Merge master.kernel.org:/pub/scm/linux/kernel/git/davej/cpufreq
[deliverable/linux.git] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
28
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <jkmaline@cc.hut.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
33
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
43
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
106
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
110
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
114
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
118
119 The flow of data on the TX side is as follows:
120
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124 The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #define __KERNEL_SYSCALLS__
154 #include <linux/fs.h>
155 #include <linux/mm.h>
156 #include <linux/slab.h>
157 #include <linux/unistd.h>
158 #include <linux/stringify.h>
159 #include <linux/tcp.h>
160 #include <linux/types.h>
161 #include <linux/version.h>
162 #include <linux/time.h>
163 #include <linux/firmware.h>
164 #include <linux/acpi.h>
165 #include <linux/ctype.h>
166 #include <linux/latency.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "git-1.2.2"
171
172 #define DRV_NAME "ipw2100"
173 #define DRV_VERSION IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
176
177 /* Debugging stuff */
178 #ifdef CONFIG_IPW2100_DEBUG
179 #define CONFIG_IPW2100_RX_DEBUG /* Reception debugging */
180 #endif
181
182 MODULE_DESCRIPTION(DRV_DESCRIPTION);
183 MODULE_VERSION(DRV_VERSION);
184 MODULE_AUTHOR(DRV_COPYRIGHT);
185 MODULE_LICENSE("GPL");
186
187 static int debug = 0;
188 static int mode = 0;
189 static int channel = 0;
190 static int associate = 1;
191 static int disable = 0;
192 #ifdef CONFIG_PM
193 static struct ipw2100_fw ipw2100_firmware;
194 #endif
195
196 #include <linux/moduleparam.h>
197 module_param(debug, int, 0444);
198 module_param(mode, int, 0444);
199 module_param(channel, int, 0444);
200 module_param(associate, int, 0444);
201 module_param(disable, int, 0444);
202
203 MODULE_PARM_DESC(debug, "debug level");
204 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
205 MODULE_PARM_DESC(channel, "channel");
206 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
207 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
208
209 static u32 ipw2100_debug_level = IPW_DL_NONE;
210
211 #ifdef CONFIG_IPW2100_DEBUG
212 #define IPW_DEBUG(level, message...) \
213 do { \
214 if (ipw2100_debug_level & (level)) { \
215 printk(KERN_DEBUG "ipw2100: %c %s ", \
216 in_interrupt() ? 'I' : 'U', __FUNCTION__); \
217 printk(message); \
218 } \
219 } while (0)
220 #else
221 #define IPW_DEBUG(level, message...) do {} while (0)
222 #endif /* CONFIG_IPW2100_DEBUG */
223
224 #ifdef CONFIG_IPW2100_DEBUG
225 static const char *command_types[] = {
226 "undefined",
227 "unused", /* HOST_ATTENTION */
228 "HOST_COMPLETE",
229 "unused", /* SLEEP */
230 "unused", /* HOST_POWER_DOWN */
231 "unused",
232 "SYSTEM_CONFIG",
233 "unused", /* SET_IMR */
234 "SSID",
235 "MANDATORY_BSSID",
236 "AUTHENTICATION_TYPE",
237 "ADAPTER_ADDRESS",
238 "PORT_TYPE",
239 "INTERNATIONAL_MODE",
240 "CHANNEL",
241 "RTS_THRESHOLD",
242 "FRAG_THRESHOLD",
243 "POWER_MODE",
244 "TX_RATES",
245 "BASIC_TX_RATES",
246 "WEP_KEY_INFO",
247 "unused",
248 "unused",
249 "unused",
250 "unused",
251 "WEP_KEY_INDEX",
252 "WEP_FLAGS",
253 "ADD_MULTICAST",
254 "CLEAR_ALL_MULTICAST",
255 "BEACON_INTERVAL",
256 "ATIM_WINDOW",
257 "CLEAR_STATISTICS",
258 "undefined",
259 "undefined",
260 "undefined",
261 "undefined",
262 "TX_POWER_INDEX",
263 "undefined",
264 "undefined",
265 "undefined",
266 "undefined",
267 "undefined",
268 "undefined",
269 "BROADCAST_SCAN",
270 "CARD_DISABLE",
271 "PREFERRED_BSSID",
272 "SET_SCAN_OPTIONS",
273 "SCAN_DWELL_TIME",
274 "SWEEP_TABLE",
275 "AP_OR_STATION_TABLE",
276 "GROUP_ORDINALS",
277 "SHORT_RETRY_LIMIT",
278 "LONG_RETRY_LIMIT",
279 "unused", /* SAVE_CALIBRATION */
280 "unused", /* RESTORE_CALIBRATION */
281 "undefined",
282 "undefined",
283 "undefined",
284 "HOST_PRE_POWER_DOWN",
285 "unused", /* HOST_INTERRUPT_COALESCING */
286 "undefined",
287 "CARD_DISABLE_PHY_OFF",
288 "MSDU_TX_RATES" "undefined",
289 "undefined",
290 "SET_STATION_STAT_BITS",
291 "CLEAR_STATIONS_STAT_BITS",
292 "LEAP_ROGUE_MODE",
293 "SET_SECURITY_INFORMATION",
294 "DISASSOCIATION_BSSID",
295 "SET_WPA_ASS_IE"
296 };
297 #endif
298
299 /* Pre-decl until we get the code solid and then we can clean it up */
300 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
301 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
302 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
303
304 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
305 static void ipw2100_queues_free(struct ipw2100_priv *priv);
306 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
307
308 static int ipw2100_fw_download(struct ipw2100_priv *priv,
309 struct ipw2100_fw *fw);
310 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
311 struct ipw2100_fw *fw);
312 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
313 size_t max);
314 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
315 size_t max);
316 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
317 struct ipw2100_fw *fw);
318 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
319 struct ipw2100_fw *fw);
320 static void ipw2100_wx_event_work(struct ipw2100_priv *priv);
321 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
322 static struct iw_handler_def ipw2100_wx_handler_def;
323
324 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
325 {
326 *val = readl((void __iomem *)(dev->base_addr + reg));
327 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
328 }
329
330 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
331 {
332 writel(val, (void __iomem *)(dev->base_addr + reg));
333 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
334 }
335
336 static inline void read_register_word(struct net_device *dev, u32 reg,
337 u16 * val)
338 {
339 *val = readw((void __iomem *)(dev->base_addr + reg));
340 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
341 }
342
343 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
344 {
345 *val = readb((void __iomem *)(dev->base_addr + reg));
346 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
347 }
348
349 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
350 {
351 writew(val, (void __iomem *)(dev->base_addr + reg));
352 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
353 }
354
355 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
356 {
357 writeb(val, (void __iomem *)(dev->base_addr + reg));
358 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
359 }
360
361 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
362 {
363 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
364 addr & IPW_REG_INDIRECT_ADDR_MASK);
365 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
366 }
367
368 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
369 {
370 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
371 addr & IPW_REG_INDIRECT_ADDR_MASK);
372 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
373 }
374
375 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
376 {
377 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
378 addr & IPW_REG_INDIRECT_ADDR_MASK);
379 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
380 }
381
382 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
383 {
384 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
385 addr & IPW_REG_INDIRECT_ADDR_MASK);
386 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
387 }
388
389 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
390 {
391 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
392 addr & IPW_REG_INDIRECT_ADDR_MASK);
393 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
394 }
395
396 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
397 {
398 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
399 addr & IPW_REG_INDIRECT_ADDR_MASK);
400 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
401 }
402
403 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
404 {
405 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
406 addr & IPW_REG_INDIRECT_ADDR_MASK);
407 }
408
409 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
410 {
411 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
412 }
413
414 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
415 const u8 * buf)
416 {
417 u32 aligned_addr;
418 u32 aligned_len;
419 u32 dif_len;
420 u32 i;
421
422 /* read first nibble byte by byte */
423 aligned_addr = addr & (~0x3);
424 dif_len = addr - aligned_addr;
425 if (dif_len) {
426 /* Start reading at aligned_addr + dif_len */
427 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428 aligned_addr);
429 for (i = dif_len; i < 4; i++, buf++)
430 write_register_byte(dev,
431 IPW_REG_INDIRECT_ACCESS_DATA + i,
432 *buf);
433
434 len -= dif_len;
435 aligned_addr += 4;
436 }
437
438 /* read DWs through autoincrement registers */
439 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
440 aligned_len = len & (~0x3);
441 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
442 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
443
444 /* copy the last nibble */
445 dif_len = len - aligned_len;
446 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
447 for (i = 0; i < dif_len; i++, buf++)
448 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
449 *buf);
450 }
451
452 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
453 u8 * buf)
454 {
455 u32 aligned_addr;
456 u32 aligned_len;
457 u32 dif_len;
458 u32 i;
459
460 /* read first nibble byte by byte */
461 aligned_addr = addr & (~0x3);
462 dif_len = addr - aligned_addr;
463 if (dif_len) {
464 /* Start reading at aligned_addr + dif_len */
465 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
466 aligned_addr);
467 for (i = dif_len; i < 4; i++, buf++)
468 read_register_byte(dev,
469 IPW_REG_INDIRECT_ACCESS_DATA + i,
470 buf);
471
472 len -= dif_len;
473 aligned_addr += 4;
474 }
475
476 /* read DWs through autoincrement registers */
477 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
478 aligned_len = len & (~0x3);
479 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
480 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
481
482 /* copy the last nibble */
483 dif_len = len - aligned_len;
484 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
485 for (i = 0; i < dif_len; i++, buf++)
486 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
487 }
488
489 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
490 {
491 return (dev->base_addr &&
492 (readl
493 ((void __iomem *)(dev->base_addr +
494 IPW_REG_DOA_DEBUG_AREA_START))
495 == IPW_DATA_DOA_DEBUG_VALUE));
496 }
497
498 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
499 void *val, u32 * len)
500 {
501 struct ipw2100_ordinals *ordinals = &priv->ordinals;
502 u32 addr;
503 u32 field_info;
504 u16 field_len;
505 u16 field_count;
506 u32 total_length;
507
508 if (ordinals->table1_addr == 0) {
509 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
510 "before they have been loaded.\n");
511 return -EINVAL;
512 }
513
514 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
515 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
516 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
517
518 printk(KERN_WARNING DRV_NAME
519 ": ordinal buffer length too small, need %zd\n",
520 IPW_ORD_TAB_1_ENTRY_SIZE);
521
522 return -EINVAL;
523 }
524
525 read_nic_dword(priv->net_dev,
526 ordinals->table1_addr + (ord << 2), &addr);
527 read_nic_dword(priv->net_dev, addr, val);
528
529 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
530
531 return 0;
532 }
533
534 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
535
536 ord -= IPW_START_ORD_TAB_2;
537
538 /* get the address of statistic */
539 read_nic_dword(priv->net_dev,
540 ordinals->table2_addr + (ord << 3), &addr);
541
542 /* get the second DW of statistics ;
543 * two 16-bit words - first is length, second is count */
544 read_nic_dword(priv->net_dev,
545 ordinals->table2_addr + (ord << 3) + sizeof(u32),
546 &field_info);
547
548 /* get each entry length */
549 field_len = *((u16 *) & field_info);
550
551 /* get number of entries */
552 field_count = *(((u16 *) & field_info) + 1);
553
554 /* abort if no enought memory */
555 total_length = field_len * field_count;
556 if (total_length > *len) {
557 *len = total_length;
558 return -EINVAL;
559 }
560
561 *len = total_length;
562 if (!total_length)
563 return 0;
564
565 /* read the ordinal data from the SRAM */
566 read_nic_memory(priv->net_dev, addr, total_length, val);
567
568 return 0;
569 }
570
571 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
572 "in table 2\n", ord);
573
574 return -EINVAL;
575 }
576
577 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
578 u32 * len)
579 {
580 struct ipw2100_ordinals *ordinals = &priv->ordinals;
581 u32 addr;
582
583 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
584 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
585 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
586 IPW_DEBUG_INFO("wrong size\n");
587 return -EINVAL;
588 }
589
590 read_nic_dword(priv->net_dev,
591 ordinals->table1_addr + (ord << 2), &addr);
592
593 write_nic_dword(priv->net_dev, addr, *val);
594
595 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
596
597 return 0;
598 }
599
600 IPW_DEBUG_INFO("wrong table\n");
601 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
602 return -EINVAL;
603
604 return -EINVAL;
605 }
606
607 static char *snprint_line(char *buf, size_t count,
608 const u8 * data, u32 len, u32 ofs)
609 {
610 int out, i, j, l;
611 char c;
612
613 out = snprintf(buf, count, "%08X", ofs);
614
615 for (l = 0, i = 0; i < 2; i++) {
616 out += snprintf(buf + out, count - out, " ");
617 for (j = 0; j < 8 && l < len; j++, l++)
618 out += snprintf(buf + out, count - out, "%02X ",
619 data[(i * 8 + j)]);
620 for (; j < 8; j++)
621 out += snprintf(buf + out, count - out, " ");
622 }
623
624 out += snprintf(buf + out, count - out, " ");
625 for (l = 0, i = 0; i < 2; i++) {
626 out += snprintf(buf + out, count - out, " ");
627 for (j = 0; j < 8 && l < len; j++, l++) {
628 c = data[(i * 8 + j)];
629 if (!isascii(c) || !isprint(c))
630 c = '.';
631
632 out += snprintf(buf + out, count - out, "%c", c);
633 }
634
635 for (; j < 8; j++)
636 out += snprintf(buf + out, count - out, " ");
637 }
638
639 return buf;
640 }
641
642 static void printk_buf(int level, const u8 * data, u32 len)
643 {
644 char line[81];
645 u32 ofs = 0;
646 if (!(ipw2100_debug_level & level))
647 return;
648
649 while (len) {
650 printk(KERN_DEBUG "%s\n",
651 snprint_line(line, sizeof(line), &data[ofs],
652 min(len, 16U), ofs));
653 ofs += 16;
654 len -= min(len, 16U);
655 }
656 }
657
658 #define MAX_RESET_BACKOFF 10
659
660 static void schedule_reset(struct ipw2100_priv *priv)
661 {
662 unsigned long now = get_seconds();
663
664 /* If we haven't received a reset request within the backoff period,
665 * then we can reset the backoff interval so this reset occurs
666 * immediately */
667 if (priv->reset_backoff &&
668 (now - priv->last_reset > priv->reset_backoff))
669 priv->reset_backoff = 0;
670
671 priv->last_reset = get_seconds();
672
673 if (!(priv->status & STATUS_RESET_PENDING)) {
674 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
675 priv->net_dev->name, priv->reset_backoff);
676 netif_carrier_off(priv->net_dev);
677 netif_stop_queue(priv->net_dev);
678 priv->status |= STATUS_RESET_PENDING;
679 if (priv->reset_backoff)
680 queue_delayed_work(priv->workqueue, &priv->reset_work,
681 priv->reset_backoff * HZ);
682 else
683 queue_work(priv->workqueue, &priv->reset_work);
684
685 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686 priv->reset_backoff++;
687
688 wake_up_interruptible(&priv->wait_command_queue);
689 } else
690 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691 priv->net_dev->name);
692
693 }
694
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697 struct host_command *cmd)
698 {
699 struct list_head *element;
700 struct ipw2100_tx_packet *packet;
701 unsigned long flags;
702 int err = 0;
703
704 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705 command_types[cmd->host_command], cmd->host_command,
706 cmd->host_command_length);
707 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708 cmd->host_command_length);
709
710 spin_lock_irqsave(&priv->low_lock, flags);
711
712 if (priv->fatal_error) {
713 IPW_DEBUG_INFO
714 ("Attempt to send command while hardware in fatal error condition.\n");
715 err = -EIO;
716 goto fail_unlock;
717 }
718
719 if (!(priv->status & STATUS_RUNNING)) {
720 IPW_DEBUG_INFO
721 ("Attempt to send command while hardware is not running.\n");
722 err = -EIO;
723 goto fail_unlock;
724 }
725
726 if (priv->status & STATUS_CMD_ACTIVE) {
727 IPW_DEBUG_INFO
728 ("Attempt to send command while another command is pending.\n");
729 err = -EBUSY;
730 goto fail_unlock;
731 }
732
733 if (list_empty(&priv->msg_free_list)) {
734 IPW_DEBUG_INFO("no available msg buffers\n");
735 goto fail_unlock;
736 }
737
738 priv->status |= STATUS_CMD_ACTIVE;
739 priv->messages_sent++;
740
741 element = priv->msg_free_list.next;
742
743 packet = list_entry(element, struct ipw2100_tx_packet, list);
744 packet->jiffy_start = jiffies;
745
746 /* initialize the firmware command packet */
747 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749 packet->info.c_struct.cmd->host_command_len_reg =
750 cmd->host_command_length;
751 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
752
753 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754 cmd->host_command_parameters,
755 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
756
757 list_del(element);
758 DEC_STAT(&priv->msg_free_stat);
759
760 list_add_tail(element, &priv->msg_pend_list);
761 INC_STAT(&priv->msg_pend_stat);
762
763 ipw2100_tx_send_commands(priv);
764 ipw2100_tx_send_data(priv);
765
766 spin_unlock_irqrestore(&priv->low_lock, flags);
767
768 /*
769 * We must wait for this command to complete before another
770 * command can be sent... but if we wait more than 3 seconds
771 * then there is a problem.
772 */
773
774 err =
775 wait_event_interruptible_timeout(priv->wait_command_queue,
776 !(priv->
777 status & STATUS_CMD_ACTIVE),
778 HOST_COMPLETE_TIMEOUT);
779
780 if (err == 0) {
781 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784 priv->status &= ~STATUS_CMD_ACTIVE;
785 schedule_reset(priv);
786 return -EIO;
787 }
788
789 if (priv->fatal_error) {
790 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791 priv->net_dev->name);
792 return -EIO;
793 }
794
795 /* !!!!! HACK TEST !!!!!
796 * When lots of debug trace statements are enabled, the driver
797 * doesn't seem to have as many firmware restart cycles...
798 *
799 * As a test, we're sticking in a 1/100s delay here */
800 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
801
802 return 0;
803
804 fail_unlock:
805 spin_unlock_irqrestore(&priv->low_lock, flags);
806
807 return err;
808 }
809
810 /*
811 * Verify the values and data access of the hardware
812 * No locks needed or used. No functions called.
813 */
814 static int ipw2100_verify(struct ipw2100_priv *priv)
815 {
816 u32 data1, data2;
817 u32 address;
818
819 u32 val1 = 0x76543210;
820 u32 val2 = 0xFEDCBA98;
821
822 /* Domain 0 check - all values should be DOA_DEBUG */
823 for (address = IPW_REG_DOA_DEBUG_AREA_START;
824 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825 read_register(priv->net_dev, address, &data1);
826 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827 return -EIO;
828 }
829
830 /* Domain 1 check - use arbitrary read/write compare */
831 for (address = 0; address < 5; address++) {
832 /* The memory area is not used now */
833 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834 val1);
835 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836 val2);
837 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838 &data1);
839 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840 &data2);
841 if (val1 == data1 && val2 == data2)
842 return 0;
843 }
844
845 return -EIO;
846 }
847
848 /*
849 *
850 * Loop until the CARD_DISABLED bit is the same value as the
851 * supplied parameter
852 *
853 * TODO: See if it would be more efficient to do a wait/wake
854 * cycle and have the completion event trigger the wakeup
855 *
856 */
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
859 {
860 int i;
861 u32 card_state;
862 u32 len = sizeof(card_state);
863 int err;
864
865 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867 &card_state, &len);
868 if (err) {
869 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870 "failed.\n");
871 return 0;
872 }
873
874 /* We'll break out if either the HW state says it is
875 * in the state we want, or if HOST_COMPLETE command
876 * finishes */
877 if ((card_state == state) ||
878 ((priv->status & STATUS_ENABLED) ?
879 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880 if (state == IPW_HW_STATE_ENABLED)
881 priv->status |= STATUS_ENABLED;
882 else
883 priv->status &= ~STATUS_ENABLED;
884
885 return 0;
886 }
887
888 udelay(50);
889 }
890
891 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892 state ? "DISABLED" : "ENABLED");
893 return -EIO;
894 }
895
896 /*********************************************************************
897 Procedure : sw_reset_and_clock
898 Purpose : Asserts s/w reset, asserts clock initialization
899 and waits for clock stabilization
900 ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
902 {
903 int i;
904 u32 r;
905
906 // assert s/w reset
907 write_register(priv->net_dev, IPW_REG_RESET_REG,
908 IPW_AUX_HOST_RESET_REG_SW_RESET);
909
910 // wait for clock stabilization
911 for (i = 0; i < 1000; i++) {
912 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
913
914 // check clock ready bit
915 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917 break;
918 }
919
920 if (i == 1000)
921 return -EIO; // TODO: better error value
922
923 /* set "initialization complete" bit to move adapter to
924 * D0 state */
925 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
927
928 /* wait for clock stabilization */
929 for (i = 0; i < 10000; i++) {
930 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
931
932 /* check clock ready bit */
933 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935 break;
936 }
937
938 if (i == 10000)
939 return -EIO; /* TODO: better error value */
940
941 /* set D0 standby bit */
942 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
945
946 return 0;
947 }
948
949 /*********************************************************************
950 Procedure : ipw2100_download_firmware
951 Purpose : Initiaze adapter after power on.
952 The sequence is:
953 1. assert s/w reset first!
954 2. awake clocks & wait for clock stabilization
955 3. hold ARC (don't ask me why...)
956 4. load Dino ucode and reset/clock init again
957 5. zero-out shared mem
958 6. download f/w
959 *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
961 {
962 u32 address;
963 int err;
964
965 #ifndef CONFIG_PM
966 /* Fetch the firmware and microcode */
967 struct ipw2100_fw ipw2100_firmware;
968 #endif
969
970 if (priv->fatal_error) {
971 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972 "fatal error %d. Interface must be brought down.\n",
973 priv->net_dev->name, priv->fatal_error);
974 return -EINVAL;
975 }
976 #ifdef CONFIG_PM
977 if (!ipw2100_firmware.version) {
978 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979 if (err) {
980 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981 priv->net_dev->name, err);
982 priv->fatal_error = IPW2100_ERR_FW_LOAD;
983 goto fail;
984 }
985 }
986 #else
987 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988 if (err) {
989 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990 priv->net_dev->name, err);
991 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992 goto fail;
993 }
994 #endif
995 priv->firmware_version = ipw2100_firmware.version;
996
997 /* s/w reset and clock stabilization */
998 err = sw_reset_and_clock(priv);
999 if (err) {
1000 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001 priv->net_dev->name, err);
1002 goto fail;
1003 }
1004
1005 err = ipw2100_verify(priv);
1006 if (err) {
1007 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008 priv->net_dev->name, err);
1009 goto fail;
1010 }
1011
1012 /* Hold ARC */
1013 write_nic_dword(priv->net_dev,
1014 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1015
1016 /* allow ARC to run */
1017 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1018
1019 /* load microcode */
1020 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021 if (err) {
1022 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023 priv->net_dev->name, err);
1024 goto fail;
1025 }
1026
1027 /* release ARC */
1028 write_nic_dword(priv->net_dev,
1029 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1030
1031 /* s/w reset and clock stabilization (again!!!) */
1032 err = sw_reset_and_clock(priv);
1033 if (err) {
1034 printk(KERN_ERR DRV_NAME
1035 ": %s: sw_reset_and_clock failed: %d\n",
1036 priv->net_dev->name, err);
1037 goto fail;
1038 }
1039
1040 /* load f/w */
1041 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042 if (err) {
1043 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044 priv->net_dev->name, err);
1045 goto fail;
1046 }
1047 #ifndef CONFIG_PM
1048 /*
1049 * When the .resume method of the driver is called, the other
1050 * part of the system, i.e. the ide driver could still stay in
1051 * the suspend stage. This prevents us from loading the firmware
1052 * from the disk. --YZ
1053 */
1054
1055 /* free any storage allocated for firmware image */
1056 ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1058
1059 /* zero out Domain 1 area indirectly (Si requirement) */
1060 for (address = IPW_HOST_FW_SHARED_AREA0;
1061 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062 write_nic_dword(priv->net_dev, address, 0);
1063 for (address = IPW_HOST_FW_SHARED_AREA1;
1064 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065 write_nic_dword(priv->net_dev, address, 0);
1066 for (address = IPW_HOST_FW_SHARED_AREA2;
1067 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068 write_nic_dword(priv->net_dev, address, 0);
1069 for (address = IPW_HOST_FW_SHARED_AREA3;
1070 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071 write_nic_dword(priv->net_dev, address, 0);
1072 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074 write_nic_dword(priv->net_dev, address, 0);
1075
1076 return 0;
1077
1078 fail:
1079 ipw2100_release_firmware(priv, &ipw2100_firmware);
1080 return err;
1081 }
1082
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1084 {
1085 if (priv->status & STATUS_INT_ENABLED)
1086 return;
1087 priv->status |= STATUS_INT_ENABLED;
1088 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1089 }
1090
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1092 {
1093 if (!(priv->status & STATUS_INT_ENABLED))
1094 return;
1095 priv->status &= ~STATUS_INT_ENABLED;
1096 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1097 }
1098
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1100 {
1101 struct ipw2100_ordinals *ord = &priv->ordinals;
1102
1103 IPW_DEBUG_INFO("enter\n");
1104
1105 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106 &ord->table1_addr);
1107
1108 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109 &ord->table2_addr);
1110
1111 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1113
1114 ord->table2_size &= 0x0000FFFF;
1115
1116 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118 IPW_DEBUG_INFO("exit\n");
1119 }
1120
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1122 {
1123 u32 reg = 0;
1124 /*
1125 * Set GPIO 3 writable by FW; GPIO 1 writable
1126 * by driver and enable clock
1127 */
1128 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129 IPW_BIT_GPIO_LED_OFF);
1130 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1131 }
1132
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1134 {
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1137
1138 unsigned short value = 0;
1139 u32 reg = 0;
1140 int i;
1141
1142 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143 priv->status &= ~STATUS_RF_KILL_HW;
1144 return 0;
1145 }
1146
1147 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148 udelay(RF_KILL_CHECK_DELAY);
1149 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1151 }
1152
1153 if (value == 0)
1154 priv->status |= STATUS_RF_KILL_HW;
1155 else
1156 priv->status &= ~STATUS_RF_KILL_HW;
1157
1158 return (value == 0);
1159 }
1160
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1162 {
1163 u32 addr, len;
1164 u32 val;
1165
1166 /*
1167 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1168 */
1169 len = sizeof(addr);
1170 if (ipw2100_get_ordinal
1171 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173 __LINE__);
1174 return -EIO;
1175 }
1176
1177 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1178
1179 /*
1180 * EEPROM version is the byte at offset 0xfd in firmware
1181 * We read 4 bytes, then shift out the byte we actually want */
1182 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183 priv->eeprom_version = (val >> 24) & 0xFF;
1184 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1185
1186 /*
1187 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1188 *
1189 * notice that the EEPROM bit is reverse polarity, i.e.
1190 * bit = 0 signifies HW RF kill switch is supported
1191 * bit = 1 signifies HW RF kill switch is NOT supported
1192 */
1193 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194 if (!((val >> 24) & 0x01))
1195 priv->hw_features |= HW_FEATURE_RFKILL;
1196
1197 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1199
1200 return 0;
1201 }
1202
1203 /*
1204 * Start firmware execution after power on and intialization
1205 * The sequence is:
1206 * 1. Release ARC
1207 * 2. Wait for f/w initialization completes;
1208 */
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1210 {
1211 int i;
1212 u32 inta, inta_mask, gpio;
1213
1214 IPW_DEBUG_INFO("enter\n");
1215
1216 if (priv->status & STATUS_RUNNING)
1217 return 0;
1218
1219 /*
1220 * Initialize the hw - drive adapter to DO state by setting
1221 * init_done bit. Wait for clk_ready bit and Download
1222 * fw & dino ucode
1223 */
1224 if (ipw2100_download_firmware(priv)) {
1225 printk(KERN_ERR DRV_NAME
1226 ": %s: Failed to power on the adapter.\n",
1227 priv->net_dev->name);
1228 return -EIO;
1229 }
1230
1231 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232 * in the firmware RBD and TBD ring queue */
1233 ipw2100_queues_initialize(priv);
1234
1235 ipw2100_hw_set_gpio(priv);
1236
1237 /* TODO -- Look at disabling interrupts here to make sure none
1238 * get fired during FW initialization */
1239
1240 /* Release ARC - clear reset bit */
1241 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1242
1243 /* wait for f/w intialization complete */
1244 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245 i = 5000;
1246 do {
1247 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248 /* Todo... wait for sync command ... */
1249
1250 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1251
1252 /* check "init done" bit */
1253 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254 /* reset "init done" bit */
1255 write_register(priv->net_dev, IPW_REG_INTA,
1256 IPW2100_INTA_FW_INIT_DONE);
1257 break;
1258 }
1259
1260 /* check error conditions : we check these after the firmware
1261 * check so that if there is an error, the interrupt handler
1262 * will see it and the adapter will be reset */
1263 if (inta &
1264 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265 /* clear error conditions */
1266 write_register(priv->net_dev, IPW_REG_INTA,
1267 IPW2100_INTA_FATAL_ERROR |
1268 IPW2100_INTA_PARITY_ERROR);
1269 }
1270 } while (i--);
1271
1272 /* Clear out any pending INTAs since we aren't supposed to have
1273 * interrupts enabled at this point... */
1274 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276 inta &= IPW_INTERRUPT_MASK;
1277 /* Clear out any pending interrupts */
1278 if (inta & inta_mask)
1279 write_register(priv->net_dev, IPW_REG_INTA, inta);
1280
1281 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282 i ? "SUCCESS" : "FAILED");
1283
1284 if (!i) {
1285 printk(KERN_WARNING DRV_NAME
1286 ": %s: Firmware did not initialize.\n",
1287 priv->net_dev->name);
1288 return -EIO;
1289 }
1290
1291 /* allow firmware to write to GPIO1 & GPIO3 */
1292 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1293
1294 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1295
1296 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1297
1298 /* Ready to receive commands */
1299 priv->status |= STATUS_RUNNING;
1300
1301 /* The adapter has been reset; we are not associated */
1302 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1303
1304 IPW_DEBUG_INFO("exit\n");
1305
1306 return 0;
1307 }
1308
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1310 {
1311 if (!priv->fatal_error)
1312 return;
1313
1314 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316 priv->fatal_error = 0;
1317 }
1318
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1321 {
1322 u32 reg;
1323 int i;
1324
1325 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1326
1327 ipw2100_hw_set_gpio(priv);
1328
1329 /* Step 1. Stop Master Assert */
1330 write_register(priv->net_dev, IPW_REG_RESET_REG,
1331 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1332
1333 /* Step 2. Wait for stop Master Assert
1334 * (not more then 50us, otherwise ret error */
1335 i = 5;
1336 do {
1337 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1339
1340 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341 break;
1342 } while (i--);
1343
1344 priv->status &= ~STATUS_RESET_PENDING;
1345
1346 if (!i) {
1347 IPW_DEBUG_INFO
1348 ("exit - waited too long for master assert stop\n");
1349 return -EIO;
1350 }
1351
1352 write_register(priv->net_dev, IPW_REG_RESET_REG,
1353 IPW_AUX_HOST_RESET_REG_SW_RESET);
1354
1355 /* Reset any fatal_error conditions */
1356 ipw2100_reset_fatalerror(priv);
1357
1358 /* At this point, the adapter is now stopped and disabled */
1359 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360 STATUS_ASSOCIATED | STATUS_ENABLED);
1361
1362 return 0;
1363 }
1364
1365 /*
1366 * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1367 *
1368 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1369 *
1370 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371 * if STATUS_ASSN_LOST is sent.
