WorkStruct: make allyesconfig
[deliverable/linux.git] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
28
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <jkmaline@cc.hut.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
33
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
43
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
106
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
110
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
114
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
118
119 The flow of data on the TX side is as follows:
120
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124 The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/version.h>
161 #include <linux/time.h>
162 #include <linux/firmware.h>
163 #include <linux/acpi.h>
164 #include <linux/ctype.h>
165 #include <linux/latency.h>
166
167 #include "ipw2100.h"
168
169 #define IPW2100_VERSION "git-1.2.2"
170
171 #define DRV_NAME "ipw2100"
172 #define DRV_VERSION IPW2100_VERSION
173 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
174 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
175
176 /* Debugging stuff */
177 #ifdef CONFIG_IPW2100_DEBUG
178 #define CONFIG_IPW2100_RX_DEBUG /* Reception debugging */
179 #endif
180
181 MODULE_DESCRIPTION(DRV_DESCRIPTION);
182 MODULE_VERSION(DRV_VERSION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
185
186 static int debug = 0;
187 static int mode = 0;
188 static int channel = 0;
189 static int associate = 1;
190 static int disable = 0;
191 #ifdef CONFIG_PM
192 static struct ipw2100_fw ipw2100_firmware;
193 #endif
194
195 #include <linux/moduleparam.h>
196 module_param(debug, int, 0444);
197 module_param(mode, int, 0444);
198 module_param(channel, int, 0444);
199 module_param(associate, int, 0444);
200 module_param(disable, int, 0444);
201
202 MODULE_PARM_DESC(debug, "debug level");
203 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
204 MODULE_PARM_DESC(channel, "channel");
205 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
206 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
207
208 static u32 ipw2100_debug_level = IPW_DL_NONE;
209
210 #ifdef CONFIG_IPW2100_DEBUG
211 #define IPW_DEBUG(level, message...) \
212 do { \
213 if (ipw2100_debug_level & (level)) { \
214 printk(KERN_DEBUG "ipw2100: %c %s ", \
215 in_interrupt() ? 'I' : 'U', __FUNCTION__); \
216 printk(message); \
217 } \
218 } while (0)
219 #else
220 #define IPW_DEBUG(level, message...) do {} while (0)
221 #endif /* CONFIG_IPW2100_DEBUG */
222
223 #ifdef CONFIG_IPW2100_DEBUG
224 static const char *command_types[] = {
225 "undefined",
226 "unused", /* HOST_ATTENTION */
227 "HOST_COMPLETE",
228 "unused", /* SLEEP */
229 "unused", /* HOST_POWER_DOWN */
230 "unused",
231 "SYSTEM_CONFIG",
232 "unused", /* SET_IMR */
233 "SSID",
234 "MANDATORY_BSSID",
235 "AUTHENTICATION_TYPE",
236 "ADAPTER_ADDRESS",
237 "PORT_TYPE",
238 "INTERNATIONAL_MODE",
239 "CHANNEL",
240 "RTS_THRESHOLD",
241 "FRAG_THRESHOLD",
242 "POWER_MODE",
243 "TX_RATES",
244 "BASIC_TX_RATES",
245 "WEP_KEY_INFO",
246 "unused",
247 "unused",
248 "unused",
249 "unused",
250 "WEP_KEY_INDEX",
251 "WEP_FLAGS",
252 "ADD_MULTICAST",
253 "CLEAR_ALL_MULTICAST",
254 "BEACON_INTERVAL",
255 "ATIM_WINDOW",
256 "CLEAR_STATISTICS",
257 "undefined",
258 "undefined",
259 "undefined",
260 "undefined",
261 "TX_POWER_INDEX",
262 "undefined",
263 "undefined",
264 "undefined",
265 "undefined",
266 "undefined",
267 "undefined",
268 "BROADCAST_SCAN",
269 "CARD_DISABLE",
270 "PREFERRED_BSSID",
271 "SET_SCAN_OPTIONS",
272 "SCAN_DWELL_TIME",
273 "SWEEP_TABLE",
274 "AP_OR_STATION_TABLE",
275 "GROUP_ORDINALS",
276 "SHORT_RETRY_LIMIT",
277 "LONG_RETRY_LIMIT",
278 "unused", /* SAVE_CALIBRATION */
279 "unused", /* RESTORE_CALIBRATION */
280 "undefined",
281 "undefined",
282 "undefined",
283 "HOST_PRE_POWER_DOWN",
284 "unused", /* HOST_INTERRUPT_COALESCING */
285 "undefined",
286 "CARD_DISABLE_PHY_OFF",
287 "MSDU_TX_RATES" "undefined",
288 "undefined",
289 "SET_STATION_STAT_BITS",
290 "CLEAR_STATIONS_STAT_BITS",
291 "LEAP_ROGUE_MODE",
292 "SET_SECURITY_INFORMATION",
293 "DISASSOCIATION_BSSID",
294 "SET_WPA_ASS_IE"
295 };
296 #endif
297
298 /* Pre-decl until we get the code solid and then we can clean it up */
299 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
300 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
301 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
302
303 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
304 static void ipw2100_queues_free(struct ipw2100_priv *priv);
305 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
306
307 static int ipw2100_fw_download(struct ipw2100_priv *priv,
308 struct ipw2100_fw *fw);
309 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
310 struct ipw2100_fw *fw);
311 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
312 size_t max);
313 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
314 size_t max);
315 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
316 struct ipw2100_fw *fw);
317 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
318 struct ipw2100_fw *fw);
319 static void ipw2100_wx_event_work(struct work_struct *work);
320 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
321 static struct iw_handler_def ipw2100_wx_handler_def;
322
323 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
324 {
325 *val = readl((void __iomem *)(dev->base_addr + reg));
326 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
327 }
328
329 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
330 {
331 writel(val, (void __iomem *)(dev->base_addr + reg));
332 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
333 }
334
335 static inline void read_register_word(struct net_device *dev, u32 reg,
336 u16 * val)
337 {
338 *val = readw((void __iomem *)(dev->base_addr + reg));
339 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
340 }
341
342 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
343 {
344 *val = readb((void __iomem *)(dev->base_addr + reg));
345 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
346 }
347
348 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
349 {
350 writew(val, (void __iomem *)(dev->base_addr + reg));
351 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
352 }
353
354 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
355 {
356 writeb(val, (void __iomem *)(dev->base_addr + reg));
357 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
358 }
359
360 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
361 {
362 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
363 addr & IPW_REG_INDIRECT_ADDR_MASK);
364 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
365 }
366
367 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
368 {
369 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
370 addr & IPW_REG_INDIRECT_ADDR_MASK);
371 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
372 }
373
374 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
375 {
376 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
377 addr & IPW_REG_INDIRECT_ADDR_MASK);
378 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
379 }
380
381 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
382 {
383 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
384 addr & IPW_REG_INDIRECT_ADDR_MASK);
385 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
386 }
387
388 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
389 {
390 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
391 addr & IPW_REG_INDIRECT_ADDR_MASK);
392 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
393 }
394
395 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
396 {
397 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
398 addr & IPW_REG_INDIRECT_ADDR_MASK);
399 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
400 }
401
402 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
403 {
404 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
405 addr & IPW_REG_INDIRECT_ADDR_MASK);
406 }
407
408 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
409 {
410 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
411 }
412
413 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
414 const u8 * buf)
415 {
416 u32 aligned_addr;
417 u32 aligned_len;
418 u32 dif_len;
419 u32 i;
420
421 /* read first nibble byte by byte */
422 aligned_addr = addr & (~0x3);
423 dif_len = addr - aligned_addr;
424 if (dif_len) {
425 /* Start reading at aligned_addr + dif_len */
426 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
427 aligned_addr);
428 for (i = dif_len; i < 4; i++, buf++)
429 write_register_byte(dev,
430 IPW_REG_INDIRECT_ACCESS_DATA + i,
431 *buf);
432
433 len -= dif_len;
434 aligned_addr += 4;
435 }
436
437 /* read DWs through autoincrement registers */
438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
439 aligned_len = len & (~0x3);
440 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
441 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
442
443 /* copy the last nibble */
444 dif_len = len - aligned_len;
445 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
446 for (i = 0; i < dif_len; i++, buf++)
447 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
448 *buf);
449 }
450
451 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
452 u8 * buf)
453 {
454 u32 aligned_addr;
455 u32 aligned_len;
456 u32 dif_len;
457 u32 i;
458
459 /* read first nibble byte by byte */
460 aligned_addr = addr & (~0x3);
461 dif_len = addr - aligned_addr;
462 if (dif_len) {
463 /* Start reading at aligned_addr + dif_len */
464 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
465 aligned_addr);
466 for (i = dif_len; i < 4; i++, buf++)
467 read_register_byte(dev,
468 IPW_REG_INDIRECT_ACCESS_DATA + i,
469 buf);
470
471 len -= dif_len;
472 aligned_addr += 4;
473 }
474
475 /* read DWs through autoincrement registers */
476 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
477 aligned_len = len & (~0x3);
478 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
479 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
480
481 /* copy the last nibble */
482 dif_len = len - aligned_len;
483 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
484 for (i = 0; i < dif_len; i++, buf++)
485 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
486 }
487
488 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
489 {
490 return (dev->base_addr &&
491 (readl
492 ((void __iomem *)(dev->base_addr +
493 IPW_REG_DOA_DEBUG_AREA_START))
494 == IPW_DATA_DOA_DEBUG_VALUE));
495 }
496
497 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
498 void *val, u32 * len)
499 {
500 struct ipw2100_ordinals *ordinals = &priv->ordinals;
501 u32 addr;
502 u32 field_info;
503 u16 field_len;
504 u16 field_count;
505 u32 total_length;
506
507 if (ordinals->table1_addr == 0) {
508 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
509 "before they have been loaded.\n");
510 return -EINVAL;
511 }
512
513 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
514 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
515 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
516
517 printk(KERN_WARNING DRV_NAME
518 ": ordinal buffer length too small, need %zd\n",
519 IPW_ORD_TAB_1_ENTRY_SIZE);
520
521 return -EINVAL;
522 }
523
524 read_nic_dword(priv->net_dev,
525 ordinals->table1_addr + (ord << 2), &addr);
526 read_nic_dword(priv->net_dev, addr, val);
527
528 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
529
530 return 0;
531 }
532
533 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
534
535 ord -= IPW_START_ORD_TAB_2;
536
537 /* get the address of statistic */
538 read_nic_dword(priv->net_dev,
539 ordinals->table2_addr + (ord << 3), &addr);
540
541 /* get the second DW of statistics ;
542 * two 16-bit words - first is length, second is count */
543 read_nic_dword(priv->net_dev,
544 ordinals->table2_addr + (ord << 3) + sizeof(u32),
545 &field_info);
546
547 /* get each entry length */
548 field_len = *((u16 *) & field_info);
549
550 /* get number of entries */
551 field_count = *(((u16 *) & field_info) + 1);
552
553 /* abort if no enought memory */
554 total_length = field_len * field_count;
555 if (total_length > *len) {
556 *len = total_length;
557 return -EINVAL;
558 }
559
560 *len = total_length;
561 if (!total_length)
562 return 0;
563
564 /* read the ordinal data from the SRAM */
565 read_nic_memory(priv->net_dev, addr, total_length, val);
566
567 return 0;
568 }
569
570 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
571 "in table 2\n", ord);
572
573 return -EINVAL;
574 }
575
576 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
577 u32 * len)
578 {
579 struct ipw2100_ordinals *ordinals = &priv->ordinals;
580 u32 addr;
581
582 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
583 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
584 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
585 IPW_DEBUG_INFO("wrong size\n");
586 return -EINVAL;
587 }
588
589 read_nic_dword(priv->net_dev,
590 ordinals->table1_addr + (ord << 2), &addr);
591
592 write_nic_dword(priv->net_dev, addr, *val);
593
594 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
595
596 return 0;
597 }
598
599 IPW_DEBUG_INFO("wrong table\n");
600 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
601 return -EINVAL;
602
603 return -EINVAL;
604 }
605
606 static char *snprint_line(char *buf, size_t count,
607 const u8 * data, u32 len, u32 ofs)
608 {
609 int out, i, j, l;
610 char c;
611
612 out = snprintf(buf, count, "%08X", ofs);
613
614 for (l = 0, i = 0; i < 2; i++) {
615 out += snprintf(buf + out, count - out, " ");
616 for (j = 0; j < 8 && l < len; j++, l++)
617 out += snprintf(buf + out, count - out, "%02X ",
618 data[(i * 8 + j)]);
619 for (; j < 8; j++)
620 out += snprintf(buf + out, count - out, " ");
621 }
622
623 out += snprintf(buf + out, count - out, " ");
624 for (l = 0, i = 0; i < 2; i++) {
625 out += snprintf(buf + out, count - out, " ");
626 for (j = 0; j < 8 && l < len; j++, l++) {
627 c = data[(i * 8 + j)];
628 if (!isascii(c) || !isprint(c))
629 c = '.';
630
631 out += snprintf(buf + out, count - out, "%c", c);
632 }
633
634 for (; j < 8; j++)
635 out += snprintf(buf + out, count - out, " ");
636 }
637
638 return buf;
639 }
640
641 static void printk_buf(int level, const u8 * data, u32 len)
642 {
643 char line[81];
644 u32 ofs = 0;
645 if (!(ipw2100_debug_level & level))
646 return;
647
648 while (len) {
649 printk(KERN_DEBUG "%s\n",
650 snprint_line(line, sizeof(line), &data[ofs],
651 min(len, 16U), ofs));
652 ofs += 16;
653 len -= min(len, 16U);
654 }
655 }
656
657 #define MAX_RESET_BACKOFF 10
658
659 static void schedule_reset(struct ipw2100_priv *priv)
660 {
661 unsigned long now = get_seconds();
662
663 /* If we haven't received a reset request within the backoff period,
664 * then we can reset the backoff interval so this reset occurs
665 * immediately */
666 if (priv->reset_backoff &&
667 (now - priv->last_reset > priv->reset_backoff))
668 priv->reset_backoff = 0;
669
670 priv->last_reset = get_seconds();
671
672 if (!(priv->status & STATUS_RESET_PENDING)) {
673 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
674 priv->net_dev->name, priv->reset_backoff);
675 netif_carrier_off(priv->net_dev);
676 netif_stop_queue(priv->net_dev);
677 priv->status |= STATUS_RESET_PENDING;
678 if (priv->reset_backoff)
679 queue_delayed_work(priv->workqueue, &priv->reset_work,
680 priv->reset_backoff * HZ);
681 else
682 queue_delayed_work(priv->workqueue, &priv->reset_work,
683 0);
684
685 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686 priv->reset_backoff++;
687
688 wake_up_interruptible(&priv->wait_command_queue);
689 } else
690 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691 priv->net_dev->name);
692
693 }
694
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697 struct host_command *cmd)
698 {
699 struct list_head *element;
700 struct ipw2100_tx_packet *packet;
701 unsigned long flags;
702 int err = 0;
703
704 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705 command_types[cmd->host_command], cmd->host_command,
706 cmd->host_command_length);
707 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708 cmd->host_command_length);
709
710 spin_lock_irqsave(&priv->low_lock, flags);
711
712 if (priv->fatal_error) {
713 IPW_DEBUG_INFO
714 ("Attempt to send command while hardware in fatal error condition.\n");
715 err = -EIO;
716 goto fail_unlock;
717 }
718
719 if (!(priv->status & STATUS_RUNNING)) {
720 IPW_DEBUG_INFO
721 ("Attempt to send command while hardware is not running.\n");
722 err = -EIO;
723 goto fail_unlock;
724 }
725
726 if (priv->status & STATUS_CMD_ACTIVE) {
727 IPW_DEBUG_INFO
728 ("Attempt to send command while another command is pending.\n");
729 err = -EBUSY;
730 goto fail_unlock;
731 }
732
733 if (list_empty(&priv->msg_free_list)) {
734 IPW_DEBUG_INFO("no available msg buffers\n");
735 goto fail_unlock;
736 }
737
738 priv->status |= STATUS_CMD_ACTIVE;
739 priv->messages_sent++;
740
741 element = priv->msg_free_list.next;
742
743 packet = list_entry(element, struct ipw2100_tx_packet, list);
744 packet->jiffy_start = jiffies;
745
746 /* initialize the firmware command packet */
747 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749 packet->info.c_struct.cmd->host_command_len_reg =
750 cmd->host_command_length;
751 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
752
753 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754 cmd->host_command_parameters,
755 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
756
757 list_del(element);
758 DEC_STAT(&priv->msg_free_stat);
759
760 list_add_tail(element, &priv->msg_pend_list);
761 INC_STAT(&priv->msg_pend_stat);
762
763 ipw2100_tx_send_commands(priv);
764 ipw2100_tx_send_data(priv);
765
766 spin_unlock_irqrestore(&priv->low_lock, flags);
767
768 /*
769 * We must wait for this command to complete before another
770 * command can be sent... but if we wait more than 3 seconds
771 * then there is a problem.
772 */
773
774 err =
775 wait_event_interruptible_timeout(priv->wait_command_queue,
776 !(priv->
777 status & STATUS_CMD_ACTIVE),
778 HOST_COMPLETE_TIMEOUT);
779
780 if (err == 0) {
781 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784 priv->status &= ~STATUS_CMD_ACTIVE;
785 schedule_reset(priv);
786 return -EIO;
787 }
788
789 if (priv->fatal_error) {
790 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791 priv->net_dev->name);
792 return -EIO;
793 }
794
795 /* !!!!! HACK TEST !!!!!
796 * When lots of debug trace statements are enabled, the driver
797 * doesn't seem to have as many firmware restart cycles...
798 *
799 * As a test, we're sticking in a 1/100s delay here */
800 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
801
802 return 0;
803
804 fail_unlock:
805 spin_unlock_irqrestore(&priv->low_lock, flags);
806
807 return err;
808 }
809
810 /*
811 * Verify the values and data access of the hardware
812 * No locks needed or used. No functions called.
813 */
814 static int ipw2100_verify(struct ipw2100_priv *priv)
815 {
816 u32 data1, data2;
817 u32 address;
818
819 u32 val1 = 0x76543210;
820 u32 val2 = 0xFEDCBA98;
821
822 /* Domain 0 check - all values should be DOA_DEBUG */
823 for (address = IPW_REG_DOA_DEBUG_AREA_START;
824 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825 read_register(priv->net_dev, address, &data1);
826 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827 return -EIO;
828 }
829
830 /* Domain 1 check - use arbitrary read/write compare */
831 for (address = 0; address < 5; address++) {
832 /* The memory area is not used now */
833 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834 val1);
835 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836 val2);
837 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838 &data1);
839 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840 &data2);
841 if (val1 == data1 && val2 == data2)
842 return 0;
843 }
844
845 return -EIO;
846 }
847
848 /*
849 *
850 * Loop until the CARD_DISABLED bit is the same value as the
851 * supplied parameter
852 *
853 * TODO: See if it would be more efficient to do a wait/wake
854 * cycle and have the completion event trigger the wakeup
855 *
856 */
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
859 {
860 int i;
861 u32 card_state;
862 u32 len = sizeof(card_state);
863 int err;
864
865 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867 &card_state, &len);
868 if (err) {
869 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870 "failed.\n");
871 return 0;
872 }
873
874 /* We'll break out if either the HW state says it is
875 * in the state we want, or if HOST_COMPLETE command
876 * finishes */
877 if ((card_state == state) ||
878 ((priv->status & STATUS_ENABLED) ?
879 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880 if (state == IPW_HW_STATE_ENABLED)
881 priv->status |= STATUS_ENABLED;
882 else
883 priv->status &= ~STATUS_ENABLED;
884
885 return 0;
886 }
887
888 udelay(50);
889 }
890
891 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892 state ? "DISABLED" : "ENABLED");
893 return -EIO;
894 }
895
896 /*********************************************************************
897 Procedure : sw_reset_and_clock
898 Purpose : Asserts s/w reset, asserts clock initialization
899 and waits for clock stabilization
900 ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
902 {
903 int i;
904 u32 r;
905
906 // assert s/w reset
907 write_register(priv->net_dev, IPW_REG_RESET_REG,
908 IPW_AUX_HOST_RESET_REG_SW_RESET);
909
910 // wait for clock stabilization
911 for (i = 0; i < 1000; i++) {
912 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
913
914 // check clock ready bit
915 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917 break;
918 }
919
920 if (i == 1000)
921 return -EIO; // TODO: better error value
922
923 /* set "initialization complete" bit to move adapter to
924 * D0 state */
925 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
927
928 /* wait for clock stabilization */
929 for (i = 0; i < 10000; i++) {
930 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
931
932 /* check clock ready bit */
933 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935 break;
936 }
937
938 if (i == 10000)
939 return -EIO; /* TODO: better error value */
940
941 /* set D0 standby bit */
942 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
945
946 return 0;
947 }
948
949 /*********************************************************************
950 Procedure : ipw2100_download_firmware
951 Purpose : Initiaze adapter after power on.
952 The sequence is:
953 1. assert s/w reset first!
954 2. awake clocks & wait for clock stabilization
955 3. hold ARC (don't ask me why...)
956 4. load Dino ucode and reset/clock init again
957 5. zero-out shared mem
958 6. download f/w
959 *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
961 {
962 u32 address;
963 int err;
964
965 #ifndef CONFIG_PM
966 /* Fetch the firmware and microcode */
967 struct ipw2100_fw ipw2100_firmware;
968 #endif
969
970 if (priv->fatal_error) {
971 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972 "fatal error %d. Interface must be brought down.\n",
973 priv->net_dev->name, priv->fatal_error);
974 return -EINVAL;
975 }
976 #ifdef CONFIG_PM
977 if (!ipw2100_firmware.version) {
978 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979 if (err) {
980 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981 priv->net_dev->name, err);
982 priv->fatal_error = IPW2100_ERR_FW_LOAD;
983 goto fail;
984 }
985 }
986 #else
987 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988 if (err) {
989 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990 priv->net_dev->name, err);
991 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992 goto fail;
993 }
994 #endif
995 priv->firmware_version = ipw2100_firmware.version;
996
997 /* s/w reset and clock stabilization */
998 err = sw_reset_and_clock(priv);
999 if (err) {
1000 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001 priv->net_dev->name, err);
1002 goto fail;
1003 }
1004
1005 err = ipw2100_verify(priv);
1006 if (err) {
1007 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008 priv->net_dev->name, err);
1009 goto fail;
1010 }
1011
1012 /* Hold ARC */
1013 write_nic_dword(priv->net_dev,
1014 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1015
1016 /* allow ARC to run */
1017 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1018
1019 /* load microcode */
1020 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021 if (err) {
1022 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023 priv->net_dev->name, err);
1024 goto fail;
1025 }
1026
1027 /* release ARC */
1028 write_nic_dword(priv->net_dev,
1029 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1030
1031 /* s/w reset and clock stabilization (again!!!) */
1032 err = sw_reset_and_clock(priv);
1033 if (err) {
1034 printk(KERN_ERR DRV_NAME
1035 ": %s: sw_reset_and_clock failed: %d\n",
1036 priv->net_dev->name, err);
1037 goto fail;
1038 }
1039
1040 /* load f/w */
1041 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042 if (err) {
1043 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044 priv->net_dev->name, err);
1045 goto fail;
1046 }
1047 #ifndef CONFIG_PM
1048 /*
1049 * When the .resume method of the driver is called, the other
1050 * part of the system, i.e. the ide driver could still stay in
1051 * the suspend stage. This prevents us from loading the firmware
1052 * from the disk. --YZ
1053 */
1054
1055 /* free any storage allocated for firmware image */
1056 ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1058
1059 /* zero out Domain 1 area indirectly (Si requirement) */
1060 for (address = IPW_HOST_FW_SHARED_AREA0;
1061 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062 write_nic_dword(priv->net_dev, address, 0);
1063 for (address = IPW_HOST_FW_SHARED_AREA1;
1064 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065 write_nic_dword(priv->net_dev, address, 0);
1066 for (address = IPW_HOST_FW_SHARED_AREA2;
1067 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068 write_nic_dword(priv->net_dev, address, 0);
1069 for (address = IPW_HOST_FW_SHARED_AREA3;
1070 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071 write_nic_dword(priv->net_dev, address, 0);
1072 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074 write_nic_dword(priv->net_dev, address, 0);
1075
1076 return 0;
1077
1078 fail:
1079 ipw2100_release_firmware(priv, &ipw2100_firmware);
1080 return err;
1081 }
1082
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1084 {
1085 if (priv->status & STATUS_INT_ENABLED)
1086 return;
1087 priv->status |= STATUS_INT_ENABLED;
1088 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1089 }
1090
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1092 {
1093 if (!(priv->status & STATUS_INT_ENABLED))
1094 return;
1095 priv->status &= ~STATUS_INT_ENABLED;
1096 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1097 }
1098
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1100 {
1101 struct ipw2100_ordinals *ord = &priv->ordinals;
1102
1103 IPW_DEBUG_INFO("enter\n");
1104
1105 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106 &ord->table1_addr);
1107
1108 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109 &ord->table2_addr);
1110
1111 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1113
1114 ord->table2_size &= 0x0000FFFF;
1115
1116 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118 IPW_DEBUG_INFO("exit\n");
1119 }
1120
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1122 {
1123 u32 reg = 0;
1124 /*
1125 * Set GPIO 3 writable by FW; GPIO 1 writable
1126 * by driver and enable clock
1127 */
1128 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129 IPW_BIT_GPIO_LED_OFF);
1130 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1131 }
1132
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1134 {
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1137
1138 unsigned short value = 0;
1139 u32 reg = 0;
1140 int i;
1141
1142 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143 priv->status &= ~STATUS_RF_KILL_HW;
1144 return 0;
1145 }
1146
1147 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148 udelay(RF_KILL_CHECK_DELAY);
1149 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1151 }
1152
1153 if (value == 0)
1154 priv->status |= STATUS_RF_KILL_HW;
1155 else
1156 priv->status &= ~STATUS_RF_KILL_HW;
1157
1158 return (value == 0);
1159 }
1160
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1162 {
1163 u32 addr, len;
1164 u32 val;
1165
1166 /*
1167 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1168 */
1169 len = sizeof(addr);
1170 if (ipw2100_get_ordinal
1171 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173 __LINE__);
1174 return -EIO;
1175 }
1176
1177 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1178
1179 /*
1180 * EEPROM version is the byte at offset 0xfd in firmware
1181 * We read 4 bytes, then shift out the byte we actually want */
1182 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183 priv->eeprom_version = (val >> 24) & 0xFF;
1184 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1185
1186 /*
1187 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1188 *
1189 * notice that the EEPROM bit is reverse polarity, i.e.
1190 * bit = 0 signifies HW RF kill switch is supported
1191 * bit = 1 signifies HW RF kill switch is NOT supported
1192 */
1193 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194 if (!((val >> 24) & 0x01))
1195 priv->hw_features |= HW_FEATURE_RFKILL;
1196
1197 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1199
1200 return 0;
1201 }
1202
1203 /*
1204 * Start firmware execution after power on and intialization
1205 * The sequence is:
1206 * 1. Release ARC
1207 * 2. Wait for f/w initialization completes;
1208 */
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1210 {
1211 int i;
1212 u32 inta, inta_mask, gpio;
1213
1214 IPW_DEBUG_INFO("enter\n");
1215
1216 if (priv->status & STATUS_RUNNING)
1217 return 0;
1218
1219 /*
1220 * Initialize the hw - drive adapter to DO state by setting
1221 * init_done bit. Wait for clk_ready bit and Download
1222 * fw & dino ucode
1223 */
1224 if (ipw2100_download_firmware(priv)) {
1225 printk(KERN_ERR DRV_NAME
1226 ": %s: Failed to power on the adapter.\n",
1227 priv->net_dev->name);
1228 return -EIO;
1229 }
1230
1231 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232 * in the firmware RBD and TBD ring queue */
1233 ipw2100_queues_initialize(priv);
1234
1235 ipw2100_hw_set_gpio(priv);
1236
1237 /* TODO -- Look at disabling interrupts here to make sure none
1238 * get fired during FW initialization */
1239
1240 /* Release ARC - clear reset bit */
1241 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1242
1243 /* wait for f/w intialization complete */
1244 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245 i = 5000;
1246 do {
1247 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248 /* Todo... wait for sync command ... */
1249
1250 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1251
1252 /* check "init done" bit */
1253 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254 /* reset "init done" bit */
1255 write_register(priv->net_dev, IPW_REG_INTA,
1256 IPW2100_INTA_FW_INIT_DONE);
1257 break;
1258 }
1259
1260 /* check error conditions : we check these after the firmware
1261 * check so that if there is an error, the interrupt handler
1262 * will see it and the adapter will be reset */
1263 if (inta &
1264 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265 /* clear error conditions */
1266 write_register(priv->net_dev, IPW_REG_INTA,
1267 IPW2100_INTA_FATAL_ERROR |
1268 IPW2100_INTA_PARITY_ERROR);
1269 }
1270 } while (i--);
1271
1272 /* Clear out any pending INTAs since we aren't supposed to have
1273 * interrupts enabled at this point... */
1274 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276 inta &= IPW_INTERRUPT_MASK;
1277 /* Clear out any pending interrupts */
1278 if (inta & inta_mask)
1279 write_register(priv->net_dev, IPW_REG_INTA, inta);
1280
1281 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282 i ? "SUCCESS" : "FAILED");
1283
1284 if (!i) {
1285 printk(KERN_WARNING DRV_NAME
1286 ": %s: Firmware did not initialize.\n",
1287 priv->net_dev->name);
1288 return -EIO;
1289 }
1290
1291 /* allow firmware to write to GPIO1 & GPIO3 */
1292 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1293
1294 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1295
1296 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1297
1298 /* Ready to receive commands */
1299 priv->status |= STATUS_RUNNING;
1300
1301 /* The adapter has been reset; we are not associated */
1302 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1303
1304 IPW_DEBUG_INFO("exit\n");
1305
1306 return 0;
1307 }
1308
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1310 {
1311 if (!priv->fatal_error)
1312 return;
1313
1314 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316 priv->fatal_error = 0;
1317 }
1318
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1321 {
1322 u32 reg;
1323 int i;
1324
1325 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1326
1327 ipw2100_hw_set_gpio(priv);
1328
1329 /* Step 1. Stop Master Assert */
1330 write_register(priv->net_dev, IPW_REG_RESET_REG,
1331 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1332
1333 /* Step 2. Wait for stop Master Assert
1334 * (not more then 50us, otherwise ret error */
1335 i = 5;
1336 do {
1337 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1339
1340 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341 break;
1342 } while (i--);
1343
1344 priv->status &= ~STATUS_RESET_PENDING;
1345
1346 if (!i) {
1347 IPW_DEBUG_INFO
1348 ("exit - waited too long for master assert stop\n");
1349 return -EIO;
1350 }
1351
1352 write_register(priv->net_dev, IPW_REG_RESET_REG,
1353 IPW_AUX_HOST_RESET_REG_SW_RESET);
1354
1355 /* Reset any fatal_error conditions */
1356 ipw2100_reset_fatalerror(priv);
1357
1358 /* At this point, the adapter is now stopped and disabled */
1359 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360 STATUS_ASSOCIATED | STATUS_ENABLED);
1361
1362 return 0;
1363 }
1364
1365 /*
1366 * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1367 *
1368 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1369 *
1370 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371 * if STATUS_ASSN_LOST is sent.
