mac80211: convert to %pM away from print_mac
[deliverable/linux.git] / drivers / net / wireless / ipw2200.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
10
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
14
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 more details.
19
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23
24 The full GNU General Public License is included in this distribution in the
25 file called LICENSE.
26
27 Contact Information:
28 James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34
35
36 #ifndef KBUILD_EXTMOD
37 #define VK "k"
38 #else
39 #define VK
40 #endif
41
42 #ifdef CONFIG_IPW2200_DEBUG
43 #define VD "d"
44 #else
45 #define VD
46 #endif
47
48 #ifdef CONFIG_IPW2200_MONITOR
49 #define VM "m"
50 #else
51 #define VM
52 #endif
53
54 #ifdef CONFIG_IPW2200_PROMISCUOUS
55 #define VP "p"
56 #else
57 #define VP
58 #endif
59
60 #ifdef CONFIG_IPW2200_RADIOTAP
61 #define VR "r"
62 #else
63 #define VR
64 #endif
65
66 #ifdef CONFIG_IPW2200_QOS
67 #define VQ "q"
68 #else
69 #define VQ
70 #endif
71
72 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
73 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
74 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
75 #define DRV_VERSION IPW2200_VERSION
76
77 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
78
79 MODULE_DESCRIPTION(DRV_DESCRIPTION);
80 MODULE_VERSION(DRV_VERSION);
81 MODULE_AUTHOR(DRV_COPYRIGHT);
82 MODULE_LICENSE("GPL");
83
84 static int cmdlog = 0;
85 static int debug = 0;
86 static int channel = 0;
87 static int mode = 0;
88
89 static u32 ipw_debug_level;
90 static int associate = 1;
91 static int auto_create = 1;
92 static int led = 0;
93 static int disable = 0;
94 static int bt_coexist = 0;
95 static int hwcrypto = 0;
96 static int roaming = 1;
97 static const char ipw_modes[] = {
98 'a', 'b', 'g', '?'
99 };
100 static int antenna = CFG_SYS_ANTENNA_BOTH;
101
102 #ifdef CONFIG_IPW2200_PROMISCUOUS
103 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
104 #endif
105
106
107 #ifdef CONFIG_IPW2200_QOS
108 static int qos_enable = 0;
109 static int qos_burst_enable = 0;
110 static int qos_no_ack_mask = 0;
111 static int burst_duration_CCK = 0;
112 static int burst_duration_OFDM = 0;
113
114 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
115 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
116 QOS_TX3_CW_MIN_OFDM},
117 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
118 QOS_TX3_CW_MAX_OFDM},
119 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
120 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
121 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
122 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
123 };
124
125 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
126 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
127 QOS_TX3_CW_MIN_CCK},
128 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
129 QOS_TX3_CW_MAX_CCK},
130 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
131 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
132 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
133 QOS_TX3_TXOP_LIMIT_CCK}
134 };
135
136 static struct ieee80211_qos_parameters def_parameters_OFDM = {
137 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
138 DEF_TX3_CW_MIN_OFDM},
139 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
140 DEF_TX3_CW_MAX_OFDM},
141 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
142 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
143 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
144 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
145 };
146
147 static struct ieee80211_qos_parameters def_parameters_CCK = {
148 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
149 DEF_TX3_CW_MIN_CCK},
150 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
151 DEF_TX3_CW_MAX_CCK},
152 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
153 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
154 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
155 DEF_TX3_TXOP_LIMIT_CCK}
156 };
157
158 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
159
160 static int from_priority_to_tx_queue[] = {
161 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
162 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
163 };
164
165 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
166
167 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
168 *qos_param);
169 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
170 *qos_param);
171 #endif /* CONFIG_IPW2200_QOS */
172
173 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
174 static void ipw_remove_current_network(struct ipw_priv *priv);
175 static void ipw_rx(struct ipw_priv *priv);
176 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
177 struct clx2_tx_queue *txq, int qindex);
178 static int ipw_queue_reset(struct ipw_priv *priv);
179
180 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
181 int len, int sync);
182
183 static void ipw_tx_queue_free(struct ipw_priv *);
184
185 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
186 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
187 static void ipw_rx_queue_replenish(void *);
188 static int ipw_up(struct ipw_priv *);
189 static void ipw_bg_up(struct work_struct *work);
190 static void ipw_down(struct ipw_priv *);
191 static void ipw_bg_down(struct work_struct *work);
192 static int ipw_config(struct ipw_priv *);
193 static int init_supported_rates(struct ipw_priv *priv,
194 struct ipw_supported_rates *prates);
195 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