1372 */
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1374 {
1375
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1377
1378 struct host_command cmd = {
1379 .host_command = CARD_DISABLE_PHY_OFF,
1380 .host_command_sequence = 0,
1381 .host_command_length = 0,
1382 };
1383 int err, i;
1384 u32 val1, val2;
1385
1386 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1387
1388 /* Turn off the radio */
1389 err = ipw2100_hw_send_command(priv, &cmd);
1390 if (err)
1391 return err;
1392
1393 for (i = 0; i < 2500; i++) {
1394 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1396
1397 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398 (val2 & IPW2100_COMMAND_PHY_OFF))
1399 return 0;
1400
1401 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1402 }
1403
1404 return -EIO;
1405 }
1406
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1408 {
1409 struct host_command cmd = {
1410 .host_command = HOST_COMPLETE,
1411 .host_command_sequence = 0,
1412 .host_command_length = 0
1413 };
1414 int err = 0;
1415
1416 IPW_DEBUG_HC("HOST_COMPLETE\n");
1417
1418 if (priv->status & STATUS_ENABLED)
1419 return 0;
1420
1421 mutex_lock(&priv->adapter_mutex);
1422
1423 if (rf_kill_active(priv)) {
1424 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425 goto fail_up;
1426 }
1427
1428 err = ipw2100_hw_send_command(priv, &cmd);
1429 if (err) {
1430 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431 goto fail_up;
1432 }
1433
1434 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435 if (err) {
1436 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437 priv->net_dev->name);
1438 goto fail_up;
1439 }
1440
1441 if (priv->stop_hang_check) {
1442 priv->stop_hang_check = 0;
1443 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1444 }
1445
1446 fail_up:
1447 mutex_unlock(&priv->adapter_mutex);
1448 return err;
1449 }
1450
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1452 {
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1454
1455 struct host_command cmd = {
1456 .host_command = HOST_PRE_POWER_DOWN,
1457 .host_command_sequence = 0,
1458 .host_command_length = 0,
1459 };
1460 int err, i;
1461 u32 reg;
1462
1463 if (!(priv->status & STATUS_RUNNING))
1464 return 0;
1465
1466 priv->status |= STATUS_STOPPING;
1467
1468 /* We can only shut down the card if the firmware is operational. So,
1469 * if we haven't reset since a fatal_error, then we can not send the
1470 * shutdown commands. */
1471 if (!priv->fatal_error) {
1472 /* First, make sure the adapter is enabled so that the PHY_OFF
1473 * command can shut it down */
1474 ipw2100_enable_adapter(priv);
1475
1476 err = ipw2100_hw_phy_off(priv);
1477 if (err)
1478 printk(KERN_WARNING DRV_NAME
1479 ": Error disabling radio %d\n", err);
1480
1481 /*
1482 * If in D0-standby mode going directly to D3 may cause a
1483 * PCI bus violation. Therefore we must change out of the D0
1484 * state.
1485 *
1486 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487 * hardware from going into standby mode and will transition
1488 * out of D0-standby if it is already in that state.
1489 *
1490 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491 * driver upon completion. Once received, the driver can
1492 * proceed to the D3 state.
1493 *
1494 * Prepare for power down command to fw. This command would
1495 * take HW out of D0-standby and prepare it for D3 state.
1496 *
1497 * Currently FW does not support event notification for this
1498 * event. Therefore, skip waiting for it. Just wait a fixed
1499 * 100ms
1500 */
1501 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1502
1503 err = ipw2100_hw_send_command(priv, &cmd);
1504 if (err)
1505 printk(KERN_WARNING DRV_NAME ": "
1506 "%s: Power down command failed: Error %d\n",
1507 priv->net_dev->name, err);
1508 else
1509 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1510 }
1511
1512 priv->status &= ~STATUS_ENABLED;
1513
1514 /*
1515 * Set GPIO 3 writable by FW; GPIO 1 writable
1516 * by driver and enable clock
1517 */
1518 ipw2100_hw_set_gpio(priv);
1519
1520 /*
1521 * Power down adapter. Sequence:
1522 * 1. Stop master assert (RESET_REG[9]=1)
1523 * 2. Wait for stop master (RESET_REG[8]==1)
1524 * 3. S/w reset assert (RESET_REG[7] = 1)
1525 */
1526
1527 /* Stop master assert */
1528 write_register(priv->net_dev, IPW_REG_RESET_REG,
1529 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1530
1531 /* wait stop master not more than 50 usec.
1532 * Otherwise return error. */
1533 for (i = 5; i > 0; i--) {
1534 udelay(10);
1535
1536 /* Check master stop bit */
1537 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1538
1539 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540 break;
1541 }
1542
1543 if (i == 0)
1544 printk(KERN_WARNING DRV_NAME
1545 ": %s: Could now power down adapter.\n",
1546 priv->net_dev->name);
1547
1548 /* assert s/w reset */
1549 write_register(priv->net_dev, IPW_REG_RESET_REG,
1550 IPW_AUX_HOST_RESET_REG_SW_RESET);
1551
1552 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1553
1554 return 0;
1555 }
1556
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1558 {
1559 struct host_command cmd = {
1560 .host_command = CARD_DISABLE,
1561 .host_command_sequence = 0,
1562 .host_command_length = 0
1563 };
1564 int err = 0;
1565
1566 IPW_DEBUG_HC("CARD_DISABLE\n");
1567
1568 if (!(priv->status & STATUS_ENABLED))
1569 return 0;
1570
1571 /* Make sure we clear the associated state */
1572 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1573
1574 if (!priv->stop_hang_check) {
1575 priv->stop_hang_check = 1;
1576 cancel_delayed_work(&priv->hang_check);
1577 }
1578
1579 mutex_lock(&priv->adapter_mutex);
1580
1581 err = ipw2100_hw_send_command(priv, &cmd);
1582 if (err) {
1583 printk(KERN_WARNING DRV_NAME
1584 ": exit - failed to send CARD_DISABLE command\n");
1585 goto fail_up;
1586 }
1587
1588 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589 if (err) {
1590 printk(KERN_WARNING DRV_NAME
1591 ": exit - card failed to change to DISABLED\n");
1592 goto fail_up;
1593 }
1594
1595 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1596
1597 fail_up:
1598 mutex_unlock(&priv->adapter_mutex);
1599 return err;
1600 }
1601
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1603 {
1604 struct host_command cmd = {
1605 .host_command = SET_SCAN_OPTIONS,
1606 .host_command_sequence = 0,
1607 .host_command_length = 8
1608 };
1609 int err;
1610
1611 IPW_DEBUG_INFO("enter\n");
1612
1613 IPW_DEBUG_SCAN("setting scan options\n");
1614
1615 cmd.host_command_parameters[0] = 0;
1616
1617 if (!(priv->config & CFG_ASSOCIATE))
1618 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621 if (priv->config & CFG_PASSIVE_SCAN)
1622 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1623
1624 cmd.host_command_parameters[1] = priv->channel_mask;
1625
1626 err = ipw2100_hw_send_command(priv, &cmd);
1627
1628 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629 cmd.host_command_parameters[0]);
1630
1631 return err;
1632 }
1633
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1635 {
1636 struct host_command cmd = {
1637 .host_command = BROADCAST_SCAN,
1638 .host_command_sequence = 0,
1639 .host_command_length = 4
1640 };
1641 int err;
1642
1643 IPW_DEBUG_HC("START_SCAN\n");
1644
1645 cmd.host_command_parameters[0] = 0;
1646
1647 /* No scanning if in monitor mode */
1648 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649 return 1;
1650
1651 if (priv->status & STATUS_SCANNING) {
1652 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653 return 0;
1654 }
1655
1656 IPW_DEBUG_INFO("enter\n");
1657
1658 /* Not clearing here; doing so makes iwlist always return nothing...
1659 *
1660 * We should modify the table logic to use aging tables vs. clearing
1661 * the table on each scan start.
1662 */
1663 IPW_DEBUG_SCAN("starting scan\n");
1664
1665 priv->status |= STATUS_SCANNING;
1666 err = ipw2100_hw_send_command(priv, &cmd);
1667 if (err)
1668 priv->status &= ~STATUS_SCANNING;
1669
1670 IPW_DEBUG_INFO("exit\n");
1671
1672 return err;
1673 }
1674
1675 static const struct ieee80211_geo ipw_geos[] = {
1676 { /* Restricted */
1677 "---",
1678 .bg_channels = 14,
1679 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1680 {2427, 4}, {2432, 5}, {2437, 6},
1681 {2442, 7}, {2447, 8}, {2452, 9},
1682 {2457, 10}, {2462, 11}, {2467, 12},
1683 {2472, 13}, {2484, 14}},
1684 },
1685 };
1686
1687 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1688 {
1689 unsigned long flags;
1690 int rc = 0;
1691 u32 lock;
1692 u32 ord_len = sizeof(lock);
1693
1694 /* Quite if manually disabled. */
1695 if (priv->status & STATUS_RF_KILL_SW) {
1696 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1697 "switch\n", priv->net_dev->name);
1698 return 0;
1699 }
1700
1701 /* the ipw2100 hardware really doesn't want power management delays
1702 * longer than 175usec
1703 */
1704 modify_acceptable_latency("ipw2100", 175);
1705
1706 /* If the interrupt is enabled, turn it off... */
1707 spin_lock_irqsave(&priv->low_lock, flags);
1708 ipw2100_disable_interrupts(priv);
1709
1710 /* Reset any fatal_error conditions */
1711 ipw2100_reset_fatalerror(priv);
1712 spin_unlock_irqrestore(&priv->low_lock, flags);
1713
1714 if (priv->status & STATUS_POWERED ||
1715 (priv->status & STATUS_RESET_PENDING)) {
1716 /* Power cycle the card ... */
1717 if (ipw2100_power_cycle_adapter(priv)) {
1718 printk(KERN_WARNING DRV_NAME
1719 ": %s: Could not cycle adapter.\n",
1720 priv->net_dev->name);
1721 rc = 1;
1722 goto exit;
1723 }
1724 } else
1725 priv->status |= STATUS_POWERED;
1726
1727 /* Load the firmware, start the clocks, etc. */
1728 if (ipw2100_start_adapter(priv)) {
1729 printk(KERN_ERR DRV_NAME
1730 ": %s: Failed to start the firmware.\n",
1731 priv->net_dev->name);
1732 rc = 1;
1733 goto exit;
1734 }
1735
1736 ipw2100_initialize_ordinals(priv);
1737
1738 /* Determine capabilities of this particular HW configuration */
1739 if (ipw2100_get_hw_features(priv)) {
1740 printk(KERN_ERR DRV_NAME
1741 ": %s: Failed to determine HW features.\n",
1742 priv->net_dev->name);
1743 rc = 1;
1744 goto exit;
1745 }
1746
1747 /* Initialize the geo */
1748 if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1749 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1750 return 0;
1751 }
1752 priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1753
1754 lock = LOCK_NONE;
1755 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1756 printk(KERN_ERR DRV_NAME
1757 ": %s: Failed to clear ordinal lock.\n",
1758 priv->net_dev->name);
1759 rc = 1;
1760 goto exit;
1761 }
1762
1763 priv->status &= ~STATUS_SCANNING;
1764
1765 if (rf_kill_active(priv)) {
1766 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1767 priv->net_dev->name);
1768
1769 if (priv->stop_rf_kill) {
1770 priv->stop_rf_kill = 0;
1771 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
1772 }
1773
1774 deferred = 1;
1775 }
1776
1777 /* Turn on the interrupt so that commands can be processed */
1778 ipw2100_enable_interrupts(priv);
1779
1780 /* Send all of the commands that must be sent prior to
1781 * HOST_COMPLETE */
1782 if (ipw2100_adapter_setup(priv)) {
1783 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1784 priv->net_dev->name);
1785 rc = 1;
1786 goto exit;
1787 }
1788
1789 if (!deferred) {
1790 /* Enable the adapter - sends HOST_COMPLETE */
1791 if (ipw2100_enable_adapter(priv)) {
1792 printk(KERN_ERR DRV_NAME ": "
1793 "%s: failed in call to enable adapter.\n",
1794 priv->net_dev->name);
1795 ipw2100_hw_stop_adapter(priv);
1796 rc = 1;
1797 goto exit;
1798 }
1799
1800 /* Start a scan . . . */
1801 ipw2100_set_scan_options(priv);
1802 ipw2100_start_scan(priv);
1803 }
1804
1805 exit:
1806 return rc;
1807 }
1808
1809 /* Called by register_netdev() */
1810 static int ipw2100_net_init(struct net_device *dev)
1811 {
1812 struct ipw2100_priv *priv = ieee80211_priv(dev);
1813 return ipw2100_up(priv, 1);
1814 }
1815
1816 static void ipw2100_down(struct ipw2100_priv *priv)
1817 {
1818 unsigned long flags;
1819 union iwreq_data wrqu = {
1820 .ap_addr = {
1821 .sa_family = ARPHRD_ETHER}
1822 };
1823 int associated = priv->status & STATUS_ASSOCIATED;
1824
1825 /* Kill the RF switch timer */
1826 if (!priv->stop_rf_kill) {
1827 priv->stop_rf_kill = 1;
1828 cancel_delayed_work(&priv->rf_kill);
1829 }
1830
1831 /* Kill the firmare hang check timer */
1832 if (!priv->stop_hang_check) {
1833 priv->stop_hang_check = 1;
1834 cancel_delayed_work(&priv->hang_check);
1835 }
1836
1837 /* Kill any pending resets */
1838 if (priv->status & STATUS_RESET_PENDING)
1839 cancel_delayed_work(&priv->reset_work);
1840
1841 /* Make sure the interrupt is on so that FW commands will be
1842 * processed correctly */
1843 spin_lock_irqsave(&priv->low_lock, flags);
1844 ipw2100_enable_interrupts(priv);
1845 spin_unlock_irqrestore(&priv->low_lock, flags);
1846
1847 if (ipw2100_hw_stop_adapter(priv))
1848 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1849 priv->net_dev->name);
1850
1851 /* Do not disable the interrupt until _after_ we disable
1852 * the adaptor. Otherwise the CARD_DISABLE command will never
1853 * be ack'd by the firmware */
1854 spin_lock_irqsave(&priv->low_lock, flags);
1855 ipw2100_disable_interrupts(priv);
1856 spin_unlock_irqrestore(&priv->low_lock, flags);
1857
1858 modify_acceptable_latency("ipw2100", INFINITE_LATENCY);
1859
1860 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1861 if (priv->config & CFG_C3_DISABLED) {
1862 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1863 acpi_set_cstate_limit(priv->cstate_limit);
1864 priv->config &= ~CFG_C3_DISABLED;
1865 }
1866 #endif
1867
1868 /* We have to signal any supplicant if we are disassociating */
1869 if (associated)
1870 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1871
1872 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1873 netif_carrier_off(priv->net_dev);
1874 netif_stop_queue(priv->net_dev);
1875 }
1876
1877 static void ipw2100_reset_adapter(struct ipw2100_priv *priv)
1878 {
1879 unsigned long flags;
1880 union iwreq_data wrqu = {
1881 .ap_addr = {
1882 .sa_family = ARPHRD_ETHER}
1883 };
1884 int associated = priv->status & STATUS_ASSOCIATED;
1885
1886 spin_lock_irqsave(&priv->low_lock, flags);
1887 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1888 priv->resets++;
1889 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1890 priv->status |= STATUS_SECURITY_UPDATED;
1891
1892 /* Force a power cycle even if interface hasn't been opened
1893 * yet */
1894 cancel_delayed_work(&priv->reset_work);
1895 priv->status |= STATUS_RESET_PENDING;
1896 spin_unlock_irqrestore(&priv->low_lock, flags);
1897
1898 mutex_lock(&priv->action_mutex);
1899 /* stop timed checks so that they don't interfere with reset */
1900 priv->stop_hang_check = 1;
1901 cancel_delayed_work(&priv->hang_check);
1902
1903 /* We have to signal any supplicant if we are disassociating */
1904 if (associated)
1905 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1906
1907 ipw2100_up(priv, 0);
1908 mutex_unlock(&priv->action_mutex);
1909
1910 }
1911
1912 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1913 {
1914
1915 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1916 int ret, len, essid_len;
1917 char essid[IW_ESSID_MAX_SIZE];
1918 u32 txrate;
1919 u32 chan;
1920 char *txratename;
1921 u8 bssid[ETH_ALEN];
1922
1923 /*
1924 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1925 * an actual MAC of the AP. Seems like FW sets this
1926 * address too late. Read it later and expose through
1927 * /proc or schedule a later task to query and update
1928 */
1929
1930 essid_len = IW_ESSID_MAX_SIZE;
1931 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1932 essid, &essid_len);
1933 if (ret) {
1934 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1935 __LINE__);
1936 return;
1937 }
1938
1939 len = sizeof(u32);
1940 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1941 if (ret) {
1942 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1943 __LINE__);
1944 return;
1945 }
1946
1947 len = sizeof(u32);
1948 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1949 if (ret) {
1950 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1951 __LINE__);
1952 return;
1953 }
1954 len = ETH_ALEN;
1955 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1956 if (ret) {
1957 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1958 __LINE__);
1959 return;
1960 }
1961 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1962
1963 switch (txrate) {
1964 case TX_RATE_1_MBIT:
1965 txratename = "1Mbps";
1966 break;
1967 case TX_RATE_2_MBIT:
1968 txratename = "2Mbsp";
1969 break;
1970 case TX_RATE_5_5_MBIT:
1971 txratename = "5.5Mbps";
1972 break;
1973 case TX_RATE_11_MBIT:
1974 txratename = "11Mbps";
1975 break;
1976 default:
1977 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1978 txratename = "unknown rate";
1979 break;
1980 }
1981
1982 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1983 MAC_FMT ")\n",
1984 priv->net_dev->name, escape_essid(essid, essid_len),
1985 txratename, chan, MAC_ARG(bssid));
1986
1987 /* now we copy read ssid into dev */
1988 if (!(priv->config & CFG_STATIC_ESSID)) {
1989 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1990 memcpy(priv->essid, essid, priv->essid_len);
1991 }
1992 priv->channel = chan;
1993 memcpy(priv->bssid, bssid, ETH_ALEN);
1994
1995 priv->status |= STATUS_ASSOCIATING;
1996 priv->connect_start = get_seconds();
1997
1998 queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
1999 }
2000
2001 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2002 int length, int batch_mode)
2003 {
2004 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2005 struct host_command cmd = {
2006 .host_command = SSID,
2007 .host_command_sequence = 0,
2008 .host_command_length = ssid_len
2009 };
2010 int err;
2011
2012 IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2013
2014 if (ssid_len)
2015 memcpy(cmd.host_command_parameters, essid, ssid_len);
2016
2017 if (!batch_mode) {
2018 err = ipw2100_disable_adapter(priv);
2019 if (err)
2020 return err;
2021 }
2022
2023 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2024 * disable auto association -- so we cheat by setting a bogus SSID */
2025 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2026 int i;
2027 u8 *bogus = (u8 *) cmd.host_command_parameters;
2028 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2029 bogus[i] = 0x18 + i;
2030 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2031 }
2032
2033 /* NOTE: We always send the SSID command even if the provided ESSID is
2034 * the same as what we currently think is set. */
2035
2036 err = ipw2100_hw_send_command(priv, &cmd);
2037 if (!err) {
2038 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2039 memcpy(priv->essid, essid, ssid_len);
2040 priv->essid_len = ssid_len;
2041 }
2042
2043 if (!batch_mode) {
2044 if (ipw2100_enable_adapter(priv))
2045 err = -EIO;
2046 }
2047
2048 return err;
2049 }
2050
2051 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2052 {
2053 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2054 "disassociated: '%s' " MAC_FMT " \n",
2055 escape_essid(priv->essid, priv->essid_len),
2056 MAC_ARG(priv->bssid));
2057
2058 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2059
2060 if (priv->status & STATUS_STOPPING) {
2061 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2062 return;
2063 }
2064
2065 memset(priv->bssid, 0, ETH_ALEN);
2066 memset(priv->ieee->bssid, 0, ETH_ALEN);
2067
2068 netif_carrier_off(priv->net_dev);
2069 netif_stop_queue(priv->net_dev);
2070
2071 if (!(priv->status & STATUS_RUNNING))
2072 return;
2073
2074 if (priv->status & STATUS_SECURITY_UPDATED)
2075 queue_work(priv->workqueue, &priv->security_work);
2076
2077 queue_work(priv->workqueue, &priv->wx_event_work);
2078 }
2079
2080 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2081 {
2082 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2083 priv->net_dev->name);
2084
2085 /* RF_KILL is now enabled (else we wouldn't be here) */
2086 priv->status |= STATUS_RF_KILL_HW;
2087
2088 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2089 if (priv->config & CFG_C3_DISABLED) {
2090 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2091 acpi_set_cstate_limit(priv->cstate_limit);
2092 priv->config &= ~CFG_C3_DISABLED;
2093 }
2094 #endif
2095
2096 /* Make sure the RF Kill check timer is running */
2097 priv->stop_rf_kill = 0;
2098 cancel_delayed_work(&priv->rf_kill);
2099 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
2100 }
2101
2102 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2103 {
2104 IPW_DEBUG_SCAN("scan complete\n");
2105 /* Age the scan results... */
2106 priv->ieee->scans++;
2107 priv->status &= ~STATUS_SCANNING;
2108 }
2109
2110 #ifdef CONFIG_IPW2100_DEBUG
2111 #define IPW2100_HANDLER(v, f) { v, f, # v }
2112 struct ipw2100_status_indicator {
2113 int status;
2114 void (*cb) (struct ipw2100_priv * priv, u32 status);
2115 char *name;
2116 };
2117 #else
2118 #define IPW2100_HANDLER(v, f) { v, f }
2119 struct ipw2100_status_indicator {
2120 int status;
2121 void (*cb) (struct ipw2100_priv * priv, u32 status);
2122 };
2123 #endif /* CONFIG_IPW2100_DEBUG */
2124
2125 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2126 {
2127 IPW_DEBUG_SCAN("Scanning...\n");
2128 priv->status |= STATUS_SCANNING;
2129 }
2130
2131 static const struct ipw2100_status_indicator status_handlers[] = {
2132 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2133 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2134 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2135 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2136 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2137 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2138 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2139 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2140 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2141 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2142 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2143 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2144 IPW2100_HANDLER(-1, NULL)
2145 };
2146
2147 static void isr_status_change(struct ipw2100_priv *priv, int status)
2148 {
2149 int i;
2150
2151 if (status == IPW_STATE_SCANNING &&
2152 priv->status & STATUS_ASSOCIATED &&
2153 !(priv->status & STATUS_SCANNING)) {
2154 IPW_DEBUG_INFO("Scan detected while associated, with "
2155 "no scan request. Restarting firmware.\n");
2156
2157 /* Wake up any sleeping jobs */
2158 schedule_reset(priv);
2159 }
2160
2161 for (i = 0; status_handlers[i].status != -1; i++) {
2162 if (status == status_handlers[i].status) {
2163 IPW_DEBUG_NOTIF("Status change: %s\n",
2164 status_handlers[i].name);
2165 if (status_handlers[i].cb)
2166 status_handlers[i].cb(priv, status);
2167 priv->wstats.status = status;
2168 return;
2169 }
2170 }
2171
2172 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2173 }
2174
2175 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2176 struct ipw2100_cmd_header *cmd)
2177 {
2178 #ifdef CONFIG_IPW2100_DEBUG
2179 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2180 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2181 command_types[cmd->host_command_reg],
2182 cmd->host_command_reg);
2183 }
2184 #endif
2185 if (cmd->host_command_reg == HOST_COMPLETE)
2186 priv->status |= STATUS_ENABLED;
2187
2188 if (cmd->host_command_reg == CARD_DISABLE)
2189 priv->status &= ~STATUS_ENABLED;
2190
2191 priv->status &= ~STATUS_CMD_ACTIVE;
2192
2193 wake_up_interruptible(&priv->wait_command_queue);
2194 }
2195
2196 #ifdef CONFIG_IPW2100_DEBUG
2197 static const char *frame_types[] = {
2198 "COMMAND_STATUS_VAL",
2199 "STATUS_CHANGE_VAL",
2200 "P80211_DATA_VAL",
2201 "P8023_DATA_VAL",
2202 "HOST_NOTIFICATION_VAL"
2203 };
2204 #endif
2205
2206 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2207 struct ipw2100_rx_packet *packet)
2208 {
2209 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2210 if (!packet->skb)
2211 return -ENOMEM;
2212
2213 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2214 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2215 sizeof(struct ipw2100_rx),
2216 PCI_DMA_FROMDEVICE);
2217 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2218 * dma_addr */
2219
2220 return 0;
2221 }
2222
2223 #define SEARCH_ERROR 0xffffffff
2224 #define SEARCH_FAIL 0xfffffffe
2225 #define SEARCH_SUCCESS 0xfffffff0
2226 #define SEARCH_DISCARD 0
2227 #define SEARCH_SNAPSHOT 1
2228
2229 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2230 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2231 {
2232 int i;
2233 if (!priv->snapshot[0])
2234 return;
2235 for (i = 0; i < 0x30; i++)
2236 kfree(priv->snapshot[i]);
2237 priv->snapshot[0] = NULL;
2238 }
2239
2240 #ifdef CONFIG_IPW2100_DEBUG_C3
2241 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2242 {
2243 int i;
2244 if (priv->snapshot[0])
2245 return 1;
2246 for (i = 0; i < 0x30; i++) {
2247 priv->snapshot[i] = (u8 *) kmalloc(0x1000, GFP_ATOMIC);
2248 if (!priv->snapshot[i]) {
2249 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2250 "buffer %d\n", priv->net_dev->name, i);
2251 while (i > 0)
2252 kfree(priv->snapshot[--i]);
2253 priv->snapshot[0] = NULL;
2254 return 0;
2255 }
2256 }
2257
2258 return 1;
2259 }
2260
2261 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2262 size_t len, int mode)
2263 {
2264 u32 i, j;
2265 u32 tmp;
2266 u8 *s, *d;
2267 u32 ret;
2268
2269 s = in_buf;
2270 if (mode == SEARCH_SNAPSHOT) {
2271 if (!ipw2100_snapshot_alloc(priv))
2272 mode = SEARCH_DISCARD;
2273 }
2274
2275 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2276 read_nic_dword(priv->net_dev, i, &tmp);
2277 if (mode == SEARCH_SNAPSHOT)
2278 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2279 if (ret == SEARCH_FAIL) {
2280 d = (u8 *) & tmp;
2281 for (j = 0; j < 4; j++) {
2282 if (*s != *d) {
2283 s = in_buf;
2284 continue;
2285 }
2286
2287 s++;
2288 d++;
2289
2290 if ((s - in_buf) == len)
2291 ret = (i + j) - len + 1;
2292 }
2293 } else if (mode == SEARCH_DISCARD)
2294 return ret;
2295 }
2296
2297 return ret;
2298 }
2299 #endif
2300
2301 /*
2302 *
2303 * 0) Disconnect the SKB from the firmware (just unmap)
2304 * 1) Pack the ETH header into the SKB
2305 * 2) Pass the SKB to the network stack
2306 *
2307 * When packet is provided by the firmware, it contains the following:
2308 *
2309 * . ieee80211_hdr
2310 * . ieee80211_snap_hdr
2311 *
2312 * The size of the constructed ethernet
2313 *
2314 */
2315 #ifdef CONFIG_IPW2100_RX_DEBUG
2316 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2317 #endif
2318
2319 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2320 {
2321 #ifdef CONFIG_IPW2100_DEBUG_C3
2322 struct ipw2100_status *status = &priv->status_queue.drv[i];
2323 u32 match, reg;
2324 int j;
2325 #endif
2326 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2327 int limit;
2328 #endif
2329
2330 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2331 i * sizeof(struct ipw2100_status));
2332
2333 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2334 IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2335 limit = acpi_get_cstate_limit();
2336 if (limit > 2) {
2337 priv->cstate_limit = limit;
2338 acpi_set_cstate_limit(2);
2339 priv->config |= CFG_C3_DISABLED;
2340 }
2341 #endif
2342
2343 #ifdef CONFIG_IPW2100_DEBUG_C3
2344 /* Halt the fimrware so we can get a good image */
2345 write_register(priv->net_dev, IPW_REG_RESET_REG,
2346 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2347 j = 5;
2348 do {
2349 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2350 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2351
2352 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2353 break;
2354 } while (j--);
2355
2356 match = ipw2100_match_buf(priv, (u8 *) status,
2357 sizeof(struct ipw2100_status),
2358 SEARCH_SNAPSHOT);
2359 if (match < SEARCH_SUCCESS)
2360 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2361 "offset 0x%06X, length %d:\n",
2362 priv->net_dev->name, match,
2363 sizeof(struct ipw2100_status));
2364 else
2365 IPW_DEBUG_INFO("%s: No DMA status match in "
2366 "Firmware.\n", priv->net_dev->name);
2367
2368 printk_buf((u8 *) priv->status_queue.drv,
2369 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2370 #endif
2371
2372 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2373 priv->ieee->stats.rx_errors++;
2374 schedule_reset(priv);
2375 }
2376
2377 static void isr_rx(struct ipw2100_priv *priv, int i,
2378 struct ieee80211_rx_stats *stats)
2379 {
2380 struct ipw2100_status *status = &priv->status_queue.drv[i];
2381 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2382
2383 IPW_DEBUG_RX("Handler...\n");
2384
2385 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2386 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2387 " Dropping.\n",
2388 priv->net_dev->name,
2389 status->frame_size, skb_tailroom(packet->skb));
2390 priv->ieee->stats.rx_errors++;
2391 return;
2392 }
2393
2394 if (unlikely(!netif_running(priv->net_dev))) {
2395 priv->ieee->stats.rx_errors++;
2396 priv->wstats.discard.misc++;
2397 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2398 return;
2399 }
2400
2401 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2402 !(priv->status & STATUS_ASSOCIATED))) {
2403 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2404 priv->wstats.discard.misc++;
2405 return;
2406 }
2407
2408 pci_unmap_single(priv->pci_dev,
2409 packet->dma_addr,
2410 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2411
2412 skb_put(packet->skb, status->frame_size);
2413
2414 #ifdef CONFIG_IPW2100_RX_DEBUG
2415 /* Make a copy of the frame so we can dump it to the logs if
2416 * ieee80211_rx fails */
2417 memcpy(packet_data, packet->skb->data,
2418 min_t(u32, status->frame_size, IPW_RX_NIC_BUFFER_LENGTH));
2419 #endif
2420
2421 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2422 #ifdef CONFIG_IPW2100_RX_DEBUG
2423 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2424 priv->net_dev->name);
2425 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2426 #endif
2427 priv->ieee->stats.rx_errors++;
2428
2429 /* ieee80211_rx failed, so it didn't free the SKB */
2430 dev_kfree_skb_any(packet->skb);
2431 packet->skb = NULL;
2432 }
2433
2434 /* We need to allocate a new SKB and attach it to the RDB. */
2435 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2436 printk(KERN_WARNING DRV_NAME ": "
2437 "%s: Unable to allocate SKB onto RBD ring - disabling "
2438 "adapter.\n", priv->net_dev->name);
2439 /* TODO: schedule adapter shutdown */
2440 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2441 }
2442
2443 /* Update the RDB entry */
2444 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2445 }
2446
2447 #ifdef CONFIG_IPW2100_MONITOR
2448
2449 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2450 struct ieee80211_rx_stats *stats)
2451 {
2452 struct ipw2100_status *status = &priv->status_queue.drv[i];
2453 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2454
2455 /* Magic struct that slots into the radiotap header -- no reason
2456 * to build this manually element by element, we can write it much
2457 * more efficiently than we can parse it. ORDER MATTERS HERE */
2458 struct ipw_rt_hdr {
2459 struct ieee80211_radiotap_header rt_hdr;
2460 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2461 } *ipw_rt;
2462
2463 IPW_DEBUG_RX("Handler...\n");
2464
2465 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2466 sizeof(struct ipw_rt_hdr))) {
2467 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2468 " Dropping.\n",
2469 priv->net_dev->name,
2470 status->frame_size,
2471 skb_tailroom(packet->skb));
2472 priv->ieee->stats.rx_errors++;
2473 return;
2474 }
2475
2476 if (unlikely(!netif_running(priv->net_dev))) {
2477 priv->ieee->stats.rx_errors++;
2478 priv->wstats.discard.misc++;
2479 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2480 return;
2481 }
2482
2483 if (unlikely(priv->config & CFG_CRC_CHECK &&
2484 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2485 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2486 priv->ieee->stats.rx_errors++;
2487 return;
2488 }
2489
2490 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2491 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2492 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2493 packet->skb->data, status->frame_size);
2494
2495 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2496
2497 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2498 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2499 ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total hdr+data */
2500
2501 ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2502
2503 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2504
2505 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2506
2507 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2508 priv->ieee->stats.rx_errors++;
2509
2510 /* ieee80211_rx failed, so it didn't free the SKB */
2511 dev_kfree_skb_any(packet->skb);
2512 packet->skb = NULL;
2513 }
2514
2515 /* We need to allocate a new SKB and attach it to the RDB. */
2516 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2517 IPW_DEBUG_WARNING(
2518 "%s: Unable to allocate SKB onto RBD ring - disabling "
2519 "adapter.\n", priv->net_dev->name);
2520 /* TODO: schedule adapter shutdown */
2521 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2522 }
2523
2524 /* Update the RDB entry */
2525 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2526 }
2527
2528 #endif
2529
2530 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2531 {
2532 struct ipw2100_status *status = &priv->status_queue.drv[i];
2533 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2534 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2535
2536 switch (frame_type) {
2537 case COMMAND_STATUS_VAL:
2538 return (status->frame_size != sizeof(u->rx_data.command));
2539 case STATUS_CHANGE_VAL:
2540 return (status->frame_size != sizeof(u->rx_data.status));
2541 case HOST_NOTIFICATION_VAL:
2542 return (status->frame_size < sizeof(u->rx_data.notification));
2543 case P80211_DATA_VAL:
2544 case P8023_DATA_VAL:
2545 #ifdef CONFIG_IPW2100_MONITOR
2546 return 0;
2547 #else
2548 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2549 case IEEE80211_FTYPE_MGMT:
2550 case IEEE80211_FTYPE_CTL:
2551 return 0;
2552 case IEEE80211_FTYPE_DATA:
2553 return (status->frame_size >
2554 IPW_MAX_802_11_PAYLOAD_LENGTH);
2555 }
2556 #endif
2557 }
2558
2559 return 1;
2560 }
2561
2562 /*
2563 * ipw2100 interrupts are disabled at this point, and the ISR
2564 * is the only code that calls this method. So, we do not need
2565 * to play with any locks.