1372 */
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1374 {
1375
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1377
1378 struct host_command cmd = {
1379 .host_command = CARD_DISABLE_PHY_OFF,
1380 .host_command_sequence = 0,
1381 .host_command_length = 0,
1382 };
1383 int err, i;
1384 u32 val1, val2;
1385
1386 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1387
1388 /* Turn off the radio */
1389 err = ipw2100_hw_send_command(priv, &cmd);
1390 if (err)
1391 return err;
1392
1393 for (i = 0; i < 2500; i++) {
1394 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1396
1397 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398 (val2 & IPW2100_COMMAND_PHY_OFF))
1399 return 0;
1400
1401 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1402 }
1403
1404 return -EIO;
1405 }
1406
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1408 {
1409 struct host_command cmd = {
1410 .host_command = HOST_COMPLETE,
1411 .host_command_sequence = 0,
1412 .host_command_length = 0
1413 };
1414 int err = 0;
1415
1416 IPW_DEBUG_HC("HOST_COMPLETE\n");
1417
1418 if (priv->status & STATUS_ENABLED)
1419 return 0;
1420
1421 mutex_lock(&priv->adapter_mutex);
1422
1423 if (rf_kill_active(priv)) {
1424 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425 goto fail_up;
1426 }
1427
1428 err = ipw2100_hw_send_command(priv, &cmd);
1429 if (err) {
1430 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431 goto fail_up;
1432 }
1433
1434 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435 if (err) {
1436 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437 priv->net_dev->name);
1438 goto fail_up;
1439 }
1440
1441 if (priv->stop_hang_check) {
1442 priv->stop_hang_check = 0;
1443 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1444 }
1445
1446 fail_up:
1447 mutex_unlock(&priv->adapter_mutex);
1448 return err;
1449 }
1450
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1452 {
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1454
1455 struct host_command cmd = {
1456 .host_command = HOST_PRE_POWER_DOWN,
1457 .host_command_sequence = 0,
1458 .host_command_length = 0,
1459 };
1460 int err, i;
1461 u32 reg;
1462
1463 if (!(priv->status & STATUS_RUNNING))
1464 return 0;
1465
1466 priv->status |= STATUS_STOPPING;
1467
1468 /* We can only shut down the card if the firmware is operational. So,
1469 * if we haven't reset since a fatal_error, then we can not send the
1470 * shutdown commands. */
1471 if (!priv->fatal_error) {
1472 /* First, make sure the adapter is enabled so that the PHY_OFF
1473 * command can shut it down */
1474 ipw2100_enable_adapter(priv);
1475
1476 err = ipw2100_hw_phy_off(priv);
1477 if (err)
1478 printk(KERN_WARNING DRV_NAME
1479 ": Error disabling radio %d\n", err);
1480
1481 /*
1482 * If in D0-standby mode going directly to D3 may cause a
1483 * PCI bus violation. Therefore we must change out of the D0
1484 * state.
1485 *
1486 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487 * hardware from going into standby mode and will transition
1488 * out of D0-standby if it is already in that state.
1489 *
1490 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491 * driver upon completion. Once received, the driver can
1492 * proceed to the D3 state.
1493 *
1494 * Prepare for power down command to fw. This command would
1495 * take HW out of D0-standby and prepare it for D3 state.
1496 *
1497 * Currently FW does not support event notification for this
1498 * event. Therefore, skip waiting for it. Just wait a fixed
1499 * 100ms
1500 */
1501 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1502
1503 err = ipw2100_hw_send_command(priv, &cmd);
1504 if (err)
1505 printk(KERN_WARNING DRV_NAME ": "
1506 "%s: Power down command failed: Error %d\n",
1507 priv->net_dev->name, err);
1508 else
1509 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1510 }
1511
1512 priv->status &= ~STATUS_ENABLED;
1513
1514 /*
1515 * Set GPIO 3 writable by FW; GPIO 1 writable
1516 * by driver and enable clock
1517 */
1518 ipw2100_hw_set_gpio(priv);
1519
1520 /*
1521 * Power down adapter. Sequence:
1522 * 1. Stop master assert (RESET_REG[9]=1)
1523 * 2. Wait for stop master (RESET_REG[8]==1)
1524 * 3. S/w reset assert (RESET_REG[7] = 1)
1525 */
1526
1527 /* Stop master assert */
1528 write_register(priv->net_dev, IPW_REG_RESET_REG,
1529 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1530
1531 /* wait stop master not more than 50 usec.
1532 * Otherwise return error. */
1533 for (i = 5; i > 0; i--) {
1534 udelay(10);
1535
1536 /* Check master stop bit */
1537 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1538
1539 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540 break;
1541 }
1542
1543 if (i == 0)
1544 printk(KERN_WARNING DRV_NAME
1545 ": %s: Could now power down adapter.\n",
1546 priv->net_dev->name);
1547
1548 /* assert s/w reset */
1549 write_register(priv->net_dev, IPW_REG_RESET_REG,
1550 IPW_AUX_HOST_RESET_REG_SW_RESET);
1551
1552 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1553
1554 return 0;
1555 }
1556
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1558 {
1559 struct host_command cmd = {
1560 .host_command = CARD_DISABLE,
1561 .host_command_sequence = 0,
1562 .host_command_length = 0
1563 };
1564 int err = 0;
1565
1566 IPW_DEBUG_HC("CARD_DISABLE\n");
1567
1568 if (!(priv->status & STATUS_ENABLED))
1569 return 0;
1570
1571 /* Make sure we clear the associated state */
1572 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1573
1574 if (!priv->stop_hang_check) {
1575 priv->stop_hang_check = 1;
1576 cancel_delayed_work(&priv->hang_check);
1577 }
1578
1579 mutex_lock(&priv->adapter_mutex);
1580
1581 err = ipw2100_hw_send_command(priv, &cmd);
1582 if (err) {
1583 printk(KERN_WARNING DRV_NAME
1584 ": exit - failed to send CARD_DISABLE command\n");
1585 goto fail_up;
1586 }
1587
1588 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589 if (err) {
1590 printk(KERN_WARNING DRV_NAME
1591 ": exit - card failed to change to DISABLED\n");
1592 goto fail_up;
1593 }
1594
1595 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1596
1597 fail_up:
1598 mutex_unlock(&priv->adapter_mutex);
1599 return err;
1600 }
1601
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1603 {
1604 struct host_command cmd = {
1605 .host_command = SET_SCAN_OPTIONS,
1606 .host_command_sequence = 0,
1607 .host_command_length = 8
1608 };
1609 int err;
1610
1611 IPW_DEBUG_INFO("enter\n");
1612
1613 IPW_DEBUG_SCAN("setting scan options\n");
1614
1615 cmd.host_command_parameters[0] = 0;
1616
1617 if (!(priv->config & CFG_ASSOCIATE))
1618 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621 if (priv->config & CFG_PASSIVE_SCAN)
1622 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1623
1624 cmd.host_command_parameters[1] = priv->channel_mask;
1625
1626 err = ipw2100_hw_send_command(priv, &cmd);
1627
1628 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629 cmd.host_command_parameters[0]);
1630
1631 return err;
1632 }
1633
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1635 {
1636 struct host_command cmd = {
1637 .host_command = BROADCAST_SCAN,
1638 .host_command_sequence = 0,
1639 .host_command_length = 4
1640 };
1641 int err;
1642
1643 IPW_DEBUG_HC("START_SCAN\n");
1644
1645 cmd.host_command_parameters[0] = 0;
1646
1647 /* No scanning if in monitor mode */
1648 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649 return 1;
1650
1651 if (priv->status & STATUS_SCANNING) {
1652 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653 return 0;
1654 }
1655
1656 IPW_DEBUG_INFO("enter\n");
1657
1658 /* Not clearing here; doing so makes iwlist always return nothing...
1659 *
1660 * We should modify the table logic to use aging tables vs. clearing
1661 * the table on each scan start.
1662 */
1663 IPW_DEBUG_SCAN("starting scan\n");
1664
1665 priv->status |= STATUS_SCANNING;
1666 err = ipw2100_hw_send_command(priv, &cmd);
1667 if (err)
1668 priv->status &= ~STATUS_SCANNING;
1669
1670 IPW_DEBUG_INFO("exit\n");
1671
1672 return err;
1673 }
1674
1675 static const struct ieee80211_geo ipw_geos[] = {
1676 { /* Restricted */
1677 "---",
1678 .bg_channels = 14,
1679 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1680 {2427, 4}, {2432, 5}, {2437, 6},
1681 {2442, 7}, {2447, 8}, {2452, 9},
1682 {2457, 10}, {2462, 11}, {2467, 12},
1683 {2472, 13}, {2484, 14}},
1684 },
1685 };
1686
1687 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1688 {
1689 unsigned long flags;
1690 int rc = 0;
1691 u32 lock;
1692 u32 ord_len = sizeof(lock);
1693
1694 /* Quite if manually disabled. */
1695 if (priv->status & STATUS_RF_KILL_SW) {
1696 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1697 "switch\n", priv->net_dev->name);
1698 return 0;
1699 }
1700
1701 /* the ipw2100 hardware really doesn't want power management delays
1702 * longer than 175usec
1703 */
1704 modify_acceptable_latency("ipw2100", 175);
1705
1706 /* If the interrupt is enabled, turn it off... */
1707 spin_lock_irqsave(&priv->low_lock, flags);
1708 ipw2100_disable_interrupts(priv);
1709
1710 /* Reset any fatal_error conditions */
1711 ipw2100_reset_fatalerror(priv);
1712 spin_unlock_irqrestore(&priv->low_lock, flags);
1713
1714 if (priv->status & STATUS_POWERED ||
1715 (priv->status & STATUS_RESET_PENDING)) {
1716 /* Power cycle the card ... */
1717 if (ipw2100_power_cycle_adapter(priv)) {
1718 printk(KERN_WARNING DRV_NAME
1719 ": %s: Could not cycle adapter.\n",
1720 priv->net_dev->name);
1721 rc = 1;
1722 goto exit;
1723 }
1724 } else
1725 priv->status |= STATUS_POWERED;
1726
1727 /* Load the firmware, start the clocks, etc. */
1728 if (ipw2100_start_adapter(priv)) {
1729 printk(KERN_ERR DRV_NAME
1730 ": %s: Failed to start the firmware.\n",
1731 priv->net_dev->name);
1732 rc = 1;
1733 goto exit;
1734 }
1735
1736 ipw2100_initialize_ordinals(priv);
1737
1738 /* Determine capabilities of this particular HW configuration */
1739 if (ipw2100_get_hw_features(priv)) {
1740 printk(KERN_ERR DRV_NAME
1741 ": %s: Failed to determine HW features.\n",
1742 priv->net_dev->name);
1743 rc = 1;
1744 goto exit;
1745 }
1746
1747 /* Initialize the geo */
1748 if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1749 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1750 return 0;
1751 }
1752 priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1753
1754 lock = LOCK_NONE;
1755 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1756 printk(KERN_ERR DRV_NAME
1757 ": %s: Failed to clear ordinal lock.\n",
1758 priv->net_dev->name);
1759 rc = 1;
1760 goto exit;
1761 }
1762
1763 priv->status &= ~STATUS_SCANNING;
1764
1765 if (rf_kill_active(priv)) {
1766 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1767 priv->net_dev->name);
1768
1769 if (priv->stop_rf_kill) {
1770 priv->stop_rf_kill = 0;
1771 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
1772 }
1773
1774 deferred = 1;
1775 }
1776
1777 /* Turn on the interrupt so that commands can be processed */
1778 ipw2100_enable_interrupts(priv);
1779
1780 /* Send all of the commands that must be sent prior to
1781 * HOST_COMPLETE */
1782 if (ipw2100_adapter_setup(priv)) {
1783 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1784 priv->net_dev->name);
1785 rc = 1;
1786 goto exit;
1787 }
1788
1789 if (!deferred) {
1790 /* Enable the adapter - sends HOST_COMPLETE */
1791 if (ipw2100_enable_adapter(priv)) {
1792 printk(KERN_ERR DRV_NAME ": "
1793 "%s: failed in call to enable adapter.\n",
1794 priv->net_dev->name);
1795 ipw2100_hw_stop_adapter(priv);
1796 rc = 1;
1797 goto exit;
1798 }
1799
1800 /* Start a scan . . . */
1801 ipw2100_set_scan_options(priv);
1802 ipw2100_start_scan(priv);
1803 }
1804
1805 exit:
1806 return rc;
1807 }
1808
1809 /* Called by register_netdev() */
1810 static int ipw2100_net_init(struct net_device *dev)
1811 {
1812 struct ipw2100_priv *priv = ieee80211_priv(dev);
1813 return ipw2100_up(priv, 1);
1814 }
1815
1816 static void ipw2100_down(struct ipw2100_priv *priv)
1817 {
1818 unsigned long flags;
1819 union iwreq_data wrqu = {
1820 .ap_addr = {
1821 .sa_family = ARPHRD_ETHER}
1822 };
1823 int associated = priv->status & STATUS_ASSOCIATED;
1824
1825 /* Kill the RF switch timer */
1826 if (!priv->stop_rf_kill) {
1827 priv->stop_rf_kill = 1;
1828 cancel_delayed_work(&priv->rf_kill);
1829 }
1830
1831 /* Kill the firmare hang check timer */
1832 if (!priv->stop_hang_check) {
1833 priv->stop_hang_check = 1;
1834 cancel_delayed_work(&priv->hang_check);
1835 }
1836
1837 /* Kill any pending resets */
1838 if (priv->status & STATUS_RESET_PENDING)
1839 cancel_delayed_work(&priv->reset_work);
1840
1841 /* Make sure the interrupt is on so that FW commands will be
1842 * processed correctly */
1843 spin_lock_irqsave(&priv->low_lock, flags);
1844 ipw2100_enable_interrupts(priv);
1845 spin_unlock_irqrestore(&priv->low_lock, flags);
1846
1847 if (ipw2100_hw_stop_adapter(priv))
1848 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1849 priv->net_dev->name);
1850
1851 /* Do not disable the interrupt until _after_ we disable
1852 * the adaptor. Otherwise the CARD_DISABLE command will never
1853 * be ack'd by the firmware */
1854 spin_lock_irqsave(&priv->low_lock, flags);
1855 ipw2100_disable_interrupts(priv);
1856 spin_unlock_irqrestore(&priv->low_lock, flags);
1857
1858 modify_acceptable_latency("ipw2100", INFINITE_LATENCY);
1859
1860 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1861 if (priv->config & CFG_C3_DISABLED) {
1862 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1863 acpi_set_cstate_limit(priv->cstate_limit);
1864 priv->config &= ~CFG_C3_DISABLED;
1865 }
1866 #endif
1867
1868 /* We have to signal any supplicant if we are disassociating */
1869 if (associated)
1870 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1871
1872 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1873 netif_carrier_off(priv->net_dev);
1874 netif_stop_queue(priv->net_dev);
1875 }
1876
1877 static void ipw2100_reset_adapter(struct work_struct *work)
1878 {
1879 struct ipw2100_priv *priv =
1880 container_of(work, struct ipw2100_priv, reset_work.work);
1881 unsigned long flags;
1882 union iwreq_data wrqu = {
1883 .ap_addr = {
1884 .sa_family = ARPHRD_ETHER}
1885 };
1886 int associated = priv->status & STATUS_ASSOCIATED;
1887
1888 spin_lock_irqsave(&priv->low_lock, flags);
1889 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1890 priv->resets++;
1891 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1892 priv->status |= STATUS_SECURITY_UPDATED;
1893
1894 /* Force a power cycle even if interface hasn't been opened
1895 * yet */
1896 cancel_delayed_work(&priv->reset_work);
1897 priv->status |= STATUS_RESET_PENDING;
1898 spin_unlock_irqrestore(&priv->low_lock, flags);
1899
1900 mutex_lock(&priv->action_mutex);
1901 /* stop timed checks so that they don't interfere with reset */
1902 priv->stop_hang_check = 1;
1903 cancel_delayed_work(&priv->hang_check);
1904
1905 /* We have to signal any supplicant if we are disassociating */
1906 if (associated)
1907 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1908
1909 ipw2100_up(priv, 0);
1910 mutex_unlock(&priv->action_mutex);
1911
1912 }
1913
1914 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1915 {
1916
1917 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1918 int ret, len, essid_len;
1919 char essid[IW_ESSID_MAX_SIZE];
1920 u32 txrate;
1921 u32 chan;
1922 char *txratename;
1923 u8 bssid[ETH_ALEN];
1924
1925 /*
1926 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1927 * an actual MAC of the AP. Seems like FW sets this
1928 * address too late. Read it later and expose through
1929 * /proc or schedule a later task to query and update
1930 */
1931
1932 essid_len = IW_ESSID_MAX_SIZE;
1933 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1934 essid, &essid_len);
1935 if (ret) {
1936 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1937 __LINE__);
1938 return;
1939 }
1940
1941 len = sizeof(u32);
1942 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1943 if (ret) {
1944 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1945 __LINE__);
1946 return;
1947 }
1948
1949 len = sizeof(u32);
1950 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1951 if (ret) {
1952 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1953 __LINE__);
1954 return;
1955 }
1956 len = ETH_ALEN;
1957 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1958 if (ret) {
1959 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1960 __LINE__);
1961 return;
1962 }
1963 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1964
1965 switch (txrate) {
1966 case TX_RATE_1_MBIT:
1967 txratename = "1Mbps";
1968 break;
1969 case TX_RATE_2_MBIT:
1970 txratename = "2Mbsp";
1971 break;
1972 case TX_RATE_5_5_MBIT:
1973 txratename = "5.5Mbps";
1974 break;
1975 case TX_RATE_11_MBIT:
1976 txratename = "11Mbps";
1977 break;
1978 default:
1979 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1980 txratename = "unknown rate";
1981 break;
1982 }
1983
1984 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1985 MAC_FMT ")\n",
1986 priv->net_dev->name, escape_essid(essid, essid_len),
1987 txratename, chan, MAC_ARG(bssid));
1988
1989 /* now we copy read ssid into dev */
1990 if (!(priv->config & CFG_STATIC_ESSID)) {
1991 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1992 memcpy(priv->essid, essid, priv->essid_len);
1993 }
1994 priv->channel = chan;
1995 memcpy(priv->bssid, bssid, ETH_ALEN);
1996
1997 priv->status |= STATUS_ASSOCIATING;
1998 priv->connect_start = get_seconds();
1999
2000 queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
2001 }
2002
2003 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2004 int length, int batch_mode)
2005 {
2006 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2007 struct host_command cmd = {
2008 .host_command = SSID,
2009 .host_command_sequence = 0,
2010 .host_command_length = ssid_len
2011 };
2012 int err;
2013
2014 IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2015
2016 if (ssid_len)
2017 memcpy(cmd.host_command_parameters, essid, ssid_len);
2018
2019 if (!batch_mode) {
2020 err = ipw2100_disable_adapter(priv);
2021 if (err)
2022 return err;
2023 }
2024
2025 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2026 * disable auto association -- so we cheat by setting a bogus SSID */
2027 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2028 int i;
2029 u8 *bogus = (u8 *) cmd.host_command_parameters;
2030 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2031 bogus[i] = 0x18 + i;
2032 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2033 }
2034
2035 /* NOTE: We always send the SSID command even if the provided ESSID is
2036 * the same as what we currently think is set. */
2037
2038 err = ipw2100_hw_send_command(priv, &cmd);
2039 if (!err) {
2040 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2041 memcpy(priv->essid, essid, ssid_len);
2042 priv->essid_len = ssid_len;
2043 }
2044
2045 if (!batch_mode) {
2046 if (ipw2100_enable_adapter(priv))
2047 err = -EIO;
2048 }
2049
2050 return err;
2051 }
2052
2053 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2054 {
2055 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2056 "disassociated: '%s' " MAC_FMT " \n",
2057 escape_essid(priv->essid, priv->essid_len),
2058 MAC_ARG(priv->bssid));
2059
2060 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2061
2062 if (priv->status & STATUS_STOPPING) {
2063 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2064 return;
2065 }
2066
2067 memset(priv->bssid, 0, ETH_ALEN);
2068 memset(priv->ieee->bssid, 0, ETH_ALEN);
2069
2070 netif_carrier_off(priv->net_dev);
2071 netif_stop_queue(priv->net_dev);
2072
2073 if (!(priv->status & STATUS_RUNNING))
2074 return;
2075
2076 if (priv->status & STATUS_SECURITY_UPDATED)
2077 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2078
2079 queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2080 }
2081
2082 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2083 {
2084 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2085 priv->net_dev->name);
2086
2087 /* RF_KILL is now enabled (else we wouldn't be here) */
2088 priv->status |= STATUS_RF_KILL_HW;
2089
2090 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2091 if (priv->config & CFG_C3_DISABLED) {
2092 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2093 acpi_set_cstate_limit(priv->cstate_limit);
2094 priv->config &= ~CFG_C3_DISABLED;
2095 }
2096 #endif
2097
2098 /* Make sure the RF Kill check timer is running */
2099 priv->stop_rf_kill = 0;
2100 cancel_delayed_work(&priv->rf_kill);
2101 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
2102 }
2103
2104 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2105 {
2106 IPW_DEBUG_SCAN("scan complete\n");
2107 /* Age the scan results... */
2108 priv->ieee->scans++;
2109 priv->status &= ~STATUS_SCANNING;
2110 }
2111
2112 #ifdef CONFIG_IPW2100_DEBUG
2113 #define IPW2100_HANDLER(v, f) { v, f, # v }
2114 struct ipw2100_status_indicator {
2115 int status;
2116 void (*cb) (struct ipw2100_priv * priv, u32 status);
2117 char *name;
2118 };
2119 #else
2120 #define IPW2100_HANDLER(v, f) { v, f }
2121 struct ipw2100_status_indicator {
2122 int status;
2123 void (*cb) (struct ipw2100_priv * priv, u32 status);
2124 };
2125 #endif /* CONFIG_IPW2100_DEBUG */
2126
2127 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2128 {
2129 IPW_DEBUG_SCAN("Scanning...\n");
2130 priv->status |= STATUS_SCANNING;
2131 }
2132
2133 static const struct ipw2100_status_indicator status_handlers[] = {
2134 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2135 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2136 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2137 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2138 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2139 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2140 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2141 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2142 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2143 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2144 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2145 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2146 IPW2100_HANDLER(-1, NULL)
2147 };
2148
2149 static void isr_status_change(struct ipw2100_priv *priv, int status)
2150 {
2151 int i;
2152
2153 if (status == IPW_STATE_SCANNING &&
2154 priv->status & STATUS_ASSOCIATED &&
2155 !(priv->status & STATUS_SCANNING)) {
2156 IPW_DEBUG_INFO("Scan detected while associated, with "
2157 "no scan request. Restarting firmware.\n");
2158
2159 /* Wake up any sleeping jobs */
2160 schedule_reset(priv);
2161 }
2162
2163 for (i = 0; status_handlers[i].status != -1; i++) {
2164 if (status == status_handlers[i].status) {
2165 IPW_DEBUG_NOTIF("Status change: %s\n",
2166 status_handlers[i].name);
2167 if (status_handlers[i].cb)
2168 status_handlers[i].cb(priv, status);
2169 priv->wstats.status = status;
2170 return;
2171 }
2172 }
2173
2174 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2175 }
2176
2177 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2178 struct ipw2100_cmd_header *cmd)
2179 {
2180 #ifdef CONFIG_IPW2100_DEBUG
2181 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2182 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2183 command_types[cmd->host_command_reg],
2184 cmd->host_command_reg);
2185 }
2186 #endif
2187 if (cmd->host_command_reg == HOST_COMPLETE)
2188 priv->status |= STATUS_ENABLED;
2189
2190 if (cmd->host_command_reg == CARD_DISABLE)
2191 priv->status &= ~STATUS_ENABLED;
2192
2193 priv->status &= ~STATUS_CMD_ACTIVE;
2194
2195 wake_up_interruptible(&priv->wait_command_queue);
2196 }
2197
2198 #ifdef CONFIG_IPW2100_DEBUG
2199 static const char *frame_types[] = {
2200 "COMMAND_STATUS_VAL",
2201 "STATUS_CHANGE_VAL",
2202 "P80211_DATA_VAL",
2203 "P8023_DATA_VAL",
2204 "HOST_NOTIFICATION_VAL"
2205 };
2206 #endif
2207
2208 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2209 struct ipw2100_rx_packet *packet)
2210 {
2211 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2212 if (!packet->skb)
2213 return -ENOMEM;
2214
2215 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2216 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2217 sizeof(struct ipw2100_rx),
2218 PCI_DMA_FROMDEVICE);
2219 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2220 * dma_addr */
2221
2222 return 0;
2223 }
2224
2225 #define SEARCH_ERROR 0xffffffff
2226 #define SEARCH_FAIL 0xfffffffe
2227 #define SEARCH_SUCCESS 0xfffffff0
2228 #define SEARCH_DISCARD 0
2229 #define SEARCH_SNAPSHOT 1
2230
2231 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2232 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2233 {
2234 int i;
2235 if (!priv->snapshot[0])
2236 return;
2237 for (i = 0; i < 0x30; i++)
2238 kfree(priv->snapshot[i]);
2239 priv->snapshot[0] = NULL;
2240 }
2241
2242 #ifdef CONFIG_IPW2100_DEBUG_C3
2243 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2244 {
2245 int i;
2246 if (priv->snapshot[0])
2247 return 1;
2248 for (i = 0; i < 0x30; i++) {
2249 priv->snapshot[i] = (u8 *) kmalloc(0x1000, GFP_ATOMIC);
2250 if (!priv->snapshot[i]) {
2251 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2252 "buffer %d\n", priv->net_dev->name, i);
2253 while (i > 0)
2254 kfree(priv->snapshot[--i]);
2255 priv->snapshot[0] = NULL;
2256 return 0;
2257 }
2258 }
2259
2260 return 1;
2261 }
2262
2263 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2264 size_t len, int mode)
2265 {
2266 u32 i, j;
2267 u32 tmp;
2268 u8 *s, *d;
2269 u32 ret;
2270
2271 s = in_buf;
2272 if (mode == SEARCH_SNAPSHOT) {
2273 if (!ipw2100_snapshot_alloc(priv))
2274 mode = SEARCH_DISCARD;
2275 }
2276
2277 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2278 read_nic_dword(priv->net_dev, i, &tmp);
2279 if (mode == SEARCH_SNAPSHOT)
2280 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2281 if (ret == SEARCH_FAIL) {
2282 d = (u8 *) & tmp;
2283 for (j = 0; j < 4; j++) {
2284 if (*s != *d) {
2285 s = in_buf;
2286 continue;
2287 }
2288
2289 s++;
2290 d++;
2291
2292 if ((s - in_buf) == len)
2293 ret = (i + j) - len + 1;
2294 }
2295 } else if (mode == SEARCH_DISCARD)
2296 return ret;
2297 }
2298
2299 return ret;
2300 }
2301 #endif
2302
2303 /*
2304 *
2305 * 0) Disconnect the SKB from the firmware (just unmap)
2306 * 1) Pack the ETH header into the SKB
2307 * 2) Pass the SKB to the network stack
2308 *
2309 * When packet is provided by the firmware, it contains the following:
2310 *
2311 * . ieee80211_hdr
2312 * . ieee80211_snap_hdr
2313 *
2314 * The size of the constructed ethernet
2315 *
2316 */
2317 #ifdef CONFIG_IPW2100_RX_DEBUG
2318 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2319 #endif
2320
2321 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2322 {
2323 #ifdef CONFIG_IPW2100_DEBUG_C3
2324 struct ipw2100_status *status = &priv->status_queue.drv[i];
2325 u32 match, reg;
2326 int j;
2327 #endif
2328 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2329 int limit;
2330 #endif
2331
2332 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2333 i * sizeof(struct ipw2100_status));
2334
2335 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2336 IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2337 limit = acpi_get_cstate_limit();
2338 if (limit > 2) {
2339 priv->cstate_limit = limit;
2340 acpi_set_cstate_limit(2);
2341 priv->config |= CFG_C3_DISABLED;
2342 }
2343 #endif
2344
2345 #ifdef CONFIG_IPW2100_DEBUG_C3
2346 /* Halt the fimrware so we can get a good image */
2347 write_register(priv->net_dev, IPW_REG_RESET_REG,
2348 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2349 j = 5;
2350 do {
2351 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2352 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2353
2354 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2355 break;
2356 } while (j--);
2357
2358 match = ipw2100_match_buf(priv, (u8 *) status,
2359 sizeof(struct ipw2100_status),
2360 SEARCH_SNAPSHOT);
2361 if (match < SEARCH_SUCCESS)
2362 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2363 "offset 0x%06X, length %d:\n",
2364 priv->net_dev->name, match,
2365 sizeof(struct ipw2100_status));
2366 else
2367 IPW_DEBUG_INFO("%s: No DMA status match in "
2368 "Firmware.\n", priv->net_dev->name);
2369
2370 printk_buf((u8 *) priv->status_queue.drv,
2371 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2372 #endif
2373
2374 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2375 priv->ieee->stats.rx_errors++;
2376 schedule_reset(priv);
2377 }
2378
2379 static void isr_rx(struct ipw2100_priv *priv, int i,
2380 struct ieee80211_rx_stats *stats)
2381 {
2382 struct ipw2100_status *status = &priv->status_queue.drv[i];
2383 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2384
2385 IPW_DEBUG_RX("Handler...\n");
2386
2387 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2388 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2389 " Dropping.\n",
2390 priv->net_dev->name,
2391 status->frame_size, skb_tailroom(packet->skb));
2392 priv->ieee->stats.rx_errors++;
2393 return;
2394 }
2395
2396 if (unlikely(!netif_running(priv->net_dev))) {
2397 priv->ieee->stats.rx_errors++;
2398 priv->wstats.discard.misc++;
2399 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2400 return;
2401 }
2402
2403 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2404 !(priv->status & STATUS_ASSOCIATED))) {
2405 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2406 priv->wstats.discard.misc++;
2407 return;
2408 }
2409
2410 pci_unmap_single(priv->pci_dev,
2411 packet->dma_addr,
2412 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2413
2414 skb_put(packet->skb, status->frame_size);
2415
2416 #ifdef CONFIG_IPW2100_RX_DEBUG
2417 /* Make a copy of the frame so we can dump it to the logs if
2418 * ieee80211_rx fails */
2419 memcpy(packet_data, packet->skb->data,
2420 min_t(u32, status->frame_size, IPW_RX_NIC_BUFFER_LENGTH));
2421 #endif
2422
2423 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2424 #ifdef CONFIG_IPW2100_RX_DEBUG
2425 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2426 priv->net_dev->name);
2427 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2428 #endif
2429 priv->ieee->stats.rx_errors++;
2430
2431 /* ieee80211_rx failed, so it didn't free the SKB */
2432 dev_kfree_skb_any(packet->skb);
2433 packet->skb = NULL;
2434 }
2435
2436 /* We need to allocate a new SKB and attach it to the RDB. */
2437 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2438 printk(KERN_WARNING DRV_NAME ": "
2439 "%s: Unable to allocate SKB onto RBD ring - disabling "
2440 "adapter.\n", priv->net_dev->name);
2441 /* TODO: schedule adapter shutdown */
2442 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2443 }
2444
2445 /* Update the RDB entry */
2446 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2447 }
2448
2449 #ifdef CONFIG_IPW2100_MONITOR
2450
2451 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2452 struct ieee80211_rx_stats *stats)
2453 {
2454 struct ipw2100_status *status = &priv->status_queue.drv[i];
2455 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2456
2457 /* Magic struct that slots into the radiotap header -- no reason
2458 * to build this manually element by element, we can write it much
2459 * more efficiently than we can parse it. ORDER MATTERS HERE */
2460 struct ipw_rt_hdr {
2461 struct ieee80211_radiotap_header rt_hdr;
2462 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2463 } *ipw_rt;
2464
2465 IPW_DEBUG_RX("Handler...\n");
2466
2467 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2468 sizeof(struct ipw_rt_hdr))) {
2469 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2470 " Dropping.\n",
2471 priv->net_dev->name,
2472 status->frame_size,
2473 skb_tailroom(packet->skb));
2474 priv->ieee->stats.rx_errors++;
2475 return;
2476 }
2477
2478 if (unlikely(!netif_running(priv->net_dev))) {
2479 priv->ieee->stats.rx_errors++;
2480 priv->wstats.discard.misc++;
2481 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2482 return;
2483 }
2484
2485 if (unlikely(priv->config & CFG_CRC_CHECK &&
2486 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2487 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2488 priv->ieee->stats.rx_errors++;
2489 return;
2490 }
2491
2492 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2493 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2494 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2495 packet->skb->data, status->frame_size);
2496
2497 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2498
2499 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2500 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2501 ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total hdr+data */
2502
2503 ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2504
2505 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2506
2507 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2508
2509 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2510 priv->ieee->stats.rx_errors++;
2511
2512 /* ieee80211_rx failed, so it didn't free the SKB */
2513 dev_kfree_skb_any(packet->skb);
2514 packet->skb = NULL;
2515 }
2516
2517 /* We need to allocate a new SKB and attach it to the RDB. */
2518 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2519 IPW_DEBUG_WARNING(
2520 "%s: Unable to allocate SKB onto RBD ring - disabling "
2521 "adapter.\n", priv->net_dev->name);
2522 /* TODO: schedule adapter shutdown */
2523 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2524 }
2525
2526 /* Update the RDB entry */
2527 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2528 }
2529
2530 #endif
2531
2532 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2533 {
2534 struct ipw2100_status *status = &priv->status_queue.drv[i];
2535 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2536 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2537
2538 switch (frame_type) {
2539 case COMMAND_STATUS_VAL:
2540 return (status->frame_size != sizeof(u->rx_data.command));
2541 case STATUS_CHANGE_VAL:
2542 return (status->frame_size != sizeof(u->rx_data.status));
2543 case HOST_NOTIFICATION_VAL:
2544 return (status->frame_size < sizeof(u->rx_data.notification));
2545 case P80211_DATA_VAL:
2546 case P8023_DATA_VAL:
2547 #ifdef CONFIG_IPW2100_MONITOR
2548 return 0;
2549 #else
2550 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2551 case IEEE80211_FTYPE_MGMT:
2552 case IEEE80211_FTYPE_CTL:
2553 return 0;
2554 case IEEE80211_FTYPE_DATA:
2555 return (status->frame_size >
2556 IPW_MAX_802_11_PAYLOAD_LENGTH);
2557 }
2558 #endif
2559 }
2560
2561 return 1;
2562 }
2563
2564 /*
2565 * ipw2100 interrupts are disabled at this point, and the ISR
2566 * is the only code that calls this method. So, we do not need
2567 * to play with any locks.
