Merge master.kernel.org:/pub/scm/linux/kernel/git/davej/agpgart
[deliverable/linux.git] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
28
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <jkmaline@cc.hut.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
33
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
43
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
106
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
110
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
114
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
118
119 The flow of data on the TX side is as follows:
120
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124 The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/version.h>
161 #include <linux/time.h>
162 #include <linux/firmware.h>
163 #include <linux/acpi.h>
164 #include <linux/ctype.h>
165 #include <linux/latency.h>
166
167 #include "ipw2100.h"
168
169 #define IPW2100_VERSION "git-1.2.2"
170
171 #define DRV_NAME "ipw2100"
172 #define DRV_VERSION IPW2100_VERSION
173 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
174 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
175
176 /* Debugging stuff */
177 #ifdef CONFIG_IPW2100_DEBUG
178 #define CONFIG_IPW2100_RX_DEBUG /* Reception debugging */
179 #endif
180
181 MODULE_DESCRIPTION(DRV_DESCRIPTION);
182 MODULE_VERSION(DRV_VERSION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
185
186 static int debug = 0;
187 static int mode = 0;
188 static int channel = 0;
189 static int associate = 1;
190 static int disable = 0;
191 #ifdef CONFIG_PM
192 static struct ipw2100_fw ipw2100_firmware;
193 #endif
194
195 #include <linux/moduleparam.h>
196 module_param(debug, int, 0444);
197 module_param(mode, int, 0444);
198 module_param(channel, int, 0444);
199 module_param(associate, int, 0444);
200 module_param(disable, int, 0444);
201
202 MODULE_PARM_DESC(debug, "debug level");
203 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
204 MODULE_PARM_DESC(channel, "channel");
205 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
206 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
207
208 static u32 ipw2100_debug_level = IPW_DL_NONE;
209
210 #ifdef CONFIG_IPW2100_DEBUG
211 #define IPW_DEBUG(level, message...) \
212 do { \
213 if (ipw2100_debug_level & (level)) { \
214 printk(KERN_DEBUG "ipw2100: %c %s ", \
215 in_interrupt() ? 'I' : 'U', __FUNCTION__); \
216 printk(message); \
217 } \
218 } while (0)
219 #else
220 #define IPW_DEBUG(level, message...) do {} while (0)
221 #endif /* CONFIG_IPW2100_DEBUG */
222
223 #ifdef CONFIG_IPW2100_DEBUG
224 static const char *command_types[] = {
225 "undefined",
226 "unused", /* HOST_ATTENTION */
227 "HOST_COMPLETE",
228 "unused", /* SLEEP */
229 "unused", /* HOST_POWER_DOWN */
230 "unused",
231 "SYSTEM_CONFIG",
232 "unused", /* SET_IMR */
233 "SSID",
234 "MANDATORY_BSSID",
235 "AUTHENTICATION_TYPE",
236 "ADAPTER_ADDRESS",
237 "PORT_TYPE",
238 "INTERNATIONAL_MODE",
239 "CHANNEL",
240 "RTS_THRESHOLD",
241 "FRAG_THRESHOLD",
242 "POWER_MODE",
243 "TX_RATES",
244 "BASIC_TX_RATES",
245 "WEP_KEY_INFO",
246 "unused",
247 "unused",
248 "unused",
249 "unused",
250 "WEP_KEY_INDEX",
251 "WEP_FLAGS",
252 "ADD_MULTICAST",
253 "CLEAR_ALL_MULTICAST",
254 "BEACON_INTERVAL",
255 "ATIM_WINDOW",
256 "CLEAR_STATISTICS",
257 "undefined",
258 "undefined",
259 "undefined",
260 "undefined",
261 "TX_POWER_INDEX",
262 "undefined",
263 "undefined",
264 "undefined",
265 "undefined",
266 "undefined",
267 "undefined",
268 "BROADCAST_SCAN",
269 "CARD_DISABLE",
270 "PREFERRED_BSSID",
271 "SET_SCAN_OPTIONS",
272 "SCAN_DWELL_TIME",
273 "SWEEP_TABLE",
274 "AP_OR_STATION_TABLE",
275 "GROUP_ORDINALS",
276 "SHORT_RETRY_LIMIT",
277 "LONG_RETRY_LIMIT",
278 "unused", /* SAVE_CALIBRATION */
279 "unused", /* RESTORE_CALIBRATION */
280 "undefined",
281 "undefined",
282 "undefined",
283 "HOST_PRE_POWER_DOWN",
284 "unused", /* HOST_INTERRUPT_COALESCING */
285 "undefined",
286 "CARD_DISABLE_PHY_OFF",
287 "MSDU_TX_RATES" "undefined",
288 "undefined",
289 "SET_STATION_STAT_BITS",
290 "CLEAR_STATIONS_STAT_BITS",
291 "LEAP_ROGUE_MODE",
292 "SET_SECURITY_INFORMATION",
293 "DISASSOCIATION_BSSID",
294 "SET_WPA_ASS_IE"
295 };
296 #endif
297
298 /* Pre-decl until we get the code solid and then we can clean it up */
299 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
300 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
301 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
302
303 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
304 static void ipw2100_queues_free(struct ipw2100_priv *priv);
305 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
306
307 static int ipw2100_fw_download(struct ipw2100_priv *priv,
308 struct ipw2100_fw *fw);
309 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
310 struct ipw2100_fw *fw);
311 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
312 size_t max);
313 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
314 size_t max);
315 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
316 struct ipw2100_fw *fw);
317 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
318 struct ipw2100_fw *fw);
319 static void ipw2100_wx_event_work(struct ipw2100_priv *priv);
320 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
321 static struct iw_handler_def ipw2100_wx_handler_def;
322
323 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
324 {
325 *val = readl((void __iomem *)(dev->base_addr + reg));
326 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
327 }
328
329 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
330 {
331 writel(val, (void __iomem *)(dev->base_addr + reg));
332 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
333 }
334
335 static inline void read_register_word(struct net_device *dev, u32 reg,
336 u16 * val)
337 {
338 *val = readw((void __iomem *)(dev->base_addr + reg));
339 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
340 }
341
342 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
343 {
344 *val = readb((void __iomem *)(dev->base_addr + reg));
345 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
346 }
347
348 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
349 {
350 writew(val, (void __iomem *)(dev->base_addr + reg));
351 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
352 }
353
354 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
355 {
356 writeb(val, (void __iomem *)(dev->base_addr + reg));
357 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
358 }
359
360 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
361 {
362 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
363 addr & IPW_REG_INDIRECT_ADDR_MASK);
364 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
365 }
366
367 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
368 {
369 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
370 addr & IPW_REG_INDIRECT_ADDR_MASK);
371 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
372 }
373
374 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
375 {
376 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
377 addr & IPW_REG_INDIRECT_ADDR_MASK);
378 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
379 }
380
381 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
382 {
383 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
384 addr & IPW_REG_INDIRECT_ADDR_MASK);
385 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
386 }
387
388 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
389 {
390 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
391 addr & IPW_REG_INDIRECT_ADDR_MASK);
392 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
393 }
394
395 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
396 {
397 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
398 addr & IPW_REG_INDIRECT_ADDR_MASK);
399 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
400 }
401
402 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
403 {
404 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
405 addr & IPW_REG_INDIRECT_ADDR_MASK);
406 }
407
408 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
409 {
410 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
411 }
412
413 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
414 const u8 * buf)
415 {
416 u32 aligned_addr;
417 u32 aligned_len;
418 u32 dif_len;
419 u32 i;
420
421 /* read first nibble byte by byte */
422 aligned_addr = addr & (~0x3);
423 dif_len = addr - aligned_addr;
424 if (dif_len) {
425 /* Start reading at aligned_addr + dif_len */
426 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
427 aligned_addr);
428 for (i = dif_len; i < 4; i++, buf++)
429 write_register_byte(dev,
430 IPW_REG_INDIRECT_ACCESS_DATA + i,
431 *buf);
432
433 len -= dif_len;
434 aligned_addr += 4;
435 }
436
437 /* read DWs through autoincrement registers */
438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
439 aligned_len = len & (~0x3);
440 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
441 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
442
443 /* copy the last nibble */
444 dif_len = len - aligned_len;
445 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
446 for (i = 0; i < dif_len; i++, buf++)
447 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
448 *buf);
449 }
450
451 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
452 u8 * buf)
453 {
454 u32 aligned_addr;
455 u32 aligned_len;
456 u32 dif_len;
457 u32 i;
458
459 /* read first nibble byte by byte */
460 aligned_addr = addr & (~0x3);
461 dif_len = addr - aligned_addr;
462 if (dif_len) {
463 /* Start reading at aligned_addr + dif_len */
464 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
465 aligned_addr);
466 for (i = dif_len; i < 4; i++, buf++)
467 read_register_byte(dev,
468 IPW_REG_INDIRECT_ACCESS_DATA + i,
469 buf);
470
471 len -= dif_len;
472 aligned_addr += 4;
473 }
474
475 /* read DWs through autoincrement registers */
476 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
477 aligned_len = len & (~0x3);
478 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
479 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
480
481 /* copy the last nibble */
482 dif_len = len - aligned_len;
483 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
484 for (i = 0; i < dif_len; i++, buf++)
485 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
486 }
487
488 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
489 {
490 return (dev->base_addr &&
491 (readl
492 ((void __iomem *)(dev->base_addr +
493 IPW_REG_DOA_DEBUG_AREA_START))
494 == IPW_DATA_DOA_DEBUG_VALUE));
495 }
496
497 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
498 void *val, u32 * len)
499 {
500 struct ipw2100_ordinals *ordinals = &priv->ordinals;
501 u32 addr;
502 u32 field_info;
503 u16 field_len;
504 u16 field_count;
505 u32 total_length;
506
507 if (ordinals->table1_addr == 0) {
508 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
509 "before they have been loaded.\n");
510 return -EINVAL;
511 }
512
513 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
514 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
515 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
516
517 printk(KERN_WARNING DRV_NAME
518 ": ordinal buffer length too small, need %zd\n",
519 IPW_ORD_TAB_1_ENTRY_SIZE);
520
521 return -EINVAL;
522 }
523
524 read_nic_dword(priv->net_dev,
525 ordinals->table1_addr + (ord << 2), &addr);
526 read_nic_dword(priv->net_dev, addr, val);
527
528 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
529
530 return 0;
531 }
532
533 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
534
535 ord -= IPW_START_ORD_TAB_2;
536
537 /* get the address of statistic */
538 read_nic_dword(priv->net_dev,
539 ordinals->table2_addr + (ord << 3), &addr);
540
541 /* get the second DW of statistics ;
542 * two 16-bit words - first is length, second is count */
543 read_nic_dword(priv->net_dev,
544 ordinals->table2_addr + (ord << 3) + sizeof(u32),
545 &field_info);
546
547 /* get each entry length */
548 field_len = *((u16 *) & field_info);
549
550 /* get number of entries */
551 field_count = *(((u16 *) & field_info) + 1);
552
553 /* abort if no enought memory */
554 total_length = field_len * field_count;
555 if (total_length > *len) {
556 *len = total_length;
557 return -EINVAL;
558 }
559
560 *len = total_length;
561 if (!total_length)
562 return 0;
563
564 /* read the ordinal data from the SRAM */
565 read_nic_memory(priv->net_dev, addr, total_length, val);
566
567 return 0;
568 }
569
570 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
571 "in table 2\n", ord);
572
573 return -EINVAL;
574 }
575
576 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
577 u32 * len)
578 {
579 struct ipw2100_ordinals *ordinals = &priv->ordinals;
580 u32 addr;
581
582 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
583 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
584 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
585 IPW_DEBUG_INFO("wrong size\n");
586 return -EINVAL;
587 }
588
589 read_nic_dword(priv->net_dev,
590 ordinals->table1_addr + (ord << 2), &addr);
591
592 write_nic_dword(priv->net_dev, addr, *val);
593
594 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
595
596 return 0;
597 }
598
599 IPW_DEBUG_INFO("wrong table\n");
600 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
601 return -EINVAL;
602
603 return -EINVAL;
604 }
605
606 static char *snprint_line(char *buf, size_t count,
607 const u8 * data, u32 len, u32 ofs)
608 {
609 int out, i, j, l;
610 char c;
611
612 out = snprintf(buf, count, "%08X", ofs);
613
614 for (l = 0, i = 0; i < 2; i++) {
615 out += snprintf(buf + out, count - out, " ");
616 for (j = 0; j < 8 && l < len; j++, l++)
617 out += snprintf(buf + out, count - out, "%02X ",
618 data[(i * 8 + j)]);
619 for (; j < 8; j++)
620 out += snprintf(buf + out, count - out, " ");
621 }
622
623 out += snprintf(buf + out, count - out, " ");
624 for (l = 0, i = 0; i < 2; i++) {
625 out += snprintf(buf + out, count - out, " ");
626 for (j = 0; j < 8 && l < len; j++, l++) {
627 c = data[(i * 8 + j)];
628 if (!isascii(c) || !isprint(c))
629 c = '.';
630
631 out += snprintf(buf + out, count - out, "%c", c);
632 }
633
634 for (; j < 8; j++)
635 out += snprintf(buf + out, count - out, " ");
636 }
637
638 return buf;
639 }
640
641 static void printk_buf(int level, const u8 * data, u32 len)
642 {
643 char line[81];
644 u32 ofs = 0;
645 if (!(ipw2100_debug_level & level))
646 return;
647
648 while (len) {
649 printk(KERN_DEBUG "%s\n",
650 snprint_line(line, sizeof(line), &data[ofs],
651 min(len, 16U), ofs));
652 ofs += 16;
653 len -= min(len, 16U);
654 }
655 }
656
657 #define MAX_RESET_BACKOFF 10
658
659 static void schedule_reset(struct ipw2100_priv *priv)
660 {
661 unsigned long now = get_seconds();
662
663 /* If we haven't received a reset request within the backoff period,
664 * then we can reset the backoff interval so this reset occurs
665 * immediately */
666 if (priv->reset_backoff &&
667 (now - priv->last_reset > priv->reset_backoff))
668 priv->reset_backoff = 0;
669
670 priv->last_reset = get_seconds();
671
672 if (!(priv->status & STATUS_RESET_PENDING)) {
673 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
674 priv->net_dev->name, priv->reset_backoff);
675 netif_carrier_off(priv->net_dev);
676 netif_stop_queue(priv->net_dev);
677 priv->status |= STATUS_RESET_PENDING;
678 if (priv->reset_backoff)
679 queue_delayed_work(priv->workqueue, &priv->reset_work,
680 priv->reset_backoff * HZ);
681 else
682 queue_work(priv->workqueue, &priv->reset_work);
683
684 if (priv->reset_backoff < MAX_RESET_BACKOFF)
685 priv->reset_backoff++;
686
687 wake_up_interruptible(&priv->wait_command_queue);
688 } else
689 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
690 priv->net_dev->name);
691
692 }
693
694 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
695 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
696 struct host_command *cmd)
697 {
698 struct list_head *element;
699 struct ipw2100_tx_packet *packet;
700 unsigned long flags;
701 int err = 0;
702
703 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
704 command_types[cmd->host_command], cmd->host_command,
705 cmd->host_command_length);
706 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
707 cmd->host_command_length);
708
709 spin_lock_irqsave(&priv->low_lock, flags);
710
711 if (priv->fatal_error) {
712 IPW_DEBUG_INFO
713 ("Attempt to send command while hardware in fatal error condition.\n");
714 err = -EIO;
715 goto fail_unlock;
716 }
717
718 if (!(priv->status & STATUS_RUNNING)) {
719 IPW_DEBUG_INFO
720 ("Attempt to send command while hardware is not running.\n");
721 err = -EIO;
722 goto fail_unlock;
723 }
724
725 if (priv->status & STATUS_CMD_ACTIVE) {
726 IPW_DEBUG_INFO
727 ("Attempt to send command while another command is pending.\n");
728 err = -EBUSY;
729 goto fail_unlock;
730 }
731
732 if (list_empty(&priv->msg_free_list)) {
733 IPW_DEBUG_INFO("no available msg buffers\n");
734 goto fail_unlock;
735 }
736
737 priv->status |= STATUS_CMD_ACTIVE;
738 priv->messages_sent++;
739
740 element = priv->msg_free_list.next;
741
742 packet = list_entry(element, struct ipw2100_tx_packet, list);
743 packet->jiffy_start = jiffies;
744
745 /* initialize the firmware command packet */
746 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
747 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
748 packet->info.c_struct.cmd->host_command_len_reg =
749 cmd->host_command_length;
750 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
751
752 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
753 cmd->host_command_parameters,
754 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
755
756 list_del(element);
757 DEC_STAT(&priv->msg_free_stat);
758
759 list_add_tail(element, &priv->msg_pend_list);
760 INC_STAT(&priv->msg_pend_stat);
761
762 ipw2100_tx_send_commands(priv);
763 ipw2100_tx_send_data(priv);
764
765 spin_unlock_irqrestore(&priv->low_lock, flags);
766
767 /*
768 * We must wait for this command to complete before another
769 * command can be sent... but if we wait more than 3 seconds
770 * then there is a problem.
771 */
772
773 err =
774 wait_event_interruptible_timeout(priv->wait_command_queue,
775 !(priv->
776 status & STATUS_CMD_ACTIVE),
777 HOST_COMPLETE_TIMEOUT);
778
779 if (err == 0) {
780 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
781 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
782 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
783 priv->status &= ~STATUS_CMD_ACTIVE;
784 schedule_reset(priv);
785 return -EIO;
786 }
787
788 if (priv->fatal_error) {
789 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
790 priv->net_dev->name);
791 return -EIO;
792 }
793
794 /* !!!!! HACK TEST !!!!!
795 * When lots of debug trace statements are enabled, the driver
796 * doesn't seem to have as many firmware restart cycles...
797 *
798 * As a test, we're sticking in a 1/100s delay here */
799 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
800
801 return 0;
802
803 fail_unlock:
804 spin_unlock_irqrestore(&priv->low_lock, flags);
805
806 return err;
807 }
808
809 /*
810 * Verify the values and data access of the hardware
811 * No locks needed or used. No functions called.
812 */
813 static int ipw2100_verify(struct ipw2100_priv *priv)
814 {
815 u32 data1, data2;
816 u32 address;
817
818 u32 val1 = 0x76543210;
819 u32 val2 = 0xFEDCBA98;
820
821 /* Domain 0 check - all values should be DOA_DEBUG */
822 for (address = IPW_REG_DOA_DEBUG_AREA_START;
823 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
824 read_register(priv->net_dev, address, &data1);
825 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
826 return -EIO;
827 }
828
829 /* Domain 1 check - use arbitrary read/write compare */
830 for (address = 0; address < 5; address++) {
831 /* The memory area is not used now */
832 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
833 val1);
834 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
835 val2);
836 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
837 &data1);
838 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
839 &data2);
840 if (val1 == data1 && val2 == data2)
841 return 0;
842 }
843
844 return -EIO;
845 }
846
847 /*
848 *
849 * Loop until the CARD_DISABLED bit is the same value as the
850 * supplied parameter
851 *
852 * TODO: See if it would be more efficient to do a wait/wake
853 * cycle and have the completion event trigger the wakeup
854 *
855 */
856 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
857 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
858 {
859 int i;
860 u32 card_state;
861 u32 len = sizeof(card_state);
862 int err;
863
864 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
865 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
866 &card_state, &len);
867 if (err) {
868 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
869 "failed.\n");
870 return 0;
871 }
872
873 /* We'll break out if either the HW state says it is
874 * in the state we want, or if HOST_COMPLETE command
875 * finishes */
876 if ((card_state == state) ||
877 ((priv->status & STATUS_ENABLED) ?
878 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
879 if (state == IPW_HW_STATE_ENABLED)
880 priv->status |= STATUS_ENABLED;
881 else
882 priv->status &= ~STATUS_ENABLED;
883
884 return 0;
885 }
886
887 udelay(50);
888 }
889
890 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
891 state ? "DISABLED" : "ENABLED");
892 return -EIO;
893 }
894
895 /*********************************************************************
896 Procedure : sw_reset_and_clock
897 Purpose : Asserts s/w reset, asserts clock initialization
898 and waits for clock stabilization
899 ********************************************************************/
900 static int sw_reset_and_clock(struct ipw2100_priv *priv)
901 {
902 int i;
903 u32 r;
904
905 // assert s/w reset
906 write_register(priv->net_dev, IPW_REG_RESET_REG,
907 IPW_AUX_HOST_RESET_REG_SW_RESET);
908
909 // wait for clock stabilization
910 for (i = 0; i < 1000; i++) {
911 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
912
913 // check clock ready bit
914 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
915 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
916 break;
917 }
918
919 if (i == 1000)
920 return -EIO; // TODO: better error value
921
922 /* set "initialization complete" bit to move adapter to
923 * D0 state */
924 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
925 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
926
927 /* wait for clock stabilization */
928 for (i = 0; i < 10000; i++) {
929 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
930
931 /* check clock ready bit */
932 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
933 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
934 break;
935 }
936
937 if (i == 10000)
938 return -EIO; /* TODO: better error value */
939
940 /* set D0 standby bit */
941 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
942 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
943 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
944
945 return 0;
946 }
947
948 /*********************************************************************
949 Procedure : ipw2100_download_firmware
950 Purpose : Initiaze adapter after power on.
951 The sequence is:
952 1. assert s/w reset first!
953 2. awake clocks & wait for clock stabilization
954 3. hold ARC (don't ask me why...)
955 4. load Dino ucode and reset/clock init again
956 5. zero-out shared mem
957 6. download f/w
958 *******************************************************************/
959 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
960 {
961 u32 address;
962 int err;
963
964 #ifndef CONFIG_PM
965 /* Fetch the firmware and microcode */
966 struct ipw2100_fw ipw2100_firmware;
967 #endif
968
969 if (priv->fatal_error) {
970 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
971 "fatal error %d. Interface must be brought down.\n",
972 priv->net_dev->name, priv->fatal_error);
973 return -EINVAL;
974 }
975 #ifdef CONFIG_PM
976 if (!ipw2100_firmware.version) {
977 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
978 if (err) {
979 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
980 priv->net_dev->name, err);
981 priv->fatal_error = IPW2100_ERR_FW_LOAD;
982 goto fail;
983 }
984 }
985 #else
986 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
987 if (err) {
988 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
989 priv->net_dev->name, err);
990 priv->fatal_error = IPW2100_ERR_FW_LOAD;
991 goto fail;
992 }
993 #endif
994 priv->firmware_version = ipw2100_firmware.version;
995
996 /* s/w reset and clock stabilization */
997 err = sw_reset_and_clock(priv);
998 if (err) {
999 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1000 priv->net_dev->name, err);
1001 goto fail;
1002 }
1003
1004 err = ipw2100_verify(priv);
1005 if (err) {
1006 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1007 priv->net_dev->name, err);
1008 goto fail;
1009 }
1010
1011 /* Hold ARC */
1012 write_nic_dword(priv->net_dev,
1013 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1014
1015 /* allow ARC to run */
1016 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1017
1018 /* load microcode */
1019 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1020 if (err) {
1021 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1022 priv->net_dev->name, err);
1023 goto fail;
1024 }
1025
1026 /* release ARC */
1027 write_nic_dword(priv->net_dev,
1028 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1029
1030 /* s/w reset and clock stabilization (again!!!) */
1031 err = sw_reset_and_clock(priv);
1032 if (err) {
1033 printk(KERN_ERR DRV_NAME
1034 ": %s: sw_reset_and_clock failed: %d\n",
1035 priv->net_dev->name, err);
1036 goto fail;
1037 }
1038
1039 /* load f/w */
1040 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1041 if (err) {
1042 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1043 priv->net_dev->name, err);
1044 goto fail;
1045 }
1046 #ifndef CONFIG_PM
1047 /*
1048 * When the .resume method of the driver is called, the other
1049 * part of the system, i.e. the ide driver could still stay in
1050 * the suspend stage. This prevents us from loading the firmware
1051 * from the disk. --YZ
1052 */
1053
1054 /* free any storage allocated for firmware image */
1055 ipw2100_release_firmware(priv, &ipw2100_firmware);
1056 #endif
1057
1058 /* zero out Domain 1 area indirectly (Si requirement) */
1059 for (address = IPW_HOST_FW_SHARED_AREA0;
1060 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1061 write_nic_dword(priv->net_dev, address, 0);
1062 for (address = IPW_HOST_FW_SHARED_AREA1;
1063 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1064 write_nic_dword(priv->net_dev, address, 0);
1065 for (address = IPW_HOST_FW_SHARED_AREA2;
1066 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1067 write_nic_dword(priv->net_dev, address, 0);
1068 for (address = IPW_HOST_FW_SHARED_AREA3;
1069 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1070 write_nic_dword(priv->net_dev, address, 0);
1071 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1072 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1073 write_nic_dword(priv->net_dev, address, 0);
1074
1075 return 0;
1076
1077 fail:
1078 ipw2100_release_firmware(priv, &ipw2100_firmware);
1079 return err;
1080 }
1081
1082 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1083 {
1084 if (priv->status & STATUS_INT_ENABLED)
1085 return;
1086 priv->status |= STATUS_INT_ENABLED;
1087 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1088 }
1089
1090 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1091 {
1092 if (!(priv->status & STATUS_INT_ENABLED))
1093 return;
1094 priv->status &= ~STATUS_INT_ENABLED;
1095 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1096 }
1097
1098 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1099 {
1100 struct ipw2100_ordinals *ord = &priv->ordinals;
1101
1102 IPW_DEBUG_INFO("enter\n");
1103
1104 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1105 &ord->table1_addr);
1106
1107 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1108 &ord->table2_addr);
1109
1110 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1111 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1112
1113 ord->table2_size &= 0x0000FFFF;
1114
1115 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1116 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1117 IPW_DEBUG_INFO("exit\n");
1118 }
1119
1120 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1121 {
1122 u32 reg = 0;
1123 /*
1124 * Set GPIO 3 writable by FW; GPIO 1 writable
1125 * by driver and enable clock
1126 */
1127 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1128 IPW_BIT_GPIO_LED_OFF);
1129 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1130 }
1131
1132 static int rf_kill_active(struct ipw2100_priv *priv)
1133 {
1134 #define MAX_RF_KILL_CHECKS 5
1135 #define RF_KILL_CHECK_DELAY 40
1136
1137 unsigned short value = 0;
1138 u32 reg = 0;
1139 int i;
1140
1141 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1142 priv->status &= ~STATUS_RF_KILL_HW;
1143 return 0;
1144 }
1145
1146 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1147 udelay(RF_KILL_CHECK_DELAY);
1148 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1149 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1150 }
1151
1152 if (value == 0)
1153 priv->status |= STATUS_RF_KILL_HW;
1154 else
1155 priv->status &= ~STATUS_RF_KILL_HW;
1156
1157 return (value == 0);
1158 }
1159
1160 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1161 {
1162 u32 addr, len;
1163 u32 val;
1164
1165 /*
1166 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1167 */
1168 len = sizeof(addr);
1169 if (ipw2100_get_ordinal
1170 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1171 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1172 __LINE__);
1173 return -EIO;
1174 }
1175
1176 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1177
1178 /*
1179 * EEPROM version is the byte at offset 0xfd in firmware
1180 * We read 4 bytes, then shift out the byte we actually want */
1181 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1182 priv->eeprom_version = (val >> 24) & 0xFF;
1183 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1184
1185 /*
1186 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1187 *
1188 * notice that the EEPROM bit is reverse polarity, i.e.
1189 * bit = 0 signifies HW RF kill switch is supported
1190 * bit = 1 signifies HW RF kill switch is NOT supported
1191 */
1192 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1193 if (!((val >> 24) & 0x01))
1194 priv->hw_features |= HW_FEATURE_RFKILL;
1195
1196 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1197 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1198
1199 return 0;
1200 }
1201
1202 /*
1203 * Start firmware execution after power on and intialization
1204 * The sequence is:
1205 * 1. Release ARC
1206 * 2. Wait for f/w initialization completes;
1207 */
1208 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1209 {
1210 int i;
1211 u32 inta, inta_mask, gpio;
1212
1213 IPW_DEBUG_INFO("enter\n");
1214
1215 if (priv->status & STATUS_RUNNING)
1216 return 0;
1217
1218 /*
1219 * Initialize the hw - drive adapter to DO state by setting
1220 * init_done bit. Wait for clk_ready bit and Download
1221 * fw & dino ucode
1222 */
1223 if (ipw2100_download_firmware(priv)) {
1224 printk(KERN_ERR DRV_NAME
1225 ": %s: Failed to power on the adapter.\n",
1226 priv->net_dev->name);
1227 return -EIO;
1228 }
1229
1230 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1231 * in the firmware RBD and TBD ring queue */
1232 ipw2100_queues_initialize(priv);
1233
1234 ipw2100_hw_set_gpio(priv);
1235
1236 /* TODO -- Look at disabling interrupts here to make sure none
1237 * get fired during FW initialization */
1238
1239 /* Release ARC - clear reset bit */
1240 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1241
1242 /* wait for f/w intialization complete */
1243 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1244 i = 5000;
1245 do {
1246 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1247 /* Todo... wait for sync command ... */
1248
1249 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1250
1251 /* check "init done" bit */
1252 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1253 /* reset "init done" bit */
1254 write_register(priv->net_dev, IPW_REG_INTA,
1255 IPW2100_INTA_FW_INIT_DONE);
1256 break;
1257 }
1258
1259 /* check error conditions : we check these after the firmware
1260 * check so that if there is an error, the interrupt handler
1261 * will see it and the adapter will be reset */
1262 if (inta &
1263 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1264 /* clear error conditions */
1265 write_register(priv->net_dev, IPW_REG_INTA,
1266 IPW2100_INTA_FATAL_ERROR |
1267 IPW2100_INTA_PARITY_ERROR);
1268 }
1269 } while (i--);
1270
1271 /* Clear out any pending INTAs since we aren't supposed to have
1272 * interrupts enabled at this point... */
1273 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1274 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1275 inta &= IPW_INTERRUPT_MASK;
1276 /* Clear out any pending interrupts */
1277 if (inta & inta_mask)
1278 write_register(priv->net_dev, IPW_REG_INTA, inta);
1279
1280 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1281 i ? "SUCCESS" : "FAILED");
1282
1283 if (!i) {
1284 printk(KERN_WARNING DRV_NAME
1285 ": %s: Firmware did not initialize.\n",
1286 priv->net_dev->name);
1287 return -EIO;
1288 }
1289
1290 /* allow firmware to write to GPIO1 & GPIO3 */
1291 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1292
1293 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1294
1295 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1296
1297 /* Ready to receive commands */
1298 priv->status |= STATUS_RUNNING;
1299
1300 /* The adapter has been reset; we are not associated */
1301 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1302
1303 IPW_DEBUG_INFO("exit\n");
1304
1305 return 0;
1306 }
1307
1308 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1309 {
1310 if (!priv->fatal_error)
1311 return;
1312
1313 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1314 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1315 priv->fatal_error = 0;
1316 }
1317
1318 /* NOTE: Our interrupt is disabled when this method is called */
1319 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1320 {
1321 u32 reg;
1322 int i;
1323
1324 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1325
1326 ipw2100_hw_set_gpio(priv);
1327
1328 /* Step 1. Stop Master Assert */
1329 write_register(priv->net_dev, IPW_REG_RESET_REG,
1330 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1331
1332 /* Step 2. Wait for stop Master Assert
1333 * (not more then 50us, otherwise ret error */
1334 i = 5;
1335 do {
1336 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1337 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1338
1339 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1340 break;
1341 } while (i--);
1342
1343 priv->status &= ~STATUS_RESET_PENDING;
1344
1345 if (!i) {
1346 IPW_DEBUG_INFO
1347 ("exit - waited too long for master assert stop\n");
1348 return -EIO;
1349 }
1350
1351 write_register(priv->net_dev, IPW_REG_RESET_REG,
1352 IPW_AUX_HOST_RESET_REG_SW_RESET);
1353
1354 /* Reset any fatal_error conditions */
1355 ipw2100_reset_fatalerror(priv);
1356
1357 /* At this point, the adapter is now stopped and disabled */
1358 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1359 STATUS_ASSOCIATED | STATUS_ENABLED);
1360
1361 return 0;
1362 }
1363
1364 /*
1365 * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1366 *
1367 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1368 *
1369 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1370 * if STATUS_ASSN_LOST is sent.