2566 *
2567 * RX Queue works as follows:
2568 *
2569 * Read index - firmware places packet in entry identified by the
2570 * Read index and advances Read index. In this manner,
2571 * Read index will always point to the next packet to
2572 * be filled--but not yet valid.
2573 *
2574 * Write index - driver fills this entry with an unused RBD entry.
2575 * This entry has not filled by the firmware yet.
2576 *
2577 * In between the W and R indexes are the RBDs that have been received
2578 * but not yet processed.
2579 *
2580 * The process of handling packets will start at WRITE + 1 and advance
2581 * until it reaches the READ index.
2582 *
2583 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2584 *
2585 */
2586 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2587 {
2588 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2589 struct ipw2100_status_queue *sq = &priv->status_queue;
2590 struct ipw2100_rx_packet *packet;
2591 u16 frame_type;
2592 u32 r, w, i, s;
2593 struct ipw2100_rx *u;
2594 struct ieee80211_rx_stats stats = {
2595 .mac_time = jiffies,
2596 };
2597
2598 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2599 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2600
2601 if (r >= rxq->entries) {
2602 IPW_DEBUG_RX("exit - bad read index\n");
2603 return;
2604 }
2605
2606 i = (rxq->next + 1) % rxq->entries;
2607 s = i;
2608 while (i != r) {
2609 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2610 r, rxq->next, i); */
2611
2612 packet = &priv->rx_buffers[i];
2613
2614 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2615 * the correct values */
2616 pci_dma_sync_single_for_cpu(priv->pci_dev,
2617 sq->nic +
2618 sizeof(struct ipw2100_status) * i,
2619 sizeof(struct ipw2100_status),
2620 PCI_DMA_FROMDEVICE);
2621
2622 /* Sync the DMA for the RX buffer so CPU is sure to get
2623 * the correct values */
2624 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2625 sizeof(struct ipw2100_rx),
2626 PCI_DMA_FROMDEVICE);
2627
2628 if (unlikely(ipw2100_corruption_check(priv, i))) {
2629 ipw2100_corruption_detected(priv, i);
2630 goto increment;
2631 }
2632
2633 u = packet->rxp;
2634 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2635 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2636 stats.len = sq->drv[i].frame_size;
2637
2638 stats.mask = 0;
2639 if (stats.rssi != 0)
2640 stats.mask |= IEEE80211_STATMASK_RSSI;
2641 stats.freq = IEEE80211_24GHZ_BAND;
2642
2643 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2644 priv->net_dev->name, frame_types[frame_type],
2645 stats.len);
2646
2647 switch (frame_type) {
2648 case COMMAND_STATUS_VAL:
2649 /* Reset Rx watchdog */
2650 isr_rx_complete_command(priv, &u->rx_data.command);
2651 break;
2652
2653 case STATUS_CHANGE_VAL:
2654 isr_status_change(priv, u->rx_data.status);
2655 break;
2656
2657 case P80211_DATA_VAL:
2658 case P8023_DATA_VAL:
2659 #ifdef CONFIG_IPW2100_MONITOR
2660 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2661 isr_rx_monitor(priv, i, &stats);
2662 break;
2663 }
2664 #endif
2665 if (stats.len < sizeof(u->rx_data.header))
2666 break;
2667 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2668 case IEEE80211_FTYPE_MGMT:
2669 ieee80211_rx_mgt(priv->ieee,
2670 &u->rx_data.header, &stats);
2671 break;
2672
2673 case IEEE80211_FTYPE_CTL:
2674 break;
2675
2676 case IEEE80211_FTYPE_DATA:
2677 isr_rx(priv, i, &stats);
2678 break;
2679
2680 }
2681 break;
2682 }
2683
2684 increment:
2685 /* clear status field associated with this RBD */
2686 rxq->drv[i].status.info.field = 0;
2687
2688 i = (i + 1) % rxq->entries;
2689 }
2690
2691 if (i != s) {
2692 /* backtrack one entry, wrapping to end if at 0 */
2693 rxq->next = (i ? i : rxq->entries) - 1;
2694
2695 write_register(priv->net_dev,
2696 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2697 }
2698 }
2699
2700 /*
2701 * __ipw2100_tx_process
2702 *
2703 * This routine will determine whether the next packet on
2704 * the fw_pend_list has been processed by the firmware yet.
2705 *
2706 * If not, then it does nothing and returns.
2707 *
2708 * If so, then it removes the item from the fw_pend_list, frees
2709 * any associated storage, and places the item back on the
2710 * free list of its source (either msg_free_list or tx_free_list)
2711 *
2712 * TX Queue works as follows:
2713 *
2714 * Read index - points to the next TBD that the firmware will
2715 * process. The firmware will read the data, and once
2716 * done processing, it will advance the Read index.
2717 *
2718 * Write index - driver fills this entry with an constructed TBD
2719 * entry. The Write index is not advanced until the
2720 * packet has been configured.
2721 *
2722 * In between the W and R indexes are the TBDs that have NOT been
2723 * processed. Lagging behind the R index are packets that have
2724 * been processed but have not been freed by the driver.
2725 *
2726 * In order to free old storage, an internal index will be maintained
2727 * that points to the next packet to be freed. When all used
2728 * packets have been freed, the oldest index will be the same as the
2729 * firmware's read index.
2730 *
2731 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2732 *
2733 * Because the TBD structure can not contain arbitrary data, the
2734 * driver must keep an internal queue of cached allocations such that
2735 * it can put that data back into the tx_free_list and msg_free_list
2736 * for use by future command and data packets.
2737 *
2738 */
2739 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2740 {
2741 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2742 struct ipw2100_bd *tbd;
2743 struct list_head *element;
2744 struct ipw2100_tx_packet *packet;
2745 int descriptors_used;
2746 int e, i;
2747 u32 r, w, frag_num = 0;
2748
2749 if (list_empty(&priv->fw_pend_list))
2750 return 0;
2751
2752 element = priv->fw_pend_list.next;
2753
2754 packet = list_entry(element, struct ipw2100_tx_packet, list);
2755 tbd = &txq->drv[packet->index];
2756
2757 /* Determine how many TBD entries must be finished... */
2758 switch (packet->type) {
2759 case COMMAND:
2760 /* COMMAND uses only one slot; don't advance */
2761 descriptors_used = 1;
2762 e = txq->oldest;
2763 break;
2764
2765 case DATA:
2766 /* DATA uses two slots; advance and loop position. */
2767 descriptors_used = tbd->num_fragments;
2768 frag_num = tbd->num_fragments - 1;
2769 e = txq->oldest + frag_num;
2770 e %= txq->entries;
2771 break;
2772
2773 default:
2774 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2775 priv->net_dev->name);
2776 return 0;
2777 }
2778
2779 /* if the last TBD is not done by NIC yet, then packet is
2780 * not ready to be released.
2781 *
2782 */
2783 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2784 &r);
2785 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2786 &w);
2787 if (w != txq->next)
2788 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2789 priv->net_dev->name);
2790
2791 /*
2792 * txq->next is the index of the last packet written txq->oldest is
2793 * the index of the r is the index of the next packet to be read by
2794 * firmware
2795 */
2796
2797 /*
2798 * Quick graphic to help you visualize the following
2799 * if / else statement
2800 *
2801 * ===>| s---->|===============
2802 * e>|
2803 * | a | b | c | d | e | f | g | h | i | j | k | l
2804 * r---->|
2805 * w
2806 *
2807 * w - updated by driver
2808 * r - updated by firmware
2809 * s - start of oldest BD entry (txq->oldest)
2810 * e - end of oldest BD entry
2811 *
2812 */
2813 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2814 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2815 return 0;
2816 }
2817
2818 list_del(element);
2819 DEC_STAT(&priv->fw_pend_stat);
2820
2821 #ifdef CONFIG_IPW2100_DEBUG
2822 {
2823 int i = txq->oldest;
2824 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2825 &txq->drv[i],
2826 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2827 txq->drv[i].host_addr, txq->drv[i].buf_length);
2828
2829 if (packet->type == DATA) {
2830 i = (i + 1) % txq->entries;
2831
2832 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2833 &txq->drv[i],
2834 (u32) (txq->nic + i *
2835 sizeof(struct ipw2100_bd)),
2836 (u32) txq->drv[i].host_addr,
2837 txq->drv[i].buf_length);
2838 }
2839 }
2840 #endif
2841
2842 switch (packet->type) {
2843 case DATA:
2844 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2845 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2846 "Expecting DATA TBD but pulled "
2847 "something else: ids %d=%d.\n",
2848 priv->net_dev->name, txq->oldest, packet->index);
2849
2850 /* DATA packet; we have to unmap and free the SKB */
2851 for (i = 0; i < frag_num; i++) {
2852 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2853
2854 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2855 (packet->index + 1 + i) % txq->entries,
2856 tbd->host_addr, tbd->buf_length);
2857
2858 pci_unmap_single(priv->pci_dev,
2859 tbd->host_addr,
2860 tbd->buf_length, PCI_DMA_TODEVICE);
2861 }
2862
2863 ieee80211_txb_free(packet->info.d_struct.txb);
2864 packet->info.d_struct.txb = NULL;
2865
2866 list_add_tail(element, &priv->tx_free_list);
2867 INC_STAT(&priv->tx_free_stat);
2868
2869 /* We have a free slot in the Tx queue, so wake up the
2870 * transmit layer if it is stopped. */
2871 if (priv->status & STATUS_ASSOCIATED)
2872 netif_wake_queue(priv->net_dev);
2873
2874 /* A packet was processed by the hardware, so update the
2875 * watchdog */
2876 priv->net_dev->trans_start = jiffies;
2877
2878 break;
2879
2880 case COMMAND:
2881 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2882 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2883 "Expecting COMMAND TBD but pulled "
2884 "something else: ids %d=%d.\n",
2885 priv->net_dev->name, txq->oldest, packet->index);
2886
2887 #ifdef CONFIG_IPW2100_DEBUG
2888 if (packet->info.c_struct.cmd->host_command_reg <
2889 sizeof(command_types) / sizeof(*command_types))
2890 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2891 command_types[packet->info.c_struct.cmd->
2892 host_command_reg],
2893 packet->info.c_struct.cmd->
2894 host_command_reg,
2895 packet->info.c_struct.cmd->cmd_status_reg);
2896 #endif
2897
2898 list_add_tail(element, &priv->msg_free_list);
2899 INC_STAT(&priv->msg_free_stat);
2900 break;
2901 }
2902
2903 /* advance oldest used TBD pointer to start of next entry */
2904 txq->oldest = (e + 1) % txq->entries;
2905 /* increase available TBDs number */
2906 txq->available += descriptors_used;
2907 SET_STAT(&priv->txq_stat, txq->available);
2908
2909 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2910 jiffies - packet->jiffy_start);
2911
2912 return (!list_empty(&priv->fw_pend_list));
2913 }
2914
2915 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2916 {
2917 int i = 0;
2918
2919 while (__ipw2100_tx_process(priv) && i < 200)
2920 i++;
2921
2922 if (i == 200) {
2923 printk(KERN_WARNING DRV_NAME ": "
2924 "%s: Driver is running slow (%d iters).\n",
2925 priv->net_dev->name, i);
2926 }
2927 }
2928
2929 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2930 {
2931 struct list_head *element;
2932 struct ipw2100_tx_packet *packet;
2933 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2934 struct ipw2100_bd *tbd;
2935 int next = txq->next;
2936
2937 while (!list_empty(&priv->msg_pend_list)) {
2938 /* if there isn't enough space in TBD queue, then
2939 * don't stuff a new one in.
2940 * NOTE: 3 are needed as a command will take one,
2941 * and there is a minimum of 2 that must be
2942 * maintained between the r and w indexes
2943 */
2944 if (txq->available <= 3) {
2945 IPW_DEBUG_TX("no room in tx_queue\n");
2946 break;
2947 }
2948
2949 element = priv->msg_pend_list.next;
2950 list_del(element);
2951 DEC_STAT(&priv->msg_pend_stat);
2952
2953 packet = list_entry(element, struct ipw2100_tx_packet, list);
2954
2955 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2956 &txq->drv[txq->next],
2957 (void *)(txq->nic + txq->next *
2958 sizeof(struct ipw2100_bd)));
2959
2960 packet->index = txq->next;
2961
2962 tbd = &txq->drv[txq->next];
2963
2964 /* initialize TBD */
2965 tbd->host_addr = packet->info.c_struct.cmd_phys;
2966 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2967 /* not marking number of fragments causes problems
2968 * with f/w debug version */
2969 tbd->num_fragments = 1;
2970 tbd->status.info.field =
2971 IPW_BD_STATUS_TX_FRAME_COMMAND |
2972 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2973
2974 /* update TBD queue counters */
2975 txq->next++;
2976 txq->next %= txq->entries;
2977 txq->available--;
2978 DEC_STAT(&priv->txq_stat);
2979
2980 list_add_tail(element, &priv->fw_pend_list);
2981 INC_STAT(&priv->fw_pend_stat);
2982 }
2983
2984 if (txq->next != next) {
2985 /* kick off the DMA by notifying firmware the
2986 * write index has moved; make sure TBD stores are sync'd */
2987 wmb();
2988 write_register(priv->net_dev,
2989 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2990 txq->next);
2991 }
2992 }
2993
2994 /*
2995 * ipw2100_tx_send_data
2996 *
2997 */
2998 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
2999 {
3000 struct list_head *element;
3001 struct ipw2100_tx_packet *packet;
3002 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3003 struct ipw2100_bd *tbd;
3004 int next = txq->next;
3005 int i = 0;
3006 struct ipw2100_data_header *ipw_hdr;
3007 struct ieee80211_hdr_3addr *hdr;
3008
3009 while (!list_empty(&priv->tx_pend_list)) {
3010 /* if there isn't enough space in TBD queue, then
3011 * don't stuff a new one in.
3012 * NOTE: 4 are needed as a data will take two,
3013 * and there is a minimum of 2 that must be
3014 * maintained between the r and w indexes
3015 */
3016 element = priv->tx_pend_list.next;
3017 packet = list_entry(element, struct ipw2100_tx_packet, list);
3018
3019 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3020 IPW_MAX_BDS)) {
3021 /* TODO: Support merging buffers if more than
3022 * IPW_MAX_BDS are used */
3023 IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded. "
3024 "Increase fragmentation level.\n",
3025 priv->net_dev->name);
3026 }
3027
3028 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3029 IPW_DEBUG_TX("no room in tx_queue\n");
3030 break;
3031 }
3032
3033 list_del(element);
3034 DEC_STAT(&priv->tx_pend_stat);
3035
3036 tbd = &txq->drv[txq->next];
3037
3038 packet->index = txq->next;
3039
3040 ipw_hdr = packet->info.d_struct.data;
3041 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3042 fragments[0]->data;
3043
3044 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3045 /* To DS: Addr1 = BSSID, Addr2 = SA,
3046 Addr3 = DA */
3047 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3048 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3049 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3050 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3051 Addr3 = BSSID */
3052 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3053 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3054 }
3055
3056 ipw_hdr->host_command_reg = SEND;
3057 ipw_hdr->host_command_reg1 = 0;
3058
3059 /* For now we only support host based encryption */
3060 ipw_hdr->needs_encryption = 0;
3061 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3062 if (packet->info.d_struct.txb->nr_frags > 1)
3063 ipw_hdr->fragment_size =
3064 packet->info.d_struct.txb->frag_size -
3065 IEEE80211_3ADDR_LEN;
3066 else
3067 ipw_hdr->fragment_size = 0;
3068
3069 tbd->host_addr = packet->info.d_struct.data_phys;
3070 tbd->buf_length = sizeof(struct ipw2100_data_header);
3071 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3072 tbd->status.info.field =
3073 IPW_BD_STATUS_TX_FRAME_802_3 |
3074 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3075 txq->next++;
3076 txq->next %= txq->entries;
3077
3078 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3079 packet->index, tbd->host_addr, tbd->buf_length);
3080 #ifdef CONFIG_IPW2100_DEBUG
3081 if (packet->info.d_struct.txb->nr_frags > 1)
3082 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3083 packet->info.d_struct.txb->nr_frags);
3084 #endif
3085
3086 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3087 tbd = &txq->drv[txq->next];
3088 if (i == packet->info.d_struct.txb->nr_frags - 1)
3089 tbd->status.info.field =
3090 IPW_BD_STATUS_TX_FRAME_802_3 |
3091 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3092 else
3093 tbd->status.info.field =
3094 IPW_BD_STATUS_TX_FRAME_802_3 |
3095 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3096
3097 tbd->buf_length = packet->info.d_struct.txb->
3098 fragments[i]->len - IEEE80211_3ADDR_LEN;
3099
3100 tbd->host_addr = pci_map_single(priv->pci_dev,
3101 packet->info.d_struct.
3102 txb->fragments[i]->
3103 data +
3104 IEEE80211_3ADDR_LEN,
3105 tbd->buf_length,
3106 PCI_DMA_TODEVICE);
3107
3108 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3109 txq->next, tbd->host_addr,
3110 tbd->buf_length);
3111
3112 pci_dma_sync_single_for_device(priv->pci_dev,
3113 tbd->host_addr,
3114 tbd->buf_length,
3115 PCI_DMA_TODEVICE);
3116
3117 txq->next++;
3118 txq->next %= txq->entries;
3119 }
3120
3121 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3122 SET_STAT(&priv->txq_stat, txq->available);
3123
3124 list_add_tail(element, &priv->fw_pend_list);
3125 INC_STAT(&priv->fw_pend_stat);
3126 }
3127
3128 if (txq->next != next) {
3129 /* kick off the DMA by notifying firmware the
3130 * write index has moved; make sure TBD stores are sync'd */
3131 write_register(priv->net_dev,
3132 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3133 txq->next);
3134 }
3135 return;
3136 }
3137
3138 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3139 {
3140 struct net_device *dev = priv->net_dev;
3141 unsigned long flags;
3142 u32 inta, tmp;
3143
3144 spin_lock_irqsave(&priv->low_lock, flags);
3145 ipw2100_disable_interrupts(priv);
3146
3147 read_register(dev, IPW_REG_INTA, &inta);
3148
3149 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3150 (unsigned long)inta & IPW_INTERRUPT_MASK);
3151
3152 priv->in_isr++;
3153 priv->interrupts++;
3154
3155 /* We do not loop and keep polling for more interrupts as this
3156 * is frowned upon and doesn't play nicely with other potentially
3157 * chained IRQs */
3158 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3159 (unsigned long)inta & IPW_INTERRUPT_MASK);
3160
3161 if (inta & IPW2100_INTA_FATAL_ERROR) {
3162 printk(KERN_WARNING DRV_NAME
3163 ": Fatal interrupt. Scheduling firmware restart.\n");
3164 priv->inta_other++;
3165 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3166
3167 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3168 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3169 priv->net_dev->name, priv->fatal_error);
3170
3171 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3172 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3173 priv->net_dev->name, tmp);
3174
3175 /* Wake up any sleeping jobs */
3176 schedule_reset(priv);
3177 }
3178
3179 if (inta & IPW2100_INTA_PARITY_ERROR) {
3180 printk(KERN_ERR DRV_NAME
3181 ": ***** PARITY ERROR INTERRUPT !!!! \n");
3182 priv->inta_other++;
3183 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3184 }
3185
3186 if (inta & IPW2100_INTA_RX_TRANSFER) {
3187 IPW_DEBUG_ISR("RX interrupt\n");
3188
3189 priv->rx_interrupts++;
3190
3191 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3192
3193 __ipw2100_rx_process(priv);
3194 __ipw2100_tx_complete(priv);
3195 }
3196
3197 if (inta & IPW2100_INTA_TX_TRANSFER) {
3198 IPW_DEBUG_ISR("TX interrupt\n");
3199
3200 priv->tx_interrupts++;
3201
3202 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3203
3204 __ipw2100_tx_complete(priv);
3205 ipw2100_tx_send_commands(priv);
3206 ipw2100_tx_send_data(priv);
3207 }
3208
3209 if (inta & IPW2100_INTA_TX_COMPLETE) {
3210 IPW_DEBUG_ISR("TX complete\n");
3211 priv->inta_other++;
3212 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3213
3214 __ipw2100_tx_complete(priv);
3215 }
3216
3217 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3218 /* ipw2100_handle_event(dev); */
3219 priv->inta_other++;
3220 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3221 }
3222
3223 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3224 IPW_DEBUG_ISR("FW init done interrupt\n");
3225 priv->inta_other++;
3226
3227 read_register(dev, IPW_REG_INTA, &tmp);
3228 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3229 IPW2100_INTA_PARITY_ERROR)) {
3230 write_register(dev, IPW_REG_INTA,
3231 IPW2100_INTA_FATAL_ERROR |
3232 IPW2100_INTA_PARITY_ERROR);
3233 }
3234
3235 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3236 }
3237
3238 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3239 IPW_DEBUG_ISR("Status change interrupt\n");
3240 priv->inta_other++;
3241 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3242 }
3243
3244 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3245 IPW_DEBUG_ISR("slave host mode interrupt\n");
3246 priv->inta_other++;
3247 write_register(dev, IPW_REG_INTA,
3248 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3249 }
3250
3251 priv->in_isr--;
3252 ipw2100_enable_interrupts(priv);
3253
3254 spin_unlock_irqrestore(&priv->low_lock, flags);
3255
3256 IPW_DEBUG_ISR("exit\n");
3257 }
3258
3259 static irqreturn_t ipw2100_interrupt(int irq, void *data, struct pt_regs *regs)
3260 {
3261 struct ipw2100_priv *priv = data;
3262 u32 inta, inta_mask;
3263
3264 if (!data)
3265 return IRQ_NONE;
3266
3267 spin_lock(&priv->low_lock);
3268
3269 /* We check to see if we should be ignoring interrupts before
3270 * we touch the hardware. During ucode load if we try and handle
3271 * an interrupt we can cause keyboard problems as well as cause
3272 * the ucode to fail to initialize */
3273 if (!(priv->status & STATUS_INT_ENABLED)) {
3274 /* Shared IRQ */
3275 goto none;
3276 }
3277
3278 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3279 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3280
3281 if (inta == 0xFFFFFFFF) {
3282 /* Hardware disappeared */
3283 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3284 goto none;
3285 }
3286
3287 inta &= IPW_INTERRUPT_MASK;
3288
3289 if (!(inta & inta_mask)) {
3290 /* Shared interrupt */
3291 goto none;
3292 }
3293
3294 /* We disable the hardware interrupt here just to prevent unneeded
3295 * calls to be made. We disable this again within the actual
3296 * work tasklet, so if another part of the code re-enables the
3297 * interrupt, that is fine */
3298 ipw2100_disable_interrupts(priv);
3299
3300 tasklet_schedule(&priv->irq_tasklet);
3301 spin_unlock(&priv->low_lock);
3302
3303 return IRQ_HANDLED;
3304 none:
3305 spin_unlock(&priv->low_lock);
3306 return IRQ_NONE;
3307 }
3308
3309 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3310 int pri)
3311 {
3312 struct ipw2100_priv *priv = ieee80211_priv(dev);
3313 struct list_head *element;
3314 struct ipw2100_tx_packet *packet;
3315 unsigned long flags;
3316
3317 spin_lock_irqsave(&priv->low_lock, flags);
3318
3319 if (!(priv->status & STATUS_ASSOCIATED)) {
3320 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3321 priv->ieee->stats.tx_carrier_errors++;
3322 netif_stop_queue(dev);
3323 goto fail_unlock;
3324 }
3325
3326 if (list_empty(&priv->tx_free_list))
3327 goto fail_unlock;
3328
3329 element = priv->tx_free_list.next;
3330 packet = list_entry(element, struct ipw2100_tx_packet, list);
3331
3332 packet->info.d_struct.txb = txb;
3333
3334 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3335 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3336
3337 packet->jiffy_start = jiffies;
3338
3339 list_del(element);
3340 DEC_STAT(&priv->tx_free_stat);
3341
3342 list_add_tail(element, &priv->tx_pend_list);
3343 INC_STAT(&priv->tx_pend_stat);
3344
3345 ipw2100_tx_send_data(priv);
3346
3347 spin_unlock_irqrestore(&priv->low_lock, flags);
3348 return 0;
3349
3350 fail_unlock:
3351 netif_stop_queue(dev);
3352 spin_unlock_irqrestore(&priv->low_lock, flags);
3353 return 1;
3354 }
3355
3356 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3357 {
3358 int i, j, err = -EINVAL;
3359 void *v;
3360 dma_addr_t p;
3361
3362 priv->msg_buffers =
3363 (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3364 sizeof(struct
3365 ipw2100_tx_packet),
3366 GFP_KERNEL);
3367 if (!priv->msg_buffers) {
3368 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3369 "buffers.\n", priv->net_dev->name);
3370 return -ENOMEM;
3371 }
3372
3373 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3374 v = pci_alloc_consistent(priv->pci_dev,
3375 sizeof(struct ipw2100_cmd_header), &p);
3376 if (!v) {
3377 printk(KERN_ERR DRV_NAME ": "
3378 "%s: PCI alloc failed for msg "
3379 "buffers.\n", priv->net_dev->name);
3380 err = -ENOMEM;
3381 break;
3382 }
3383
3384 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3385
3386 priv->msg_buffers[i].type = COMMAND;
3387 priv->msg_buffers[i].info.c_struct.cmd =
3388 (struct ipw2100_cmd_header *)v;
3389 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3390 }
3391
3392 if (i == IPW_COMMAND_POOL_SIZE)
3393 return 0;
3394
3395 for (j = 0; j < i; j++) {
3396 pci_free_consistent(priv->pci_dev,
3397 sizeof(struct ipw2100_cmd_header),
3398 priv->msg_buffers[j].info.c_struct.cmd,
3399 priv->msg_buffers[j].info.c_struct.