2568 *
2569 * RX Queue works as follows:
2570 *
2571 * Read index - firmware places packet in entry identified by the
2572 * Read index and advances Read index. In this manner,
2573 * Read index will always point to the next packet to
2574 * be filled--but not yet valid.
2575 *
2576 * Write index - driver fills this entry with an unused RBD entry.
2577 * This entry has not filled by the firmware yet.
2578 *
2579 * In between the W and R indexes are the RBDs that have been received
2580 * but not yet processed.
2581 *
2582 * The process of handling packets will start at WRITE + 1 and advance
2583 * until it reaches the READ index.
2584 *
2585 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2586 *
2587 */
2588 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2589 {
2590 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2591 struct ipw2100_status_queue *sq = &priv->status_queue;
2592 struct ipw2100_rx_packet *packet;
2593 u16 frame_type;
2594 u32 r, w, i, s;
2595 struct ipw2100_rx *u;
2596 struct ieee80211_rx_stats stats = {
2597 .mac_time = jiffies,
2598 };
2599
2600 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2601 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2602
2603 if (r >= rxq->entries) {
2604 IPW_DEBUG_RX("exit - bad read index\n");
2605 return;
2606 }
2607
2608 i = (rxq->next + 1) % rxq->entries;
2609 s = i;
2610 while (i != r) {
2611 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2612 r, rxq->next, i); */
2613
2614 packet = &priv->rx_buffers[i];
2615
2616 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2617 * the correct values */
2618 pci_dma_sync_single_for_cpu(priv->pci_dev,
2619 sq->nic +
2620 sizeof(struct ipw2100_status) * i,
2621 sizeof(struct ipw2100_status),
2622 PCI_DMA_FROMDEVICE);
2623
2624 /* Sync the DMA for the RX buffer so CPU is sure to get
2625 * the correct values */
2626 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2627 sizeof(struct ipw2100_rx),
2628 PCI_DMA_FROMDEVICE);
2629
2630 if (unlikely(ipw2100_corruption_check(priv, i))) {
2631 ipw2100_corruption_detected(priv, i);
2632 goto increment;
2633 }
2634
2635 u = packet->rxp;
2636 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2637 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2638 stats.len = sq->drv[i].frame_size;
2639
2640 stats.mask = 0;
2641 if (stats.rssi != 0)
2642 stats.mask |= IEEE80211_STATMASK_RSSI;
2643 stats.freq = IEEE80211_24GHZ_BAND;
2644
2645 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2646 priv->net_dev->name, frame_types[frame_type],
2647 stats.len);
2648
2649 switch (frame_type) {
2650 case COMMAND_STATUS_VAL:
2651 /* Reset Rx watchdog */
2652 isr_rx_complete_command(priv, &u->rx_data.command);
2653 break;
2654
2655 case STATUS_CHANGE_VAL:
2656 isr_status_change(priv, u->rx_data.status);
2657 break;
2658
2659 case P80211_DATA_VAL:
2660 case P8023_DATA_VAL:
2661 #ifdef CONFIG_IPW2100_MONITOR
2662 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2663 isr_rx_monitor(priv, i, &stats);
2664 break;
2665 }
2666 #endif
2667 if (stats.len < sizeof(u->rx_data.header))
2668 break;
2669 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2670 case IEEE80211_FTYPE_MGMT:
2671 ieee80211_rx_mgt(priv->ieee,
2672 &u->rx_data.header, &stats);
2673 break;
2674
2675 case IEEE80211_FTYPE_CTL:
2676 break;
2677
2678 case IEEE80211_FTYPE_DATA:
2679 isr_rx(priv, i, &stats);
2680 break;
2681
2682 }
2683 break;
2684 }
2685
2686 increment:
2687 /* clear status field associated with this RBD */
2688 rxq->drv[i].status.info.field = 0;
2689
2690 i = (i + 1) % rxq->entries;
2691 }
2692
2693 if (i != s) {
2694 /* backtrack one entry, wrapping to end if at 0 */
2695 rxq->next = (i ? i : rxq->entries) - 1;
2696
2697 write_register(priv->net_dev,
2698 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2699 }
2700 }
2701
2702 /*
2703 * __ipw2100_tx_process
2704 *
2705 * This routine will determine whether the next packet on
2706 * the fw_pend_list has been processed by the firmware yet.
2707 *
2708 * If not, then it does nothing and returns.
2709 *
2710 * If so, then it removes the item from the fw_pend_list, frees
2711 * any associated storage, and places the item back on the
2712 * free list of its source (either msg_free_list or tx_free_list)
2713 *
2714 * TX Queue works as follows:
2715 *
2716 * Read index - points to the next TBD that the firmware will
2717 * process. The firmware will read the data, and once
2718 * done processing, it will advance the Read index.
2719 *
2720 * Write index - driver fills this entry with an constructed TBD
2721 * entry. The Write index is not advanced until the
2722 * packet has been configured.
2723 *
2724 * In between the W and R indexes are the TBDs that have NOT been
2725 * processed. Lagging behind the R index are packets that have
2726 * been processed but have not been freed by the driver.
2727 *
2728 * In order to free old storage, an internal index will be maintained
2729 * that points to the next packet to be freed. When all used
2730 * packets have been freed, the oldest index will be the same as the
2731 * firmware's read index.
2732 *
2733 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2734 *
2735 * Because the TBD structure can not contain arbitrary data, the
2736 * driver must keep an internal queue of cached allocations such that
2737 * it can put that data back into the tx_free_list and msg_free_list
2738 * for use by future command and data packets.
2739 *
2740 */
2741 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2742 {
2743 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2744 struct ipw2100_bd *tbd;
2745 struct list_head *element;
2746 struct ipw2100_tx_packet *packet;
2747 int descriptors_used;
2748 int e, i;
2749 u32 r, w, frag_num = 0;
2750
2751 if (list_empty(&priv->fw_pend_list))
2752 return 0;
2753
2754 element = priv->fw_pend_list.next;
2755
2756 packet = list_entry(element, struct ipw2100_tx_packet, list);
2757 tbd = &txq->drv[packet->index];
2758
2759 /* Determine how many TBD entries must be finished... */
2760 switch (packet->type) {
2761 case COMMAND:
2762 /* COMMAND uses only one slot; don't advance */
2763 descriptors_used = 1;
2764 e = txq->oldest;
2765 break;
2766
2767 case DATA:
2768 /* DATA uses two slots; advance and loop position. */
2769 descriptors_used = tbd->num_fragments;
2770 frag_num = tbd->num_fragments - 1;
2771 e = txq->oldest + frag_num;
2772 e %= txq->entries;
2773 break;
2774
2775 default:
2776 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2777 priv->net_dev->name);
2778 return 0;
2779 }
2780
2781 /* if the last TBD is not done by NIC yet, then packet is
2782 * not ready to be released.
2783 *
2784 */
2785 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2786 &r);
2787 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2788 &w);
2789 if (w != txq->next)
2790 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2791 priv->net_dev->name);
2792
2793 /*
2794 * txq->next is the index of the last packet written txq->oldest is
2795 * the index of the r is the index of the next packet to be read by
2796 * firmware
2797 */
2798
2799 /*
2800 * Quick graphic to help you visualize the following
2801 * if / else statement
2802 *
2803 * ===>| s---->|===============
2804 * e>|
2805 * | a | b | c | d | e | f | g | h | i | j | k | l
2806 * r---->|
2807 * w
2808 *
2809 * w - updated by driver
2810 * r - updated by firmware
2811 * s - start of oldest BD entry (txq->oldest)
2812 * e - end of oldest BD entry
2813 *
2814 */
2815 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2816 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2817 return 0;
2818 }
2819
2820 list_del(element);
2821 DEC_STAT(&priv->fw_pend_stat);
2822
2823 #ifdef CONFIG_IPW2100_DEBUG
2824 {
2825 int i = txq->oldest;
2826 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2827 &txq->drv[i],
2828 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2829 txq->drv[i].host_addr, txq->drv[i].buf_length);
2830
2831 if (packet->type == DATA) {
2832 i = (i + 1) % txq->entries;
2833
2834 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2835 &txq->drv[i],
2836 (u32) (txq->nic + i *
2837 sizeof(struct ipw2100_bd)),
2838 (u32) txq->drv[i].host_addr,
2839 txq->drv[i].buf_length);
2840 }
2841 }
2842 #endif
2843
2844 switch (packet->type) {
2845 case DATA:
2846 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2847 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2848 "Expecting DATA TBD but pulled "
2849 "something else: ids %d=%d.\n",
2850 priv->net_dev->name, txq->oldest, packet->index);
2851
2852 /* DATA packet; we have to unmap and free the SKB */
2853 for (i = 0; i < frag_num; i++) {
2854 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2855
2856 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2857 (packet->index + 1 + i) % txq->entries,
2858 tbd->host_addr, tbd->buf_length);
2859
2860 pci_unmap_single(priv->pci_dev,
2861 tbd->host_addr,
2862 tbd->buf_length, PCI_DMA_TODEVICE);
2863 }
2864
2865 ieee80211_txb_free(packet->info.d_struct.txb);
2866 packet->info.d_struct.txb = NULL;
2867
2868 list_add_tail(element, &priv->tx_free_list);
2869 INC_STAT(&priv->tx_free_stat);
2870
2871 /* We have a free slot in the Tx queue, so wake up the
2872 * transmit layer if it is stopped. */
2873 if (priv->status & STATUS_ASSOCIATED)
2874 netif_wake_queue(priv->net_dev);
2875
2876 /* A packet was processed by the hardware, so update the
2877 * watchdog */
2878 priv->net_dev->trans_start = jiffies;
2879
2880 break;
2881
2882 case COMMAND:
2883 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2884 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2885 "Expecting COMMAND TBD but pulled "
2886 "something else: ids %d=%d.\n",
2887 priv->net_dev->name, txq->oldest, packet->index);
2888
2889 #ifdef CONFIG_IPW2100_DEBUG
2890 if (packet->info.c_struct.cmd->host_command_reg <
2891 sizeof(command_types) / sizeof(*command_types))
2892 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2893 command_types[packet->info.c_struct.cmd->
2894 host_command_reg],
2895 packet->info.c_struct.cmd->
2896 host_command_reg,
2897 packet->info.c_struct.cmd->cmd_status_reg);
2898 #endif
2899
2900 list_add_tail(element, &priv->msg_free_list);
2901 INC_STAT(&priv->msg_free_stat);
2902 break;
2903 }
2904
2905 /* advance oldest used TBD pointer to start of next entry */
2906 txq->oldest = (e + 1) % txq->entries;
2907 /* increase available TBDs number */
2908 txq->available += descriptors_used;
2909 SET_STAT(&priv->txq_stat, txq->available);
2910
2911 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2912 jiffies - packet->jiffy_start);
2913
2914 return (!list_empty(&priv->fw_pend_list));
2915 }
2916
2917 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2918 {
2919 int i = 0;
2920
2921 while (__ipw2100_tx_process(priv) && i < 200)
2922 i++;
2923
2924 if (i == 200) {
2925 printk(KERN_WARNING DRV_NAME ": "
2926 "%s: Driver is running slow (%d iters).\n",
2927 priv->net_dev->name, i);
2928 }
2929 }
2930
2931 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2932 {
2933 struct list_head *element;
2934 struct ipw2100_tx_packet *packet;
2935 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2936 struct ipw2100_bd *tbd;
2937 int next = txq->next;
2938
2939 while (!list_empty(&priv->msg_pend_list)) {
2940 /* if there isn't enough space in TBD queue, then
2941 * don't stuff a new one in.
2942 * NOTE: 3 are needed as a command will take one,
2943 * and there is a minimum of 2 that must be
2944 * maintained between the r and w indexes
2945 */
2946 if (txq->available <= 3) {
2947 IPW_DEBUG_TX("no room in tx_queue\n");
2948 break;
2949 }
2950
2951 element = priv->msg_pend_list.next;
2952 list_del(element);
2953 DEC_STAT(&priv->msg_pend_stat);
2954
2955 packet = list_entry(element, struct ipw2100_tx_packet, list);
2956
2957 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2958 &txq->drv[txq->next],
2959 (void *)(txq->nic + txq->next *
2960 sizeof(struct ipw2100_bd)));
2961
2962 packet->index = txq->next;
2963
2964 tbd = &txq->drv[txq->next];
2965
2966 /* initialize TBD */
2967 tbd->host_addr = packet->info.c_struct.cmd_phys;
2968 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2969 /* not marking number of fragments causes problems
2970 * with f/w debug version */
2971 tbd->num_fragments = 1;
2972 tbd->status.info.field =
2973 IPW_BD_STATUS_TX_FRAME_COMMAND |
2974 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2975
2976 /* update TBD queue counters */
2977 txq->next++;
2978 txq->next %= txq->entries;
2979 txq->available--;
2980 DEC_STAT(&priv->txq_stat);
2981
2982 list_add_tail(element, &priv->fw_pend_list);
2983 INC_STAT(&priv->fw_pend_stat);
2984 }
2985
2986 if (txq->next != next) {
2987 /* kick off the DMA by notifying firmware the
2988 * write index has moved; make sure TBD stores are sync'd */
2989 wmb();
2990 write_register(priv->net_dev,
2991 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2992 txq->next);
2993 }
2994 }
2995
2996 /*
2997 * ipw2100_tx_send_data
2998 *
2999 */
3000 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3001 {
3002 struct list_head *element;
3003 struct ipw2100_tx_packet *packet;
3004 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3005 struct ipw2100_bd *tbd;
3006 int next = txq->next;
3007 int i = 0;
3008 struct ipw2100_data_header *ipw_hdr;
3009 struct ieee80211_hdr_3addr *hdr;
3010
3011 while (!list_empty(&priv->tx_pend_list)) {
3012 /* if there isn't enough space in TBD queue, then
3013 * don't stuff a new one in.
3014 * NOTE: 4 are needed as a data will take two,
3015 * and there is a minimum of 2 that must be
3016 * maintained between the r and w indexes
3017 */
3018 element = priv->tx_pend_list.next;
3019 packet = list_entry(element, struct ipw2100_tx_packet, list);
3020
3021 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3022 IPW_MAX_BDS)) {
3023 /* TODO: Support merging buffers if more than
3024 * IPW_MAX_BDS are used */
3025 IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded. "
3026 "Increase fragmentation level.\n",
3027 priv->net_dev->name);
3028 }
3029
3030 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3031 IPW_DEBUG_TX("no room in tx_queue\n");
3032 break;
3033 }
3034
3035 list_del(element);
3036 DEC_STAT(&priv->tx_pend_stat);
3037
3038 tbd = &txq->drv[txq->next];
3039
3040 packet->index = txq->next;
3041
3042 ipw_hdr = packet->info.d_struct.data;
3043 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3044 fragments[0]->data;
3045
3046 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3047 /* To DS: Addr1 = BSSID, Addr2 = SA,
3048 Addr3 = DA */
3049 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3050 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3051 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3052 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3053 Addr3 = BSSID */
3054 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3055 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3056 }
3057
3058 ipw_hdr->host_command_reg = SEND;
3059 ipw_hdr->host_command_reg1 = 0;
3060
3061 /* For now we only support host based encryption */
3062 ipw_hdr->needs_encryption = 0;
3063 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3064 if (packet->info.d_struct.txb->nr_frags > 1)
3065 ipw_hdr->fragment_size =
3066 packet->info.d_struct.txb->frag_size -
3067 IEEE80211_3ADDR_LEN;
3068 else
3069 ipw_hdr->fragment_size = 0;
3070
3071 tbd->host_addr = packet->info.d_struct.data_phys;
3072 tbd->buf_length = sizeof(struct ipw2100_data_header);
3073 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3074 tbd->status.info.field =
3075 IPW_BD_STATUS_TX_FRAME_802_3 |
3076 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3077 txq->next++;
3078 txq->next %= txq->entries;
3079
3080 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3081 packet->index, tbd->host_addr, tbd->buf_length);
3082 #ifdef CONFIG_IPW2100_DEBUG
3083 if (packet->info.d_struct.txb->nr_frags > 1)
3084 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3085 packet->info.d_struct.txb->nr_frags);
3086 #endif
3087
3088 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3089 tbd = &txq->drv[txq->next];
3090 if (i == packet->info.d_struct.txb->nr_frags - 1)
3091 tbd->status.info.field =
3092 IPW_BD_STATUS_TX_FRAME_802_3 |
3093 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3094 else
3095 tbd->status.info.field =
3096 IPW_BD_STATUS_TX_FRAME_802_3 |
3097 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3098
3099 tbd->buf_length = packet->info.d_struct.txb->
3100 fragments[i]->len - IEEE80211_3ADDR_LEN;
3101
3102 tbd->host_addr = pci_map_single(priv->pci_dev,
3103 packet->info.d_struct.
3104 txb->fragments[i]->
3105 data +
3106 IEEE80211_3ADDR_LEN,
3107 tbd->buf_length,
3108 PCI_DMA_TODEVICE);
3109
3110 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3111 txq->next, tbd->host_addr,
3112 tbd->buf_length);
3113
3114 pci_dma_sync_single_for_device(priv->pci_dev,
3115 tbd->host_addr,
3116 tbd->buf_length,
3117 PCI_DMA_TODEVICE);
3118
3119 txq->next++;
3120 txq->next %= txq->entries;
3121 }
3122
3123 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3124 SET_STAT(&priv->txq_stat, txq->available);
3125
3126 list_add_tail(element, &priv->fw_pend_list);
3127 INC_STAT(&priv->fw_pend_stat);
3128 }
3129
3130 if (txq->next != next) {
3131 /* kick off the DMA by notifying firmware the
3132 * write index has moved; make sure TBD stores are sync'd */
3133 write_register(priv->net_dev,
3134 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3135 txq->next);
3136 }
3137 return;
3138 }
3139
3140 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3141 {
3142 struct net_device *dev = priv->net_dev;
3143 unsigned long flags;
3144 u32 inta, tmp;
3145
3146 spin_lock_irqsave(&priv->low_lock, flags);
3147 ipw2100_disable_interrupts(priv);
3148
3149 read_register(dev, IPW_REG_INTA, &inta);
3150
3151 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3152 (unsigned long)inta & IPW_INTERRUPT_MASK);
3153
3154 priv->in_isr++;
3155 priv->interrupts++;
3156
3157 /* We do not loop and keep polling for more interrupts as this
3158 * is frowned upon and doesn't play nicely with other potentially
3159 * chained IRQs */
3160 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3161 (unsigned long)inta & IPW_INTERRUPT_MASK);
3162
3163 if (inta & IPW2100_INTA_FATAL_ERROR) {
3164 printk(KERN_WARNING DRV_NAME
3165 ": Fatal interrupt. Scheduling firmware restart.\n");
3166 priv->inta_other++;
3167 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3168
3169 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3170 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3171 priv->net_dev->name, priv->fatal_error);
3172
3173 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3174 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3175 priv->net_dev->name, tmp);
3176
3177 /* Wake up any sleeping jobs */
3178 schedule_reset(priv);
3179 }
3180
3181 if (inta & IPW2100_INTA_PARITY_ERROR) {
3182 printk(KERN_ERR DRV_NAME
3183 ": ***** PARITY ERROR INTERRUPT !!!! \n");
3184 priv->inta_other++;
3185 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3186 }
3187
3188 if (inta & IPW2100_INTA_RX_TRANSFER) {
3189 IPW_DEBUG_ISR("RX interrupt\n");
3190
3191 priv->rx_interrupts++;
3192
3193 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3194
3195 __ipw2100_rx_process(priv);
3196 __ipw2100_tx_complete(priv);
3197 }
3198
3199 if (inta & IPW2100_INTA_TX_TRANSFER) {
3200 IPW_DEBUG_ISR("TX interrupt\n");
3201
3202 priv->tx_interrupts++;
3203
3204 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3205
3206 __ipw2100_tx_complete(priv);
3207 ipw2100_tx_send_commands(priv);
3208 ipw2100_tx_send_data(priv);
3209 }
3210
3211 if (inta & IPW2100_INTA_TX_COMPLETE) {
3212 IPW_DEBUG_ISR("TX complete\n");
3213 priv->inta_other++;
3214 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3215
3216 __ipw2100_tx_complete(priv);
3217 }
3218
3219 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3220 /* ipw2100_handle_event(dev); */
3221 priv->inta_other++;
3222 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3223 }
3224
3225 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3226 IPW_DEBUG_ISR("FW init done interrupt\n");
3227 priv->inta_other++;
3228
3229 read_register(dev, IPW_REG_INTA, &tmp);
3230 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3231 IPW2100_INTA_PARITY_ERROR)) {
3232 write_register(dev, IPW_REG_INTA,
3233 IPW2100_INTA_FATAL_ERROR |
3234 IPW2100_INTA_PARITY_ERROR);
3235 }
3236
3237 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3238 }
3239
3240 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3241 IPW_DEBUG_ISR("Status change interrupt\n");
3242 priv->inta_other++;
3243 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3244 }
3245
3246 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3247 IPW_DEBUG_ISR("slave host mode interrupt\n");
3248 priv->inta_other++;
3249 write_register(dev, IPW_REG_INTA,
3250 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3251 }
3252
3253 priv->in_isr--;
3254 ipw2100_enable_interrupts(priv);
3255
3256 spin_unlock_irqrestore(&priv->low_lock, flags);
3257
3258 IPW_DEBUG_ISR("exit\n");
3259 }
3260
3261 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3262 {
3263 struct ipw2100_priv *priv = data;
3264 u32 inta, inta_mask;
3265
3266 if (!data)
3267 return IRQ_NONE;
3268
3269 spin_lock(&priv->low_lock);
3270
3271 /* We check to see if we should be ignoring interrupts before
3272 * we touch the hardware. During ucode load if we try and handle
3273 * an interrupt we can cause keyboard problems as well as cause
3274 * the ucode to fail to initialize */
3275 if (!(priv->status & STATUS_INT_ENABLED)) {
3276 /* Shared IRQ */
3277 goto none;
3278 }
3279
3280 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3281 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3282
3283 if (inta == 0xFFFFFFFF) {
3284 /* Hardware disappeared */
3285 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3286 goto none;
3287 }
3288
3289 inta &= IPW_INTERRUPT_MASK;
3290
3291 if (!(inta & inta_mask)) {
3292 /* Shared interrupt */
3293 goto none;
3294 }
3295
3296 /* We disable the hardware interrupt here just to prevent unneeded
3297 * calls to be made. We disable this again within the actual
3298 * work tasklet, so if another part of the code re-enables the
3299 * interrupt, that is fine */
3300 ipw2100_disable_interrupts(priv);
3301
3302 tasklet_schedule(&priv->irq_tasklet);
3303 spin_unlock(&priv->low_lock);
3304
3305 return IRQ_HANDLED;
3306 none:
3307 spin_unlock(&priv->low_lock);
3308 return IRQ_NONE;
3309 }
3310
3311 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3312 int pri)
3313 {
3314 struct ipw2100_priv *priv = ieee80211_priv(dev);
3315 struct list_head *element;
3316 struct ipw2100_tx_packet *packet;
3317 unsigned long flags;
3318
3319 spin_lock_irqsave(&priv->low_lock, flags);
3320
3321 if (!(priv->status & STATUS_ASSOCIATED)) {
3322 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3323 priv->ieee->stats.tx_carrier_errors++;
3324 netif_stop_queue(dev);
3325 goto fail_unlock;
3326 }
3327
3328 if (list_empty(&priv->tx_free_list))
3329 goto fail_unlock;
3330
3331 element = priv->tx_free_list.next;
3332 packet = list_entry(element, struct ipw2100_tx_packet, list);
3333
3334 packet->info.d_struct.txb = txb;
3335
3336 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3337 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3338
3339 packet->jiffy_start = jiffies;
3340
3341 list_del(element);
3342 DEC_STAT(&priv->tx_free_stat);
3343
3344 list_add_tail(element, &priv->tx_pend_list);
3345 INC_STAT(&priv->tx_pend_stat);
3346
3347 ipw2100_tx_send_data(priv);
3348
3349 spin_unlock_irqrestore(&priv->low_lock, flags);
3350 return 0;
3351
3352 fail_unlock:
3353 netif_stop_queue(dev);
3354 spin_unlock_irqrestore(&priv->low_lock, flags);
3355 return 1;
3356 }
3357
3358 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3359 {
3360 int i, j, err = -EINVAL;
3361 void *v;
3362 dma_addr_t p;
3363
3364 priv->msg_buffers =
3365 (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3366 sizeof(struct
3367 ipw2100_tx_packet),
3368 GFP_KERNEL);
3369 if (!priv->msg_buffers) {
3370 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3371 "buffers.\n", priv->net_dev->name);
3372 return -ENOMEM;
3373 }
3374
3375 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3376 v = pci_alloc_consistent(priv->pci_dev,
3377 sizeof(struct ipw2100_cmd_header), &p);
3378 if (!v) {
3379 printk(KERN_ERR DRV_NAME ": "
3380 "%s: PCI alloc failed for msg "
3381 "buffers.\n", priv->net_dev->name);
3382 err = -ENOMEM;
3383 break;
3384 }
3385
3386 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3387
3388 priv->msg_buffers[i].type = COMMAND;
3389 priv->msg_buffers[i].info.c_struct.cmd =
3390 (struct ipw2100_cmd_header *)v;
3391 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3392 }
3393
3394 if (i == IPW_COMMAND_POOL_SIZE)
3395 return 0;
3396
3397 for (j = 0; j < i; j++) {
3398 pci_free_consistent(priv->pci_dev,
3399 sizeof(struct ipw2100_cmd_header),
3400 priv->msg_buffers[j].info.c_struct.cmd,
3401 priv->msg_buffers[j].info.c_struct.
3402 cmd_phys);
3403 }
3404
3405 kfree(priv->msg_buffers);
3406 priv->msg_buffers = NULL;
3407
3408 return err;
3409 }
3410
3411 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3412 {
3413 int i;
3414
3415 INIT_LIST_HEAD(&priv->msg_free_list);
3416 INIT_LIST_HEAD(&priv->msg_pend_list);
3417
3418 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3419 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3420 SET_STAT(&priv->msg_free_stat, i);
3421
3422 return 0;
3423 }
3424
3425 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3426 {
3427 int i;
3428
3429 if (!priv->msg_buffers)
3430 return;
3431
3432 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3433 pci_free_consistent(priv->pci_dev,
3434 sizeof(struct ipw2100_cmd_header),
3435 priv->msg_buffers[i].info.c_struct.cmd,
3436 priv->msg_buffers[i].info.c_struct.