1371 */
1372 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1373 {
1374
1375 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1376
1377 struct host_command cmd = {
1378 .host_command = CARD_DISABLE_PHY_OFF,
1379 .host_command_sequence = 0,
1380 .host_command_length = 0,
1381 };
1382 int err, i;
1383 u32 val1, val2;
1384
1385 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1386
1387 /* Turn off the radio */
1388 err = ipw2100_hw_send_command(priv, &cmd);
1389 if (err)
1390 return err;
1391
1392 for (i = 0; i < 2500; i++) {
1393 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1394 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1395
1396 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1397 (val2 & IPW2100_COMMAND_PHY_OFF))
1398 return 0;
1399
1400 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1401 }
1402
1403 return -EIO;
1404 }
1405
1406 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1407 {
1408 struct host_command cmd = {
1409 .host_command = HOST_COMPLETE,
1410 .host_command_sequence = 0,
1411 .host_command_length = 0
1412 };
1413 int err = 0;
1414
1415 IPW_DEBUG_HC("HOST_COMPLETE\n");
1416
1417 if (priv->status & STATUS_ENABLED)
1418 return 0;
1419
1420 mutex_lock(&priv->adapter_mutex);
1421
1422 if (rf_kill_active(priv)) {
1423 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1424 goto fail_up;
1425 }
1426
1427 err = ipw2100_hw_send_command(priv, &cmd);
1428 if (err) {
1429 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1430 goto fail_up;
1431 }
1432
1433 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1434 if (err) {
1435 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1436 priv->net_dev->name);
1437 goto fail_up;
1438 }
1439
1440 if (priv->stop_hang_check) {
1441 priv->stop_hang_check = 0;
1442 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1443 }
1444
1445 fail_up:
1446 mutex_unlock(&priv->adapter_mutex);
1447 return err;
1448 }
1449
1450 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1451 {
1452 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1453
1454 struct host_command cmd = {
1455 .host_command = HOST_PRE_POWER_DOWN,
1456 .host_command_sequence = 0,
1457 .host_command_length = 0,
1458 };
1459 int err, i;
1460 u32 reg;
1461
1462 if (!(priv->status & STATUS_RUNNING))
1463 return 0;
1464
1465 priv->status |= STATUS_STOPPING;
1466
1467 /* We can only shut down the card if the firmware is operational. So,
1468 * if we haven't reset since a fatal_error, then we can not send the
1469 * shutdown commands. */
1470 if (!priv->fatal_error) {
1471 /* First, make sure the adapter is enabled so that the PHY_OFF
1472 * command can shut it down */
1473 ipw2100_enable_adapter(priv);
1474
1475 err = ipw2100_hw_phy_off(priv);
1476 if (err)
1477 printk(KERN_WARNING DRV_NAME
1478 ": Error disabling radio %d\n", err);
1479
1480 /*
1481 * If in D0-standby mode going directly to D3 may cause a
1482 * PCI bus violation. Therefore we must change out of the D0
1483 * state.
1484 *
1485 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1486 * hardware from going into standby mode and will transition
1487 * out of D0-standby if it is already in that state.
1488 *
1489 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1490 * driver upon completion. Once received, the driver can
1491 * proceed to the D3 state.
1492 *
1493 * Prepare for power down command to fw. This command would
1494 * take HW out of D0-standby and prepare it for D3 state.
1495 *
1496 * Currently FW does not support event notification for this
1497 * event. Therefore, skip waiting for it. Just wait a fixed
1498 * 100ms
1499 */
1500 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1501
1502 err = ipw2100_hw_send_command(priv, &cmd);
1503 if (err)
1504 printk(KERN_WARNING DRV_NAME ": "
1505 "%s: Power down command failed: Error %d\n",
1506 priv->net_dev->name, err);
1507 else
1508 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1509 }
1510
1511 priv->status &= ~STATUS_ENABLED;
1512
1513 /*
1514 * Set GPIO 3 writable by FW; GPIO 1 writable
1515 * by driver and enable clock
1516 */
1517 ipw2100_hw_set_gpio(priv);
1518
1519 /*
1520 * Power down adapter. Sequence:
1521 * 1. Stop master assert (RESET_REG[9]=1)
1522 * 2. Wait for stop master (RESET_REG[8]==1)
1523 * 3. S/w reset assert (RESET_REG[7] = 1)
1524 */
1525
1526 /* Stop master assert */
1527 write_register(priv->net_dev, IPW_REG_RESET_REG,
1528 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1529
1530 /* wait stop master not more than 50 usec.
1531 * Otherwise return error. */
1532 for (i = 5; i > 0; i--) {
1533 udelay(10);
1534
1535 /* Check master stop bit */
1536 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1537
1538 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1539 break;
1540 }
1541
1542 if (i == 0)
1543 printk(KERN_WARNING DRV_NAME
1544 ": %s: Could now power down adapter.\n",
1545 priv->net_dev->name);
1546
1547 /* assert s/w reset */
1548 write_register(priv->net_dev, IPW_REG_RESET_REG,
1549 IPW_AUX_HOST_RESET_REG_SW_RESET);
1550
1551 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1552
1553 return 0;
1554 }
1555
1556 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1557 {
1558 struct host_command cmd = {
1559 .host_command = CARD_DISABLE,
1560 .host_command_sequence = 0,
1561 .host_command_length = 0
1562 };
1563 int err = 0;
1564
1565 IPW_DEBUG_HC("CARD_DISABLE\n");
1566
1567 if (!(priv->status & STATUS_ENABLED))
1568 return 0;
1569
1570 /* Make sure we clear the associated state */
1571 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1572
1573 if (!priv->stop_hang_check) {
1574 priv->stop_hang_check = 1;
1575 cancel_delayed_work(&priv->hang_check);
1576 }
1577
1578 mutex_lock(&priv->adapter_mutex);
1579
1580 err = ipw2100_hw_send_command(priv, &cmd);
1581 if (err) {
1582 printk(KERN_WARNING DRV_NAME
1583 ": exit - failed to send CARD_DISABLE command\n");
1584 goto fail_up;
1585 }
1586
1587 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1588 if (err) {
1589 printk(KERN_WARNING DRV_NAME
1590 ": exit - card failed to change to DISABLED\n");
1591 goto fail_up;
1592 }
1593
1594 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1595
1596 fail_up:
1597 mutex_unlock(&priv->adapter_mutex);
1598 return err;
1599 }
1600
1601 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1602 {
1603 struct host_command cmd = {
1604 .host_command = SET_SCAN_OPTIONS,
1605 .host_command_sequence = 0,
1606 .host_command_length = 8
1607 };
1608 int err;
1609
1610 IPW_DEBUG_INFO("enter\n");
1611
1612 IPW_DEBUG_SCAN("setting scan options\n");
1613
1614 cmd.host_command_parameters[0] = 0;
1615
1616 if (!(priv->config & CFG_ASSOCIATE))
1617 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1618 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1619 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1620 if (priv->config & CFG_PASSIVE_SCAN)
1621 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1622
1623 cmd.host_command_parameters[1] = priv->channel_mask;
1624
1625 err = ipw2100_hw_send_command(priv, &cmd);
1626
1627 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1628 cmd.host_command_parameters[0]);
1629
1630 return err;
1631 }
1632
1633 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1634 {
1635 struct host_command cmd = {
1636 .host_command = BROADCAST_SCAN,
1637 .host_command_sequence = 0,
1638 .host_command_length = 4
1639 };
1640 int err;
1641
1642 IPW_DEBUG_HC("START_SCAN\n");
1643
1644 cmd.host_command_parameters[0] = 0;
1645
1646 /* No scanning if in monitor mode */
1647 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1648 return 1;
1649
1650 if (priv->status & STATUS_SCANNING) {
1651 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1652 return 0;
1653 }
1654
1655 IPW_DEBUG_INFO("enter\n");
1656
1657 /* Not clearing here; doing so makes iwlist always return nothing...
1658 *
1659 * We should modify the table logic to use aging tables vs. clearing
1660 * the table on each scan start.
1661 */
1662 IPW_DEBUG_SCAN("starting scan\n");
1663
1664 priv->status |= STATUS_SCANNING;
1665 err = ipw2100_hw_send_command(priv, &cmd);
1666 if (err)
1667 priv->status &= ~STATUS_SCANNING;
1668
1669 IPW_DEBUG_INFO("exit\n");
1670
1671 return err;
1672 }
1673
1674 static const struct ieee80211_geo ipw_geos[] = {
1675 { /* Restricted */
1676 "---",
1677 .bg_channels = 14,
1678 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1679 {2427, 4}, {2432, 5}, {2437, 6},
1680 {2442, 7}, {2447, 8}, {2452, 9},
1681 {2457, 10}, {2462, 11}, {2467, 12},
1682 {2472, 13}, {2484, 14}},
1683 },
1684 };
1685
1686 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1687 {
1688 unsigned long flags;
1689 int rc = 0;
1690 u32 lock;
1691 u32 ord_len = sizeof(lock);
1692
1693 /* Quite if manually disabled. */
1694 if (priv->status & STATUS_RF_KILL_SW) {
1695 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1696 "switch\n", priv->net_dev->name);
1697 return 0;
1698 }
1699
1700 /* the ipw2100 hardware really doesn't want power management delays
1701 * longer than 175usec
1702 */
1703 modify_acceptable_latency("ipw2100", 175);
1704
1705 /* If the interrupt is enabled, turn it off... */
1706 spin_lock_irqsave(&priv->low_lock, flags);
1707 ipw2100_disable_interrupts(priv);
1708
1709 /* Reset any fatal_error conditions */
1710 ipw2100_reset_fatalerror(priv);
1711 spin_unlock_irqrestore(&priv->low_lock, flags);
1712
1713 if (priv->status & STATUS_POWERED ||
1714 (priv->status & STATUS_RESET_PENDING)) {
1715 /* Power cycle the card ... */
1716 if (ipw2100_power_cycle_adapter(priv)) {
1717 printk(KERN_WARNING DRV_NAME
1718 ": %s: Could not cycle adapter.\n",
1719 priv->net_dev->name);
1720 rc = 1;
1721 goto exit;
1722 }
1723 } else
1724 priv->status |= STATUS_POWERED;
1725
1726 /* Load the firmware, start the clocks, etc. */
1727 if (ipw2100_start_adapter(priv)) {
1728 printk(KERN_ERR DRV_NAME
1729 ": %s: Failed to start the firmware.\n",
1730 priv->net_dev->name);
1731 rc = 1;
1732 goto exit;
1733 }
1734
1735 ipw2100_initialize_ordinals(priv);
1736
1737 /* Determine capabilities of this particular HW configuration */
1738 if (ipw2100_get_hw_features(priv)) {
1739 printk(KERN_ERR DRV_NAME
1740 ": %s: Failed to determine HW features.\n",
1741 priv->net_dev->name);
1742 rc = 1;
1743 goto exit;
1744 }
1745
1746 /* Initialize the geo */
1747 if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1748 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1749 return 0;
1750 }
1751 priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1752
1753 lock = LOCK_NONE;
1754 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1755 printk(KERN_ERR DRV_NAME
1756 ": %s: Failed to clear ordinal lock.\n",
1757 priv->net_dev->name);
1758 rc = 1;
1759 goto exit;
1760 }
1761
1762 priv->status &= ~STATUS_SCANNING;
1763
1764 if (rf_kill_active(priv)) {
1765 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1766 priv->net_dev->name);
1767
1768 if (priv->stop_rf_kill) {
1769 priv->stop_rf_kill = 0;
1770 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
1771 }
1772
1773 deferred = 1;
1774 }
1775
1776 /* Turn on the interrupt so that commands can be processed */
1777 ipw2100_enable_interrupts(priv);
1778
1779 /* Send all of the commands that must be sent prior to
1780 * HOST_COMPLETE */
1781 if (ipw2100_adapter_setup(priv)) {
1782 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1783 priv->net_dev->name);
1784 rc = 1;
1785 goto exit;
1786 }
1787
1788 if (!deferred) {
1789 /* Enable the adapter - sends HOST_COMPLETE */
1790 if (ipw2100_enable_adapter(priv)) {
1791 printk(KERN_ERR DRV_NAME ": "
1792 "%s: failed in call to enable adapter.\n",
1793 priv->net_dev->name);
1794 ipw2100_hw_stop_adapter(priv);
1795 rc = 1;
1796 goto exit;
1797 }
1798
1799 /* Start a scan . . . */
1800 ipw2100_set_scan_options(priv);
1801 ipw2100_start_scan(priv);
1802 }
1803
1804 exit:
1805 return rc;
1806 }
1807
1808 /* Called by register_netdev() */
1809 static int ipw2100_net_init(struct net_device *dev)
1810 {
1811 struct ipw2100_priv *priv = ieee80211_priv(dev);
1812 return ipw2100_up(priv, 1);
1813 }
1814
1815 static void ipw2100_down(struct ipw2100_priv *priv)
1816 {
1817 unsigned long flags;
1818 union iwreq_data wrqu = {
1819 .ap_addr = {
1820 .sa_family = ARPHRD_ETHER}
1821 };
1822 int associated = priv->status & STATUS_ASSOCIATED;
1823
1824 /* Kill the RF switch timer */
1825 if (!priv->stop_rf_kill) {
1826 priv->stop_rf_kill = 1;
1827 cancel_delayed_work(&priv->rf_kill);
1828 }
1829
1830 /* Kill the firmare hang check timer */
1831 if (!priv->stop_hang_check) {
1832 priv->stop_hang_check = 1;
1833 cancel_delayed_work(&priv->hang_check);
1834 }
1835
1836 /* Kill any pending resets */
1837 if (priv->status & STATUS_RESET_PENDING)
1838 cancel_delayed_work(&priv->reset_work);
1839
1840 /* Make sure the interrupt is on so that FW commands will be
1841 * processed correctly */
1842 spin_lock_irqsave(&priv->low_lock, flags);
1843 ipw2100_enable_interrupts(priv);
1844 spin_unlock_irqrestore(&priv->low_lock, flags);
1845
1846 if (ipw2100_hw_stop_adapter(priv))
1847 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1848 priv->net_dev->name);
1849
1850 /* Do not disable the interrupt until _after_ we disable
1851 * the adaptor. Otherwise the CARD_DISABLE command will never
1852 * be ack'd by the firmware */
1853 spin_lock_irqsave(&priv->low_lock, flags);
1854 ipw2100_disable_interrupts(priv);
1855 spin_unlock_irqrestore(&priv->low_lock, flags);
1856
1857 modify_acceptable_latency("ipw2100", INFINITE_LATENCY);
1858
1859 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1860 if (priv->config & CFG_C3_DISABLED) {
1861 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1862 acpi_set_cstate_limit(priv->cstate_limit);
1863 priv->config &= ~CFG_C3_DISABLED;
1864 }
1865 #endif
1866
1867 /* We have to signal any supplicant if we are disassociating */
1868 if (associated)
1869 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1870
1871 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1872 netif_carrier_off(priv->net_dev);
1873 netif_stop_queue(priv->net_dev);
1874 }
1875
1876 static void ipw2100_reset_adapter(struct ipw2100_priv *priv)
1877 {
1878 unsigned long flags;
1879 union iwreq_data wrqu = {
1880 .ap_addr = {
1881 .sa_family = ARPHRD_ETHER}
1882 };
1883 int associated = priv->status & STATUS_ASSOCIATED;
1884
1885 spin_lock_irqsave(&priv->low_lock, flags);
1886 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1887 priv->resets++;
1888 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1889 priv->status |= STATUS_SECURITY_UPDATED;
1890
1891 /* Force a power cycle even if interface hasn't been opened
1892 * yet */
1893 cancel_delayed_work(&priv->reset_work);
1894 priv->status |= STATUS_RESET_PENDING;
1895 spin_unlock_irqrestore(&priv->low_lock, flags);
1896
1897 mutex_lock(&priv->action_mutex);
1898 /* stop timed checks so that they don't interfere with reset */
1899 priv->stop_hang_check = 1;
1900 cancel_delayed_work(&priv->hang_check);
1901
1902 /* We have to signal any supplicant if we are disassociating */
1903 if (associated)
1904 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1905
1906 ipw2100_up(priv, 0);
1907 mutex_unlock(&priv->action_mutex);
1908
1909 }
1910
1911 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1912 {
1913
1914 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1915 int ret, len, essid_len;
1916 char essid[IW_ESSID_MAX_SIZE];
1917 u32 txrate;
1918 u32 chan;
1919 char *txratename;
1920 u8 bssid[ETH_ALEN];
1921
1922 /*
1923 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1924 * an actual MAC of the AP. Seems like FW sets this
1925 * address too late. Read it later and expose through
1926 * /proc or schedule a later task to query and update
1927 */
1928
1929 essid_len = IW_ESSID_MAX_SIZE;
1930 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1931 essid, &essid_len);
1932 if (ret) {
1933 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1934 __LINE__);
1935 return;
1936 }
1937
1938 len = sizeof(u32);
1939 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1940 if (ret) {
1941 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1942 __LINE__);
1943 return;
1944 }
1945
1946 len = sizeof(u32);
1947 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1948 if (ret) {
1949 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1950 __LINE__);
1951 return;
1952 }
1953 len = ETH_ALEN;
1954 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1955 if (ret) {
1956 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1957 __LINE__);
1958 return;
1959 }
1960 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1961
1962 switch (txrate) {
1963 case TX_RATE_1_MBIT:
1964 txratename = "1Mbps";
1965 break;
1966 case TX_RATE_2_MBIT:
1967 txratename = "2Mbsp";
1968 break;
1969 case TX_RATE_5_5_MBIT:
1970 txratename = "5.5Mbps";
1971 break;
1972 case TX_RATE_11_MBIT:
1973 txratename = "11Mbps";
1974 break;
1975 default:
1976 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1977 txratename = "unknown rate";
1978 break;
1979 }
1980
1981 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1982 MAC_FMT ")\n",
1983 priv->net_dev->name, escape_essid(essid, essid_len),
1984 txratename, chan, MAC_ARG(bssid));
1985
1986 /* now we copy read ssid into dev */
1987 if (!(priv->config & CFG_STATIC_ESSID)) {
1988 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1989 memcpy(priv->essid, essid, priv->essid_len);
1990 }
1991 priv->channel = chan;
1992 memcpy(priv->bssid, bssid, ETH_ALEN);
1993
1994 priv->status |= STATUS_ASSOCIATING;
1995 priv->connect_start = get_seconds();
1996
1997 queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
1998 }
1999
2000 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2001 int length, int batch_mode)
2002 {
2003 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2004 struct host_command cmd = {
2005 .host_command = SSID,
2006 .host_command_sequence = 0,
2007 .host_command_length = ssid_len
2008 };
2009 int err;
2010
2011 IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2012
2013 if (ssid_len)
2014 memcpy(cmd.host_command_parameters, essid, ssid_len);
2015
2016 if (!batch_mode) {
2017 err = ipw2100_disable_adapter(priv);
2018 if (err)
2019 return err;
2020 }
2021
2022 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2023 * disable auto association -- so we cheat by setting a bogus SSID */
2024 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2025 int i;
2026 u8 *bogus = (u8 *) cmd.host_command_parameters;
2027 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2028 bogus[i] = 0x18 + i;
2029 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2030 }
2031
2032 /* NOTE: We always send the SSID command even if the provided ESSID is
2033 * the same as what we currently think is set. */
2034
2035 err = ipw2100_hw_send_command(priv, &cmd);
2036 if (!err) {
2037 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2038 memcpy(priv->essid, essid, ssid_len);
2039 priv->essid_len = ssid_len;
2040 }
2041
2042 if (!batch_mode) {
2043 if (ipw2100_enable_adapter(priv))
2044 err = -EIO;
2045 }
2046
2047 return err;
2048 }
2049
2050 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2051 {
2052 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2053 "disassociated: '%s' " MAC_FMT " \n",
2054 escape_essid(priv->essid, priv->essid_len),
2055 MAC_ARG(priv->bssid));
2056
2057 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2058
2059 if (priv->status & STATUS_STOPPING) {
2060 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2061 return;
2062 }
2063
2064 memset(priv->bssid, 0, ETH_ALEN);
2065 memset(priv->ieee->bssid, 0, ETH_ALEN);
2066
2067 netif_carrier_off(priv->net_dev);
2068 netif_stop_queue(priv->net_dev);
2069
2070 if (!(priv->status & STATUS_RUNNING))
2071 return;
2072
2073 if (priv->status & STATUS_SECURITY_UPDATED)
2074 queue_work(priv->workqueue, &priv->security_work);
2075
2076 queue_work(priv->workqueue, &priv->wx_event_work);
2077 }
2078
2079 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2080 {
2081 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2082 priv->net_dev->name);
2083
2084 /* RF_KILL is now enabled (else we wouldn't be here) */
2085 priv->status |= STATUS_RF_KILL_HW;
2086
2087 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2088 if (priv->config & CFG_C3_DISABLED) {
2089 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2090 acpi_set_cstate_limit(priv->cstate_limit);
2091 priv->config &= ~CFG_C3_DISABLED;
2092 }
2093 #endif
2094
2095 /* Make sure the RF Kill check timer is running */
2096 priv->stop_rf_kill = 0;
2097 cancel_delayed_work(&priv->rf_kill);
2098 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
2099 }
2100
2101 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2102 {
2103 IPW_DEBUG_SCAN("scan complete\n");
2104 /* Age the scan results... */
2105 priv->ieee->scans++;
2106 priv->status &= ~STATUS_SCANNING;
2107 }
2108
2109 #ifdef CONFIG_IPW2100_DEBUG
2110 #define IPW2100_HANDLER(v, f) { v, f, # v }
2111 struct ipw2100_status_indicator {
2112 int status;
2113 void (*cb) (struct ipw2100_priv * priv, u32 status);
2114 char *name;
2115 };
2116 #else
2117 #define IPW2100_HANDLER(v, f) { v, f }
2118 struct ipw2100_status_indicator {
2119 int status;
2120 void (*cb) (struct ipw2100_priv * priv, u32 status);
2121 };
2122 #endif /* CONFIG_IPW2100_DEBUG */
2123
2124 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2125 {
2126 IPW_DEBUG_SCAN("Scanning...\n");
2127 priv->status |= STATUS_SCANNING;
2128 }
2129
2130 static const struct ipw2100_status_indicator status_handlers[] = {
2131 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2132 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2133 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2134 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2135 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2136 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2137 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2138 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2139 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2140 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2141 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2142 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2143 IPW2100_HANDLER(-1, NULL)
2144 };
2145
2146 static void isr_status_change(struct ipw2100_priv *priv, int status)
2147 {
2148 int i;
2149
2150 if (status == IPW_STATE_SCANNING &&
2151 priv->status & STATUS_ASSOCIATED &&
2152 !(priv->status & STATUS_SCANNING)) {
2153 IPW_DEBUG_INFO("Scan detected while associated, with "
2154 "no scan request. Restarting firmware.\n");
2155
2156 /* Wake up any sleeping jobs */
2157 schedule_reset(priv);
2158 }
2159
2160 for (i = 0; status_handlers[i].status != -1; i++) {
2161 if (status == status_handlers[i].status) {
2162 IPW_DEBUG_NOTIF("Status change: %s\n",
2163 status_handlers[i].name);
2164 if (status_handlers[i].cb)
2165 status_handlers[i].cb(priv, status);
2166 priv->wstats.status = status;
2167 return;
2168 }
2169 }
2170
2171 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2172 }
2173
2174 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2175 struct ipw2100_cmd_header *cmd)
2176 {
2177 #ifdef CONFIG_IPW2100_DEBUG
2178 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2179 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2180 command_types[cmd->host_command_reg],
2181 cmd->host_command_reg);
2182 }
2183 #endif
2184 if (cmd->host_command_reg == HOST_COMPLETE)
2185 priv->status |= STATUS_ENABLED;
2186
2187 if (cmd->host_command_reg == CARD_DISABLE)
2188 priv->status &= ~STATUS_ENABLED;
2189
2190 priv->status &= ~STATUS_CMD_ACTIVE;
2191
2192 wake_up_interruptible(&priv->wait_command_queue);
2193 }
2194
2195 #ifdef CONFIG_IPW2100_DEBUG
2196 static const char *frame_types[] = {
2197 "COMMAND_STATUS_VAL",
2198 "STATUS_CHANGE_VAL",
2199 "P80211_DATA_VAL",
2200 "P8023_DATA_VAL",
2201 "HOST_NOTIFICATION_VAL"
2202 };
2203 #endif
2204
2205 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2206 struct ipw2100_rx_packet *packet)
2207 {
2208 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2209 if (!packet->skb)
2210 return -ENOMEM;
2211
2212 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2213 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2214 sizeof(struct ipw2100_rx),
2215 PCI_DMA_FROMDEVICE);
2216 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2217 * dma_addr */
2218
2219 return 0;
2220 }
2221
2222 #define SEARCH_ERROR 0xffffffff
2223 #define SEARCH_FAIL 0xfffffffe
2224 #define SEARCH_SUCCESS 0xfffffff0
2225 #define SEARCH_DISCARD 0
2226 #define SEARCH_SNAPSHOT 1
2227
2228 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2229 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2230 {
2231 int i;
2232 if (!priv->snapshot[0])
2233 return;
2234 for (i = 0; i < 0x30; i++)
2235 kfree(priv->snapshot[i]);
2236 priv->snapshot[0] = NULL;
2237 }
2238
2239 #ifdef CONFIG_IPW2100_DEBUG_C3
2240 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2241 {
2242 int i;
2243 if (priv->snapshot[0])
2244 return 1;
2245 for (i = 0; i < 0x30; i++) {
2246 priv->snapshot[i] = (u8 *) kmalloc(0x1000, GFP_ATOMIC);
2247 if (!priv->snapshot[i]) {
2248 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2249 "buffer %d\n", priv->net_dev->name, i);
2250 while (i > 0)
2251 kfree(priv->snapshot[--i]);
2252 priv->snapshot[0] = NULL;
2253 return 0;
2254 }
2255 }
2256
2257 return 1;
2258 }
2259
2260 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2261 size_t len, int mode)
2262 {
2263 u32 i, j;
2264 u32 tmp;
2265 u8 *s, *d;
2266 u32 ret;
2267
2268 s = in_buf;
2269 if (mode == SEARCH_SNAPSHOT) {
2270 if (!ipw2100_snapshot_alloc(priv))
2271 mode = SEARCH_DISCARD;
2272 }
2273
2274 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2275 read_nic_dword(priv->net_dev, i, &tmp);
2276 if (mode == SEARCH_SNAPSHOT)
2277 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2278 if (ret == SEARCH_FAIL) {
2279 d = (u8 *) & tmp;
2280 for (j = 0; j < 4; j++) {
2281 if (*s != *d) {
2282 s = in_buf;
2283 continue;
2284 }
2285
2286 s++;
2287 d++;
2288
2289 if ((s - in_buf) == len)
2290 ret = (i + j) - len + 1;
2291 }
2292 } else if (mode == SEARCH_DISCARD)
2293 return ret;
2294 }
2295
2296 return ret;
2297 }
2298 #endif
2299
2300 /*
2301 *
2302 * 0) Disconnect the SKB from the firmware (just unmap)
2303 * 1) Pack the ETH header into the SKB
2304 * 2) Pass the SKB to the network stack
2305 *
2306 * When packet is provided by the firmware, it contains the following:
2307 *
2308 * . ieee80211_hdr
2309 * . ieee80211_snap_hdr
2310 *
2311 * The size of the constructed ethernet
2312 *
2313 */
2314 #ifdef CONFIG_IPW2100_RX_DEBUG
2315 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2316 #endif
2317
2318 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2319 {
2320 #ifdef CONFIG_IPW2100_DEBUG_C3
2321 struct ipw2100_status *status = &priv->status_queue.drv[i];
2322 u32 match, reg;
2323 int j;
2324 #endif
2325 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2326 int limit;
2327 #endif
2328
2329 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2330 i * sizeof(struct ipw2100_status));
2331
2332 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2333 IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2334 limit = acpi_get_cstate_limit();
2335 if (limit > 2) {
2336 priv->cstate_limit = limit;
2337 acpi_set_cstate_limit(2);
2338 priv->config |= CFG_C3_DISABLED;
2339 }
2340 #endif
2341
2342 #ifdef CONFIG_IPW2100_DEBUG_C3
2343 /* Halt the fimrware so we can get a good image */
2344 write_register(priv->net_dev, IPW_REG_RESET_REG,
2345 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2346 j = 5;
2347 do {
2348 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2349 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2350
2351 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2352 break;
2353 } while (j--);
2354
2355 match = ipw2100_match_buf(priv, (u8 *) status,
2356 sizeof(struct ipw2100_status),
2357 SEARCH_SNAPSHOT);
2358 if (match < SEARCH_SUCCESS)
2359 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2360 "offset 0x%06X, length %d:\n",
2361 priv->net_dev->name, match,
2362 sizeof(struct ipw2100_status));
2363 else
2364 IPW_DEBUG_INFO("%s: No DMA status match in "
2365 "Firmware.\n", priv->net_dev->name);
2366
2367 printk_buf((u8 *) priv->status_queue.drv,
2368 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2369 #endif
2370
2371 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2372 priv->ieee->stats.rx_errors++;
2373 schedule_reset(priv);
2374 }
2375
2376 static void isr_rx(struct ipw2100_priv *priv, int i,
2377 struct ieee80211_rx_stats *stats)
2378 {
2379 struct ipw2100_status *status = &priv->status_queue.drv[i];
2380 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2381
2382 IPW_DEBUG_RX("Handler...\n");
2383
2384 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2385 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2386 " Dropping.\n",
2387 priv->net_dev->name,
2388 status->frame_size, skb_tailroom(packet->skb));
2389 priv->ieee->stats.rx_errors++;
2390 return;
2391 }
2392
2393 if (unlikely(!netif_running(priv->net_dev))) {
2394 priv->ieee->stats.rx_errors++;
2395 priv->wstats.discard.misc++;
2396 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2397 return;
2398 }
2399
2400 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2401 !(priv->status & STATUS_ASSOCIATED))) {
2402 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2403 priv->wstats.discard.misc++;
2404 return;
2405 }
2406
2407 pci_unmap_single(priv->pci_dev,
2408 packet->dma_addr,
2409 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2410
2411 skb_put(packet->skb, status->frame_size);
2412
2413 #ifdef CONFIG_IPW2100_RX_DEBUG
2414 /* Make a copy of the frame so we can dump it to the logs if
2415 * ieee80211_rx fails */
2416 memcpy(packet_data, packet->skb->data,
2417 min_t(u32, status->frame_size, IPW_RX_NIC_BUFFER_LENGTH));
2418 #endif
2419
2420 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2421 #ifdef CONFIG_IPW2100_RX_DEBUG
2422 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2423 priv->net_dev->name);
2424 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2425 #endif
2426 priv->ieee->stats.rx_errors++;
2427
2428 /* ieee80211_rx failed, so it didn't free the SKB */
2429 dev_kfree_skb_any(packet->skb);
2430 packet->skb = NULL;
2431 }
2432
2433 /* We need to allocate a new SKB and attach it to the RDB. */
2434 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2435 printk(KERN_WARNING DRV_NAME ": "
2436 "%s: Unable to allocate SKB onto RBD ring - disabling "
2437 "adapter.\n", priv->net_dev->name);
2438 /* TODO: schedule adapter shutdown */
2439 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2440 }
2441
2442 /* Update the RDB entry */
2443 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2444 }
2445
2446 #ifdef CONFIG_IPW2100_MONITOR
2447
2448 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2449 struct ieee80211_rx_stats *stats)
2450 {
2451 struct ipw2100_status *status = &priv->status_queue.drv[i];
2452 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2453
2454 /* Magic struct that slots into the radiotap header -- no reason
2455 * to build this manually element by element, we can write it much
2456 * more efficiently than we can parse it. ORDER MATTERS HERE */
2457 struct ipw_rt_hdr {
2458 struct ieee80211_radiotap_header rt_hdr;
2459 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2460 } *ipw_rt;
2461
2462 IPW_DEBUG_RX("Handler...\n");
2463
2464 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2465 sizeof(struct ipw_rt_hdr))) {
2466 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2467 " Dropping.\n",
2468 priv->net_dev->name,
2469 status->frame_size,
2470 skb_tailroom(packet->skb));
2471 priv->ieee->stats.rx_errors++;
2472 return;
2473 }
2474
2475 if (unlikely(!netif_running(priv->net_dev))) {
2476 priv->ieee->stats.rx_errors++;
2477 priv->wstats.discard.misc++;
2478 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2479 return;
2480 }
2481
2482 if (unlikely(priv->config & CFG_CRC_CHECK &&
2483 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2484 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2485 priv->ieee->stats.rx_errors++;
2486 return;
2487 }
2488
2489 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2490 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2491 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2492 packet->skb->data, status->frame_size);
2493
2494 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2495
2496 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2497 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2498 ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total hdr+data */
2499
2500 ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2501
2502 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2503
2504 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2505
2506 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2507 priv->ieee->stats.rx_errors++;
2508
2509 /* ieee80211_rx failed, so it didn't free the SKB */
2510 dev_kfree_skb_any(packet->skb);
2511 packet->skb = NULL;
2512 }
2513
2514 /* We need to allocate a new SKB and attach it to the RDB. */
2515 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2516 IPW_DEBUG_WARNING(
2517 "%s: Unable to allocate SKB onto RBD ring - disabling "
2518 "adapter.\n", priv->net_dev->name);
2519 /* TODO: schedule adapter shutdown */
2520 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2521 }
2522
2523 /* Update the RDB entry */
2524 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2525 }
2526
2527 #endif
2528
2529 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2530 {
2531 struct ipw2100_status *status = &priv->status_queue.drv[i];
2532 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2533 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2534
2535 switch (frame_type) {
2536 case COMMAND_STATUS_VAL:
2537 return (status->frame_size != sizeof(u->rx_data.command));
2538 case STATUS_CHANGE_VAL:
2539 return (status->frame_size != sizeof(u->rx_data.status));
2540 case HOST_NOTIFICATION_VAL:
2541 return (status->frame_size < sizeof(u->rx_data.notification));
2542 case P80211_DATA_VAL:
2543 case P8023_DATA_VAL:
2544 #ifdef CONFIG_IPW2100_MONITOR
2545 return 0;
2546 #else
2547 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2548 case IEEE80211_FTYPE_MGMT:
2549 case IEEE80211_FTYPE_CTL:
2550 return 0;
2551 case IEEE80211_FTYPE_DATA:
2552 return (status->frame_size >
2553 IPW_MAX_802_11_PAYLOAD_LENGTH);
2554 }
2555 #endif
2556 }
2557
2558 return 1;
2559 }
2560
2561 /*
2562 * ipw2100 interrupts are disabled at this point, and the ISR
2563 * is the only code that calls this method. So, we do not need
2564 * to play with any locks.