3400 cmd_phys);
3401 }
3402
3403 kfree(priv->msg_buffers);
3404 priv->msg_buffers = NULL;
3405
3406 return err;
3407 }
3408
3409 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3410 {
3411 int i;
3412
3413 INIT_LIST_HEAD(&priv->msg_free_list);
3414 INIT_LIST_HEAD(&priv->msg_pend_list);
3415
3416 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3417 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3418 SET_STAT(&priv->msg_free_stat, i);
3419
3420 return 0;
3421 }
3422
3423 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3424 {
3425 int i;
3426
3427 if (!priv->msg_buffers)
3428 return;
3429
3430 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3431 pci_free_consistent(priv->pci_dev,
3432 sizeof(struct ipw2100_cmd_header),
3433 priv->msg_buffers[i].info.c_struct.cmd,
3434 priv->msg_buffers[i].info.c_struct.
3435 cmd_phys);
3436 }
3437
3438 kfree(priv->msg_buffers);
3439 priv->msg_buffers = NULL;
3440 }
3441
3442 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3443 char *buf)
3444 {
3445 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3446 char *out = buf;
3447 int i, j;
3448 u32 val;
3449
3450 for (i = 0; i < 16; i++) {
3451 out += sprintf(out, "[%08X] ", i * 16);
3452 for (j = 0; j < 16; j += 4) {
3453 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3454 out += sprintf(out, "%08X ", val);
3455 }
3456 out += sprintf(out, "\n");
3457 }
3458
3459 return out - buf;
3460 }
3461
3462 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3463
3464 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3465 char *buf)
3466 {
3467 struct ipw2100_priv *p = d->driver_data;
3468 return sprintf(buf, "0x%08x\n", (int)p->config);
3469 }
3470
3471 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3472
3473 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3474 char *buf)
3475 {
3476 struct ipw2100_priv *p = d->driver_data;
3477 return sprintf(buf, "0x%08x\n", (int)p->status);
3478 }
3479
3480 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3481
3482 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3483 char *buf)
3484 {
3485 struct ipw2100_priv *p = d->driver_data;
3486 return sprintf(buf, "0x%08x\n", (int)p->capability);
3487 }
3488
3489 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3490
3491 #define IPW2100_REG(x) { IPW_ ##x, #x }
3492 static const struct {
3493 u32 addr;
3494 const char *name;
3495 } hw_data[] = {
3496 IPW2100_REG(REG_GP_CNTRL),
3497 IPW2100_REG(REG_GPIO),
3498 IPW2100_REG(REG_INTA),
3499 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3500 #define IPW2100_NIC(x, s) { x, #x, s }
3501 static const struct {
3502 u32 addr;
3503 const char *name;
3504 size_t size;
3505 } nic_data[] = {
3506 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3507 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3508 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3509 static const struct {
3510 u8 index;
3511 const char *name;
3512 const char *desc;
3513 } ord_data[] = {
3514 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3515 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3516 "successful Host Tx's (MSDU)"),
3517 IPW2100_ORD(STAT_TX_DIR_DATA,
3518 "successful Directed Tx's (MSDU)"),
3519 IPW2100_ORD(STAT_TX_DIR_DATA1,
3520 "successful Directed Tx's (MSDU) @ 1MB"),
3521 IPW2100_ORD(STAT_TX_DIR_DATA2,
3522 "successful Directed Tx's (MSDU) @ 2MB"),
3523 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3524 "successful Directed Tx's (MSDU) @ 5_5MB"),
3525 IPW2100_ORD(STAT_TX_DIR_DATA11,
3526 "successful Directed Tx's (MSDU) @ 11MB"),
3527 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3528 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3529 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3530 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3531 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3532 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3533 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3534 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3535 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3536 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3537 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3538 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3539 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3540 IPW2100_ORD(STAT_TX_ASSN_RESP,
3541 "successful Association response Tx's"),
3542 IPW2100_ORD(STAT_TX_REASSN,
3543 "successful Reassociation Tx's"),
3544 IPW2100_ORD(STAT_TX_REASSN_RESP,
3545 "successful Reassociation response Tx's"),
3546 IPW2100_ORD(STAT_TX_PROBE,
3547 "probes successfully transmitted"),
3548 IPW2100_ORD(STAT_TX_PROBE_RESP,
3549 "probe responses successfully transmitted"),
3550 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3551 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3552 IPW2100_ORD(STAT_TX_DISASSN,
3553 "successful Disassociation TX"),
3554 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3555 IPW2100_ORD(STAT_TX_DEAUTH,
3556 "successful Deauthentication TX"),
3557 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3558 "Total successful Tx data bytes"),
3559 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3560 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3561 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3562 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3563 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3564 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3565 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3566 "times max tries in a hop failed"),
3567 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3568 "times disassociation failed"),
3569 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3570 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3571 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3572 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3573 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3574 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3575 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3576 "directed packets at 5.5MB"),
3577 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3578 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3579 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3580 "nondirected packets at 1MB"),
3581 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3582 "nondirected packets at 2MB"),
3583 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3584 "nondirected packets at 5.5MB"),
3585 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3586 "nondirected packets at 11MB"),
3587 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3588 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3589 "Rx CTS"),
3590 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3591 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3592 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3593 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3594 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3595 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3596 IPW2100_ORD(STAT_RX_REASSN_RESP,
3597 "Reassociation response Rx's"),
3598 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3599 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3600 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3601 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3602 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3603 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3604 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3605 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3606 "Total rx data bytes received"),
3607 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3608 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3609 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3610 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3611 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3612 IPW2100_ORD(STAT_RX_DUPLICATE1,
3613 "duplicate rx packets at 1MB"),
3614 IPW2100_ORD(STAT_RX_DUPLICATE2,
3615 "duplicate rx packets at 2MB"),
3616 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3617 "duplicate rx packets at 5.5MB"),
3618 IPW2100_ORD(STAT_RX_DUPLICATE11,
3619 "duplicate rx packets at 11MB"),
3620 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3621 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3622 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3623 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3624 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3625 "rx frames with invalid protocol"),
3626 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3627 IPW2100_ORD(STAT_RX_NO_BUFFER,
3628 "rx frames rejected due to no buffer"),
3629 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3630 "rx frames dropped due to missing fragment"),
3631 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3632 "rx frames dropped due to non-sequential fragment"),
3633 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3634 "rx frames dropped due to unmatched 1st frame"),
3635 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3636 "rx frames dropped due to uncompleted frame"),
3637 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3638 "ICV errors during decryption"),
3639 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3640 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3641 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3642 "poll response timeouts"),
3643 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3644 "timeouts waiting for last {broad,multi}cast pkt"),
3645 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3646 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3647 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3648 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3649 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3650 "current calculation of % missed beacons"),
3651 IPW2100_ORD(STAT_PERCENT_RETRIES,
3652 "current calculation of % missed tx retries"),
3653 IPW2100_ORD(ASSOCIATED_AP_PTR,
3654 "0 if not associated, else pointer to AP table entry"),
3655 IPW2100_ORD(AVAILABLE_AP_CNT,
3656 "AP's decsribed in the AP table"),
3657 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3658 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3659 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3660 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3661 "failures due to response fail"),
3662 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3663 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3664 IPW2100_ORD(STAT_ROAM_INHIBIT,
3665 "times roaming was inhibited due to activity"),
3666 IPW2100_ORD(RSSI_AT_ASSN,
3667 "RSSI of associated AP at time of association"),
3668 IPW2100_ORD(STAT_ASSN_CAUSE1,
3669 "reassociation: no probe response or TX on hop"),
3670 IPW2100_ORD(STAT_ASSN_CAUSE2,
3671 "reassociation: poor tx/rx quality"),
3672 IPW2100_ORD(STAT_ASSN_CAUSE3,
3673 "reassociation: tx/rx quality (excessive AP load"),
3674 IPW2100_ORD(STAT_ASSN_CAUSE4,
3675 "reassociation: AP RSSI level"),
3676 IPW2100_ORD(STAT_ASSN_CAUSE5,
3677 "reassociations due to load leveling"),
3678 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3679 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3680 "times authentication response failed"),
3681 IPW2100_ORD(STATION_TABLE_CNT,
3682 "entries in association table"),
3683 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3684 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3685 IPW2100_ORD(COUNTRY_CODE,
3686 "IEEE country code as recv'd from beacon"),
3687 IPW2100_ORD(COUNTRY_CHANNELS,
3688 "channels suported by country"),
3689 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3690 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3691 IPW2100_ORD(ANTENNA_DIVERSITY,
3692 "TRUE if antenna diversity is disabled"),
3693 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3694 IPW2100_ORD(OUR_FREQ,
3695 "current radio freq lower digits - channel ID"),
3696 IPW2100_ORD(RTC_TIME, "current RTC time"),
3697 IPW2100_ORD(PORT_TYPE, "operating mode"),
3698 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3699 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3700 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3701 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3702 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3703 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3704 IPW2100_ORD(CAPABILITIES,
3705 "Management frame capability field"),
3706 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3707 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3708 IPW2100_ORD(RTS_THRESHOLD,
3709 "Min packet length for RTS handshaking"),
3710 IPW2100_ORD(INT_MODE, "International mode"),
3711 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3712 "protocol frag threshold"),
3713 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3714 "EEPROM offset in SRAM"),
3715 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3716 "EEPROM size in SRAM"),
3717 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3718 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3719 "EEPROM IBSS 11b channel set"),
3720 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3721 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3722 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3723 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3724 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3725
3726 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3727 char *buf)
3728 {
3729 int i;
3730 struct ipw2100_priv *priv = dev_get_drvdata(d);
3731 struct net_device *dev = priv->net_dev;
3732 char *out = buf;
3733 u32 val = 0;
3734
3735 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3736
3737 for (i = 0; i < (sizeof(hw_data) / sizeof(*hw_data)); i++) {
3738 read_register(dev, hw_data[i].addr, &val);
3739 out += sprintf(out, "%30s [%08X] : %08X\n",
3740 hw_data[i].name, hw_data[i].addr, val);
3741 }
3742
3743 return out - buf;
3744 }
3745
3746 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3747
3748 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3749 char *buf)
3750 {
3751 struct ipw2100_priv *priv = dev_get_drvdata(d);
3752 struct net_device *dev = priv->net_dev;
3753 char *out = buf;
3754 int i;
3755
3756 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3757
3758 for (i = 0; i < (sizeof(nic_data) / sizeof(*nic_data)); i++) {
3759 u8 tmp8;
3760 u16 tmp16;
3761 u32 tmp32;
3762
3763 switch (nic_data[i].size) {
3764 case 1:
3765 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3766 out += sprintf(out, "%30s [%08X] : %02X\n",
3767 nic_data[i].name, nic_data[i].addr,
3768 tmp8);
3769 break;
3770 case 2:
3771 read_nic_word(dev, nic_data[i].addr, &tmp16);
3772 out += sprintf(out, "%30s [%08X] : %04X\n",
3773 nic_data[i].name, nic_data[i].addr,
3774 tmp16);
3775 break;
3776 case 4:
3777 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3778 out += sprintf(out, "%30s [%08X] : %08X\n",
3779 nic_data[i].name, nic_data[i].addr,
3780 tmp32);
3781 break;
3782 }
3783 }
3784 return out - buf;
3785 }
3786
3787 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3788
3789 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3790 char *buf)
3791 {
3792 struct ipw2100_priv *priv = dev_get_drvdata(d);
3793 struct net_device *dev = priv->net_dev;
3794 static unsigned long loop = 0;
3795 int len = 0;
3796 u32 buffer[4];
3797 int i;
3798 char line[81];
3799
3800 if (loop >= 0x30000)
3801 loop = 0;
3802
3803 /* sysfs provides us PAGE_SIZE buffer */
3804 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3805
3806 if (priv->snapshot[0])
3807 for (i = 0; i < 4; i++)
3808 buffer[i] =
3809 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3810 else
3811 for (i = 0; i < 4; i++)
3812 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3813
3814 if (priv->dump_raw)
3815 len += sprintf(buf + len,
3816 "%c%c%c%c"
3817 "%c%c%c%c"
3818 "%c%c%c%c"
3819 "%c%c%c%c",
3820 ((u8 *) buffer)[0x0],
3821 ((u8 *) buffer)[0x1],
3822 ((u8 *) buffer)[0x2],
3823 ((u8 *) buffer)[0x3],
3824 ((u8 *) buffer)[0x4],
3825 ((u8 *) buffer)[0x5],
3826 ((u8 *) buffer)[0x6],
3827 ((u8 *) buffer)[0x7],
3828 ((u8 *) buffer)[0x8],
3829 ((u8 *) buffer)[0x9],
3830 ((u8 *) buffer)[0xa],
3831 ((u8 *) buffer)[0xb],
3832 ((u8 *) buffer)[0xc],
3833 ((u8 *) buffer)[0xd],
3834 ((u8 *) buffer)[0xe],
3835 ((u8 *) buffer)[0xf]);
3836 else
3837 len += sprintf(buf + len, "%s\n",
3838 snprint_line(line, sizeof(line),
3839 (u8 *) buffer, 16, loop));
3840 loop += 16;
3841 }
3842
3843 return len;
3844 }
3845
3846 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3847 const char *buf, size_t count)
3848 {
3849 struct ipw2100_priv *priv = dev_get_drvdata(d);
3850 struct net_device *dev = priv->net_dev;
3851 const char *p = buf;
3852
3853 (void)dev; /* kill unused-var warning for debug-only code */
3854
3855 if (count < 1)
3856 return count;
3857
3858 if (p[0] == '1' ||
3859 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3860 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3861 dev->name);
3862 priv->dump_raw = 1;
3863
3864 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3865 tolower(p[1]) == 'f')) {
3866 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3867 dev->name);
3868 priv->dump_raw = 0;
3869
3870 } else if (tolower(p[0]) == 'r') {
3871 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3872 ipw2100_snapshot_free(priv);
3873
3874 } else
3875 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3876 "reset = clear memory snapshot\n", dev->name);
3877
3878 return count;
3879 }
3880
3881 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3882
3883 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3884 char *buf)
3885 {
3886 struct ipw2100_priv *priv = dev_get_drvdata(d);
3887 u32 val = 0;
3888 int len = 0;
3889 u32 val_len;
3890 static int loop = 0;
3891
3892 if (priv->status & STATUS_RF_KILL_MASK)
3893 return 0;
3894
3895 if (loop >= sizeof(ord_data) / sizeof(*ord_data))
3896 loop = 0;
3897
3898 /* sysfs provides us PAGE_SIZE buffer */
3899 while (len < PAGE_SIZE - 128 &&
3900 loop < (sizeof(ord_data) / sizeof(*ord_data))) {
3901
3902 val_len = sizeof(u32);
3903
3904 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3905 &val_len))
3906 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3907 ord_data[loop].index,
3908 ord_data[loop].desc);
3909 else
3910 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3911 ord_data[loop].index, val,
3912 ord_data[loop].desc);
3913 loop++;
3914 }
3915
3916 return len;
3917 }
3918
3919 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3920
3921 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3922 char *buf)
3923 {
3924 struct ipw2100_priv *priv = dev_get_drvdata(d);
3925 char *out = buf;
3926
3927 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3928 priv->interrupts, priv->tx_interrupts,
3929 priv->rx_interrupts, priv->inta_other);
3930 out += sprintf(out, "firmware resets: %d\n", priv->resets);
3931 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3932 #ifdef CONFIG_IPW2100_DEBUG
3933 out += sprintf(out, "packet mismatch image: %s\n",
3934 priv->snapshot[0] ? "YES" : "NO");
3935 #endif
3936
3937 return out - buf;
3938 }
3939
3940 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3941
3942 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3943 {
3944 int err;
3945
3946 if (mode == priv->ieee->iw_mode)
3947 return 0;
3948
3949 err = ipw2100_disable_adapter(priv);
3950 if (err) {
3951 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3952 priv->net_dev->name, err);
3953 return err;
3954 }
3955
3956 switch (mode) {
3957 case IW_MODE_INFRA:
3958 priv->net_dev->type = ARPHRD_ETHER;
3959 break;
3960 case IW_MODE_ADHOC:
3961 priv->net_dev->type = ARPHRD_ETHER;
3962 break;
3963 #ifdef CONFIG_IPW2100_MONITOR
3964 case IW_MODE_MONITOR:
3965 priv->last_mode = priv->ieee->iw_mode;
3966 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3967 break;
3968 #endif /* CONFIG_IPW2100_MONITOR */
3969 }
3970
3971 priv->ieee->iw_mode = mode;
3972
3973 #ifdef CONFIG_PM
3974 /* Indicate ipw2100_download_firmware download firmware
3975 * from disk instead of memory. */
3976 ipw2100_firmware.version = 0;
3977 #endif
3978
3979 printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3980 priv->reset_backoff = 0;
3981 schedule_reset(priv);
3982
3983 return 0;
3984 }
3985
3986 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3987 char *buf)
3988 {
3989 struct ipw2100_priv *priv = dev_get_drvdata(d);
3990 int len = 0;
3991
3992 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3993
3994 if (priv->status & STATUS_ASSOCIATED)
3995 len += sprintf(buf + len, "connected: %lu\n",
3996 get_seconds() - priv->connect_start);
3997 else
3998 len += sprintf(buf + len, "not connected\n");
3999
4000 DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
4001 DUMP_VAR(status, "08lx");
4002 DUMP_VAR(config, "08lx");
4003 DUMP_VAR(capability, "08lx");
4004
4005 len +=
4006 sprintf(buf + len, "last_rtc: %lu\n",
4007 (unsigned long)priv->last_rtc);
4008
4009 DUMP_VAR(fatal_error, "d");
4010 DUMP_VAR(stop_hang_check, "d");
4011 DUMP_VAR(stop_rf_kill, "d");
4012 DUMP_VAR(messages_sent, "d");
4013
4014 DUMP_VAR(tx_pend_stat.value, "d");
4015 DUMP_VAR(tx_pend_stat.hi, "d");
4016
4017 DUMP_VAR(tx_free_stat.value, "d");
4018 DUMP_VAR(tx_free_stat.lo, "d");
4019
4020 DUMP_VAR(msg_free_stat.value, "d");
4021 DUMP_VAR(msg_free_stat.lo, "d");
4022
4023 DUMP_VAR(msg_pend_stat.value, "d");
4024 DUMP_VAR(msg_pend_stat.hi, "d");
4025
4026 DUMP_VAR(fw_pend_stat.value, "d");
4027 DUMP_VAR(fw_pend_stat.hi, "d");
4028
4029 DUMP_VAR(txq_stat.value, "d");
4030 DUMP_VAR(txq_stat.lo, "d");
4031
4032 DUMP_VAR(ieee->scans, "d");
4033 DUMP_VAR(reset_backoff, "d");
4034
4035 return len;
4036 }
4037
4038 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4039
4040 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4041 char *buf)
4042 {
4043 struct ipw2100_priv *priv = dev_get_drvdata(d);
4044 char essid[IW_ESSID_MAX_SIZE + 1];
4045 u8 bssid[ETH_ALEN];
4046 u32 chan = 0;
4047 char *out = buf;
4048 int length;
4049 int ret;
4050
4051 if (priv->status & STATUS_RF_KILL_MASK)
4052 return 0;
4053
4054 memset(essid, 0, sizeof(essid));
4055 memset(bssid, 0, sizeof(bssid));
4056
4057 length = IW_ESSID_MAX_SIZE;
4058 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4059 if (ret)
4060 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4061 __LINE__);
4062
4063 length = sizeof(bssid);
4064 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4065 bssid, &length);
4066 if (ret)
4067 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4068 __LINE__);
4069
4070 length = sizeof(u32);
4071 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4072 if (ret)
4073 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4074 __LINE__);
4075
4076 out += sprintf(out, "ESSID: %s\n", essid);
4077 out += sprintf(out, "BSSID: %02x:%02x:%02x:%02x:%02x:%02x\n",
4078 bssid[0], bssid[1], bssid[2],
4079 bssid[3], bssid[4], bssid[5]);
4080 out += sprintf(out, "Channel: %d\n", chan);
4081
4082 return out - buf;
4083 }
4084
4085 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4086
4087 #ifdef CONFIG_IPW2100_DEBUG
4088 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4089 {
4090 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4091 }
4092
4093 static ssize_t store_debug_level(struct device_driver *d,
4094 const char *buf, size_t count)
4095 {
4096 char *p = (char *)buf;
4097 u32 val;
4098
4099 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4100 p++;
4101 if (p[0] == 'x' || p[0] == 'X')
4102 p++;
4103 val = simple_strtoul(p, &p, 16);
4104 } else
4105 val = simple_strtoul(p, &p, 10);
4106 if (p == buf)
4107 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4108 else
4109 ipw2100_debug_level = val;
4110
4111 return strnlen(buf, count);
4112 }
4113
4114 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4115 store_debug_level);
4116 #endif /* CONFIG_IPW2100_DEBUG */
4117
4118 static ssize_t show_fatal_error(struct device *d,
4119 struct device_attribute *attr, char *buf)
4120 {
4121 struct ipw2100_priv *priv = dev_get_drvdata(d);
4122 char *out = buf;
4123 int i;
4124
4125 if (priv->fatal_error)
4126 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4127 else
4128 out += sprintf(out, "0\n");
4129
4130 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4131 if (!priv->fatal_errors[(priv->fatal_index - i) %
4132 IPW2100_ERROR_QUEUE])
4133 continue;
4134
4135 out += sprintf(out, "%d. 0x%08X\n", i,
4136 priv->fatal_errors[(priv->fatal_index - i) %
4137 IPW2100_ERROR_QUEUE]);
4138 }
4139
4140 return out - buf;
4141 }
4142
4143 static ssize_t store_fatal_error(struct device *d,
4144 struct device_attribute *attr, const char *buf,
4145 size_t count)
4146 {
4147 struct ipw2100_priv *priv = dev_get_drvdata(d);
4148 schedule_reset(priv);
4149 return count;
4150 }
4151
4152 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4153 store_fatal_error);
4154
4155 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4156 char *buf)
4157 {
4158 struct ipw2100_priv *priv = dev_get_drvdata(d);
4159 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4160 }
4161
4162 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4163 const char *buf, size_t count)
4164 {
4165 struct ipw2100_priv *priv = dev_get_drvdata(d);
4166 struct net_device *dev = priv->net_dev;
4167 char buffer[] = "00000000";
4168 unsigned long len =
4169 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4170 unsigned long val;
4171 char *p = buffer;
4172
4173 (void)dev; /* kill unused-var warning for debug-only code */
4174
4175 IPW_DEBUG_INFO("enter\n");
4176
4177 strncpy(buffer, buf, len);
4178 buffer[len] = 0;
4179
4180 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4181 p++;
4182 if (p[0] == 'x' || p[0] == 'X')
4183 p++;
4184 val = simple_strtoul(p, &p, 16);
4185 } else
4186 val = simple_strtoul(p, &p, 10);
4187 if (p == buffer) {
4188 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4189 } else {
4190 priv->ieee->scan_age = val;
4191 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4192 }
4193
4194 IPW_DEBUG_INFO("exit\n");
4195 return len;
4196 }
4197
4198 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4199
4200 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4201 char *buf)
4202 {
4203 /* 0 - RF kill not enabled
4204 1 - SW based RF kill active (sysfs)
4205 2 - HW based RF kill active
4206 3 - Both HW and SW baed RF kill active */
4207 struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4208 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4209 (rf_kill_active(priv) ? 0x2 : 0x0);
4210 return sprintf(buf, "%i\n", val);
4211 }
4212
4213 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4214 {
4215 if ((disable_radio ? 1 : 0) ==
4216 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4217 return 0;
4218
4219 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4220 disable_radio ? "OFF" : "ON");
4221
4222 mutex_lock(&priv->action_mutex);
4223
4224 if (disable_radio) {
4225 priv->status |= STATUS_RF_KILL_SW;
4226 ipw2100_down(priv);
4227 } else {
4228 priv->status &= ~STATUS_RF_KILL_SW;
4229 if (rf_kill_active(priv)) {
4230 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4231 "disabled by HW switch\n");
4232 /* Make sure the RF_KILL check timer is running */
4233 priv->stop_rf_kill = 0;
4234 cancel_delayed_work(&priv->rf_kill);
4235 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
4236 } else
4237 schedule_reset(priv);
4238 }
4239
4240 mutex_unlock(&priv->action_mutex);
4241 return 1;
4242 }
4243
4244 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4245 const char *buf, size_t count)
4246 {
4247 struct ipw2100_priv *priv = dev_get_drvdata(d);
4248 ipw_radio_kill_sw(priv, buf[0] == '1');
4249 return count;
4250 }
4251
4252 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4253
4254 static struct attribute *ipw2100_sysfs_entries[] = {
4255 &dev_attr_hardware.attr,
4256 &dev_attr_registers.attr,
4257 &dev_attr_ordinals.attr,
4258 &dev_attr_pci.attr,
4259 &dev_attr_stats.attr,
4260 &dev_attr_internals.attr,
4261 &dev_attr_bssinfo.attr,
4262 &dev_attr_memory.attr,
4263 &dev_attr_scan_age.attr,
4264 &dev_attr_fatal_error.attr,
4265 &dev_attr_rf_kill.attr,
4266 &dev_attr_cfg.attr,
4267 &dev_attr_status.attr,
4268 &dev_attr_capability.attr,
4269 NULL,
4270 };
4271
4272 static struct attribute_group ipw2100_attribute_group = {
4273 .attrs = ipw2100_sysfs_entries,
4274 };
4275
4276 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4277 {
4278 struct ipw2100_status_queue *q = &priv->status_queue;
4279
4280 IPW_DEBUG_INFO("enter\n");
4281
4282 q->size = entries * sizeof(struct ipw2100_status);
4283 q->drv =
4284 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4285 q->size, &q->nic);
4286 if (!q->drv) {
4287 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4288 return -ENOMEM;
4289 }
4290
4291 memset(q->drv, 0, q->size);
4292
4293 IPW_DEBUG_INFO("exit\n");
4294
4295 return 0;
4296 }
4297
4298 static void status_queue_free(struct ipw2100_priv *priv)
4299 {
4300 IPW_DEBUG_INFO("enter\n");
4301
4302 if (priv->status_queue.drv) {
4303 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4304 priv->status_queue.drv,
4305 priv->status_queue.nic);
4306 priv->status_queue.drv = NULL;
4307 }
4308
4309 IPW_DEBUG_INFO("exit\n");
4310 }
4311
4312 static int bd_queue_allocate(struct ipw2100_priv *priv,
4313 struct ipw2100_bd_queue *q, int entries)
4314 {
4315 IPW_DEBUG_INFO("enter\n");
4316
4317 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4318
4319 q->entries = entries;
4320 q->size = entries * sizeof(struct ipw2100_bd);
4321 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4322 if (!q->drv) {
4323 IPW_DEBUG_INFO
4324 ("can't allocate shared memory for buffer descriptors\n");
4325 return -ENOMEM;
4326 }
4327 memset(q->drv, 0, q->size);
4328
4329 IPW_DEBUG_INFO("exit\n");
4330
4331 return 0;
4332 }
4333
4334 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4335 {
4336 IPW_DEBUG_INFO("enter\n");
4337
4338 if (!q)
4339 return;
4340
4341 if (q->drv) {
4342 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4343 q->drv = NULL;
4344 }
4345
4346 IPW_DEBUG_INFO("exit\n");
4347 }
4348
4349 static void bd_queue_initialize(struct ipw2100_priv *priv,
4350 struct ipw2100_bd_queue *q, u32 base, u32 size,
4351 u32 r, u32 w)
4352 {
4353 IPW_DEBUG_INFO("enter\n");
4354
4355 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4356 (u32) q->nic);
4357
4358 write_register(priv->net_dev, base, q->nic);
4359 write_register(priv->net_dev, size, q->entries);
4360 write_register(priv->net_dev, r, q->oldest);
4361 write_register(priv->net_dev, w, q->next);
4362
4363 IPW_DEBUG_INFO("exit\n");
4364 }
4365
4366 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4367 {
4368 if (priv->workqueue) {
4369 priv->stop_rf_kill = 1;
4370 priv->stop_hang_check = 1;
4371 cancel_delayed_work(&priv->reset_work);
4372 cancel_delayed_work(&priv->security_work);
4373 cancel_delayed_work(&priv->wx_event_work);
4374 cancel_delayed_work(&priv->hang_check);
4375 cancel_delayed_work(&priv->rf_kill);
4376 destroy_workqueue(priv->workqueue);
4377 priv->workqueue = NULL;
4378 }
4379 }
4380
4381 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4382 {
4383 int i, j, err = -EINVAL;
4384 void *v;
4385 dma_addr_t p;
4386
4387 IPW_DEBUG_INFO("enter\n");
4388
4389 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4390 if (err) {
4391 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4392 priv->net_dev->name);
4393 return err;
4394 }
4395
4396 priv->tx_buffers =
4397 (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4398 sizeof(struct
4399 ipw2100_tx_packet),
4400 GFP_ATOMIC);
4401 if (!priv->tx_buffers) {
4402 printk(KERN_ERR DRV_NAME
4403 ": %s: alloc failed form tx buffers.\n",
4404 priv->net_dev->name);
4405 bd_queue_free(priv, &priv->tx_queue);
4406 return -ENOMEM;
4407 }
4408
4409 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4410 v = pci_alloc_consistent(priv->pci_dev,
4411 sizeof(struct ipw2100_data_header),
4412 &p);
4413 if (!v) {
4414 printk(KERN_ERR DRV_NAME
4415 ": %s: PCI alloc failed for tx " "buffers.\n",
4416 priv->net_dev->name);
4417 err = -ENOMEM;
4418 break;
4419 }
4420
4421 priv->tx_buffers[i].type = DATA;
4422 priv->tx_buffers[i].info.d_struct.data =
4423 (struct ipw2100_data_header *)v;
4424 priv->tx_buffers[i].info.d_struct.data_phys = p;
4425 priv->tx_buffers[i].info.d_struct.txb = NULL;
4426 }
4427
4428 if (i == TX_PENDED_QUEUE_LENGTH)
4429 return 0;
4430
4431 for (j = 0; j < i; j++) {
4432 pci_free_consistent(priv->pci_dev,
4433 sizeof(struct ipw2100_data_header),
4434 priv->tx_buffers[j].info.d_struct.data,
4435 priv->tx_buffers[j].info.d_struct.