196 static void ipw_send_wep_keys(struct ipw_priv *, int);
197
198 static int snprint_line(char *buf, size_t count,
199 const u8 * data, u32 len, u32 ofs)
200 {
201 int out, i, j, l;
202 char c;
203
204 out = snprintf(buf, count, "%08X", ofs);
205
206 for (l = 0, i = 0; i < 2; i++) {
207 out += snprintf(buf + out, count - out, " ");
208 for (j = 0; j < 8 && l < len; j++, l++)
209 out += snprintf(buf + out, count - out, "%02X ",
210 data[(i * 8 + j)]);
211 for (; j < 8; j++)
212 out += snprintf(buf + out, count - out, " ");
213 }
214
215 out += snprintf(buf + out, count - out, " ");
216 for (l = 0, i = 0; i < 2; i++) {
217 out += snprintf(buf + out, count - out, " ");
218 for (j = 0; j < 8 && l < len; j++, l++) {
219 c = data[(i * 8 + j)];
220 if (!isascii(c) || !isprint(c))
221 c = '.';
222
223 out += snprintf(buf + out, count - out, "%c", c);
224 }
225
226 for (; j < 8; j++)
227 out += snprintf(buf + out, count - out, " ");
228 }
229
230 return out;
231 }
232
233 static void printk_buf(int level, const u8 * data, u32 len)
234 {
235 char line[81];
236 u32 ofs = 0;
237 if (!(ipw_debug_level & level))
238 return;
239
240 while (len) {
241 snprint_line(line, sizeof(line), &data[ofs],
242 min(len, 16U), ofs);
243 printk(KERN_DEBUG "%s\n", line);
244 ofs += 16;
245 len -= min(len, 16U);
246 }
247 }
248
249 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
250 {
251 size_t out = size;
252 u32 ofs = 0;
253 int total = 0;
254
255 while (size && len) {
256 out = snprint_line(output, size, &data[ofs],
257 min_t(size_t, len, 16U), ofs);
258
259 ofs += 16;
260 output += out;
261 size -= out;
262 len -= min_t(size_t, len, 16U);
263 total += out;
264 }
265 return total;
266 }
267
268 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
269 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
270 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
271
272 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
273 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
274 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
275
276 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
277 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
278 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
279 {
280 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
281 __LINE__, (u32) (b), (u32) (c));
282 _ipw_write_reg8(a, b, c);
283 }
284
285 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
286 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
287 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
288 {
289 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
290 __LINE__, (u32) (b), (u32) (c));
291 _ipw_write_reg16(a, b, c);
292 }
293
294 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
295 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
296 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
297 {
298 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
299 __LINE__, (u32) (b), (u32) (c));
300 _ipw_write_reg32(a, b, c);
301 }
302
303 /* 8-bit direct write (low 4K) */
304 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
305
306 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
307 #define ipw_write8(ipw, ofs, val) do { \
308 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
309 _ipw_write8(ipw, ofs, val); \
310 } while (0)
311
312 /* 16-bit direct write (low 4K) */
313 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
314
315 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
316 #define ipw_write16(ipw, ofs, val) \
317 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
318 _ipw_write16(ipw, ofs, val)
319
320 /* 32-bit direct write (low 4K) */
321 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
322
323 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
324 #define ipw_write32(ipw, ofs, val) \
325 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
326 _ipw_write32(ipw, ofs, val)
327
328 /* 8-bit direct read (low 4K) */
329 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
330
331 /* 8-bit direct read (low 4K), with debug wrapper */
332 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
333 {
334 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
335 return _ipw_read8(ipw, ofs);
336 }
337
338 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
339 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
340
341 /* 16-bit direct read (low 4K) */
342 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
343
344 /* 16-bit direct read (low 4K), with debug wrapper */
345 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
346 {
347 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
348 return _ipw_read16(ipw, ofs);
349 }
350
351 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
353
354 /* 32-bit direct read (low 4K) */
355 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
356
357 /* 32-bit direct read (low 4K), with debug wrapper */
358 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
359 {
360 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
361 return _ipw_read32(ipw, ofs);
362 }
363
364 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
366
367 /* multi-byte read (above 4K), with debug wrapper */
368 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
369 static inline void __ipw_read_indirect(const char *f, int l,
370 struct ipw_priv *a, u32 b, u8 * c, int d)
371 {
372 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
373 d);
374 _ipw_read_indirect(a, b, c, d);
375 }
376
377 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
378 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
379