2565 *
2566 * RX Queue works as follows:
2567 *
2568 * Read index - firmware places packet in entry identified by the
2569 * Read index and advances Read index. In this manner,
2570 * Read index will always point to the next packet to
2571 * be filled--but not yet valid.
2572 *
2573 * Write index - driver fills this entry with an unused RBD entry.
2574 * This entry has not filled by the firmware yet.
2575 *
2576 * In between the W and R indexes are the RBDs that have been received
2577 * but not yet processed.
2578 *
2579 * The process of handling packets will start at WRITE + 1 and advance
2580 * until it reaches the READ index.
2581 *
2582 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2583 *
2584 */
2585 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2586 {
2587 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2588 struct ipw2100_status_queue *sq = &priv->status_queue;
2589 struct ipw2100_rx_packet *packet;
2590 u16 frame_type;
2591 u32 r, w, i, s;
2592 struct ipw2100_rx *u;
2593 struct ieee80211_rx_stats stats = {
2594 .mac_time = jiffies,
2595 };
2596
2597 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2598 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2599
2600 if (r >= rxq->entries) {
2601 IPW_DEBUG_RX("exit - bad read index\n");
2602 return;
2603 }
2604
2605 i = (rxq->next + 1) % rxq->entries;
2606 s = i;
2607 while (i != r) {
2608 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2609 r, rxq->next, i); */
2610
2611 packet = &priv->rx_buffers[i];
2612
2613 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2614 * the correct values */
2615 pci_dma_sync_single_for_cpu(priv->pci_dev,
2616 sq->nic +
2617 sizeof(struct ipw2100_status) * i,
2618 sizeof(struct ipw2100_status),
2619 PCI_DMA_FROMDEVICE);
2620
2621 /* Sync the DMA for the RX buffer so CPU is sure to get
2622 * the correct values */
2623 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2624 sizeof(struct ipw2100_rx),
2625 PCI_DMA_FROMDEVICE);
2626
2627 if (unlikely(ipw2100_corruption_check(priv, i))) {
2628 ipw2100_corruption_detected(priv, i);
2629 goto increment;
2630 }
2631
2632 u = packet->rxp;
2633 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2634 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2635 stats.len = sq->drv[i].frame_size;
2636
2637 stats.mask = 0;
2638 if (stats.rssi != 0)
2639 stats.mask |= IEEE80211_STATMASK_RSSI;
2640 stats.freq = IEEE80211_24GHZ_BAND;
2641
2642 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2643 priv->net_dev->name, frame_types[frame_type],
2644 stats.len);
2645
2646 switch (frame_type) {
2647 case COMMAND_STATUS_VAL:
2648 /* Reset Rx watchdog */
2649 isr_rx_complete_command(priv, &u->rx_data.command);
2650 break;
2651
2652 case STATUS_CHANGE_VAL:
2653 isr_status_change(priv, u->rx_data.status);
2654 break;
2655
2656 case P80211_DATA_VAL:
2657 case P8023_DATA_VAL:
2658 #ifdef CONFIG_IPW2100_MONITOR
2659 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2660 isr_rx_monitor(priv, i, &stats);
2661 break;
2662 }
2663 #endif
2664 if (stats.len < sizeof(u->rx_data.header))
2665 break;
2666 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2667 case IEEE80211_FTYPE_MGMT:
2668 ieee80211_rx_mgt(priv->ieee,
2669 &u->rx_data.header, &stats);
2670 break;
2671
2672 case IEEE80211_FTYPE_CTL:
2673 break;
2674
2675 case IEEE80211_FTYPE_DATA:
2676 isr_rx(priv, i, &stats);
2677 break;
2678
2679 }
2680 break;
2681 }
2682
2683 increment:
2684 /* clear status field associated with this RBD */
2685 rxq->drv[i].status.info.field = 0;
2686
2687 i = (i + 1) % rxq->entries;
2688 }
2689
2690 if (i != s) {
2691 /* backtrack one entry, wrapping to end if at 0 */
2692 rxq->next = (i ? i : rxq->entries) - 1;
2693
2694 write_register(priv->net_dev,
2695 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2696 }
2697 }
2698
2699 /*
2700 * __ipw2100_tx_process
2701 *
2702 * This routine will determine whether the next packet on
2703 * the fw_pend_list has been processed by the firmware yet.
2704 *
2705 * If not, then it does nothing and returns.
2706 *
2707 * If so, then it removes the item from the fw_pend_list, frees
2708 * any associated storage, and places the item back on the
2709 * free list of its source (either msg_free_list or tx_free_list)
2710 *
2711 * TX Queue works as follows:
2712 *
2713 * Read index - points to the next TBD that the firmware will
2714 * process. The firmware will read the data, and once
2715 * done processing, it will advance the Read index.
2716 *
2717 * Write index - driver fills this entry with an constructed TBD
2718 * entry. The Write index is not advanced until the
2719 * packet has been configured.
2720 *
2721 * In between the W and R indexes are the TBDs that have NOT been
2722 * processed. Lagging behind the R index are packets that have
2723 * been processed but have not been freed by the driver.
2724 *
2725 * In order to free old storage, an internal index will be maintained
2726 * that points to the next packet to be freed. When all used
2727 * packets have been freed, the oldest index will be the same as the
2728 * firmware's read index.
2729 *
2730 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2731 *
2732 * Because the TBD structure can not contain arbitrary data, the
2733 * driver must keep an internal queue of cached allocations such that
2734 * it can put that data back into the tx_free_list and msg_free_list
2735 * for use by future command and data packets.
2736 *
2737 */
2738 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2739 {
2740 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2741 struct ipw2100_bd *tbd;
2742 struct list_head *element;
2743 struct ipw2100_tx_packet *packet;
2744 int descriptors_used;
2745 int e, i;
2746 u32 r, w, frag_num = 0;
2747
2748 if (list_empty(&priv->fw_pend_list))
2749 return 0;
2750
2751 element = priv->fw_pend_list.next;
2752
2753 packet = list_entry(element, struct ipw2100_tx_packet, list);
2754 tbd = &txq->drv[packet->index];
2755
2756 /* Determine how many TBD entries must be finished... */
2757 switch (packet->type) {
2758 case COMMAND:
2759 /* COMMAND uses only one slot; don't advance */
2760 descriptors_used = 1;
2761 e = txq->oldest;
2762 break;
2763
2764 case DATA:
2765 /* DATA uses two slots; advance and loop position. */
2766 descriptors_used = tbd->num_fragments;
2767 frag_num = tbd->num_fragments - 1;
2768 e = txq->oldest + frag_num;
2769 e %= txq->entries;
2770 break;
2771
2772 default:
2773 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2774 priv->net_dev->name);
2775 return 0;
2776 }
2777
2778 /* if the last TBD is not done by NIC yet, then packet is
2779 * not ready to be released.
2780 *
2781 */
2782 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2783 &r);
2784 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2785 &w);
2786 if (w != txq->next)
2787 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2788 priv->net_dev->name);
2789
2790 /*
2791 * txq->next is the index of the last packet written txq->oldest is
2792 * the index of the r is the index of the next packet to be read by
2793 * firmware
2794 */
2795
2796 /*
2797 * Quick graphic to help you visualize the following
2798 * if / else statement
2799 *
2800 * ===>| s---->|===============
2801 * e>|
2802 * | a | b | c | d | e | f | g | h | i | j | k | l
2803 * r---->|
2804 * w
2805 *
2806 * w - updated by driver
2807 * r - updated by firmware
2808 * s - start of oldest BD entry (txq->oldest)
2809 * e - end of oldest BD entry
2810 *
2811 */
2812 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2813 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2814 return 0;
2815 }
2816
2817 list_del(element);
2818 DEC_STAT(&priv->fw_pend_stat);
2819
2820 #ifdef CONFIG_IPW2100_DEBUG
2821 {
2822 int i = txq->oldest;
2823 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2824 &txq->drv[i],
2825 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2826 txq->drv[i].host_addr, txq->drv[i].buf_length);
2827
2828 if (packet->type == DATA) {
2829 i = (i + 1) % txq->entries;
2830
2831 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2832 &txq->drv[i],
2833 (u32) (txq->nic + i *
2834 sizeof(struct ipw2100_bd)),
2835 (u32) txq->drv[i].host_addr,
2836 txq->drv[i].buf_length);
2837 }
2838 }
2839 #endif
2840
2841 switch (packet->type) {
2842 case DATA:
2843 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2844 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2845 "Expecting DATA TBD but pulled "
2846 "something else: ids %d=%d.\n",
2847 priv->net_dev->name, txq->oldest, packet->index);
2848
2849 /* DATA packet; we have to unmap and free the SKB */
2850 for (i = 0; i < frag_num; i++) {
2851 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2852
2853 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2854 (packet->index + 1 + i) % txq->entries,
2855 tbd->host_addr, tbd->buf_length);
2856
2857 pci_unmap_single(priv->pci_dev,
2858 tbd->host_addr,
2859 tbd->buf_length, PCI_DMA_TODEVICE);
2860 }
2861
2862 ieee80211_txb_free(packet->info.d_struct.txb);
2863 packet->info.d_struct.txb = NULL;
2864
2865 list_add_tail(element, &priv->tx_free_list);
2866 INC_STAT(&priv->tx_free_stat);
2867
2868 /* We have a free slot in the Tx queue, so wake up the
2869 * transmit layer if it is stopped. */
2870 if (priv->status & STATUS_ASSOCIATED)
2871 netif_wake_queue(priv->net_dev);
2872
2873 /* A packet was processed by the hardware, so update the
2874 * watchdog */
2875 priv->net_dev->trans_start = jiffies;
2876
2877 break;
2878
2879 case COMMAND:
2880 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2881 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2882 "Expecting COMMAND TBD but pulled "
2883 "something else: ids %d=%d.\n",
2884 priv->net_dev->name, txq->oldest, packet->index);
2885
2886 #ifdef CONFIG_IPW2100_DEBUG
2887 if (packet->info.c_struct.cmd->host_command_reg <
2888 sizeof(command_types) / sizeof(*command_types))
2889 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2890 command_types[packet->info.c_struct.cmd->
2891 host_command_reg],
2892 packet->info.c_struct.cmd->
2893 host_command_reg,
2894 packet->info.c_struct.cmd->cmd_status_reg);
2895 #endif
2896
2897 list_add_tail(element, &priv->msg_free_list);
2898 INC_STAT(&priv->msg_free_stat);
2899 break;
2900 }
2901
2902 /* advance oldest used TBD pointer to start of next entry */
2903 txq->oldest = (e + 1) % txq->entries;
2904 /* increase available TBDs number */
2905 txq->available += descriptors_used;
2906 SET_STAT(&priv->txq_stat, txq->available);
2907
2908 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2909 jiffies - packet->jiffy_start);
2910
2911 return (!list_empty(&priv->fw_pend_list));
2912 }
2913
2914 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2915 {
2916 int i = 0;
2917
2918 while (__ipw2100_tx_process(priv) && i < 200)
2919 i++;
2920
2921 if (i == 200) {
2922 printk(KERN_WARNING DRV_NAME ": "
2923 "%s: Driver is running slow (%d iters).\n",
2924 priv->net_dev->name, i);
2925 }
2926 }
2927
2928 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2929 {
2930 struct list_head *element;
2931 struct ipw2100_tx_packet *packet;
2932 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2933 struct ipw2100_bd *tbd;
2934 int next = txq->next;
2935
2936 while (!list_empty(&priv->msg_pend_list)) {
2937 /* if there isn't enough space in TBD queue, then
2938 * don't stuff a new one in.
2939 * NOTE: 3 are needed as a command will take one,
2940 * and there is a minimum of 2 that must be
2941 * maintained between the r and w indexes
2942 */
2943 if (txq->available <= 3) {
2944 IPW_DEBUG_TX("no room in tx_queue\n");
2945 break;
2946 }
2947
2948 element = priv->msg_pend_list.next;
2949 list_del(element);
2950 DEC_STAT(&priv->msg_pend_stat);
2951
2952 packet = list_entry(element, struct ipw2100_tx_packet, list);
2953
2954 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2955 &txq->drv[txq->next],
2956 (void *)(txq->nic + txq->next *
2957 sizeof(struct ipw2100_bd)));
2958
2959 packet->index = txq->next;
2960
2961 tbd = &txq->drv[txq->next];
2962
2963 /* initialize TBD */
2964 tbd->host_addr = packet->info.c_struct.cmd_phys;
2965 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2966 /* not marking number of fragments causes problems
2967 * with f/w debug version */
2968 tbd->num_fragments = 1;
2969 tbd->status.info.field =
2970 IPW_BD_STATUS_TX_FRAME_COMMAND |
2971 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2972
2973 /* update TBD queue counters */
2974 txq->next++;
2975 txq->next %= txq->entries;
2976 txq->available--;
2977 DEC_STAT(&priv->txq_stat);
2978
2979 list_add_tail(element, &priv->fw_pend_list);
2980 INC_STAT(&priv->fw_pend_stat);
2981 }
2982
2983 if (txq->next != next) {
2984 /* kick off the DMA by notifying firmware the
2985 * write index has moved; make sure TBD stores are sync'd */
2986 wmb();
2987 write_register(priv->net_dev,
2988 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2989 txq->next);
2990 }
2991 }
2992
2993 /*
2994 * ipw2100_tx_send_data
2995 *
2996 */
2997 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
2998 {
2999 struct list_head *element;
3000 struct ipw2100_tx_packet *packet;
3001 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3002 struct ipw2100_bd *tbd;
3003 int next = txq->next;
3004 int i = 0;
3005 struct ipw2100_data_header *ipw_hdr;
3006 struct ieee80211_hdr_3addr *hdr;
3007
3008 while (!list_empty(&priv->tx_pend_list)) {
3009 /* if there isn't enough space in TBD queue, then
3010 * don't stuff a new one in.
3011 * NOTE: 4 are needed as a data will take two,
3012 * and there is a minimum of 2 that must be
3013 * maintained between the r and w indexes
3014 */
3015 element = priv->tx_pend_list.next;
3016 packet = list_entry(element, struct ipw2100_tx_packet, list);
3017
3018 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3019 IPW_MAX_BDS)) {
3020 /* TODO: Support merging buffers if more than
3021 * IPW_MAX_BDS are used */
3022 IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded. "
3023 "Increase fragmentation level.\n",
3024 priv->net_dev->name);
3025 }
3026
3027 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3028 IPW_DEBUG_TX("no room in tx_queue\n");
3029 break;
3030 }
3031
3032 list_del(element);
3033 DEC_STAT(&priv->tx_pend_stat);
3034
3035 tbd = &txq->drv[txq->next];
3036
3037 packet->index = txq->next;
3038
3039 ipw_hdr = packet->info.d_struct.data;
3040 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3041 fragments[0]->data;
3042
3043 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3044 /* To DS: Addr1 = BSSID, Addr2 = SA,
3045 Addr3 = DA */
3046 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3047 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3048 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3049 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3050 Addr3 = BSSID */
3051 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3052 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3053 }
3054
3055 ipw_hdr->host_command_reg = SEND;
3056 ipw_hdr->host_command_reg1 = 0;
3057
3058 /* For now we only support host based encryption */
3059 ipw_hdr->needs_encryption = 0;
3060 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3061 if (packet->info.d_struct.txb->nr_frags > 1)
3062 ipw_hdr->fragment_size =
3063 packet->info.d_struct.txb->frag_size -
3064 IEEE80211_3ADDR_LEN;
3065 else
3066 ipw_hdr->fragment_size = 0;
3067
3068 tbd->host_addr = packet->info.d_struct.data_phys;
3069 tbd->buf_length = sizeof(struct ipw2100_data_header);
3070 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3071 tbd->status.info.field =
3072 IPW_BD_STATUS_TX_FRAME_802_3 |
3073 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3074 txq->next++;
3075 txq->next %= txq->entries;
3076
3077 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3078 packet->index, tbd->host_addr, tbd->buf_length);
3079 #ifdef CONFIG_IPW2100_DEBUG
3080 if (packet->info.d_struct.txb->nr_frags > 1)
3081 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3082 packet->info.d_struct.txb->nr_frags);
3083 #endif
3084
3085 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3086 tbd = &txq->drv[txq->next];
3087 if (i == packet->info.d_struct.txb->nr_frags - 1)
3088 tbd->status.info.field =
3089 IPW_BD_STATUS_TX_FRAME_802_3 |
3090 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3091 else
3092 tbd->status.info.field =
3093 IPW_BD_STATUS_TX_FRAME_802_3 |
3094 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3095
3096 tbd->buf_length = packet->info.d_struct.txb->
3097 fragments[i]->len - IEEE80211_3ADDR_LEN;
3098
3099 tbd->host_addr = pci_map_single(priv->pci_dev,
3100 packet->info.d_struct.
3101 txb->fragments[i]->
3102 data +
3103 IEEE80211_3ADDR_LEN,
3104 tbd->buf_length,
3105 PCI_DMA_TODEVICE);
3106
3107 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3108 txq->next, tbd->host_addr,
3109 tbd->buf_length);
3110
3111 pci_dma_sync_single_for_device(priv->pci_dev,
3112 tbd->host_addr,
3113 tbd->buf_length,
3114 PCI_DMA_TODEVICE);
3115
3116 txq->next++;
3117 txq->next %= txq->entries;
3118 }
3119
3120 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3121 SET_STAT(&priv->txq_stat, txq->available);
3122
3123 list_add_tail(element, &priv->fw_pend_list);
3124 INC_STAT(&priv->fw_pend_stat);
3125 }
3126
3127 if (txq->next != next) {
3128 /* kick off the DMA by notifying firmware the
3129 * write index has moved; make sure TBD stores are sync'd */
3130 write_register(priv->net_dev,
3131 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3132 txq->next);
3133 }
3134 return;
3135 }
3136
3137 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3138 {
3139 struct net_device *dev = priv->net_dev;
3140 unsigned long flags;
3141 u32 inta, tmp;
3142
3143 spin_lock_irqsave(&priv->low_lock, flags);
3144 ipw2100_disable_interrupts(priv);
3145
3146 read_register(dev, IPW_REG_INTA, &inta);
3147
3148 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3149 (unsigned long)inta & IPW_INTERRUPT_MASK);
3150
3151 priv->in_isr++;
3152 priv->interrupts++;
3153
3154 /* We do not loop and keep polling for more interrupts as this
3155 * is frowned upon and doesn't play nicely with other potentially
3156 * chained IRQs */
3157 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3158 (unsigned long)inta & IPW_INTERRUPT_MASK);
3159
3160 if (inta & IPW2100_INTA_FATAL_ERROR) {
3161 printk(KERN_WARNING DRV_NAME
3162 ": Fatal interrupt. Scheduling firmware restart.\n");
3163 priv->inta_other++;
3164 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3165
3166 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3167 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3168 priv->net_dev->name, priv->fatal_error);
3169
3170 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3171 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3172 priv->net_dev->name, tmp);
3173
3174 /* Wake up any sleeping jobs */
3175 schedule_reset(priv);
3176 }
3177
3178 if (inta & IPW2100_INTA_PARITY_ERROR) {
3179 printk(KERN_ERR DRV_NAME
3180 ": ***** PARITY ERROR INTERRUPT !!!! \n");
3181 priv->inta_other++;
3182 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3183 }
3184
3185 if (inta & IPW2100_INTA_RX_TRANSFER) {
3186 IPW_DEBUG_ISR("RX interrupt\n");
3187
3188 priv->rx_interrupts++;
3189
3190 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3191
3192 __ipw2100_rx_process(priv);
3193 __ipw2100_tx_complete(priv);
3194 }
3195
3196 if (inta & IPW2100_INTA_TX_TRANSFER) {
3197 IPW_DEBUG_ISR("TX interrupt\n");
3198
3199 priv->tx_interrupts++;
3200
3201 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3202
3203 __ipw2100_tx_complete(priv);
3204 ipw2100_tx_send_commands(priv);
3205 ipw2100_tx_send_data(priv);
3206 }
3207
3208 if (inta & IPW2100_INTA_TX_COMPLETE) {
3209 IPW_DEBUG_ISR("TX complete\n");
3210 priv->inta_other++;
3211 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3212
3213 __ipw2100_tx_complete(priv);
3214 }
3215
3216 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3217 /* ipw2100_handle_event(dev); */
3218 priv->inta_other++;
3219 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3220 }
3221
3222 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3223 IPW_DEBUG_ISR("FW init done interrupt\n");
3224 priv->inta_other++;
3225
3226 read_register(dev, IPW_REG_INTA, &tmp);
3227 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3228 IPW2100_INTA_PARITY_ERROR)) {
3229 write_register(dev, IPW_REG_INTA,
3230 IPW2100_INTA_FATAL_ERROR |
3231 IPW2100_INTA_PARITY_ERROR);
3232 }
3233
3234 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3235 }
3236
3237 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3238 IPW_DEBUG_ISR("Status change interrupt\n");
3239 priv->inta_other++;
3240 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3241 }
3242
3243 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3244 IPW_DEBUG_ISR("slave host mode interrupt\n");
3245 priv->inta_other++;
3246 write_register(dev, IPW_REG_INTA,
3247 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3248 }
3249
3250 priv->in_isr--;
3251 ipw2100_enable_interrupts(priv);
3252
3253 spin_unlock_irqrestore(&priv->low_lock, flags);
3254
3255 IPW_DEBUG_ISR("exit\n");
3256 }
3257
3258 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3259 {
3260 struct ipw2100_priv *priv = data;
3261 u32 inta, inta_mask;
3262
3263 if (!data)
3264 return IRQ_NONE;
3265
3266 spin_lock(&priv->low_lock);
3267
3268 /* We check to see if we should be ignoring interrupts before
3269 * we touch the hardware. During ucode load if we try and handle
3270 * an interrupt we can cause keyboard problems as well as cause
3271 * the ucode to fail to initialize */
3272 if (!(priv->status & STATUS_INT_ENABLED)) {
3273 /* Shared IRQ */
3274 goto none;
3275 }
3276
3277 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3278 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3279
3280 if (inta == 0xFFFFFFFF) {
3281 /* Hardware disappeared */
3282 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3283 goto none;
3284 }
3285
3286 inta &= IPW_INTERRUPT_MASK;
3287
3288 if (!(inta & inta_mask)) {
3289 /* Shared interrupt */
3290 goto none;
3291 }
3292
3293 /* We disable the hardware interrupt here just to prevent unneeded
3294 * calls to be made. We disable this again within the actual
3295 * work tasklet, so if another part of the code re-enables the
3296 * interrupt, that is fine */
3297 ipw2100_disable_interrupts(priv);
3298
3299 tasklet_schedule(&priv->irq_tasklet);
3300 spin_unlock(&priv->low_lock);
3301
3302 return IRQ_HANDLED;
3303 none:
3304 spin_unlock(&priv->low_lock);
3305 return IRQ_NONE;
3306 }
3307
3308 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3309 int pri)
3310 {
3311 struct ipw2100_priv *priv = ieee80211_priv(dev);
3312 struct list_head *element;
3313 struct ipw2100_tx_packet *packet;
3314 unsigned long flags;
3315
3316 spin_lock_irqsave(&priv->low_lock, flags);
3317
3318 if (!(priv->status & STATUS_ASSOCIATED)) {
3319 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3320 priv->ieee->stats.tx_carrier_errors++;
3321 netif_stop_queue(dev);
3322 goto fail_unlock;
3323 }
3324
3325 if (list_empty(&priv->tx_free_list))
3326 goto fail_unlock;
3327
3328 element = priv->tx_free_list.next;
3329 packet = list_entry(element, struct ipw2100_tx_packet, list);
3330
3331 packet->info.d_struct.txb = txb;
3332
3333 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3334 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3335
3336 packet->jiffy_start = jiffies;
3337
3338 list_del(element);
3339 DEC_STAT(&priv->tx_free_stat);
3340
3341 list_add_tail(element, &priv->tx_pend_list);
3342 INC_STAT(&priv->tx_pend_stat);
3343
3344 ipw2100_tx_send_data(priv);
3345
3346 spin_unlock_irqrestore(&priv->low_lock, flags);
3347 return 0;
3348
3349 fail_unlock:
3350 netif_stop_queue(dev);
3351 spin_unlock_irqrestore(&priv->low_lock, flags);
3352 return 1;
3353 }
3354
3355 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3356 {
3357 int i, j, err = -EINVAL;
3358 void *v;
3359 dma_addr_t p;
3360
3361 priv->msg_buffers =
3362 (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3363 sizeof(struct
3364 ipw2100_tx_packet),
3365 GFP_KERNEL);
3366 if (!priv->msg_buffers) {
3367 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3368 "buffers.\n", priv->net_dev->name);
3369 return -ENOMEM;
3370 }
3371
3372 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3373 v = pci_alloc_consistent(priv->pci_dev,
3374 sizeof(struct ipw2100_cmd_header), &p);
3375 if (!v) {
3376 printk(KERN_ERR DRV_NAME ": "
3377 "%s: PCI alloc failed for msg "
3378 "buffers.\n", priv->net_dev->name);
3379 err = -ENOMEM;
3380 break;
3381 }
3382
3383 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3384
3385 priv->msg_buffers[i].type = COMMAND;
3386 priv->msg_buffers[i].info.c_struct.cmd =
3387 (struct ipw2100_cmd_header *)v;
3388 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3389 }
3390
3391 if (i == IPW_COMMAND_POOL_SIZE)
3392 return 0;
3393
3394 for (j = 0; j < i; j++) {
3395 pci_free_consistent(priv->pci_dev,
3396 sizeof(struct ipw2100_cmd_header),
3397 priv->msg_buffers[j].info.c_struct.cmd,
3398 priv->msg_buffers[j].info.c_struct.