4436 data_phys);
4437 }
4438
4439 kfree(priv->tx_buffers);
4440 priv->tx_buffers = NULL;
4441
4442 return err;
4443 }
4444
4445 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4446 {
4447 int i;
4448
4449 IPW_DEBUG_INFO("enter\n");
4450
4451 /*
4452 * reinitialize packet info lists
4453 */
4454 INIT_LIST_HEAD(&priv->fw_pend_list);
4455 INIT_STAT(&priv->fw_pend_stat);
4456
4457 /*
4458 * reinitialize lists
4459 */
4460 INIT_LIST_HEAD(&priv->tx_pend_list);
4461 INIT_LIST_HEAD(&priv->tx_free_list);
4462 INIT_STAT(&priv->tx_pend_stat);
4463 INIT_STAT(&priv->tx_free_stat);
4464
4465 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4466 /* We simply drop any SKBs that have been queued for
4467 * transmit */
4468 if (priv->tx_buffers[i].info.d_struct.txb) {
4469 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4470 txb);
4471 priv->tx_buffers[i].info.d_struct.txb = NULL;
4472 }
4473
4474 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4475 }
4476
4477 SET_STAT(&priv->tx_free_stat, i);
4478
4479 priv->tx_queue.oldest = 0;
4480 priv->tx_queue.available = priv->tx_queue.entries;
4481 priv->tx_queue.next = 0;
4482 INIT_STAT(&priv->txq_stat);
4483 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4484
4485 bd_queue_initialize(priv, &priv->tx_queue,
4486 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4487 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4488 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4489 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4490
4491 IPW_DEBUG_INFO("exit\n");
4492
4493 }
4494
4495 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4496 {
4497 int i;
4498
4499 IPW_DEBUG_INFO("enter\n");
4500
4501 bd_queue_free(priv, &priv->tx_queue);
4502
4503 if (!priv->tx_buffers)
4504 return;
4505
4506 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4507 if (priv->tx_buffers[i].info.d_struct.txb) {
4508 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4509 txb);
4510 priv->tx_buffers[i].info.d_struct.txb = NULL;
4511 }
4512 if (priv->tx_buffers[i].info.d_struct.data)
4513 pci_free_consistent(priv->pci_dev,
4514 sizeof(struct ipw2100_data_header),
4515 priv->tx_buffers[i].info.d_struct.
4516 data,
4517 priv->tx_buffers[i].info.d_struct.
4518 data_phys);
4519 }
4520
4521 kfree(priv->tx_buffers);
4522 priv->tx_buffers = NULL;
4523
4524 IPW_DEBUG_INFO("exit\n");
4525 }
4526
4527 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4528 {
4529 int i, j, err = -EINVAL;
4530
4531 IPW_DEBUG_INFO("enter\n");
4532
4533 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4534 if (err) {
4535 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4536 return err;
4537 }
4538
4539 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4540 if (err) {
4541 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4542 bd_queue_free(priv, &priv->rx_queue);
4543 return err;
4544 }
4545
4546 /*
4547 * allocate packets
4548 */
4549 priv->rx_buffers = (struct ipw2100_rx_packet *)
4550 kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4551 GFP_KERNEL);
4552 if (!priv->rx_buffers) {
4553 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4554
4555 bd_queue_free(priv, &priv->rx_queue);
4556
4557 status_queue_free(priv);
4558
4559 return -ENOMEM;
4560 }
4561
4562 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4563 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4564
4565 err = ipw2100_alloc_skb(priv, packet);
4566 if (unlikely(err)) {
4567 err = -ENOMEM;
4568 break;
4569 }
4570
4571 /* The BD holds the cache aligned address */
4572 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4573 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4574 priv->status_queue.drv[i].status_fields = 0;
4575 }
4576
4577 if (i == RX_QUEUE_LENGTH)
4578 return 0;
4579
4580 for (j = 0; j < i; j++) {
4581 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4582 sizeof(struct ipw2100_rx_packet),
4583 PCI_DMA_FROMDEVICE);
4584 dev_kfree_skb(priv->rx_buffers[j].skb);
4585 }
4586
4587 kfree(priv->rx_buffers);
4588 priv->rx_buffers = NULL;
4589
4590 bd_queue_free(priv, &priv->rx_queue);
4591
4592 status_queue_free(priv);
4593
4594 return err;
4595 }
4596
4597 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4598 {
4599 IPW_DEBUG_INFO("enter\n");
4600
4601 priv->rx_queue.oldest = 0;
4602 priv->rx_queue.available = priv->rx_queue.entries - 1;
4603 priv->rx_queue.next = priv->rx_queue.entries - 1;
4604
4605 INIT_STAT(&priv->rxq_stat);
4606 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4607
4608 bd_queue_initialize(priv, &priv->rx_queue,
4609 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4610 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4611 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4612 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4613
4614 /* set up the status queue */
4615 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4616 priv->status_queue.nic);
4617
4618 IPW_DEBUG_INFO("exit\n");
4619 }
4620
4621 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4622 {
4623 int i;
4624
4625 IPW_DEBUG_INFO("enter\n");
4626
4627 bd_queue_free(priv, &priv->rx_queue);
4628 status_queue_free(priv);
4629
4630 if (!priv->rx_buffers)
4631 return;
4632
4633 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4634 if (priv->rx_buffers[i].rxp) {
4635 pci_unmap_single(priv->pci_dev,
4636 priv->rx_buffers[i].dma_addr,
4637 sizeof(struct ipw2100_rx),
4638 PCI_DMA_FROMDEVICE);
4639 dev_kfree_skb(priv->rx_buffers[i].skb);
4640 }
4641 }
4642
4643 kfree(priv->rx_buffers);
4644 priv->rx_buffers = NULL;
4645
4646 IPW_DEBUG_INFO("exit\n");
4647 }
4648
4649 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4650 {
4651 u32 length = ETH_ALEN;
4652 u8 mac[ETH_ALEN];
4653
4654 int err;
4655
4656 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4657 if (err) {
4658 IPW_DEBUG_INFO("MAC address read failed\n");
4659 return -EIO;
4660 }
4661 IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4662 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4663
4664 memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4665
4666 return 0;
4667 }
4668
4669 /********************************************************************
4670 *
4671 * Firmware Commands
4672 *
4673 ********************************************************************/
4674
4675 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4676 {
4677 struct host_command cmd = {
4678 .host_command = ADAPTER_ADDRESS,
4679 .host_command_sequence = 0,
4680 .host_command_length = ETH_ALEN
4681 };
4682 int err;
4683
4684 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4685
4686 IPW_DEBUG_INFO("enter\n");
4687
4688 if (priv->config & CFG_CUSTOM_MAC) {
4689 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4690 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4691 } else
4692 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4693 ETH_ALEN);
4694
4695 err = ipw2100_hw_send_command(priv, &cmd);
4696
4697 IPW_DEBUG_INFO("exit\n");
4698 return err;
4699 }
4700
4701 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4702 int batch_mode)
4703 {
4704 struct host_command cmd = {
4705 .host_command = PORT_TYPE,
4706 .host_command_sequence = 0,
4707 .host_command_length = sizeof(u32)
4708 };
4709 int err;
4710
4711 switch (port_type) {
4712 case IW_MODE_INFRA:
4713 cmd.host_command_parameters[0] = IPW_BSS;
4714 break;
4715 case IW_MODE_ADHOC:
4716 cmd.host_command_parameters[0] = IPW_IBSS;
4717 break;
4718 }
4719
4720 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4721 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4722
4723 if (!batch_mode) {
4724 err = ipw2100_disable_adapter(priv);
4725 if (err) {
4726 printk(KERN_ERR DRV_NAME
4727 ": %s: Could not disable adapter %d\n",
4728 priv->net_dev->name, err);
4729 return err;
4730 }
4731 }
4732
4733 /* send cmd to firmware */
4734 err = ipw2100_hw_send_command(priv, &cmd);
4735
4736 if (!batch_mode)
4737 ipw2100_enable_adapter(priv);
4738
4739 return err;
4740 }
4741
4742 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4743 int batch_mode)
4744 {
4745 struct host_command cmd = {
4746 .host_command = CHANNEL,
4747 .host_command_sequence = 0,
4748 .host_command_length = sizeof(u32)
4749 };
4750 int err;
4751
4752 cmd.host_command_parameters[0] = channel;
4753
4754 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4755
4756 /* If BSS then we don't support channel selection */
4757 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4758 return 0;
4759
4760 if ((channel != 0) &&
4761 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4762 return -EINVAL;
4763
4764 if (!batch_mode) {
4765 err = ipw2100_disable_adapter(priv);
4766 if (err)
4767 return err;
4768 }
4769
4770 err = ipw2100_hw_send_command(priv, &cmd);
4771 if (err) {
4772 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4773 return err;
4774 }
4775
4776 if (channel)
4777 priv->config |= CFG_STATIC_CHANNEL;
4778 else
4779 priv->config &= ~CFG_STATIC_CHANNEL;
4780
4781 priv->channel = channel;
4782
4783 if (!batch_mode) {
4784 err = ipw2100_enable_adapter(priv);
4785 if (err)
4786 return err;
4787 }
4788
4789 return 0;
4790 }
4791
4792 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4793 {
4794 struct host_command cmd = {
4795 .host_command = SYSTEM_CONFIG,
4796 .host_command_sequence = 0,
4797 .host_command_length = 12,
4798 };
4799 u32 ibss_mask, len = sizeof(u32);
4800 int err;
4801
4802 /* Set system configuration */
4803
4804 if (!batch_mode) {
4805 err = ipw2100_disable_adapter(priv);
4806 if (err)
4807 return err;
4808 }
4809
4810 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4811 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4812
4813 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4814 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4815
4816 if (!(priv->config & CFG_LONG_PREAMBLE))
4817 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4818
4819 err = ipw2100_get_ordinal(priv,
4820 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4821 &ibss_mask, &len);
4822 if (err)
4823 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4824
4825 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4826 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4827
4828 /* 11b only */
4829 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4830
4831 err = ipw2100_hw_send_command(priv, &cmd);
4832 if (err)
4833 return err;
4834
4835 /* If IPv6 is configured in the kernel then we don't want to filter out all
4836 * of the multicast packets as IPv6 needs some. */
4837 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4838 cmd.host_command = ADD_MULTICAST;
4839 cmd.host_command_sequence = 0;
4840 cmd.host_command_length = 0;
4841
4842 ipw2100_hw_send_command(priv, &cmd);
4843 #endif
4844 if (!batch_mode) {
4845 err = ipw2100_enable_adapter(priv);
4846 if (err)
4847 return err;
4848 }
4849
4850 return 0;
4851 }
4852
4853 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4854 int batch_mode)
4855 {
4856 struct host_command cmd = {
4857 .host_command = BASIC_TX_RATES,
4858 .host_command_sequence = 0,
4859 .host_command_length = 4
4860 };
4861 int err;
4862
4863 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4864
4865 if (!batch_mode) {
4866 err = ipw2100_disable_adapter(priv);
4867 if (err)
4868 return err;
4869 }
4870
4871 /* Set BASIC TX Rate first */
4872 ipw2100_hw_send_command(priv, &cmd);
4873
4874 /* Set TX Rate */
4875 cmd.host_command = TX_RATES;
4876 ipw2100_hw_send_command(priv, &cmd);
4877
4878 /* Set MSDU TX Rate */
4879 cmd.host_command = MSDU_TX_RATES;
4880 ipw2100_hw_send_command(priv, &cmd);
4881
4882 if (!batch_mode) {
4883 err = ipw2100_enable_adapter(priv);
4884 if (err)
4885 return err;
4886 }
4887
4888 priv->tx_rates = rate;
4889
4890 return 0;
4891 }
4892
4893 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4894 {
4895 struct host_command cmd = {
4896 .host_command = POWER_MODE,
4897 .host_command_sequence = 0,
4898 .host_command_length = 4
4899 };
4900 int err;
4901
4902 cmd.host_command_parameters[0] = power_level;
4903
4904 err = ipw2100_hw_send_command(priv, &cmd);
4905 if (err)
4906 return err;
4907
4908 if (power_level == IPW_POWER_MODE_CAM)
4909 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4910 else
4911 priv->power_mode = IPW_POWER_ENABLED | power_level;
4912
4913 #ifdef CONFIG_IPW2100_TX_POWER
4914 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4915 /* Set beacon interval */
4916 cmd.host_command = TX_POWER_INDEX;
4917 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4918
4919 err = ipw2100_hw_send_command(priv, &cmd);
4920 if (err)
4921 return err;
4922 }
4923 #endif
4924
4925 return 0;
4926 }
4927
4928 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4929 {
4930 struct host_command cmd = {
4931 .host_command = RTS_THRESHOLD,
4932 .host_command_sequence = 0,
4933 .host_command_length = 4
4934 };
4935 int err;
4936
4937 if (threshold & RTS_DISABLED)
4938 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4939 else
4940 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4941
4942 err = ipw2100_hw_send_command(priv, &cmd);
4943 if (err)
4944 return err;
4945
4946 priv->rts_threshold = threshold;
4947
4948 return 0;
4949 }
4950
4951 #if 0
4952 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4953 u32 threshold, int batch_mode)
4954 {
4955 struct host_command cmd = {
4956 .host_command = FRAG_THRESHOLD,
4957 .host_command_sequence = 0,
4958 .host_command_length = 4,
4959 .host_command_parameters[0] = 0,
4960 };
4961 int err;
4962
4963 if (!batch_mode) {
4964 err = ipw2100_disable_adapter(priv);
4965 if (err)
4966 return err;
4967 }
4968
4969 if (threshold == 0)
4970 threshold = DEFAULT_FRAG_THRESHOLD;
4971 else {
4972 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4973 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4974 }
4975
4976 cmd.host_command_parameters[0] = threshold;
4977
4978 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4979
4980 err = ipw2100_hw_send_command(priv, &cmd);
4981
4982 if (!batch_mode)
4983 ipw2100_enable_adapter(priv);
4984
4985 if (!err)
4986 priv->frag_threshold = threshold;
4987
4988 return err;
4989 }
4990 #endif
4991
4992 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4993 {
4994 struct host_command cmd = {
4995 .host_command = SHORT_RETRY_LIMIT,
4996 .host_command_sequence = 0,
4997 .host_command_length = 4
4998 };
4999 int err;
5000
5001 cmd.host_command_parameters[0] = retry;
5002
5003 err = ipw2100_hw_send_command(priv, &cmd);
5004 if (err)
5005 return err;
5006
5007 priv->short_retry_limit = retry;
5008
5009 return 0;
5010 }
5011
5012 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5013 {
5014 struct host_command cmd = {
5015 .host_command = LONG_RETRY_LIMIT,
5016 .host_command_sequence = 0,
5017 .host_command_length = 4
5018 };
5019 int err;
5020
5021 cmd.host_command_parameters[0] = retry;
5022
5023 err = ipw2100_hw_send_command(priv, &cmd);
5024 if (err)
5025 return err;
5026
5027 priv->long_retry_limit = retry;
5028
5029 return 0;
5030 }
5031
5032 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5033 int batch_mode)
5034 {
5035 struct host_command cmd = {
5036 .host_command = MANDATORY_BSSID,
5037 .host_command_sequence = 0,
5038 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5039 };
5040 int err;
5041
5042 #ifdef CONFIG_IPW2100_DEBUG
5043 if (bssid != NULL)
5044 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
5045 bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
5046 bssid[5]);
5047 else
5048 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5049 #endif
5050 /* if BSSID is empty then we disable mandatory bssid mode */
5051 if (bssid != NULL)
5052 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5053
5054 if (!batch_mode) {
5055 err = ipw2100_disable_adapter(priv);
5056 if (err)
5057 return err;
5058 }
5059
5060 err = ipw2100_hw_send_command(priv, &cmd);
5061
5062 if (!batch_mode)
5063 ipw2100_enable_adapter(priv);
5064
5065 return err;
5066 }
5067
5068 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5069 {
5070 struct host_command cmd = {
5071 .host_command = DISASSOCIATION_BSSID,
5072 .host_command_sequence = 0,
5073 .host_command_length = ETH_ALEN
5074 };
5075 int err;
5076 int len;
5077
5078 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5079
5080 len = ETH_ALEN;
5081 /* The Firmware currently ignores the BSSID and just disassociates from
5082 * the currently associated AP -- but in the off chance that a future
5083 * firmware does use the BSSID provided here, we go ahead and try and
5084 * set it to the currently associated AP's BSSID */
5085 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5086
5087 err = ipw2100_hw_send_command(priv, &cmd);
5088
5089 return err;
5090 }
5091
5092 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5093 struct ipw2100_wpa_assoc_frame *, int)
5094 __attribute__ ((unused));
5095
5096 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5097 struct ipw2100_wpa_assoc_frame *wpa_frame,
5098 int batch_mode)
5099 {
5100 struct host_command cmd = {
5101 .host_command = SET_WPA_IE,
5102 .host_command_sequence = 0,
5103 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5104 };
5105 int err;
5106
5107 IPW_DEBUG_HC("SET_WPA_IE\n");
5108
5109 if (!batch_mode) {
5110 err = ipw2100_disable_adapter(priv);
5111 if (err)
5112 return err;
5113 }
5114
5115 memcpy(cmd.host_command_parameters, wpa_frame,
5116 sizeof(struct ipw2100_wpa_assoc_frame));
5117
5118 err = ipw2100_hw_send_command(priv, &cmd);
5119
5120 if (!batch_mode) {
5121 if (ipw2100_enable_adapter(priv))
5122 err = -EIO;
5123 }
5124
5125 return err;
5126 }
5127
5128 struct security_info_params {
5129 u32 allowed_ciphers;
5130 u16 version;
5131 u8 auth_mode;
5132 u8 replay_counters_number;
5133 u8 unicast_using_group;
5134 } __attribute__ ((packed));
5135
5136 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5137 int auth_mode,
5138 int security_level,
5139 int unicast_using_group,
5140 int batch_mode)
5141 {
5142 struct host_command cmd = {
5143 .host_command = SET_SECURITY_INFORMATION,
5144 .host_command_sequence = 0,
5145 .host_command_length = sizeof(struct security_info_params)
5146 };
5147 struct security_info_params *security =
5148 (struct security_info_params *)&cmd.host_command_parameters;
5149 int err;
5150 memset(security, 0, sizeof(*security));
5151
5152 /* If shared key AP authentication is turned on, then we need to
5153 * configure the firmware to try and use it.
5154 *
5155 * Actual data encryption/decryption is handled by the host. */
5156 security->auth_mode = auth_mode;
5157 security->unicast_using_group = unicast_using_group;
5158
5159 switch (security_level) {
5160 default:
5161 case SEC_LEVEL_0:
5162 security->allowed_ciphers = IPW_NONE_CIPHER;
5163 break;
5164 case SEC_LEVEL_1:
5165 security->allowed_ciphers = IPW_WEP40_CIPHER |
5166 IPW_WEP104_CIPHER;
5167 break;
5168 case SEC_LEVEL_2:
5169 security->allowed_ciphers = IPW_WEP40_CIPHER |
5170 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5171 break;
5172 case SEC_LEVEL_2_CKIP:
5173 security->allowed_ciphers = IPW_WEP40_CIPHER |
5174 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5175 break;
5176 case SEC_LEVEL_3:
5177 security->allowed_ciphers = IPW_WEP40_CIPHER |
5178 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5179 break;
5180 }
5181
5182 IPW_DEBUG_HC
5183 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5184 security->auth_mode, security->allowed_ciphers, security_level);
5185
5186 security->replay_counters_number = 0;
5187
5188 if (!batch_mode) {
5189 err = ipw2100_disable_adapter(priv);
5190 if (err)
5191 return err;
5192 }
5193
5194 err = ipw2100_hw_send_command(priv, &cmd);
5195
5196 if (!batch_mode)
5197 ipw2100_enable_adapter(priv);
5198
5199 return err;
5200 }
5201
5202 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5203 {
5204 struct host_command cmd = {
5205 .host_command = TX_POWER_INDEX,
5206 .host_command_sequence = 0,
5207 .host_command_length = 4
5208 };
5209 int err = 0;
5210 u32 tmp = tx_power;
5211
5212 if (tx_power != IPW_TX_POWER_DEFAULT)
5213 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5214 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5215
5216 cmd.host_command_parameters[0] = tmp;
5217
5218 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5219 err = ipw2100_hw_send_command(priv, &cmd);
5220 if (!err)
5221 priv->tx_power = tx_power;
5222
5223 return 0;
5224 }
5225
5226 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5227 u32 interval, int batch_mode)
5228 {
5229 struct host_command cmd = {
5230 .host_command = BEACON_INTERVAL,
5231 .host_command_sequence = 0,
5232 .host_command_length = 4
5233 };
5234 int err;
5235
5236 cmd.host_command_parameters[0] = interval;
5237
5238 IPW_DEBUG_INFO("enter\n");
5239
5240 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5241 if (!batch_mode) {
5242 err = ipw2100_disable_adapter(priv);
5243 if (err)
5244 return err;
5245 }
5246
5247 ipw2100_hw_send_command(priv, &cmd);
5248
5249 if (!batch_mode) {
5250 err = ipw2100_enable_adapter(priv);
5251 if (err)
5252 return err;
5253 }
5254 }
5255
5256 IPW_DEBUG_INFO("exit\n");
5257
5258 return 0;
5259 }
5260
5261 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5262 {
5263 ipw2100_tx_initialize(priv);
5264 ipw2100_rx_initialize(priv);
5265 ipw2100_msg_initialize(priv);
5266 }
5267
5268 void ipw2100_queues_free(struct ipw2100_priv *priv)
5269 {
5270 ipw2100_tx_free(priv);
5271 ipw2100_rx_free(priv);
5272 ipw2100_msg_free(priv);
5273 }
5274
5275 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5276 {
5277 if (ipw2100_tx_allocate(priv) ||
5278 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5279 goto fail;
5280
5281 return 0;
5282
5283 fail:
5284 ipw2100_tx_free(priv);
5285 ipw2100_rx_free(priv);
5286 ipw2100_msg_free(priv);
5287 return -ENOMEM;
5288 }
5289
5290 #define IPW_PRIVACY_CAPABLE 0x0008
5291
5292 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5293 int batch_mode)
5294 {
5295 struct host_command cmd = {
5296 .host_command = WEP_FLAGS,
5297 .host_command_sequence = 0,
5298 .host_command_length = 4
5299 };
5300 int err;
5301
5302 cmd.host_command_parameters[0] = flags;
5303
5304 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5305
5306 if (!batch_mode) {
5307 err = ipw2100_disable_adapter(priv);
5308 if (err) {
5309 printk(KERN_ERR DRV_NAME
5310 ": %s: Could not disable adapter %d\n",
5311 priv->net_dev->name, err);
5312 return err;
5313 }
5314 }
5315
5316 /* send cmd to firmware */
5317 err = ipw2100_hw_send_command(priv, &cmd);
5318
5319 if (!batch_mode)
5320 ipw2100_enable_adapter(priv);
5321
5322 return err;
5323 }
5324
5325 struct ipw2100_wep_key {
5326 u8 idx;
5327 u8 len;
5328 u8 key[13];
5329 };
5330
5331 /* Macros to ease up priting WEP keys */
5332 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5333 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5334 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5335 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5336
5337 /**
5338 * Set a the wep key
5339 *
5340 * @priv: struct to work on
5341 * @idx: index of the key we want to set
5342 * @key: ptr to the key data to set
5343 * @len: length of the buffer at @key
5344 * @batch_mode: FIXME perform the operation in batch mode, not
5345 * disabling the device.
5346 *
5347 * @returns 0 if OK, < 0 errno code on error.
5348 *
5349 * Fill out a command structure with the new wep key, length an
5350 * index and send it down the wire.
5351 */
5352 static int ipw2100_set_key(struct ipw2100_priv *priv,
5353 int idx, char *key, int len, int batch_mode)
5354 {
5355 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5356 struct host_command cmd = {
5357 .host_command = WEP_KEY_INFO,
5358 .host_command_sequence = 0,
5359 .host_command_length = sizeof(struct ipw2100_wep_key),
5360 };
5361 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5362 int err;
5363
5364 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5365 idx, keylen, len);
5366
5367 /* NOTE: We don't check cached values in case the firmware was reset
5368 * or some other problem is occurring. If the user is setting the key,
5369 * then we push the change */
5370
5371 wep_key->idx = idx;
5372 wep_key->len = keylen;
5373
5374 if (keylen) {
5375 memcpy(wep_key->key, key, len);
5376 memset(wep_key->key + len, 0, keylen - len);
5377 }
5378
5379 /* Will be optimized out on debug not being configured in */
5380 if (keylen == 0)
5381 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5382 priv->net_dev->name, wep_key->idx);
5383 else if (keylen == 5)
5384 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5385 priv->net_dev->name, wep_key->idx, wep_key->len,
5386 WEP_STR_64(wep_key->key));
5387 else
5388 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5389 "\n",
5390 priv->net_dev->name, wep_key->idx, wep_key->len,
5391 WEP_STR_128(wep_key->key));
5392
5393 if (!batch_mode) {
5394 err = ipw2100_disable_adapter(priv);
5395 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5396 if (err) {
5397 printk(KERN_ERR DRV_NAME
5398 ": %s: Could not disable adapter %d\n",
5399 priv->net_dev->name, err);
5400 return err;
5401 }
5402 }
5403
5404 /* send cmd to firmware */
5405 err = ipw2100_hw_send_command(priv, &cmd);
5406
5407 if (!batch_mode) {
5408 int err2 = ipw2100_enable_adapter(priv);
5409 if (err == 0)
5410 err = err2;
5411 }
5412 return err;
5413 }
5414
5415 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5416 int idx, int batch_mode)
5417 {
5418 struct host_command cmd = {
5419 .host_command = WEP_KEY_INDEX,
5420 .host_command_sequence = 0,
5421 .host_command_length = 4,
5422 .host_command_parameters = {idx},
5423 };
5424 int err;
5425
5426 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5427
5428 if (idx < 0 || idx > 3)
5429 return -EINVAL;
5430
5431 if (!batch_mode) {
5432 err = ipw2100_disable_adapter(priv);
5433 if (err) {
5434 printk(KERN_ERR DRV_NAME
5435 ": %s: Could not disable adapter %d\n",
5436 priv->net_dev->name, err);
5437 return err;
5438 }
5439 }
5440
5441 /* send cmd to firmware */
5442 err = ipw2100_hw_send_command(priv, &cmd);
5443
5444 if (!batch_mode)
5445 ipw2100_enable_adapter(priv);
5446
5447 return err;
5448 }
5449
5450 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5451 {
5452 int i, err, auth_mode, sec_level, use_group;
5453
5454 if (!(priv->status & STATUS_RUNNING))
5455 return 0;
5456
5457 if (!batch_mode) {
5458 err = ipw2100_disable_adapter(priv);
5459 if (err)
5460 return err;
5461 }
5462
5463 if (!priv->ieee->sec.enabled) {
5464 err =
5465 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5466 SEC_LEVEL_0, 0, 1);
5467 } else {
5468 auth_mode = IPW_AUTH_OPEN;
5469 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5470 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5471 auth_mode = IPW_AUTH_SHARED;
5472 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5473 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5474 }
5475
5476 sec_level = SEC_LEVEL_0;
5477 if (priv->ieee->sec.flags & SEC_LEVEL)
5478 sec_level = priv->ieee->sec.level;
5479
5480 use_group = 0;
5481 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5482 use_group = priv->ieee->sec.unicast_uses_group;
5483
5484 err =
5485 ipw2100_set_security_information(priv, auth_mode, sec_level,
5486 use_group, 1);
5487 }
5488
5489 if (err)
5490 goto exit;
5491
5492 if (priv->ieee->sec.enabled) {
5493 for (i = 0; i < 4; i++) {
5494 if (!(priv->ieee->sec.flags & (1 << i))) {
5495 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5496 priv->ieee->sec.key_sizes[i] = 0;
5497 } else {
5498 err = ipw2100_set_key(priv, i,
5499 priv->ieee->sec.keys[i],
5500 priv->ieee->sec.
5501 key_sizes[i], 1);
5502 if (err)
5503 goto exit;
5504 }
5505 }
5506
5507 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5508 }
5509
5510 /* Always enable privacy so the Host can filter WEP packets if
5511 * encrypted data is sent up */
5512 err =
5513 ipw2100_set_wep_flags(priv,
5514 priv->ieee->sec.
5515 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5516 if (err)
5517 goto exit;
5518
5519 priv->status &= ~STATUS_SECURITY_UPDATED;
5520
5521 exit:
5522 if (!batch_mode)
5523 ipw2100_enable_adapter(priv);
5524
5525 return err;
5526 }
5527
5528 static void ipw2100_security_work(struct ipw2100_priv *priv)
5529 {
5530 /* If we happen to have reconnected before we get a chance to
5531 * process this, then update the security settings--which causes
5532 * a disassociation to occur */
5533 if (!(priv->status & STATUS_ASSOCIATED) &&
5534 priv->status & STATUS_SECURITY_UPDATED)
5535 ipw2100_configure_security(priv, 0);
5536 }
5537
5538 static void shim__set_security(struct net_device *dev,
5539 struct ieee80211_security *sec)
5540 {
5541 struct ipw2100_priv *priv = ieee80211_priv(dev);
5542 int i, force_update = 0;
5543
5544 mutex_lock(&priv->action_mutex);
5545 if (!(priv->status & STATUS_INITIALIZED))
5546 goto done;
5547
5548 for (i = 0; i < 4; i++) {
5549 if (sec->flags & (1 << i)) {
5550 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5551 if (sec->key_sizes[i] == 0)
5552 priv->ieee->sec.flags &= ~(1 << i);
5553 else
5554 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5555 sec->key_sizes[i]);
5556 if (sec->level == SEC_LEVEL_1) {
5557 priv->ieee->sec.flags |= (1 << i);
5558 priv->status |= STATUS_SECURITY_UPDATED;
5559 } else
5560 priv->ieee->sec.flags &= ~(1 << i);
5561 }
5562 }
5563
5564 if ((sec->flags & SEC_ACTIVE_KEY) &&
5565 priv->ieee->sec.active_key != sec->active_key) {
5566 if (sec->active_key <= 3) {
5567 priv->ieee->sec.active_key = sec->active_key;
5568 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5569 } else
5570 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5571
5572 priv->status |= STATUS_SECURITY_UPDATED;
5573 }
5574
5575 if ((sec->flags & SEC_AUTH_MODE) &&
5576 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5577 priv->ieee->sec.auth_mode = sec->auth_mode;
5578 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5579 priv->status |= STATUS_SECURITY_UPDATED;
5580 }
5581
5582 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5583 priv->ieee->sec.flags |= SEC_ENABLED;
5584 priv->ieee->sec.enabled = sec->enabled;
5585 priv->status |= STATUS_SECURITY_UPDATED;
5586 force_update = 1;
5587 }
5588
5589 if (sec->flags & SEC_ENCRYPT)
5590 priv->ieee->sec.encrypt = sec->encrypt;
5591
5592 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5593 priv->ieee->sec.level = sec->level;
5594 priv->ieee->sec.flags |= SEC_LEVEL;
5595 priv->status |= STATUS_SECURITY_UPDATED;
5596 }
5597
5598 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5599 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5600 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5601 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5602 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5603 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5604 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5605 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5606 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5607 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5608
5609 /* As a temporary work around to enable WPA until we figure out why
5610 * wpa_supplicant toggles the security capability of the driver, which
5611 * forces a disassocation with force_update...