380 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
381 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
382 int num);
383 #define ipw_write_indirect(a, b, c, d) \
384 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
385 _ipw_write_indirect(a, b, c, d)
386
387 /* 32-bit indirect write (above 4K) */
388 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
389 {
390 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
391 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
392 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
393 }
394
395 /* 8-bit indirect write (above 4K) */
396 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
397 {
398 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
399 u32 dif_len = reg - aligned_addr;
400
401 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
402 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
403 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
404 }
405
406 /* 16-bit indirect write (above 4K) */
407 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
408 {
409 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
410 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
411
412 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
413 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
414 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
415 }
416
417 /* 8-bit indirect read (above 4K) */
418 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
419 {
420 u32 word;
421 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
422 IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
423 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
424 return (word >> ((reg & 0x3) * 8)) & 0xff;
425 }
426
427 /* 32-bit indirect read (above 4K) */
428 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
429 {
430 u32 value;
431
432 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
433
434 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
435 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
436 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
437 return value;
438 }
439
440 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
441 /* for area above 1st 4K of SRAM/reg space */
442 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
443 int num)
444 {
445 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
446 u32 dif_len = addr - aligned_addr;
447 u32 i;
448
449 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
450
451 if (num <= 0) {
452 return;
453 }
454
455 /* Read the first dword (or portion) byte by byte */
456 if (unlikely(dif_len)) {
457 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
458 /* Start reading at aligned_addr + dif_len */
459 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
460 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
461 aligned_addr += 4;
462 }
463
464 /* Read all of the middle dwords as dwords, with auto-increment */
465 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
466 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
467 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
468
469 /* Read the last dword (or portion) byte by byte */
470 if (unlikely(num)) {
471 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472 for (i = 0; num > 0; i++, num--)
473 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
474 }
475 }
476
477 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
478 /* for area above 1st 4K of SRAM/reg space */
479 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
480 int num)
481 {
482 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
483 u32 dif_len = addr - aligned_addr;
484 u32 i;
485
486 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
487
488 if (num <= 0) {
489 return;
490 }
491
492 /* Write the first dword (or portion) byte by byte */
493 if (unlikely(dif_len)) {
494 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
495 /* Start writing at aligned_addr + dif_len */
496 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
497 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
498 aligned_addr += 4;
499 }
500
501 /* Write all of the middle dwords as dwords, with auto-increment */
502 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
503 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
504 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
505
506 /* Write the last dword (or portion) byte by byte */
507 if (unlikely(num)) {
508 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509 for (i = 0; num > 0; i++, num--, buf++)
510 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
511 }
512 }
513
514 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
515 /* for 1st 4K of SRAM/regs space */
516 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
517 int num)
518 {
519 memcpy_toio((priv->hw_base + addr), buf, num);
520 }
521
522 /* Set bit(s) in low 4K of SRAM/regs */
523 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
524 {
525 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
526 }
527
528 /* Clear bit(s) in low 4K of SRAM/regs */
529 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
530 {
531 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
532 }
533
534 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
535 {
536 if (priv->status & STATUS_INT_ENABLED)
537 return;
538 priv->status |= STATUS_INT_ENABLED;
539 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
540 }
541
542 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
543 {
544 if (!(priv->status & STATUS_INT_ENABLED))
545 return;
546 priv->status &= ~STATUS_INT_ENABLED;
547 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