3437 cmd_phys);
3438 }
3439
3440 kfree(priv->msg_buffers);
3441 priv->msg_buffers = NULL;
3442 }
3443
3444 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3445 char *buf)
3446 {
3447 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3448 char *out = buf;
3449 int i, j;
3450 u32 val;
3451
3452 for (i = 0; i < 16; i++) {
3453 out += sprintf(out, "[%08X] ", i * 16);
3454 for (j = 0; j < 16; j += 4) {
3455 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3456 out += sprintf(out, "%08X ", val);
3457 }
3458 out += sprintf(out, "\n");
3459 }
3460
3461 return out - buf;
3462 }
3463
3464 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3465
3466 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3467 char *buf)
3468 {
3469 struct ipw2100_priv *p = d->driver_data;
3470 return sprintf(buf, "0x%08x\n", (int)p->config);
3471 }
3472
3473 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3474
3475 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3476 char *buf)
3477 {
3478 struct ipw2100_priv *p = d->driver_data;
3479 return sprintf(buf, "0x%08x\n", (int)p->status);
3480 }
3481
3482 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3483
3484 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3485 char *buf)
3486 {
3487 struct ipw2100_priv *p = d->driver_data;
3488 return sprintf(buf, "0x%08x\n", (int)p->capability);
3489 }
3490
3491 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3492
3493 #define IPW2100_REG(x) { IPW_ ##x, #x }
3494 static const struct {
3495 u32 addr;
3496 const char *name;
3497 } hw_data[] = {
3498 IPW2100_REG(REG_GP_CNTRL),
3499 IPW2100_REG(REG_GPIO),
3500 IPW2100_REG(REG_INTA),
3501 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3502 #define IPW2100_NIC(x, s) { x, #x, s }
3503 static const struct {
3504 u32 addr;
3505 const char *name;
3506 size_t size;
3507 } nic_data[] = {
3508 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3509 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3510 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3511 static const struct {
3512 u8 index;
3513 const char *name;
3514 const char *desc;
3515 } ord_data[] = {
3516 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3517 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3518 "successful Host Tx's (MSDU)"),
3519 IPW2100_ORD(STAT_TX_DIR_DATA,
3520 "successful Directed Tx's (MSDU)"),
3521 IPW2100_ORD(STAT_TX_DIR_DATA1,
3522 "successful Directed Tx's (MSDU) @ 1MB"),
3523 IPW2100_ORD(STAT_TX_DIR_DATA2,
3524 "successful Directed Tx's (MSDU) @ 2MB"),
3525 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3526 "successful Directed Tx's (MSDU) @ 5_5MB"),
3527 IPW2100_ORD(STAT_TX_DIR_DATA11,
3528 "successful Directed Tx's (MSDU) @ 11MB"),
3529 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3530 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3531 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3532 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3533 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3534 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3535 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3536 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3537 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3538 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3539 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3540 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3541 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3542 IPW2100_ORD(STAT_TX_ASSN_RESP,
3543 "successful Association response Tx's"),
3544 IPW2100_ORD(STAT_TX_REASSN,
3545 "successful Reassociation Tx's"),
3546 IPW2100_ORD(STAT_TX_REASSN_RESP,
3547 "successful Reassociation response Tx's"),
3548 IPW2100_ORD(STAT_TX_PROBE,
3549 "probes successfully transmitted"),
3550 IPW2100_ORD(STAT_TX_PROBE_RESP,
3551 "probe responses successfully transmitted"),
3552 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3553 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3554 IPW2100_ORD(STAT_TX_DISASSN,
3555 "successful Disassociation TX"),
3556 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3557 IPW2100_ORD(STAT_TX_DEAUTH,
3558 "successful Deauthentication TX"),
3559 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3560 "Total successful Tx data bytes"),
3561 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3562 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3563 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3564 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3565 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3566 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3567 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3568 "times max tries in a hop failed"),
3569 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3570 "times disassociation failed"),
3571 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3572 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3573 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3574 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3575 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3576 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3577 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3578 "directed packets at 5.5MB"),
3579 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3580 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3581 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3582 "nondirected packets at 1MB"),
3583 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3584 "nondirected packets at 2MB"),
3585 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3586 "nondirected packets at 5.5MB"),
3587 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3588 "nondirected packets at 11MB"),
3589 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3590 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3591 "Rx CTS"),
3592 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3593 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3594 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3595 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3596 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3597 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3598 IPW2100_ORD(STAT_RX_REASSN_RESP,
3599 "Reassociation response Rx's"),
3600 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3601 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3602 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3603 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3604 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3605 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3606 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3607 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3608 "Total rx data bytes received"),
3609 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3610 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3611 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3612 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3613 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3614 IPW2100_ORD(STAT_RX_DUPLICATE1,
3615 "duplicate rx packets at 1MB"),
3616 IPW2100_ORD(STAT_RX_DUPLICATE2,
3617 "duplicate rx packets at 2MB"),
3618 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3619 "duplicate rx packets at 5.5MB"),
3620 IPW2100_ORD(STAT_RX_DUPLICATE11,
3621 "duplicate rx packets at 11MB"),
3622 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3623 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3624 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3625 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3626 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3627 "rx frames with invalid protocol"),
3628 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3629 IPW2100_ORD(STAT_RX_NO_BUFFER,
3630 "rx frames rejected due to no buffer"),
3631 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3632 "rx frames dropped due to missing fragment"),
3633 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3634 "rx frames dropped due to non-sequential fragment"),
3635 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3636 "rx frames dropped due to unmatched 1st frame"),
3637 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3638 "rx frames dropped due to uncompleted frame"),
3639 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3640 "ICV errors during decryption"),
3641 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3642 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3643 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3644 "poll response timeouts"),
3645 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3646 "timeouts waiting for last {broad,multi}cast pkt"),
3647 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3648 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3649 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3650 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3651 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3652 "current calculation of % missed beacons"),
3653 IPW2100_ORD(STAT_PERCENT_RETRIES,
3654 "current calculation of % missed tx retries"),
3655 IPW2100_ORD(ASSOCIATED_AP_PTR,
3656 "0 if not associated, else pointer to AP table entry"),
3657 IPW2100_ORD(AVAILABLE_AP_CNT,
3658 "AP's decsribed in the AP table"),
3659 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3660 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3661 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3662 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3663 "failures due to response fail"),
3664 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3665 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3666 IPW2100_ORD(STAT_ROAM_INHIBIT,
3667 "times roaming was inhibited due to activity"),
3668 IPW2100_ORD(RSSI_AT_ASSN,
3669 "RSSI of associated AP at time of association"),
3670 IPW2100_ORD(STAT_ASSN_CAUSE1,
3671 "reassociation: no probe response or TX on hop"),
3672 IPW2100_ORD(STAT_ASSN_CAUSE2,
3673 "reassociation: poor tx/rx quality"),
3674 IPW2100_ORD(STAT_ASSN_CAUSE3,
3675 "reassociation: tx/rx quality (excessive AP load"),
3676 IPW2100_ORD(STAT_ASSN_CAUSE4,
3677 "reassociation: AP RSSI level"),
3678 IPW2100_ORD(STAT_ASSN_CAUSE5,
3679 "reassociations due to load leveling"),
3680 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3681 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3682 "times authentication response failed"),
3683 IPW2100_ORD(STATION_TABLE_CNT,
3684 "entries in association table"),
3685 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3686 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3687 IPW2100_ORD(COUNTRY_CODE,
3688 "IEEE country code as recv'd from beacon"),
3689 IPW2100_ORD(COUNTRY_CHANNELS,
3690 "channels suported by country"),
3691 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3692 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3693 IPW2100_ORD(ANTENNA_DIVERSITY,
3694 "TRUE if antenna diversity is disabled"),
3695 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3696 IPW2100_ORD(OUR_FREQ,
3697 "current radio freq lower digits - channel ID"),
3698 IPW2100_ORD(RTC_TIME, "current RTC time"),
3699 IPW2100_ORD(PORT_TYPE, "operating mode"),
3700 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3701 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3702 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3703 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3704 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3705 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3706 IPW2100_ORD(CAPABILITIES,
3707 "Management frame capability field"),
3708 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3709 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3710 IPW2100_ORD(RTS_THRESHOLD,
3711 "Min packet length for RTS handshaking"),
3712 IPW2100_ORD(INT_MODE, "International mode"),
3713 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3714 "protocol frag threshold"),
3715 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3716 "EEPROM offset in SRAM"),
3717 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3718 "EEPROM size in SRAM"),
3719 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3720 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3721 "EEPROM IBSS 11b channel set"),
3722 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3723 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3724 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3725 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3726 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3727
3728 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3729 char *buf)
3730 {
3731 int i;
3732 struct ipw2100_priv *priv = dev_get_drvdata(d);
3733 struct net_device *dev = priv->net_dev;
3734 char *out = buf;
3735 u32 val = 0;
3736
3737 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3738
3739 for (i = 0; i < (sizeof(hw_data) / sizeof(*hw_data)); i++) {
3740 read_register(dev, hw_data[i].addr, &val);
3741 out += sprintf(out, "%30s [%08X] : %08X\n",
3742 hw_data[i].name, hw_data[i].addr, val);
3743 }
3744
3745 return out - buf;
3746 }
3747
3748 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3749
3750 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3751 char *buf)
3752 {
3753 struct ipw2100_priv *priv = dev_get_drvdata(d);
3754 struct net_device *dev = priv->net_dev;
3755 char *out = buf;
3756 int i;
3757
3758 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3759
3760 for (i = 0; i < (sizeof(nic_data) / sizeof(*nic_data)); i++) {
3761 u8 tmp8;
3762 u16 tmp16;
3763 u32 tmp32;
3764
3765 switch (nic_data[i].size) {
3766 case 1:
3767 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3768 out += sprintf(out, "%30s [%08X] : %02X\n",
3769 nic_data[i].name, nic_data[i].addr,
3770 tmp8);
3771 break;
3772 case 2:
3773 read_nic_word(dev, nic_data[i].addr, &tmp16);
3774 out += sprintf(out, "%30s [%08X] : %04X\n",
3775 nic_data[i].name, nic_data[i].addr,
3776 tmp16);
3777 break;
3778 case 4:
3779 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3780 out += sprintf(out, "%30s [%08X] : %08X\n",
3781 nic_data[i].name, nic_data[i].addr,
3782 tmp32);
3783 break;
3784 }
3785 }
3786 return out - buf;
3787 }
3788
3789 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3790
3791 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3792 char *buf)
3793 {
3794 struct ipw2100_priv *priv = dev_get_drvdata(d);
3795 struct net_device *dev = priv->net_dev;
3796 static unsigned long loop = 0;
3797 int len = 0;
3798 u32 buffer[4];
3799 int i;
3800 char line[81];
3801
3802 if (loop >= 0x30000)
3803 loop = 0;
3804
3805 /* sysfs provides us PAGE_SIZE buffer */
3806 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3807
3808 if (priv->snapshot[0])
3809 for (i = 0; i < 4; i++)
3810 buffer[i] =
3811 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3812 else
3813 for (i = 0; i < 4; i++)
3814 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3815
3816 if (priv->dump_raw)
3817 len += sprintf(buf + len,
3818 "%c%c%c%c"
3819 "%c%c%c%c"
3820 "%c%c%c%c"
3821 "%c%c%c%c",
3822 ((u8 *) buffer)[0x0],
3823 ((u8 *) buffer)[0x1],
3824 ((u8 *) buffer)[0x2],
3825 ((u8 *) buffer)[0x3],
3826 ((u8 *) buffer)[0x4],
3827 ((u8 *) buffer)[0x5],
3828 ((u8 *) buffer)[0x6],
3829 ((u8 *) buffer)[0x7],
3830 ((u8 *) buffer)[0x8],
3831 ((u8 *) buffer)[0x9],
3832 ((u8 *) buffer)[0xa],
3833 ((u8 *) buffer)[0xb],
3834 ((u8 *) buffer)[0xc],
3835 ((u8 *) buffer)[0xd],
3836 ((u8 *) buffer)[0xe],
3837 ((u8 *) buffer)[0xf]);
3838 else
3839 len += sprintf(buf + len, "%s\n",
3840 snprint_line(line, sizeof(line),
3841 (u8 *) buffer, 16, loop));
3842 loop += 16;
3843 }
3844
3845 return len;
3846 }
3847
3848 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3849 const char *buf, size_t count)
3850 {
3851 struct ipw2100_priv *priv = dev_get_drvdata(d);
3852 struct net_device *dev = priv->net_dev;
3853 const char *p = buf;
3854
3855 (void)dev; /* kill unused-var warning for debug-only code */
3856
3857 if (count < 1)
3858 return count;
3859
3860 if (p[0] == '1' ||
3861 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3862 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3863 dev->name);
3864 priv->dump_raw = 1;
3865
3866 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3867 tolower(p[1]) == 'f')) {
3868 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3869 dev->name);
3870 priv->dump_raw = 0;
3871
3872 } else if (tolower(p[0]) == 'r') {
3873 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3874 ipw2100_snapshot_free(priv);
3875
3876 } else
3877 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3878 "reset = clear memory snapshot\n", dev->name);
3879
3880 return count;
3881 }
3882
3883 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3884
3885 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3886 char *buf)
3887 {
3888 struct ipw2100_priv *priv = dev_get_drvdata(d);
3889 u32 val = 0;
3890 int len = 0;
3891 u32 val_len;
3892 static int loop = 0;
3893
3894 if (priv->status & STATUS_RF_KILL_MASK)
3895 return 0;
3896
3897 if (loop >= sizeof(ord_data) / sizeof(*ord_data))
3898 loop = 0;
3899
3900 /* sysfs provides us PAGE_SIZE buffer */
3901 while (len < PAGE_SIZE - 128 &&
3902 loop < (sizeof(ord_data) / sizeof(*ord_data))) {
3903
3904 val_len = sizeof(u32);
3905
3906 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3907 &val_len))
3908 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3909 ord_data[loop].index,
3910 ord_data[loop].desc);
3911 else
3912 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3913 ord_data[loop].index, val,
3914 ord_data[loop].desc);
3915 loop++;
3916 }
3917
3918 return len;
3919 }
3920
3921 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3922
3923 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3924 char *buf)
3925 {
3926 struct ipw2100_priv *priv = dev_get_drvdata(d);
3927 char *out = buf;
3928
3929 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3930 priv->interrupts, priv->tx_interrupts,
3931 priv->rx_interrupts, priv->inta_other);
3932 out += sprintf(out, "firmware resets: %d\n", priv->resets);
3933 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3934 #ifdef CONFIG_IPW2100_DEBUG
3935 out += sprintf(out, "packet mismatch image: %s\n",
3936 priv->snapshot[0] ? "YES" : "NO");
3937 #endif
3938
3939 return out - buf;
3940 }
3941
3942 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3943
3944 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3945 {
3946 int err;
3947
3948 if (mode == priv->ieee->iw_mode)
3949 return 0;
3950
3951 err = ipw2100_disable_adapter(priv);
3952 if (err) {
3953 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3954 priv->net_dev->name, err);
3955 return err;
3956 }
3957
3958 switch (mode) {
3959 case IW_MODE_INFRA:
3960 priv->net_dev->type = ARPHRD_ETHER;
3961 break;
3962 case IW_MODE_ADHOC:
3963 priv->net_dev->type = ARPHRD_ETHER;
3964 break;
3965 #ifdef CONFIG_IPW2100_MONITOR
3966 case IW_MODE_MONITOR:
3967 priv->last_mode = priv->ieee->iw_mode;
3968 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3969 break;
3970 #endif /* CONFIG_IPW2100_MONITOR */
3971 }
3972
3973 priv->ieee->iw_mode = mode;
3974
3975 #ifdef CONFIG_PM
3976 /* Indicate ipw2100_download_firmware download firmware
3977 * from disk instead of memory. */
3978 ipw2100_firmware.version = 0;
3979 #endif
3980
3981 printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3982 priv->reset_backoff = 0;
3983 schedule_reset(priv);
3984
3985 return 0;
3986 }
3987
3988 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3989 char *buf)
3990 {
3991 struct ipw2100_priv *priv = dev_get_drvdata(d);
3992 int len = 0;
3993
3994 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3995
3996 if (priv->status & STATUS_ASSOCIATED)
3997 len += sprintf(buf + len, "connected: %lu\n",
3998 get_seconds() - priv->connect_start);
3999 else
4000 len += sprintf(buf + len, "not connected\n");
4001
4002 DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
4003 DUMP_VAR(status, "08lx");
4004 DUMP_VAR(config, "08lx");
4005 DUMP_VAR(capability, "08lx");
4006
4007 len +=
4008 sprintf(buf + len, "last_rtc: %lu\n",
4009 (unsigned long)priv->last_rtc);
4010
4011 DUMP_VAR(fatal_error, "d");
4012 DUMP_VAR(stop_hang_check, "d");
4013 DUMP_VAR(stop_rf_kill, "d");
4014 DUMP_VAR(messages_sent, "d");
4015
4016 DUMP_VAR(tx_pend_stat.value, "d");
4017 DUMP_VAR(tx_pend_stat.hi, "d");
4018
4019 DUMP_VAR(tx_free_stat.value, "d");
4020 DUMP_VAR(tx_free_stat.lo, "d");
4021
4022 DUMP_VAR(msg_free_stat.value, "d");
4023 DUMP_VAR(msg_free_stat.lo, "d");
4024
4025 DUMP_VAR(msg_pend_stat.value, "d");
4026 DUMP_VAR(msg_pend_stat.hi, "d");
4027
4028 DUMP_VAR(fw_pend_stat.value, "d");
4029 DUMP_VAR(fw_pend_stat.hi, "d");
4030
4031 DUMP_VAR(txq_stat.value, "d");
4032 DUMP_VAR(txq_stat.lo, "d");
4033
4034 DUMP_VAR(ieee->scans, "d");
4035 DUMP_VAR(reset_backoff, "d");
4036
4037 return len;
4038 }
4039
4040 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4041
4042 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4043 char *buf)
4044 {
4045 struct ipw2100_priv *priv = dev_get_drvdata(d);
4046 char essid[IW_ESSID_MAX_SIZE + 1];
4047 u8 bssid[ETH_ALEN];
4048 u32 chan = 0;
4049 char *out = buf;
4050 int length;
4051 int ret;
4052
4053 if (priv->status & STATUS_RF_KILL_MASK)
4054 return 0;
4055
4056 memset(essid, 0, sizeof(essid));
4057 memset(bssid, 0, sizeof(bssid));
4058
4059 length = IW_ESSID_MAX_SIZE;
4060 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4061 if (ret)
4062 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4063 __LINE__);
4064
4065 length = sizeof(bssid);
4066 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4067 bssid, &length);
4068 if (ret)
4069 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4070 __LINE__);
4071
4072 length = sizeof(u32);
4073 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4074 if (ret)
4075 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4076 __LINE__);
4077
4078 out += sprintf(out, "ESSID: %s\n", essid);
4079 out += sprintf(out, "BSSID: %02x:%02x:%02x:%02x:%02x:%02x\n",
4080 bssid[0], bssid[1], bssid[2],
4081 bssid[3], bssid[4], bssid[5]);
4082 out += sprintf(out, "Channel: %d\n", chan);
4083
4084 return out - buf;
4085 }
4086
4087 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4088
4089 #ifdef CONFIG_IPW2100_DEBUG
4090 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4091 {
4092 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4093 }
4094
4095 static ssize_t store_debug_level(struct device_driver *d,
4096 const char *buf, size_t count)
4097 {
4098 char *p = (char *)buf;
4099 u32 val;
4100
4101 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4102 p++;
4103 if (p[0] == 'x' || p[0] == 'X')
4104 p++;
4105 val = simple_strtoul(p, &p, 16);
4106 } else
4107 val = simple_strtoul(p, &p, 10);
4108 if (p == buf)
4109 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4110 else
4111 ipw2100_debug_level = val;
4112
4113 return strnlen(buf, count);
4114 }
4115
4116 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4117 store_debug_level);
4118 #endif /* CONFIG_IPW2100_DEBUG */
4119
4120 static ssize_t show_fatal_error(struct device *d,
4121 struct device_attribute *attr, char *buf)
4122 {
4123 struct ipw2100_priv *priv = dev_get_drvdata(d);
4124 char *out = buf;
4125 int i;
4126
4127 if (priv->fatal_error)
4128 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4129 else
4130 out += sprintf(out, "0\n");
4131
4132 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4133 if (!priv->fatal_errors[(priv->fatal_index - i) %
4134 IPW2100_ERROR_QUEUE])
4135 continue;
4136
4137 out += sprintf(out, "%d. 0x%08X\n", i,
4138 priv->fatal_errors[(priv->fatal_index - i) %
4139 IPW2100_ERROR_QUEUE]);
4140 }
4141
4142 return out - buf;
4143 }
4144
4145 static ssize_t store_fatal_error(struct device *d,
4146 struct device_attribute *attr, const char *buf,
4147 size_t count)
4148 {
4149 struct ipw2100_priv *priv = dev_get_drvdata(d);
4150 schedule_reset(priv);
4151 return count;
4152 }
4153
4154 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4155 store_fatal_error);
4156
4157 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4158 char *buf)
4159 {
4160 struct ipw2100_priv *priv = dev_get_drvdata(d);
4161 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4162 }
4163
4164 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4165 const char *buf, size_t count)
4166 {
4167 struct ipw2100_priv *priv = dev_get_drvdata(d);
4168 struct net_device *dev = priv->net_dev;
4169 char buffer[] = "00000000";
4170 unsigned long len =
4171 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4172 unsigned long val;
4173 char *p = buffer;
4174
4175 (void)dev; /* kill unused-var warning for debug-only code */
4176
4177 IPW_DEBUG_INFO("enter\n");
4178
4179 strncpy(buffer, buf, len);
4180 buffer[len] = 0;
4181
4182 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4183 p++;
4184 if (p[0] == 'x' || p[0] == 'X')
4185 p++;
4186 val = simple_strtoul(p, &p, 16);
4187 } else
4188 val = simple_strtoul(p, &p, 10);
4189 if (p == buffer) {
4190 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4191 } else {
4192 priv->ieee->scan_age = val;
4193 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4194 }
4195
4196 IPW_DEBUG_INFO("exit\n");
4197 return len;
4198 }
4199
4200 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4201
4202 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4203 char *buf)
4204 {
4205 /* 0 - RF kill not enabled
4206 1 - SW based RF kill active (sysfs)
4207 2 - HW based RF kill active
4208 3 - Both HW and SW baed RF kill active */
4209 struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4210 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4211 (rf_kill_active(priv) ? 0x2 : 0x0);
4212 return sprintf(buf, "%i\n", val);
4213 }
4214
4215 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4216 {
4217 if ((disable_radio ? 1 : 0) ==
4218 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4219 return 0;
4220
4221 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4222 disable_radio ? "OFF" : "ON");
4223
4224 mutex_lock(&priv->action_mutex);
4225
4226 if (disable_radio) {
4227 priv->status |= STATUS_RF_KILL_SW;
4228 ipw2100_down(priv);
4229 } else {
4230 priv->status &= ~STATUS_RF_KILL_SW;
4231 if (rf_kill_active(priv)) {
4232 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4233 "disabled by HW switch\n");
4234 /* Make sure the RF_KILL check timer is running */
4235 priv->stop_rf_kill = 0;
4236 cancel_delayed_work(&priv->rf_kill);
4237 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
4238 } else
4239 schedule_reset(priv);
4240 }
4241
4242 mutex_unlock(&priv->action_mutex);
4243 return 1;
4244 }
4245
4246 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4247 const char *buf, size_t count)
4248 {
4249 struct ipw2100_priv *priv = dev_get_drvdata(d);
4250 ipw_radio_kill_sw(priv, buf[0] == '1');
4251 return count;
4252 }
4253
4254 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4255
4256 static struct attribute *ipw2100_sysfs_entries[] = {
4257 &dev_attr_hardware.attr,
4258 &dev_attr_registers.attr,
4259 &dev_attr_ordinals.attr,
4260 &dev_attr_pci.attr,
4261 &dev_attr_stats.attr,
4262 &dev_attr_internals.attr,
4263 &dev_attr_bssinfo.attr,
4264 &dev_attr_memory.attr,
4265 &dev_attr_scan_age.attr,
4266 &dev_attr_fatal_error.attr,
4267 &dev_attr_rf_kill.attr,
4268 &dev_attr_cfg.attr,
4269 &dev_attr_status.attr,
4270 &dev_attr_capability.attr,
4271 NULL,
4272 };
4273
4274 static struct attribute_group ipw2100_attribute_group = {
4275 .attrs = ipw2100_sysfs_entries,
4276 };
4277
4278 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4279 {
4280 struct ipw2100_status_queue *q = &priv->status_queue;
4281
4282 IPW_DEBUG_INFO("enter\n");
4283
4284 q->size = entries * sizeof(struct ipw2100_status);
4285 q->drv =
4286 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4287 q->size, &q->nic);
4288 if (!q->drv) {
4289 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4290 return -ENOMEM;
4291 }
4292
4293 memset(q->drv, 0, q->size);
4294
4295 IPW_DEBUG_INFO("exit\n");
4296
4297 return 0;
4298 }
4299
4300 static void status_queue_free(struct ipw2100_priv *priv)
4301 {
4302 IPW_DEBUG_INFO("enter\n");
4303
4304 if (priv->status_queue.drv) {
4305 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4306 priv->status_queue.drv,
4307 priv->status_queue.nic);
4308 priv->status_queue.drv = NULL;
4309 }
4310
4311 IPW_DEBUG_INFO("exit\n");
4312 }
4313
4314 static int bd_queue_allocate(struct ipw2100_priv *priv,
4315 struct ipw2100_bd_queue *q, int entries)
4316 {
4317 IPW_DEBUG_INFO("enter\n");
4318
4319 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4320
4321 q->entries = entries;
4322 q->size = entries * sizeof(struct ipw2100_bd);
4323 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4324 if (!q->drv) {
4325 IPW_DEBUG_INFO
4326 ("can't allocate shared memory for buffer descriptors\n");
4327 return -ENOMEM;
4328 }
4329 memset(q->drv, 0, q->size);
4330
4331 IPW_DEBUG_INFO("exit\n");
4332
4333 return 0;
4334 }
4335
4336 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4337 {
4338 IPW_DEBUG_INFO("enter\n");
4339
4340 if (!q)
4341 return;
4342
4343 if (q->drv) {
4344 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4345 q->drv = NULL;
4346 }
4347
4348 IPW_DEBUG_INFO("exit\n");
4349 }
4350
4351 static void bd_queue_initialize(struct ipw2100_priv *priv,
4352 struct ipw2100_bd_queue *q, u32 base, u32 size,
4353 u32 r, u32 w)
4354 {
4355 IPW_DEBUG_INFO("enter\n");
4356
4357 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4358 (u32) q->nic);
4359
4360 write_register(priv->net_dev, base, q->nic);
4361 write_register(priv->net_dev, size, q->entries);
4362 write_register(priv->net_dev, r, q->oldest);
4363 write_register(priv->net_dev, w, q->next);
4364
4365 IPW_DEBUG_INFO("exit\n");
4366 }
4367
4368 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4369 {
4370 if (priv->workqueue) {
4371 priv->stop_rf_kill = 1;
4372 priv->stop_hang_check = 1;
4373 cancel_delayed_work(&priv->reset_work);
4374 cancel_delayed_work(&priv->security_work);
4375 cancel_delayed_work(&priv->wx_event_work);
4376 cancel_delayed_work(&priv->hang_check);
4377 cancel_delayed_work(&priv->rf_kill);
4378 destroy_workqueue(priv->workqueue);
4379 priv->workqueue = NULL;
4380 }
4381 }
4382
4383 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4384 {
4385 int i, j, err = -EINVAL;
4386 void *v;
4387 dma_addr_t p;
4388
4389 IPW_DEBUG_INFO("enter\n");
4390
4391 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4392 if (err) {
4393 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4394 priv->net_dev->name);
4395 return err;
4396 }
4397
4398 priv->tx_buffers =
4399 (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4400 sizeof(struct
4401 ipw2100_tx_packet),
4402 GFP_ATOMIC);
4403 if (!priv->tx_buffers) {
4404 printk(KERN_ERR DRV_NAME
4405 ": %s: alloc failed form tx buffers.\n",
4406 priv->net_dev->name);
4407 bd_queue_free(priv, &priv->tx_queue);
4408 return -ENOMEM;
4409 }
4410
4411 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4412 v = pci_alloc_consistent(priv->pci_dev,
4413 sizeof(struct ipw2100_data_header),
4414 &p);
4415 if (!v) {
4416 printk(KERN_ERR DRV_NAME
4417 ": %s: PCI alloc failed for tx " "buffers.\n",
4418 priv->net_dev->name);
4419 err = -ENOMEM;
4420 break;
4421 }
4422
4423 priv->tx_buffers[i].type = DATA;
4424 priv->tx_buffers[i].info.d_struct.data =
4425 (struct ipw2100_data_header *)v;
4426 priv->tx_buffers[i].info.d_struct.data_phys = p;
4427 priv->tx_buffers[i].info.d_struct.txb = NULL;
4428 }
4429
4430 if (i == TX_PENDED_QUEUE_LENGTH)
4431 return 0;
4432
4433 for (j = 0; j < i; j++) {
4434 pci_free_consistent(priv->pci_dev,
4435 sizeof(struct ipw2100_data_header),
4436 priv->tx_buffers[j].info.d_struct.data,
4437 priv->tx_buffers[j].info.d_struct.