5612 *
5613 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5614 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5615 ipw2100_configure_security(priv, 0);
5616 done:
5617 mutex_unlock(&priv->action_mutex);
5618 }
5619
5620 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5621 {
5622 int err;
5623 int batch_mode = 1;
5624 u8 *bssid;
5625
5626 IPW_DEBUG_INFO("enter\n");
5627
5628 err = ipw2100_disable_adapter(priv);
5629 if (err)
5630 return err;
5631 #ifdef CONFIG_IPW2100_MONITOR
5632 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5633 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5634 if (err)
5635 return err;
5636
5637 IPW_DEBUG_INFO("exit\n");
5638
5639 return 0;
5640 }
5641 #endif /* CONFIG_IPW2100_MONITOR */
5642
5643 err = ipw2100_read_mac_address(priv);
5644 if (err)
5645 return -EIO;
5646
5647 err = ipw2100_set_mac_address(priv, batch_mode);
5648 if (err)
5649 return err;
5650
5651 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5652 if (err)
5653 return err;
5654
5655 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5656 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5657 if (err)
5658 return err;
5659 }
5660
5661 err = ipw2100_system_config(priv, batch_mode);
5662 if (err)
5663 return err;
5664
5665 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5666 if (err)
5667 return err;
5668
5669 /* Default to power mode OFF */
5670 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5671 if (err)
5672 return err;
5673
5674 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5675 if (err)
5676 return err;
5677
5678 if (priv->config & CFG_STATIC_BSSID)
5679 bssid = priv->bssid;
5680 else
5681 bssid = NULL;
5682 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5683 if (err)
5684 return err;
5685
5686 if (priv->config & CFG_STATIC_ESSID)
5687 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5688 batch_mode);
5689 else
5690 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5691 if (err)
5692 return err;
5693
5694 err = ipw2100_configure_security(priv, batch_mode);
5695 if (err)
5696 return err;
5697
5698 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5699 err =
5700 ipw2100_set_ibss_beacon_interval(priv,
5701 priv->beacon_interval,
5702 batch_mode);
5703 if (err)
5704 return err;
5705
5706 err = ipw2100_set_tx_power(priv, priv->tx_power);
5707 if (err)
5708 return err;
5709 }
5710
5711 /*
5712 err = ipw2100_set_fragmentation_threshold(
5713 priv, priv->frag_threshold, batch_mode);
5714 if (err)
5715 return err;
5716 */
5717
5718 IPW_DEBUG_INFO("exit\n");
5719
5720 return 0;
5721 }
5722
5723 /*************************************************************************
5724 *
5725 * EXTERNALLY CALLED METHODS
5726 *
5727 *************************************************************************/
5728
5729 /* This method is called by the network layer -- not to be confused with
5730 * ipw2100_set_mac_address() declared above called by this driver (and this
5731 * method as well) to talk to the firmware */
5732 static int ipw2100_set_address(struct net_device *dev, void *p)
5733 {
5734 struct ipw2100_priv *priv = ieee80211_priv(dev);
5735 struct sockaddr *addr = p;
5736 int err = 0;
5737
5738 if (!is_valid_ether_addr(addr->sa_data))
5739 return -EADDRNOTAVAIL;
5740
5741 mutex_lock(&priv->action_mutex);
5742
5743 priv->config |= CFG_CUSTOM_MAC;
5744 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5745
5746 err = ipw2100_set_mac_address(priv, 0);
5747 if (err)
5748 goto done;
5749
5750 priv->reset_backoff = 0;
5751 mutex_unlock(&priv->action_mutex);
5752 ipw2100_reset_adapter(priv);
5753 return 0;
5754
5755 done:
5756 mutex_unlock(&priv->action_mutex);
5757 return err;
5758 }
5759
5760 static int ipw2100_open(struct net_device *dev)
5761 {
5762 struct ipw2100_priv *priv = ieee80211_priv(dev);
5763 unsigned long flags;
5764 IPW_DEBUG_INFO("dev->open\n");
5765
5766 spin_lock_irqsave(&priv->low_lock, flags);
5767 if (priv->status & STATUS_ASSOCIATED) {
5768 netif_carrier_on(dev);
5769 netif_start_queue(dev);
5770 }
5771 spin_unlock_irqrestore(&priv->low_lock, flags);
5772
5773 return 0;
5774 }
5775
5776 static int ipw2100_close(struct net_device *dev)
5777 {
5778 struct ipw2100_priv *priv = ieee80211_priv(dev);
5779 unsigned long flags;
5780 struct list_head *element;
5781 struct ipw2100_tx_packet *packet;
5782
5783 IPW_DEBUG_INFO("enter\n");
5784
5785 spin_lock_irqsave(&priv->low_lock, flags);
5786
5787 if (priv->status & STATUS_ASSOCIATED)
5788 netif_carrier_off(dev);
5789 netif_stop_queue(dev);
5790
5791 /* Flush the TX queue ... */
5792 while (!list_empty(&priv->tx_pend_list)) {
5793 element = priv->tx_pend_list.next;
5794 packet = list_entry(element, struct ipw2100_tx_packet, list);
5795
5796 list_del(element);
5797 DEC_STAT(&priv->tx_pend_stat);
5798
5799 ieee80211_txb_free(packet->info.d_struct.txb);
5800 packet->info.d_struct.txb = NULL;
5801
5802 list_add_tail(element, &priv->tx_free_list);
5803 INC_STAT(&priv->tx_free_stat);
5804 }
5805 spin_unlock_irqrestore(&priv->low_lock, flags);
5806
5807 IPW_DEBUG_INFO("exit\n");
5808
5809 return 0;
5810 }
5811
5812 /*
5813 * TODO: Fix this function... its just wrong
5814 */
5815 static void ipw2100_tx_timeout(struct net_device *dev)
5816 {
5817 struct ipw2100_priv *priv = ieee80211_priv(dev);
5818
5819 priv->ieee->stats.tx_errors++;
5820
5821 #ifdef CONFIG_IPW2100_MONITOR
5822 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5823 return;
5824 #endif
5825
5826 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5827 dev->name);
5828 schedule_reset(priv);
5829 }
5830
5831 /*
5832 * TODO: reimplement it so that it reads statistics
5833 * from the adapter using ordinal tables
5834 * instead of/in addition to collecting them
5835 * in the driver
5836 */
5837 static struct net_device_stats *ipw2100_stats(struct net_device *dev)
5838 {
5839 struct ipw2100_priv *priv = ieee80211_priv(dev);
5840
5841 return &priv->ieee->stats;
5842 }
5843
5844 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5845 {
5846 /* This is called when wpa_supplicant loads and closes the driver
5847 * interface. */
5848 priv->ieee->wpa_enabled = value;
5849 return 0;
5850 }
5851
5852 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5853 {
5854
5855 struct ieee80211_device *ieee = priv->ieee;
5856 struct ieee80211_security sec = {
5857 .flags = SEC_AUTH_MODE,
5858 };
5859 int ret = 0;
5860
5861 if (value & IW_AUTH_ALG_SHARED_KEY) {
5862 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5863 ieee->open_wep = 0;
5864 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5865 sec.auth_mode = WLAN_AUTH_OPEN;
5866 ieee->open_wep = 1;
5867 } else if (value & IW_AUTH_ALG_LEAP) {
5868 sec.auth_mode = WLAN_AUTH_LEAP;
5869 ieee->open_wep = 1;
5870 } else
5871 return -EINVAL;
5872
5873 if (ieee->set_security)
5874 ieee->set_security(ieee->dev, &sec);
5875 else
5876 ret = -EOPNOTSUPP;
5877
5878 return ret;
5879 }
5880
5881 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5882 char *wpa_ie, int wpa_ie_len)
5883 {
5884
5885 struct ipw2100_wpa_assoc_frame frame;
5886
5887 frame.fixed_ie_mask = 0;
5888
5889 /* copy WPA IE */
5890 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5891 frame.var_ie_len = wpa_ie_len;
5892
5893 /* make sure WPA is enabled */
5894 ipw2100_wpa_enable(priv, 1);
5895 ipw2100_set_wpa_ie(priv, &frame, 0);
5896 }
5897
5898 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5899 struct ethtool_drvinfo *info)
5900 {
5901 struct ipw2100_priv *priv = ieee80211_priv(dev);
5902 char fw_ver[64], ucode_ver[64];
5903
5904 strcpy(info->driver, DRV_NAME);
5905 strcpy(info->version, DRV_VERSION);
5906
5907 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5908 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5909
5910 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5911 fw_ver, priv->eeprom_version, ucode_ver);
5912
5913 strcpy(info->bus_info, pci_name(priv->pci_dev));
5914 }
5915
5916 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5917 {
5918 struct ipw2100_priv *priv = ieee80211_priv(dev);
5919 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5920 }
5921
5922 static const struct ethtool_ops ipw2100_ethtool_ops = {
5923 .get_link = ipw2100_ethtool_get_link,
5924 .get_drvinfo = ipw_ethtool_get_drvinfo,
5925 };
5926
5927 static void ipw2100_hang_check(void *adapter)
5928 {
5929 struct ipw2100_priv *priv = adapter;
5930 unsigned long flags;
5931 u32 rtc = 0xa5a5a5a5;
5932 u32 len = sizeof(rtc);
5933 int restart = 0;
5934
5935 spin_lock_irqsave(&priv->low_lock, flags);
5936
5937 if (priv->fatal_error != 0) {
5938 /* If fatal_error is set then we need to restart */
5939 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5940 priv->net_dev->name);
5941
5942 restart = 1;
5943 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5944 (rtc == priv->last_rtc)) {
5945 /* Check if firmware is hung */
5946 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5947 priv->net_dev->name);
5948
5949 restart = 1;
5950 }
5951
5952 if (restart) {
5953 /* Kill timer */
5954 priv->stop_hang_check = 1;
5955 priv->hangs++;
5956
5957 /* Restart the NIC */
5958 schedule_reset(priv);
5959 }
5960
5961 priv->last_rtc = rtc;
5962
5963 if (!priv->stop_hang_check)
5964 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5965
5966 spin_unlock_irqrestore(&priv->low_lock, flags);
5967 }
5968
5969 static void ipw2100_rf_kill(void *adapter)
5970 {
5971 struct ipw2100_priv *priv = adapter;
5972 unsigned long flags;
5973
5974 spin_lock_irqsave(&priv->low_lock, flags);
5975
5976 if (rf_kill_active(priv)) {
5977 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5978 if (!priv->stop_rf_kill)
5979 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
5980 goto exit_unlock;
5981 }
5982
5983 /* RF Kill is now disabled, so bring the device back up */
5984
5985 if (!(priv->status & STATUS_RF_KILL_MASK)) {
5986 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5987 "device\n");
5988 schedule_reset(priv);
5989 } else
5990 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
5991 "enabled\n");
5992
5993 exit_unlock:
5994 spin_unlock_irqrestore(&priv->low_lock, flags);
5995 }
5996
5997 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
5998
5999 /* Look into using netdev destructor to shutdown ieee80211? */
6000
6001 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6002 void __iomem * base_addr,
6003 unsigned long mem_start,
6004 unsigned long mem_len)
6005 {
6006 struct ipw2100_priv *priv;
6007 struct net_device *dev;
6008
6009 dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6010 if (!dev)
6011 return NULL;
6012 priv = ieee80211_priv(dev);
6013 priv->ieee = netdev_priv(dev);
6014 priv->pci_dev = pci_dev;
6015 priv->net_dev = dev;
6016
6017 priv->ieee->hard_start_xmit = ipw2100_tx;
6018 priv->ieee->set_security = shim__set_security;
6019
6020 priv->ieee->perfect_rssi = -20;
6021 priv->ieee->worst_rssi = -85;
6022
6023 dev->open = ipw2100_open;
6024 dev->stop = ipw2100_close;
6025 dev->init = ipw2100_net_init;
6026 dev->get_stats = ipw2100_stats;
6027 dev->ethtool_ops = &ipw2100_ethtool_ops;
6028 dev->tx_timeout = ipw2100_tx_timeout;
6029 dev->wireless_handlers = &ipw2100_wx_handler_def;
6030 priv->wireless_data.ieee80211 = priv->ieee;
6031 dev->wireless_data = &priv->wireless_data;
6032 dev->set_mac_address = ipw2100_set_address;
6033 dev->watchdog_timeo = 3 * HZ;
6034 dev->irq = 0;
6035
6036 dev->base_addr = (unsigned long)base_addr;
6037 dev->mem_start = mem_start;
6038 dev->mem_end = dev->mem_start + mem_len - 1;
6039
6040 /* NOTE: We don't use the wireless_handlers hook
6041 * in dev as the system will start throwing WX requests
6042 * to us before we're actually initialized and it just
6043 * ends up causing problems. So, we just handle
6044 * the WX extensions through the ipw2100_ioctl interface */
6045
6046 /* memset() puts everything to 0, so we only have explicitely set
6047 * those values that need to be something else */
6048
6049 /* If power management is turned on, default to AUTO mode */
6050 priv->power_mode = IPW_POWER_AUTO;
6051
6052 #ifdef CONFIG_IPW2100_MONITOR
6053 priv->config |= CFG_CRC_CHECK;
6054 #endif
6055 priv->ieee->wpa_enabled = 0;
6056 priv->ieee->drop_unencrypted = 0;
6057 priv->ieee->privacy_invoked = 0;
6058 priv->ieee->ieee802_1x = 1;
6059
6060 /* Set module parameters */
6061 switch (mode) {
6062 case 1:
6063 priv->ieee->iw_mode = IW_MODE_ADHOC;
6064 break;
6065 #ifdef CONFIG_IPW2100_MONITOR
6066 case 2:
6067 priv->ieee->iw_mode = IW_MODE_MONITOR;
6068 break;
6069 #endif
6070 default:
6071 case 0:
6072 priv->ieee->iw_mode = IW_MODE_INFRA;
6073 break;
6074 }
6075
6076 if (disable == 1)
6077 priv->status |= STATUS_RF_KILL_SW;
6078
6079 if (channel != 0 &&
6080 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6081 priv->config |= CFG_STATIC_CHANNEL;
6082 priv->channel = channel;
6083 }
6084
6085 if (associate)
6086 priv->config |= CFG_ASSOCIATE;
6087
6088 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6089 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6090 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6091 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6092 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6093 priv->tx_power = IPW_TX_POWER_DEFAULT;
6094 priv->tx_rates = DEFAULT_TX_RATES;
6095
6096 strcpy(priv->nick, "ipw2100");
6097
6098 spin_lock_init(&priv->low_lock);
6099 mutex_init(&priv->action_mutex);
6100 mutex_init(&priv->adapter_mutex);
6101
6102 init_waitqueue_head(&priv->wait_command_queue);
6103
6104 netif_carrier_off(dev);
6105
6106 INIT_LIST_HEAD(&priv->msg_free_list);
6107 INIT_LIST_HEAD(&priv->msg_pend_list);
6108 INIT_STAT(&priv->msg_free_stat);
6109 INIT_STAT(&priv->msg_pend_stat);
6110
6111 INIT_LIST_HEAD(&priv->tx_free_list);
6112 INIT_LIST_HEAD(&priv->tx_pend_list);
6113 INIT_STAT(&priv->tx_free_stat);
6114 INIT_STAT(&priv->tx_pend_stat);
6115
6116 INIT_LIST_HEAD(&priv->fw_pend_list);
6117 INIT_STAT(&priv->fw_pend_stat);
6118
6119 priv->workqueue = create_workqueue(DRV_NAME);
6120
6121 INIT_WORK(&priv->reset_work,
6122 (void (*)(void *))ipw2100_reset_adapter, priv);
6123 INIT_WORK(&priv->security_work,
6124 (void (*)(void *))ipw2100_security_work, priv);
6125 INIT_WORK(&priv->wx_event_work,
6126 (void (*)(void *))ipw2100_wx_event_work, priv);
6127 INIT_WORK(&priv->hang_check, ipw2100_hang_check, priv);
6128 INIT_WORK(&priv->rf_kill, ipw2100_rf_kill, priv);
6129
6130 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6131 ipw2100_irq_tasklet, (unsigned long)priv);
6132
6133 /* NOTE: We do not start the deferred work for status checks yet */
6134 priv->stop_rf_kill = 1;
6135 priv->stop_hang_check = 1;
6136
6137 return dev;
6138 }
6139
6140 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6141 const struct pci_device_id *ent)
6142 {
6143 unsigned long mem_start, mem_len, mem_flags;
6144 void __iomem *base_addr = NULL;
6145 struct net_device *dev = NULL;
6146 struct ipw2100_priv *priv = NULL;
6147 int err = 0;
6148 int registered = 0;
6149 u32 val;
6150
6151 IPW_DEBUG_INFO("enter\n");
6152
6153 mem_start = pci_resource_start(pci_dev, 0);
6154 mem_len = pci_resource_len(pci_dev, 0);
6155 mem_flags = pci_resource_flags(pci_dev, 0);
6156
6157 if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6158 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6159 err = -ENODEV;
6160 goto fail;
6161 }
6162
6163 base_addr = ioremap_nocache(mem_start, mem_len);
6164 if (!base_addr) {
6165 printk(KERN_WARNING DRV_NAME
6166 "Error calling ioremap_nocache.\n");
6167 err = -EIO;
6168 goto fail;
6169 }
6170
6171 /* allocate and initialize our net_device */
6172 dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6173 if (!dev) {
6174 printk(KERN_WARNING DRV_NAME
6175 "Error calling ipw2100_alloc_device.\n");
6176 err = -ENOMEM;
6177 goto fail;
6178 }
6179
6180 /* set up PCI mappings for device */
6181 err = pci_enable_device(pci_dev);
6182 if (err) {
6183 printk(KERN_WARNING DRV_NAME
6184 "Error calling pci_enable_device.\n");
6185 return err;
6186 }
6187
6188 priv = ieee80211_priv(dev);
6189
6190 pci_set_master(pci_dev);
6191 pci_set_drvdata(pci_dev, priv);
6192
6193 err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6194 if (err) {
6195 printk(KERN_WARNING DRV_NAME
6196 "Error calling pci_set_dma_mask.\n");
6197 pci_disable_device(pci_dev);
6198 return err;
6199 }
6200
6201 err = pci_request_regions(pci_dev, DRV_NAME);
6202 if (err) {
6203 printk(KERN_WARNING DRV_NAME
6204 "Error calling pci_request_regions.\n");
6205 pci_disable_device(pci_dev);
6206 return err;
6207 }
6208
6209 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6210 * PCI Tx retries from interfering with C3 CPU state */
6211 pci_read_config_dword(pci_dev, 0x40, &val);
6212 if ((val & 0x0000ff00) != 0)
6213 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6214
6215 pci_set_power_state(pci_dev, PCI_D0);
6216
6217 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6218 printk(KERN_WARNING DRV_NAME
6219 "Device not found via register read.\n");
6220 err = -ENODEV;
6221 goto fail;
6222 }
6223
6224 SET_NETDEV_DEV(dev, &pci_dev->dev);
6225
6226 /* Force interrupts to be shut off on the device */
6227 priv->status |= STATUS_INT_ENABLED;
6228 ipw2100_disable_interrupts(priv);
6229
6230 /* Allocate and initialize the Tx/Rx queues and lists */
6231 if (ipw2100_queues_allocate(priv)) {
6232 printk(KERN_WARNING DRV_NAME
6233 "Error calilng ipw2100_queues_allocate.\n");
6234 err = -ENOMEM;
6235 goto fail;
6236 }
6237 ipw2100_queues_initialize(priv);
6238
6239 err = request_irq(pci_dev->irq,
6240 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6241 if (err) {
6242 printk(KERN_WARNING DRV_NAME
6243 "Error calling request_irq: %d.\n", pci_dev->irq);
6244 goto fail;
6245 }
6246 dev->irq = pci_dev->irq;
6247
6248 IPW_DEBUG_INFO("Attempting to register device...\n");
6249
6250 SET_MODULE_OWNER(dev);
6251
6252 printk(KERN_INFO DRV_NAME
6253 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6254
6255 /* Bring up the interface. Pre 0.46, after we registered the
6256 * network device we would call ipw2100_up. This introduced a race
6257 * condition with newer hotplug configurations (network was coming
6258 * up and making calls before the device was initialized).
6259 *
6260 * If we called ipw2100_up before we registered the device, then the
6261 * device name wasn't registered. So, we instead use the net_dev->init
6262 * member to call a function that then just turns and calls ipw2100_up.
6263 * net_dev->init is called after name allocation but before the
6264 * notifier chain is called */
6265 err = register_netdev(dev);
6266 if (err) {
6267 printk(KERN_WARNING DRV_NAME
6268 "Error calling register_netdev.\n");
6269 goto fail;
6270 }
6271
6272 mutex_lock(&priv->action_mutex);
6273 registered = 1;
6274
6275 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6276
6277 /* perform this after register_netdev so that dev->name is set */
6278 sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6279
6280 /* If the RF Kill switch is disabled, go ahead and complete the
6281 * startup sequence */
6282 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6283 /* Enable the adapter - sends HOST_COMPLETE */
6284 if (ipw2100_enable_adapter(priv)) {
6285 printk(KERN_WARNING DRV_NAME
6286 ": %s: failed in call to enable adapter.\n",
6287 priv->net_dev->name);
6288 ipw2100_hw_stop_adapter(priv);
6289 err = -EIO;
6290 goto fail_unlock;
6291 }
6292
6293 /* Start a scan . . . */
6294 ipw2100_set_scan_options(priv);
6295 ipw2100_start_scan(priv);
6296 }
6297
6298 IPW_DEBUG_INFO("exit\n");
6299
6300 priv->status |= STATUS_INITIALIZED;
6301
6302 mutex_unlock(&priv->action_mutex);
6303
6304 return 0;
6305
6306 fail_unlock:
6307 mutex_unlock(&priv->action_mutex);
6308
6309 fail:
6310 if (dev) {
6311 if (registered)
6312 unregister_netdev(dev);
6313
6314 ipw2100_hw_stop_adapter(priv);
6315
6316 ipw2100_disable_interrupts(priv);
6317
6318 if (dev->irq)
6319 free_irq(dev->irq, priv);
6320
6321 ipw2100_kill_workqueue(priv);
6322
6323 /* These are safe to call even if they weren't allocated */
6324 ipw2100_queues_free(priv);
6325 sysfs_remove_group(&pci_dev->dev.kobj,
6326 &ipw2100_attribute_group);
6327
6328 free_ieee80211(dev);
6329 pci_set_drvdata(pci_dev, NULL);
6330 }
6331
6332 if (base_addr)
6333 iounmap(base_addr);
6334
6335 pci_release_regions(pci_dev);
6336 pci_disable_device(pci_dev);
6337
6338 return err;
6339 }
6340
6341 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6342 {
6343 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6344 struct net_device *dev;
6345
6346 if (priv) {
6347 mutex_lock(&priv->action_mutex);
6348
6349 priv->status &= ~STATUS_INITIALIZED;
6350
6351 dev = priv->net_dev;
6352 sysfs_remove_group(&pci_dev->dev.kobj,
6353 &ipw2100_attribute_group);
6354
6355 #ifdef CONFIG_PM
6356 if (ipw2100_firmware.version)
6357 ipw2100_release_firmware(priv, &ipw2100_firmware);
6358 #endif
6359 /* Take down the hardware */
6360 ipw2100_down(priv);
6361
6362 /* Release the mutex so that the network subsystem can
6363 * complete any needed calls into the driver... */
6364 mutex_unlock(&priv->action_mutex);
6365
6366 /* Unregister the device first - this results in close()
6367 * being called if the device is open. If we free storage
6368 * first, then close() will crash. */
6369 unregister_netdev(dev);
6370
6371 /* ipw2100_down will ensure that there is no more pending work
6372 * in the workqueue's, so we can safely remove them now. */
6373 ipw2100_kill_workqueue(priv);
6374
6375 ipw2100_queues_free(priv);
6376
6377 /* Free potential debugging firmware snapshot */
6378 ipw2100_snapshot_free(priv);
6379
6380 if (dev->irq)
6381 free_irq(dev->irq, priv);
6382
6383 if (dev->base_addr)
6384 iounmap((void __iomem *)dev->base_addr);
6385
6386 free_ieee80211(dev);
6387 }
6388
6389 pci_release_regions(pci_dev);
6390 pci_disable_device(pci_dev);
6391
6392 IPW_DEBUG_INFO("exit\n");
6393 }
6394
6395 #ifdef CONFIG_PM
6396 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6397 {
6398 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6399 struct net_device *dev = priv->net_dev;
6400
6401 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6402
6403 mutex_lock(&priv->action_mutex);
6404 if (priv->status & STATUS_INITIALIZED) {
6405 /* Take down the device; powers it off, etc. */
6406 ipw2100_down(priv);
6407 }
6408
6409 /* Remove the PRESENT state of the device */
6410 netif_device_detach(dev);
6411
6412 pci_save_state(pci_dev);
6413 pci_disable_device(pci_dev);
6414 pci_set_power_state(pci_dev, PCI_D3hot);
6415
6416 mutex_unlock(&priv->action_mutex);
6417
6418 return 0;
6419 }
6420
6421 static int ipw2100_resume(struct pci_dev *pci_dev)
6422 {
6423 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6424 struct net_device *dev = priv->net_dev;
6425 u32 val;
6426
6427 if (IPW2100_PM_DISABLED)
6428 return 0;
6429
6430 mutex_lock(&priv->action_mutex);
6431
6432 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6433
6434 pci_set_power_state(pci_dev, PCI_D0);
6435 pci_enable_device(pci_dev);
6436 pci_restore_state(pci_dev);
6437
6438 /*
6439 * Suspend/Resume resets the PCI configuration space, so we have to
6440 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6441 * from interfering with C3 CPU state. pci_restore_state won't help
6442 * here since it only restores the first 64 bytes pci config header.
6443 */
6444 pci_read_config_dword(pci_dev, 0x40, &val);
6445 if ((val & 0x0000ff00) != 0)
6446 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6447
6448 /* Set the device back into the PRESENT state; this will also wake
6449 * the queue of needed */
6450 netif_device_attach(dev);
6451
6452 /* Bring the device back up */
6453 if (!(priv->status & STATUS_RF_KILL_SW))
6454 ipw2100_up(priv, 0);
6455
6456 mutex_unlock(&priv->action_mutex);
6457
6458 return 0;
6459 }
6460 #endif
6461
6462 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6463
6464 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6465 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6466 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6467 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6468 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6469 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6470 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6471 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6472 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6473 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6474 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6475 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6476 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6477 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6478
6479 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6480 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6481 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6482 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6483 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6484
6485 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6486 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6487 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6488 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6489 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6490 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6491 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6492
6493 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6494
6495 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6496 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6497 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6498 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6499 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6500 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6501 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6502
6503 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6504 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6505 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6506 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6507 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6508 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6509
6510 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6511 {0,},
6512 };
6513
6514 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6515
6516 static struct pci_driver ipw2100_pci_driver = {
6517 .name = DRV_NAME,
6518 .id_table = ipw2100_pci_id_table,
6519 .probe = ipw2100_pci_init_one,
6520 .remove = __devexit_p(ipw2100_pci_remove_one),
6521 #ifdef CONFIG_PM
6522 .suspend = ipw2100_suspend,
6523 .resume = ipw2100_resume,
6524 #endif
6525 };
6526
6527 /**
6528 * Initialize the ipw2100 driver/module
6529 *
6530 * @returns 0 if ok, < 0 errno node con error.
6531 *
6532 * Note: we cannot init the /proc stuff until the PCI driver is there,
6533 * or we risk an unlikely race condition on someone accessing
6534 * uninitialized data in the PCI dev struct through /proc.