548 }
549
550 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
551 {
552 unsigned long flags;
553
554 spin_lock_irqsave(&priv->irq_lock, flags);
555 __ipw_enable_interrupts(priv);
556 spin_unlock_irqrestore(&priv->irq_lock, flags);
557 }
558
559 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
560 {
561 unsigned long flags;
562
563 spin_lock_irqsave(&priv->irq_lock, flags);
564 __ipw_disable_interrupts(priv);
565 spin_unlock_irqrestore(&priv->irq_lock, flags);
566 }
567
568 static char *ipw_error_desc(u32 val)
569 {
570 switch (val) {
571 case IPW_FW_ERROR_OK:
572 return "ERROR_OK";
573 case IPW_FW_ERROR_FAIL:
574 return "ERROR_FAIL";
575 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
576 return "MEMORY_UNDERFLOW";
577 case IPW_FW_ERROR_MEMORY_OVERFLOW:
578 return "MEMORY_OVERFLOW";
579 case IPW_FW_ERROR_BAD_PARAM:
580 return "BAD_PARAM";
581 case IPW_FW_ERROR_BAD_CHECKSUM:
582 return "BAD_CHECKSUM";
583 case IPW_FW_ERROR_NMI_INTERRUPT:
584 return "NMI_INTERRUPT";
585 case IPW_FW_ERROR_BAD_DATABASE:
586 return "BAD_DATABASE";
587 case IPW_FW_ERROR_ALLOC_FAIL:
588 return "ALLOC_FAIL";
589 case IPW_FW_ERROR_DMA_UNDERRUN:
590 return "DMA_UNDERRUN";
591 case IPW_FW_ERROR_DMA_STATUS:
592 return "DMA_STATUS";
593 case IPW_FW_ERROR_DINO_ERROR:
594 return "DINO_ERROR";
595 case IPW_FW_ERROR_EEPROM_ERROR:
596 return "EEPROM_ERROR";
597 case IPW_FW_ERROR_SYSASSERT:
598 return "SYSASSERT";
599 case IPW_FW_ERROR_FATAL_ERROR:
600 return "FATAL_ERROR";
601 default:
602 return "UNKNOWN_ERROR";
603 }
604 }
605
606 static void ipw_dump_error_log(struct ipw_priv *priv,
607 struct ipw_fw_error *error)
608 {
609 u32 i;
610
611 if (!error) {
612 IPW_ERROR("Error allocating and capturing error log. "
613 "Nothing to dump.\n");
614 return;
615 }
616
617 IPW_ERROR("Start IPW Error Log Dump:\n");
618 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
619 error->status, error->config);
620
621 for (i = 0; i < error->elem_len; i++)
622 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
623 ipw_error_desc(error->elem[i].desc),
624 error->elem[i].time,
625 error->elem[i].blink1,
626 error->elem[i].blink2,
627 error->elem[i].link1,
628 error->elem[i].link2, error->elem[i].data);
629 for (i = 0; i < error->log_len; i++)
630 IPW_ERROR("%i\t0x%08x\t%i\n",
631 error->log[i].time,
632 error->log[i].data, error->log[i].event);
633 }
634
635 static inline int ipw_is_init(struct ipw_priv *priv)
636 {
637 return (priv->status & STATUS_INIT) ? 1 : 0;
638 }
639
640 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
641 {
642 u32 addr, field_info, field_len, field_count, total_len;
643
644 IPW_DEBUG_ORD("ordinal = %i\n", ord);
645
646 if (!priv || !val || !len) {
647 IPW_DEBUG_ORD("Invalid argument\n");
648 return -EINVAL;
649 }
650
651 /* verify device ordinal tables have been initialized */
652 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
653 IPW_DEBUG_ORD("Access ordinals before initialization\n");
654 return -EINVAL;
655 }
656
657 switch (IPW_ORD_TABLE_ID_MASK & ord) {
658 case IPW_ORD_TABLE_0_MASK:
659 /*
660 * TABLE 0: Direct access to a table of 32 bit values
661 *
662 * This is a very simple table with the data directly
663 * read from the table
664 */
665
666 /* remove the table id from the ordinal */
667 ord &= IPW_ORD_TABLE_VALUE_MASK;
668
669 /* boundary check */
670 if (ord > priv->table0_len) {
671 IPW_DEBUG_ORD("ordinal value (%i) longer then "
672 "max (%i)\n", ord, priv->table0_len);
673 return -EINVAL;
674 }
675
676 /* verify we have enough room to store the value */
677 if (*len < sizeof(u32)) {
678 IPW_DEBUG_ORD("ordinal buffer length too small, "
679 "need %zd\n", sizeof(u32));
680 return -EINVAL;
681 }
682
683 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
684 ord, priv->table0_addr + (ord << 2));
685
686 *len = sizeof(u32);
687 ord <<= 2;
688 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
689 break;
690
691 case IPW_ORD_TABLE_1_MASK:
692 /*
693 * TABLE 1: Indirect access to a table of 32 bit values
694 *
695 * This is a fairly large table of u32 values each
696 * representing starting addr for the data (which is
697 * also a u32)
698 */
699
700 /* remove the table id from the ordinal */
701 ord &= IPW_ORD_TABLE_VALUE_MASK;
702
703 /* boundary check */
704 if (ord > priv->table1_len) {
705 IPW_DEBUG_ORD("ordinal value too long\n");
706 return -EINVAL;
707 }
708
709 /* verify we have enough room to store the value */
710 if (*len < sizeof(u32)) {
711 IPW_DEBUG_ORD("ordinal buffer length too small, "
712 "need %zd\n", sizeof(u32));
713 return -EINVAL;
714 }
715
716 *((u32 *) val) =
717 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
718 *len = sizeof(u32);
719 break;
720
721 case IPW_ORD_TABLE_2_MASK:
722 /*
723 * TABLE 2: Indirect access to a table of variable sized values
724 *
725 * This table consist of six values, each containing
726 * - dword containing the starting offset of the data
727 * - dword containing the lengh in the first 16bits
728 * and the count in the second 16bits
729 */
730
731 /* remove the table id from the ordinal */
732 ord &= IPW_ORD_TABLE_VALUE_MASK;
733
734 /* boundary check */
735 if (ord > priv->table2_len) {
736 IPW_DEBUG_ORD("ordinal value too long\n");
737 return -EINVAL;
738 }
739
740 /* get the address of statistic */
741 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
742
743 /* get the second DW of statistics ;
744 * two 16-bit words - first is length, second is count */
745 field_info =
746 ipw_read_reg32(priv,
747 priv->table2_addr + (ord << 3) +
748 sizeof(u32));
749
750 /* get each entry length */