3399 cmd_phys);
3400 }
3401
3402 kfree(priv->msg_buffers);
3403 priv->msg_buffers = NULL;
3404
3405 return err;
3406 }
3407
3408 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3409 {
3410 int i;
3411
3412 INIT_LIST_HEAD(&priv->msg_free_list);
3413 INIT_LIST_HEAD(&priv->msg_pend_list);
3414
3415 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3416 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3417 SET_STAT(&priv->msg_free_stat, i);
3418
3419 return 0;
3420 }
3421
3422 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3423 {
3424 int i;
3425
3426 if (!priv->msg_buffers)
3427 return;
3428
3429 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3430 pci_free_consistent(priv->pci_dev,
3431 sizeof(struct ipw2100_cmd_header),
3432 priv->msg_buffers[i].info.c_struct.cmd,
3433 priv->msg_buffers[i].info.c_struct.
3434 cmd_phys);
3435 }
3436
3437 kfree(priv->msg_buffers);
3438 priv->msg_buffers = NULL;
3439 }
3440
3441 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3442 char *buf)
3443 {
3444 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3445 char *out = buf;
3446 int i, j;
3447 u32 val;
3448
3449 for (i = 0; i < 16; i++) {
3450 out += sprintf(out, "[%08X] ", i * 16);
3451 for (j = 0; j < 16; j += 4) {
3452 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3453 out += sprintf(out, "%08X ", val);
3454 }
3455 out += sprintf(out, "\n");
3456 }
3457
3458 return out - buf;
3459 }
3460
3461 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3462
3463 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3464 char *buf)
3465 {
3466 struct ipw2100_priv *p = d->driver_data;
3467 return sprintf(buf, "0x%08x\n", (int)p->config);
3468 }
3469
3470 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3471
3472 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3473 char *buf)
3474 {
3475 struct ipw2100_priv *p = d->driver_data;
3476 return sprintf(buf, "0x%08x\n", (int)p->status);
3477 }
3478
3479 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3480
3481 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3482 char *buf)
3483 {
3484 struct ipw2100_priv *p = d->driver_data;
3485 return sprintf(buf, "0x%08x\n", (int)p->capability);
3486 }
3487
3488 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3489
3490 #define IPW2100_REG(x) { IPW_ ##x, #x }
3491 static const struct {
3492 u32 addr;
3493 const char *name;
3494 } hw_data[] = {
3495 IPW2100_REG(REG_GP_CNTRL),
3496 IPW2100_REG(REG_GPIO),
3497 IPW2100_REG(REG_INTA),
3498 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3499 #define IPW2100_NIC(x, s) { x, #x, s }
3500 static const struct {
3501 u32 addr;
3502 const char *name;
3503 size_t size;
3504 } nic_data[] = {
3505 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3506 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3507 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3508 static const struct {
3509 u8 index;
3510 const char *name;
3511 const char *desc;
3512 } ord_data[] = {
3513 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3514 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3515 "successful Host Tx's (MSDU)"),
3516 IPW2100_ORD(STAT_TX_DIR_DATA,
3517 "successful Directed Tx's (MSDU)"),
3518 IPW2100_ORD(STAT_TX_DIR_DATA1,
3519 "successful Directed Tx's (MSDU) @ 1MB"),
3520 IPW2100_ORD(STAT_TX_DIR_DATA2,
3521 "successful Directed Tx's (MSDU) @ 2MB"),
3522 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3523 "successful Directed Tx's (MSDU) @ 5_5MB"),
3524 IPW2100_ORD(STAT_TX_DIR_DATA11,
3525 "successful Directed Tx's (MSDU) @ 11MB"),
3526 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3527 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3528 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3529 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3530 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3531 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3532 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3533 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3534 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3535 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3536 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3537 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3538 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3539 IPW2100_ORD(STAT_TX_ASSN_RESP,
3540 "successful Association response Tx's"),
3541 IPW2100_ORD(STAT_TX_REASSN,
3542 "successful Reassociation Tx's"),
3543 IPW2100_ORD(STAT_TX_REASSN_RESP,
3544 "successful Reassociation response Tx's"),
3545 IPW2100_ORD(STAT_TX_PROBE,
3546 "probes successfully transmitted"),
3547 IPW2100_ORD(STAT_TX_PROBE_RESP,
3548 "probe responses successfully transmitted"),
3549 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3550 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3551 IPW2100_ORD(STAT_TX_DISASSN,
3552 "successful Disassociation TX"),
3553 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3554 IPW2100_ORD(STAT_TX_DEAUTH,
3555 "successful Deauthentication TX"),
3556 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3557 "Total successful Tx data bytes"),
3558 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3559 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3560 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3561 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3562 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3563 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3564 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3565 "times max tries in a hop failed"),
3566 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3567 "times disassociation failed"),
3568 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3569 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3570 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3571 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3572 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3573 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3574 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3575 "directed packets at 5.5MB"),
3576 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3577 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3578 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3579 "nondirected packets at 1MB"),
3580 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3581 "nondirected packets at 2MB"),
3582 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3583 "nondirected packets at 5.5MB"),
3584 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3585 "nondirected packets at 11MB"),
3586 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3587 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3588 "Rx CTS"),
3589 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3590 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3591 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3592 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3593 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3594 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3595 IPW2100_ORD(STAT_RX_REASSN_RESP,
3596 "Reassociation response Rx's"),
3597 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3598 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3599 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3600 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3601 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3602 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3603 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3604 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3605 "Total rx data bytes received"),
3606 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3607 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3608 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3609 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3610 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3611 IPW2100_ORD(STAT_RX_DUPLICATE1,
3612 "duplicate rx packets at 1MB"),
3613 IPW2100_ORD(STAT_RX_DUPLICATE2,
3614 "duplicate rx packets at 2MB"),
3615 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3616 "duplicate rx packets at 5.5MB"),
3617 IPW2100_ORD(STAT_RX_DUPLICATE11,
3618 "duplicate rx packets at 11MB"),
3619 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3620 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3621 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3622 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3623 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3624 "rx frames with invalid protocol"),
3625 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3626 IPW2100_ORD(STAT_RX_NO_BUFFER,
3627 "rx frames rejected due to no buffer"),
3628 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3629 "rx frames dropped due to missing fragment"),
3630 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3631 "rx frames dropped due to non-sequential fragment"),
3632 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3633 "rx frames dropped due to unmatched 1st frame"),
3634 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3635 "rx frames dropped due to uncompleted frame"),
3636 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3637 "ICV errors during decryption"),
3638 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3639 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3640 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3641 "poll response timeouts"),
3642 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3643 "timeouts waiting for last {broad,multi}cast pkt"),
3644 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3645 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3646 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3647 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3648 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3649 "current calculation of % missed beacons"),
3650 IPW2100_ORD(STAT_PERCENT_RETRIES,
3651 "current calculation of % missed tx retries"),
3652 IPW2100_ORD(ASSOCIATED_AP_PTR,
3653 "0 if not associated, else pointer to AP table entry"),
3654 IPW2100_ORD(AVAILABLE_AP_CNT,
3655 "AP's decsribed in the AP table"),
3656 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3657 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3658 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3659 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3660 "failures due to response fail"),
3661 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3662 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3663 IPW2100_ORD(STAT_ROAM_INHIBIT,
3664 "times roaming was inhibited due to activity"),
3665 IPW2100_ORD(RSSI_AT_ASSN,
3666 "RSSI of associated AP at time of association"),
3667 IPW2100_ORD(STAT_ASSN_CAUSE1,
3668 "reassociation: no probe response or TX on hop"),
3669 IPW2100_ORD(STAT_ASSN_CAUSE2,
3670 "reassociation: poor tx/rx quality"),
3671 IPW2100_ORD(STAT_ASSN_CAUSE3,
3672 "reassociation: tx/rx quality (excessive AP load"),
3673 IPW2100_ORD(STAT_ASSN_CAUSE4,
3674 "reassociation: AP RSSI level"),
3675 IPW2100_ORD(STAT_ASSN_CAUSE5,
3676 "reassociations due to load leveling"),
3677 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3678 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3679 "times authentication response failed"),
3680 IPW2100_ORD(STATION_TABLE_CNT,
3681 "entries in association table"),
3682 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3683 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3684 IPW2100_ORD(COUNTRY_CODE,
3685 "IEEE country code as recv'd from beacon"),
3686 IPW2100_ORD(COUNTRY_CHANNELS,
3687 "channels suported by country"),
3688 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3689 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3690 IPW2100_ORD(ANTENNA_DIVERSITY,
3691 "TRUE if antenna diversity is disabled"),
3692 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3693 IPW2100_ORD(OUR_FREQ,
3694 "current radio freq lower digits - channel ID"),
3695 IPW2100_ORD(RTC_TIME, "current RTC time"),
3696 IPW2100_ORD(PORT_TYPE, "operating mode"),
3697 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3698 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3699 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3700 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3701 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3702 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3703 IPW2100_ORD(CAPABILITIES,
3704 "Management frame capability field"),
3705 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3706 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3707 IPW2100_ORD(RTS_THRESHOLD,
3708 "Min packet length for RTS handshaking"),
3709 IPW2100_ORD(INT_MODE, "International mode"),
3710 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3711 "protocol frag threshold"),
3712 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3713 "EEPROM offset in SRAM"),
3714 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3715 "EEPROM size in SRAM"),
3716 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3717 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3718 "EEPROM IBSS 11b channel set"),
3719 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3720 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3721 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3722 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3723 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3724
3725 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3726 char *buf)
3727 {
3728 int i;
3729 struct ipw2100_priv *priv = dev_get_drvdata(d);
3730 struct net_device *dev = priv->net_dev;
3731 char *out = buf;
3732 u32 val = 0;
3733
3734 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3735
3736 for (i = 0; i < (sizeof(hw_data) / sizeof(*hw_data)); i++) {
3737 read_register(dev, hw_data[i].addr, &val);
3738 out += sprintf(out, "%30s [%08X] : %08X\n",
3739 hw_data[i].name, hw_data[i].addr, val);
3740 }
3741
3742 return out - buf;
3743 }
3744
3745 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3746
3747 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3748 char *buf)
3749 {
3750 struct ipw2100_priv *priv = dev_get_drvdata(d);
3751 struct net_device *dev = priv->net_dev;
3752 char *out = buf;
3753 int i;
3754
3755 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3756
3757 for (i = 0; i < (sizeof(nic_data) / sizeof(*nic_data)); i++) {
3758 u8 tmp8;
3759 u16 tmp16;
3760 u32 tmp32;
3761
3762 switch (nic_data[i].size) {
3763 case 1:
3764 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3765 out += sprintf(out, "%30s [%08X] : %02X\n",
3766 nic_data[i].name, nic_data[i].addr,
3767 tmp8);
3768 break;
3769 case 2:
3770 read_nic_word(dev, nic_data[i].addr, &tmp16);
3771 out += sprintf(out, "%30s [%08X] : %04X\n",
3772 nic_data[i].name, nic_data[i].addr,
3773 tmp16);
3774 break;
3775 case 4:
3776 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3777 out += sprintf(out, "%30s [%08X] : %08X\n",
3778 nic_data[i].name, nic_data[i].addr,
3779 tmp32);
3780 break;
3781 }
3782 }
3783 return out - buf;
3784 }
3785
3786 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3787
3788 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3789 char *buf)
3790 {
3791 struct ipw2100_priv *priv = dev_get_drvdata(d);
3792 struct net_device *dev = priv->net_dev;
3793 static unsigned long loop = 0;
3794 int len = 0;
3795 u32 buffer[4];
3796 int i;
3797 char line[81];
3798
3799 if (loop >= 0x30000)
3800 loop = 0;
3801
3802 /* sysfs provides us PAGE_SIZE buffer */
3803 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3804
3805 if (priv->snapshot[0])
3806 for (i = 0; i < 4; i++)
3807 buffer[i] =
3808 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3809 else
3810 for (i = 0; i < 4; i++)
3811 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3812
3813 if (priv->dump_raw)
3814 len += sprintf(buf + len,
3815 "%c%c%c%c"
3816 "%c%c%c%c"
3817 "%c%c%c%c"
3818 "%c%c%c%c",
3819 ((u8 *) buffer)[0x0],
3820 ((u8 *) buffer)[0x1],
3821 ((u8 *) buffer)[0x2],
3822 ((u8 *) buffer)[0x3],
3823 ((u8 *) buffer)[0x4],
3824 ((u8 *) buffer)[0x5],
3825 ((u8 *) buffer)[0x6],
3826 ((u8 *) buffer)[0x7],
3827 ((u8 *) buffer)[0x8],
3828 ((u8 *) buffer)[0x9],
3829 ((u8 *) buffer)[0xa],
3830 ((u8 *) buffer)[0xb],
3831 ((u8 *) buffer)[0xc],
3832 ((u8 *) buffer)[0xd],
3833 ((u8 *) buffer)[0xe],
3834 ((u8 *) buffer)[0xf]);
3835 else
3836 len += sprintf(buf + len, "%s\n",
3837 snprint_line(line, sizeof(line),
3838 (u8 *) buffer, 16, loop));
3839 loop += 16;
3840 }
3841
3842 return len;
3843 }
3844
3845 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3846 const char *buf, size_t count)
3847 {
3848 struct ipw2100_priv *priv = dev_get_drvdata(d);
3849 struct net_device *dev = priv->net_dev;
3850 const char *p = buf;
3851
3852 (void)dev; /* kill unused-var warning for debug-only code */
3853
3854 if (count < 1)
3855 return count;
3856
3857 if (p[0] == '1' ||
3858 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3859 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3860 dev->name);
3861 priv->dump_raw = 1;
3862
3863 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3864 tolower(p[1]) == 'f')) {
3865 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3866 dev->name);
3867 priv->dump_raw = 0;
3868
3869 } else if (tolower(p[0]) == 'r') {
3870 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3871 ipw2100_snapshot_free(priv);
3872
3873 } else
3874 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3875 "reset = clear memory snapshot\n", dev->name);
3876
3877 return count;
3878 }
3879
3880 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3881
3882 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3883 char *buf)
3884 {
3885 struct ipw2100_priv *priv = dev_get_drvdata(d);
3886 u32 val = 0;
3887 int len = 0;
3888 u32 val_len;
3889 static int loop = 0;
3890
3891 if (priv->status & STATUS_RF_KILL_MASK)
3892 return 0;
3893
3894 if (loop >= sizeof(ord_data) / sizeof(*ord_data))
3895 loop = 0;
3896
3897 /* sysfs provides us PAGE_SIZE buffer */
3898 while (len < PAGE_SIZE - 128 &&
3899 loop < (sizeof(ord_data) / sizeof(*ord_data))) {
3900
3901 val_len = sizeof(u32);
3902
3903 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3904 &val_len))
3905 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3906 ord_data[loop].index,
3907 ord_data[loop].desc);
3908 else
3909 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3910 ord_data[loop].index, val,
3911 ord_data[loop].desc);
3912 loop++;
3913 }
3914
3915 return len;
3916 }
3917
3918 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3919
3920 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3921 char *buf)
3922 {
3923 struct ipw2100_priv *priv = dev_get_drvdata(d);
3924 char *out = buf;
3925
3926 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3927 priv->interrupts, priv->tx_interrupts,
3928 priv->rx_interrupts, priv->inta_other);
3929 out += sprintf(out, "firmware resets: %d\n", priv->resets);
3930 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3931 #ifdef CONFIG_IPW2100_DEBUG
3932 out += sprintf(out, "packet mismatch image: %s\n",
3933 priv->snapshot[0] ? "YES" : "NO");
3934 #endif
3935
3936 return out - buf;
3937 }
3938
3939 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3940
3941 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3942 {
3943 int err;
3944
3945 if (mode == priv->ieee->iw_mode)
3946 return 0;
3947
3948 err = ipw2100_disable_adapter(priv);
3949 if (err) {
3950 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3951 priv->net_dev->name, err);
3952 return err;
3953 }
3954
3955 switch (mode) {
3956 case IW_MODE_INFRA:
3957 priv->net_dev->type = ARPHRD_ETHER;
3958 break;
3959 case IW_MODE_ADHOC:
3960 priv->net_dev->type = ARPHRD_ETHER;
3961 break;
3962 #ifdef CONFIG_IPW2100_MONITOR
3963 case IW_MODE_MONITOR:
3964 priv->last_mode = priv->ieee->iw_mode;
3965 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3966 break;
3967 #endif /* CONFIG_IPW2100_MONITOR */
3968 }
3969
3970 priv->ieee->iw_mode = mode;
3971
3972 #ifdef CONFIG_PM
3973 /* Indicate ipw2100_download_firmware download firmware
3974 * from disk instead of memory. */
3975 ipw2100_firmware.version = 0;
3976 #endif
3977
3978 printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3979 priv->reset_backoff = 0;
3980 schedule_reset(priv);
3981
3982 return 0;
3983 }
3984
3985 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3986 char *buf)
3987 {
3988 struct ipw2100_priv *priv = dev_get_drvdata(d);
3989 int len = 0;
3990
3991 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3992
3993 if (priv->status & STATUS_ASSOCIATED)
3994 len += sprintf(buf + len, "connected: %lu\n",
3995 get_seconds() - priv->connect_start);
3996 else
3997 len += sprintf(buf + len, "not connected\n");
3998
3999 DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
4000 DUMP_VAR(status, "08lx");
4001 DUMP_VAR(config, "08lx");
4002 DUMP_VAR(capability, "08lx");
4003
4004 len +=
4005 sprintf(buf + len, "last_rtc: %lu\n",
4006 (unsigned long)priv->last_rtc);
4007
4008 DUMP_VAR(fatal_error, "d");
4009 DUMP_VAR(stop_hang_check, "d");
4010 DUMP_VAR(stop_rf_kill, "d");
4011 DUMP_VAR(messages_sent, "d");
4012
4013 DUMP_VAR(tx_pend_stat.value, "d");
4014 DUMP_VAR(tx_pend_stat.hi, "d");
4015
4016 DUMP_VAR(tx_free_stat.value, "d");
4017 DUMP_VAR(tx_free_stat.lo, "d");
4018
4019 DUMP_VAR(msg_free_stat.value, "d");
4020 DUMP_VAR(msg_free_stat.lo, "d");
4021
4022 DUMP_VAR(msg_pend_stat.value, "d");
4023 DUMP_VAR(msg_pend_stat.hi, "d");
4024
4025 DUMP_VAR(fw_pend_stat.value, "d");
4026 DUMP_VAR(fw_pend_stat.hi, "d");
4027
4028 DUMP_VAR(txq_stat.value, "d");
4029 DUMP_VAR(txq_stat.lo, "d");
4030
4031 DUMP_VAR(ieee->scans, "d");
4032 DUMP_VAR(reset_backoff, "d");
4033
4034 return len;
4035 }
4036
4037 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4038
4039 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4040 char *buf)
4041 {
4042 struct ipw2100_priv *priv = dev_get_drvdata(d);
4043 char essid[IW_ESSID_MAX_SIZE + 1];
4044 u8 bssid[ETH_ALEN];
4045 u32 chan = 0;
4046 char *out = buf;
4047 int length;
4048 int ret;
4049
4050 if (priv->status & STATUS_RF_KILL_MASK)
4051 return 0;
4052
4053 memset(essid, 0, sizeof(essid));
4054 memset(bssid, 0, sizeof(bssid));
4055
4056 length = IW_ESSID_MAX_SIZE;
4057 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4058 if (ret)
4059 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4060 __LINE__);
4061
4062 length = sizeof(bssid);
4063 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4064 bssid, &length);
4065 if (ret)
4066 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4067 __LINE__);
4068
4069 length = sizeof(u32);
4070 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4071 if (ret)
4072 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4073 __LINE__);
4074
4075 out += sprintf(out, "ESSID: %s\n", essid);
4076 out += sprintf(out, "BSSID: %02x:%02x:%02x:%02x:%02x:%02x\n",
4077 bssid[0], bssid[1], bssid[2],
4078 bssid[3], bssid[4], bssid[5]);
4079 out += sprintf(out, "Channel: %d\n", chan);
4080
4081 return out - buf;
4082 }
4083
4084 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4085
4086 #ifdef CONFIG_IPW2100_DEBUG
4087 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4088 {
4089 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4090 }
4091
4092 static ssize_t store_debug_level(struct device_driver *d,
4093 const char *buf, size_t count)
4094 {
4095 char *p = (char *)buf;
4096 u32 val;
4097
4098 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4099 p++;
4100 if (p[0] == 'x' || p[0] == 'X')
4101 p++;
4102 val = simple_strtoul(p, &p, 16);
4103 } else
4104 val = simple_strtoul(p, &p, 10);
4105 if (p == buf)
4106 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4107 else
4108 ipw2100_debug_level = val;
4109
4110 return strnlen(buf, count);
4111 }
4112
4113 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4114 store_debug_level);
4115 #endif /* CONFIG_IPW2100_DEBUG */
4116
4117 static ssize_t show_fatal_error(struct device *d,
4118 struct device_attribute *attr, char *buf)
4119 {
4120 struct ipw2100_priv *priv = dev_get_drvdata(d);
4121 char *out = buf;
4122 int i;
4123
4124 if (priv->fatal_error)
4125 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4126 else
4127 out += sprintf(out, "0\n");
4128
4129 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4130 if (!priv->fatal_errors[(priv->fatal_index - i) %
4131 IPW2100_ERROR_QUEUE])
4132 continue;
4133
4134 out += sprintf(out, "%d. 0x%08X\n", i,
4135 priv->fatal_errors[(priv->fatal_index - i) %
4136 IPW2100_ERROR_QUEUE]);
4137 }
4138
4139 return out - buf;
4140 }
4141
4142 static ssize_t store_fatal_error(struct device *d,
4143 struct device_attribute *attr, const char *buf,
4144 size_t count)
4145 {
4146 struct ipw2100_priv *priv = dev_get_drvdata(d);
4147 schedule_reset(priv);
4148 return count;
4149 }
4150
4151 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4152 store_fatal_error);
4153
4154 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4155 char *buf)
4156 {
4157 struct ipw2100_priv *priv = dev_get_drvdata(d);
4158 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4159 }
4160
4161 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4162 const char *buf, size_t count)
4163 {
4164 struct ipw2100_priv *priv = dev_get_drvdata(d);
4165 struct net_device *dev = priv->net_dev;
4166 char buffer[] = "00000000";
4167 unsigned long len =
4168 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4169 unsigned long val;
4170 char *p = buffer;
4171
4172 (void)dev; /* kill unused-var warning for debug-only code */
4173
4174 IPW_DEBUG_INFO("enter\n");
4175
4176 strncpy(buffer, buf, len);
4177 buffer[len] = 0;
4178
4179 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4180 p++;
4181 if (p[0] == 'x' || p[0] == 'X')
4182 p++;
4183 val = simple_strtoul(p, &p, 16);
4184 } else
4185 val = simple_strtoul(p, &p, 10);
4186 if (p == buffer) {
4187 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4188 } else {
4189 priv->ieee->scan_age = val;
4190 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4191 }
4192
4193 IPW_DEBUG_INFO("exit\n");
4194 return len;
4195 }
4196
4197 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4198
4199 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4200 char *buf)
4201 {
4202 /* 0 - RF kill not enabled
4203 1 - SW based RF kill active (sysfs)
4204 2 - HW based RF kill active
4205 3 - Both HW and SW baed RF kill active */
4206 struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4207 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4208 (rf_kill_active(priv) ? 0x2 : 0x0);
4209 return sprintf(buf, "%i\n", val);
4210 }
4211
4212 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4213 {
4214 if ((disable_radio ? 1 : 0) ==
4215 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4216 return 0;
4217
4218 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4219 disable_radio ? "OFF" : "ON");
4220
4221 mutex_lock(&priv->action_mutex);
4222
4223 if (disable_radio) {
4224 priv->status |= STATUS_RF_KILL_SW;
4225 ipw2100_down(priv);
4226 } else {
4227 priv->status &= ~STATUS_RF_KILL_SW;
4228 if (rf_kill_active(priv)) {
4229 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4230 "disabled by HW switch\n");
4231 /* Make sure the RF_KILL check timer is running */
4232 priv->stop_rf_kill = 0;
4233 cancel_delayed_work(&priv->rf_kill);
4234 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
4235 } else
4236 schedule_reset(priv);
4237 }
4238
4239 mutex_unlock(&priv->action_mutex);
4240 return 1;
4241 }
4242
4243 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4244 const char *buf, size_t count)
4245 {
4246 struct ipw2100_priv *priv = dev_get_drvdata(d);
4247 ipw_radio_kill_sw(priv, buf[0] == '1');
4248 return count;
4249 }
4250
4251 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4252
4253 static struct attribute *ipw2100_sysfs_entries[] = {
4254 &dev_attr_hardware.attr,
4255 &dev_attr_registers.attr,
4256 &dev_attr_ordinals.attr,
4257 &dev_attr_pci.attr,
4258 &dev_attr_stats.attr,
4259 &dev_attr_internals.attr,
4260 &dev_attr_bssinfo.attr,
4261 &dev_attr_memory.attr,
4262 &dev_attr_scan_age.attr,
4263 &dev_attr_fatal_error.attr,
4264 &dev_attr_rf_kill.attr,
4265 &dev_attr_cfg.attr,
4266 &dev_attr_status.attr,
4267 &dev_attr_capability.attr,
4268 NULL,
4269 };
4270
4271 static struct attribute_group ipw2100_attribute_group = {
4272 .attrs = ipw2100_sysfs_entries,
4273 };
4274
4275 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4276 {
4277 struct ipw2100_status_queue *q = &priv->status_queue;
4278
4279 IPW_DEBUG_INFO("enter\n");
4280
4281 q->size = entries * sizeof(struct ipw2100_status);
4282 q->drv =
4283 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4284 q->size, &q->nic);
4285 if (!q->drv) {
4286 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4287 return -ENOMEM;
4288 }
4289
4290 memset(q->drv, 0, q->size);
4291
4292 IPW_DEBUG_INFO("exit\n");
4293
4294 return 0;
4295 }
4296
4297 static void status_queue_free(struct ipw2100_priv *priv)
4298 {
4299 IPW_DEBUG_INFO("enter\n");
4300
4301 if (priv->status_queue.drv) {
4302 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4303 priv->status_queue.drv,
4304 priv->status_queue.nic);
4305 priv->status_queue.drv = NULL;
4306 }
4307
4308 IPW_DEBUG_INFO("exit\n");
4309 }
4310
4311 static int bd_queue_allocate(struct ipw2100_priv *priv,
4312 struct ipw2100_bd_queue *q, int entries)
4313 {
4314 IPW_DEBUG_INFO("enter\n");
4315
4316 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4317
4318 q->entries = entries;
4319 q->size = entries * sizeof(struct ipw2100_bd);
4320 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4321 if (!q->drv) {
4322 IPW_DEBUG_INFO
4323 ("can't allocate shared memory for buffer descriptors\n");
4324 return -ENOMEM;
4325 }
4326 memset(q->drv, 0, q->size);
4327
4328 IPW_DEBUG_INFO("exit\n");
4329
4330 return 0;
4331 }
4332
4333 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4334 {
4335 IPW_DEBUG_INFO("enter\n");
4336
4337 if (!q)
4338 return;
4339
4340 if (q->drv) {
4341 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4342 q->drv = NULL;
4343 }
4344
4345 IPW_DEBUG_INFO("exit\n");
4346 }
4347
4348 static void bd_queue_initialize(struct ipw2100_priv *priv,
4349 struct ipw2100_bd_queue *q, u32 base, u32 size,
4350 u32 r, u32 w)
4351 {
4352 IPW_DEBUG_INFO("enter\n");
4353
4354 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4355 (u32) q->nic);
4356
4357 write_register(priv->net_dev, base, q->nic);
4358 write_register(priv->net_dev, size, q->entries);
4359 write_register(priv->net_dev, r, q->oldest);
4360 write_register(priv->net_dev, w, q->next);
4361
4362 IPW_DEBUG_INFO("exit\n");
4363 }
4364
4365 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4366 {
4367 if (priv->workqueue) {
4368 priv->stop_rf_kill = 1;
4369 priv->stop_hang_check = 1;
4370 cancel_delayed_work(&priv->reset_work);
4371 cancel_delayed_work(&priv->security_work);
4372 cancel_delayed_work(&priv->wx_event_work);
4373 cancel_delayed_work(&priv->hang_check);
4374 cancel_delayed_work(&priv->rf_kill);
4375 destroy_workqueue(priv->workqueue);
4376 priv->workqueue = NULL;
4377 }
4378 }
4379
4380 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4381 {
4382 int i, j, err = -EINVAL;
4383 void *v;
4384 dma_addr_t p;
4385
4386 IPW_DEBUG_INFO("enter\n");
4387
4388 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4389 if (err) {
4390 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4391 priv->net_dev->name);
4392 return err;
4393 }
4394
4395 priv->tx_buffers =
4396 (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4397 sizeof(struct
4398 ipw2100_tx_packet),
4399 GFP_ATOMIC);
4400 if (!priv->tx_buffers) {
4401 printk(KERN_ERR DRV_NAME
4402 ": %s: alloc failed form tx buffers.\n",
4403 priv->net_dev->name);
4404 bd_queue_free(priv, &priv->tx_queue);
4405 return -ENOMEM;
4406 }
4407
4408 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4409 v = pci_alloc_consistent(priv->pci_dev,
4410 sizeof(struct ipw2100_data_header),
4411 &p);
4412 if (!v) {
4413 printk(KERN_ERR DRV_NAME
4414 ": %s: PCI alloc failed for tx " "buffers.\n",
4415 priv->net_dev->name);
4416 err = -ENOMEM;
4417 break;
4418 }
4419
4420 priv->tx_buffers[i].type = DATA;
4421 priv->tx_buffers[i].info.d_struct.data =
4422 (struct ipw2100_data_header *)v;
4423 priv->tx_buffers[i].info.d_struct.data_phys = p;
4424 priv->tx_buffers[i].info.d_struct.txb = NULL;
4425 }
4426
4427 if (i == TX_PENDED_QUEUE_LENGTH)
4428 return 0;
4429
4430 for (j = 0; j < i; j++) {
4431 pci_free_consistent(priv->pci_dev,
4432 sizeof(struct ipw2100_data_header),
4433 priv->tx_buffers[j].info.d_struct.data,
4434 priv->tx_buffers[j].info.d_struct.