6535 */
6536 static int __init ipw2100_init(void)
6537 {
6538 int ret;
6539
6540 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6541 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6542
6543 ret = pci_register_driver(&ipw2100_pci_driver);
6544
6545 set_acceptable_latency("ipw2100", INFINITE_LATENCY);
6546 #ifdef CONFIG_IPW2100_DEBUG
6547 ipw2100_debug_level = debug;
6548 driver_create_file(&ipw2100_pci_driver.driver,
6549 &driver_attr_debug_level);
6550 #endif
6551
6552 return ret;
6553 }
6554
6555 /**
6556 * Cleanup ipw2100 driver registration
6557 */
6558 static void __exit ipw2100_exit(void)
6559 {
6560 /* FIXME: IPG: check that we have no instances of the devices open */
6561 #ifdef CONFIG_IPW2100_DEBUG
6562 driver_remove_file(&ipw2100_pci_driver.driver,
6563 &driver_attr_debug_level);
6564 #endif
6565 pci_unregister_driver(&ipw2100_pci_driver);
6566 remove_acceptable_latency("ipw2100");
6567 }
6568
6569 module_init(ipw2100_init);
6570 module_exit(ipw2100_exit);
6571
6572 #define WEXT_USECHANNELS 1
6573
6574 static const long ipw2100_frequencies[] = {
6575 2412, 2417, 2422, 2427,
6576 2432, 2437, 2442, 2447,
6577 2452, 2457, 2462, 2467,
6578 2472, 2484
6579 };
6580
6581 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6582 sizeof(ipw2100_frequencies[0]))
6583
6584 static const long ipw2100_rates_11b[] = {
6585 1000000,
6586 2000000,
6587 5500000,
6588 11000000
6589 };
6590
6591 #define RATE_COUNT (sizeof(ipw2100_rates_11b) / sizeof(ipw2100_rates_11b[0]))
6592
6593 static int ipw2100_wx_get_name(struct net_device *dev,
6594 struct iw_request_info *info,
6595 union iwreq_data *wrqu, char *extra)
6596 {
6597 /*
6598 * This can be called at any time. No action lock required
6599 */
6600
6601 struct ipw2100_priv *priv = ieee80211_priv(dev);
6602 if (!(priv->status & STATUS_ASSOCIATED))
6603 strcpy(wrqu->name, "unassociated");
6604 else
6605 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6606
6607 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6608 return 0;
6609 }
6610
6611 static int ipw2100_wx_set_freq(struct net_device *dev,
6612 struct iw_request_info *info,
6613 union iwreq_data *wrqu, char *extra)
6614 {
6615 struct ipw2100_priv *priv = ieee80211_priv(dev);
6616 struct iw_freq *fwrq = &wrqu->freq;
6617 int err = 0;
6618
6619 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6620 return -EOPNOTSUPP;
6621
6622 mutex_lock(&priv->action_mutex);
6623 if (!(priv->status & STATUS_INITIALIZED)) {
6624 err = -EIO;
6625 goto done;
6626 }
6627
6628 /* if setting by freq convert to channel */
6629 if (fwrq->e == 1) {
6630 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6631 int f = fwrq->m / 100000;
6632 int c = 0;
6633
6634 while ((c < REG_MAX_CHANNEL) &&
6635 (f != ipw2100_frequencies[c]))
6636 c++;
6637
6638 /* hack to fall through */
6639 fwrq->e = 0;
6640 fwrq->m = c + 1;
6641 }
6642 }
6643
6644 if (fwrq->e > 0 || fwrq->m > 1000) {
6645 err = -EOPNOTSUPP;
6646 goto done;
6647 } else { /* Set the channel */
6648 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6649 err = ipw2100_set_channel(priv, fwrq->m, 0);
6650 }
6651
6652 done:
6653 mutex_unlock(&priv->action_mutex);
6654 return err;
6655 }
6656
6657 static int ipw2100_wx_get_freq(struct net_device *dev,
6658 struct iw_request_info *info,
6659 union iwreq_data *wrqu, char *extra)
6660 {
6661 /*
6662 * This can be called at any time. No action lock required
6663 */
6664
6665 struct ipw2100_priv *priv = ieee80211_priv(dev);
6666
6667 wrqu->freq.e = 0;
6668
6669 /* If we are associated, trying to associate, or have a statically
6670 * configured CHANNEL then return that; otherwise return ANY */
6671 if (priv->config & CFG_STATIC_CHANNEL ||
6672 priv->status & STATUS_ASSOCIATED)
6673 wrqu->freq.m = priv->channel;
6674 else
6675 wrqu->freq.m = 0;
6676
6677 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6678 return 0;
6679
6680 }
6681
6682 static int ipw2100_wx_set_mode(struct net_device *dev,
6683 struct iw_request_info *info,
6684 union iwreq_data *wrqu, char *extra)
6685 {
6686 struct ipw2100_priv *priv = ieee80211_priv(dev);
6687 int err = 0;
6688
6689 IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6690
6691 if (wrqu->mode == priv->ieee->iw_mode)
6692 return 0;
6693
6694 mutex_lock(&priv->action_mutex);
6695 if (!(priv->status & STATUS_INITIALIZED)) {
6696 err = -EIO;
6697 goto done;
6698 }
6699
6700 switch (wrqu->mode) {
6701 #ifdef CONFIG_IPW2100_MONITOR
6702 case IW_MODE_MONITOR:
6703 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6704 break;
6705 #endif /* CONFIG_IPW2100_MONITOR */
6706 case IW_MODE_ADHOC:
6707 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6708 break;
6709 case IW_MODE_INFRA:
6710 case IW_MODE_AUTO:
6711 default:
6712 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6713 break;
6714 }
6715
6716 done:
6717 mutex_unlock(&priv->action_mutex);
6718 return err;
6719 }
6720
6721 static int ipw2100_wx_get_mode(struct net_device *dev,
6722 struct iw_request_info *info,
6723 union iwreq_data *wrqu, char *extra)
6724 {
6725 /*
6726 * This can be called at any time. No action lock required
6727 */
6728
6729 struct ipw2100_priv *priv = ieee80211_priv(dev);
6730
6731 wrqu->mode = priv->ieee->iw_mode;
6732 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6733
6734 return 0;
6735 }
6736
6737 #define POWER_MODES 5
6738
6739 /* Values are in microsecond */
6740 static const s32 timeout_duration[POWER_MODES] = {
6741 350000,
6742 250000,
6743 75000,
6744 37000,
6745 25000,
6746 };
6747
6748 static const s32 period_duration[POWER_MODES] = {
6749 400000,
6750 700000,
6751 1000000,
6752 1000000,
6753 1000000
6754 };
6755
6756 static int ipw2100_wx_get_range(struct net_device *dev,
6757 struct iw_request_info *info,
6758 union iwreq_data *wrqu, char *extra)
6759 {
6760 /*
6761 * This can be called at any time. No action lock required
6762 */
6763
6764 struct ipw2100_priv *priv = ieee80211_priv(dev);
6765 struct iw_range *range = (struct iw_range *)extra;
6766 u16 val;
6767 int i, level;
6768
6769 wrqu->data.length = sizeof(*range);
6770 memset(range, 0, sizeof(*range));
6771
6772 /* Let's try to keep this struct in the same order as in
6773 * linux/include/wireless.h
6774 */
6775
6776 /* TODO: See what values we can set, and remove the ones we can't
6777 * set, or fill them with some default data.
6778 */
6779
6780 /* ~5 Mb/s real (802.11b) */
6781 range->throughput = 5 * 1000 * 1000;
6782
6783 // range->sensitivity; /* signal level threshold range */
6784
6785 range->max_qual.qual = 100;
6786 /* TODO: Find real max RSSI and stick here */
6787 range->max_qual.level = 0;
6788 range->max_qual.noise = 0;
6789 range->max_qual.updated = 7; /* Updated all three */
6790
6791 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6792 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6793 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6794 range->avg_qual.noise = 0;
6795 range->avg_qual.updated = 7; /* Updated all three */
6796
6797 range->num_bitrates = RATE_COUNT;
6798
6799 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6800 range->bitrate[i] = ipw2100_rates_11b[i];
6801 }
6802
6803 range->min_rts = MIN_RTS_THRESHOLD;
6804 range->max_rts = MAX_RTS_THRESHOLD;
6805 range->min_frag = MIN_FRAG_THRESHOLD;
6806 range->max_frag = MAX_FRAG_THRESHOLD;
6807
6808 range->min_pmp = period_duration[0]; /* Minimal PM period */
6809 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6810 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6811 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6812
6813 /* How to decode max/min PM period */
6814 range->pmp_flags = IW_POWER_PERIOD;
6815 /* How to decode max/min PM period */
6816 range->pmt_flags = IW_POWER_TIMEOUT;
6817 /* What PM options are supported */
6818 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6819
6820 range->encoding_size[0] = 5;
6821 range->encoding_size[1] = 13; /* Different token sizes */
6822 range->num_encoding_sizes = 2; /* Number of entry in the list */
6823 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6824 // range->encoding_login_index; /* token index for login token */
6825
6826 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6827 range->txpower_capa = IW_TXPOW_DBM;
6828 range->num_txpower = IW_MAX_TXPOWER;
6829 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6830 i < IW_MAX_TXPOWER;
6831 i++, level -=
6832 ((IPW_TX_POWER_MAX_DBM -
6833 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6834 range->txpower[i] = level / 16;
6835 } else {
6836 range->txpower_capa = 0;
6837 range->num_txpower = 0;
6838 }
6839
6840 /* Set the Wireless Extension versions */
6841 range->we_version_compiled = WIRELESS_EXT;
6842 range->we_version_source = 18;
6843
6844 // range->retry_capa; /* What retry options are supported */
6845 // range->retry_flags; /* How to decode max/min retry limit */
6846 // range->r_time_flags; /* How to decode max/min retry life */
6847 // range->min_retry; /* Minimal number of retries */
6848 // range->max_retry; /* Maximal number of retries */
6849 // range->min_r_time; /* Minimal retry lifetime */
6850 // range->max_r_time; /* Maximal retry lifetime */
6851
6852 range->num_channels = FREQ_COUNT;
6853
6854 val = 0;
6855 for (i = 0; i < FREQ_COUNT; i++) {
6856 // TODO: Include only legal frequencies for some countries
6857 // if (local->channel_mask & (1 << i)) {
6858 range->freq[val].i = i + 1;
6859 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6860 range->freq[val].e = 1;
6861 val++;
6862 // }
6863 if (val == IW_MAX_FREQUENCIES)
6864 break;
6865 }
6866 range->num_frequency = val;
6867
6868 /* Event capability (kernel + driver) */
6869 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6870 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6871 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6872
6873 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6874 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6875
6876 IPW_DEBUG_WX("GET Range\n");
6877
6878 return 0;
6879 }
6880
6881 static int ipw2100_wx_set_wap(struct net_device *dev,
6882 struct iw_request_info *info,
6883 union iwreq_data *wrqu, char *extra)
6884 {
6885 struct ipw2100_priv *priv = ieee80211_priv(dev);
6886 int err = 0;
6887
6888 static const unsigned char any[] = {
6889 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6890 };
6891 static const unsigned char off[] = {
6892 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6893 };
6894
6895 // sanity checks
6896 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6897 return -EINVAL;
6898
6899 mutex_lock(&priv->action_mutex);
6900 if (!(priv->status & STATUS_INITIALIZED)) {
6901 err = -EIO;
6902 goto done;
6903 }
6904
6905 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6906 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6907 /* we disable mandatory BSSID association */
6908 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6909 priv->config &= ~CFG_STATIC_BSSID;
6910 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6911 goto done;
6912 }
6913
6914 priv->config |= CFG_STATIC_BSSID;
6915 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6916
6917 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6918
6919 IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
6920 wrqu->ap_addr.sa_data[0] & 0xff,
6921 wrqu->ap_addr.sa_data[1] & 0xff,
6922 wrqu->ap_addr.sa_data[2] & 0xff,
6923 wrqu->ap_addr.sa_data[3] & 0xff,
6924 wrqu->ap_addr.sa_data[4] & 0xff,
6925 wrqu->ap_addr.sa_data[5] & 0xff);
6926
6927 done:
6928 mutex_unlock(&priv->action_mutex);
6929 return err;
6930 }
6931
6932 static int ipw2100_wx_get_wap(struct net_device *dev,
6933 struct iw_request_info *info,
6934 union iwreq_data *wrqu, char *extra)
6935 {
6936 /*
6937 * This can be called at any time. No action lock required
6938 */
6939
6940 struct ipw2100_priv *priv = ieee80211_priv(dev);
6941
6942 /* If we are associated, trying to associate, or have a statically
6943 * configured BSSID then return that; otherwise return ANY */
6944 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6945 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6946 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6947 } else
6948 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6949
6950 IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
6951 MAC_ARG(wrqu->ap_addr.sa_data));
6952 return 0;
6953 }
6954
6955 static int ipw2100_wx_set_essid(struct net_device *dev,
6956 struct iw_request_info *info,
6957 union iwreq_data *wrqu, char *extra)
6958 {
6959 struct ipw2100_priv *priv = ieee80211_priv(dev);
6960 char *essid = ""; /* ANY */
6961 int length = 0;
6962 int err = 0;
6963
6964 mutex_lock(&priv->action_mutex);
6965 if (!(priv->status & STATUS_INITIALIZED)) {
6966 err = -EIO;
6967 goto done;
6968 }
6969
6970 if (wrqu->essid.flags && wrqu->essid.length) {
6971 length = wrqu->essid.length;
6972 essid = extra;
6973 }
6974
6975 if (length == 0) {
6976 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6977 priv->config &= ~CFG_STATIC_ESSID;
6978 err = ipw2100_set_essid(priv, NULL, 0, 0);
6979 goto done;
6980 }
6981
6982 length = min(length, IW_ESSID_MAX_SIZE);
6983
6984 priv->config |= CFG_STATIC_ESSID;
6985
6986 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6987 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6988 err = 0;
6989 goto done;
6990 }
6991
6992 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
6993 length);
6994
6995 priv->essid_len = length;
6996 memcpy(priv->essid, essid, priv->essid_len);
6997
6998 err = ipw2100_set_essid(priv, essid, length, 0);
6999
7000 done:
7001 mutex_unlock(&priv->action_mutex);
7002 return err;
7003 }
7004
7005 static int ipw2100_wx_get_essid(struct net_device *dev,
7006 struct iw_request_info *info,
7007 union iwreq_data *wrqu, char *extra)
7008 {
7009 /*
7010 * This can be called at any time. No action lock required
7011 */
7012
7013 struct ipw2100_priv *priv = ieee80211_priv(dev);
7014
7015 /* If we are associated, trying to associate, or have a statically
7016 * configured ESSID then return that; otherwise return ANY */
7017 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7018 IPW_DEBUG_WX("Getting essid: '%s'\n",
7019 escape_essid(priv->essid, priv->essid_len));
7020 memcpy(extra, priv->essid, priv->essid_len);
7021 wrqu->essid.length = priv->essid_len;
7022 wrqu->essid.flags = 1; /* active */
7023 } else {
7024 IPW_DEBUG_WX("Getting essid: ANY\n");
7025 wrqu->essid.length = 0;
7026 wrqu->essid.flags = 0; /* active */
7027 }
7028
7029 return 0;
7030 }
7031
7032 static int ipw2100_wx_set_nick(struct net_device *dev,
7033 struct iw_request_info *info,
7034 union iwreq_data *wrqu, char *extra)
7035 {
7036 /*
7037 * This can be called at any time. No action lock required
7038 */
7039
7040 struct ipw2100_priv *priv = ieee80211_priv(dev);
7041
7042 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7043 return -E2BIG;
7044
7045 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7046 memset(priv->nick, 0, sizeof(priv->nick));
7047 memcpy(priv->nick, extra, wrqu->data.length);
7048
7049 IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7050
7051 return 0;
7052 }
7053
7054 static int ipw2100_wx_get_nick(struct net_device *dev,
7055 struct iw_request_info *info,
7056 union iwreq_data *wrqu, char *extra)
7057 {
7058 /*
7059 * This can be called at any time. No action lock required
7060 */
7061
7062 struct ipw2100_priv *priv = ieee80211_priv(dev);
7063
7064 wrqu->data.length = strlen(priv->nick);
7065 memcpy(extra, priv->nick, wrqu->data.length);
7066 wrqu->data.flags = 1; /* active */
7067
7068 IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7069
7070 return 0;
7071 }
7072
7073 static int ipw2100_wx_set_rate(struct net_device *dev,
7074 struct iw_request_info *info,
7075 union iwreq_data *wrqu, char *extra)
7076 {
7077 struct ipw2100_priv *priv = ieee80211_priv(dev);
7078 u32 target_rate = wrqu->bitrate.value;
7079 u32 rate;
7080 int err = 0;
7081
7082 mutex_lock(&priv->action_mutex);
7083 if (!(priv->status & STATUS_INITIALIZED)) {
7084 err = -EIO;
7085 goto done;
7086 }
7087
7088 rate = 0;
7089
7090 if (target_rate == 1000000 ||
7091 (!wrqu->bitrate.fixed && target_rate > 1000000))
7092 rate |= TX_RATE_1_MBIT;
7093 if (target_rate == 2000000 ||
7094 (!wrqu->bitrate.fixed && target_rate > 2000000))
7095 rate |= TX_RATE_2_MBIT;
7096 if (target_rate == 5500000 ||
7097 (!wrqu->bitrate.fixed && target_rate > 5500000))
7098 rate |= TX_RATE_5_5_MBIT;
7099 if (target_rate == 11000000 ||
7100 (!wrqu->bitrate.fixed && target_rate > 11000000))
7101 rate |= TX_RATE_11_MBIT;
7102 if (rate == 0)
7103 rate = DEFAULT_TX_RATES;
7104
7105 err = ipw2100_set_tx_rates(priv, rate, 0);
7106
7107 IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7108 done:
7109 mutex_unlock(&priv->action_mutex);
7110 return err;
7111 }
7112
7113 static int ipw2100_wx_get_rate(struct net_device *dev,
7114 struct iw_request_info *info,
7115 union iwreq_data *wrqu, char *extra)
7116 {
7117 struct ipw2100_priv *priv = ieee80211_priv(dev);
7118 int val;
7119 int len = sizeof(val);
7120 int err = 0;
7121
7122 if (!(priv->status & STATUS_ENABLED) ||
7123 priv->status & STATUS_RF_KILL_MASK ||
7124 !(priv->status & STATUS_ASSOCIATED)) {
7125 wrqu->bitrate.value = 0;
7126 return 0;
7127 }
7128
7129 mutex_lock(&priv->action_mutex);
7130 if (!(priv->status & STATUS_INITIALIZED)) {
7131 err = -EIO;
7132 goto done;
7133 }
7134
7135 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7136 if (err) {
7137 IPW_DEBUG_WX("failed querying ordinals.\n");
7138 return err;
7139 }
7140
7141 switch (val & TX_RATE_MASK) {
7142 case TX_RATE_1_MBIT:
7143 wrqu->bitrate.value = 1000000;
7144 break;
7145 case TX_RATE_2_MBIT:
7146 wrqu->bitrate.value = 2000000;
7147 break;
7148 case TX_RATE_5_5_MBIT:
7149 wrqu->bitrate.value = 5500000;
7150 break;
7151 case TX_RATE_11_MBIT:
7152 wrqu->bitrate.value = 11000000;
7153 break;
7154 default:
7155 wrqu->bitrate.value = 0;
7156 }
7157
7158 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7159
7160 done:
7161 mutex_unlock(&priv->action_mutex);
7162 return err;
7163 }
7164
7165 static int ipw2100_wx_set_rts(struct net_device *dev,
7166 struct iw_request_info *info,
7167 union iwreq_data *wrqu, char *extra)
7168 {
7169 struct ipw2100_priv *priv = ieee80211_priv(dev);
7170 int value, err;
7171
7172 /* Auto RTS not yet supported */
7173 if (wrqu->rts.fixed == 0)
7174 return -EINVAL;
7175
7176 mutex_lock(&priv->action_mutex);
7177 if (!(priv->status & STATUS_INITIALIZED)) {
7178 err = -EIO;
7179 goto done;
7180 }
7181
7182 if (wrqu->rts.disabled)
7183 value = priv->rts_threshold | RTS_DISABLED;
7184 else {
7185 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7186 err = -EINVAL;
7187 goto done;
7188 }
7189 value = wrqu->rts.value;
7190 }
7191
7192 err = ipw2100_set_rts_threshold(priv, value);
7193
7194 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7195 done:
7196 mutex_unlock(&priv->action_mutex);
7197 return err;
7198 }
7199
7200 static int ipw2100_wx_get_rts(struct net_device *dev,
7201 struct iw_request_info *info,
7202 union iwreq_data *wrqu, char *extra)
7203 {
7204 /*
7205 * This can be called at any time. No action lock required
7206 */
7207
7208 struct ipw2100_priv *priv = ieee80211_priv(dev);
7209
7210 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7211 wrqu->rts.fixed = 1; /* no auto select */
7212
7213 /* If RTS is set to the default value, then it is disabled */
7214 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7215
7216 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7217
7218 return 0;
7219 }
7220
7221 static int ipw2100_wx_set_txpow(struct net_device *dev,
7222 struct iw_request_info *info,
7223 union iwreq_data *wrqu, char *extra)
7224 {
7225 struct ipw2100_priv *priv = ieee80211_priv(dev);
7226 int err = 0, value;
7227
7228 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7229 return -EINPROGRESS;
7230
7231 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7232 return 0;
7233
7234 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7235 return -EINVAL;
7236
7237 if (wrqu->txpower.fixed == 0)
7238 value = IPW_TX_POWER_DEFAULT;
7239 else {
7240 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7241 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7242 return -EINVAL;
7243
7244 value = wrqu->txpower.value;
7245 }
7246
7247 mutex_lock(&priv->action_mutex);
7248 if (!(priv->status & STATUS_INITIALIZED)) {
7249 err = -EIO;
7250 goto done;
7251 }
7252
7253 err = ipw2100_set_tx_power(priv, value);
7254
7255 IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7256
7257 done:
7258 mutex_unlock(&priv->action_mutex);
7259 return err;
7260 }
7261
7262 static int ipw2100_wx_get_txpow(struct net_device *dev,
7263 struct iw_request_info *info,
7264 union iwreq_data *wrqu, char *extra)
7265 {
7266 /*
7267 * This can be called at any time. No action lock required
7268 */
7269
7270 struct ipw2100_priv *priv = ieee80211_priv(dev);
7271
7272 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7273
7274 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7275 wrqu->txpower.fixed = 0;
7276 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7277 } else {
7278 wrqu->txpower.fixed = 1;
7279 wrqu->txpower.value = priv->tx_power;
7280 }
7281
7282 wrqu->txpower.flags = IW_TXPOW_DBM;
7283
7284 IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7285
7286 return 0;
7287 }
7288
7289 static int ipw2100_wx_set_frag(struct net_device *dev,
7290 struct iw_request_info *info,
7291 union iwreq_data *wrqu, char *extra)
7292 {
7293 /*
7294 * This can be called at any time. No action lock required
7295 */
7296
7297 struct ipw2100_priv *priv = ieee80211_priv(dev);
7298
7299 if (!wrqu->frag.fixed)
7300 return -EINVAL;
7301
7302 if (wrqu->frag.disabled) {
7303 priv->frag_threshold |= FRAG_DISABLED;
7304 priv->ieee->fts = DEFAULT_FTS;
7305 } else {
7306 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7307 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7308 return -EINVAL;
7309
7310 priv->ieee->fts = wrqu->frag.value & ~0x1;
7311 priv->frag_threshold = priv->ieee->fts;
7312 }
7313
7314 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7315
7316 return 0;
7317 }
7318
7319 static int ipw2100_wx_get_frag(struct net_device *dev,
7320 struct iw_request_info *info,
7321 union iwreq_data *wrqu, char *extra)
7322 {
7323 /*
7324 * This can be called at any time. No action lock required
7325 */
7326
7327 struct ipw2100_priv *priv = ieee80211_priv(dev);
7328 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7329 wrqu->frag.fixed = 0; /* no auto select */
7330 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7331
7332 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7333
7334 return 0;
7335 }
7336
7337 static int ipw2100_wx_set_retry(struct net_device *dev,
7338 struct iw_request_info *info,
7339 union iwreq_data *wrqu, char *extra)
7340 {
7341 struct ipw2100_priv *priv = ieee80211_priv(dev);
7342 int err = 0;
7343
7344 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7345 return -EINVAL;
7346
7347 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7348 return 0;
7349
7350 mutex_lock(&priv->action_mutex);
7351 if (!(priv->status & STATUS_INITIALIZED)) {
7352 err = -EIO;
7353 goto done;
7354 }
7355
7356 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7357 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7358 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7359 wrqu->retry.value);
7360 goto done;
7361 }
7362
7363 if (wrqu->retry.flags & IW_RETRY_LONG) {
7364 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7365 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7366 wrqu->retry.value);
7367 goto done;
7368 }
7369
7370 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7371 if (!err)
7372 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7373
7374 IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7375
7376 done:
7377 mutex_unlock(&priv->action_mutex);
7378 return err;
7379 }
7380
7381 static int ipw2100_wx_get_retry(struct net_device *dev,
7382 struct iw_request_info *info,
7383 union iwreq_data *wrqu, char *extra)
7384 {
7385 /*
7386 * This can be called at any time. No action lock required
7387 */
7388
7389 struct ipw2100_priv *priv = ieee80211_priv(dev);
7390
7391 wrqu->retry.disabled = 0; /* can't be disabled */
7392
7393 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7394 return -EINVAL;
7395
7396 if (wrqu->retry.flags & IW_RETRY_LONG) {
7397 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7398 wrqu->retry.value = priv->long_retry_limit;
7399 } else {
7400 wrqu->retry.flags =
7401 (priv->short_retry_limit !=
7402 priv->long_retry_limit) ?
7403 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7404
7405 wrqu->retry.value = priv->short_retry_limit;
7406 }
7407
7408 IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7409
7410 return 0;
7411 }
7412
7413 static int ipw2100_wx_set_scan(struct net_device *dev,
7414 struct iw_request_info *info,
7415 union iwreq_data *wrqu, char *extra)
7416 {
7417 struct ipw2100_priv *priv = ieee80211_priv(dev);
7418 int err = 0;
7419
7420 mutex_lock(&priv->action_mutex);
7421 if (!(priv->status & STATUS_INITIALIZED)) {
7422 err = -EIO;
7423 goto done;
7424 }
7425
7426 IPW_DEBUG_WX("Initiating scan...\n");
7427 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7428 IPW_DEBUG_WX("Start scan failed.\n");
7429
7430 /* TODO: Mark a scan as pending so when hardware initialized
7431 * a scan starts */
7432 }
7433
7434 done:
7435 mutex_unlock(&priv->action_mutex);
7436 return err;
7437 }
7438
7439 static int ipw2100_wx_get_scan(struct net_device *dev,
7440 struct iw_request_info *info,
7441 union iwreq_data *wrqu, char *extra)
7442 {
7443 /*
7444 * This can be called at any time. No action lock required
7445 */
7446
7447 struct ipw2100_priv *priv = ieee80211_priv(dev);
7448 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7449 }
7450
7451 /*
7452 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7453 */
7454 static int ipw2100_wx_set_encode(struct net_device *dev,
7455 struct iw_request_info *info,
7456 union iwreq_data *wrqu, char *key)
7457 {
7458 /*
7459 * No check of STATUS_INITIALIZED required
7460 */
7461
7462 struct ipw2100_priv *priv = ieee80211_priv(dev);
7463 return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7464 }
7465
7466 static int ipw2100_wx_get_encode(struct net_device *dev,
7467 struct iw_request_info *info,
7468 union iwreq_data *wrqu, char *key)
7469 {
7470 /*
7471 * This can be called at any time. No action lock required
7472 */
7473
7474 struct ipw2100_priv *priv = ieee80211_priv(dev);
7475 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7476 }
7477
7478 static int ipw2100_wx_set_power(struct net_device *dev,
7479 struct iw_request_info *info,
7480 union iwreq_data *wrqu, char *extra)
7481 {
7482 struct ipw2100_priv *priv = ieee80211_priv(dev);
7483 int err = 0;
7484
7485 mutex_lock(&priv->action_mutex);
7486 if (!(priv->status & STATUS_INITIALIZED)) {
7487 err = -EIO;
7488 goto done;
7489 }
7490
7491 if (wrqu->power.disabled) {
7492 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7493 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7494 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7495 goto done;
7496 }
7497
7498 switch (wrqu->power.flags & IW_POWER_MODE) {
7499 case IW_POWER_ON: /* If not specified */
7500 case IW_POWER_MODE: /* If set all mask */
7501 case IW_POWER_ALL_R: /* If explicitely state all */
7502 break;
7503 default: /* Otherwise we don't support it */
7504 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7505 wrqu->power.flags);
7506 err = -EOPNOTSUPP;
7507 goto done;
7508 }
7509
7510 /* If the user hasn't specified a power management mode yet, default
7511 * to BATTERY */
7512 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7513 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7514
7515 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7516
7517 done:
7518 mutex_unlock(&priv->action_mutex);
7519 return err;
7520
7521 }
7522
7523 static int ipw2100_wx_get_power(struct net_device *dev,
7524 struct iw_request_info *info,
7525 union iwreq_data *wrqu, char *extra)
7526 {
7527 /*
7528 * This can be called at any time. No action lock required
7529 */
7530
7531 struct ipw2100_priv *priv = ieee80211_priv(dev);
7532
7533 if (!(priv->power_mode & IPW_POWER_ENABLED))
7534 wrqu->power.disabled = 1;
7535 else {
7536 wrqu->power.disabled = 0;
7537 wrqu->power.flags = 0;
7538 }
7539
7540 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7541
7542 return 0;
7543 }
7544
7545 /*
7546 * WE-18 WPA support
7547 */
7548
7549 /* SIOCSIWGENIE */
7550 static int ipw2100_wx_set_genie(struct net_device *dev,
7551 struct iw_request_info *info,
7552 union iwreq_data *wrqu, char *extra)
7553 {
7554
7555 struct ipw2100_priv *priv = ieee80211_priv(dev);
7556 struct ieee80211_device *ieee = priv->ieee;
7557 u8 *buf;
7558
7559 if (!ieee->wpa_enabled)
7560 return -EOPNOTSUPP;
7561
7562 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7563 (wrqu->data.length && extra == NULL))
7564 return -EINVAL;
7565
7566 if (wrqu->data.length) {
7567 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
7568 if (buf == NULL)
7569 return -ENOMEM;
7570
7571 memcpy(buf, extra, wrqu->data.length);
7572 kfree(ieee->wpa_ie);
7573 ieee->wpa_ie = buf;
7574 ieee->wpa_ie_len = wrqu->data.length;
7575 } else {
7576 kfree(ieee->wpa_ie);
7577 ieee->wpa_ie = NULL;
7578 ieee->wpa_ie_len = 0;
7579 }
7580
7581 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7582
7583 return 0;
7584 }
7585
7586 /* SIOCGIWGENIE */
7587 static int ipw2100_wx_get_genie(struct net_device *dev,
7588 struct iw_request_info *info,
7589 union iwreq_data *wrqu, char *extra)
7590 {
7591 struct ipw2100_priv *priv = ieee80211_priv(dev);
7592 struct ieee80211_device *ieee = priv->ieee;
7593
7594 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7595 wrqu->data.length = 0;
7596 return 0;
7597 }
7598
7599 if (wrqu->data.length < ieee->wpa_ie_len)
7600 return -E2BIG;
7601
7602 wrqu->data.length = ieee->wpa_ie_len;
7603 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7604
7605 return 0;
7606 }
7607
7608 /* SIOCSIWAUTH */
7609 static int ipw2100_wx_set_auth(struct net_device *dev,
7610 struct iw_request_info *info,
7611 union iwreq_data *wrqu, char *extra)
7612 {
7613 struct ipw2100_priv *priv = ieee80211_priv(dev);
7614 struct ieee80211_device *ieee = priv->ieee;
7615 struct iw_param *param = &wrqu->param;
7616 struct ieee80211_crypt_data *crypt;
7617 unsigned long flags;
7618 int ret = 0;
7619
7620 switch (param->flags & IW_AUTH_INDEX) {
7621 case IW_AUTH_WPA_VERSION:
7622 case IW_AUTH_CIPHER_PAIRWISE:
7623 case IW_AUTH_CIPHER_GROUP:
7624 case IW_AUTH_KEY_MGMT:
7625 /*
7626 * ipw2200 does not use these parameters
7627 */
7628 break;
7629
7630 case IW_AUTH_TKIP_COUNTERMEASURES:
7631 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7632 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7633 break;
7634
7635 flags = crypt->ops->get_flags(crypt->priv);
7636
7637 if (param->value)
7638 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7639 else
7640 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7641
7642 crypt->ops->set_flags(flags, crypt->priv);
7643
7644 break;
7645
7646 case IW_AUTH_DROP_UNENCRYPTED:{
7647 /* HACK:
7648 *
7649 * wpa_supplicant calls set_wpa_enabled when the driver
7650 * is loaded and unloaded, regardless of if WPA is being
7651 * used. No other calls are made which can be used to
7652 * determine if encryption will be used or not prior to
7653 * association being expected. If encryption is not being
7654 * used, drop_unencrypted is set to false, else true -- we
7655 * can use this to determine if the CAP_PRIVACY_ON bit should
7656 * be set.
7657 */
7658 struct ieee80211_security sec = {
7659 .flags = SEC_ENABLED,
7660 .enabled = param->value,
7661 };
7662 priv->ieee->drop_unencrypted = param->value;
7663 /* We only change SEC_LEVEL for open mode. Others
7664 * are set by ipw_wpa_set_encryption.