751 field_len = *((u16 *) & field_info);
752
753 /* get number of entries */
754 field_count = *(((u16 *) & field_info) + 1);
755
756 /* abort if not enought memory */
757 total_len = field_len * field_count;
758 if (total_len > *len) {
759 *len = total_len;
760 return -EINVAL;
761 }
762
763 *len = total_len;
764 if (!total_len)
765 return 0;
766
767 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
768 "field_info = 0x%08x\n",
769 addr, total_len, field_info);
770 ipw_read_indirect(priv, addr, val, total_len);
771 break;
772
773 default:
774 IPW_DEBUG_ORD("Invalid ordinal!\n");
775 return -EINVAL;
776
777 }
778
779 return 0;
780 }
781
782 static void ipw_init_ordinals(struct ipw_priv *priv)
783 {
784 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
785 priv->table0_len = ipw_read32(priv, priv->table0_addr);
786
787 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
788 priv->table0_addr, priv->table0_len);
789
790 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
791 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
792
793 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
794 priv->table1_addr, priv->table1_len);
795
796 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
797 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
798 priv->table2_len &= 0x0000ffff; /* use first two bytes */
799
800 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
801 priv->table2_addr, priv->table2_len);
802
803 }
804
805 static u32 ipw_register_toggle(u32 reg)
806 {
807 reg &= ~IPW_START_STANDBY;
808 if (reg & IPW_GATE_ODMA)
809 reg &= ~IPW_GATE_ODMA;
810 if (reg & IPW_GATE_IDMA)
811 reg &= ~IPW_GATE_IDMA;
812 if (reg & IPW_GATE_ADMA)
813 reg &= ~IPW_GATE_ADMA;
814 return reg;
815 }
816
817 /*
818 * LED behavior:
819 * - On radio ON, turn on any LEDs that require to be on during start
820 * - On initialization, start unassociated blink
821 * - On association, disable unassociated blink
822 * - On disassociation, start unassociated blink
823 * - On radio OFF, turn off any LEDs started during radio on
824 *
825 */
826 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
827 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
828 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
829
830 static void ipw_led_link_on(struct ipw_priv *priv)
831 {
832 unsigned long flags;
833 u32 led;
834
835 /* If configured to not use LEDs, or nic_type is 1,
836 * then we don't toggle a LINK led */
837 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
838 return;
839
840 spin_lock_irqsave(&priv->lock, flags);
841
842 if (!(priv->status & STATUS_RF_KILL_MASK) &&
843 !(priv->status & STATUS_LED_LINK_ON)) {
844 IPW_DEBUG_LED("Link LED On\n");
845 led = ipw_read_reg32(priv, IPW_EVENT_REG);
846 led |= priv->led_association_on;
847
848 led = ipw_register_toggle(led);
849
850 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
851 ipw_write_reg32(priv, IPW_EVENT_REG, led);
852
853 priv->status |= STATUS_LED_LINK_ON;
854
855 /* If we aren't associated, schedule turning the LED off */
856 if (!(priv->status & STATUS_ASSOCIATED))
857 queue_delayed_work(priv->workqueue,
858 &priv->led_link_off,
859 LD_TIME_LINK_ON);
860 }
861
862 spin_unlock_irqrestore(&priv->lock, flags);
863 }
864
865 static void ipw_bg_led_link_on(struct work_struct *work)
866 {
867 struct ipw_priv *priv =
868 container_of(work, struct ipw_priv, led_link_on.work);
869 mutex_lock(&priv->mutex);
870 ipw_led_link_on(priv);
871 mutex_unlock(&priv->mutex);
872 }
873
874 static void ipw_led_link_off(struct ipw_priv *priv)
875 {
876 unsigned long flags;
877 u32 led;
878
879 /* If configured not to use LEDs, or nic type is 1,
880 * then we don't goggle the LINK led. */
881 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
882 return;
883
884 spin_lock_irqsave(&priv->lock, flags);
885
886 if (priv->status & STATUS_LED_LINK_ON) {
887 led = ipw_read_reg32(priv, IPW_EVENT_REG);
888 led &= priv->led_association_off;
889 led = ipw_register_toggle(led);
890
891 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
892 ipw_write_reg32(priv, IPW_EVENT_REG, led);
893
894 IPW_DEBUG_LED("Link LED Off\n");
895
896 priv->status &= ~STATUS_LED_LINK_ON;
897
898 /* If we aren't associated and the radio is on, schedule
899 * turning the LED on (blink while unassociated) */
900 if (!(priv->status & STATUS_RF_KILL_MASK) &&
901 !(priv->status & STATUS_ASSOCIATED))
902 queue_delayed_work(priv->workqueue, &priv->led_link_on,
903 LD_TIME_LINK_OFF);
904
905 }
906
907 spin_unlock_irqrestore(&priv->lock, flags);
908 }
909
910 static void ipw_bg_led_link_off(struct work_struct *work)
911 {
912 struct ipw_priv *priv =
913 container_of(work, struct ipw_priv, led_link_off.work);
914 mutex_lock(&priv->mutex);
915 ipw_led_link_off(priv);
916 mutex_unlock(&priv->mutex);
917 }
918
919 static void __ipw_led_activity_on(struct ipw_priv *priv)
920 {
921 u32 led;
922
923 if (priv->config & CFG_NO_LED)
924 return;
925
926 if (priv->status & STATUS_RF_KILL_MASK)
927 return;
928
929 if (!(priv->status & STATUS_LED_ACT_ON)) {
930 led = ipw_read_reg32(priv, IPW_EVENT_REG);
931 led |= priv->led_activity_on;
932
933 led = ipw_register_toggle(led);
934
935 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
936 ipw_write_reg32(priv, IPW_EVENT_REG, led);
937
938 IPW_DEBUG_LED("Activity LED On\n");
939
940 priv->status |= STATUS_LED_ACT_ON;
941
942 cancel_delayed_work(&priv->led_act_off);
943 queue_delayed_work(priv->workqueue, &priv->led_act_off,
944 LD_TIME_ACT_ON);
945 } else {
946 /* Reschedule LED off for full time period */
947 cancel_delayed_work(&priv->led_act_off);