4435 data_phys);
4436 }
4437
4438 kfree(priv->tx_buffers);
4439 priv->tx_buffers = NULL;
4440
4441 return err;
4442 }
4443
4444 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4445 {
4446 int i;
4447
4448 IPW_DEBUG_INFO("enter\n");
4449
4450 /*
4451 * reinitialize packet info lists
4452 */
4453 INIT_LIST_HEAD(&priv->fw_pend_list);
4454 INIT_STAT(&priv->fw_pend_stat);
4455
4456 /*
4457 * reinitialize lists
4458 */
4459 INIT_LIST_HEAD(&priv->tx_pend_list);
4460 INIT_LIST_HEAD(&priv->tx_free_list);
4461 INIT_STAT(&priv->tx_pend_stat);
4462 INIT_STAT(&priv->tx_free_stat);
4463
4464 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4465 /* We simply drop any SKBs that have been queued for
4466 * transmit */
4467 if (priv->tx_buffers[i].info.d_struct.txb) {
4468 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4469 txb);
4470 priv->tx_buffers[i].info.d_struct.txb = NULL;
4471 }
4472
4473 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4474 }
4475
4476 SET_STAT(&priv->tx_free_stat, i);
4477
4478 priv->tx_queue.oldest = 0;
4479 priv->tx_queue.available = priv->tx_queue.entries;
4480 priv->tx_queue.next = 0;
4481 INIT_STAT(&priv->txq_stat);
4482 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4483
4484 bd_queue_initialize(priv, &priv->tx_queue,
4485 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4486 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4487 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4488 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4489
4490 IPW_DEBUG_INFO("exit\n");
4491
4492 }
4493
4494 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4495 {
4496 int i;
4497
4498 IPW_DEBUG_INFO("enter\n");
4499
4500 bd_queue_free(priv, &priv->tx_queue);
4501
4502 if (!priv->tx_buffers)
4503 return;
4504
4505 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4506 if (priv->tx_buffers[i].info.d_struct.txb) {
4507 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4508 txb);
4509 priv->tx_buffers[i].info.d_struct.txb = NULL;
4510 }
4511 if (priv->tx_buffers[i].info.d_struct.data)
4512 pci_free_consistent(priv->pci_dev,
4513 sizeof(struct ipw2100_data_header),
4514 priv->tx_buffers[i].info.d_struct.
4515 data,
4516 priv->tx_buffers[i].info.d_struct.
4517 data_phys);
4518 }
4519
4520 kfree(priv->tx_buffers);
4521 priv->tx_buffers = NULL;
4522
4523 IPW_DEBUG_INFO("exit\n");
4524 }
4525
4526 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4527 {
4528 int i, j, err = -EINVAL;
4529
4530 IPW_DEBUG_INFO("enter\n");
4531
4532 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4533 if (err) {
4534 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4535 return err;
4536 }
4537
4538 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4539 if (err) {
4540 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4541 bd_queue_free(priv, &priv->rx_queue);
4542 return err;
4543 }
4544
4545 /*
4546 * allocate packets
4547 */
4548 priv->rx_buffers = (struct ipw2100_rx_packet *)
4549 kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4550 GFP_KERNEL);
4551 if (!priv->rx_buffers) {
4552 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4553
4554 bd_queue_free(priv, &priv->rx_queue);
4555
4556 status_queue_free(priv);
4557
4558 return -ENOMEM;
4559 }
4560
4561 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4562 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4563
4564 err = ipw2100_alloc_skb(priv, packet);
4565 if (unlikely(err)) {
4566 err = -ENOMEM;
4567 break;
4568 }
4569
4570 /* The BD holds the cache aligned address */
4571 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4572 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4573 priv->status_queue.drv[i].status_fields = 0;
4574 }
4575
4576 if (i == RX_QUEUE_LENGTH)
4577 return 0;
4578
4579 for (j = 0; j < i; j++) {
4580 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4581 sizeof(struct ipw2100_rx_packet),
4582 PCI_DMA_FROMDEVICE);
4583 dev_kfree_skb(priv->rx_buffers[j].skb);
4584 }
4585
4586 kfree(priv->rx_buffers);
4587 priv->rx_buffers = NULL;
4588
4589 bd_queue_free(priv, &priv->rx_queue);
4590
4591 status_queue_free(priv);
4592
4593 return err;
4594 }
4595
4596 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4597 {
4598 IPW_DEBUG_INFO("enter\n");
4599
4600 priv->rx_queue.oldest = 0;
4601 priv->rx_queue.available = priv->rx_queue.entries - 1;
4602 priv->rx_queue.next = priv->rx_queue.entries - 1;
4603
4604 INIT_STAT(&priv->rxq_stat);
4605 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4606
4607 bd_queue_initialize(priv, &priv->rx_queue,
4608 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4609 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4610 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4611 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4612
4613 /* set up the status queue */
4614 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4615 priv->status_queue.nic);
4616
4617 IPW_DEBUG_INFO("exit\n");
4618 }
4619
4620 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4621 {
4622 int i;
4623
4624 IPW_DEBUG_INFO("enter\n");
4625
4626 bd_queue_free(priv, &priv->rx_queue);
4627 status_queue_free(priv);
4628
4629 if (!priv->rx_buffers)
4630 return;
4631
4632 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4633 if (priv->rx_buffers[i].rxp) {
4634 pci_unmap_single(priv->pci_dev,
4635 priv->rx_buffers[i].dma_addr,
4636 sizeof(struct ipw2100_rx),
4637 PCI_DMA_FROMDEVICE);
4638 dev_kfree_skb(priv->rx_buffers[i].skb);
4639 }
4640 }
4641
4642 kfree(priv->rx_buffers);
4643 priv->rx_buffers = NULL;
4644
4645 IPW_DEBUG_INFO("exit\n");
4646 }
4647
4648 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4649 {
4650 u32 length = ETH_ALEN;
4651 u8 mac[ETH_ALEN];
4652
4653 int err;
4654
4655 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4656 if (err) {
4657 IPW_DEBUG_INFO("MAC address read failed\n");
4658 return -EIO;
4659 }
4660 IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4661 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4662
4663 memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4664
4665 return 0;
4666 }
4667
4668 /********************************************************************
4669 *
4670 * Firmware Commands
4671 *
4672 ********************************************************************/
4673
4674 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4675 {
4676 struct host_command cmd = {
4677 .host_command = ADAPTER_ADDRESS,
4678 .host_command_sequence = 0,
4679 .host_command_length = ETH_ALEN
4680 };
4681 int err;
4682
4683 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4684
4685 IPW_DEBUG_INFO("enter\n");
4686
4687 if (priv->config & CFG_CUSTOM_MAC) {
4688 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4689 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4690 } else
4691 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4692 ETH_ALEN);
4693
4694 err = ipw2100_hw_send_command(priv, &cmd);
4695
4696 IPW_DEBUG_INFO("exit\n");
4697 return err;
4698 }
4699
4700 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4701 int batch_mode)
4702 {
4703 struct host_command cmd = {
4704 .host_command = PORT_TYPE,
4705 .host_command_sequence = 0,
4706 .host_command_length = sizeof(u32)
4707 };
4708 int err;
4709
4710 switch (port_type) {
4711 case IW_MODE_INFRA:
4712 cmd.host_command_parameters[0] = IPW_BSS;
4713 break;
4714 case IW_MODE_ADHOC:
4715 cmd.host_command_parameters[0] = IPW_IBSS;
4716 break;
4717 }
4718
4719 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4720 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4721
4722 if (!batch_mode) {
4723 err = ipw2100_disable_adapter(priv);
4724 if (err) {
4725 printk(KERN_ERR DRV_NAME
4726 ": %s: Could not disable adapter %d\n",
4727 priv->net_dev->name, err);
4728 return err;
4729 }
4730 }
4731
4732 /* send cmd to firmware */
4733 err = ipw2100_hw_send_command(priv, &cmd);
4734
4735 if (!batch_mode)
4736 ipw2100_enable_adapter(priv);
4737
4738 return err;
4739 }
4740
4741 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4742 int batch_mode)
4743 {
4744 struct host_command cmd = {
4745 .host_command = CHANNEL,
4746 .host_command_sequence = 0,
4747 .host_command_length = sizeof(u32)
4748 };
4749 int err;
4750
4751 cmd.host_command_parameters[0] = channel;
4752
4753 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4754
4755 /* If BSS then we don't support channel selection */
4756 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4757 return 0;
4758
4759 if ((channel != 0) &&
4760 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4761 return -EINVAL;
4762
4763 if (!batch_mode) {
4764 err = ipw2100_disable_adapter(priv);
4765 if (err)
4766 return err;
4767 }
4768
4769 err = ipw2100_hw_send_command(priv, &cmd);
4770 if (err) {
4771 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4772 return err;
4773 }
4774
4775 if (channel)
4776 priv->config |= CFG_STATIC_CHANNEL;
4777 else
4778 priv->config &= ~CFG_STATIC_CHANNEL;
4779
4780 priv->channel = channel;
4781
4782 if (!batch_mode) {
4783 err = ipw2100_enable_adapter(priv);
4784 if (err)
4785 return err;
4786 }
4787
4788 return 0;
4789 }
4790
4791 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4792 {
4793 struct host_command cmd = {
4794 .host_command = SYSTEM_CONFIG,
4795 .host_command_sequence = 0,
4796 .host_command_length = 12,
4797 };
4798 u32 ibss_mask, len = sizeof(u32);
4799 int err;
4800
4801 /* Set system configuration */
4802
4803 if (!batch_mode) {
4804 err = ipw2100_disable_adapter(priv);
4805 if (err)
4806 return err;
4807 }
4808
4809 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4810 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4811
4812 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4813 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4814
4815 if (!(priv->config & CFG_LONG_PREAMBLE))
4816 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4817
4818 err = ipw2100_get_ordinal(priv,
4819 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4820 &ibss_mask, &len);
4821 if (err)
4822 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4823
4824 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4825 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4826
4827 /* 11b only */
4828 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4829
4830 err = ipw2100_hw_send_command(priv, &cmd);
4831 if (err)
4832 return err;
4833
4834 /* If IPv6 is configured in the kernel then we don't want to filter out all
4835 * of the multicast packets as IPv6 needs some. */
4836 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4837 cmd.host_command = ADD_MULTICAST;
4838 cmd.host_command_sequence = 0;
4839 cmd.host_command_length = 0;
4840
4841 ipw2100_hw_send_command(priv, &cmd);
4842 #endif
4843 if (!batch_mode) {
4844 err = ipw2100_enable_adapter(priv);
4845 if (err)
4846 return err;
4847 }
4848
4849 return 0;
4850 }
4851
4852 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4853 int batch_mode)
4854 {
4855 struct host_command cmd = {
4856 .host_command = BASIC_TX_RATES,
4857 .host_command_sequence = 0,
4858 .host_command_length = 4
4859 };
4860 int err;
4861
4862 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4863
4864 if (!batch_mode) {
4865 err = ipw2100_disable_adapter(priv);
4866 if (err)
4867 return err;
4868 }
4869
4870 /* Set BASIC TX Rate first */
4871 ipw2100_hw_send_command(priv, &cmd);
4872
4873 /* Set TX Rate */
4874 cmd.host_command = TX_RATES;
4875 ipw2100_hw_send_command(priv, &cmd);
4876
4877 /* Set MSDU TX Rate */
4878 cmd.host_command = MSDU_TX_RATES;
4879 ipw2100_hw_send_command(priv, &cmd);
4880
4881 if (!batch_mode) {
4882 err = ipw2100_enable_adapter(priv);
4883 if (err)
4884 return err;
4885 }
4886
4887 priv->tx_rates = rate;
4888
4889 return 0;
4890 }
4891
4892 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4893 {
4894 struct host_command cmd = {
4895 .host_command = POWER_MODE,
4896 .host_command_sequence = 0,
4897 .host_command_length = 4
4898 };
4899 int err;
4900
4901 cmd.host_command_parameters[0] = power_level;
4902
4903 err = ipw2100_hw_send_command(priv, &cmd);
4904 if (err)
4905 return err;
4906
4907 if (power_level == IPW_POWER_MODE_CAM)
4908 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4909 else
4910 priv->power_mode = IPW_POWER_ENABLED | power_level;
4911
4912 #ifdef CONFIG_IPW2100_TX_POWER
4913 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4914 /* Set beacon interval */
4915 cmd.host_command = TX_POWER_INDEX;
4916 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4917
4918 err = ipw2100_hw_send_command(priv, &cmd);
4919 if (err)
4920 return err;
4921 }
4922 #endif
4923
4924 return 0;
4925 }
4926
4927 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4928 {
4929 struct host_command cmd = {
4930 .host_command = RTS_THRESHOLD,
4931 .host_command_sequence = 0,
4932 .host_command_length = 4
4933 };
4934 int err;
4935
4936 if (threshold & RTS_DISABLED)
4937 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4938 else
4939 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4940
4941 err = ipw2100_hw_send_command(priv, &cmd);
4942 if (err)
4943 return err;
4944
4945 priv->rts_threshold = threshold;
4946
4947 return 0;
4948 }
4949
4950 #if 0
4951 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4952 u32 threshold, int batch_mode)
4953 {
4954 struct host_command cmd = {
4955 .host_command = FRAG_THRESHOLD,
4956 .host_command_sequence = 0,
4957 .host_command_length = 4,
4958 .host_command_parameters[0] = 0,
4959 };
4960 int err;
4961
4962 if (!batch_mode) {
4963 err = ipw2100_disable_adapter(priv);
4964 if (err)
4965 return err;
4966 }
4967
4968 if (threshold == 0)
4969 threshold = DEFAULT_FRAG_THRESHOLD;
4970 else {
4971 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4972 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4973 }
4974
4975 cmd.host_command_parameters[0] = threshold;
4976
4977 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4978
4979 err = ipw2100_hw_send_command(priv, &cmd);
4980
4981 if (!batch_mode)
4982 ipw2100_enable_adapter(priv);
4983
4984 if (!err)
4985 priv->frag_threshold = threshold;
4986
4987 return err;
4988 }
4989 #endif
4990
4991 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4992 {
4993 struct host_command cmd = {
4994 .host_command = SHORT_RETRY_LIMIT,
4995 .host_command_sequence = 0,
4996 .host_command_length = 4
4997 };
4998 int err;
4999
5000 cmd.host_command_parameters[0] = retry;
5001
5002 err = ipw2100_hw_send_command(priv, &cmd);
5003 if (err)
5004 return err;
5005
5006 priv->short_retry_limit = retry;
5007
5008 return 0;
5009 }
5010
5011 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5012 {
5013 struct host_command cmd = {
5014 .host_command = LONG_RETRY_LIMIT,
5015 .host_command_sequence = 0,
5016 .host_command_length = 4
5017 };
5018 int err;
5019
5020 cmd.host_command_parameters[0] = retry;
5021
5022 err = ipw2100_hw_send_command(priv, &cmd);
5023 if (err)
5024 return err;
5025
5026 priv->long_retry_limit = retry;
5027
5028 return 0;
5029 }
5030
5031 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5032 int batch_mode)
5033 {
5034 struct host_command cmd = {
5035 .host_command = MANDATORY_BSSID,
5036 .host_command_sequence = 0,
5037 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5038 };
5039 int err;
5040
5041 #ifdef CONFIG_IPW2100_DEBUG
5042 if (bssid != NULL)
5043 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
5044 bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
5045 bssid[5]);
5046 else
5047 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5048 #endif
5049 /* if BSSID is empty then we disable mandatory bssid mode */
5050 if (bssid != NULL)
5051 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5052
5053 if (!batch_mode) {
5054 err = ipw2100_disable_adapter(priv);
5055 if (err)
5056 return err;
5057 }
5058
5059 err = ipw2100_hw_send_command(priv, &cmd);
5060
5061 if (!batch_mode)
5062 ipw2100_enable_adapter(priv);
5063
5064 return err;
5065 }
5066
5067 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5068 {
5069 struct host_command cmd = {
5070 .host_command = DISASSOCIATION_BSSID,
5071 .host_command_sequence = 0,
5072 .host_command_length = ETH_ALEN
5073 };
5074 int err;
5075 int len;
5076
5077 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5078
5079 len = ETH_ALEN;
5080 /* The Firmware currently ignores the BSSID and just disassociates from
5081 * the currently associated AP -- but in the off chance that a future
5082 * firmware does use the BSSID provided here, we go ahead and try and
5083 * set it to the currently associated AP's BSSID */
5084 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5085
5086 err = ipw2100_hw_send_command(priv, &cmd);
5087
5088 return err;
5089 }
5090
5091 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5092 struct ipw2100_wpa_assoc_frame *, int)
5093 __attribute__ ((unused));
5094
5095 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5096 struct ipw2100_wpa_assoc_frame *wpa_frame,
5097 int batch_mode)
5098 {
5099 struct host_command cmd = {
5100 .host_command = SET_WPA_IE,
5101 .host_command_sequence = 0,
5102 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5103 };
5104 int err;
5105
5106 IPW_DEBUG_HC("SET_WPA_IE\n");
5107
5108 if (!batch_mode) {
5109 err = ipw2100_disable_adapter(priv);
5110 if (err)
5111 return err;
5112 }
5113
5114 memcpy(cmd.host_command_parameters, wpa_frame,
5115 sizeof(struct ipw2100_wpa_assoc_frame));
5116
5117 err = ipw2100_hw_send_command(priv, &cmd);
5118
5119 if (!batch_mode) {
5120 if (ipw2100_enable_adapter(priv))
5121 err = -EIO;
5122 }
5123
5124 return err;
5125 }
5126
5127 struct security_info_params {
5128 u32 allowed_ciphers;
5129 u16 version;
5130 u8 auth_mode;
5131 u8 replay_counters_number;
5132 u8 unicast_using_group;
5133 } __attribute__ ((packed));
5134
5135 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5136 int auth_mode,
5137 int security_level,
5138 int unicast_using_group,
5139 int batch_mode)
5140 {
5141 struct host_command cmd = {
5142 .host_command = SET_SECURITY_INFORMATION,
5143 .host_command_sequence = 0,
5144 .host_command_length = sizeof(struct security_info_params)
5145 };
5146 struct security_info_params *security =
5147 (struct security_info_params *)&cmd.host_command_parameters;
5148 int err;
5149 memset(security, 0, sizeof(*security));
5150
5151 /* If shared key AP authentication is turned on, then we need to
5152 * configure the firmware to try and use it.
5153 *
5154 * Actual data encryption/decryption is handled by the host. */
5155 security->auth_mode = auth_mode;
5156 security->unicast_using_group = unicast_using_group;
5157
5158 switch (security_level) {
5159 default:
5160 case SEC_LEVEL_0:
5161 security->allowed_ciphers = IPW_NONE_CIPHER;
5162 break;
5163 case SEC_LEVEL_1:
5164 security->allowed_ciphers = IPW_WEP40_CIPHER |
5165 IPW_WEP104_CIPHER;
5166 break;
5167 case SEC_LEVEL_2:
5168 security->allowed_ciphers = IPW_WEP40_CIPHER |
5169 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5170 break;
5171 case SEC_LEVEL_2_CKIP:
5172 security->allowed_ciphers = IPW_WEP40_CIPHER |
5173 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5174 break;
5175 case SEC_LEVEL_3:
5176 security->allowed_ciphers = IPW_WEP40_CIPHER |
5177 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5178 break;
5179 }
5180
5181 IPW_DEBUG_HC
5182 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5183 security->auth_mode, security->allowed_ciphers, security_level);
5184
5185 security->replay_counters_number = 0;
5186
5187 if (!batch_mode) {
5188 err = ipw2100_disable_adapter(priv);
5189 if (err)
5190 return err;
5191 }
5192
5193 err = ipw2100_hw_send_command(priv, &cmd);
5194
5195 if (!batch_mode)
5196 ipw2100_enable_adapter(priv);
5197
5198 return err;
5199 }
5200
5201 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5202 {
5203 struct host_command cmd = {
5204 .host_command = TX_POWER_INDEX,
5205 .host_command_sequence = 0,
5206 .host_command_length = 4
5207 };
5208 int err = 0;
5209 u32 tmp = tx_power;
5210
5211 if (tx_power != IPW_TX_POWER_DEFAULT)
5212 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5213 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5214
5215 cmd.host_command_parameters[0] = tmp;
5216
5217 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5218 err = ipw2100_hw_send_command(priv, &cmd);
5219 if (!err)
5220 priv->tx_power = tx_power;
5221
5222 return 0;
5223 }
5224
5225 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5226 u32 interval, int batch_mode)
5227 {
5228 struct host_command cmd = {
5229 .host_command = BEACON_INTERVAL,
5230 .host_command_sequence = 0,
5231 .host_command_length = 4
5232 };
5233 int err;
5234
5235 cmd.host_command_parameters[0] = interval;
5236
5237 IPW_DEBUG_INFO("enter\n");
5238
5239 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5240 if (!batch_mode) {
5241 err = ipw2100_disable_adapter(priv);
5242 if (err)
5243 return err;
5244 }
5245
5246 ipw2100_hw_send_command(priv, &cmd);
5247
5248 if (!batch_mode) {
5249 err = ipw2100_enable_adapter(priv);
5250 if (err)
5251 return err;
5252 }
5253 }
5254
5255 IPW_DEBUG_INFO("exit\n");
5256
5257 return 0;
5258 }
5259
5260 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5261 {
5262 ipw2100_tx_initialize(priv);
5263 ipw2100_rx_initialize(priv);
5264 ipw2100_msg_initialize(priv);
5265 }
5266
5267 void ipw2100_queues_free(struct ipw2100_priv *priv)
5268 {
5269 ipw2100_tx_free(priv);
5270 ipw2100_rx_free(priv);
5271 ipw2100_msg_free(priv);
5272 }
5273
5274 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5275 {
5276 if (ipw2100_tx_allocate(priv) ||
5277 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5278 goto fail;
5279
5280 return 0;
5281
5282 fail:
5283 ipw2100_tx_free(priv);
5284 ipw2100_rx_free(priv);
5285 ipw2100_msg_free(priv);
5286 return -ENOMEM;
5287 }
5288
5289 #define IPW_PRIVACY_CAPABLE 0x0008
5290
5291 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5292 int batch_mode)
5293 {
5294 struct host_command cmd = {
5295 .host_command = WEP_FLAGS,
5296 .host_command_sequence = 0,
5297 .host_command_length = 4
5298 };
5299 int err;
5300
5301 cmd.host_command_parameters[0] = flags;
5302
5303 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5304
5305 if (!batch_mode) {
5306 err = ipw2100_disable_adapter(priv);
5307 if (err) {
5308 printk(KERN_ERR DRV_NAME
5309 ": %s: Could not disable adapter %d\n",
5310 priv->net_dev->name, err);
5311 return err;
5312 }
5313 }
5314
5315 /* send cmd to firmware */
5316 err = ipw2100_hw_send_command(priv, &cmd);
5317
5318 if (!batch_mode)
5319 ipw2100_enable_adapter(priv);
5320
5321 return err;
5322 }
5323
5324 struct ipw2100_wep_key {
5325 u8 idx;
5326 u8 len;
5327 u8 key[13];
5328 };
5329
5330 /* Macros to ease up priting WEP keys */
5331 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5332 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5333 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5334 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5335
5336 /**
5337 * Set a the wep key
5338 *
5339 * @priv: struct to work on
5340 * @idx: index of the key we want to set
5341 * @key: ptr to the key data to set
5342 * @len: length of the buffer at @key
5343 * @batch_mode: FIXME perform the operation in batch mode, not
5344 * disabling the device.
5345 *
5346 * @returns 0 if OK, < 0 errno code on error.
5347 *
5348 * Fill out a command structure with the new wep key, length an
5349 * index and send it down the wire.
5350 */
5351 static int ipw2100_set_key(struct ipw2100_priv *priv,
5352 int idx, char *key, int len, int batch_mode)
5353 {
5354 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5355 struct host_command cmd = {
5356 .host_command = WEP_KEY_INFO,
5357 .host_command_sequence = 0,
5358 .host_command_length = sizeof(struct ipw2100_wep_key),
5359 };
5360 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5361 int err;
5362
5363 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5364 idx, keylen, len);
5365
5366 /* NOTE: We don't check cached values in case the firmware was reset
5367 * or some other problem is occurring. If the user is setting the key,
5368 * then we push the change */
5369
5370 wep_key->idx = idx;
5371 wep_key->len = keylen;
5372
5373 if (keylen) {
5374 memcpy(wep_key->key, key, len);
5375 memset(wep_key->key + len, 0, keylen - len);
5376 }
5377
5378 /* Will be optimized out on debug not being configured in */
5379 if (keylen == 0)
5380 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5381 priv->net_dev->name, wep_key->idx);
5382 else if (keylen == 5)
5383 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5384 priv->net_dev->name, wep_key->idx, wep_key->len,
5385 WEP_STR_64(wep_key->key));
5386 else
5387 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5388 "\n",
5389 priv->net_dev->name, wep_key->idx, wep_key->len,
5390 WEP_STR_128(wep_key->key));
5391
5392 if (!batch_mode) {
5393 err = ipw2100_disable_adapter(priv);
5394 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5395 if (err) {
5396 printk(KERN_ERR DRV_NAME
5397 ": %s: Could not disable adapter %d\n",
5398 priv->net_dev->name, err);
5399 return err;
5400 }
5401 }
5402
5403 /* send cmd to firmware */
5404 err = ipw2100_hw_send_command(priv, &cmd);
5405
5406 if (!batch_mode) {
5407 int err2 = ipw2100_enable_adapter(priv);
5408 if (err == 0)
5409 err = err2;
5410 }
5411 return err;
5412 }
5413
5414 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5415 int idx, int batch_mode)
5416 {
5417 struct host_command cmd = {
5418 .host_command = WEP_KEY_INDEX,
5419 .host_command_sequence = 0,
5420 .host_command_length = 4,
5421 .host_command_parameters = {idx},
5422 };
5423 int err;
5424
5425 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5426
5427 if (idx < 0 || idx > 3)
5428 return -EINVAL;
5429
5430 if (!batch_mode) {
5431 err = ipw2100_disable_adapter(priv);
5432 if (err) {
5433 printk(KERN_ERR DRV_NAME
5434 ": %s: Could not disable adapter %d\n",
5435 priv->net_dev->name, err);
5436 return err;
5437 }
5438 }
5439
5440 /* send cmd to firmware */
5441 err = ipw2100_hw_send_command(priv, &cmd);
5442
5443 if (!batch_mode)
5444 ipw2100_enable_adapter(priv);
5445
5446 return err;
5447 }
5448
5449 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5450 {
5451 int i, err, auth_mode, sec_level, use_group;
5452
5453 if (!(priv->status & STATUS_RUNNING))
5454 return 0;
5455
5456 if (!batch_mode) {
5457 err = ipw2100_disable_adapter(priv);
5458 if (err)
5459 return err;
5460 }
5461
5462 if (!priv->ieee->sec.enabled) {
5463 err =
5464 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5465 SEC_LEVEL_0, 0, 1);
5466 } else {
5467 auth_mode = IPW_AUTH_OPEN;
5468 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5469 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5470 auth_mode = IPW_AUTH_SHARED;
5471 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5472 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5473 }
5474
5475 sec_level = SEC_LEVEL_0;
5476 if (priv->ieee->sec.flags & SEC_LEVEL)
5477 sec_level = priv->ieee->sec.level;
5478
5479 use_group = 0;
5480 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5481 use_group = priv->ieee->sec.unicast_uses_group;
5482
5483 err =
5484 ipw2100_set_security_information(priv, auth_mode, sec_level,
5485 use_group, 1);
5486 }
5487
5488 if (err)
5489 goto exit;
5490
5491 if (priv->ieee->sec.enabled) {
5492 for (i = 0; i < 4; i++) {
5493 if (!(priv->ieee->sec.flags & (1 << i))) {
5494 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5495 priv->ieee->sec.key_sizes[i] = 0;
5496 } else {
5497 err = ipw2100_set_key(priv, i,
5498 priv->ieee->sec.keys[i],
5499 priv->ieee->sec.
5500 key_sizes[i], 1);
5501 if (err)
5502 goto exit;
5503 }
5504 }
5505
5506 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5507 }
5508
5509 /* Always enable privacy so the Host can filter WEP packets if
5510 * encrypted data is sent up */
5511 err =
5512 ipw2100_set_wep_flags(priv,
5513 priv->ieee->sec.
5514 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5515 if (err)
5516 goto exit;
5517
5518 priv->status &= ~STATUS_SECURITY_UPDATED;
5519
5520 exit:
5521 if (!batch_mode)
5522 ipw2100_enable_adapter(priv);
5523
5524 return err;
5525 }
5526
5527 static void ipw2100_security_work(struct ipw2100_priv *priv)
5528 {
5529 /* If we happen to have reconnected before we get a chance to
5530 * process this, then update the security settings--which causes
5531 * a disassociation to occur */
5532 if (!(priv->status & STATUS_ASSOCIATED) &&
5533 priv->status & STATUS_SECURITY_UPDATED)
5534 ipw2100_configure_security(priv, 0);
5535 }
5536
5537 static void shim__set_security(struct net_device *dev,
5538 struct ieee80211_security *sec)
5539 {
5540 struct ipw2100_priv *priv = ieee80211_priv(dev);
5541 int i, force_update = 0;
5542
5543 mutex_lock(&priv->action_mutex);
5544 if (!(priv->status & STATUS_INITIALIZED))
5545 goto done;
5546
5547 for (i = 0; i < 4; i++) {
5548 if (sec->flags & (1 << i)) {
5549 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5550 if (sec->key_sizes[i] == 0)
5551 priv->ieee->sec.flags &= ~(1 << i);
5552 else
5553 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5554 sec->key_sizes[i]);
5555 if (sec->level == SEC_LEVEL_1) {
5556 priv->ieee->sec.flags |= (1 << i);
5557 priv->status |= STATUS_SECURITY_UPDATED;
5558 } else
5559 priv->ieee->sec.flags &= ~(1 << i);
5560 }
5561 }
5562
5563 if ((sec->flags & SEC_ACTIVE_KEY) &&
5564 priv->ieee->sec.active_key != sec->active_key) {
5565 if (sec->active_key <= 3) {
5566 priv->ieee->sec.active_key = sec->active_key;
5567 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5568 } else
5569 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5570
5571 priv->status |= STATUS_SECURITY_UPDATED;
5572 }
5573
5574 if ((sec->flags & SEC_AUTH_MODE) &&
5575 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5576 priv->ieee->sec.auth_mode = sec->auth_mode;
5577 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5578 priv->status |= STATUS_SECURITY_UPDATED;
5579 }
5580
5581 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5582 priv->ieee->sec.flags |= SEC_ENABLED;
5583 priv->ieee->sec.enabled = sec->enabled;
5584 priv->status |= STATUS_SECURITY_UPDATED;
5585 force_update = 1;
5586 }
5587
5588 if (sec->flags & SEC_ENCRYPT)
5589 priv->ieee->sec.encrypt = sec->encrypt;
5590
5591 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5592 priv->ieee->sec.level = sec->level;
5593 priv->ieee->sec.flags |= SEC_LEVEL;
5594 priv->status |= STATUS_SECURITY_UPDATED;
5595 }
5596
5597 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5598 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5599 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5600 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5601 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5602 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5603 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5604 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5605 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5606 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5607
5608 /* As a temporary work around to enable WPA until we figure out why
5609 * wpa_supplicant toggles the security capability of the driver, which
5610 * forces a disassocation with force_update...