7665 */
7666 if (!param->value) {
7667 sec.flags |= SEC_LEVEL;
7668 sec.level = SEC_LEVEL_0;
7669 } else {
7670 sec.flags |= SEC_LEVEL;
7671 sec.level = SEC_LEVEL_1;
7672 }
7673 if (priv->ieee->set_security)
7674 priv->ieee->set_security(priv->ieee->dev, &sec);
7675 break;
7676 }
7677
7678 case IW_AUTH_80211_AUTH_ALG:
7679 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7680 break;
7681
7682 case IW_AUTH_WPA_ENABLED:
7683 ret = ipw2100_wpa_enable(priv, param->value);
7684 break;
7685
7686 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7687 ieee->ieee802_1x = param->value;
7688 break;
7689
7690 //case IW_AUTH_ROAMING_CONTROL:
7691 case IW_AUTH_PRIVACY_INVOKED:
7692 ieee->privacy_invoked = param->value;
7693 break;
7694
7695 default:
7696 return -EOPNOTSUPP;
7697 }
7698 return ret;
7699 }
7700
7701 /* SIOCGIWAUTH */
7702 static int ipw2100_wx_get_auth(struct net_device *dev,
7703 struct iw_request_info *info,
7704 union iwreq_data *wrqu, char *extra)
7705 {
7706 struct ipw2100_priv *priv = ieee80211_priv(dev);
7707 struct ieee80211_device *ieee = priv->ieee;
7708 struct ieee80211_crypt_data *crypt;
7709 struct iw_param *param = &wrqu->param;
7710 int ret = 0;
7711
7712 switch (param->flags & IW_AUTH_INDEX) {
7713 case IW_AUTH_WPA_VERSION:
7714 case IW_AUTH_CIPHER_PAIRWISE:
7715 case IW_AUTH_CIPHER_GROUP:
7716 case IW_AUTH_KEY_MGMT:
7717 /*
7718 * wpa_supplicant will control these internally
7719 */
7720 ret = -EOPNOTSUPP;
7721 break;
7722
7723 case IW_AUTH_TKIP_COUNTERMEASURES:
7724 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7725 if (!crypt || !crypt->ops->get_flags) {
7726 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7727 "crypt not set!\n");
7728 break;
7729 }
7730
7731 param->value = (crypt->ops->get_flags(crypt->priv) &
7732 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7733
7734 break;
7735
7736 case IW_AUTH_DROP_UNENCRYPTED:
7737 param->value = ieee->drop_unencrypted;
7738 break;
7739
7740 case IW_AUTH_80211_AUTH_ALG:
7741 param->value = priv->ieee->sec.auth_mode;
7742 break;
7743
7744 case IW_AUTH_WPA_ENABLED:
7745 param->value = ieee->wpa_enabled;
7746 break;
7747
7748 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7749 param->value = ieee->ieee802_1x;
7750 break;
7751
7752 case IW_AUTH_ROAMING_CONTROL:
7753 case IW_AUTH_PRIVACY_INVOKED:
7754 param->value = ieee->privacy_invoked;
7755 break;
7756
7757 default:
7758 return -EOPNOTSUPP;
7759 }
7760 return 0;
7761 }
7762
7763 /* SIOCSIWENCODEEXT */
7764 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7765 struct iw_request_info *info,
7766 union iwreq_data *wrqu, char *extra)
7767 {
7768 struct ipw2100_priv *priv = ieee80211_priv(dev);
7769 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7770 }
7771
7772 /* SIOCGIWENCODEEXT */
7773 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7774 struct iw_request_info *info,
7775 union iwreq_data *wrqu, char *extra)
7776 {
7777 struct ipw2100_priv *priv = ieee80211_priv(dev);
7778 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7779 }
7780
7781 /* SIOCSIWMLME */
7782 static int ipw2100_wx_set_mlme(struct net_device *dev,
7783 struct iw_request_info *info,
7784 union iwreq_data *wrqu, char *extra)
7785 {
7786 struct ipw2100_priv *priv = ieee80211_priv(dev);
7787 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7788 u16 reason;
7789
7790 reason = cpu_to_le16(mlme->reason_code);
7791
7792 switch (mlme->cmd) {
7793 case IW_MLME_DEAUTH:
7794 // silently ignore
7795 break;
7796
7797 case IW_MLME_DISASSOC:
7798 ipw2100_disassociate_bssid(priv);
7799 break;
7800
7801 default:
7802 return -EOPNOTSUPP;
7803 }
7804 return 0;
7805 }
7806
7807 /*
7808 *
7809 * IWPRIV handlers
7810 *
7811 */
7812 #ifdef CONFIG_IPW2100_MONITOR
7813 static int ipw2100_wx_set_promisc(struct net_device *dev,
7814 struct iw_request_info *info,
7815 union iwreq_data *wrqu, char *extra)
7816 {
7817 struct ipw2100_priv *priv = ieee80211_priv(dev);
7818 int *parms = (int *)extra;
7819 int enable = (parms[0] > 0);
7820 int err = 0;
7821
7822 mutex_lock(&priv->action_mutex);
7823 if (!(priv->status & STATUS_INITIALIZED)) {
7824 err = -EIO;
7825 goto done;
7826 }
7827
7828 if (enable) {
7829 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7830 err = ipw2100_set_channel(priv, parms[1], 0);
7831 goto done;
7832 }
7833 priv->channel = parms[1];
7834 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7835 } else {
7836 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7837 err = ipw2100_switch_mode(priv, priv->last_mode);
7838 }
7839 done:
7840 mutex_unlock(&priv->action_mutex);
7841 return err;
7842 }
7843
7844 static int ipw2100_wx_reset(struct net_device *dev,
7845 struct iw_request_info *info,
7846 union iwreq_data *wrqu, char *extra)
7847 {
7848 struct ipw2100_priv *priv = ieee80211_priv(dev);
7849 if (priv->status & STATUS_INITIALIZED)
7850 schedule_reset(priv);
7851 return 0;
7852 }
7853
7854 #endif
7855
7856 static int ipw2100_wx_set_powermode(struct net_device *dev,
7857 struct iw_request_info *info,
7858 union iwreq_data *wrqu, char *extra)
7859 {
7860 struct ipw2100_priv *priv = ieee80211_priv(dev);
7861 int err = 0, mode = *(int *)extra;
7862
7863 mutex_lock(&priv->action_mutex);
7864 if (!(priv->status & STATUS_INITIALIZED)) {
7865 err = -EIO;
7866 goto done;
7867 }
7868
7869 if ((mode < 1) || (mode > POWER_MODES))
7870 mode = IPW_POWER_AUTO;
7871
7872 if (priv->power_mode != mode)
7873 err = ipw2100_set_power_mode(priv, mode);
7874 done:
7875 mutex_unlock(&priv->action_mutex);
7876 return err;
7877 }
7878
7879 #define MAX_POWER_STRING 80
7880 static int ipw2100_wx_get_powermode(struct net_device *dev,
7881 struct iw_request_info *info,
7882 union iwreq_data *wrqu, char *extra)
7883 {
7884 /*
7885 * This can be called at any time. No action lock required
7886 */
7887
7888 struct ipw2100_priv *priv = ieee80211_priv(dev);
7889 int level = IPW_POWER_LEVEL(priv->power_mode);
7890 s32 timeout, period;
7891
7892 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7893 snprintf(extra, MAX_POWER_STRING,
7894 "Power save level: %d (Off)", level);
7895 } else {
7896 switch (level) {
7897 case IPW_POWER_MODE_CAM:
7898 snprintf(extra, MAX_POWER_STRING,
7899 "Power save level: %d (None)", level);
7900 break;
7901 case IPW_POWER_AUTO:
7902 snprintf(extra, MAX_POWER_STRING,
7903 "Power save level: %d (Auto)", 0);
7904 break;
7905 default:
7906 timeout = timeout_duration[level - 1] / 1000;
7907 period = period_duration[level - 1] / 1000;
7908 snprintf(extra, MAX_POWER_STRING,
7909 "Power save level: %d "
7910 "(Timeout %dms, Period %dms)",
7911 level, timeout, period);
7912 }
7913 }
7914
7915 wrqu->data.length = strlen(extra) + 1;
7916
7917 return 0;
7918 }
7919
7920 static int ipw2100_wx_set_preamble(struct net_device *dev,
7921 struct iw_request_info *info,
7922 union iwreq_data *wrqu, char *extra)
7923 {
7924 struct ipw2100_priv *priv = ieee80211_priv(dev);
7925 int err, mode = *(int *)extra;
7926
7927 mutex_lock(&priv->action_mutex);
7928 if (!(priv->status & STATUS_INITIALIZED)) {
7929 err = -EIO;
7930 goto done;
7931 }
7932
7933 if (mode == 1)
7934 priv->config |= CFG_LONG_PREAMBLE;
7935 else if (mode == 0)
7936 priv->config &= ~CFG_LONG_PREAMBLE;
7937 else {
7938 err = -EINVAL;
7939 goto done;
7940 }
7941
7942 err = ipw2100_system_config(priv, 0);
7943
7944 done:
7945 mutex_unlock(&priv->action_mutex);
7946 return err;
7947 }
7948
7949 static int ipw2100_wx_get_preamble(struct net_device *dev,
7950 struct iw_request_info *info,
7951 union iwreq_data *wrqu, char *extra)
7952 {
7953 /*
7954 * This can be called at any time. No action lock required
7955 */
7956
7957 struct ipw2100_priv *priv = ieee80211_priv(dev);
7958
7959 if (priv->config & CFG_LONG_PREAMBLE)
7960 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7961 else
7962 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7963
7964 return 0;
7965 }
7966
7967 #ifdef CONFIG_IPW2100_MONITOR
7968 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7969 struct iw_request_info *info,
7970 union iwreq_data *wrqu, char *extra)
7971 {
7972 struct ipw2100_priv *priv = ieee80211_priv(dev);
7973 int err, mode = *(int *)extra;
7974
7975 mutex_lock(&priv->action_mutex);
7976 if (!(priv->status & STATUS_INITIALIZED)) {
7977 err = -EIO;
7978 goto done;
7979 }
7980
7981 if (mode == 1)
7982 priv->config |= CFG_CRC_CHECK;
7983 else if (mode == 0)
7984 priv->config &= ~CFG_CRC_CHECK;
7985 else {
7986 err = -EINVAL;
7987 goto done;
7988 }
7989 err = 0;
7990
7991 done:
7992 mutex_unlock(&priv->action_mutex);
7993 return err;
7994 }
7995
7996 static int ipw2100_wx_get_crc_check(struct net_device *dev,
7997 struct iw_request_info *info,
7998 union iwreq_data *wrqu, char *extra)
7999 {
8000 /*
8001 * This can be called at any time. No action lock required
8002 */
8003
8004 struct ipw2100_priv *priv = ieee80211_priv(dev);
8005
8006 if (priv->config & CFG_CRC_CHECK)
8007 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8008 else
8009 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8010
8011 return 0;
8012 }
8013 #endif /* CONFIG_IPW2100_MONITOR */
8014
8015 static iw_handler ipw2100_wx_handlers[] = {
8016 NULL, /* SIOCSIWCOMMIT */
8017 ipw2100_wx_get_name, /* SIOCGIWNAME */
8018 NULL, /* SIOCSIWNWID */
8019 NULL, /* SIOCGIWNWID */
8020 ipw2100_wx_set_freq, /* SIOCSIWFREQ */
8021 ipw2100_wx_get_freq, /* SIOCGIWFREQ */
8022 ipw2100_wx_set_mode, /* SIOCSIWMODE */
8023 ipw2100_wx_get_mode, /* SIOCGIWMODE */
8024 NULL, /* SIOCSIWSENS */
8025 NULL, /* SIOCGIWSENS */
8026 NULL, /* SIOCSIWRANGE */
8027 ipw2100_wx_get_range, /* SIOCGIWRANGE */
8028 NULL, /* SIOCSIWPRIV */
8029 NULL, /* SIOCGIWPRIV */
8030 NULL, /* SIOCSIWSTATS */
8031 NULL, /* SIOCGIWSTATS */
8032 NULL, /* SIOCSIWSPY */
8033 NULL, /* SIOCGIWSPY */
8034 NULL, /* SIOCGIWTHRSPY */
8035 NULL, /* SIOCWIWTHRSPY */
8036 ipw2100_wx_set_wap, /* SIOCSIWAP */
8037 ipw2100_wx_get_wap, /* SIOCGIWAP */
8038 ipw2100_wx_set_mlme, /* SIOCSIWMLME */
8039 NULL, /* SIOCGIWAPLIST -- deprecated */
8040 ipw2100_wx_set_scan, /* SIOCSIWSCAN */
8041 ipw2100_wx_get_scan, /* SIOCGIWSCAN */
8042 ipw2100_wx_set_essid, /* SIOCSIWESSID */
8043 ipw2100_wx_get_essid, /* SIOCGIWESSID */
8044 ipw2100_wx_set_nick, /* SIOCSIWNICKN */
8045 ipw2100_wx_get_nick, /* SIOCGIWNICKN */
8046 NULL, /* -- hole -- */
8047 NULL, /* -- hole -- */
8048 ipw2100_wx_set_rate, /* SIOCSIWRATE */
8049 ipw2100_wx_get_rate, /* SIOCGIWRATE */
8050 ipw2100_wx_set_rts, /* SIOCSIWRTS */
8051 ipw2100_wx_get_rts, /* SIOCGIWRTS */
8052 ipw2100_wx_set_frag, /* SIOCSIWFRAG */
8053 ipw2100_wx_get_frag, /* SIOCGIWFRAG */
8054 ipw2100_wx_set_txpow, /* SIOCSIWTXPOW */
8055 ipw2100_wx_get_txpow, /* SIOCGIWTXPOW */
8056 ipw2100_wx_set_retry, /* SIOCSIWRETRY */
8057 ipw2100_wx_get_retry, /* SIOCGIWRETRY */
8058 ipw2100_wx_set_encode, /* SIOCSIWENCODE */
8059 ipw2100_wx_get_encode, /* SIOCGIWENCODE */
8060 ipw2100_wx_set_power, /* SIOCSIWPOWER */
8061 ipw2100_wx_get_power, /* SIOCGIWPOWER */
8062 NULL, /* -- hole -- */
8063 NULL, /* -- hole -- */
8064 ipw2100_wx_set_genie, /* SIOCSIWGENIE */
8065 ipw2100_wx_get_genie, /* SIOCGIWGENIE */
8066 ipw2100_wx_set_auth, /* SIOCSIWAUTH */
8067 ipw2100_wx_get_auth, /* SIOCGIWAUTH */
8068 ipw2100_wx_set_encodeext, /* SIOCSIWENCODEEXT */
8069 ipw2100_wx_get_encodeext, /* SIOCGIWENCODEEXT */
8070 NULL, /* SIOCSIWPMKSA */
8071 };
8072
8073 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8074 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8075 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8076 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8077 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8078 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8079 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8080 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8081
8082 static const struct iw_priv_args ipw2100_private_args[] = {
8083
8084 #ifdef CONFIG_IPW2100_MONITOR
8085 {
8086 IPW2100_PRIV_SET_MONITOR,
8087 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8088 {
8089 IPW2100_PRIV_RESET,
8090 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8091 #endif /* CONFIG_IPW2100_MONITOR */
8092
8093 {
8094 IPW2100_PRIV_SET_POWER,
8095 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8096 {
8097 IPW2100_PRIV_GET_POWER,
8098 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8099 "get_power"},
8100 {
8101 IPW2100_PRIV_SET_LONGPREAMBLE,
8102 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8103 {
8104 IPW2100_PRIV_GET_LONGPREAMBLE,
8105 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8106 #ifdef CONFIG_IPW2100_MONITOR
8107 {
8108 IPW2100_PRIV_SET_CRC_CHECK,
8109 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8110 {
8111 IPW2100_PRIV_GET_CRC_CHECK,
8112 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8113 #endif /* CONFIG_IPW2100_MONITOR */
8114 };
8115
8116 static iw_handler ipw2100_private_handler[] = {
8117 #ifdef CONFIG_IPW2100_MONITOR
8118 ipw2100_wx_set_promisc,
8119 ipw2100_wx_reset,
8120 #else /* CONFIG_IPW2100_MONITOR */
8121 NULL,
8122 NULL,
8123 #endif /* CONFIG_IPW2100_MONITOR */
8124 ipw2100_wx_set_powermode,
8125 ipw2100_wx_get_powermode,
8126 ipw2100_wx_set_preamble,
8127 ipw2100_wx_get_preamble,
8128 #ifdef CONFIG_IPW2100_MONITOR
8129 ipw2100_wx_set_crc_check,
8130 ipw2100_wx_get_crc_check,
8131 #else /* CONFIG_IPW2100_MONITOR */
8132 NULL,
8133 NULL,
8134 #endif /* CONFIG_IPW2100_MONITOR */
8135 };
8136
8137 /*
8138 * Get wireless statistics.
8139 * Called by /proc/net/wireless
8140 * Also called by SIOCGIWSTATS
8141 */
8142 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8143 {
8144 enum {
8145 POOR = 30,
8146 FAIR = 60,
8147 GOOD = 80,
8148 VERY_GOOD = 90,
8149 EXCELLENT = 95,
8150 PERFECT = 100
8151 };
8152 int rssi_qual;
8153 int tx_qual;
8154 int beacon_qual;
8155
8156 struct ipw2100_priv *priv = ieee80211_priv(dev);
8157 struct iw_statistics *wstats;
8158 u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8159 u32 ord_len = sizeof(u32);
8160
8161 if (!priv)
8162 return (struct iw_statistics *)NULL;
8163
8164 wstats = &priv->wstats;
8165
8166 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8167 * ipw2100_wx_wireless_stats seems to be called before fw is
8168 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8169 * and associated; if not associcated, the values are all meaningless
8170 * anyway, so set them all to NULL and INVALID */
8171 if (!(priv->status & STATUS_ASSOCIATED)) {
8172 wstats->miss.beacon = 0;
8173 wstats->discard.retries = 0;
8174 wstats->qual.qual = 0;
8175 wstats->qual.level = 0;
8176 wstats->qual.noise = 0;
8177 wstats->qual.updated = 7;
8178 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8179 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8180 return wstats;
8181 }
8182
8183 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8184 &missed_beacons, &ord_len))
8185 goto fail_get_ordinal;
8186
8187 /* If we don't have a connection the quality and level is 0 */
8188 if (!(priv->status & STATUS_ASSOCIATED)) {
8189 wstats->qual.qual = 0;
8190 wstats->qual.level = 0;
8191 } else {
8192 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8193 &rssi, &ord_len))
8194 goto fail_get_ordinal;
8195 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8196 if (rssi < 10)
8197 rssi_qual = rssi * POOR / 10;
8198 else if (rssi < 15)
8199 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8200 else if (rssi < 20)
8201 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8202 else if (rssi < 30)
8203 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8204 10 + GOOD;
8205 else
8206 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8207 10 + VERY_GOOD;
8208
8209 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8210 &tx_retries, &ord_len))
8211 goto fail_get_ordinal;
8212
8213 if (tx_retries > 75)
8214 tx_qual = (90 - tx_retries) * POOR / 15;
8215 else if (tx_retries > 70)
8216 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8217 else if (tx_retries > 65)
8218 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8219 else if (tx_retries > 50)
8220 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8221 15 + GOOD;
8222 else
8223 tx_qual = (50 - tx_retries) *
8224 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8225
8226 if (missed_beacons > 50)
8227 beacon_qual = (60 - missed_beacons) * POOR / 10;
8228 else if (missed_beacons > 40)
8229 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8230 10 + POOR;
8231 else if (missed_beacons > 32)
8232 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8233 18 + FAIR;
8234 else if (missed_beacons > 20)
8235 beacon_qual = (32 - missed_beacons) *
8236 (VERY_GOOD - GOOD) / 20 + GOOD;
8237 else
8238 beacon_qual = (20 - missed_beacons) *
8239 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8240
8241 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8242
8243 #ifdef CONFIG_IPW2100_DEBUG
8244 if (beacon_qual == quality)
8245 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8246 else if (tx_qual == quality)
8247 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8248 else if (quality != 100)
8249 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8250 else
8251 IPW_DEBUG_WX("Quality not clamped.\n");
8252 #endif
8253
8254 wstats->qual.qual = quality;
8255 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8256 }
8257
8258 wstats->qual.noise = 0;
8259 wstats->qual.updated = 7;
8260 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8261
8262 /* FIXME: this is percent and not a # */
8263 wstats->miss.beacon = missed_beacons;
8264
8265 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8266 &tx_failures, &ord_len))
8267 goto fail_get_ordinal;
8268 wstats->discard.retries = tx_failures;
8269
8270 return wstats;
8271
8272 fail_get_ordinal:
8273 IPW_DEBUG_WX("failed querying ordinals.\n");
8274
8275 return (struct iw_statistics *)NULL;
8276 }
8277
8278 static struct iw_handler_def ipw2100_wx_handler_def = {
8279 .standard = ipw2100_wx_handlers,
8280 .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8281 .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8282 .num_private_args = sizeof(ipw2100_private_args) /
8283 sizeof(struct iw_priv_args),
8284 .private = (iw_handler *) ipw2100_private_handler,
8285 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8286 .get_wireless_stats = ipw2100_wx_wireless_stats,
8287 };
8288
8289 static void ipw2100_wx_event_work(struct ipw2100_priv *priv)
8290 {
8291 union iwreq_data wrqu;
8292 int len = ETH_ALEN;
8293
8294 if (priv->status & STATUS_STOPPING)
8295 return;
8296
8297 mutex_lock(&priv->action_mutex);
8298
8299 IPW_DEBUG_WX("enter\n");
8300
8301 mutex_unlock(&priv->action_mutex);
8302
8303 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8304
8305 /* Fetch BSSID from the hardware */
8306 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8307 priv->status & STATUS_RF_KILL_MASK ||
8308 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8309 &priv->bssid, &len)) {
8310 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8311 } else {
8312 /* We now have the BSSID, so can finish setting to the full
8313 * associated state */
8314 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8315 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8316 priv->status &= ~STATUS_ASSOCIATING;
8317 priv->status |= STATUS_ASSOCIATED;
8318 netif_carrier_on(priv->net_dev);
8319 netif_wake_queue(priv->net_dev);
8320 }
8321
8322 if (!(priv->status & STATUS_ASSOCIATED)) {
8323 IPW_DEBUG_WX("Configuring ESSID\n");
8324 mutex_lock(&priv->action_mutex);
8325 /* This is a disassociation event, so kick the firmware to
8326 * look for another AP */
8327 if (priv->config & CFG_STATIC_ESSID)
8328 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8329 0);
8330 else
8331 ipw2100_set_essid(priv, NULL, 0, 0);
8332 mutex_unlock(&priv->action_mutex);
8333 }
8334
8335 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8336 }
8337
8338 #define IPW2100_FW_MAJOR_VERSION 1
8339 #define IPW2100_FW_MINOR_VERSION 3
8340
8341 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8342 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8343
8344 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8345 IPW2100_FW_MAJOR_VERSION)
8346
8347 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8348 "." __stringify(IPW2100_FW_MINOR_VERSION)
8349
8350 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8351
8352 /*
8353
8354 BINARY FIRMWARE HEADER FORMAT
8355
8356 offset length desc
8357 0 2 version
8358 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8359 4 4 fw_len
8360 8 4 uc_len
8361 C fw_len firmware data
8362 12 + fw_len uc_len microcode data
8363
8364 */
8365
8366 struct ipw2100_fw_header {
8367 short version;
8368 short mode;
8369 unsigned int fw_size;
8370 unsigned int uc_size;
8371 } __attribute__ ((packed));
8372
8373 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8374 {
8375 struct ipw2100_fw_header *h =
8376 (struct ipw2100_fw_header *)fw->fw_entry->data;
8377
8378 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8379 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8380 "(detected version id of %u). "
8381 "See Documentation/networking/README.ipw2100\n",
8382 h->version);
8383 return 1;
8384 }
8385
8386 fw->version = h->version;
8387 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8388 fw->fw.size = h->fw_size;
8389 fw->uc.data = fw->fw.data + h->fw_size;
8390 fw->uc.size = h->uc_size;
8391
8392 return 0;
8393 }
8394
8395 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8396 struct ipw2100_fw *fw)
8397 {
8398 char *fw_name;
8399 int rc;
8400
8401 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8402 priv->net_dev->name);
8403
8404 switch (priv->ieee->iw_mode) {
8405 case IW_MODE_ADHOC:
8406 fw_name = IPW2100_FW_NAME("-i");
8407 break;
8408 #ifdef CONFIG_IPW2100_MONITOR
8409 case IW_MODE_MONITOR:
8410 fw_name = IPW2100_FW_NAME("-p");
8411 break;
8412 #endif
8413 case IW_MODE_INFRA:
8414 default:
8415 fw_name = IPW2100_FW_NAME("");
8416 break;
8417 }
8418
8419 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8420
8421 if (rc < 0) {
8422 printk(KERN_ERR DRV_NAME ": "
8423 "%s: Firmware '%s' not available or load failed.\n",
8424 priv->net_dev->name, fw_name);
8425 return rc;
8426 }
8427 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8428 fw->fw_entry->size);
8429
8430 ipw2100_mod_firmware_load(fw);
8431
8432 return 0;
8433 }
8434
8435 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8436 struct ipw2100_fw *fw)
8437 {
8438 fw->version = 0;
8439 if (fw->fw_entry)
8440 release_firmware(fw->fw_entry);
8441 fw->fw_entry = NULL;
8442 }
8443
8444 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8445 size_t max)
8446 {
8447 char ver[MAX_FW_VERSION_LEN];
8448 u32 len = MAX_FW_VERSION_LEN;
8449 u32 tmp;
8450 int i;
8451 /* firmware version is an ascii string (max len of 14) */
8452 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8453 return -EIO;
8454 tmp = max;
8455 if (len >= max)
8456 len = max - 1;
8457 for (i = 0; i < len; i++)
8458 buf[i] = ver[i];
8459 buf[i] = '\0';
8460 return tmp;
8461 }
8462
8463 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8464 size_t max)
8465 {
8466 u32 ver;
8467 u32 len = sizeof(ver);
8468 /* microcode version is a 32 bit integer */
8469 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8470 return -EIO;
8471 return snprintf(buf, max, "%08X", ver);
8472 }
8473
8474 /*
8475 * On exit, the firmware will have been freed from the fw list
8476 */
8477 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8478 {
8479 /* firmware is constructed of N contiguous entries, each entry is
8480 * structured as:
8481 *
8482 * offset sie desc
8483 * 0 4 address to write to
8484 * 4 2 length of data run
8485 * 6 length data
8486 */
8487 unsigned int addr;
8488 unsigned short len;
8489
8490 const unsigned char *firmware_data = fw->fw.data;
8491 unsigned int firmware_data_left = fw->fw.size;
8492
8493 while (firmware_data_left > 0) {
8494 addr = *(u32 *) (firmware_data);
8495 firmware_data += 4;
8496 firmware_data_left -= 4;
8497
8498 len = *(u16 *) (firmware_data);
8499 firmware_data += 2;
8500 firmware_data_left -= 2;
8501
8502 if (len > 32) {
8503 printk(KERN_ERR DRV_NAME ": "
8504 "Invalid firmware run-length of %d bytes\n",
8505 len);
8506 return -EINVAL;
8507 }
8508
8509 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8510 firmware_data += len;
8511 firmware_data_left -= len;
8512 }
8513
8514 return 0;
8515 }
8516
8517 struct symbol_alive_response {
8518 u8 cmd_id;
8519 u8 seq_num;
8520 u8 ucode_rev;
8521 u8 eeprom_valid;
8522 u16 valid_flags;
8523 u8 IEEE_addr[6];
8524 u16 flags;
8525 u16 pcb_rev;
8526 u16 clock_settle_time; // 1us LSB
8527 u16 powerup_settle_time; // 1us LSB
8528 u16 hop_settle_time; // 1us LSB
8529 u8 date[3]; // month, day, year
8530 u8 time[2]; // hours, minutes
8531 u8 ucode_valid;
8532 };
8533
8534 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8535 struct ipw2100_fw *fw)
8536 {
8537 struct net_device *dev = priv->net_dev;
8538 const unsigned char *microcode_data = fw->uc.data;
8539 unsigned int microcode_data_left = fw->uc.size;
8540 void __iomem *reg = (void __iomem *)dev->base_addr;
8541
8542 struct symbol_alive_response response;
8543 int i, j;
8544 u8 data;
8545
8546 /* Symbol control */
8547 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8548 readl(reg);
8549 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8550 readl(reg);
8551
8552 /* HW config */
8553 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8554 readl(reg);
8555 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8556 readl(reg);
8557
8558 /* EN_CS_ACCESS bit to reset control store pointer */
8559 write_nic_byte(dev, 0x210000, 0x40);
8560 readl(reg);
8561 write_nic_byte(dev, 0x210000, 0x0);
8562 readl(reg);
8563 write_nic_byte(dev, 0x210000, 0x40);
8564 readl(reg);
8565
8566 /* copy microcode from buffer into Symbol */
8567
8568 while (microcode_data_left > 0) {
8569 write_nic_byte(dev, 0x210010, *microcode_data++);
8570 write_nic_byte(dev, 0x210010, *microcode_data++);
8571 microcode_data_left -= 2;
8572 }
8573
8574 /* EN_CS_ACCESS bit to reset the control store pointer */
8575 write_nic_byte(dev, 0x210000, 0x0);
8576 readl(reg);
8577
8578 /* Enable System (Reg 0)
8579 * first enable causes garbage in RX FIFO */
8580 write_nic_byte(dev, 0x210000, 0x0);
8581 readl(reg);
8582 write_nic_byte(dev, 0x210000, 0x80);
8583 readl(reg);
8584
8585 /* Reset External Baseband Reg */
8586 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8587 readl(reg);
8588 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8589 readl(reg);
8590
8591 /* HW Config (Reg 5) */
8592 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8593 readl(reg);
8594 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8595 readl(reg);
8596
8597 /* Enable System (Reg 0)
8598 * second enable should be OK */
8599 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8600 readl(reg);
8601 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8602
8603 /* check Symbol is enabled - upped this from 5 as it wasn't always
8604 * catching the update */
8605 for (i = 0; i < 10; i++) {
8606 udelay(10);
8607
8608 /* check Dino is enabled bit */
8609 read_nic_byte(dev, 0x210000, &data);
8610 if (data & 0x1)
8611 break;
8612 }
8613
8614 if (i == 10) {
8615 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8616 dev->name);
8617 return -EIO;
8618 }
8619
8620 /* Get Symbol alive response */
8621 for (i = 0; i < 30; i++) {
8622 /* Read alive response structure */
8623 for (j = 0;
8624 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8625 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8626
8627 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8628 break;
8629 udelay(10);
8630 }
8631
8632 if (i == 30) {
8633 printk(KERN_ERR DRV_NAME
8634 ": %s: No response from Symbol - hw not alive\n",
8635 dev->name);
8636 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8637 return -EIO;
8638 }
8639
8640 return 0;
8641 }
This page took 0.192801 seconds and 6 git commands to generate.