948 queue_delayed_work(priv->workqueue, &priv->led_act_off,
949 LD_TIME_ACT_ON);
950 }
951 }
952
953 #if 0
954 void ipw_led_activity_on(struct ipw_priv *priv)
955 {
956 unsigned long flags;
957 spin_lock_irqsave(&priv->lock, flags);
958 __ipw_led_activity_on(priv);
959 spin_unlock_irqrestore(&priv->lock, flags);
960 }
961 #endif /* 0 */
962
963 static void ipw_led_activity_off(struct ipw_priv *priv)
964 {
965 unsigned long flags;
966 u32 led;
967
968 if (priv->config & CFG_NO_LED)
969 return;
970
971 spin_lock_irqsave(&priv->lock, flags);
972
973 if (priv->status & STATUS_LED_ACT_ON) {
974 led = ipw_read_reg32(priv, IPW_EVENT_REG);
975 led &= priv->led_activity_off;
976
977 led = ipw_register_toggle(led);
978
979 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
980 ipw_write_reg32(priv, IPW_EVENT_REG, led);
981
982 IPW_DEBUG_LED("Activity LED Off\n");
983
984 priv->status &= ~STATUS_LED_ACT_ON;
985 }
986
987 spin_unlock_irqrestore(&priv->lock, flags);
988 }
989
990 static void ipw_bg_led_activity_off(struct work_struct *work)
991 {
992 struct ipw_priv *priv =
993 container_of(work, struct ipw_priv, led_act_off.work);
994 mutex_lock(&priv->mutex);
995 ipw_led_activity_off(priv);
996 mutex_unlock(&priv->mutex);
997 }
998
999 static void ipw_led_band_on(struct ipw_priv *priv)
1000 {
1001 unsigned long flags;
1002 u32 led;
1003
1004 /* Only nic type 1 supports mode LEDs */
1005 if (priv->config & CFG_NO_LED ||
1006 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1007 return;
1008
1009 spin_lock_irqsave(&priv->lock, flags);
1010
1011 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1012 if (priv->assoc_network->mode == IEEE_A) {
1013 led |= priv->led_ofdm_on;
1014 led &= priv->led_association_off;
1015 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1016 } else if (priv->assoc_network->mode == IEEE_G) {
1017 led |= priv->led_ofdm_on;
1018 led |= priv->led_association_on;
1019 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1020 } else {
1021 led &= priv->led_ofdm_off;
1022 led |= priv->led_association_on;
1023 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1024 }
1025
1026 led = ipw_register_toggle(led);
1027
1028 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1029 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1030
1031 spin_unlock_irqrestore(&priv->lock, flags);
1032 }
1033
1034 static void ipw_led_band_off(struct ipw_priv *priv)
1035 {
1036 unsigned long flags;
1037 u32 led;
1038
1039 /* Only nic type 1 supports mode LEDs */
1040 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1041 return;
1042
1043 spin_lock_irqsave(&priv->lock, flags);
1044
1045 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1046 led &= priv->led_ofdm_off;
1047 led &= priv->led_association_off;
1048
1049 led = ipw_register_toggle(led);
1050
1051 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1052 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1053
1054 spin_unlock_irqrestore(&priv->lock, flags);
1055 }
1056
1057 static void ipw_led_radio_on(struct ipw_priv *priv)
1058 {
1059 ipw_led_link_on(priv);
1060 }
1061
1062 static void ipw_led_radio_off(struct ipw_priv *priv)
1063 {
1064 ipw_led_activity_off(priv);
1065 ipw_led_link_off(priv);
1066 }
1067
1068 static void ipw_led_link_up(struct ipw_priv *priv)
1069 {
1070 /* Set the Link Led on for all nic types */
1071 ipw_led_link_on(priv);
1072 }
1073
1074 static void ipw_led_link_down(struct ipw_priv *priv)
1075 {
1076 ipw_led_activity_off(priv);
1077 ipw_led_link_off(priv);
1078
1079 if (priv->status & STATUS_RF_KILL_MASK)
1080 ipw_led_radio_off(priv);
1081 }
1082
1083 static void ipw_led_init(struct ipw_priv *priv)
1084 {
1085 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1086
1087 /* Set the default PINs for the link and activity leds */
1088 priv->led_activity_on = IPW_ACTIVITY_LED;
1089 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1090
1091 priv->led_association_on = IPW_ASSOCIATED_LED;
1092 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1093
1094 /* Set the default PINs for the OFDM leds */
1095 priv->led_ofdm_on = IPW_OFDM_LED;
1096 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1097
1098 switch (priv->nic_type) {
1099 case EEPROM_NIC_TYPE_1:
1100 /* In this NIC type, the LEDs are reversed.... */
1101 priv->led_activity_on = IPW_ASSOCIATED_LED;
1102 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1103 priv->led_association_on = IPW_ACTIVITY_LED;
1104 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1105
1106 if (!(priv->config & CFG_NO_LED))
1107 ipw_led_band_on(priv);
1108
1109 /* And we don't blink link LEDs for this nic, so
1110 * just return here */
1111 return;
1112
1113 case EEPROM_NIC_TYPE_3:
1114 case EEPROM_NIC_TYPE_2:
1115 case EEPROM_NIC_TYPE_4:
1116 case EEPROM_NIC_TYPE_0:
1117 break;
1118
1119 default:
1120 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1121 priv->nic_type);
1122 priv->nic_type = EEPROM_NIC_TYPE_0;
1123 break;
1124 }
1125
1126 if (!(priv->config & CFG_NO_LED)) {
1127 if (priv->status & STATUS_ASSOCIATED)
1128 ipw_led_link_on(priv);
1129 else
1130 ipw_led_link_off(priv);
1131 }
1132 }
1133
1134 static void ipw_led_shutdown(struct ipw_priv *priv)
1135 {
1136 ipw_led_activity_off(priv);
1137 ipw_led_link_off(priv);
1138 ipw_led_band_off(priv);
1139 cancel_delayed_work(&priv->led_link_on);
1140 cancel_delayed_work(&priv->led_link_off);
1141 cancel_delayed_work(&priv->led_act_off);
1142 }
1143
1144 /*
1145 * The following adds a new attribute to the sysfs representation
1146 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1147 * used for controling the debug level.