5611 *
5612 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5613 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5614 ipw2100_configure_security(priv, 0);
5615 done:
5616 mutex_unlock(&priv->action_mutex);
5617 }
5618
5619 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5620 {
5621 int err;
5622 int batch_mode = 1;
5623 u8 *bssid;
5624
5625 IPW_DEBUG_INFO("enter\n");
5626
5627 err = ipw2100_disable_adapter(priv);
5628 if (err)
5629 return err;
5630 #ifdef CONFIG_IPW2100_MONITOR
5631 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5632 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5633 if (err)
5634 return err;
5635
5636 IPW_DEBUG_INFO("exit\n");
5637
5638 return 0;
5639 }
5640 #endif /* CONFIG_IPW2100_MONITOR */
5641
5642 err = ipw2100_read_mac_address(priv);
5643 if (err)
5644 return -EIO;
5645
5646 err = ipw2100_set_mac_address(priv, batch_mode);
5647 if (err)
5648 return err;
5649
5650 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5651 if (err)
5652 return err;
5653
5654 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5655 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5656 if (err)
5657 return err;
5658 }
5659
5660 err = ipw2100_system_config(priv, batch_mode);
5661 if (err)
5662 return err;
5663
5664 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5665 if (err)
5666 return err;
5667
5668 /* Default to power mode OFF */
5669 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5670 if (err)
5671 return err;
5672
5673 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5674 if (err)
5675 return err;
5676
5677 if (priv->config & CFG_STATIC_BSSID)
5678 bssid = priv->bssid;
5679 else
5680 bssid = NULL;
5681 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5682 if (err)
5683 return err;
5684
5685 if (priv->config & CFG_STATIC_ESSID)
5686 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5687 batch_mode);
5688 else
5689 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5690 if (err)
5691 return err;
5692
5693 err = ipw2100_configure_security(priv, batch_mode);
5694 if (err)
5695 return err;
5696
5697 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5698 err =
5699 ipw2100_set_ibss_beacon_interval(priv,
5700 priv->beacon_interval,
5701 batch_mode);
5702 if (err)
5703 return err;
5704
5705 err = ipw2100_set_tx_power(priv, priv->tx_power);
5706 if (err)
5707 return err;
5708 }
5709
5710 /*
5711 err = ipw2100_set_fragmentation_threshold(
5712 priv, priv->frag_threshold, batch_mode);
5713 if (err)
5714 return err;
5715 */
5716
5717 IPW_DEBUG_INFO("exit\n");
5718
5719 return 0;
5720 }
5721
5722 /*************************************************************************
5723 *
5724 * EXTERNALLY CALLED METHODS
5725 *
5726 *************************************************************************/
5727
5728 /* This method is called by the network layer -- not to be confused with
5729 * ipw2100_set_mac_address() declared above called by this driver (and this
5730 * method as well) to talk to the firmware */
5731 static int ipw2100_set_address(struct net_device *dev, void *p)
5732 {
5733 struct ipw2100_priv *priv = ieee80211_priv(dev);
5734 struct sockaddr *addr = p;
5735 int err = 0;
5736
5737 if (!is_valid_ether_addr(addr->sa_data))
5738 return -EADDRNOTAVAIL;
5739
5740 mutex_lock(&priv->action_mutex);
5741
5742 priv->config |= CFG_CUSTOM_MAC;
5743 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5744
5745 err = ipw2100_set_mac_address(priv, 0);
5746 if (err)
5747 goto done;
5748
5749 priv->reset_backoff = 0;
5750 mutex_unlock(&priv->action_mutex);
5751 ipw2100_reset_adapter(priv);
5752 return 0;
5753
5754 done:
5755 mutex_unlock(&priv->action_mutex);
5756 return err;
5757 }
5758
5759 static int ipw2100_open(struct net_device *dev)
5760 {
5761 struct ipw2100_priv *priv = ieee80211_priv(dev);
5762 unsigned long flags;
5763 IPW_DEBUG_INFO("dev->open\n");
5764
5765 spin_lock_irqsave(&priv->low_lock, flags);
5766 if (priv->status & STATUS_ASSOCIATED) {
5767 netif_carrier_on(dev);
5768 netif_start_queue(dev);
5769 }
5770 spin_unlock_irqrestore(&priv->low_lock, flags);
5771
5772 return 0;
5773 }
5774
5775 static int ipw2100_close(struct net_device *dev)
5776 {
5777 struct ipw2100_priv *priv = ieee80211_priv(dev);
5778 unsigned long flags;
5779 struct list_head *element;
5780 struct ipw2100_tx_packet *packet;
5781
5782 IPW_DEBUG_INFO("enter\n");
5783
5784 spin_lock_irqsave(&priv->low_lock, flags);
5785
5786 if (priv->status & STATUS_ASSOCIATED)
5787 netif_carrier_off(dev);
5788 netif_stop_queue(dev);
5789
5790 /* Flush the TX queue ... */
5791 while (!list_empty(&priv->tx_pend_list)) {
5792 element = priv->tx_pend_list.next;
5793 packet = list_entry(element, struct ipw2100_tx_packet, list);
5794
5795 list_del(element);
5796 DEC_STAT(&priv->tx_pend_stat);
5797
5798 ieee80211_txb_free(packet->info.d_struct.txb);
5799 packet->info.d_struct.txb = NULL;
5800
5801 list_add_tail(element, &priv->tx_free_list);
5802 INC_STAT(&priv->tx_free_stat);
5803 }
5804 spin_unlock_irqrestore(&priv->low_lock, flags);
5805
5806 IPW_DEBUG_INFO("exit\n");
5807
5808 return 0;
5809 }
5810
5811 /*
5812 * TODO: Fix this function... its just wrong
5813 */
5814 static void ipw2100_tx_timeout(struct net_device *dev)
5815 {
5816 struct ipw2100_priv *priv = ieee80211_priv(dev);
5817
5818 priv->ieee->stats.tx_errors++;
5819
5820 #ifdef CONFIG_IPW2100_MONITOR
5821 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5822 return;
5823 #endif
5824
5825 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5826 dev->name);
5827 schedule_reset(priv);
5828 }
5829
5830 /*
5831 * TODO: reimplement it so that it reads statistics
5832 * from the adapter using ordinal tables
5833 * instead of/in addition to collecting them
5834 * in the driver
5835 */
5836 static struct net_device_stats *ipw2100_stats(struct net_device *dev)
5837 {
5838 struct ipw2100_priv *priv = ieee80211_priv(dev);
5839
5840 return &priv->ieee->stats;
5841 }
5842
5843 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5844 {
5845 /* This is called when wpa_supplicant loads and closes the driver
5846 * interface. */
5847 priv->ieee->wpa_enabled = value;
5848 return 0;
5849 }
5850
5851 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5852 {
5853
5854 struct ieee80211_device *ieee = priv->ieee;
5855 struct ieee80211_security sec = {
5856 .flags = SEC_AUTH_MODE,
5857 };
5858 int ret = 0;
5859
5860 if (value & IW_AUTH_ALG_SHARED_KEY) {
5861 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5862 ieee->open_wep = 0;
5863 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5864 sec.auth_mode = WLAN_AUTH_OPEN;
5865 ieee->open_wep = 1;
5866 } else if (value & IW_AUTH_ALG_LEAP) {
5867 sec.auth_mode = WLAN_AUTH_LEAP;
5868 ieee->open_wep = 1;
5869 } else
5870 return -EINVAL;
5871
5872 if (ieee->set_security)
5873 ieee->set_security(ieee->dev, &sec);
5874 else
5875 ret = -EOPNOTSUPP;
5876
5877 return ret;
5878 }
5879
5880 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5881 char *wpa_ie, int wpa_ie_len)
5882 {
5883
5884 struct ipw2100_wpa_assoc_frame frame;
5885
5886 frame.fixed_ie_mask = 0;
5887
5888 /* copy WPA IE */
5889 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5890 frame.var_ie_len = wpa_ie_len;
5891
5892 /* make sure WPA is enabled */
5893 ipw2100_wpa_enable(priv, 1);
5894 ipw2100_set_wpa_ie(priv, &frame, 0);
5895 }
5896
5897 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5898 struct ethtool_drvinfo *info)
5899 {
5900 struct ipw2100_priv *priv = ieee80211_priv(dev);
5901 char fw_ver[64], ucode_ver[64];
5902
5903 strcpy(info->driver, DRV_NAME);
5904 strcpy(info->version, DRV_VERSION);
5905
5906 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5907 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5908
5909 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5910 fw_ver, priv->eeprom_version, ucode_ver);
5911
5912 strcpy(info->bus_info, pci_name(priv->pci_dev));
5913 }
5914
5915 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5916 {
5917 struct ipw2100_priv *priv = ieee80211_priv(dev);
5918 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5919 }
5920
5921 static const struct ethtool_ops ipw2100_ethtool_ops = {
5922 .get_link = ipw2100_ethtool_get_link,
5923 .get_drvinfo = ipw_ethtool_get_drvinfo,
5924 };
5925
5926 static void ipw2100_hang_check(void *adapter)
5927 {
5928 struct ipw2100_priv *priv = adapter;
5929 unsigned long flags;
5930 u32 rtc = 0xa5a5a5a5;
5931 u32 len = sizeof(rtc);
5932 int restart = 0;
5933
5934 spin_lock_irqsave(&priv->low_lock, flags);
5935
5936 if (priv->fatal_error != 0) {
5937 /* If fatal_error is set then we need to restart */
5938 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5939 priv->net_dev->name);
5940
5941 restart = 1;
5942 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5943 (rtc == priv->last_rtc)) {
5944 /* Check if firmware is hung */
5945 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5946 priv->net_dev->name);
5947
5948 restart = 1;
5949 }
5950
5951 if (restart) {
5952 /* Kill timer */
5953 priv->stop_hang_check = 1;
5954 priv->hangs++;
5955
5956 /* Restart the NIC */
5957 schedule_reset(priv);
5958 }
5959
5960 priv->last_rtc = rtc;
5961
5962 if (!priv->stop_hang_check)
5963 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5964
5965 spin_unlock_irqrestore(&priv->low_lock, flags);
5966 }
5967
5968 static void ipw2100_rf_kill(void *adapter)
5969 {
5970 struct ipw2100_priv *priv = adapter;
5971 unsigned long flags;
5972
5973 spin_lock_irqsave(&priv->low_lock, flags);
5974
5975 if (rf_kill_active(priv)) {
5976 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5977 if (!priv->stop_rf_kill)
5978 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
5979 goto exit_unlock;
5980 }
5981
5982 /* RF Kill is now disabled, so bring the device back up */
5983
5984 if (!(priv->status & STATUS_RF_KILL_MASK)) {
5985 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5986 "device\n");
5987 schedule_reset(priv);
5988 } else
5989 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
5990 "enabled\n");
5991
5992 exit_unlock:
5993 spin_unlock_irqrestore(&priv->low_lock, flags);
5994 }
5995
5996 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
5997
5998 /* Look into using netdev destructor to shutdown ieee80211? */
5999
6000 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6001 void __iomem * base_addr,
6002 unsigned long mem_start,
6003 unsigned long mem_len)
6004 {
6005 struct ipw2100_priv *priv;
6006 struct net_device *dev;
6007
6008 dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6009 if (!dev)
6010 return NULL;
6011 priv = ieee80211_priv(dev);
6012 priv->ieee = netdev_priv(dev);
6013 priv->pci_dev = pci_dev;
6014 priv->net_dev = dev;
6015
6016 priv->ieee->hard_start_xmit = ipw2100_tx;
6017 priv->ieee->set_security = shim__set_security;
6018
6019 priv->ieee->perfect_rssi = -20;
6020 priv->ieee->worst_rssi = -85;
6021
6022 dev->open = ipw2100_open;
6023 dev->stop = ipw2100_close;
6024 dev->init = ipw2100_net_init;
6025 dev->get_stats = ipw2100_stats;
6026 dev->ethtool_ops = &ipw2100_ethtool_ops;
6027 dev->tx_timeout = ipw2100_tx_timeout;
6028 dev->wireless_handlers = &ipw2100_wx_handler_def;
6029 priv->wireless_data.ieee80211 = priv->ieee;
6030 dev->wireless_data = &priv->wireless_data;
6031 dev->set_mac_address = ipw2100_set_address;
6032 dev->watchdog_timeo = 3 * HZ;
6033 dev->irq = 0;
6034
6035 dev->base_addr = (unsigned long)base_addr;
6036 dev->mem_start = mem_start;
6037 dev->mem_end = dev->mem_start + mem_len - 1;
6038
6039 /* NOTE: We don't use the wireless_handlers hook
6040 * in dev as the system will start throwing WX requests
6041 * to us before we're actually initialized and it just
6042 * ends up causing problems. So, we just handle
6043 * the WX extensions through the ipw2100_ioctl interface */
6044
6045 /* memset() puts everything to 0, so we only have explicitely set
6046 * those values that need to be something else */
6047
6048 /* If power management is turned on, default to AUTO mode */
6049 priv->power_mode = IPW_POWER_AUTO;
6050
6051 #ifdef CONFIG_IPW2100_MONITOR
6052 priv->config |= CFG_CRC_CHECK;
6053 #endif
6054 priv->ieee->wpa_enabled = 0;
6055 priv->ieee->drop_unencrypted = 0;
6056 priv->ieee->privacy_invoked = 0;
6057 priv->ieee->ieee802_1x = 1;
6058
6059 /* Set module parameters */
6060 switch (mode) {
6061 case 1:
6062 priv->ieee->iw_mode = IW_MODE_ADHOC;
6063 break;
6064 #ifdef CONFIG_IPW2100_MONITOR
6065 case 2:
6066 priv->ieee->iw_mode = IW_MODE_MONITOR;
6067 break;
6068 #endif
6069 default:
6070 case 0:
6071 priv->ieee->iw_mode = IW_MODE_INFRA;
6072 break;
6073 }
6074
6075 if (disable == 1)
6076 priv->status |= STATUS_RF_KILL_SW;
6077
6078 if (channel != 0 &&
6079 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6080 priv->config |= CFG_STATIC_CHANNEL;
6081 priv->channel = channel;
6082 }
6083
6084 if (associate)
6085 priv->config |= CFG_ASSOCIATE;
6086
6087 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6088 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6089 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6090 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6091 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6092 priv->tx_power = IPW_TX_POWER_DEFAULT;
6093 priv->tx_rates = DEFAULT_TX_RATES;
6094
6095 strcpy(priv->nick, "ipw2100");
6096
6097 spin_lock_init(&priv->low_lock);
6098 mutex_init(&priv->action_mutex);
6099 mutex_init(&priv->adapter_mutex);
6100
6101 init_waitqueue_head(&priv->wait_command_queue);
6102
6103 netif_carrier_off(dev);
6104
6105 INIT_LIST_HEAD(&priv->msg_free_list);
6106 INIT_LIST_HEAD(&priv->msg_pend_list);
6107 INIT_STAT(&priv->msg_free_stat);
6108 INIT_STAT(&priv->msg_pend_stat);
6109
6110 INIT_LIST_HEAD(&priv->tx_free_list);
6111 INIT_LIST_HEAD(&priv->tx_pend_list);
6112 INIT_STAT(&priv->tx_free_stat);
6113 INIT_STAT(&priv->tx_pend_stat);
6114
6115 INIT_LIST_HEAD(&priv->fw_pend_list);
6116 INIT_STAT(&priv->fw_pend_stat);
6117
6118 priv->workqueue = create_workqueue(DRV_NAME);
6119
6120 INIT_WORK(&priv->reset_work,
6121 (void (*)(void *))ipw2100_reset_adapter, priv);
6122 INIT_WORK(&priv->security_work,
6123 (void (*)(void *))ipw2100_security_work, priv);
6124 INIT_WORK(&priv->wx_event_work,
6125 (void (*)(void *))ipw2100_wx_event_work, priv);
6126 INIT_WORK(&priv->hang_check, ipw2100_hang_check, priv);
6127 INIT_WORK(&priv->rf_kill, ipw2100_rf_kill, priv);
6128
6129 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6130 ipw2100_irq_tasklet, (unsigned long)priv);
6131
6132 /* NOTE: We do not start the deferred work for status checks yet */
6133 priv->stop_rf_kill = 1;
6134 priv->stop_hang_check = 1;
6135
6136 return dev;
6137 }
6138
6139 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6140 const struct pci_device_id *ent)
6141 {
6142 unsigned long mem_start, mem_len, mem_flags;
6143 void __iomem *base_addr = NULL;
6144 struct net_device *dev = NULL;
6145 struct ipw2100_priv *priv = NULL;
6146 int err = 0;
6147 int registered = 0;
6148 u32 val;
6149
6150 IPW_DEBUG_INFO("enter\n");
6151
6152 mem_start = pci_resource_start(pci_dev, 0);
6153 mem_len = pci_resource_len(pci_dev, 0);
6154 mem_flags = pci_resource_flags(pci_dev, 0);
6155
6156 if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6157 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6158 err = -ENODEV;
6159 goto fail;
6160 }
6161
6162 base_addr = ioremap_nocache(mem_start, mem_len);
6163 if (!base_addr) {
6164 printk(KERN_WARNING DRV_NAME
6165 "Error calling ioremap_nocache.\n");
6166 err = -EIO;
6167 goto fail;
6168 }
6169
6170 /* allocate and initialize our net_device */
6171 dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6172 if (!dev) {
6173 printk(KERN_WARNING DRV_NAME
6174 "Error calling ipw2100_alloc_device.\n");
6175 err = -ENOMEM;
6176 goto fail;
6177 }
6178
6179 /* set up PCI mappings for device */
6180 err = pci_enable_device(pci_dev);
6181 if (err) {
6182 printk(KERN_WARNING DRV_NAME
6183 "Error calling pci_enable_device.\n");
6184 return err;
6185 }
6186
6187 priv = ieee80211_priv(dev);
6188
6189 pci_set_master(pci_dev);
6190 pci_set_drvdata(pci_dev, priv);
6191
6192 err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6193 if (err) {
6194 printk(KERN_WARNING DRV_NAME
6195 "Error calling pci_set_dma_mask.\n");
6196 pci_disable_device(pci_dev);
6197 return err;
6198 }
6199
6200 err = pci_request_regions(pci_dev, DRV_NAME);
6201 if (err) {
6202 printk(KERN_WARNING DRV_NAME
6203 "Error calling pci_request_regions.\n");
6204 pci_disable_device(pci_dev);
6205 return err;
6206 }
6207
6208 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6209 * PCI Tx retries from interfering with C3 CPU state */
6210 pci_read_config_dword(pci_dev, 0x40, &val);
6211 if ((val & 0x0000ff00) != 0)
6212 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6213
6214 pci_set_power_state(pci_dev, PCI_D0);
6215
6216 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6217 printk(KERN_WARNING DRV_NAME
6218 "Device not found via register read.\n");
6219 err = -ENODEV;
6220 goto fail;
6221 }
6222
6223 SET_NETDEV_DEV(dev, &pci_dev->dev);
6224
6225 /* Force interrupts to be shut off on the device */
6226 priv->status |= STATUS_INT_ENABLED;
6227 ipw2100_disable_interrupts(priv);
6228
6229 /* Allocate and initialize the Tx/Rx queues and lists */
6230 if (ipw2100_queues_allocate(priv)) {
6231 printk(KERN_WARNING DRV_NAME
6232 "Error calilng ipw2100_queues_allocate.\n");
6233 err = -ENOMEM;
6234 goto fail;
6235 }
6236 ipw2100_queues_initialize(priv);
6237
6238 err = request_irq(pci_dev->irq,
6239 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6240 if (err) {
6241 printk(KERN_WARNING DRV_NAME
6242 "Error calling request_irq: %d.\n", pci_dev->irq);
6243 goto fail;
6244 }
6245 dev->irq = pci_dev->irq;
6246
6247 IPW_DEBUG_INFO("Attempting to register device...\n");
6248
6249 SET_MODULE_OWNER(dev);
6250
6251 printk(KERN_INFO DRV_NAME
6252 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6253
6254 /* Bring up the interface. Pre 0.46, after we registered the
6255 * network device we would call ipw2100_up. This introduced a race
6256 * condition with newer hotplug configurations (network was coming
6257 * up and making calls before the device was initialized).
6258 *
6259 * If we called ipw2100_up before we registered the device, then the
6260 * device name wasn't registered. So, we instead use the net_dev->init
6261 * member to call a function that then just turns and calls ipw2100_up.
6262 * net_dev->init is called after name allocation but before the
6263 * notifier chain is called */
6264 err = register_netdev(dev);
6265 if (err) {
6266 printk(KERN_WARNING DRV_NAME
6267 "Error calling register_netdev.\n");
6268 goto fail;
6269 }
6270
6271 mutex_lock(&priv->action_mutex);
6272 registered = 1;
6273
6274 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6275
6276 /* perform this after register_netdev so that dev->name is set */
6277 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6278 if (err)
6279 goto fail_unlock;
6280
6281 /* If the RF Kill switch is disabled, go ahead and complete the
6282 * startup sequence */
6283 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6284 /* Enable the adapter - sends HOST_COMPLETE */
6285 if (ipw2100_enable_adapter(priv)) {
6286 printk(KERN_WARNING DRV_NAME
6287 ": %s: failed in call to enable adapter.\n",
6288 priv->net_dev->name);
6289 ipw2100_hw_stop_adapter(priv);
6290 err = -EIO;
6291 goto fail_unlock;
6292 }
6293
6294 /* Start a scan . . . */
6295 ipw2100_set_scan_options(priv);
6296 ipw2100_start_scan(priv);
6297 }
6298
6299 IPW_DEBUG_INFO("exit\n");
6300
6301 priv->status |= STATUS_INITIALIZED;
6302
6303 mutex_unlock(&priv->action_mutex);
6304
6305 return 0;
6306
6307 fail_unlock:
6308 mutex_unlock(&priv->action_mutex);
6309
6310 fail:
6311 if (dev) {
6312 if (registered)
6313 unregister_netdev(dev);
6314
6315 ipw2100_hw_stop_adapter(priv);
6316
6317 ipw2100_disable_interrupts(priv);
6318
6319 if (dev->irq)
6320 free_irq(dev->irq, priv);
6321
6322 ipw2100_kill_workqueue(priv);
6323
6324 /* These are safe to call even if they weren't allocated */
6325 ipw2100_queues_free(priv);
6326 sysfs_remove_group(&pci_dev->dev.kobj,
6327 &ipw2100_attribute_group);
6328
6329 free_ieee80211(dev);
6330 pci_set_drvdata(pci_dev, NULL);
6331 }
6332
6333 if (base_addr)
6334 iounmap(base_addr);
6335
6336 pci_release_regions(pci_dev);
6337 pci_disable_device(pci_dev);
6338
6339 return err;
6340 }
6341
6342 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6343 {
6344 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6345 struct net_device *dev;
6346
6347 if (priv) {
6348 mutex_lock(&priv->action_mutex);
6349
6350 priv->status &= ~STATUS_INITIALIZED;
6351
6352 dev = priv->net_dev;
6353 sysfs_remove_group(&pci_dev->dev.kobj,
6354 &ipw2100_attribute_group);
6355
6356 #ifdef CONFIG_PM
6357 if (ipw2100_firmware.version)
6358 ipw2100_release_firmware(priv, &ipw2100_firmware);
6359 #endif
6360 /* Take down the hardware */
6361 ipw2100_down(priv);
6362
6363 /* Release the mutex so that the network subsystem can
6364 * complete any needed calls into the driver... */
6365 mutex_unlock(&priv->action_mutex);
6366
6367 /* Unregister the device first - this results in close()
6368 * being called if the device is open. If we free storage
6369 * first, then close() will crash. */
6370 unregister_netdev(dev);
6371
6372 /* ipw2100_down will ensure that there is no more pending work
6373 * in the workqueue's, so we can safely remove them now. */
6374 ipw2100_kill_workqueue(priv);
6375
6376 ipw2100_queues_free(priv);
6377
6378 /* Free potential debugging firmware snapshot */
6379 ipw2100_snapshot_free(priv);
6380
6381 if (dev->irq)
6382 free_irq(dev->irq, priv);
6383
6384 if (dev->base_addr)
6385 iounmap((void __iomem *)dev->base_addr);
6386
6387 free_ieee80211(dev);
6388 }
6389
6390 pci_release_regions(pci_dev);
6391 pci_disable_device(pci_dev);
6392
6393 IPW_DEBUG_INFO("exit\n");
6394 }
6395
6396 #ifdef CONFIG_PM
6397 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6398 {
6399 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6400 struct net_device *dev = priv->net_dev;
6401
6402 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6403
6404 mutex_lock(&priv->action_mutex);
6405 if (priv->status & STATUS_INITIALIZED) {
6406 /* Take down the device; powers it off, etc. */
6407 ipw2100_down(priv);
6408 }
6409
6410 /* Remove the PRESENT state of the device */
6411 netif_device_detach(dev);
6412
6413 pci_save_state(pci_dev);
6414 pci_disable_device(pci_dev);
6415 pci_set_power_state(pci_dev, PCI_D3hot);
6416
6417 mutex_unlock(&priv->action_mutex);
6418
6419 return 0;
6420 }
6421
6422 static int ipw2100_resume(struct pci_dev *pci_dev)
6423 {
6424 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6425 struct net_device *dev = priv->net_dev;
6426 u32 val;
6427
6428 if (IPW2100_PM_DISABLED)
6429 return 0;
6430
6431 mutex_lock(&priv->action_mutex);
6432
6433 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6434
6435 pci_set_power_state(pci_dev, PCI_D0);
6436 pci_enable_device(pci_dev);
6437 pci_restore_state(pci_dev);
6438
6439 /*
6440 * Suspend/Resume resets the PCI configuration space, so we have to
6441 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6442 * from interfering with C3 CPU state. pci_restore_state won't help
6443 * here since it only restores the first 64 bytes pci config header.
6444 */
6445 pci_read_config_dword(pci_dev, 0x40, &val);
6446 if ((val & 0x0000ff00) != 0)
6447 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6448
6449 /* Set the device back into the PRESENT state; this will also wake
6450 * the queue of needed */
6451 netif_device_attach(dev);
6452
6453 /* Bring the device back up */
6454 if (!(priv->status & STATUS_RF_KILL_SW))
6455 ipw2100_up(priv, 0);
6456
6457 mutex_unlock(&priv->action_mutex);
6458
6459 return 0;
6460 }
6461 #endif
6462
6463 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6464
6465 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6466 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6467 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6468 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6469 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6470 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6471 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6472 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6473 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6474 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6475 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6476 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6477 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6478 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6479
6480 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6481 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6482 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6483 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6484 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6485
6486 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6487 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6488 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6489 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6490 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6491 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6492 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6493
6494 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6495
6496 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6497 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6498 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6499 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6500 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6501 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6502 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6503
6504 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6505 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6506 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6507 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6508 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6509 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6510
6511 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6512 {0,},
6513 };
6514
6515 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6516
6517 static struct pci_driver ipw2100_pci_driver = {
6518 .name = DRV_NAME,
6519 .id_table = ipw2100_pci_id_table,
6520 .probe = ipw2100_pci_init_one,
6521 .remove = __devexit_p(ipw2100_pci_remove_one),
6522 #ifdef CONFIG_PM
6523 .suspend = ipw2100_suspend,
6524 .resume = ipw2100_resume,
6525 #endif
6526 };
6527
6528 /**
6529 * Initialize the ipw2100 driver/module
6530 *
6531 * @returns 0 if ok, < 0 errno node con error.
6532 *
6533 * Note: we cannot init the /proc stuff until the PCI driver is there,
6534 * or we risk an unlikely race condition on someone accessing
6535 * uninitialized data in the PCI dev struct through /proc.