4438 data_phys);
4439 }
4440
4441 kfree(priv->tx_buffers);
4442 priv->tx_buffers = NULL;
4443
4444 return err;
4445 }
4446
4447 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4448 {
4449 int i;
4450
4451 IPW_DEBUG_INFO("enter\n");
4452
4453 /*
4454 * reinitialize packet info lists
4455 */
4456 INIT_LIST_HEAD(&priv->fw_pend_list);
4457 INIT_STAT(&priv->fw_pend_stat);
4458
4459 /*
4460 * reinitialize lists
4461 */
4462 INIT_LIST_HEAD(&priv->tx_pend_list);
4463 INIT_LIST_HEAD(&priv->tx_free_list);
4464 INIT_STAT(&priv->tx_pend_stat);
4465 INIT_STAT(&priv->tx_free_stat);
4466
4467 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4468 /* We simply drop any SKBs that have been queued for
4469 * transmit */
4470 if (priv->tx_buffers[i].info.d_struct.txb) {
4471 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4472 txb);
4473 priv->tx_buffers[i].info.d_struct.txb = NULL;
4474 }
4475
4476 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4477 }
4478
4479 SET_STAT(&priv->tx_free_stat, i);
4480
4481 priv->tx_queue.oldest = 0;
4482 priv->tx_queue.available = priv->tx_queue.entries;
4483 priv->tx_queue.next = 0;
4484 INIT_STAT(&priv->txq_stat);
4485 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4486
4487 bd_queue_initialize(priv, &priv->tx_queue,
4488 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4489 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4490 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4491 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4492
4493 IPW_DEBUG_INFO("exit\n");
4494
4495 }
4496
4497 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4498 {
4499 int i;
4500
4501 IPW_DEBUG_INFO("enter\n");
4502
4503 bd_queue_free(priv, &priv->tx_queue);
4504
4505 if (!priv->tx_buffers)
4506 return;
4507
4508 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4509 if (priv->tx_buffers[i].info.d_struct.txb) {
4510 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4511 txb);
4512 priv->tx_buffers[i].info.d_struct.txb = NULL;
4513 }
4514 if (priv->tx_buffers[i].info.d_struct.data)
4515 pci_free_consistent(priv->pci_dev,
4516 sizeof(struct ipw2100_data_header),
4517 priv->tx_buffers[i].info.d_struct.
4518 data,
4519 priv->tx_buffers[i].info.d_struct.
4520 data_phys);
4521 }
4522
4523 kfree(priv->tx_buffers);
4524 priv->tx_buffers = NULL;
4525
4526 IPW_DEBUG_INFO("exit\n");
4527 }
4528
4529 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4530 {
4531 int i, j, err = -EINVAL;
4532
4533 IPW_DEBUG_INFO("enter\n");
4534
4535 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4536 if (err) {
4537 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4538 return err;
4539 }
4540
4541 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4542 if (err) {
4543 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4544 bd_queue_free(priv, &priv->rx_queue);
4545 return err;
4546 }
4547
4548 /*
4549 * allocate packets
4550 */
4551 priv->rx_buffers = (struct ipw2100_rx_packet *)
4552 kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4553 GFP_KERNEL);
4554 if (!priv->rx_buffers) {
4555 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4556
4557 bd_queue_free(priv, &priv->rx_queue);
4558
4559 status_queue_free(priv);
4560
4561 return -ENOMEM;
4562 }
4563
4564 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4565 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4566
4567 err = ipw2100_alloc_skb(priv, packet);
4568 if (unlikely(err)) {
4569 err = -ENOMEM;
4570 break;
4571 }
4572
4573 /* The BD holds the cache aligned address */
4574 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4575 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4576 priv->status_queue.drv[i].status_fields = 0;
4577 }
4578
4579 if (i == RX_QUEUE_LENGTH)
4580 return 0;
4581
4582 for (j = 0; j < i; j++) {
4583 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4584 sizeof(struct ipw2100_rx_packet),
4585 PCI_DMA_FROMDEVICE);
4586 dev_kfree_skb(priv->rx_buffers[j].skb);
4587 }
4588
4589 kfree(priv->rx_buffers);
4590 priv->rx_buffers = NULL;
4591
4592 bd_queue_free(priv, &priv->rx_queue);
4593
4594 status_queue_free(priv);
4595
4596 return err;
4597 }
4598
4599 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4600 {
4601 IPW_DEBUG_INFO("enter\n");
4602
4603 priv->rx_queue.oldest = 0;
4604 priv->rx_queue.available = priv->rx_queue.entries - 1;
4605 priv->rx_queue.next = priv->rx_queue.entries - 1;
4606
4607 INIT_STAT(&priv->rxq_stat);
4608 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4609
4610 bd_queue_initialize(priv, &priv->rx_queue,
4611 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4612 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4613 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4614 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4615
4616 /* set up the status queue */
4617 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4618 priv->status_queue.nic);
4619
4620 IPW_DEBUG_INFO("exit\n");
4621 }
4622
4623 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4624 {
4625 int i;
4626
4627 IPW_DEBUG_INFO("enter\n");
4628
4629 bd_queue_free(priv, &priv->rx_queue);
4630 status_queue_free(priv);
4631
4632 if (!priv->rx_buffers)
4633 return;
4634
4635 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4636 if (priv->rx_buffers[i].rxp) {
4637 pci_unmap_single(priv->pci_dev,
4638 priv->rx_buffers[i].dma_addr,
4639 sizeof(struct ipw2100_rx),
4640 PCI_DMA_FROMDEVICE);
4641 dev_kfree_skb(priv->rx_buffers[i].skb);
4642 }
4643 }
4644
4645 kfree(priv->rx_buffers);
4646 priv->rx_buffers = NULL;
4647
4648 IPW_DEBUG_INFO("exit\n");
4649 }
4650
4651 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4652 {
4653 u32 length = ETH_ALEN;
4654 u8 mac[ETH_ALEN];
4655
4656 int err;
4657
4658 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4659 if (err) {
4660 IPW_DEBUG_INFO("MAC address read failed\n");
4661 return -EIO;
4662 }
4663 IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4664 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4665
4666 memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4667
4668 return 0;
4669 }
4670
4671 /********************************************************************
4672 *
4673 * Firmware Commands
4674 *
4675 ********************************************************************/
4676
4677 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4678 {
4679 struct host_command cmd = {
4680 .host_command = ADAPTER_ADDRESS,
4681 .host_command_sequence = 0,
4682 .host_command_length = ETH_ALEN
4683 };
4684 int err;
4685
4686 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4687
4688 IPW_DEBUG_INFO("enter\n");
4689
4690 if (priv->config & CFG_CUSTOM_MAC) {
4691 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4692 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4693 } else
4694 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4695 ETH_ALEN);
4696
4697 err = ipw2100_hw_send_command(priv, &cmd);
4698
4699 IPW_DEBUG_INFO("exit\n");
4700 return err;
4701 }
4702
4703 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4704 int batch_mode)
4705 {
4706 struct host_command cmd = {
4707 .host_command = PORT_TYPE,
4708 .host_command_sequence = 0,
4709 .host_command_length = sizeof(u32)
4710 };
4711 int err;
4712
4713 switch (port_type) {
4714 case IW_MODE_INFRA:
4715 cmd.host_command_parameters[0] = IPW_BSS;
4716 break;
4717 case IW_MODE_ADHOC:
4718 cmd.host_command_parameters[0] = IPW_IBSS;
4719 break;
4720 }
4721
4722 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4723 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4724
4725 if (!batch_mode) {
4726 err = ipw2100_disable_adapter(priv);
4727 if (err) {
4728 printk(KERN_ERR DRV_NAME
4729 ": %s: Could not disable adapter %d\n",
4730 priv->net_dev->name, err);
4731 return err;
4732 }
4733 }
4734
4735 /* send cmd to firmware */
4736 err = ipw2100_hw_send_command(priv, &cmd);
4737
4738 if (!batch_mode)
4739 ipw2100_enable_adapter(priv);
4740
4741 return err;
4742 }
4743
4744 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4745 int batch_mode)
4746 {
4747 struct host_command cmd = {
4748 .host_command = CHANNEL,
4749 .host_command_sequence = 0,
4750 .host_command_length = sizeof(u32)
4751 };
4752 int err;
4753
4754 cmd.host_command_parameters[0] = channel;
4755
4756 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4757
4758 /* If BSS then we don't support channel selection */
4759 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4760 return 0;
4761
4762 if ((channel != 0) &&
4763 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4764 return -EINVAL;
4765
4766 if (!batch_mode) {
4767 err = ipw2100_disable_adapter(priv);
4768 if (err)
4769 return err;
4770 }
4771
4772 err = ipw2100_hw_send_command(priv, &cmd);
4773 if (err) {
4774 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4775 return err;
4776 }
4777
4778 if (channel)
4779 priv->config |= CFG_STATIC_CHANNEL;
4780 else
4781 priv->config &= ~CFG_STATIC_CHANNEL;
4782
4783 priv->channel = channel;
4784
4785 if (!batch_mode) {
4786 err = ipw2100_enable_adapter(priv);
4787 if (err)
4788 return err;
4789 }
4790
4791 return 0;
4792 }
4793
4794 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4795 {
4796 struct host_command cmd = {
4797 .host_command = SYSTEM_CONFIG,
4798 .host_command_sequence = 0,
4799 .host_command_length = 12,
4800 };
4801 u32 ibss_mask, len = sizeof(u32);
4802 int err;
4803
4804 /* Set system configuration */
4805
4806 if (!batch_mode) {
4807 err = ipw2100_disable_adapter(priv);
4808 if (err)
4809 return err;
4810 }
4811
4812 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4813 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4814
4815 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4816 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4817
4818 if (!(priv->config & CFG_LONG_PREAMBLE))
4819 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4820
4821 err = ipw2100_get_ordinal(priv,
4822 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4823 &ibss_mask, &len);
4824 if (err)
4825 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4826
4827 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4828 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4829
4830 /* 11b only */
4831 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4832
4833 err = ipw2100_hw_send_command(priv, &cmd);
4834 if (err)
4835 return err;
4836
4837 /* If IPv6 is configured in the kernel then we don't want to filter out all
4838 * of the multicast packets as IPv6 needs some. */
4839 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4840 cmd.host_command = ADD_MULTICAST;
4841 cmd.host_command_sequence = 0;
4842 cmd.host_command_length = 0;
4843
4844 ipw2100_hw_send_command(priv, &cmd);
4845 #endif
4846 if (!batch_mode) {
4847 err = ipw2100_enable_adapter(priv);
4848 if (err)
4849 return err;
4850 }
4851
4852 return 0;
4853 }
4854
4855 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4856 int batch_mode)
4857 {
4858 struct host_command cmd = {
4859 .host_command = BASIC_TX_RATES,
4860 .host_command_sequence = 0,
4861 .host_command_length = 4
4862 };
4863 int err;
4864
4865 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4866
4867 if (!batch_mode) {
4868 err = ipw2100_disable_adapter(priv);
4869 if (err)
4870 return err;
4871 }
4872
4873 /* Set BASIC TX Rate first */
4874 ipw2100_hw_send_command(priv, &cmd);
4875
4876 /* Set TX Rate */
4877 cmd.host_command = TX_RATES;
4878 ipw2100_hw_send_command(priv, &cmd);
4879
4880 /* Set MSDU TX Rate */
4881 cmd.host_command = MSDU_TX_RATES;
4882 ipw2100_hw_send_command(priv, &cmd);
4883
4884 if (!batch_mode) {
4885 err = ipw2100_enable_adapter(priv);
4886 if (err)
4887 return err;
4888 }
4889
4890 priv->tx_rates = rate;
4891
4892 return 0;
4893 }
4894
4895 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4896 {
4897 struct host_command cmd = {
4898 .host_command = POWER_MODE,
4899 .host_command_sequence = 0,
4900 .host_command_length = 4
4901 };
4902 int err;
4903
4904 cmd.host_command_parameters[0] = power_level;
4905
4906 err = ipw2100_hw_send_command(priv, &cmd);
4907 if (err)
4908 return err;
4909
4910 if (power_level == IPW_POWER_MODE_CAM)
4911 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4912 else
4913 priv->power_mode = IPW_POWER_ENABLED | power_level;
4914
4915 #ifdef CONFIG_IPW2100_TX_POWER
4916 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4917 /* Set beacon interval */
4918 cmd.host_command = TX_POWER_INDEX;
4919 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4920
4921 err = ipw2100_hw_send_command(priv, &cmd);
4922 if (err)
4923 return err;
4924 }
4925 #endif
4926
4927 return 0;
4928 }
4929
4930 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4931 {
4932 struct host_command cmd = {
4933 .host_command = RTS_THRESHOLD,
4934 .host_command_sequence = 0,
4935 .host_command_length = 4
4936 };
4937 int err;
4938
4939 if (threshold & RTS_DISABLED)
4940 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4941 else
4942 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4943
4944 err = ipw2100_hw_send_command(priv, &cmd);
4945 if (err)
4946 return err;
4947
4948 priv->rts_threshold = threshold;
4949
4950 return 0;
4951 }
4952
4953 #if 0
4954 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4955 u32 threshold, int batch_mode)
4956 {
4957 struct host_command cmd = {
4958 .host_command = FRAG_THRESHOLD,
4959 .host_command_sequence = 0,
4960 .host_command_length = 4,
4961 .host_command_parameters[0] = 0,
4962 };
4963 int err;
4964
4965 if (!batch_mode) {
4966 err = ipw2100_disable_adapter(priv);
4967 if (err)
4968 return err;
4969 }
4970
4971 if (threshold == 0)
4972 threshold = DEFAULT_FRAG_THRESHOLD;
4973 else {
4974 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4975 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4976 }
4977
4978 cmd.host_command_parameters[0] = threshold;
4979
4980 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4981
4982 err = ipw2100_hw_send_command(priv, &cmd);
4983
4984 if (!batch_mode)
4985 ipw2100_enable_adapter(priv);
4986
4987 if (!err)
4988 priv->frag_threshold = threshold;
4989
4990 return err;
4991 }
4992 #endif
4993
4994 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4995 {
4996 struct host_command cmd = {
4997 .host_command = SHORT_RETRY_LIMIT,
4998 .host_command_sequence = 0,
4999 .host_command_length = 4
5000 };
5001 int err;
5002
5003 cmd.host_command_parameters[0] = retry;
5004
5005 err = ipw2100_hw_send_command(priv, &cmd);
5006 if (err)
5007 return err;
5008
5009 priv->short_retry_limit = retry;
5010
5011 return 0;
5012 }
5013
5014 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5015 {
5016 struct host_command cmd = {
5017 .host_command = LONG_RETRY_LIMIT,
5018 .host_command_sequence = 0,
5019 .host_command_length = 4
5020 };
5021 int err;
5022
5023 cmd.host_command_parameters[0] = retry;
5024
5025 err = ipw2100_hw_send_command(priv, &cmd);
5026 if (err)
5027 return err;
5028
5029 priv->long_retry_limit = retry;
5030
5031 return 0;
5032 }
5033
5034 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5035 int batch_mode)
5036 {
5037 struct host_command cmd = {
5038 .host_command = MANDATORY_BSSID,
5039 .host_command_sequence = 0,
5040 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5041 };
5042 int err;
5043
5044 #ifdef CONFIG_IPW2100_DEBUG
5045 if (bssid != NULL)
5046 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
5047 bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
5048 bssid[5]);
5049 else
5050 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5051 #endif
5052 /* if BSSID is empty then we disable mandatory bssid mode */
5053 if (bssid != NULL)
5054 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5055
5056 if (!batch_mode) {
5057 err = ipw2100_disable_adapter(priv);
5058 if (err)
5059 return err;
5060 }
5061
5062 err = ipw2100_hw_send_command(priv, &cmd);
5063
5064 if (!batch_mode)
5065 ipw2100_enable_adapter(priv);
5066
5067 return err;
5068 }
5069
5070 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5071 {
5072 struct host_command cmd = {
5073 .host_command = DISASSOCIATION_BSSID,
5074 .host_command_sequence = 0,
5075 .host_command_length = ETH_ALEN
5076 };
5077 int err;
5078 int len;
5079
5080 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5081
5082 len = ETH_ALEN;
5083 /* The Firmware currently ignores the BSSID and just disassociates from
5084 * the currently associated AP -- but in the off chance that a future
5085 * firmware does use the BSSID provided here, we go ahead and try and
5086 * set it to the currently associated AP's BSSID */
5087 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5088
5089 err = ipw2100_hw_send_command(priv, &cmd);
5090
5091 return err;
5092 }
5093
5094 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5095 struct ipw2100_wpa_assoc_frame *, int)
5096 __attribute__ ((unused));
5097
5098 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5099 struct ipw2100_wpa_assoc_frame *wpa_frame,
5100 int batch_mode)
5101 {
5102 struct host_command cmd = {
5103 .host_command = SET_WPA_IE,
5104 .host_command_sequence = 0,
5105 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5106 };
5107 int err;
5108
5109 IPW_DEBUG_HC("SET_WPA_IE\n");
5110
5111 if (!batch_mode) {
5112 err = ipw2100_disable_adapter(priv);
5113 if (err)
5114 return err;
5115 }
5116
5117 memcpy(cmd.host_command_parameters, wpa_frame,
5118 sizeof(struct ipw2100_wpa_assoc_frame));
5119
5120 err = ipw2100_hw_send_command(priv, &cmd);
5121
5122 if (!batch_mode) {
5123 if (ipw2100_enable_adapter(priv))
5124 err = -EIO;
5125 }
5126
5127 return err;
5128 }
5129
5130 struct security_info_params {
5131 u32 allowed_ciphers;
5132 u16 version;
5133 u8 auth_mode;
5134 u8 replay_counters_number;
5135 u8 unicast_using_group;
5136 } __attribute__ ((packed));
5137
5138 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5139 int auth_mode,
5140 int security_level,
5141 int unicast_using_group,
5142 int batch_mode)
5143 {
5144 struct host_command cmd = {
5145 .host_command = SET_SECURITY_INFORMATION,
5146 .host_command_sequence = 0,
5147 .host_command_length = sizeof(struct security_info_params)
5148 };
5149 struct security_info_params *security =
5150 (struct security_info_params *)&cmd.host_command_parameters;
5151 int err;
5152 memset(security, 0, sizeof(*security));
5153
5154 /* If shared key AP authentication is turned on, then we need to
5155 * configure the firmware to try and use it.
5156 *
5157 * Actual data encryption/decryption is handled by the host. */
5158 security->auth_mode = auth_mode;
5159 security->unicast_using_group = unicast_using_group;
5160
5161 switch (security_level) {
5162 default:
5163 case SEC_LEVEL_0:
5164 security->allowed_ciphers = IPW_NONE_CIPHER;
5165 break;
5166 case SEC_LEVEL_1:
5167 security->allowed_ciphers = IPW_WEP40_CIPHER |
5168 IPW_WEP104_CIPHER;
5169 break;
5170 case SEC_LEVEL_2:
5171 security->allowed_ciphers = IPW_WEP40_CIPHER |
5172 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5173 break;
5174 case SEC_LEVEL_2_CKIP:
5175 security->allowed_ciphers = IPW_WEP40_CIPHER |
5176 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5177 break;
5178 case SEC_LEVEL_3:
5179 security->allowed_ciphers = IPW_WEP40_CIPHER |
5180 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5181 break;
5182 }
5183
5184 IPW_DEBUG_HC
5185 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5186 security->auth_mode, security->allowed_ciphers, security_level);
5187
5188 security->replay_counters_number = 0;
5189
5190 if (!batch_mode) {
5191 err = ipw2100_disable_adapter(priv);
5192 if (err)
5193 return err;
5194 }
5195
5196 err = ipw2100_hw_send_command(priv, &cmd);
5197
5198 if (!batch_mode)
5199 ipw2100_enable_adapter(priv);
5200
5201 return err;
5202 }
5203
5204 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5205 {
5206 struct host_command cmd = {
5207 .host_command = TX_POWER_INDEX,
5208 .host_command_sequence = 0,
5209 .host_command_length = 4
5210 };
5211 int err = 0;
5212 u32 tmp = tx_power;
5213
5214 if (tx_power != IPW_TX_POWER_DEFAULT)
5215 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5216 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5217
5218 cmd.host_command_parameters[0] = tmp;
5219
5220 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5221 err = ipw2100_hw_send_command(priv, &cmd);
5222 if (!err)
5223 priv->tx_power = tx_power;
5224
5225 return 0;
5226 }
5227
5228 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5229 u32 interval, int batch_mode)
5230 {
5231 struct host_command cmd = {
5232 .host_command = BEACON_INTERVAL,
5233 .host_command_sequence = 0,
5234 .host_command_length = 4
5235 };
5236 int err;
5237
5238 cmd.host_command_parameters[0] = interval;
5239
5240 IPW_DEBUG_INFO("enter\n");
5241
5242 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5243 if (!batch_mode) {
5244 err = ipw2100_disable_adapter(priv);
5245 if (err)
5246 return err;
5247 }
5248
5249 ipw2100_hw_send_command(priv, &cmd);
5250
5251 if (!batch_mode) {
5252 err = ipw2100_enable_adapter(priv);
5253 if (err)
5254 return err;
5255 }
5256 }
5257
5258 IPW_DEBUG_INFO("exit\n");
5259
5260 return 0;
5261 }
5262
5263 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5264 {
5265 ipw2100_tx_initialize(priv);
5266 ipw2100_rx_initialize(priv);
5267 ipw2100_msg_initialize(priv);
5268 }
5269
5270 void ipw2100_queues_free(struct ipw2100_priv *priv)
5271 {
5272 ipw2100_tx_free(priv);
5273 ipw2100_rx_free(priv);
5274 ipw2100_msg_free(priv);
5275 }
5276
5277 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5278 {
5279 if (ipw2100_tx_allocate(priv) ||
5280 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5281 goto fail;
5282
5283 return 0;
5284
5285 fail:
5286 ipw2100_tx_free(priv);
5287 ipw2100_rx_free(priv);
5288 ipw2100_msg_free(priv);
5289 return -ENOMEM;
5290 }
5291
5292 #define IPW_PRIVACY_CAPABLE 0x0008
5293
5294 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5295 int batch_mode)
5296 {
5297 struct host_command cmd = {
5298 .host_command = WEP_FLAGS,
5299 .host_command_sequence = 0,
5300 .host_command_length = 4
5301 };
5302 int err;
5303
5304 cmd.host_command_parameters[0] = flags;
5305
5306 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5307
5308 if (!batch_mode) {
5309 err = ipw2100_disable_adapter(priv);
5310 if (err) {
5311 printk(KERN_ERR DRV_NAME
5312 ": %s: Could not disable adapter %d\n",
5313 priv->net_dev->name, err);
5314 return err;
5315 }
5316 }
5317
5318 /* send cmd to firmware */
5319 err = ipw2100_hw_send_command(priv, &cmd);
5320
5321 if (!batch_mode)
5322 ipw2100_enable_adapter(priv);
5323
5324 return err;
5325 }
5326
5327 struct ipw2100_wep_key {
5328 u8 idx;
5329 u8 len;
5330 u8 key[13];
5331 };
5332
5333 /* Macros to ease up priting WEP keys */
5334 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5335 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5336 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5337 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5338
5339 /**
5340 * Set a the wep key
5341 *
5342 * @priv: struct to work on
5343 * @idx: index of the key we want to set
5344 * @key: ptr to the key data to set
5345 * @len: length of the buffer at @key
5346 * @batch_mode: FIXME perform the operation in batch mode, not
5347 * disabling the device.
5348 *
5349 * @returns 0 if OK, < 0 errno code on error.
5350 *
5351 * Fill out a command structure with the new wep key, length an
5352 * index and send it down the wire.
5353 */
5354 static int ipw2100_set_key(struct ipw2100_priv *priv,
5355 int idx, char *key, int len, int batch_mode)
5356 {
5357 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5358 struct host_command cmd = {
5359 .host_command = WEP_KEY_INFO,
5360 .host_command_sequence = 0,
5361 .host_command_length = sizeof(struct ipw2100_wep_key),
5362 };
5363 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5364 int err;
5365
5366 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5367 idx, keylen, len);
5368
5369 /* NOTE: We don't check cached values in case the firmware was reset
5370 * or some other problem is occurring. If the user is setting the key,
5371 * then we push the change */
5372
5373 wep_key->idx = idx;
5374 wep_key->len = keylen;
5375
5376 if (keylen) {
5377 memcpy(wep_key->key, key, len);
5378 memset(wep_key->key + len, 0, keylen - len);
5379 }
5380
5381 /* Will be optimized out on debug not being configured in */
5382 if (keylen == 0)
5383 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5384 priv->net_dev->name, wep_key->idx);
5385 else if (keylen == 5)
5386 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5387 priv->net_dev->name, wep_key->idx, wep_key->len,
5388 WEP_STR_64(wep_key->key));
5389 else
5390 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5391 "\n",
5392 priv->net_dev->name, wep_key->idx, wep_key->len,
5393 WEP_STR_128(wep_key->key));
5394
5395 if (!batch_mode) {
5396 err = ipw2100_disable_adapter(priv);
5397 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5398 if (err) {
5399 printk(KERN_ERR DRV_NAME
5400 ": %s: Could not disable adapter %d\n",
5401 priv->net_dev->name, err);
5402 return err;
5403 }
5404 }
5405
5406 /* send cmd to firmware */
5407 err = ipw2100_hw_send_command(priv, &cmd);
5408
5409 if (!batch_mode) {
5410 int err2 = ipw2100_enable_adapter(priv);
5411 if (err == 0)
5412 err = err2;
5413 }
5414 return err;
5415 }
5416
5417 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5418 int idx, int batch_mode)
5419 {
5420 struct host_command cmd = {
5421 .host_command = WEP_KEY_INDEX,
5422 .host_command_sequence = 0,
5423 .host_command_length = 4,
5424 .host_command_parameters = {idx},
5425 };
5426 int err;
5427
5428 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5429
5430 if (idx < 0 || idx > 3)
5431 return -EINVAL;
5432
5433 if (!batch_mode) {
5434 err = ipw2100_disable_adapter(priv);
5435 if (err) {
5436 printk(KERN_ERR DRV_NAME
5437 ": %s: Could not disable adapter %d\n",
5438 priv->net_dev->name, err);
5439 return err;
5440 }
5441 }
5442
5443 /* send cmd to firmware */
5444 err = ipw2100_hw_send_command(priv, &cmd);
5445
5446 if (!batch_mode)
5447 ipw2100_enable_adapter(priv);
5448
5449 return err;
5450 }
5451
5452 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5453 {
5454 int i, err, auth_mode, sec_level, use_group;
5455
5456 if (!(priv->status & STATUS_RUNNING))
5457 return 0;
5458
5459 if (!batch_mode) {
5460 err = ipw2100_disable_adapter(priv);
5461 if (err)
5462 return err;
5463 }
5464
5465 if (!priv->ieee->sec.enabled) {
5466 err =
5467 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5468 SEC_LEVEL_0, 0, 1);
5469 } else {
5470 auth_mode = IPW_AUTH_OPEN;
5471 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5472 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5473 auth_mode = IPW_AUTH_SHARED;
5474 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5475 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5476 }
5477
5478 sec_level = SEC_LEVEL_0;
5479 if (priv->ieee->sec.flags & SEC_LEVEL)
5480 sec_level = priv->ieee->sec.level;
5481
5482 use_group = 0;
5483 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5484 use_group = priv->ieee->sec.unicast_uses_group;
5485
5486 err =
5487 ipw2100_set_security_information(priv, auth_mode, sec_level,
5488 use_group, 1);
5489 }
5490
5491 if (err)
5492 goto exit;
5493
5494 if (priv->ieee->sec.enabled) {
5495 for (i = 0; i < 4; i++) {
5496 if (!(priv->ieee->sec.flags & (1 << i))) {
5497 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5498 priv->ieee->sec.key_sizes[i] = 0;
5499 } else {
5500 err = ipw2100_set_key(priv, i,
5501 priv->ieee->sec.keys[i],
5502 priv->ieee->sec.
5503 key_sizes[i], 1);
5504 if (err)
5505 goto exit;
5506 }
5507 }
5508
5509 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5510 }
5511
5512 /* Always enable privacy so the Host can filter WEP packets if
5513 * encrypted data is sent up */
5514 err =
5515 ipw2100_set_wep_flags(priv,
5516 priv->ieee->sec.
5517 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5518 if (err)
5519 goto exit;
5520
5521 priv->status &= ~STATUS_SECURITY_UPDATED;
5522
5523 exit:
5524 if (!batch_mode)
5525 ipw2100_enable_adapter(priv);
5526
5527 return err;
5528 }
5529
5530 static void ipw2100_security_work(struct work_struct *work)
5531 {
5532 struct ipw2100_priv *priv =
5533 container_of(work, struct ipw2100_priv, security_work.work);
5534
5535 /* If we happen to have reconnected before we get a chance to
5536 * process this, then update the security settings--which causes
5537 * a disassociation to occur */
5538 if (!(priv->status & STATUS_ASSOCIATED) &&
5539 priv->status & STATUS_SECURITY_UPDATED)
5540 ipw2100_configure_security(priv, 0);
5541 }
5542
5543 static void shim__set_security(struct net_device *dev,
5544 struct ieee80211_security *sec)
5545 {
5546 struct ipw2100_priv *priv = ieee80211_priv(dev);
5547 int i, force_update = 0;
5548
5549 mutex_lock(&priv->action_mutex);
5550 if (!(priv->status & STATUS_INITIALIZED))
5551 goto done;
5552
5553 for (i = 0; i < 4; i++) {
5554 if (sec->flags & (1 << i)) {
5555 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5556 if (sec->key_sizes[i] == 0)
5557 priv->ieee->sec.flags &= ~(1 << i);
5558 else
5559 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5560 sec->key_sizes[i]);
5561 if (sec->level == SEC_LEVEL_1) {
5562 priv->ieee->sec.flags |= (1 << i);
5563 priv->status |= STATUS_SECURITY_UPDATED;
5564 } else
5565 priv->ieee->sec.flags &= ~(1 << i);
5566 }
5567 }
5568
5569 if ((sec->flags & SEC_ACTIVE_KEY) &&
5570 priv->ieee->sec.active_key != sec->active_key) {
5571 if (sec->active_key <= 3) {
5572 priv->ieee->sec.active_key = sec->active_key;
5573 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5574 } else
5575 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5576
5577 priv->status |= STATUS_SECURITY_UPDATED;
5578 }
5579
5580 if ((sec->flags & SEC_AUTH_MODE) &&
5581 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5582 priv->ieee->sec.auth_mode = sec->auth_mode;
5583 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5584 priv->status |= STATUS_SECURITY_UPDATED;
5585 }
5586
5587 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5588 priv->ieee->sec.flags |= SEC_ENABLED;
5589 priv->ieee->sec.enabled = sec->enabled;
5590 priv->status |= STATUS_SECURITY_UPDATED;
5591 force_update = 1;
5592 }
5593
5594 if (sec->flags & SEC_ENCRYPT)
5595 priv->ieee->sec.encrypt = sec->encrypt;
5596
5597 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5598 priv->ieee->sec.level = sec->level;
5599 priv->ieee->sec.flags |= SEC_LEVEL;
5600 priv->status |= STATUS_SECURITY_UPDATED;
5601 }
5602
5603 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5604 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5605 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5606 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5607 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5608 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5609 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5610 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5611 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5612 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5613
5614 /* As a temporary work around to enable WPA until we figure out why
5615 * wpa_supplicant toggles the security capability of the driver, which
5616 * forces a disassocation with force_update...