1148 *
1149 * See the level definitions in ipw for details.
1150 */
1151 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1152 {
1153 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1154 }
1155
1156 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1157 size_t count)
1158 {
1159 char *p = (char *)buf;
1160 u32 val;
1161
1162 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1163 p++;
1164 if (p[0] == 'x' || p[0] == 'X')
1165 p++;
1166 val = simple_strtoul(p, &p, 16);
1167 } else
1168 val = simple_strtoul(p, &p, 10);
1169 if (p == buf)
1170 printk(KERN_INFO DRV_NAME
1171 ": %s is not in hex or decimal form.\n", buf);
1172 else
1173 ipw_debug_level = val;
1174
1175 return strnlen(buf, count);
1176 }
1177
1178 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1179 show_debug_level, store_debug_level);
1180
1181 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1182 {
1183 /* length = 1st dword in log */
1184 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1185 }
1186
1187 static void ipw_capture_event_log(struct ipw_priv *priv,
1188 u32 log_len, struct ipw_event *log)
1189 {
1190 u32 base;
1191
1192 if (log_len) {
1193 base = ipw_read32(priv, IPW_EVENT_LOG);
1194 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1195 (u8 *) log, sizeof(*log) * log_len);
1196 }
1197 }
1198
1199 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1200 {
1201 struct ipw_fw_error *error;
1202 u32 log_len = ipw_get_event_log_len(priv);
1203 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1204 u32 elem_len = ipw_read_reg32(priv, base);
1205
1206 error = kmalloc(sizeof(*error) +
1207 sizeof(*error->elem) * elem_len +
1208 sizeof(*error->log) * log_len, GFP_ATOMIC);
1209 if (!error) {
1210 IPW_ERROR("Memory allocation for firmware error log "
1211 "failed.\n");
1212 return NULL;
1213 }
1214 error->jiffies = jiffies;
1215 error->status = priv->status;
1216 error->config = priv->config;
1217 error->elem_len = elem_len;
1218 error->log_len = log_len;
1219 error->elem = (struct ipw_error_elem *)error->payload;
1220 error->log = (struct ipw_event *)(error->elem + elem_len);
1221
1222 ipw_capture_event_log(priv, log_len, error->log);
1223
1224 if (elem_len)
1225 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1226 sizeof(*error->elem) * elem_len);
1227
1228 return error;
1229 }
1230
1231 static ssize_t show_event_log(struct device *d,
1232 struct device_attribute *attr, char *buf)
1233 {
1234 struct ipw_priv *priv = dev_get_drvdata(d);
1235 u32 log_len = ipw_get_event_log_len(priv);
1236 u32 log_size;
1237 struct ipw_event *log;
1238 u32 len = 0, i;
1239
1240 /* not using min() because of its strict type checking */
1241 log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1242 sizeof(*log) * log_len : PAGE_SIZE;
1243 log = kzalloc(log_size, GFP_KERNEL);
1244 if (!log) {
1245 IPW_ERROR("Unable to allocate memory for log\n");
1246 return 0;
1247 }
1248 log_len = log_size / sizeof(*log);
1249 ipw_capture_event_log(priv, log_len, log);
1250
1251 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1252 for (i = 0; i < log_len; i++)
1253 len += snprintf(buf + len, PAGE_SIZE - len,
1254 "\n%08X%08X%08X",
1255 log[i].time, log[i].event, log[i].data);
1256 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1257 kfree(log);
1258 return len;
1259 }
1260
1261 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1262
1263 static ssize_t show_error(struct device *d,
1264 struct device_attribute *attr, char *buf)
1265 {
1266 struct ipw_priv *priv = dev_get_drvdata(d);
1267 u32 len = 0, i;
1268 if (!priv->error)
1269 return 0;
1270 len += snprintf(buf + len, PAGE_SIZE - len,
1271 "%08lX%08X%08X%08X",
1272 priv->error->jiffies,
1273 priv->error->status,
1274 priv->error->config, priv->error->elem_len);
1275 for (i = 0; i < priv->error->elem_len; i++)
1276 len += snprintf(buf + len, PAGE_SIZE - len,
1277 "\n%08X%08X%08X%08X%08X%08X%08X",
1278 priv->error->elem[i].time,