6536 */
6537 static int __init ipw2100_init(void)
6538 {
6539 int ret;
6540
6541 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6542 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6543
6544 ret = pci_register_driver(&ipw2100_pci_driver);
6545 if (ret)
6546 goto out;
6547
6548 set_acceptable_latency("ipw2100", INFINITE_LATENCY);
6549 #ifdef CONFIG_IPW2100_DEBUG
6550 ipw2100_debug_level = debug;
6551 ret = driver_create_file(&ipw2100_pci_driver.driver,
6552 &driver_attr_debug_level);
6553 #endif
6554
6555 out:
6556 return ret;
6557 }
6558
6559 /**
6560 * Cleanup ipw2100 driver registration
6561 */
6562 static void __exit ipw2100_exit(void)
6563 {
6564 /* FIXME: IPG: check that we have no instances of the devices open */
6565 #ifdef CONFIG_IPW2100_DEBUG
6566 driver_remove_file(&ipw2100_pci_driver.driver,
6567 &driver_attr_debug_level);
6568 #endif
6569 pci_unregister_driver(&ipw2100_pci_driver);
6570 remove_acceptable_latency("ipw2100");
6571 }
6572
6573 module_init(ipw2100_init);
6574 module_exit(ipw2100_exit);
6575
6576 #define WEXT_USECHANNELS 1
6577
6578 static const long ipw2100_frequencies[] = {
6579 2412, 2417, 2422, 2427,
6580 2432, 2437, 2442, 2447,
6581 2452, 2457, 2462, 2467,
6582 2472, 2484
6583 };
6584
6585 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6586 sizeof(ipw2100_frequencies[0]))
6587
6588 static const long ipw2100_rates_11b[] = {
6589 1000000,
6590 2000000,
6591 5500000,
6592 11000000
6593 };
6594
6595 #define RATE_COUNT (sizeof(ipw2100_rates_11b) / sizeof(ipw2100_rates_11b[0]))
6596
6597 static int ipw2100_wx_get_name(struct net_device *dev,
6598 struct iw_request_info *info,
6599 union iwreq_data *wrqu, char *extra)
6600 {
6601 /*
6602 * This can be called at any time. No action lock required
6603 */
6604
6605 struct ipw2100_priv *priv = ieee80211_priv(dev);
6606 if (!(priv->status & STATUS_ASSOCIATED))
6607 strcpy(wrqu->name, "unassociated");
6608 else
6609 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6610
6611 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6612 return 0;
6613 }
6614
6615 static int ipw2100_wx_set_freq(struct net_device *dev,
6616 struct iw_request_info *info,
6617 union iwreq_data *wrqu, char *extra)
6618 {
6619 struct ipw2100_priv *priv = ieee80211_priv(dev);
6620 struct iw_freq *fwrq = &wrqu->freq;
6621 int err = 0;
6622
6623 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6624 return -EOPNOTSUPP;
6625
6626 mutex_lock(&priv->action_mutex);
6627 if (!(priv->status & STATUS_INITIALIZED)) {
6628 err = -EIO;
6629 goto done;
6630 }
6631
6632 /* if setting by freq convert to channel */
6633 if (fwrq->e == 1) {
6634 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6635 int f = fwrq->m / 100000;
6636 int c = 0;
6637
6638 while ((c < REG_MAX_CHANNEL) &&
6639 (f != ipw2100_frequencies[c]))
6640 c++;
6641
6642 /* hack to fall through */
6643 fwrq->e = 0;
6644 fwrq->m = c + 1;
6645 }
6646 }
6647
6648 if (fwrq->e > 0 || fwrq->m > 1000) {
6649 err = -EOPNOTSUPP;
6650 goto done;
6651 } else { /* Set the channel */
6652 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6653 err = ipw2100_set_channel(priv, fwrq->m, 0);
6654 }
6655
6656 done:
6657 mutex_unlock(&priv->action_mutex);
6658 return err;
6659 }
6660
6661 static int ipw2100_wx_get_freq(struct net_device *dev,
6662 struct iw_request_info *info,
6663 union iwreq_data *wrqu, char *extra)
6664 {
6665 /*
6666 * This can be called at any time. No action lock required
6667 */
6668
6669 struct ipw2100_priv *priv = ieee80211_priv(dev);
6670
6671 wrqu->freq.e = 0;
6672
6673 /* If we are associated, trying to associate, or have a statically
6674 * configured CHANNEL then return that; otherwise return ANY */
6675 if (priv->config & CFG_STATIC_CHANNEL ||
6676 priv->status & STATUS_ASSOCIATED)
6677 wrqu->freq.m = priv->channel;
6678 else
6679 wrqu->freq.m = 0;
6680
6681 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6682 return 0;
6683
6684 }
6685
6686 static int ipw2100_wx_set_mode(struct net_device *dev,
6687 struct iw_request_info *info,
6688 union iwreq_data *wrqu, char *extra)
6689 {
6690 struct ipw2100_priv *priv = ieee80211_priv(dev);
6691 int err = 0;
6692
6693 IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6694
6695 if (wrqu->mode == priv->ieee->iw_mode)
6696 return 0;
6697
6698 mutex_lock(&priv->action_mutex);
6699 if (!(priv->status & STATUS_INITIALIZED)) {
6700 err = -EIO;
6701 goto done;
6702 }
6703
6704 switch (wrqu->mode) {
6705 #ifdef CONFIG_IPW2100_MONITOR
6706 case IW_MODE_MONITOR:
6707 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6708 break;
6709 #endif /* CONFIG_IPW2100_MONITOR */
6710 case IW_MODE_ADHOC:
6711 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6712 break;
6713 case IW_MODE_INFRA:
6714 case IW_MODE_AUTO:
6715 default:
6716 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6717 break;
6718 }
6719
6720 done:
6721 mutex_unlock(&priv->action_mutex);
6722 return err;
6723 }
6724
6725 static int ipw2100_wx_get_mode(struct net_device *dev,
6726 struct iw_request_info *info,
6727 union iwreq_data *wrqu, char *extra)
6728 {
6729 /*
6730 * This can be called at any time. No action lock required
6731 */
6732
6733 struct ipw2100_priv *priv = ieee80211_priv(dev);
6734
6735 wrqu->mode = priv->ieee->iw_mode;
6736 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6737
6738 return 0;
6739 }
6740
6741 #define POWER_MODES 5
6742
6743 /* Values are in microsecond */
6744 static const s32 timeout_duration[POWER_MODES] = {
6745 350000,
6746 250000,
6747 75000,
6748 37000,
6749 25000,
6750 };
6751
6752 static const s32 period_duration[POWER_MODES] = {
6753 400000,
6754 700000,
6755 1000000,
6756 1000000,
6757 1000000
6758 };
6759
6760 static int ipw2100_wx_get_range(struct net_device *dev,
6761 struct iw_request_info *info,
6762 union iwreq_data *wrqu, char *extra)
6763 {
6764 /*
6765 * This can be called at any time. No action lock required
6766 */
6767
6768 struct ipw2100_priv *priv = ieee80211_priv(dev);
6769 struct iw_range *range = (struct iw_range *)extra;
6770 u16 val;
6771 int i, level;
6772
6773 wrqu->data.length = sizeof(*range);
6774 memset(range, 0, sizeof(*range));
6775
6776 /* Let's try to keep this struct in the same order as in
6777 * linux/include/wireless.h
6778 */
6779
6780 /* TODO: See what values we can set, and remove the ones we can't
6781 * set, or fill them with some default data.
6782 */
6783
6784 /* ~5 Mb/s real (802.11b) */
6785 range->throughput = 5 * 1000 * 1000;
6786
6787 // range->sensitivity; /* signal level threshold range */
6788
6789 range->max_qual.qual = 100;
6790 /* TODO: Find real max RSSI and stick here */
6791 range->max_qual.level = 0;
6792 range->max_qual.noise = 0;
6793 range->max_qual.updated = 7; /* Updated all three */
6794
6795 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6796 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6797 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6798 range->avg_qual.noise = 0;
6799 range->avg_qual.updated = 7; /* Updated all three */
6800
6801 range->num_bitrates = RATE_COUNT;
6802
6803 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6804 range->bitrate[i] = ipw2100_rates_11b[i];
6805 }
6806
6807 range->min_rts = MIN_RTS_THRESHOLD;
6808 range->max_rts = MAX_RTS_THRESHOLD;
6809 range->min_frag = MIN_FRAG_THRESHOLD;
6810 range->max_frag = MAX_FRAG_THRESHOLD;
6811
6812 range->min_pmp = period_duration[0]; /* Minimal PM period */
6813 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6814 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6815 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6816
6817 /* How to decode max/min PM period */
6818 range->pmp_flags = IW_POWER_PERIOD;
6819 /* How to decode max/min PM period */
6820 range->pmt_flags = IW_POWER_TIMEOUT;
6821 /* What PM options are supported */
6822 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6823
6824 range->encoding_size[0] = 5;
6825 range->encoding_size[1] = 13; /* Different token sizes */
6826 range->num_encoding_sizes = 2; /* Number of entry in the list */
6827 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6828 // range->encoding_login_index; /* token index for login token */
6829
6830 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6831 range->txpower_capa = IW_TXPOW_DBM;
6832 range->num_txpower = IW_MAX_TXPOWER;
6833 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6834 i < IW_MAX_TXPOWER;
6835 i++, level -=
6836 ((IPW_TX_POWER_MAX_DBM -
6837 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6838 range->txpower[i] = level / 16;
6839 } else {
6840 range->txpower_capa = 0;
6841 range->num_txpower = 0;
6842 }
6843
6844 /* Set the Wireless Extension versions */
6845 range->we_version_compiled = WIRELESS_EXT;
6846 range->we_version_source = 18;
6847
6848 // range->retry_capa; /* What retry options are supported */
6849 // range->retry_flags; /* How to decode max/min retry limit */
6850 // range->r_time_flags; /* How to decode max/min retry life */
6851 // range->min_retry; /* Minimal number of retries */
6852 // range->max_retry; /* Maximal number of retries */
6853 // range->min_r_time; /* Minimal retry lifetime */
6854 // range->max_r_time; /* Maximal retry lifetime */
6855
6856 range->num_channels = FREQ_COUNT;
6857
6858 val = 0;
6859 for (i = 0; i < FREQ_COUNT; i++) {
6860 // TODO: Include only legal frequencies for some countries
6861 // if (local->channel_mask & (1 << i)) {
6862 range->freq[val].i = i + 1;
6863 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6864 range->freq[val].e = 1;
6865 val++;
6866 // }
6867 if (val == IW_MAX_FREQUENCIES)
6868 break;
6869 }
6870 range->num_frequency = val;
6871
6872 /* Event capability (kernel + driver) */
6873 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6874 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6875 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6876
6877 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6878 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6879
6880 IPW_DEBUG_WX("GET Range\n");
6881
6882 return 0;
6883 }
6884
6885 static int ipw2100_wx_set_wap(struct net_device *dev,
6886 struct iw_request_info *info,
6887 union iwreq_data *wrqu, char *extra)
6888 {
6889 struct ipw2100_priv *priv = ieee80211_priv(dev);
6890 int err = 0;
6891
6892 static const unsigned char any[] = {
6893 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6894 };
6895 static const unsigned char off[] = {
6896 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6897 };
6898
6899 // sanity checks
6900 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6901 return -EINVAL;
6902
6903 mutex_lock(&priv->action_mutex);
6904 if (!(priv->status & STATUS_INITIALIZED)) {
6905 err = -EIO;
6906 goto done;
6907 }
6908
6909 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6910 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6911 /* we disable mandatory BSSID association */
6912 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6913 priv->config &= ~CFG_STATIC_BSSID;
6914 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6915 goto done;
6916 }
6917
6918 priv->config |= CFG_STATIC_BSSID;
6919 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6920
6921 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6922
6923 IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
6924 wrqu->ap_addr.sa_data[0] & 0xff,
6925 wrqu->ap_addr.sa_data[1] & 0xff,
6926 wrqu->ap_addr.sa_data[2] & 0xff,
6927 wrqu->ap_addr.sa_data[3] & 0xff,
6928 wrqu->ap_addr.sa_data[4] & 0xff,
6929 wrqu->ap_addr.sa_data[5] & 0xff);
6930
6931 done:
6932 mutex_unlock(&priv->action_mutex);
6933 return err;
6934 }
6935
6936 static int ipw2100_wx_get_wap(struct net_device *dev,
6937 struct iw_request_info *info,
6938 union iwreq_data *wrqu, char *extra)
6939 {
6940 /*
6941 * This can be called at any time. No action lock required
6942 */
6943
6944 struct ipw2100_priv *priv = ieee80211_priv(dev);
6945
6946 /* If we are associated, trying to associate, or have a statically
6947 * configured BSSID then return that; otherwise return ANY */
6948 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6949 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6950 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6951 } else
6952 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6953
6954 IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
6955 MAC_ARG(wrqu->ap_addr.sa_data));
6956 return 0;
6957 }
6958
6959 static int ipw2100_wx_set_essid(struct net_device *dev,
6960 struct iw_request_info *info,
6961 union iwreq_data *wrqu, char *extra)
6962 {
6963 struct ipw2100_priv *priv = ieee80211_priv(dev);
6964 char *essid = ""; /* ANY */
6965 int length = 0;
6966 int err = 0;
6967
6968 mutex_lock(&priv->action_mutex);
6969 if (!(priv->status & STATUS_INITIALIZED)) {
6970 err = -EIO;
6971 goto done;
6972 }
6973
6974 if (wrqu->essid.flags && wrqu->essid.length) {
6975 length = wrqu->essid.length;
6976 essid = extra;
6977 }
6978
6979 if (length == 0) {
6980 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6981 priv->config &= ~CFG_STATIC_ESSID;
6982 err = ipw2100_set_essid(priv, NULL, 0, 0);
6983 goto done;
6984 }
6985
6986 length = min(length, IW_ESSID_MAX_SIZE);
6987
6988 priv->config |= CFG_STATIC_ESSID;
6989
6990 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6991 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6992 err = 0;
6993 goto done;
6994 }
6995
6996 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
6997 length);
6998
6999 priv->essid_len = length;
7000 memcpy(priv->essid, essid, priv->essid_len);
7001
7002 err = ipw2100_set_essid(priv, essid, length, 0);
7003
7004 done:
7005 mutex_unlock(&priv->action_mutex);
7006 return err;
7007 }
7008
7009 static int ipw2100_wx_get_essid(struct net_device *dev,
7010 struct iw_request_info *info,
7011 union iwreq_data *wrqu, char *extra)
7012 {
7013 /*
7014 * This can be called at any time. No action lock required
7015 */
7016
7017 struct ipw2100_priv *priv = ieee80211_priv(dev);
7018
7019 /* If we are associated, trying to associate, or have a statically
7020 * configured ESSID then return that; otherwise return ANY */
7021 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7022 IPW_DEBUG_WX("Getting essid: '%s'\n",
7023 escape_essid(priv->essid, priv->essid_len));
7024 memcpy(extra, priv->essid, priv->essid_len);
7025 wrqu->essid.length = priv->essid_len;
7026 wrqu->essid.flags = 1; /* active */
7027 } else {
7028 IPW_DEBUG_WX("Getting essid: ANY\n");
7029 wrqu->essid.length = 0;
7030 wrqu->essid.flags = 0; /* active */
7031 }
7032
7033 return 0;
7034 }
7035
7036 static int ipw2100_wx_set_nick(struct net_device *dev,
7037 struct iw_request_info *info,
7038 union iwreq_data *wrqu, char *extra)
7039 {
7040 /*
7041 * This can be called at any time. No action lock required
7042 */
7043
7044 struct ipw2100_priv *priv = ieee80211_priv(dev);
7045
7046 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7047 return -E2BIG;
7048
7049 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7050 memset(priv->nick, 0, sizeof(priv->nick));
7051 memcpy(priv->nick, extra, wrqu->data.length);
7052
7053 IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7054
7055 return 0;
7056 }
7057
7058 static int ipw2100_wx_get_nick(struct net_device *dev,
7059 struct iw_request_info *info,
7060 union iwreq_data *wrqu, char *extra)
7061 {
7062 /*
7063 * This can be called at any time. No action lock required
7064 */
7065
7066 struct ipw2100_priv *priv = ieee80211_priv(dev);
7067
7068 wrqu->data.length = strlen(priv->nick);
7069 memcpy(extra, priv->nick, wrqu->data.length);
7070 wrqu->data.flags = 1; /* active */
7071
7072 IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7073
7074 return 0;
7075 }
7076
7077 static int ipw2100_wx_set_rate(struct net_device *dev,
7078 struct iw_request_info *info,
7079 union iwreq_data *wrqu, char *extra)
7080 {
7081 struct ipw2100_priv *priv = ieee80211_priv(dev);
7082 u32 target_rate = wrqu->bitrate.value;
7083 u32 rate;
7084 int err = 0;
7085
7086 mutex_lock(&priv->action_mutex);
7087 if (!(priv->status & STATUS_INITIALIZED)) {
7088 err = -EIO;
7089 goto done;
7090 }
7091
7092 rate = 0;
7093
7094 if (target_rate == 1000000 ||
7095 (!wrqu->bitrate.fixed && target_rate > 1000000))
7096 rate |= TX_RATE_1_MBIT;
7097 if (target_rate == 2000000 ||
7098 (!wrqu->bitrate.fixed && target_rate > 2000000))
7099 rate |= TX_RATE_2_MBIT;
7100 if (target_rate == 5500000 ||
7101 (!wrqu->bitrate.fixed && target_rate > 5500000))
7102 rate |= TX_RATE_5_5_MBIT;
7103 if (target_rate == 11000000 ||
7104 (!wrqu->bitrate.fixed && target_rate > 11000000))
7105 rate |= TX_RATE_11_MBIT;
7106 if (rate == 0)
7107 rate = DEFAULT_TX_RATES;
7108
7109 err = ipw2100_set_tx_rates(priv, rate, 0);
7110
7111 IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7112 done:
7113 mutex_unlock(&priv->action_mutex);
7114 return err;
7115 }
7116
7117 static int ipw2100_wx_get_rate(struct net_device *dev,
7118 struct iw_request_info *info,
7119 union iwreq_data *wrqu, char *extra)
7120 {
7121 struct ipw2100_priv *priv = ieee80211_priv(dev);
7122 int val;
7123 int len = sizeof(val);
7124 int err = 0;
7125
7126 if (!(priv->status & STATUS_ENABLED) ||
7127 priv->status & STATUS_RF_KILL_MASK ||
7128 !(priv->status & STATUS_ASSOCIATED)) {
7129 wrqu->bitrate.value = 0;
7130 return 0;
7131 }
7132
7133 mutex_lock(&priv->action_mutex);
7134 if (!(priv->status & STATUS_INITIALIZED)) {
7135 err = -EIO;
7136 goto done;
7137 }
7138
7139 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7140 if (err) {
7141 IPW_DEBUG_WX("failed querying ordinals.\n");
7142 return err;
7143 }
7144
7145 switch (val & TX_RATE_MASK) {
7146 case TX_RATE_1_MBIT:
7147 wrqu->bitrate.value = 1000000;
7148 break;
7149 case TX_RATE_2_MBIT:
7150 wrqu->bitrate.value = 2000000;
7151 break;
7152 case TX_RATE_5_5_MBIT:
7153 wrqu->bitrate.value = 5500000;
7154 break;
7155 case TX_RATE_11_MBIT:
7156 wrqu->bitrate.value = 11000000;
7157 break;
7158 default:
7159 wrqu->bitrate.value = 0;
7160 }
7161
7162 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7163
7164 done:
7165 mutex_unlock(&priv->action_mutex);
7166 return err;
7167 }
7168
7169 static int ipw2100_wx_set_rts(struct net_device *dev,
7170 struct iw_request_info *info,
7171 union iwreq_data *wrqu, char *extra)
7172 {
7173 struct ipw2100_priv *priv = ieee80211_priv(dev);
7174 int value, err;
7175
7176 /* Auto RTS not yet supported */
7177 if (wrqu->rts.fixed == 0)
7178 return -EINVAL;
7179
7180 mutex_lock(&priv->action_mutex);
7181 if (!(priv->status & STATUS_INITIALIZED)) {
7182 err = -EIO;
7183 goto done;
7184 }
7185
7186 if (wrqu->rts.disabled)
7187 value = priv->rts_threshold | RTS_DISABLED;
7188 else {
7189 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7190 err = -EINVAL;
7191 goto done;
7192 }
7193 value = wrqu->rts.value;
7194 }
7195
7196 err = ipw2100_set_rts_threshold(priv, value);
7197
7198 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7199 done:
7200 mutex_unlock(&priv->action_mutex);
7201 return err;
7202 }
7203
7204 static int ipw2100_wx_get_rts(struct net_device *dev,
7205 struct iw_request_info *info,
7206 union iwreq_data *wrqu, char *extra)
7207 {
7208 /*
7209 * This can be called at any time. No action lock required
7210 */
7211
7212 struct ipw2100_priv *priv = ieee80211_priv(dev);
7213
7214 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7215 wrqu->rts.fixed = 1; /* no auto select */
7216
7217 /* If RTS is set to the default value, then it is disabled */
7218 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7219
7220 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7221
7222 return 0;
7223 }
7224
7225 static int ipw2100_wx_set_txpow(struct net_device *dev,
7226 struct iw_request_info *info,
7227 union iwreq_data *wrqu, char *extra)
7228 {
7229 struct ipw2100_priv *priv = ieee80211_priv(dev);
7230 int err = 0, value;
7231
7232 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7233 return -EINPROGRESS;
7234
7235 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7236 return 0;
7237
7238 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7239 return -EINVAL;
7240
7241 if (wrqu->txpower.fixed == 0)
7242 value = IPW_TX_POWER_DEFAULT;
7243 else {
7244 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7245 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7246 return -EINVAL;
7247
7248 value = wrqu->txpower.value;
7249 }
7250
7251 mutex_lock(&priv->action_mutex);
7252 if (!(priv->status & STATUS_INITIALIZED)) {
7253 err = -EIO;
7254 goto done;
7255 }
7256
7257 err = ipw2100_set_tx_power(priv, value);
7258
7259 IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7260
7261 done:
7262 mutex_unlock(&priv->action_mutex);
7263 return err;
7264 }
7265
7266 static int ipw2100_wx_get_txpow(struct net_device *dev,
7267 struct iw_request_info *info,
7268 union iwreq_data *wrqu, char *extra)
7269 {
7270 /*
7271 * This can be called at any time. No action lock required
7272 */
7273
7274 struct ipw2100_priv *priv = ieee80211_priv(dev);
7275
7276 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7277
7278 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7279 wrqu->txpower.fixed = 0;
7280 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7281 } else {
7282 wrqu->txpower.fixed = 1;
7283 wrqu->txpower.value = priv->tx_power;
7284 }
7285
7286 wrqu->txpower.flags = IW_TXPOW_DBM;
7287
7288 IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7289
7290 return 0;
7291 }
7292
7293 static int ipw2100_wx_set_frag(struct net_device *dev,
7294 struct iw_request_info *info,
7295 union iwreq_data *wrqu, char *extra)
7296 {
7297 /*
7298 * This can be called at any time. No action lock required
7299 */
7300
7301 struct ipw2100_priv *priv = ieee80211_priv(dev);
7302
7303 if (!wrqu->frag.fixed)
7304 return -EINVAL;
7305
7306 if (wrqu->frag.disabled) {
7307 priv->frag_threshold |= FRAG_DISABLED;
7308 priv->ieee->fts = DEFAULT_FTS;
7309 } else {
7310 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7311 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7312 return -EINVAL;
7313
7314 priv->ieee->fts = wrqu->frag.value & ~0x1;
7315 priv->frag_threshold = priv->ieee->fts;
7316 }
7317
7318 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7319
7320 return 0;
7321 }
7322
7323 static int ipw2100_wx_get_frag(struct net_device *dev,
7324 struct iw_request_info *info,
7325 union iwreq_data *wrqu, char *extra)
7326 {
7327 /*
7328 * This can be called at any time. No action lock required
7329 */
7330
7331 struct ipw2100_priv *priv = ieee80211_priv(dev);
7332 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7333 wrqu->frag.fixed = 0; /* no auto select */
7334 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7335
7336 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7337
7338 return 0;
7339 }
7340
7341 static int ipw2100_wx_set_retry(struct net_device *dev,
7342 struct iw_request_info *info,
7343 union iwreq_data *wrqu, char *extra)
7344 {
7345 struct ipw2100_priv *priv = ieee80211_priv(dev);
7346 int err = 0;
7347
7348 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7349 return -EINVAL;
7350
7351 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7352 return 0;
7353
7354 mutex_lock(&priv->action_mutex);
7355 if (!(priv->status & STATUS_INITIALIZED)) {
7356 err = -EIO;
7357 goto done;
7358 }
7359
7360 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7361 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7362 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7363 wrqu->retry.value);
7364 goto done;
7365 }
7366
7367 if (wrqu->retry.flags & IW_RETRY_LONG) {
7368 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7369 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7370 wrqu->retry.value);
7371 goto done;
7372 }
7373
7374 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7375 if (!err)
7376 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7377
7378 IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7379
7380 done:
7381 mutex_unlock(&priv->action_mutex);
7382 return err;
7383 }
7384
7385 static int ipw2100_wx_get_retry(struct net_device *dev,
7386 struct iw_request_info *info,
7387 union iwreq_data *wrqu, char *extra)
7388 {
7389 /*
7390 * This can be called at any time. No action lock required
7391 */
7392
7393 struct ipw2100_priv *priv = ieee80211_priv(dev);
7394
7395 wrqu->retry.disabled = 0; /* can't be disabled */
7396
7397 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7398 return -EINVAL;
7399
7400 if (wrqu->retry.flags & IW_RETRY_LONG) {
7401 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7402 wrqu->retry.value = priv->long_retry_limit;
7403 } else {
7404 wrqu->retry.flags =
7405 (priv->short_retry_limit !=
7406 priv->long_retry_limit) ?
7407 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7408
7409 wrqu->retry.value = priv->short_retry_limit;
7410 }
7411
7412 IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7413
7414 return 0;
7415 }
7416
7417 static int ipw2100_wx_set_scan(struct net_device *dev,
7418 struct iw_request_info *info,
7419 union iwreq_data *wrqu, char *extra)
7420 {
7421 struct ipw2100_priv *priv = ieee80211_priv(dev);
7422 int err = 0;
7423
7424 mutex_lock(&priv->action_mutex);
7425 if (!(priv->status & STATUS_INITIALIZED)) {
7426 err = -EIO;
7427 goto done;
7428 }
7429
7430 IPW_DEBUG_WX("Initiating scan...\n");
7431 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7432 IPW_DEBUG_WX("Start scan failed.\n");
7433
7434 /* TODO: Mark a scan as pending so when hardware initialized
7435 * a scan starts */
7436 }
7437
7438 done:
7439 mutex_unlock(&priv->action_mutex);
7440 return err;
7441 }
7442
7443 static int ipw2100_wx_get_scan(struct net_device *dev,
7444 struct iw_request_info *info,
7445 union iwreq_data *wrqu, char *extra)
7446 {
7447 /*
7448 * This can be called at any time. No action lock required
7449 */
7450
7451 struct ipw2100_priv *priv = ieee80211_priv(dev);
7452 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7453 }
7454
7455 /*
7456 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7457 */
7458 static int ipw2100_wx_set_encode(struct net_device *dev,
7459 struct iw_request_info *info,
7460 union iwreq_data *wrqu, char *key)
7461 {
7462 /*
7463 * No check of STATUS_INITIALIZED required
7464 */
7465
7466 struct ipw2100_priv *priv = ieee80211_priv(dev);
7467 return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7468 }
7469
7470 static int ipw2100_wx_get_encode(struct net_device *dev,
7471 struct iw_request_info *info,
7472 union iwreq_data *wrqu, char *key)
7473 {
7474 /*
7475 * This can be called at any time. No action lock required
7476 */
7477
7478 struct ipw2100_priv *priv = ieee80211_priv(dev);
7479 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7480 }
7481
7482 static int ipw2100_wx_set_power(struct net_device *dev,
7483 struct iw_request_info *info,
7484 union iwreq_data *wrqu, char *extra)
7485 {
7486 struct ipw2100_priv *priv = ieee80211_priv(dev);
7487 int err = 0;
7488
7489 mutex_lock(&priv->action_mutex);
7490 if (!(priv->status & STATUS_INITIALIZED)) {
7491 err = -EIO;
7492 goto done;
7493 }
7494
7495 if (wrqu->power.disabled) {
7496 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7497 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7498 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7499 goto done;
7500 }
7501
7502 switch (wrqu->power.flags & IW_POWER_MODE) {
7503 case IW_POWER_ON: /* If not specified */
7504 case IW_POWER_MODE: /* If set all mask */
7505 case IW_POWER_ALL_R: /* If explicitely state all */
7506 break;
7507 default: /* Otherwise we don't support it */
7508 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7509 wrqu->power.flags);
7510 err = -EOPNOTSUPP;
7511 goto done;
7512 }
7513
7514 /* If the user hasn't specified a power management mode yet, default
7515 * to BATTERY */
7516 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7517 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7518
7519 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7520
7521 done:
7522 mutex_unlock(&priv->action_mutex);
7523 return err;
7524
7525 }
7526
7527 static int ipw2100_wx_get_power(struct net_device *dev,
7528 struct iw_request_info *info,
7529 union iwreq_data *wrqu, char *extra)
7530 {
7531 /*
7532 * This can be called at any time. No action lock required
7533 */
7534
7535 struct ipw2100_priv *priv = ieee80211_priv(dev);
7536
7537 if (!(priv->power_mode & IPW_POWER_ENABLED))
7538 wrqu->power.disabled = 1;
7539 else {
7540 wrqu->power.disabled = 0;
7541 wrqu->power.flags = 0;
7542 }
7543
7544 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7545
7546 return 0;
7547 }
7548
7549 /*
7550 * WE-18 WPA support
7551 */
7552
7553 /* SIOCSIWGENIE */
7554 static int ipw2100_wx_set_genie(struct net_device *dev,
7555 struct iw_request_info *info,
7556 union iwreq_data *wrqu, char *extra)
7557 {
7558
7559 struct ipw2100_priv *priv = ieee80211_priv(dev);
7560 struct ieee80211_device *ieee = priv->ieee;
7561 u8 *buf;
7562
7563 if (!ieee->wpa_enabled)
7564 return -EOPNOTSUPP;
7565
7566 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7567 (wrqu->data.length && extra == NULL))
7568 return -EINVAL;
7569
7570 if (wrqu->data.length) {
7571 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
7572 if (buf == NULL)
7573 return -ENOMEM;
7574
7575 memcpy(buf, extra, wrqu->data.length);
7576 kfree(ieee->wpa_ie);
7577 ieee->wpa_ie = buf;
7578 ieee->wpa_ie_len = wrqu->data.length;
7579 } else {
7580 kfree(ieee->wpa_ie);
7581 ieee->wpa_ie = NULL;
7582 ieee->wpa_ie_len = 0;
7583 }
7584
7585 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7586
7587 return 0;
7588 }
7589
7590 /* SIOCGIWGENIE */
7591 static int ipw2100_wx_get_genie(struct net_device *dev,
7592 struct iw_request_info *info,
7593 union iwreq_data *wrqu, char *extra)
7594 {
7595 struct ipw2100_priv *priv = ieee80211_priv(dev);
7596 struct ieee80211_device *ieee = priv->ieee;
7597
7598 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7599 wrqu->data.length = 0;
7600 return 0;
7601 }
7602
7603 if (wrqu->data.length < ieee->wpa_ie_len)
7604 return -E2BIG;
7605
7606 wrqu->data.length = ieee->wpa_ie_len;
7607 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7608
7609 return 0;
7610 }
7611
7612 /* SIOCSIWAUTH */
7613 static int ipw2100_wx_set_auth(struct net_device *dev,
7614 struct iw_request_info *info,
7615 union iwreq_data *wrqu, char *extra)
7616 {
7617 struct ipw2100_priv *priv = ieee80211_priv(dev);
7618 struct ieee80211_device *ieee = priv->ieee;
7619 struct iw_param *param = &wrqu->param;
7620 struct ieee80211_crypt_data *crypt;
7621 unsigned long flags;
7622 int ret = 0;
7623
7624 switch (param->flags & IW_AUTH_INDEX) {
7625 case IW_AUTH_WPA_VERSION:
7626 case IW_AUTH_CIPHER_PAIRWISE:
7627 case IW_AUTH_CIPHER_GROUP:
7628 case IW_AUTH_KEY_MGMT:
7629 /*
7630 * ipw2200 does not use these parameters
7631 */
7632 break;
7633
7634 case IW_AUTH_TKIP_COUNTERMEASURES:
7635 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7636 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7637 break;
7638
7639 flags = crypt->ops->get_flags(crypt->priv);
7640
7641 if (param->value)
7642 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7643 else
7644 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7645
7646 crypt->ops->set_flags(flags, crypt->priv);
7647
7648 break;
7649
7650 case IW_AUTH_DROP_UNENCRYPTED:{
7651 /* HACK:
7652 *
7653 * wpa_supplicant calls set_wpa_enabled when the driver
7654 * is loaded and unloaded, regardless of if WPA is being
7655 * used. No other calls are made which can be used to
7656 * determine if encryption will be used or not prior to
7657 * association being expected. If encryption is not being
7658 * used, drop_unencrypted is set to false, else true -- we
7659 * can use this to determine if the CAP_PRIVACY_ON bit should
7660 * be set.
7661 */
7662 struct ieee80211_security sec = {
7663 .flags = SEC_ENABLED,
7664 .enabled = param->value,
7665 };
7666 priv->ieee->drop_unencrypted = param->value;
7667 /* We only change SEC_LEVEL for open mode. Others
7668 * are set by ipw_wpa_set_encryption.
