
8456 *
8457 * offset sie desc
8458 * 0 4 address to write to
8459 * 4 2 length of data run
8460 * 6 length data
8461 */
8462 unsigned int addr;
8463 unsigned short len;
8464
8465 const unsigned char *firmware_data = fw->fw.data;
8466 unsigned int firmware_data_left = fw->fw.size;
8467
8468 while (firmware_data_left > 0) {
8469 addr = *(u32 *) (firmware_data);
8470 firmware_data += 4;
8471 firmware_data_left -= 4;
8472
8473 len = *(u16 *) (firmware_data);
8474 firmware_data += 2;
8475 firmware_data_left -= 2;
8476
8477 if (len > 32) {
8478 printk(KERN_ERR DRV_NAME ": "
8479 "Invalid firmware run-length of %d bytes\n",
8480 len);
8481 return -EINVAL;
8482 }
8483
8484 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8485 firmware_data += len;
8486 firmware_data_left -= len;
8487 }
8488
8489 return 0;
8490 }
8491
8492 struct symbol_alive_response {
8493 u8 cmd_id;
8494 u8 seq_num;
8495 u8 ucode_rev;
8496 u8 eeprom_valid;
8497 u16 valid_flags;
8498 u8 IEEE_addr[6];
8499 u16 flags;
8500 u16 pcb_rev;
8501 u16 clock_settle_time; // 1us LSB
8502 u16 powerup_settle_time; // 1us LSB
8503 u16 hop_settle_time; // 1us LSB
8504 u8 date[3]; // month, day, year
8505 u8 time[2]; // hours, minutes
8506 u8 ucode_valid;
8507 };
8508
8509 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8510 struct ipw2100_fw *fw)
8511 {
8512 struct net_device *dev = priv->net_dev;
8513 const unsigned char *microcode_data = fw->uc.data;
8514 unsigned int microcode_data_left = fw->uc.size;
8515 void __iomem *reg = (void __iomem *)dev->base_addr;
8516
8517 struct symbol_alive_response response;
8518 int i, j;
8519 u8 data;
8520
8521 /* Symbol control */
8522 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8523 readl(reg);
8524 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8525 readl(reg);
8526
8527 /* HW config */
8528 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8529 readl(reg);
8530 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8531 readl(reg);
8532
8533 /* EN_CS_ACCESS bit to reset control store pointer */
8534 write_nic_byte(dev, 0x210000, 0x40);
8535 readl(reg);
8536 write_nic_byte(dev, 0x210000, 0x0);
8537 readl(reg);
8538 write_nic_byte(dev, 0x210000, 0x40);
8539 readl(reg);
8540
8541 /* copy microcode from buffer into Symbol */
8542
8543 while (microcode_data_left > 0) {
8544 write_nic_byte(dev, 0x210010, *microcode_data++);
8545 write_nic_byte(dev, 0x210010, *microcode_data++);
8546 microcode_data_left -= 2;
8547 }
8548
8549 /* EN_CS_ACCESS bit to reset the control store pointer */
8550 write_nic_byte(dev, 0x210000, 0x0);
8551 readl(reg);
8552
8553 /* Enable System (Reg 0)
8554 * first enable causes garbage in RX FIFO */
8555 write_nic_byte(dev, 0x210000, 0x0);
8556 readl(reg);
8557 write_nic_byte(dev, 0x210000, 0x80);
8558 readl(reg);
8559
8560 /* Reset External Baseband Reg */
8561 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8562 readl(reg);
8563 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8564 readl(reg);
8565
8566 /* HW Config (Reg 5) */
8567 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8568 readl(reg);
8569 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8570 readl(reg);
8571
8572 /* Enable System (Reg 0)
8573 * second enable should be OK */
8574 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8575 readl(reg);
8576 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8577
8578 /* check Symbol is enabled - upped this from 5 as it wasn't always
8579 * catching the update */
8580 for (i = 0; i < 10; i++) {
8581 udelay(10);
8582
8583 /* check Dino is enabled bit */
8584 read_nic_byte(dev, 0x210000, &data);
8585 if (data & 0x1)
8586 break;
8587 }
8588
8589 if (i == 10) {
8590 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8591 dev->name);
8592 return -EIO;
8593 }
8594
8595 /* Get Symbol alive response */
8596 for (i = 0; i < 30; i++) {
8597 /* Read alive response structure */
8598 for (j = 0;
8599 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8600 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8601
8602 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8603 break;
8604 udelay(10);
8605 }
8606
8607 if (i == 30) {
8608 printk(KERN_ERR DRV_NAME
8609 ": %s: No response from Symbol - hw not alive\n",
8610 dev->name);
8611 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8612 return -EIO;
8613 }
8614
8615 return 0;
8616 }
This page took 0.214706 seconds and 5 git commands to generate.