5617 *
5618 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5619 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5620 ipw2100_configure_security(priv, 0);
5621 done:
5622 mutex_unlock(&priv->action_mutex);
5623 }
5624
5625 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5626 {
5627 int err;
5628 int batch_mode = 1;
5629 u8 *bssid;
5630
5631 IPW_DEBUG_INFO("enter\n");
5632
5633 err = ipw2100_disable_adapter(priv);
5634 if (err)
5635 return err;
5636 #ifdef CONFIG_IPW2100_MONITOR
5637 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5638 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5639 if (err)
5640 return err;
5641
5642 IPW_DEBUG_INFO("exit\n");
5643
5644 return 0;
5645 }
5646 #endif /* CONFIG_IPW2100_MONITOR */
5647
5648 err = ipw2100_read_mac_address(priv);
5649 if (err)
5650 return -EIO;
5651
5652 err = ipw2100_set_mac_address(priv, batch_mode);
5653 if (err)
5654 return err;
5655
5656 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5657 if (err)
5658 return err;
5659
5660 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5661 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5662 if (err)
5663 return err;
5664 }
5665
5666 err = ipw2100_system_config(priv, batch_mode);
5667 if (err)
5668 return err;
5669
5670 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5671 if (err)
5672 return err;
5673
5674 /* Default to power mode OFF */
5675 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5676 if (err)
5677 return err;
5678
5679 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5680 if (err)
5681 return err;
5682
5683 if (priv->config & CFG_STATIC_BSSID)
5684 bssid = priv->bssid;
5685 else
5686 bssid = NULL;
5687 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5688 if (err)
5689 return err;
5690
5691 if (priv->config & CFG_STATIC_ESSID)
5692 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5693 batch_mode);
5694 else
5695 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5696 if (err)
5697 return err;
5698
5699 err = ipw2100_configure_security(priv, batch_mode);
5700 if (err)
5701 return err;
5702
5703 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5704 err =
5705 ipw2100_set_ibss_beacon_interval(priv,
5706 priv->beacon_interval,
5707 batch_mode);
5708 if (err)
5709 return err;
5710
5711 err = ipw2100_set_tx_power(priv, priv->tx_power);
5712 if (err)
5713 return err;
5714 }
5715
5716 /*
5717 err = ipw2100_set_fragmentation_threshold(
5718 priv, priv->frag_threshold, batch_mode);
5719 if (err)
5720 return err;
5721 */
5722
5723 IPW_DEBUG_INFO("exit\n");
5724
5725 return 0;
5726 }
5727
5728 /*************************************************************************
5729 *
5730 * EXTERNALLY CALLED METHODS
5731 *
5732 *************************************************************************/
5733
5734 /* This method is called by the network layer -- not to be confused with
5735 * ipw2100_set_mac_address() declared above called by this driver (and this
5736 * method as well) to talk to the firmware */
5737 static int ipw2100_set_address(struct net_device *dev, void *p)
5738 {
5739 struct ipw2100_priv *priv = ieee80211_priv(dev);
5740 struct sockaddr *addr = p;
5741 int err = 0;
5742
5743 if (!is_valid_ether_addr(addr->sa_data))
5744 return -EADDRNOTAVAIL;
5745
5746 mutex_lock(&priv->action_mutex);
5747
5748 priv->config |= CFG_CUSTOM_MAC;
5749 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5750
5751 err = ipw2100_set_mac_address(priv, 0);
5752 if (err)
5753 goto done;
5754
5755 priv->reset_backoff = 0;
5756 mutex_unlock(&priv->action_mutex);
5757 ipw2100_reset_adapter(&priv->reset_work.work);
5758 return 0;
5759
5760 done:
5761 mutex_unlock(&priv->action_mutex);
5762 return err;
5763 }
5764
5765 static int ipw2100_open(struct net_device *dev)
5766 {
5767 struct ipw2100_priv *priv = ieee80211_priv(dev);
5768 unsigned long flags;
5769 IPW_DEBUG_INFO("dev->open\n");
5770
5771 spin_lock_irqsave(&priv->low_lock, flags);
5772 if (priv->status & STATUS_ASSOCIATED) {
5773 netif_carrier_on(dev);
5774 netif_start_queue(dev);
5775 }
5776 spin_unlock_irqrestore(&priv->low_lock, flags);
5777
5778 return 0;
5779 }
5780
5781 static int ipw2100_close(struct net_device *dev)
5782 {
5783 struct ipw2100_priv *priv = ieee80211_priv(dev);
5784 unsigned long flags;
5785 struct list_head *element;
5786 struct ipw2100_tx_packet *packet;
5787
5788 IPW_DEBUG_INFO("enter\n");
5789
5790 spin_lock_irqsave(&priv->low_lock, flags);
5791
5792 if (priv->status & STATUS_ASSOCIATED)
5793 netif_carrier_off(dev);
5794 netif_stop_queue(dev);
5795
5796 /* Flush the TX queue ... */
5797 while (!list_empty(&priv->tx_pend_list)) {
5798 element = priv->tx_pend_list.next;
5799 packet = list_entry(element, struct ipw2100_tx_packet, list);
5800
5801 list_del(element);
5802 DEC_STAT(&priv->tx_pend_stat);
5803
5804 ieee80211_txb_free(packet->info.d_struct.txb);
5805 packet->info.d_struct.txb = NULL;
5806
5807 list_add_tail(element, &priv->tx_free_list);
5808 INC_STAT(&priv->tx_free_stat);
5809 }
5810 spin_unlock_irqrestore(&priv->low_lock, flags);
5811
5812 IPW_DEBUG_INFO("exit\n");
5813
5814 return 0;
5815 }
5816
5817 /*
5818 * TODO: Fix this function... its just wrong
5819 */
5820 static void ipw2100_tx_timeout(struct net_device *dev)
5821 {
5822 struct ipw2100_priv *priv = ieee80211_priv(dev);
5823
5824 priv->ieee->stats.tx_errors++;
5825
5826 #ifdef CONFIG_IPW2100_MONITOR
5827 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5828 return;
5829 #endif
5830
5831 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5832 dev->name);
5833 schedule_reset(priv);
5834 }
5835
5836 /*
5837 * TODO: reimplement it so that it reads statistics
5838 * from the adapter using ordinal tables
5839 * instead of/in addition to collecting them
5840 * in the driver
5841 */
5842 static struct net_device_stats *ipw2100_stats(struct net_device *dev)
5843 {
5844 struct ipw2100_priv *priv = ieee80211_priv(dev);
5845
5846 return &priv->ieee->stats;
5847 }
5848
5849 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5850 {
5851 /* This is called when wpa_supplicant loads and closes the driver
5852 * interface. */
5853 priv->ieee->wpa_enabled = value;
5854 return 0;
5855 }
5856
5857 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5858 {
5859
5860 struct ieee80211_device *ieee = priv->ieee;
5861 struct ieee80211_security sec = {
5862 .flags = SEC_AUTH_MODE,
5863 };
5864 int ret = 0;
5865
5866 if (value & IW_AUTH_ALG_SHARED_KEY) {
5867 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5868 ieee->open_wep = 0;
5869 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5870 sec.auth_mode = WLAN_AUTH_OPEN;
5871 ieee->open_wep = 1;
5872 } else if (value & IW_AUTH_ALG_LEAP) {
5873 sec.auth_mode = WLAN_AUTH_LEAP;
5874 ieee->open_wep = 1;
5875 } else
5876 return -EINVAL;
5877
5878 if (ieee->set_security)
5879 ieee->set_security(ieee->dev, &sec);
5880 else
5881 ret = -EOPNOTSUPP;
5882
5883 return ret;
5884 }
5885
5886 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5887 char *wpa_ie, int wpa_ie_len)
5888 {
5889
5890 struct ipw2100_wpa_assoc_frame frame;
5891
5892 frame.fixed_ie_mask = 0;
5893
5894 /* copy WPA IE */
5895 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5896 frame.var_ie_len = wpa_ie_len;
5897
5898 /* make sure WPA is enabled */
5899 ipw2100_wpa_enable(priv, 1);
5900 ipw2100_set_wpa_ie(priv, &frame, 0);
5901 }
5902
5903 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5904 struct ethtool_drvinfo *info)
5905 {
5906 struct ipw2100_priv *priv = ieee80211_priv(dev);
5907 char fw_ver[64], ucode_ver[64];
5908
5909 strcpy(info->driver, DRV_NAME);
5910 strcpy(info->version, DRV_VERSION);
5911
5912 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5913 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5914
5915 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5916 fw_ver, priv->eeprom_version, ucode_ver);
5917
5918 strcpy(info->bus_info, pci_name(priv->pci_dev));
5919 }
5920
5921 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5922 {
5923 struct ipw2100_priv *priv = ieee80211_priv(dev);
5924 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5925 }
5926
5927 static const struct ethtool_ops ipw2100_ethtool_ops = {
5928 .get_link = ipw2100_ethtool_get_link,
5929 .get_drvinfo = ipw_ethtool_get_drvinfo,
5930 };
5931
5932 static void ipw2100_hang_check(struct work_struct *work)
5933 {
5934 struct ipw2100_priv *priv =
5935 container_of(work, struct ipw2100_priv, hang_check.work);
5936 unsigned long flags;
5937 u32 rtc = 0xa5a5a5a5;
5938 u32 len = sizeof(rtc);
5939 int restart = 0;
5940
5941 spin_lock_irqsave(&priv->low_lock, flags);
5942
5943 if (priv->fatal_error != 0) {
5944 /* If fatal_error is set then we need to restart */
5945 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5946 priv->net_dev->name);
5947
5948 restart = 1;
5949 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5950 (rtc == priv->last_rtc)) {
5951 /* Check if firmware is hung */
5952 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5953 priv->net_dev->name);
5954
5955 restart = 1;
5956 }
5957
5958 if (restart) {
5959 /* Kill timer */
5960 priv->stop_hang_check = 1;
5961 priv->hangs++;
5962
5963 /* Restart the NIC */
5964 schedule_reset(priv);
5965 }
5966
5967 priv->last_rtc = rtc;
5968
5969 if (!priv->stop_hang_check)
5970 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5971
5972 spin_unlock_irqrestore(&priv->low_lock, flags);
5973 }
5974
5975 static void ipw2100_rf_kill(struct work_struct *work)
5976 {
5977 struct ipw2100_priv *priv =
5978 container_of(work, struct ipw2100_priv, rf_kill.work);
5979 unsigned long flags;
5980
5981 spin_lock_irqsave(&priv->low_lock, flags);
5982
5983 if (rf_kill_active(priv)) {
5984 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5985 if (!priv->stop_rf_kill)
5986 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
5987 goto exit_unlock;
5988 }
5989
5990 /* RF Kill is now disabled, so bring the device back up */
5991
5992 if (!(priv->status & STATUS_RF_KILL_MASK)) {
5993 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5994 "device\n");
5995 schedule_reset(priv);
5996 } else
5997 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
5998 "enabled\n");
5999
6000 exit_unlock:
6001 spin_unlock_irqrestore(&priv->low_lock, flags);
6002 }
6003
6004 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6005
6006 /* Look into using netdev destructor to shutdown ieee80211? */
6007
6008 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6009 void __iomem * base_addr,
6010 unsigned long mem_start,
6011 unsigned long mem_len)
6012 {
6013 struct ipw2100_priv *priv;
6014 struct net_device *dev;
6015
6016 dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6017 if (!dev)
6018 return NULL;
6019 priv = ieee80211_priv(dev);
6020 priv->ieee = netdev_priv(dev);
6021 priv->pci_dev = pci_dev;
6022 priv->net_dev = dev;
6023
6024 priv->ieee->hard_start_xmit = ipw2100_tx;
6025 priv->ieee->set_security = shim__set_security;
6026
6027 priv->ieee->perfect_rssi = -20;
6028 priv->ieee->worst_rssi = -85;
6029
6030 dev->open = ipw2100_open;
6031 dev->stop = ipw2100_close;
6032 dev->init = ipw2100_net_init;
6033 dev->get_stats = ipw2100_stats;
6034 dev->ethtool_ops = &ipw2100_ethtool_ops;
6035 dev->tx_timeout = ipw2100_tx_timeout;
6036 dev->wireless_handlers = &ipw2100_wx_handler_def;
6037 priv->wireless_data.ieee80211 = priv->ieee;
6038 dev->wireless_data = &priv->wireless_data;
6039 dev->set_mac_address = ipw2100_set_address;
6040 dev->watchdog_timeo = 3 * HZ;
6041 dev->irq = 0;
6042
6043 dev->base_addr = (unsigned long)base_addr;
6044 dev->mem_start = mem_start;
6045 dev->mem_end = dev->mem_start + mem_len - 1;
6046
6047 /* NOTE: We don't use the wireless_handlers hook
6048 * in dev as the system will start throwing WX requests
6049 * to us before we're actually initialized and it just
6050 * ends up causing problems. So, we just handle
6051 * the WX extensions through the ipw2100_ioctl interface */
6052
6053 /* memset() puts everything to 0, so we only have explicitely set
6054 * those values that need to be something else */
6055
6056 /* If power management is turned on, default to AUTO mode */
6057 priv->power_mode = IPW_POWER_AUTO;
6058
6059 #ifdef CONFIG_IPW2100_MONITOR
6060 priv->config |= CFG_CRC_CHECK;
6061 #endif
6062 priv->ieee->wpa_enabled = 0;
6063 priv->ieee->drop_unencrypted = 0;
6064 priv->ieee->privacy_invoked = 0;
6065 priv->ieee->ieee802_1x = 1;
6066
6067 /* Set module parameters */
6068 switch (mode) {
6069 case 1:
6070 priv->ieee->iw_mode = IW_MODE_ADHOC;
6071 break;
6072 #ifdef CONFIG_IPW2100_MONITOR
6073 case 2:
6074 priv->ieee->iw_mode = IW_MODE_MONITOR;
6075 break;
6076 #endif
6077 default:
6078 case 0:
6079 priv->ieee->iw_mode = IW_MODE_INFRA;
6080 break;
6081 }
6082
6083 if (disable == 1)
6084 priv->status |= STATUS_RF_KILL_SW;
6085
6086 if (channel != 0 &&
6087 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6088 priv->config |= CFG_STATIC_CHANNEL;
6089 priv->channel = channel;
6090 }
6091
6092 if (associate)
6093 priv->config |= CFG_ASSOCIATE;
6094
6095 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6096 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6097 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6098 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6099 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6100 priv->tx_power = IPW_TX_POWER_DEFAULT;
6101 priv->tx_rates = DEFAULT_TX_RATES;
6102
6103 strcpy(priv->nick, "ipw2100");
6104
6105 spin_lock_init(&priv->low_lock);
6106 mutex_init(&priv->action_mutex);
6107 mutex_init(&priv->adapter_mutex);
6108
6109 init_waitqueue_head(&priv->wait_command_queue);
6110
6111 netif_carrier_off(dev);
6112
6113 INIT_LIST_HEAD(&priv->msg_free_list);
6114 INIT_LIST_HEAD(&priv->msg_pend_list);
6115 INIT_STAT(&priv->msg_free_stat);
6116 INIT_STAT(&priv->msg_pend_stat);
6117
6118 INIT_LIST_HEAD(&priv->tx_free_list);
6119 INIT_LIST_HEAD(&priv->tx_pend_list);
6120 INIT_STAT(&priv->tx_free_stat);
6121 INIT_STAT(&priv->tx_pend_stat);
6122
6123 INIT_LIST_HEAD(&priv->fw_pend_list);
6124 INIT_STAT(&priv->fw_pend_stat);
6125
6126 priv->workqueue = create_workqueue(DRV_NAME);
6127
6128 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6129 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6130 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6131 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6132 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6133
6134 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6135 ipw2100_irq_tasklet, (unsigned long)priv);
6136
6137 /* NOTE: We do not start the deferred work for status checks yet */
6138 priv->stop_rf_kill = 1;
6139 priv->stop_hang_check = 1;
6140
6141 return dev;
6142 }
6143
6144 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6145 const struct pci_device_id *ent)
6146 {
6147 unsigned long mem_start, mem_len, mem_flags;
6148 void __iomem *base_addr = NULL;
6149 struct net_device *dev = NULL;
6150 struct ipw2100_priv *priv = NULL;
6151 int err = 0;
6152 int registered = 0;
6153 u32 val;
6154
6155 IPW_DEBUG_INFO("enter\n");
6156
6157 mem_start = pci_resource_start(pci_dev, 0);
6158 mem_len = pci_resource_len(pci_dev, 0);
6159 mem_flags = pci_resource_flags(pci_dev, 0);
6160
6161 if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6162 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6163 err = -ENODEV;
6164 goto fail;
6165 }
6166
6167 base_addr = ioremap_nocache(mem_start, mem_len);
6168 if (!base_addr) {
6169 printk(KERN_WARNING DRV_NAME
6170 "Error calling ioremap_nocache.\n");
6171 err = -EIO;
6172 goto fail;
6173 }
6174
6175 /* allocate and initialize our net_device */
6176 dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6177 if (!dev) {
6178 printk(KERN_WARNING DRV_NAME
6179 "Error calling ipw2100_alloc_device.\n");
6180 err = -ENOMEM;
6181 goto fail;
6182 }
6183
6184 /* set up PCI mappings for device */
6185 err = pci_enable_device(pci_dev);
6186 if (err) {
6187 printk(KERN_WARNING DRV_NAME
6188 "Error calling pci_enable_device.\n");
6189 return err;
6190 }
6191
6192 priv = ieee80211_priv(dev);
6193
6194 pci_set_master(pci_dev);
6195 pci_set_drvdata(pci_dev, priv);
6196
6197 err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6198 if (err) {
6199 printk(KERN_WARNING DRV_NAME
6200 "Error calling pci_set_dma_mask.\n");
6201 pci_disable_device(pci_dev);
6202 return err;
6203 }
6204
6205 err = pci_request_regions(pci_dev, DRV_NAME);
6206 if (err) {
6207 printk(KERN_WARNING DRV_NAME
6208 "Error calling pci_request_regions.\n");
6209 pci_disable_device(pci_dev);
6210 return err;
6211 }
6212
6213 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6214 * PCI Tx retries from interfering with C3 CPU state */
6215 pci_read_config_dword(pci_dev, 0x40, &val);
6216 if ((val & 0x0000ff00) != 0)
6217 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6218
6219 pci_set_power_state(pci_dev, PCI_D0);
6220
6221 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6222 printk(KERN_WARNING DRV_NAME
6223 "Device not found via register read.\n");
6224 err = -ENODEV;
6225 goto fail;
6226 }
6227
6228 SET_NETDEV_DEV(dev, &pci_dev->dev);
6229
6230 /* Force interrupts to be shut off on the device */
6231 priv->status |= STATUS_INT_ENABLED;
6232 ipw2100_disable_interrupts(priv);
6233
6234 /* Allocate and initialize the Tx/Rx queues and lists */
6235 if (ipw2100_queues_allocate(priv)) {
6236 printk(KERN_WARNING DRV_NAME
6237 "Error calilng ipw2100_queues_allocate.\n");
6238 err = -ENOMEM;
6239 goto fail;
6240 }
6241 ipw2100_queues_initialize(priv);
6242
6243 err = request_irq(pci_dev->irq,
6244 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6245 if (err) {
6246 printk(KERN_WARNING DRV_NAME
6247 "Error calling request_irq: %d.\n", pci_dev->irq);
6248 goto fail;
6249 }
6250 dev->irq = pci_dev->irq;
6251
6252 IPW_DEBUG_INFO("Attempting to register device...\n");
6253
6254 SET_MODULE_OWNER(dev);
6255
6256 printk(KERN_INFO DRV_NAME
6257 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6258
6259 /* Bring up the interface. Pre 0.46, after we registered the
6260 * network device we would call ipw2100_up. This introduced a race
6261 * condition with newer hotplug configurations (network was coming
6262 * up and making calls before the device was initialized).
6263 *
6264 * If we called ipw2100_up before we registered the device, then the
6265 * device name wasn't registered. So, we instead use the net_dev->init
6266 * member to call a function that then just turns and calls ipw2100_up.
6267 * net_dev->init is called after name allocation but before the
6268 * notifier chain is called */
6269 err = register_netdev(dev);
6270 if (err) {
6271 printk(KERN_WARNING DRV_NAME
6272 "Error calling register_netdev.\n");
6273 goto fail;
6274 }
6275
6276 mutex_lock(&priv->action_mutex);
6277 registered = 1;
6278
6279 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6280
6281 /* perform this after register_netdev so that dev->name is set */
6282 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6283 if (err)
6284 goto fail_unlock;
6285
6286 /* If the RF Kill switch is disabled, go ahead and complete the
6287 * startup sequence */
6288 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6289 /* Enable the adapter - sends HOST_COMPLETE */
6290 if (ipw2100_enable_adapter(priv)) {
6291 printk(KERN_WARNING DRV_NAME
6292 ": %s: failed in call to enable adapter.\n",
6293 priv->net_dev->name);
6294 ipw2100_hw_stop_adapter(priv);
6295 err = -EIO;
6296 goto fail_unlock;
6297 }
6298
6299 /* Start a scan . . . */
6300 ipw2100_set_scan_options(priv);
6301 ipw2100_start_scan(priv);
6302 }
6303
6304 IPW_DEBUG_INFO("exit\n");
6305
6306 priv->status |= STATUS_INITIALIZED;
6307
6308 mutex_unlock(&priv->action_mutex);
6309
6310 return 0;
6311
6312 fail_unlock:
6313 mutex_unlock(&priv->action_mutex);
6314
6315 fail:
6316 if (dev) {
6317 if (registered)
6318 unregister_netdev(dev);
6319
6320 ipw2100_hw_stop_adapter(priv);
6321
6322 ipw2100_disable_interrupts(priv);
6323
6324 if (dev->irq)
6325 free_irq(dev->irq, priv);
6326
6327 ipw2100_kill_workqueue(priv);
6328
6329 /* These are safe to call even if they weren't allocated */
6330 ipw2100_queues_free(priv);
6331 sysfs_remove_group(&pci_dev->dev.kobj,
6332 &ipw2100_attribute_group);
6333
6334 free_ieee80211(dev);
6335 pci_set_drvdata(pci_dev, NULL);
6336 }
6337
6338 if (base_addr)
6339 iounmap(base_addr);
6340
6341 pci_release_regions(pci_dev);
6342 pci_disable_device(pci_dev);
6343
6344 return err;
6345 }
6346
6347 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6348 {
6349 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6350 struct net_device *dev;
6351
6352 if (priv) {
6353 mutex_lock(&priv->action_mutex);
6354
6355 priv->status &= ~STATUS_INITIALIZED;
6356
6357 dev = priv->net_dev;
6358 sysfs_remove_group(&pci_dev->dev.kobj,
6359 &ipw2100_attribute_group);
6360
6361 #ifdef CONFIG_PM
6362 if (ipw2100_firmware.version)
6363 ipw2100_release_firmware(priv, &ipw2100_firmware);
6364 #endif
6365 /* Take down the hardware */
6366 ipw2100_down(priv);
6367
6368 /* Release the mutex so that the network subsystem can
6369 * complete any needed calls into the driver... */
6370 mutex_unlock(&priv->action_mutex);
6371
6372 /* Unregister the device first - this results in close()
6373 * being called if the device is open. If we free storage
6374 * first, then close() will crash. */
6375 unregister_netdev(dev);
6376
6377 /* ipw2100_down will ensure that there is no more pending work
6378 * in the workqueue's, so we can safely remove them now. */
6379 ipw2100_kill_workqueue(priv);
6380
6381 ipw2100_queues_free(priv);
6382
6383 /* Free potential debugging firmware snapshot */
6384 ipw2100_snapshot_free(priv);
6385
6386 if (dev->irq)
6387 free_irq(dev->irq, priv);
6388
6389 if (dev->base_addr)
6390 iounmap((void __iomem *)dev->base_addr);
6391
6392 free_ieee80211(dev);
6393 }
6394
6395 pci_release_regions(pci_dev);
6396 pci_disable_device(pci_dev);
6397
6398 IPW_DEBUG_INFO("exit\n");
6399 }
6400
6401 #ifdef CONFIG_PM
6402 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6403 {
6404 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6405 struct net_device *dev = priv->net_dev;
6406
6407 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6408
6409 mutex_lock(&priv->action_mutex);
6410 if (priv->status & STATUS_INITIALIZED) {
6411 /* Take down the device; powers it off, etc. */
6412 ipw2100_down(priv);
6413 }
6414
6415 /* Remove the PRESENT state of the device */
6416 netif_device_detach(dev);
6417
6418 pci_save_state(pci_dev);
6419 pci_disable_device(pci_dev);
6420 pci_set_power_state(pci_dev, PCI_D3hot);
6421
6422 mutex_unlock(&priv->action_mutex);
6423
6424 return 0;
6425 }
6426
6427 static int ipw2100_resume(struct pci_dev *pci_dev)
6428 {
6429 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6430 struct net_device *dev = priv->net_dev;
6431 u32 val;
6432
6433 if (IPW2100_PM_DISABLED)
6434 return 0;
6435
6436 mutex_lock(&priv->action_mutex);
6437
6438 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6439
6440 pci_set_power_state(pci_dev, PCI_D0);
6441 pci_enable_device(pci_dev);
6442 pci_restore_state(pci_dev);
6443
6444 /*
6445 * Suspend/Resume resets the PCI configuration space, so we have to
6446 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6447 * from interfering with C3 CPU state. pci_restore_state won't help
6448 * here since it only restores the first 64 bytes pci config header.
6449 */
6450 pci_read_config_dword(pci_dev, 0x40, &val);
6451 if ((val & 0x0000ff00) != 0)
6452 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6453
6454 /* Set the device back into the PRESENT state; this will also wake
6455 * the queue of needed */
6456 netif_device_attach(dev);
6457
6458 /* Bring the device back up */
6459 if (!(priv->status & STATUS_RF_KILL_SW))
6460 ipw2100_up(priv, 0);
6461
6462 mutex_unlock(&priv->action_mutex);
6463
6464 return 0;
6465 }
6466 #endif
6467
6468 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6469
6470 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6471 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6472 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6473 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6474 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6475 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6476 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6477 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6478 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6479 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6480 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6481 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6482 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6483 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6484
6485 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6486 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6487 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6488 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6489 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6490
6491 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6492 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6493 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6494 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6495 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6496 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6497 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6498
6499 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6500
6501 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6502 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6503 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6504 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6505 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6506 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6507 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6508
6509 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6510 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6511 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6512 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6513 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6514 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6515
6516 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6517 {0,},
6518 };
6519
6520 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6521
6522 static struct pci_driver ipw2100_pci_driver = {
6523 .name = DRV_NAME,
6524 .id_table = ipw2100_pci_id_table,
6525 .probe = ipw2100_pci_init_one,
6526 .remove = __devexit_p(ipw2100_pci_remove_one),
6527 #ifdef CONFIG_PM
6528 .suspend = ipw2100_suspend,
6529 .resume = ipw2100_resume,
6530 #endif
6531 };
6532
6533 /**
6534 * Initialize the ipw2100 driver/module
6535 *
6536 * @returns 0 if ok, < 0 errno node con error.
6537 *
6538 * Note: we cannot init the /proc stuff until the PCI driver is there,
6539 * or we risk an unlikely race condition on someone accessing
6540 * uninitialized data in the PCI dev struct through /proc.