7669 */
7670 if (!param->value) {
7671 sec.flags |= SEC_LEVEL;
7672 sec.level = SEC_LEVEL_0;
7673 } else {
7674 sec.flags |= SEC_LEVEL;
7675 sec.level = SEC_LEVEL_1;
7676 }
7677 if (priv->ieee->set_security)
7678 priv->ieee->set_security(priv->ieee->dev, &sec);
7679 break;
7680 }
7681
7682 case IW_AUTH_80211_AUTH_ALG:
7683 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7684 break;
7685
7686 case IW_AUTH_WPA_ENABLED:
7687 ret = ipw2100_wpa_enable(priv, param->value);
7688 break;
7689
7690 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7691 ieee->ieee802_1x = param->value;
7692 break;
7693
7694 //case IW_AUTH_ROAMING_CONTROL:
7695 case IW_AUTH_PRIVACY_INVOKED:
7696 ieee->privacy_invoked = param->value;
7697 break;
7698
7699 default:
7700 return -EOPNOTSUPP;
7701 }
7702 return ret;
7703 }
7704
7705 /* SIOCGIWAUTH */
7706 static int ipw2100_wx_get_auth(struct net_device *dev,
7707 struct iw_request_info *info,
7708 union iwreq_data *wrqu, char *extra)
7709 {
7710 struct ipw2100_priv *priv = ieee80211_priv(dev);
7711 struct ieee80211_device *ieee = priv->ieee;
7712 struct ieee80211_crypt_data *crypt;
7713 struct iw_param *param = &wrqu->param;
7714 int ret = 0;
7715
7716 switch (param->flags & IW_AUTH_INDEX) {
7717 case IW_AUTH_WPA_VERSION:
7718 case IW_AUTH_CIPHER_PAIRWISE:
7719 case IW_AUTH_CIPHER_GROUP:
7720 case IW_AUTH_KEY_MGMT:
7721 /*
7722 * wpa_supplicant will control these internally
7723 */
7724 ret = -EOPNOTSUPP;
7725 break;
7726
7727 case IW_AUTH_TKIP_COUNTERMEASURES:
7728 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7729 if (!crypt || !crypt->ops->get_flags) {
7730 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7731 "crypt not set!\n");
7732 break;
7733 }
7734
7735 param->value = (crypt->ops->get_flags(crypt->priv) &
7736 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7737
7738 break;
7739
7740 case IW_AUTH_DROP_UNENCRYPTED:
7741 param->value = ieee->drop_unencrypted;
7742 break;
7743
7744 case IW_AUTH_80211_AUTH_ALG:
7745 param->value = priv->ieee->sec.auth_mode;
7746 break;
7747
7748 case IW_AUTH_WPA_ENABLED:
7749 param->value = ieee->wpa_enabled;
7750 break;
7751
7752 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7753 param->value = ieee->ieee802_1x;
7754 break;
7755
7756 case IW_AUTH_ROAMING_CONTROL:
7757 case IW_AUTH_PRIVACY_INVOKED:
7758 param->value = ieee->privacy_invoked;
7759 break;
7760
7761 default:
7762 return -EOPNOTSUPP;
7763 }
7764 return 0;
7765 }
7766
7767 /* SIOCSIWENCODEEXT */
7768 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7769 struct iw_request_info *info,
7770 union iwreq_data *wrqu, char *extra)
7771 {
7772 struct ipw2100_priv *priv = ieee80211_priv(dev);
7773 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7774 }
7775
7776 /* SIOCGIWENCODEEXT */
7777 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7778 struct iw_request_info *info,
7779 union iwreq_data *wrqu, char *extra)
7780 {
7781 struct ipw2100_priv *priv = ieee80211_priv(dev);
7782 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7783 }
7784
7785 /* SIOCSIWMLME */
7786 static int ipw2100_wx_set_mlme(struct net_device *dev,
7787 struct iw_request_info *info,
7788 union iwreq_data *wrqu, char *extra)
7789 {
7790 struct ipw2100_priv *priv = ieee80211_priv(dev);
7791 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7792 u16 reason;
7793
7794 reason = cpu_to_le16(mlme->reason_code);
7795
7796 switch (mlme->cmd) {
7797 case IW_MLME_DEAUTH:
7798 // silently ignore
7799 break;
7800
7801 case IW_MLME_DISASSOC:
7802 ipw2100_disassociate_bssid(priv);
7803 break;
7804
7805 default:
7806 return -EOPNOTSUPP;
7807 }
7808 return 0;
7809 }
7810
7811 /*
7812 *
7813 * IWPRIV handlers
7814 *
7815 */
7816 #ifdef CONFIG_IPW2100_MONITOR
7817 static int ipw2100_wx_set_promisc(struct net_device *dev,
7818 struct iw_request_info *info,
7819 union iwreq_data *wrqu, char *extra)
7820 {
7821 struct ipw2100_priv *priv = ieee80211_priv(dev);
7822 int *parms = (int *)extra;
7823 int enable = (parms[0] > 0);
7824 int err = 0;
7825
7826 mutex_lock(&priv->action_mutex);
7827 if (!(priv->status & STATUS_INITIALIZED)) {
7828 err = -EIO;
7829 goto done;
7830 }
7831
7832 if (enable) {
7833 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7834 err = ipw2100_set_channel(priv, parms[1], 0);
7835 goto done;
7836 }
7837 priv->channel = parms[1];
7838 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7839 } else {
7840 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7841 err = ipw2100_switch_mode(priv, priv->last_mode);
7842 }
7843 done:
7844 mutex_unlock(&priv->action_mutex);
7845 return err;
7846 }
7847
7848 static int ipw2100_wx_reset(struct net_device *dev,
7849 struct iw_request_info *info,
7850 union iwreq_data *wrqu, char *extra)
7851 {
7852 struct ipw2100_priv *priv = ieee80211_priv(dev);
7853 if (priv->status & STATUS_INITIALIZED)
7854 schedule_reset(priv);
7855 return 0;
7856 }
7857
7858 #endif
7859
7860 static int ipw2100_wx_set_powermode(struct net_device *dev,
7861 struct iw_request_info *info,
7862 union iwreq_data *wrqu, char *extra)
7863 {
7864 struct ipw2100_priv *priv = ieee80211_priv(dev);
7865 int err = 0, mode = *(int *)extra;
7866
7867 mutex_lock(&priv->action_mutex);
7868 if (!(priv->status & STATUS_INITIALIZED)) {
7869 err = -EIO;
7870 goto done;
7871 }
7872
7873 if ((mode < 1) || (mode > POWER_MODES))
7874 mode = IPW_POWER_AUTO;
7875
7876 if (priv->power_mode != mode)
7877 err = ipw2100_set_power_mode(priv, mode);
7878 done:
7879 mutex_unlock(&priv->action_mutex);
7880 return err;
7881 }
7882
7883 #define MAX_POWER_STRING 80
7884 static int ipw2100_wx_get_powermode(struct net_device *dev,
7885 struct iw_request_info *info,
7886 union iwreq_data *wrqu, char *extra)
7887 {
7888 /*
7889 * This can be called at any time. No action lock required
7890 */
7891
7892 struct ipw2100_priv *priv = ieee80211_priv(dev);
7893 int level = IPW_POWER_LEVEL(priv->power_mode);
7894 s32 timeout, period;
7895
7896 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7897 snprintf(extra, MAX_POWER_STRING,
7898 "Power save level: %d (Off)", level);
7899 } else {
7900 switch (level) {
7901 case IPW_POWER_MODE_CAM:
7902 snprintf(extra, MAX_POWER_STRING,
7903 "Power save level: %d (None)", level);
7904 break;
7905 case IPW_POWER_AUTO:
7906 snprintf(extra, MAX_POWER_STRING,
7907 "Power save level: %d (Auto)", 0);
7908 break;
7909 default:
7910 timeout = timeout_duration[level - 1] / 1000;
7911 period = period_duration[level - 1] / 1000;
7912 snprintf(extra, MAX_POWER_STRING,
7913 "Power save level: %d "
7914 "(Timeout %dms, Period %dms)",
7915 level, timeout, period);
7916 }
7917 }
7918
7919 wrqu->data.length = strlen(extra) + 1;
7920
7921 return 0;
7922 }
7923
7924 static int ipw2100_wx_set_preamble(struct net_device *dev,
7925 struct iw_request_info *info,
7926 union iwreq_data *wrqu, char *extra)
7927 {
7928 struct ipw2100_priv *priv = ieee80211_priv(dev);
7929 int err, mode = *(int *)extra;
7930
7931 mutex_lock(&priv->action_mutex);
7932 if (!(priv->status & STATUS_INITIALIZED)) {
7933 err = -EIO;
7934 goto done;
7935 }
7936
7937 if (mode == 1)
7938 priv->config |= CFG_LONG_PREAMBLE;
7939 else if (mode == 0)
7940 priv->config &= ~CFG_LONG_PREAMBLE;
7941 else {
7942 err = -EINVAL;
7943 goto done;
7944 }
7945
7946 err = ipw2100_system_config(priv, 0);
7947
7948 done:
7949 mutex_unlock(&priv->action_mutex);
7950 return err;
7951 }
7952
7953 static int ipw2100_wx_get_preamble(struct net_device *dev,
7954 struct iw_request_info *info,
7955 union iwreq_data *wrqu, char *extra)
7956 {
7957 /*
7958 * This can be called at any time. No action lock required
7959 */
7960
7961 struct ipw2100_priv *priv = ieee80211_priv(dev);
7962
7963 if (priv->config & CFG_LONG_PREAMBLE)
7964 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7965 else
7966 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7967
7968 return 0;
7969 }
7970
7971 #ifdef CONFIG_IPW2100_MONITOR
7972 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7973 struct iw_request_info *info,
7974 union iwreq_data *wrqu, char *extra)
7975 {
7976 struct ipw2100_priv *priv = ieee80211_priv(dev);
7977 int err, mode = *(int *)extra;
7978
7979 mutex_lock(&priv->action_mutex);
7980 if (!(priv->status & STATUS_INITIALIZED)) {
7981 err = -EIO;
7982 goto done;
7983 }
7984
7985 if (mode == 1)
7986 priv->config |= CFG_CRC_CHECK;
7987 else if (mode == 0)
7988 priv->config &= ~CFG_CRC_CHECK;
7989 else {
7990 err = -EINVAL;
7991 goto done;
7992 }
7993 err = 0;
7994
7995 done:
7996 mutex_unlock(&priv->action_mutex);
7997 return err;
7998 }
7999
8000 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8001 struct iw_request_info *info,
8002 union iwreq_data *wrqu, char *extra)
8003 {
8004 /*
8005 * This can be called at any time. No action lock required
8006 */
8007
8008 struct ipw2100_priv *priv = ieee80211_priv(dev);
8009
8010 if (priv->config & CFG_CRC_CHECK)
8011 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8012 else
8013 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8014
8015 return 0;
8016 }
8017 #endif /* CONFIG_IPW2100_MONITOR */
8018
8019 static iw_handler ipw2100_wx_handlers[] = {
8020 NULL, /* SIOCSIWCOMMIT */
8021 ipw2100_wx_get_name, /* SIOCGIWNAME */
8022 NULL, /* SIOCSIWNWID */
8023 NULL, /* SIOCGIWNWID */
8024 ipw2100_wx_set_freq, /* SIOCSIWFREQ */
8025 ipw2100_wx_get_freq, /* SIOCGIWFREQ */
8026 ipw2100_wx_set_mode, /* SIOCSIWMODE */
8027 ipw2100_wx_get_mode, /* SIOCGIWMODE */
8028 NULL, /* SIOCSIWSENS */
8029 NULL, /* SIOCGIWSENS */
8030 NULL, /* SIOCSIWRANGE */
8031 ipw2100_wx_get_range, /* SIOCGIWRANGE */
8032 NULL, /* SIOCSIWPRIV */
8033 NULL, /* SIOCGIWPRIV */
8034 NULL, /* SIOCSIWSTATS */
8035 NULL, /* SIOCGIWSTATS */
8036 NULL, /* SIOCSIWSPY */
8037 NULL, /* SIOCGIWSPY */
8038 NULL, /* SIOCGIWTHRSPY */
8039 NULL, /* SIOCWIWTHRSPY */
8040 ipw2100_wx_set_wap, /* SIOCSIWAP */
8041 ipw2100_wx_get_wap, /* SIOCGIWAP */
8042 ipw2100_wx_set_mlme, /* SIOCSIWMLME */
8043 NULL, /* SIOCGIWAPLIST -- deprecated */
8044 ipw2100_wx_set_scan, /* SIOCSIWSCAN */
8045 ipw2100_wx_get_scan, /* SIOCGIWSCAN */
8046 ipw2100_wx_set_essid, /* SIOCSIWESSID */
8047 ipw2100_wx_get_essid, /* SIOCGIWESSID */
8048 ipw2100_wx_set_nick, /* SIOCSIWNICKN */
8049 ipw2100_wx_get_nick, /* SIOCGIWNICKN */
8050 NULL, /* -- hole -- */
8051 NULL, /* -- hole -- */
8052 ipw2100_wx_set_rate, /* SIOCSIWRATE */
8053 ipw2100_wx_get_rate, /* SIOCGIWRATE */
8054 ipw2100_wx_set_rts, /* SIOCSIWRTS */
8055 ipw2100_wx_get_rts, /* SIOCGIWRTS */
8056 ipw2100_wx_set_frag, /* SIOCSIWFRAG */
8057 ipw2100_wx_get_frag, /* SIOCGIWFRAG */
8058 ipw2100_wx_set_txpow, /* SIOCSIWTXPOW */
8059 ipw2100_wx_get_txpow, /* SIOCGIWTXPOW */
8060 ipw2100_wx_set_retry, /* SIOCSIWRETRY */
8061 ipw2100_wx_get_retry, /* SIOCGIWRETRY */
8062 ipw2100_wx_set_encode, /* SIOCSIWENCODE */
8063 ipw2100_wx_get_encode, /* SIOCGIWENCODE */
8064 ipw2100_wx_set_power, /* SIOCSIWPOWER */
8065 ipw2100_wx_get_power, /* SIOCGIWPOWER */
8066 NULL, /* -- hole -- */
8067 NULL, /* -- hole -- */
8068 ipw2100_wx_set_genie, /* SIOCSIWGENIE */
8069 ipw2100_wx_get_genie, /* SIOCGIWGENIE */
8070 ipw2100_wx_set_auth, /* SIOCSIWAUTH */
8071 ipw2100_wx_get_auth, /* SIOCGIWAUTH */
8072 ipw2100_wx_set_encodeext, /* SIOCSIWENCODEEXT */
8073 ipw2100_wx_get_encodeext, /* SIOCGIWENCODEEXT */
8074 NULL, /* SIOCSIWPMKSA */
8075 };
8076
8077 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8078 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8079 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8080 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8081 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8082 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8083 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8084 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8085
8086 static const struct iw_priv_args ipw2100_private_args[] = {
8087
8088 #ifdef CONFIG_IPW2100_MONITOR
8089 {
8090 IPW2100_PRIV_SET_MONITOR,
8091 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8092 {
8093 IPW2100_PRIV_RESET,
8094 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8095 #endif /* CONFIG_IPW2100_MONITOR */
8096
8097 {
8098 IPW2100_PRIV_SET_POWER,
8099 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8100 {
8101 IPW2100_PRIV_GET_POWER,
8102 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8103 "get_power"},
8104 {
8105 IPW2100_PRIV_SET_LONGPREAMBLE,
8106 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8107 {
8108 IPW2100_PRIV_GET_LONGPREAMBLE,
8109 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8110 #ifdef CONFIG_IPW2100_MONITOR
8111 {
8112 IPW2100_PRIV_SET_CRC_CHECK,
8113 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8114 {
8115 IPW2100_PRIV_GET_CRC_CHECK,
8116 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8117 #endif /* CONFIG_IPW2100_MONITOR */
8118 };
8119
8120 static iw_handler ipw2100_private_handler[] = {
8121 #ifdef CONFIG_IPW2100_MONITOR
8122 ipw2100_wx_set_promisc,
8123 ipw2100_wx_reset,
8124 #else /* CONFIG_IPW2100_MONITOR */
8125 NULL,
8126 NULL,
8127 #endif /* CONFIG_IPW2100_MONITOR */
8128 ipw2100_wx_set_powermode,
8129 ipw2100_wx_get_powermode,
8130 ipw2100_wx_set_preamble,
8131 ipw2100_wx_get_preamble,
8132 #ifdef CONFIG_IPW2100_MONITOR
8133 ipw2100_wx_set_crc_check,
8134 ipw2100_wx_get_crc_check,
8135 #else /* CONFIG_IPW2100_MONITOR */
8136 NULL,
8137 NULL,
8138 #endif /* CONFIG_IPW2100_MONITOR */
8139 };
8140
8141 /*
8142 * Get wireless statistics.
8143 * Called by /proc/net/wireless
8144 * Also called by SIOCGIWSTATS
8145 */
8146 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8147 {
8148 enum {
8149 POOR = 30,
8150 FAIR = 60,
8151 GOOD = 80,
8152 VERY_GOOD = 90,
8153 EXCELLENT = 95,
8154 PERFECT = 100
8155 };
8156 int rssi_qual;
8157 int tx_qual;
8158 int beacon_qual;
8159
8160 struct ipw2100_priv *priv = ieee80211_priv(dev);
8161 struct iw_statistics *wstats;
8162 u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8163 u32 ord_len = sizeof(u32);
8164
8165 if (!priv)
8166 return (struct iw_statistics *)NULL;
8167
8168 wstats = &priv->wstats;
8169
8170 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8171 * ipw2100_wx_wireless_stats seems to be called before fw is
8172 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8173 * and associated; if not associcated, the values are all meaningless
8174 * anyway, so set them all to NULL and INVALID */
8175 if (!(priv->status & STATUS_ASSOCIATED)) {
8176 wstats->miss.beacon = 0;
8177 wstats->discard.retries = 0;
8178 wstats->qual.qual = 0;
8179 wstats->qual.level = 0;
8180 wstats->qual.noise = 0;
8181 wstats->qual.updated = 7;
8182 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8183 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8184 return wstats;
8185 }
8186
8187 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8188 &missed_beacons, &ord_len))
8189 goto fail_get_ordinal;
8190
8191 /* If we don't have a connection the quality and level is 0 */
8192 if (!(priv->status & STATUS_ASSOCIATED)) {
8193 wstats->qual.qual = 0;
8194 wstats->qual.level = 0;
8195 } else {
8196 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8197 &rssi, &ord_len))
8198 goto fail_get_ordinal;
8199 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8200 if (rssi < 10)
8201 rssi_qual = rssi * POOR / 10;
8202 else if (rssi < 15)
8203 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8204 else if (rssi < 20)
8205 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8206 else if (rssi < 30)
8207 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8208 10 + GOOD;
8209 else
8210 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8211 10 + VERY_GOOD;
8212
8213 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8214 &tx_retries, &ord_len))
8215 goto fail_get_ordinal;
8216
8217 if (tx_retries > 75)
8218 tx_qual = (90 - tx_retries) * POOR / 15;
8219 else if (tx_retries > 70)
8220 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8221 else if (tx_retries > 65)
8222 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8223 else if (tx_retries > 50)
8224 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8225 15 + GOOD;
8226 else
8227 tx_qual = (50 - tx_retries) *
8228 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8229
8230 if (missed_beacons > 50)
8231 beacon_qual = (60 - missed_beacons) * POOR / 10;
8232 else if (missed_beacons > 40)
8233 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8234 10 + POOR;
8235 else if (missed_beacons > 32)
8236 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8237 18 + FAIR;
8238 else if (missed_beacons > 20)
8239 beacon_qual = (32 - missed_beacons) *
8240 (VERY_GOOD - GOOD) / 20 + GOOD;
8241 else
8242 beacon_qual = (20 - missed_beacons) *
8243 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8244
8245 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8246
8247 #ifdef CONFIG_IPW2100_DEBUG
8248 if (beacon_qual == quality)
8249 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8250 else if (tx_qual == quality)
8251 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8252 else if (quality != 100)
8253 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8254 else
8255 IPW_DEBUG_WX("Quality not clamped.\n");
8256 #endif
8257
8258 wstats->qual.qual = quality;
8259 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8260 }
8261
8262 wstats->qual.noise = 0;
8263 wstats->qual.updated = 7;
8264 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8265
8266 /* FIXME: this is percent and not a # */
8267 wstats->miss.beacon = missed_beacons;
8268
8269 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8270 &tx_failures, &ord_len))
8271 goto fail_get_ordinal;
8272 wstats->discard.retries = tx_failures;
8273
8274 return wstats;
8275
8276 fail_get_ordinal:
8277 IPW_DEBUG_WX("failed querying ordinals.\n");
8278
8279 return (struct iw_statistics *)NULL;
8280 }
8281
8282 static struct iw_handler_def ipw2100_wx_handler_def = {
8283 .standard = ipw2100_wx_handlers,
8284 .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8285 .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8286 .num_private_args = sizeof(ipw2100_private_args) /
8287 sizeof(struct iw_priv_args),
8288 .private = (iw_handler *) ipw2100_private_handler,
8289 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8290 .get_wireless_stats = ipw2100_wx_wireless_stats,
8291 };
8292
8293 static void ipw2100_wx_event_work(struct ipw2100_priv *priv)
8294 {
8295 union iwreq_data wrqu;
8296 int len = ETH_ALEN;
8297
8298 if (priv->status & STATUS_STOPPING)
8299 return;
8300
8301 mutex_lock(&priv->action_mutex);
8302
8303 IPW_DEBUG_WX("enter\n");
8304
8305 mutex_unlock(&priv->action_mutex);
8306
8307 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8308
8309 /* Fetch BSSID from the hardware */
8310 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8311 priv->status & STATUS_RF_KILL_MASK ||
8312 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8313 &priv->bssid, &len)) {
8314 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8315 } else {
8316 /* We now have the BSSID, so can finish setting to the full
8317 * associated state */
8318 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8319 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8320 priv->status &= ~STATUS_ASSOCIATING;
8321 priv->status |= STATUS_ASSOCIATED;
8322 netif_carrier_on(priv->net_dev);
8323 netif_wake_queue(priv->net_dev);
8324 }
8325
8326 if (!(priv->status & STATUS_ASSOCIATED)) {
8327 IPW_DEBUG_WX("Configuring ESSID\n");
8328 mutex_lock(&priv->action_mutex);
8329 /* This is a disassociation event, so kick the firmware to
8330 * look for another AP */
8331 if (priv->config & CFG_STATIC_ESSID)
8332 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8333 0);
8334 else
8335 ipw2100_set_essid(priv, NULL, 0, 0);
8336 mutex_unlock(&priv->action_mutex);
8337 }
8338
8339 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8340 }
8341
8342 #define IPW2100_FW_MAJOR_VERSION 1
8343 #define IPW2100_FW_MINOR_VERSION 3
8344
8345 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8346 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8347
8348 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8349 IPW2100_FW_MAJOR_VERSION)
8350
8351 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8352 "." __stringify(IPW2100_FW_MINOR_VERSION)
8353
8354 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8355
8356 /*
8357
8358 BINARY FIRMWARE HEADER FORMAT
8359
8360 offset length desc
8361 0 2 version
8362 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8363 4 4 fw_len
8364 8 4 uc_len
8365 C fw_len firmware data
8366 12 + fw_len uc_len microcode data
8367
8368 */
8369
8370 struct ipw2100_fw_header {
8371 short version;
8372 short mode;
8373 unsigned int fw_size;
8374 unsigned int uc_size;
8375 } __attribute__ ((packed));
8376
8377 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8378 {
8379 struct ipw2100_fw_header *h =
8380 (struct ipw2100_fw_header *)fw->fw_entry->data;
8381
8382 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8383 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8384 "(detected version id of %u). "
8385 "See Documentation/networking/README.ipw2100\n",
8386 h->version);
8387 return 1;
8388 }
8389
8390 fw->version = h->version;
8391 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8392 fw->fw.size = h->fw_size;
8393 fw->uc.data = fw->fw.data + h->fw_size;
8394 fw->uc.size = h->uc_size;
8395
8396 return 0;
8397 }
8398
8399 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8400 struct ipw2100_fw *fw)
8401 {
8402 char *fw_name;
8403 int rc;
8404
8405 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8406 priv->net_dev->name);
8407
8408 switch (priv->ieee->iw_mode) {
8409 case IW_MODE_ADHOC:
8410 fw_name = IPW2100_FW_NAME("-i");
8411 break;
8412 #ifdef CONFIG_IPW2100_MONITOR
8413 case IW_MODE_MONITOR:
8414 fw_name = IPW2100_FW_NAME("-p");
8415 break;
8416 #endif
8417 case IW_MODE_INFRA:
8418 default:
8419 fw_name = IPW2100_FW_NAME("");
8420 break;
8421 }
8422
8423 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8424
8425 if (rc < 0) {
8426 printk(KERN_ERR DRV_NAME ": "
8427 "%s: Firmware '%s' not available or load failed.\n",
8428 priv->net_dev->name, fw_name);
8429 return rc;
8430 }
8431 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8432 fw->fw_entry->size);
8433
8434 ipw2100_mod_firmware_load(fw);
8435
8436 return 0;
8437 }
8438
8439 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8440 struct ipw2100_fw *fw)
8441 {
8442 fw->version = 0;
8443 if (fw->fw_entry)
8444 release_firmware(fw->fw_entry);
8445 fw->fw_entry = NULL;
8446 }
8447
8448 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8449 size_t max)
8450 {
8451 char ver[MAX_FW_VERSION_LEN];
8452 u32 len = MAX_FW_VERSION_LEN;
8453 u32 tmp;
8454 int i;
8455 /* firmware version is an ascii string (max len of 14) */
8456 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8457 return -EIO;
8458 tmp = max;
8459 if (len >= max)
8460 len = max - 1;
8461 for (i = 0; i < len; i++)
8462 buf[i] = ver[i];
8463 buf[i] = '\0';
8464 return tmp;
8465 }
8466
8467 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8468 size_t max)
8469 {
8470 u32 ver;
8471 u32 len = sizeof(ver);
8472 /* microcode version is a 32 bit integer */
8473 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8474 return -EIO;
8475 return snprintf(buf, max, "%08X", ver);
8476 }
8477
8478 /*
8479 * On exit, the firmware will have been freed from the fw list
8480 */
8481 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8482 {
8483 /* firmware is constructed of N contiguous entries, each entry is
8484 * structured as:
8485 *
8486 * offset sie desc
8487 * 0 4 address to write to
8488 * 4 2 length of data run
8489 * 6 length data
8490 */
8491 unsigned int addr;
8492 unsigned short len;
8493
8494 const unsigned char *firmware_data = fw->fw.data;
8495 unsigned int firmware_data_left = fw->fw.size;
8496
8497 while (firmware_data_left > 0) {
8498 addr = *(u32 *) (firmware_data);
8499 firmware_data += 4;
8500 firmware_data_left -= 4;
8501
8502 len = *(u16 *) (firmware_data);
8503 firmware_data += 2;
8504 firmware_data_left -= 2;
8505
8506 if (len > 32) {
8507 printk(KERN_ERR DRV_NAME ": "
8508 "Invalid firmware run-length of %d bytes\n",
8509 len);
8510 return -EINVAL;
8511 }
8512
8513 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8514 firmware_data += len;
8515 firmware_data_left -= len;
8516 }
8517
8518 return 0;
8519 }
8520
8521 struct symbol_alive_response {
8522 u8 cmd_id;
8523 u8 seq_num;
8524 u8 ucode_rev;
8525 u8 eeprom_valid;
8526 u16 valid_flags;
8527 u8 IEEE_addr[6];
8528 u16 flags;
8529 u16 pcb_rev;
8530 u16 clock_settle_time; // 1us LSB
8531 u16 powerup_settle_time; // 1us LSB
8532 u16 hop_settle_time; // 1us LSB
8533 u8 date[3]; // month, day, year
8534 u8 time[2]; // hours, minutes
8535 u8 ucode_valid;
8536 };
8537
8538 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8539 struct ipw2100_fw *fw)
8540 {
8541 struct net_device *dev = priv->net_dev;
8542 const unsigned char *microcode_data = fw->uc.data;
8543 unsigned int microcode_data_left = fw->uc.size;
8544 void __iomem *reg = (void __iomem *)dev->base_addr;
8545
8546 struct symbol_alive_response response;
8547 int i, j;
8548 u8 data;
8549
8550 /* Symbol control */
8551 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8552 readl(reg);
8553 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8554 readl(reg);
8555
8556 /* HW config */
8557 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8558 readl(reg);
8559 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8560 readl(reg);
8561
8562 /* EN_CS_ACCESS bit to reset control store pointer */
8563 write_nic_byte(dev, 0x210000, 0x40);
8564 readl(reg);
8565 write_nic_byte(dev, 0x210000, 0x0);
8566 readl(reg);
8567 write_nic_byte(dev, 0x210000, 0x40);
8568 readl(reg);
8569
8570 /* copy microcode from buffer into Symbol */
8571
8572 while (microcode_data_left > 0) {
8573 write_nic_byte(dev, 0x210010, *microcode_data++);
8574 write_nic_byte(dev, 0x210010, *microcode_data++);
8575 microcode_data_left -= 2;
8576 }
8577
8578 /* EN_CS_ACCESS bit to reset the control store pointer */
8579 write_nic_byte(dev, 0x210000, 0x0);
8580 readl(reg);
8581
8582 /* Enable System (Reg 0)
8583 * first enable causes garbage in RX FIFO */
8584 write_nic_byte(dev, 0x210000, 0x0);
8585 readl(reg);
8586 write_nic_byte(dev, 0x210000, 0x80);
8587 readl(reg);
8588
8589 /* Reset External Baseband Reg */
8590 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8591 readl(reg);
8592 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8593 readl(reg);
8594
8595 /* HW Config (Reg 5) */
8596 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8597 readl(reg);
8598 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8599 readl(reg);
8600
8601 /* Enable System (Reg 0)
8602 * second enable should be OK */
8603 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8604 readl(reg);
8605 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8606
8607 /* check Symbol is enabled - upped this from 5 as it wasn't always
8608 * catching the update */
8609 for (i = 0; i < 10; i++) {
8610 udelay(10);
8611
8612 /* check Dino is enabled bit */
8613 read_nic_byte(dev, 0x210000, &data);
8614 if (data & 0x1)
8615 break;
8616 }
8617
8618 if (i == 10) {
8619 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8620 dev->name);
8621 return -EIO;
8622 }
8623
8624 /* Get Symbol alive response */
8625 for (i = 0; i < 30; i++) {
8626 /* Read alive response structure */
8627 for (j = 0;
8628 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8629 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8630
8631 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8632 break;
8633 udelay(10);
8634 }
8635
8636 if (i == 30) {
8637 printk(KERN_ERR DRV_NAME
8638 ": %s: No response from Symbol - hw not alive\n",
8639 dev->name);
8640 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8641 return -EIO;
8642 }
8643
8644 return 0;
8645 }
This page took 0.201335 seconds and 6 git commands to generate.