6541 */
6542 static int __init ipw2100_init(void)
6543 {
6544 int ret;
6545
6546 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6547 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6548
6549 ret = pci_register_driver(&ipw2100_pci_driver);
6550 if (ret)
6551 goto out;
6552
6553 set_acceptable_latency("ipw2100", INFINITE_LATENCY);
6554 #ifdef CONFIG_IPW2100_DEBUG
6555 ipw2100_debug_level = debug;
6556 ret = driver_create_file(&ipw2100_pci_driver.driver,
6557 &driver_attr_debug_level);
6558 #endif
6559
6560 out:
6561 return ret;
6562 }
6563
6564 /**
6565 * Cleanup ipw2100 driver registration
6566 */
6567 static void __exit ipw2100_exit(void)
6568 {
6569 /* FIXME: IPG: check that we have no instances of the devices open */
6570 #ifdef CONFIG_IPW2100_DEBUG
6571 driver_remove_file(&ipw2100_pci_driver.driver,
6572 &driver_attr_debug_level);
6573 #endif
6574 pci_unregister_driver(&ipw2100_pci_driver);
6575 remove_acceptable_latency("ipw2100");
6576 }
6577
6578 module_init(ipw2100_init);
6579 module_exit(ipw2100_exit);
6580
6581 #define WEXT_USECHANNELS 1
6582
6583 static const long ipw2100_frequencies[] = {
6584 2412, 2417, 2422, 2427,
6585 2432, 2437, 2442, 2447,
6586 2452, 2457, 2462, 2467,
6587 2472, 2484
6588 };
6589
6590 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6591 sizeof(ipw2100_frequencies[0]))
6592
6593 static const long ipw2100_rates_11b[] = {
6594 1000000,
6595 2000000,
6596 5500000,
6597 11000000
6598 };
6599
6600 #define RATE_COUNT (sizeof(ipw2100_rates_11b) / sizeof(ipw2100_rates_11b[0]))
6601
6602 static int ipw2100_wx_get_name(struct net_device *dev,
6603 struct iw_request_info *info,
6604 union iwreq_data *wrqu, char *extra)
6605 {
6606 /*
6607 * This can be called at any time. No action lock required
6608 */
6609
6610 struct ipw2100_priv *priv = ieee80211_priv(dev);
6611 if (!(priv->status & STATUS_ASSOCIATED))
6612 strcpy(wrqu->name, "unassociated");
6613 else
6614 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6615
6616 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6617 return 0;
6618 }
6619
6620 static int ipw2100_wx_set_freq(struct net_device *dev,
6621 struct iw_request_info *info,
6622 union iwreq_data *wrqu, char *extra)
6623 {
6624 struct ipw2100_priv *priv = ieee80211_priv(dev);
6625 struct iw_freq *fwrq = &wrqu->freq;
6626 int err = 0;
6627
6628 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6629 return -EOPNOTSUPP;
6630
6631 mutex_lock(&priv->action_mutex);
6632 if (!(priv->status & STATUS_INITIALIZED)) {
6633 err = -EIO;
6634 goto done;
6635 }
6636
6637 /* if setting by freq convert to channel */
6638 if (fwrq->e == 1) {
6639 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6640 int f = fwrq->m / 100000;
6641 int c = 0;
6642
6643 while ((c < REG_MAX_CHANNEL) &&
6644 (f != ipw2100_frequencies[c]))
6645 c++;
6646
6647 /* hack to fall through */
6648 fwrq->e = 0;
6649 fwrq->m = c + 1;
6650 }
6651 }
6652
6653 if (fwrq->e > 0 || fwrq->m > 1000) {
6654 err = -EOPNOTSUPP;
6655 goto done;
6656 } else { /* Set the channel */
6657 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6658 err = ipw2100_set_channel(priv, fwrq->m, 0);
6659 }
6660
6661 done:
6662 mutex_unlock(&priv->action_mutex);
6663 return err;
6664 }
6665
6666 static int ipw2100_wx_get_freq(struct net_device *dev,
6667 struct iw_request_info *info,
6668 union iwreq_data *wrqu, char *extra)
6669 {
6670 /*
6671 * This can be called at any time. No action lock required
6672 */
6673
6674 struct ipw2100_priv *priv = ieee80211_priv(dev);
6675
6676 wrqu->freq.e = 0;
6677
6678 /* If we are associated, trying to associate, or have a statically
6679 * configured CHANNEL then return that; otherwise return ANY */
6680 if (priv->config & CFG_STATIC_CHANNEL ||
6681 priv->status & STATUS_ASSOCIATED)
6682 wrqu->freq.m = priv->channel;
6683 else
6684 wrqu->freq.m = 0;
6685
6686 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6687 return 0;
6688
6689 }
6690
6691 static int ipw2100_wx_set_mode(struct net_device *dev,
6692 struct iw_request_info *info,
6693 union iwreq_data *wrqu, char *extra)
6694 {
6695 struct ipw2100_priv *priv = ieee80211_priv(dev);
6696 int err = 0;
6697
6698 IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6699
6700 if (wrqu->mode == priv->ieee->iw_mode)
6701 return 0;
6702
6703 mutex_lock(&priv->action_mutex);
6704 if (!(priv->status & STATUS_INITIALIZED)) {
6705 err = -EIO;
6706 goto done;
6707 }
6708
6709 switch (wrqu->mode) {
6710 #ifdef CONFIG_IPW2100_MONITOR
6711 case IW_MODE_MONITOR:
6712 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6713 break;
6714 #endif /* CONFIG_IPW2100_MONITOR */
6715 case IW_MODE_ADHOC:
6716 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6717 break;
6718 case IW_MODE_INFRA:
6719 case IW_MODE_AUTO:
6720 default:
6721 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6722 break;
6723 }
6724
6725 done:
6726 mutex_unlock(&priv->action_mutex);
6727 return err;
6728 }
6729
6730 static int ipw2100_wx_get_mode(struct net_device *dev,
6731 struct iw_request_info *info,
6732 union iwreq_data *wrqu, char *extra)
6733 {
6734 /*
6735 * This can be called at any time. No action lock required
6736 */
6737
6738 struct ipw2100_priv *priv = ieee80211_priv(dev);
6739
6740 wrqu->mode = priv->ieee->iw_mode;
6741 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6742
6743 return 0;
6744 }
6745
6746 #define POWER_MODES 5
6747
6748 /* Values are in microsecond */
6749 static const s32 timeout_duration[POWER_MODES] = {
6750 350000,
6751 250000,
6752 75000,
6753 37000,
6754 25000,
6755 };
6756
6757 static const s32 period_duration[POWER_MODES] = {
6758 400000,
6759 700000,
6760 1000000,
6761 1000000,
6762 1000000
6763 };
6764
6765 static int ipw2100_wx_get_range(struct net_device *dev,
6766 struct iw_request_info *info,
6767 union iwreq_data *wrqu, char *extra)
6768 {
6769 /*
6770 * This can be called at any time. No action lock required
6771 */
6772
6773 struct ipw2100_priv *priv = ieee80211_priv(dev);
6774 struct iw_range *range = (struct iw_range *)extra;
6775 u16 val;
6776 int i, level;
6777
6778 wrqu->data.length = sizeof(*range);
6779 memset(range, 0, sizeof(*range));
6780
6781 /* Let's try to keep this struct in the same order as in
6782 * linux/include/wireless.h
6783 */
6784
6785 /* TODO: See what values we can set, and remove the ones we can't
6786 * set, or fill them with some default data.
6787 */
6788
6789 /* ~5 Mb/s real (802.11b) */
6790 range->throughput = 5 * 1000 * 1000;
6791
6792 // range->sensitivity; /* signal level threshold range */
6793
6794 range->max_qual.qual = 100;
6795 /* TODO: Find real max RSSI and stick here */
6796 range->max_qual.level = 0;
6797 range->max_qual.noise = 0;
6798 range->max_qual.updated = 7; /* Updated all three */
6799
6800 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6801 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6802 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6803 range->avg_qual.noise = 0;
6804 range->avg_qual.updated = 7; /* Updated all three */
6805
6806 range->num_bitrates = RATE_COUNT;
6807
6808 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6809 range->bitrate[i] = ipw2100_rates_11b[i];
6810 }
6811
6812 range->min_rts = MIN_RTS_THRESHOLD;
6813 range->max_rts = MAX_RTS_THRESHOLD;
6814 range->min_frag = MIN_FRAG_THRESHOLD;
6815 range->max_frag = MAX_FRAG_THRESHOLD;
6816
6817 range->min_pmp = period_duration[0]; /* Minimal PM period */
6818 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6819 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6820 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6821
6822 /* How to decode max/min PM period */
6823 range->pmp_flags = IW_POWER_PERIOD;
6824 /* How to decode max/min PM period */
6825 range->pmt_flags = IW_POWER_TIMEOUT;
6826 /* What PM options are supported */
6827 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6828
6829 range->encoding_size[0] = 5;
6830 range->encoding_size[1] = 13; /* Different token sizes */
6831 range->num_encoding_sizes = 2; /* Number of entry in the list */
6832 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6833 // range->encoding_login_index; /* token index for login token */
6834
6835 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6836 range->txpower_capa = IW_TXPOW_DBM;
6837 range->num_txpower = IW_MAX_TXPOWER;
6838 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6839 i < IW_MAX_TXPOWER;
6840 i++, level -=
6841 ((IPW_TX_POWER_MAX_DBM -
6842 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6843 range->txpower[i] = level / 16;
6844 } else {
6845 range->txpower_capa = 0;
6846 range->num_txpower = 0;
6847 }
6848
6849 /* Set the Wireless Extension versions */
6850 range->we_version_compiled = WIRELESS_EXT;
6851 range->we_version_source = 18;
6852
6853 // range->retry_capa; /* What retry options are supported */
6854 // range->retry_flags; /* How to decode max/min retry limit */
6855 // range->r_time_flags; /* How to decode max/min retry life */
6856 // range->min_retry; /* Minimal number of retries */
6857 // range->max_retry; /* Maximal number of retries */
6858 // range->min_r_time; /* Minimal retry lifetime */
6859 // range->max_r_time; /* Maximal retry lifetime */
6860
6861 range->num_channels = FREQ_COUNT;
6862
6863 val = 0;
6864 for (i = 0; i < FREQ_COUNT; i++) {
6865 // TODO: Include only legal frequencies for some countries
6866 // if (local->channel_mask & (1 << i)) {
6867 range->freq[val].i = i + 1;
6868 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6869 range->freq[val].e = 1;
6870 val++;
6871 // }
6872 if (val == IW_MAX_FREQUENCIES)
6873 break;
6874 }
6875 range->num_frequency = val;
6876
6877 /* Event capability (kernel + driver) */
6878 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6879 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6880 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6881
6882 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6883 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6884
6885 IPW_DEBUG_WX("GET Range\n");
6886
6887 return 0;
6888 }
6889
6890 static int ipw2100_wx_set_wap(struct net_device *dev,
6891 struct iw_request_info *info,
6892 union iwreq_data *wrqu, char *extra)
6893 {
6894 struct ipw2100_priv *priv = ieee80211_priv(dev);
6895 int err = 0;
6896
6897 static const unsigned char any[] = {
6898 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6899 };
6900 static const unsigned char off[] = {
6901 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6902 };
6903
6904 // sanity checks
6905 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6906 return -EINVAL;
6907
6908 mutex_lock(&priv->action_mutex);
6909 if (!(priv->status & STATUS_INITIALIZED)) {
6910 err = -EIO;
6911 goto done;
6912 }
6913
6914 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6915 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6916 /* we disable mandatory BSSID association */
6917 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6918 priv->config &= ~CFG_STATIC_BSSID;
6919 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6920 goto done;
6921 }
6922
6923 priv->config |= CFG_STATIC_BSSID;
6924 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6925
6926 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6927
6928 IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
6929 wrqu->ap_addr.sa_data[0] & 0xff,
6930 wrqu->ap_addr.sa_data[1] & 0xff,
6931 wrqu->ap_addr.sa_data[2] & 0xff,
6932 wrqu->ap_addr.sa_data[3] & 0xff,
6933 wrqu->ap_addr.sa_data[4] & 0xff,
6934 wrqu->ap_addr.sa_data[5] & 0xff);
6935
6936 done:
6937 mutex_unlock(&priv->action_mutex);
6938 return err;
6939 }
6940
6941 static int ipw2100_wx_get_wap(struct net_device *dev,
6942 struct iw_request_info *info,
6943 union iwreq_data *wrqu, char *extra)
6944 {
6945 /*
6946 * This can be called at any time. No action lock required
6947 */
6948
6949 struct ipw2100_priv *priv = ieee80211_priv(dev);
6950
6951 /* If we are associated, trying to associate, or have a statically
6952 * configured BSSID then return that; otherwise return ANY */
6953 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6954 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6955 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6956 } else
6957 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6958
6959 IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
6960 MAC_ARG(wrqu->ap_addr.sa_data));
6961 return 0;
6962 }
6963
6964 static int ipw2100_wx_set_essid(struct net_device *dev,
6965 struct iw_request_info *info,
6966 union iwreq_data *wrqu, char *extra)
6967 {
6968 struct ipw2100_priv *priv = ieee80211_priv(dev);
6969 char *essid = ""; /* ANY */
6970 int length = 0;
6971 int err = 0;
6972
6973 mutex_lock(&priv->action_mutex);
6974 if (!(priv->status & STATUS_INITIALIZED)) {
6975 err = -EIO;
6976 goto done;
6977 }
6978
6979 if (wrqu->essid.flags && wrqu->essid.length) {
6980 length = wrqu->essid.length;
6981 essid = extra;
6982 }
6983
6984 if (length == 0) {
6985 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6986 priv->config &= ~CFG_STATIC_ESSID;
6987 err = ipw2100_set_essid(priv, NULL, 0, 0);
6988 goto done;
6989 }
6990
6991 length = min(length, IW_ESSID_MAX_SIZE);
6992
6993 priv->config |= CFG_STATIC_ESSID;
6994
6995 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6996 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6997 err = 0;
6998 goto done;
6999 }
7000
7001 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
7002 length);
7003
7004 priv->essid_len = length;
7005 memcpy(priv->essid, essid, priv->essid_len);
7006
7007 err = ipw2100_set_essid(priv, essid, length, 0);
7008
7009 done:
7010 mutex_unlock(&priv->action_mutex);
7011 return err;
7012 }
7013
7014 static int ipw2100_wx_get_essid(struct net_device *dev,
7015 struct iw_request_info *info,
7016 union iwreq_data *wrqu, char *extra)
7017 {
7018 /*
7019 * This can be called at any time. No action lock required
7020 */
7021
7022 struct ipw2100_priv *priv = ieee80211_priv(dev);
7023
7024 /* If we are associated, trying to associate, or have a statically
7025 * configured ESSID then return that; otherwise return ANY */
7026 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7027 IPW_DEBUG_WX("Getting essid: '%s'\n",
7028 escape_essid(priv->essid, priv->essid_len));
7029 memcpy(extra, priv->essid, priv->essid_len);
7030 wrqu->essid.length = priv->essid_len;
7031 wrqu->essid.flags = 1; /* active */
7032 } else {
7033 IPW_DEBUG_WX("Getting essid: ANY\n");
7034 wrqu->essid.length = 0;
7035 wrqu->essid.flags = 0; /* active */
7036 }
7037
7038 return 0;
7039 }
7040
7041 static int ipw2100_wx_set_nick(struct net_device *dev,
7042 struct iw_request_info *info,
7043 union iwreq_data *wrqu, char *extra)
7044 {
7045 /*
7046 * This can be called at any time. No action lock required
7047 */
7048
7049 struct ipw2100_priv *priv = ieee80211_priv(dev);
7050
7051 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7052 return -E2BIG;
7053
7054 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7055 memset(priv->nick, 0, sizeof(priv->nick));
7056 memcpy(priv->nick, extra, wrqu->data.length);
7057
7058 IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7059
7060 return 0;
7061 }
7062
7063 static int ipw2100_wx_get_nick(struct net_device *dev,
7064 struct iw_request_info *info,
7065 union iwreq_data *wrqu, char *extra)
7066 {
7067 /*
7068 * This can be called at any time. No action lock required
7069 */
7070
7071 struct ipw2100_priv *priv = ieee80211_priv(dev);
7072
7073 wrqu->data.length = strlen(priv->nick);
7074 memcpy(extra, priv->nick, wrqu->data.length);
7075 wrqu->data.flags = 1; /* active */
7076
7077 IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7078
7079 return 0;
7080 }
7081
7082 static int ipw2100_wx_set_rate(struct net_device *dev,
7083 struct iw_request_info *info,
7084 union iwreq_data *wrqu, char *extra)
7085 {
7086 struct ipw2100_priv *priv = ieee80211_priv(dev);
7087 u32 target_rate = wrqu->bitrate.value;
7088 u32 rate;
7089 int err = 0;
7090
7091 mutex_lock(&priv->action_mutex);
7092 if (!(priv->status & STATUS_INITIALIZED)) {
7093 err = -EIO;
7094 goto done;
7095 }
7096
7097 rate = 0;
7098
7099 if (target_rate == 1000000 ||
7100 (!wrqu->bitrate.fixed && target_rate > 1000000))
7101 rate |= TX_RATE_1_MBIT;
7102 if (target_rate == 2000000 ||
7103 (!wrqu->bitrate.fixed && target_rate > 2000000))
7104 rate |= TX_RATE_2_MBIT;
7105 if (target_rate == 5500000 ||
7106 (!wrqu->bitrate.fixed && target_rate > 5500000))
7107 rate |= TX_RATE_5_5_MBIT;
7108 if (target_rate == 11000000 ||
7109 (!wrqu->bitrate.fixed && target_rate > 11000000))
7110 rate |= TX_RATE_11_MBIT;
7111 if (rate == 0)
7112 rate = DEFAULT_TX_RATES;
7113
7114 err = ipw2100_set_tx_rates(priv, rate, 0);
7115
7116 IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7117 done:
7118 mutex_unlock(&priv->action_mutex);
7119 return err;
7120 }
7121
7122 static int ipw2100_wx_get_rate(struct net_device *dev,
7123 struct iw_request_info *info,
7124 union iwreq_data *wrqu, char *extra)
7125 {
7126 struct ipw2100_priv *priv = ieee80211_priv(dev);
7127 int val;
7128 int len = sizeof(val);
7129 int err = 0;
7130
7131 if (!(priv->status & STATUS_ENABLED) ||
7132 priv->status & STATUS_RF_KILL_MASK ||
7133 !(priv->status & STATUS_ASSOCIATED)) {
7134 wrqu->bitrate.value = 0;
7135 return 0;
7136 }
7137
7138 mutex_lock(&priv->action_mutex);
7139 if (!(priv->status & STATUS_INITIALIZED)) {
7140 err = -EIO;
7141 goto done;
7142 }
7143
7144 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7145 if (err) {
7146 IPW_DEBUG_WX("failed querying ordinals.\n");
7147 return err;
7148 }
7149
7150 switch (val & TX_RATE_MASK) {
7151 case TX_RATE_1_MBIT:
7152 wrqu->bitrate.value = 1000000;
7153 break;
7154 case TX_RATE_2_MBIT:
7155 wrqu->bitrate.value = 2000000;
7156 break;
7157 case TX_RATE_5_5_MBIT:
7158 wrqu->bitrate.value = 5500000;
7159 break;
7160 case TX_RATE_11_MBIT:
7161 wrqu->bitrate.value = 11000000;
7162 break;
7163 default:
7164 wrqu->bitrate.value = 0;
7165 }
7166
7167 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7168
7169 done:
7170 mutex_unlock(&priv->action_mutex);
7171 return err;
7172 }
7173
7174 static int ipw2100_wx_set_rts(struct net_device *dev,
7175 struct iw_request_info *info,
7176 union iwreq_data *wrqu, char *extra)
7177 {
7178 struct ipw2100_priv *priv = ieee80211_priv(dev);
7179 int value, err;
7180
7181 /* Auto RTS not yet supported */
7182 if (wrqu->rts.fixed == 0)
7183 return -EINVAL;
7184
7185 mutex_lock(&priv->action_mutex);
7186 if (!(priv->status & STATUS_INITIALIZED)) {
7187 err = -EIO;
7188 goto done;
7189 }
7190
7191 if (wrqu->rts.disabled)
7192 value = priv->rts_threshold | RTS_DISABLED;
7193 else {
7194 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7195 err = -EINVAL;
7196 goto done;
7197 }
7198 value = wrqu->rts.value;
7199 }
7200
7201 err = ipw2100_set_rts_threshold(priv, value);
7202
7203 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7204 done:
7205 mutex_unlock(&priv->action_mutex);
7206 return err;
7207 }
7208
7209 static int ipw2100_wx_get_rts(struct net_device *dev,
7210 struct iw_request_info *info,
7211 union iwreq_data *wrqu, char *extra)
7212 {
7213 /*
7214 * This can be called at any time. No action lock required
7215 */
7216
7217 struct ipw2100_priv *priv = ieee80211_priv(dev);
7218
7219 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7220 wrqu->rts.fixed = 1; /* no auto select */
7221
7222 /* If RTS is set to the default value, then it is disabled */
7223 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7224
7225 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7226
7227 return 0;
7228 }
7229
7230 static int ipw2100_wx_set_txpow(struct net_device *dev,
7231 struct iw_request_info *info,
7232 union iwreq_data *wrqu, char *extra)
7233 {
7234 struct ipw2100_priv *priv = ieee80211_priv(dev);
7235 int err = 0, value;
7236
7237 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7238 return -EINPROGRESS;
7239
7240 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7241 return 0;
7242
7243 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7244 return -EINVAL;
7245
7246 if (wrqu->txpower.fixed == 0)
7247 value = IPW_TX_POWER_DEFAULT;
7248 else {
7249 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7250 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7251 return -EINVAL;
7252
7253 value = wrqu->txpower.value;
7254 }
7255
7256 mutex_lock(&priv->action_mutex);
7257 if (!(priv->status & STATUS_INITIALIZED)) {
7258 err = -EIO;
7259 goto done;
7260 }
7261
7262 err = ipw2100_set_tx_power(priv, value);
7263
7264 IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7265
7266 done:
7267 mutex_unlock(&priv->action_mutex);
7268 return err;
7269 }
7270
7271 static int ipw2100_wx_get_txpow(struct net_device *dev,
7272 struct iw_request_info *info,
7273 union iwreq_data *wrqu, char *extra)
7274 {
7275 /*
7276 * This can be called at any time. No action lock required
7277 */
7278
7279 struct ipw2100_priv *priv = ieee80211_priv(dev);
7280
7281 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7282
7283 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7284 wrqu->txpower.fixed = 0;
7285 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7286 } else {
7287 wrqu->txpower.fixed = 1;
7288 wrqu->txpower.value = priv->tx_power;
7289 }
7290
7291 wrqu->txpower.flags = IW_TXPOW_DBM;
7292
7293 IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7294
7295 return 0;
7296 }
7297
7298 static int ipw2100_wx_set_frag(struct net_device *dev,
7299 struct iw_request_info *info,
7300 union iwreq_data *wrqu, char *extra)
7301 {
7302 /*
7303 * This can be called at any time. No action lock required
7304 */
7305
7306 struct ipw2100_priv *priv = ieee80211_priv(dev);
7307
7308 if (!wrqu->frag.fixed)
7309 return -EINVAL;
7310
7311 if (wrqu->frag.disabled) {
7312 priv->frag_threshold |= FRAG_DISABLED;
7313 priv->ieee->fts = DEFAULT_FTS;
7314 } else {
7315 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7316 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7317 return -EINVAL;
7318
7319 priv->ieee->fts = wrqu->frag.value & ~0x1;
7320 priv->frag_threshold = priv->ieee->fts;
7321 }
7322
7323 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7324
7325 return 0;
7326 }
7327
7328 static int ipw2100_wx_get_frag(struct net_device *dev,
7329 struct iw_request_info *info,
7330 union iwreq_data *wrqu, char *extra)
7331 {
7332 /*
7333 * This can be called at any time. No action lock required
7334 */
7335
7336 struct ipw2100_priv *priv = ieee80211_priv(dev);
7337 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7338 wrqu->frag.fixed = 0; /* no auto select */
7339 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7340
7341 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7342
7343 return 0;
7344 }
7345
7346 static int ipw2100_wx_set_retry(struct net_device *dev,
7347 struct iw_request_info *info,
7348 union iwreq_data *wrqu, char *extra)
7349 {
7350 struct ipw2100_priv *priv = ieee80211_priv(dev);
7351 int err = 0;
7352
7353 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7354 return -EINVAL;
7355
7356 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7357 return 0;
7358
7359 mutex_lock(&priv->action_mutex);
7360 if (!(priv->status & STATUS_INITIALIZED)) {
7361 err = -EIO;
7362 goto done;
7363 }
7364
7365 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7366 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7367 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7368 wrqu->retry.value);
7369 goto done;
7370 }
7371
7372 if (wrqu->retry.flags & IW_RETRY_LONG) {
7373 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7374 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7375 wrqu->retry.value);
7376 goto done;
7377 }
7378
7379 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7380 if (!err)
7381 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7382
7383 IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7384
7385 done:
7386 mutex_unlock(&priv->action_mutex);
7387 return err;
7388 }
7389
7390 static int ipw2100_wx_get_retry(struct net_device *dev,
7391 struct iw_request_info *info,
7392 union iwreq_data *wrqu, char *extra)
7393 {
7394 /*
7395 * This can be called at any time. No action lock required
7396 */
7397
7398 struct ipw2100_priv *priv = ieee80211_priv(dev);
7399
7400 wrqu->retry.disabled = 0; /* can't be disabled */
7401
7402 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7403 return -EINVAL;
7404
7405 if (wrqu->retry.flags & IW_RETRY_LONG) {
7406 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7407 wrqu->retry.value = priv->long_retry_limit;
7408 } else {
7409 wrqu->retry.flags =
7410 (priv->short_retry_limit !=
7411 priv->long_retry_limit) ?
7412 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7413
7414 wrqu->retry.value = priv->short_retry_limit;
7415 }
7416
7417 IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7418
7419 return 0;
7420 }
7421
7422 static int ipw2100_wx_set_scan(struct net_device *dev,
7423 struct iw_request_info *info,
7424 union iwreq_data *wrqu, char *extra)
7425 {
7426 struct ipw2100_priv *priv = ieee80211_priv(dev);
7427 int err = 0;
7428
7429 mutex_lock(&priv->action_mutex);
7430 if (!(priv->status & STATUS_INITIALIZED)) {
7431 err = -EIO;
7432 goto done;
7433 }
7434
7435 IPW_DEBUG_WX("Initiating scan...\n");
7436 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7437 IPW_DEBUG_WX("Start scan failed.\n");
7438
7439 /* TODO: Mark a scan as pending so when hardware initialized
7440 * a scan starts */
7441 }
7442
7443 done:
7444 mutex_unlock(&priv->action_mutex);
7445 return err;
7446 }
7447
7448 static int ipw2100_wx_get_scan(struct net_device *dev,
7449 struct iw_request_info *info,
7450 union iwreq_data *wrqu, char *extra)
7451 {
7452 /*
7453 * This can be called at any time. No action lock required
7454 */
7455
7456 struct ipw2100_priv *priv = ieee80211_priv(dev);
7457 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7458 }
7459
7460 /*
7461 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7462 */
7463 static int ipw2100_wx_set_encode(struct net_device *dev,
7464 struct iw_request_info *info,
7465 union iwreq_data *wrqu, char *key)
7466 {
7467 /*
7468 * No check of STATUS_INITIALIZED required
7469 */
7470
7471 struct ipw2100_priv *priv = ieee80211_priv(dev);
7472 return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7473 }
7474
7475 static int ipw2100_wx_get_encode(struct net_device *dev,
7476 struct iw_request_info *info,
7477 union iwreq_data *wrqu, char *key)
7478 {
7479 /*
7480 * This can be called at any time. No action lock required
7481 */
7482
7483 struct ipw2100_priv *priv = ieee80211_priv(dev);
7484 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7485 }
7486
7487 static int ipw2100_wx_set_power(struct net_device *dev,
7488 struct iw_request_info *info,
7489 union iwreq_data *wrqu, char *extra)
7490 {
7491 struct ipw2100_priv *priv = ieee80211_priv(dev);
7492 int err = 0;
7493
7494 mutex_lock(&priv->action_mutex);
7495 if (!(priv->status & STATUS_INITIALIZED)) {
7496 err = -EIO;
7497 goto done;
7498 }
7499
7500 if (wrqu->power.disabled) {
7501 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7502 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7503 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7504 goto done;
7505 }
7506
7507 switch (wrqu->power.flags & IW_POWER_MODE) {
7508 case IW_POWER_ON: /* If not specified */
7509 case IW_POWER_MODE: /* If set all mask */
7510 case IW_POWER_ALL_R: /* If explicitely state all */
7511 break;
7512 default: /* Otherwise we don't support it */
7513 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7514 wrqu->power.flags);
7515 err = -EOPNOTSUPP;
7516 goto done;
7517 }
7518
7519 /* If the user hasn't specified a power management mode yet, default
7520 * to BATTERY */
7521 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7522 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7523
7524 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7525
7526 done:
7527 mutex_unlock(&priv->action_mutex);
7528 return err;
7529
7530 }
7531
7532 static int ipw2100_wx_get_power(struct net_device *dev,
7533 struct iw_request_info *info,
7534 union iwreq_data *wrqu, char *extra)
7535 {
7536 /*
7537 * This can be called at any time. No action lock required
7538 */
7539
7540 struct ipw2100_priv *priv = ieee80211_priv(dev);
7541
7542 if (!(priv->power_mode & IPW_POWER_ENABLED))
7543 wrqu->power.disabled = 1;
7544 else {
7545 wrqu->power.disabled = 0;
7546 wrqu->power.flags = 0;
7547 }
7548
7549 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7550
7551 return 0;
7552 }
7553
7554 /*
7555 * WE-18 WPA support
7556 */
7557
7558 /* SIOCSIWGENIE */
7559 static int ipw2100_wx_set_genie(struct net_device *dev,
7560 struct iw_request_info *info,
7561 union iwreq_data *wrqu, char *extra)
7562 {
7563
7564 struct ipw2100_priv *priv = ieee80211_priv(dev);
7565 struct ieee80211_device *ieee = priv->ieee;
7566 u8 *buf;
7567
7568 if (!ieee->wpa_enabled)
7569 return -EOPNOTSUPP;
7570
7571 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7572 (wrqu->data.length && extra == NULL))
7573 return -EINVAL;
7574
7575 if (wrqu->data.length) {
7576 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
7577 if (buf == NULL)
7578 return -ENOMEM;
7579
7580 memcpy(buf, extra, wrqu->data.length);
7581 kfree(ieee->wpa_ie);
7582 ieee->wpa_ie = buf;
7583 ieee->wpa_ie_len = wrqu->data.length;
7584 } else {
7585 kfree(ieee->wpa_ie);
7586 ieee->wpa_ie = NULL;
7587 ieee->wpa_ie_len = 0;
7588 }
7589
7590 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7591
7592 return 0;
7593 }
7594
7595 /* SIOCGIWGENIE */
7596 static int ipw2100_wx_get_genie(struct net_device *dev,
7597 struct iw_request_info *info,
7598 union iwreq_data *wrqu, char *extra)
7599 {
7600 struct ipw2100_priv *priv = ieee80211_priv(dev);
7601 struct ieee80211_device *ieee = priv->ieee;
7602
7603 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7604 wrqu->data.length = 0;
7605 return 0;
7606 }
7607
7608 if (wrqu->data.length < ieee->wpa_ie_len)
7609 return -E2BIG;
7610
7611 wrqu->data.length = ieee->wpa_ie_len;
7612 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7613
7614 return 0;
7615 }
7616
7617 /* SIOCSIWAUTH */
7618 static int ipw2100_wx_set_auth(struct net_device *dev,
7619 struct iw_request_info *info,
7620 union iwreq_data *wrqu, char *extra)
7621 {
7622 struct ipw2100_priv *priv = ieee80211_priv(dev);
7623 struct ieee80211_device *ieee = priv->ieee;
7624 struct iw_param *param = &wrqu->param;
7625 struct ieee80211_crypt_data *crypt;
7626 unsigned long flags;
7627 int ret = 0;
7628
7629 switch (param->flags & IW_AUTH_INDEX) {
7630 case IW_AUTH_WPA_VERSION:
7631 case IW_AUTH_CIPHER_PAIRWISE:
7632 case IW_AUTH_CIPHER_GROUP:
7633 case IW_AUTH_KEY_MGMT:
7634 /*
7635 * ipw2200 does not use these parameters
7636 */
7637 break;
7638
7639 case IW_AUTH_TKIP_COUNTERMEASURES:
7640 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7641 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7642 break;
7643
7644 flags = crypt->ops->get_flags(crypt->priv);
7645
7646 if (param->value)
7647 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7648 else
7649 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7650
7651 crypt->ops->set_flags(flags, crypt->priv);
7652
7653 break;
7654
7655 case IW_AUTH_DROP_UNENCRYPTED:{
7656 /* HACK:
7657 *
7658 * wpa_supplicant calls set_wpa_enabled when the driver
7659 * is loaded and unloaded, regardless of if WPA is being
7660 * used. No other calls are made which can be used to
7661 * determine if encryption will be used or not prior to
7662 * association being expected. If encryption is not being
7663 * used, drop_unencrypted is set to false, else true -- we
7664 * can use this to determine if the CAP_PRIVACY_ON bit should
7665 * be set.
7666 */
7667 struct ieee80211_security sec = {
7668 .flags = SEC_ENABLED,
7669 .enabled = param->value,
7670 };
7671 priv->ieee->drop_unencrypted = param->value;
7672 /* We only change SEC_LEVEL for open mode. Others
7673 * are set by ipw_wpa_set_encryption.
7674 */
7675 if (!param->value) {
7676 sec.flags |= SEC_LEVEL;
7677 sec.level = SEC_LEVEL_0;
7678 } else {
7679 sec.flags |= SEC_LEVEL;
7680 sec.level = SEC_LEVEL_1;
7681 }
7682 if (priv->ieee->set_security)
7683 priv->ieee->set_security(priv->ieee->dev, &sec);
7684 break;
7685 }
7686
7687 case IW_AUTH_80211_AUTH_ALG:
7688 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7689 break;
7690
7691 case IW_AUTH_WPA_ENABLED:
7692 ret = ipw2100_wpa_enable(priv, param->value);
7693 break;
7694
7695 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7696 ieee->ieee802_1x = param->value;
7697 break;
7698
7699 //case IW_AUTH_ROAMING_CONTROL:
7700 case IW_AUTH_PRIVACY_INVOKED:
7701 ieee->privacy_invoked = param->value;
7702 break;
7703
7704 default:
7705 return -EOPNOTSUPP;
7706 }
7707 return ret;
7708 }
7709
7710 /* SIOCGIWAUTH */
7711 static int ipw2100_wx_get_auth(struct net_device *dev,
7712 struct iw_request_info *info,
7713 union iwreq_data *wrqu, char *extra)
7714 {
7715 struct ipw2100_priv *priv = ieee80211_priv(dev);
7716 struct ieee80211_device *ieee = priv->ieee;
7717 struct ieee80211_crypt_data *crypt;
7718 struct iw_param *param = &wrqu->param;
7719 int ret = 0;
7720
7721 switch (param->flags & IW_AUTH_INDEX) {
7722 case IW_AUTH_WPA_VERSION:
7723 case IW_AUTH_CIPHER_PAIRWISE:
7724 case IW_AUTH_CIPHER_GROUP:
7725 case IW_AUTH_KEY_MGMT:
7726 /*
7727 * wpa_supplicant will control these internally
7728 */
7729 ret = -EOPNOTSUPP;
7730 break;
7731
7732 case IW_AUTH_TKIP_COUNTERMEASURES:
7733 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7734 if (!crypt || !crypt->ops->get_flags) {
7735 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7736 "crypt not set!\n");
7737 break;
7738 }
7739
7740 param->value = (crypt->ops->get_flags(crypt->priv) &
7741 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7742
7743 break;
7744
7745 case IW_AUTH_DROP_UNENCRYPTED:
7746 param->value = ieee->drop_unencrypted;
7747 break;
7748
7749 case IW_AUTH_80211_AUTH_ALG:
7750 param->value = priv->ieee->sec.auth_mode;
7751 break;
7752
7753 case IW_AUTH_WPA_ENABLED:
7754 param->value = ieee->wpa_enabled;
7755 break;
7756
7757 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7758 param->value = ieee->ieee802_1x;
7759 break;
7760
7761 case IW_AUTH_ROAMING_CONTROL:
7762 case IW_AUTH_PRIVACY_INVOKED:
7763 param->value = ieee->privacy_invoked;
7764 break;
7765
7766 default:
7767 return -EOPNOTSUPP;
7768 }
7769 return 0;
7770 }
7771
7772 /* SIOCSIWENCODEEXT */
7773 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7774 struct iw_request_info *info,
7775 union iwreq_data *wrqu, char *extra)
7776 {
7777 struct ipw2100_priv *priv = ieee80211_priv(dev);
7778 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7779 }
7780
7781 /* SIOCGIWENCODEEXT */
7782 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7783 struct iw_request_info *info,
7784 union iwreq_data *wrqu, char *extra)
7785 {
7786 struct ipw2100_priv *priv = ieee80211_priv(dev);
7787 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7788 }
7789
7790 /* SIOCSIWMLME */
7791 static int ipw2100_wx_set_mlme(struct net_device *dev,
7792 struct iw_request_info *info,
7793 union iwreq_data *wrqu, char *extra)
7794 {
7795 struct ipw2100_priv *priv = ieee80211_priv(dev);
7796 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7797 u16 reason;
7798
7799 reason = cpu_to_le16(mlme->reason_code);
7800
7801 switch (mlme->cmd) {
7802 case IW_MLME_DEAUTH:
7803 // silently ignore
7804 break;
7805
7806 case IW_MLME_DISASSOC:
7807 ipw2100_disassociate_bssid(priv);
7808 break;
7809
7810 default:
7811 return -EOPNOTSUPP;
7812 }
7813 return 0;
7814 }
7815
7816 /*
7817 *
7818 * IWPRIV handlers
7819 *
7820 */
7821 #ifdef CONFIG_IPW2100_MONITOR
7822 static int ipw2100_wx_set_promisc(struct net_device *dev,
7823 struct iw_request_info *info,
7824 union iwreq_data *wrqu, char *extra)
7825 {
7826 struct ipw2100_priv *priv = ieee80211_priv(dev);
7827 int *parms = (int *)extra;
7828 int enable = (parms[0] > 0);
7829 int err = 0;
7830
7831 mutex_lock(&priv->action_mutex);
7832 if (!(priv->status & STATUS_INITIALIZED)) {
7833 err = -EIO;
7834 goto done;
7835 }
7836
7837 if (enable) {
7838 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7839 err = ipw2100_set_channel(priv, parms[1], 0);
7840 goto done;
7841 }
7842 priv->channel = parms[1];
7843 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7844 } else {
7845 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7846 err = ipw2100_switch_mode(priv, priv->last_mode);
7847 }
7848 done:
7849 mutex_unlock(&priv->action_mutex);
7850 return err;
7851 }
7852
7853 static int ipw2100_wx_reset(struct net_device *dev,
7854 struct iw_request_info *info,
7855 union iwreq_data *wrqu, char *extra)
7856 {
7857 struct ipw2100_priv *priv = ieee80211_priv(dev);
7858 if (priv->status & STATUS_INITIALIZED)
7859 schedule_reset(priv);
7860 return 0;
7861 }
7862
7863 #endif
7864
7865 static int ipw2100_wx_set_powermode(struct net_device *dev,
7866 struct iw_request_info *info,
7867 union iwreq_data *wrqu, char *extra)
7868 {
7869 struct ipw2100_priv *priv = ieee80211_priv(dev);
7870 int err = 0, mode = *(int *)extra;
7871
7872 mutex_lock(&priv->action_mutex);
7873 if (!(priv->status & STATUS_INITIALIZED)) {
7874 err = -EIO;
7875 goto done;
7876 }
7877
7878 if ((mode < 1) || (mode > POWER_MODES))
7879 mode = IPW_POWER_AUTO;
7880
7881 if (priv->power_mode != mode)
7882 err = ipw2100_set_power_mode(priv, mode);
7883 done:
7884 mutex_unlock(&priv->action_mutex);
7885 return err;
7886 }
7887
7888 #define MAX_POWER_STRING 80
7889 static int ipw2100_wx_get_powermode(struct net_device *dev,
7890 struct iw_request_info *info,
7891 union iwreq_data *wrqu, char *extra)
7892 {
7893 /*
7894 * This can be called at any time. No action lock required
7895 */
7896
7897 struct ipw2100_priv *priv = ieee80211_priv(dev);
7898 int level = IPW_POWER_LEVEL(priv->power_mode);
7899 s32 timeout, period;
7900
7901 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7902 snprintf(extra, MAX_POWER_STRING,
7903 "Power save level: %d (Off)", level);
7904 } else {
7905 switch (level) {
7906 case IPW_POWER_MODE_CAM:
7907 snprintf(extra, MAX_POWER_STRING,
7908 "Power save level: %d (None)", level);
7909 break;
7910 case IPW_POWER_AUTO:
7911 snprintf(extra, MAX_POWER_STRING,
7912 "Power save level: %d (Auto)", 0);
7913 break;
7914 default:
7915 timeout = timeout_duration[level - 1] / 1000;
7916 period = period_duration[level - 1] / 1000;
7917 snprintf(extra, MAX_POWER_STRING,
7918 "Power save level: %d "
7919 "(Timeout %dms, Period %dms)",
7920 level, timeout, period);
7921 }
7922 }
7923
7924 wrqu->data.length = strlen(extra) + 1;
7925
7926 return 0;
7927 }
7928
7929 static int ipw2100_wx_set_preamble(struct net_device *dev,
7930 struct iw_request_info *info,
7931 union iwreq_data *wrqu, char *extra)
7932 {
7933 struct ipw2100_priv *priv = ieee80211_priv(dev);
7934 int err, mode = *(int *)extra;
7935
7936 mutex_lock(&priv->action_mutex);
7937 if (!(priv->status & STATUS_INITIALIZED)) {
7938 err = -EIO;
7939 goto done;
7940 }
7941
7942 if (mode == 1)
7943 priv->config |= CFG_LONG_PREAMBLE;
7944 else if (mode == 0)
7945 priv->config &= ~CFG_LONG_PREAMBLE;
7946 else {
7947 err = -EINVAL;
7948 goto done;
7949 }
7950
7951 err = ipw2100_system_config(priv, 0);
7952
7953 done:
7954 mutex_unlock(&priv->action_mutex);
7955 return err;
7956 }
7957
7958 static int ipw2100_wx_get_preamble(struct net_device *dev,
7959 struct iw_request_info *info,
7960 union iwreq_data *wrqu, char *extra)
7961 {
7962 /*
7963 * This can be called at any time. No action lock required
7964 */
7965
7966 struct ipw2100_priv *priv = ieee80211_priv(dev);
7967
7968 if (priv->config & CFG_LONG_PREAMBLE)
7969 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7970 else
7971 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7972
7973 return 0;
7974 }
7975
7976 #ifdef CONFIG_IPW2100_MONITOR
7977 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7978 struct iw_request_info *info,
7979 union iwreq_data *wrqu, char *extra)
7980 {
7981 struct ipw2100_priv *priv = ieee80211_priv(dev);
7982 int err, mode = *(int *)extra;
7983
7984 mutex_lock(&priv->action_mutex);
7985 if (!(priv->status & STATUS_INITIALIZED)) {
7986 err = -EIO;
7987 goto done;
7988 }
7989
7990 if (mode == 1)
7991 priv->config |= CFG_CRC_CHECK;
7992 else if (mode == 0)
7993 priv->config &= ~CFG_CRC_CHECK;
7994 else {
7995 err = -EINVAL;
7996 goto done;
7997 }
7998 err = 0;
7999
8000 done:
8001 mutex_unlock(&priv->action_mutex);
8002 return err;
8003 }
8004
8005 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8006 struct iw_request_info *info,
8007 union iwreq_data *wrqu, char *extra)
8008 {
8009 /*
8010 * This can be called at any time. No action lock required
8011 */
8012
8013 struct ipw2100_priv *priv = ieee80211_priv(dev);
8014
8015 if (priv->config & CFG_CRC_CHECK)
8016 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8017 else
8018 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8019
8020 return 0;
8021 }
8022 #endif /* CONFIG_IPW2100_MONITOR */
8023
8024 static iw_handler ipw2100_wx_handlers[] = {
8025 NULL, /* SIOCSIWCOMMIT */
8026 ipw2100_wx_get_name, /* SIOCGIWNAME */
8027 NULL, /* SIOCSIWNWID */
8028 NULL, /* SIOCGIWNWID */
8029 ipw2100_wx_set_freq, /* SIOCSIWFREQ */
8030 ipw2100_wx_get_freq, /* SIOCGIWFREQ */
8031 ipw2100_wx_set_mode, /* SIOCSIWMODE */
8032 ipw2100_wx_get_mode, /* SIOCGIWMODE */
8033 NULL, /* SIOCSIWSENS */
8034 NULL, /* SIOCGIWSENS */
8035 NULL, /* SIOCSIWRANGE */
8036 ipw2100_wx_get_range, /* SIOCGIWRANGE */
8037 NULL, /* SIOCSIWPRIV */
8038 NULL, /* SIOCGIWPRIV */
8039 NULL, /* SIOCSIWSTATS */
8040 NULL, /* SIOCGIWSTATS */
8041 NULL, /* SIOCSIWSPY */
8042 NULL, /* SIOCGIWSPY */
8043 NULL, /* SIOCGIWTHRSPY */
8044 NULL, /* SIOCWIWTHRSPY */
8045 ipw2100_wx_set_wap, /* SIOCSIWAP */
8046 ipw2100_wx_get_wap, /* SIOCGIWAP */
8047 ipw2100_wx_set_mlme, /* SIOCSIWMLME */
8048 NULL, /* SIOCGIWAPLIST -- deprecated */
8049 ipw2100_wx_set_scan, /* SIOCSIWSCAN */
8050 ipw2100_wx_get_scan, /* SIOCGIWSCAN */
8051 ipw2100_wx_set_essid, /* SIOCSIWESSID */
8052 ipw2100_wx_get_essid, /* SIOCGIWESSID */
8053 ipw2100_wx_set_nick, /* SIOCSIWNICKN */
8054 ipw2100_wx_get_nick, /* SIOCGIWNICKN */
8055 NULL, /* -- hole -- */
8056 NULL, /* -- hole -- */
8057 ipw2100_wx_set_rate, /* SIOCSIWRATE */
8058 ipw2100_wx_get_rate, /* SIOCGIWRATE */
8059 ipw2100_wx_set_rts, /* SIOCSIWRTS */
8060 ipw2100_wx_get_rts, /* SIOCGIWRTS */
8061 ipw2100_wx_set_frag, /* SIOCSIWFRAG */
8062 ipw2100_wx_get_frag, /* SIOCGIWFRAG */
8063 ipw2100_wx_set_txpow, /* SIOCSIWTXPOW */
8064 ipw2100_wx_get_txpow, /* SIOCGIWTXPOW */
8065 ipw2100_wx_set_retry, /* SIOCSIWRETRY */
8066 ipw2100_wx_get_retry, /* SIOCGIWRETRY */
8067 ipw2100_wx_set_encode, /* SIOCSIWENCODE */
8068 ipw2100_wx_get_encode, /* SIOCGIWENCODE */
8069 ipw2100_wx_set_power, /* SIOCSIWPOWER */
8070 ipw2100_wx_get_power, /* SIOCGIWPOWER */
8071 NULL, /* -- hole -- */
8072 NULL, /* -- hole -- */
8073 ipw2100_wx_set_genie, /* SIOCSIWGENIE */
8074 ipw2100_wx_get_genie, /* SIOCGIWGENIE */
8075 ipw2100_wx_set_auth, /* SIOCSIWAUTH */
8076 ipw2100_wx_get_auth, /* SIOCGIWAUTH */
8077 ipw2100_wx_set_encodeext, /* SIOCSIWENCODEEXT */
8078 ipw2100_wx_get_encodeext, /* SIOCGIWENCODEEXT */
8079 NULL, /* SIOCSIWPMKSA */
8080 };
8081
8082 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8083 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8084 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8085 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8086 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8087 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8088 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8089 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8090
8091 static const struct iw_priv_args ipw2100_private_args[] = {
8092
8093 #ifdef CONFIG_IPW2100_MONITOR
8094 {
8095 IPW2100_PRIV_SET_MONITOR,
8096 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8097 {
8098 IPW2100_PRIV_RESET,
8099 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8100 #endif /* CONFIG_IPW2100_MONITOR */
8101
8102 {
8103 IPW2100_PRIV_SET_POWER,
8104 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8105 {
8106 IPW2100_PRIV_GET_POWER,
8107 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8108 "get_power"},
8109 {
8110 IPW2100_PRIV_SET_LONGPREAMBLE,
8111 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8112 {
8113 IPW2100_PRIV_GET_LONGPREAMBLE,
8114 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8115 #ifdef CONFIG_IPW2100_MONITOR
8116 {
8117 IPW2100_PRIV_SET_CRC_CHECK,
8118 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8119 {
8120 IPW2100_PRIV_GET_CRC_CHECK,
8121 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8122 #endif /* CONFIG_IPW2100_MONITOR */
8123 };
8124
8125 static iw_handler ipw2100_private_handler[] = {
8126 #ifdef CONFIG_IPW2100_MONITOR
8127 ipw2100_wx_set_promisc,
8128 ipw2100_wx_reset,
8129 #else /* CONFIG_IPW2100_MONITOR */
8130 NULL,
8131 NULL,
8132 #endif /* CONFIG_IPW2100_MONITOR */
8133 ipw2100_wx_set_powermode,
8134 ipw2100_wx_get_powermode,
8135 ipw2100_wx_set_preamble,
8136 ipw2100_wx_get_preamble,
8137 #ifdef CONFIG_IPW2100_MONITOR
8138 ipw2100_wx_set_crc_check,
8139 ipw2100_wx_get_crc_check,
8140 #else /* CONFIG_IPW2100_MONITOR */
8141 NULL,
8142 NULL,
8143 #endif /* CONFIG_IPW2100_MONITOR */
8144 };
8145
8146 /*
8147 * Get wireless statistics.
8148 * Called by /proc/net/wireless
8149 * Also called by SIOCGIWSTATS
8150 */
8151 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8152 {
8153 enum {
8154 POOR = 30,
8155 FAIR = 60,
8156 GOOD = 80,
8157 VERY_GOOD = 90,
8158 EXCELLENT = 95,
8159 PERFECT = 100
8160 };
8161 int rssi_qual;
8162 int tx_qual;
8163 int beacon_qual;
8164
8165 struct ipw2100_priv *priv = ieee80211_priv(dev);
8166 struct iw_statistics *wstats;
8167 u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8168 u32 ord_len = sizeof(u32);
8169
8170 if (!priv)
8171 return (struct iw_statistics *)NULL;
8172
8173 wstats = &priv->wstats;
8174
8175 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8176 * ipw2100_wx_wireless_stats seems to be called before fw is
8177 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8178 * and associated; if not associcated, the values are all meaningless
8179 * anyway, so set them all to NULL and INVALID */
8180 if (!(priv->status & STATUS_ASSOCIATED)) {
8181 wstats->miss.beacon = 0;
8182 wstats->discard.retries = 0;
8183 wstats->qual.qual = 0;
8184 wstats->qual.level = 0;
8185 wstats->qual.noise = 0;
8186 wstats->qual.updated = 7;
8187 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8188 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8189 return wstats;
8190 }
8191
8192 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8193 &missed_beacons, &ord_len))
8194 goto fail_get_ordinal;
8195
8196 /* If we don't have a connection the quality and level is 0 */
8197 if (!(priv->status & STATUS_ASSOCIATED)) {
8198 wstats->qual.qual = 0;
8199 wstats->qual.level = 0;
8200 } else {
8201 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8202 &rssi, &ord_len))
8203 goto fail_get_ordinal;
8204 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8205 if (rssi < 10)
8206 rssi_qual = rssi * POOR / 10;
8207 else if (rssi < 15)
8208 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8209 else if (rssi < 20)
8210 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8211 else if (rssi < 30)
8212 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8213 10 + GOOD;
8214 else
8215 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8216 10 + VERY_GOOD;
8217
8218 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8219 &tx_retries, &ord_len))
8220 goto fail_get_ordinal;
8221
8222 if (tx_retries > 75)
8223 tx_qual = (90 - tx_retries) * POOR / 15;
8224 else if (tx_retries > 70)
8225 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8226 else if (tx_retries > 65)
8227 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8228 else if (tx_retries > 50)
8229 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8230 15 + GOOD;
8231 else
8232 tx_qual = (50 - tx_retries) *
8233 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8234
8235 if (missed_beacons > 50)
8236 beacon_qual = (60 - missed_beacons) * POOR / 10;
8237 else if (missed_beacons > 40)
8238 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8239 10 + POOR;
8240 else if (missed_beacons > 32)
8241 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8242 18 + FAIR;
8243 else if (missed_beacons > 20)
8244 beacon_qual = (32 - missed_beacons) *
8245 (VERY_GOOD - GOOD) / 20 + GOOD;
8246 else
8247 beacon_qual = (20 - missed_beacons) *
8248 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8249
8250 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8251
8252 #ifdef CONFIG_IPW2100_DEBUG
8253 if (beacon_qual == quality)
8254 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8255 else if (tx_qual == quality)
8256 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8257 else if (quality != 100)
8258 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8259 else
8260 IPW_DEBUG_WX("Quality not clamped.\n");
8261 #endif
8262
8263 wstats->qual.qual = quality;
8264 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8265 }
8266
8267 wstats->qual.noise = 0;
8268 wstats->qual.updated = 7;
8269 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8270
8271 /* FIXME: this is percent and not a # */
8272 wstats->miss.beacon = missed_beacons;
8273
8274 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8275 &tx_failures, &ord_len))
8276 goto fail_get_ordinal;
8277 wstats->discard.retries = tx_failures;
8278
8279 return wstats;
8280
8281 fail_get_ordinal:
8282 IPW_DEBUG_WX("failed querying ordinals.\n");
8283
8284 return (struct iw_statistics *)NULL;
8285 }
8286
8287 static struct iw_handler_def ipw2100_wx_handler_def = {
8288 .standard = ipw2100_wx_handlers,
8289 .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8290 .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8291 .num_private_args = sizeof(ipw2100_private_args) /
8292 sizeof(struct iw_priv_args),
8293 .private = (iw_handler *) ipw2100_private_handler,
8294 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8295 .get_wireless_stats = ipw2100_wx_wireless_stats,
8296 };
8297
8298 static void ipw2100_wx_event_work(struct work_struct *work)
8299 {
8300 struct ipw2100_priv *priv =
8301 container_of(work, struct ipw2100_priv, wx_event_work.work);
8302 union iwreq_data wrqu;
8303 int len = ETH_ALEN;
8304
8305 if (priv->status & STATUS_STOPPING)
8306 return;
8307
8308 mutex_lock(&priv->action_mutex);
8309
8310 IPW_DEBUG_WX("enter\n");
8311
8312 mutex_unlock(&priv->action_mutex);
8313
8314 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8315
8316 /* Fetch BSSID from the hardware */
8317 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8318 priv->status & STATUS_RF_KILL_MASK ||
8319 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8320 &priv->bssid, &len)) {
8321 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8322 } else {
8323 /* We now have the BSSID, so can finish setting to the full
8324 * associated state */
8325 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8326 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8327 priv->status &= ~STATUS_ASSOCIATING;
8328 priv->status |= STATUS_ASSOCIATED;
8329 netif_carrier_on(priv->net_dev);
8330 netif_wake_queue(priv->net_dev);
8331 }
8332
8333 if (!(priv->status & STATUS_ASSOCIATED)) {
8334 IPW_DEBUG_WX("Configuring ESSID\n");
8335 mutex_lock(&priv->action_mutex);
8336 /* This is a disassociation event, so kick the firmware to
8337 * look for another AP */
8338 if (priv->config & CFG_STATIC_ESSID)
8339 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8340 0);
8341 else
8342 ipw2100_set_essid(priv, NULL, 0, 0);
8343 mutex_unlock(&priv->action_mutex);
8344 }
8345
8346 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8347 }
8348
8349 #define IPW2100_FW_MAJOR_VERSION 1
8350 #define IPW2100_FW_MINOR_VERSION 3
8351
8352 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8353 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8354
8355 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8356 IPW2100_FW_MAJOR_VERSION)
8357
8358 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8359 "." __stringify(IPW2100_FW_MINOR_VERSION)
8360
8361 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8362
8363 /*
8364
8365 BINARY FIRMWARE HEADER FORMAT
8366
8367 offset length desc
8368 0 2 version
8369 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8370 4 4 fw_len
8371 8 4 uc_len
8372 C fw_len firmware data
8373 12 + fw_len uc_len microcode data
8374
8375 */
8376
8377 struct ipw2100_fw_header {
8378 short version;
8379 short mode;
8380 unsigned int fw_size;
8381 unsigned int uc_size;
8382 } __attribute__ ((packed));
8383
8384 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8385 {
8386 struct ipw2100_fw_header *h =
8387 (struct ipw2100_fw_header *)fw->fw_entry->data;
8388
8389 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8390 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8391 "(detected version id of %u). "
8392 "See Documentation/networking/README.ipw2100\n",
8393 h->version);
8394 return 1;
8395 }
8396
8397 fw->version = h->version;
8398 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8399 fw->fw.size = h->fw_size;
8400 fw->uc.data = fw->fw.data + h->fw_size;
8401 fw->uc.size = h->uc_size;
8402
8403 return 0;
8404 }
8405
8406 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8407 struct ipw2100_fw *fw)
8408 {
8409 char *fw_name;
8410 int rc;
8411
8412 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8413 priv->net_dev->name);
8414
8415 switch (priv->ieee->iw_mode) {
8416 case IW_MODE_ADHOC:
8417 fw_name = IPW2100_FW_NAME("-i");
8418 break;
8419 #ifdef CONFIG_IPW2100_MONITOR
8420 case IW_MODE_MONITOR:
8421 fw_name = IPW2100_FW_NAME("-p");
8422 break;
8423 #endif
8424 case IW_MODE_INFRA:
8425 default:
8426 fw_name = IPW2100_FW_NAME("");
8427 break;
8428 }
8429
8430 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8431
8432 if (rc < 0) {
8433 printk(KERN_ERR DRV_NAME ": "
8434 "%s: Firmware '%s' not available or load failed.\n",
8435 priv->net_dev->name, fw_name);
8436 return rc;
8437 }
8438 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8439 fw->fw_entry->size);
8440
8441 ipw2100_mod_firmware_load(fw);
8442
8443 return 0;
8444 }
8445
8446 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8447 struct ipw2100_fw *fw)
8448 {
8449 fw->version = 0;
8450 if (fw->fw_entry)
8451 release_firmware(fw->fw_entry);
8452 fw->fw_entry = NULL;
8453 }
8454
8455 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8456 size_t max)
8457 {
8458 char ver[MAX_FW_VERSION_LEN];
8459 u32 len = MAX_FW_VERSION_LEN;
8460 u32 tmp;
8461 int i;
8462 /* firmware version is an ascii string (max len of 14) */
8463 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8464 return -EIO;
8465 tmp = max;
8466 if (len >= max)
8467 len = max - 1;
8468 for (i = 0; i < len; i++)
8469 buf[i] = ver[i];
8470 buf[i] = '\0';
8471 return tmp;
8472 }
8473
8474 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8475 size_t max)
8476 {
8477 u32 ver;
8478 u32 len = sizeof(ver);
8479 /* microcode version is a 32 bit integer */
8480 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8481 return -EIO;
8482 return snprintf(buf, max, "%08X", ver);
8483 }
8484
8485 /*
8486 * On exit, the firmware will have been freed from the fw list
8487 */
8488 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8489 {
8490 /* firmware is constructed of N contiguous entries, each entry is
8491 * structured as:
8492 *
8493 * offset sie desc
8494 * 0 4 address to write to
8495 * 4 2 length of data run
8496 * 6 length data
8497 */
8498 unsigned int addr;
8499 unsigned short len;
8500
8501 const unsigned char *firmware_data = fw->fw.data;
8502 unsigned int firmware_data_left = fw->fw.size;
8503
8504 while (firmware_data_left > 0) {
8505 addr = *(u32 *) (firmware_data);
8506 firmware_data += 4;
8507 firmware_data_left -= 4;
8508
8509 len = *(u16 *) (firmware_data);
8510 firmware_data += 2;
8511 firmware_data_left -= 2;
8512
8513 if (len > 32) {
8514 printk(KERN_ERR DRV_NAME ": "
8515 "Invalid firmware run-length of %d bytes\n",
8516 len);
8517 return -EINVAL;
8518 }
8519
8520 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8521 firmware_data += len;
8522 firmware_data_left -= len;
8523 }
8524
8525 return 0;
8526 }
8527
8528 struct symbol_alive_response {
8529 u8 cmd_id;
8530 u8 seq_num;
8531 u8 ucode_rev;
8532 u8 eeprom_valid;
8533 u16 valid_flags;
8534 u8 IEEE_addr[6];
8535 u16 flags;
8536 u16 pcb_rev;
8537 u16 clock_settle_time; // 1us LSB
8538 u16 powerup_settle_time; // 1us LSB
8539 u16 hop_settle_time; // 1us LSB
8540 u8 date[3]; // month, day, year
8541 u8 time[2]; // hours, minutes
8542 u8 ucode_valid;
8543 };
8544
8545 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8546 struct ipw2100_fw *fw)
8547 {
8548 struct net_device *dev = priv->net_dev;
8549 const unsigned char *microcode_data = fw->uc.data;
8550 unsigned int microcode_data_left = fw->uc.size;
8551 void __iomem *reg = (void __iomem *)dev->base_addr;
8552
8553 struct symbol_alive_response response;
8554 int i, j;
8555 u8 data;
8556
8557 /* Symbol control */
8558 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8559 readl(reg);
8560 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8561 readl(reg);
8562
8563 /* HW config */
8564 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8565 readl(reg);
8566 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8567 readl(reg);
8568
8569 /* EN_CS_ACCESS bit to reset control store pointer */
8570 write_nic_byte(dev, 0x210000, 0x40);
8571 readl(reg);
8572 write_nic_byte(dev, 0x210000, 0x0);
8573 readl(reg);
8574 write_nic_byte(dev, 0x210000, 0x40);
8575 readl(reg);
8576
8577 /* copy microcode from buffer into Symbol */
8578
8579 while (microcode_data_left > 0) {
8580 write_nic_byte(dev, 0x210010, *microcode_data++);
8581 write_nic_byte(dev, 0x210010, *microcode_data++);
8582 microcode_data_left -= 2;
8583 }
8584
8585 /* EN_CS_ACCESS bit to reset the control store pointer */
8586 write_nic_byte(dev, 0x210000, 0x0);
8587 readl(reg);
8588
8589 /* Enable System (Reg 0)
8590 * first enable causes garbage in RX FIFO */
8591 write_nic_byte(dev, 0x210000, 0x0);
8592 readl(reg);
8593 write_nic_byte(dev, 0x210000, 0x80);
8594 readl(reg);
8595
8596 /* Reset External Baseband Reg */
8597 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8598 readl(reg);
8599 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8600 readl(reg);
8601
8602 /* HW Config (Reg 5) */
8603 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8604 readl(reg);
8605 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8606 readl(reg);
8607
8608 /* Enable System (Reg 0)
8609 * second enable should be OK */
8610 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8611 readl(reg);
8612 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8613
8614 /* check Symbol is enabled - upped this from 5 as it wasn't always
8615 * catching the update */
8616 for (i = 0; i < 10; i++) {
8617 udelay(10);
8618
8619 /* check Dino is enabled bit */
8620 read_nic_byte(dev, 0x210000, &data);
8621 if (data & 0x1)
8622 break;
8623 }
8624
8625 if (i == 10) {
8626 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8627 dev->name);
8628 return -EIO;
8629 }
8630
8631 /* Get Symbol alive response */
8632 for (i = 0; i < 30; i++) {
8633 /* Read alive response structure */
8634 for (j = 0;
8635 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8636 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8637
8638 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8639 break;
8640 udelay(10);
8641 }
8642
8643 if (i == 30) {
8644 printk(KERN_ERR DRV_NAME
8645 ": %s: No response from Symbol - hw not alive\n",
8646 dev->name);
8647 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8648 return -EIO;
8649 }
8650
8651 return 0;
8652 }
This page took 0.198558 seconds and 6 git commands to generate.