1279 priv->error->elem[i].desc,
1280 priv->error->elem[i].blink1,
1281 priv->error->elem[i].blink2,
1282 priv->error->elem[i].link1,
1283 priv->error->elem[i].link2,
1284 priv->error->elem[i].data);
1285
1286 len += snprintf(buf + len, PAGE_SIZE - len,
1287 "\n%08X", priv->error->log_len);
1288 for (i = 0; i < priv->error->log_len; i++)
1289 len += snprintf(buf + len, PAGE_SIZE - len,
1290 "\n%08X%08X%08X",
1291 priv->error->log[i].time,
1292 priv->error->log[i].event,
1293 priv->error->log[i].data);
1294 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1295 return len;
1296 }
1297
1298 static ssize_t clear_error(struct device *d,
1299 struct device_attribute *attr,
1300 const char *buf, size_t count)
1301 {
1302 struct ipw_priv *priv = dev_get_drvdata(d);
1303
1304 kfree(priv->error);
1305 priv->error = NULL;
1306 return count;
1307 }
1308
1309 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1310
1311 static ssize_t show_cmd_log(struct device *d,
1312 struct device_attribute *attr, char *buf)
1313 {
1314 struct ipw_priv *priv = dev_get_drvdata(d);
1315 u32 len = 0, i;
1316 if (!priv->cmdlog)
1317 return 0;
1318 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1319 (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1320 i = (i + 1) % priv->cmdlog_len) {
1321 len +=
1322 snprintf(buf + len, PAGE_SIZE - len,
1323 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1324 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1325 priv->cmdlog[i].cmd.len);
1326 len +=
1327 snprintk_buf(buf + len, PAGE_SIZE - len,
1328 (u8 *) priv->cmdlog[i].cmd.param,
1329 priv->cmdlog[i].cmd.len);
1330 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1331 }
1332 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1333 return len;
1334 }
1335
1336 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1337
1338 #ifdef CONFIG_IPW2200_PROMISCUOUS
1339 static void ipw_prom_free(struct ipw_priv *priv);
1340 static int ipw_prom_alloc(struct ipw_priv *priv);
1341 static ssize_t store_rtap_iface(struct device *d,
1342 struct device_attribute *attr,
1343 const char *buf, size_t count)
1344 {
1345 struct ipw_priv *priv = dev_get_drvdata(d);
1346 int rc = 0;
1347
1348 if (count < 1)
1349 return -EINVAL;
1350
1351 switch (buf[0]) {
1352 case '0':
1353 if (!rtap_iface)
1354 return count;
1355
1356 if (netif_running(priv->prom_net_dev)) {
1357 IPW_WARNING("Interface is up. Cannot unregister.\n");
1358 return count;
1359 }
1360
1361 ipw_prom_free(priv);
1362 rtap_iface = 0;
1363 break;
1364
1365 case '1':
1366 if (rtap_iface)
1367 return count;
1368
1369 rc = ipw_prom_alloc(priv);
1370 if (!rc)
1371 rtap_iface = 1;
1372 break;
1373
1374 default:
1375 return -EINVAL;
1376 }
1377
1378 if (rc) {
1379 IPW_ERROR("Failed to register promiscuous network "
1380 "device (error %d).\n", rc);
1381 }
1382
1383 return count;
1384 }
1385
1386 static ssize_t show_rtap_iface(struct device *d,
1387 struct device_attribute *attr,
1388 char *buf)
1389 {
1390 struct ipw_priv *priv = dev_get_drvdata(d);
1391 if (rtap_iface)
1392 return sprintf(buf, "%s", priv->prom_net_dev->name);
1393 else {
1394 buf[0] = '-';
1395 buf[1] = '1';
1396 buf[2] = '\0';
1397 return 3;
1398 }
1399 }
1400
1401 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1402 store_rtap_iface);
1403
1404 static ssize_t store_rtap_filter(struct device *d,
1405 struct device_attribute *attr,
1406 const char *buf, size_t count)
1407 {
1408 struct ipw_priv *priv = dev_get_drvdata(d);
1409
1410 if (!priv->prom_priv) {
1411 IPW_ERROR("Attempting to set filter without "
1412 "rtap_iface enabled.\n");
1413 return -EPERM;
1414 }
1415
1416 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1417
1418 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1419 BIT_ARG16(priv->prom_priv->filter));
1420
1421 return count;
1422 }
1423
1424 static ssize_t show_rtap_filter(struct device *d,
1425 struct device_attribute *attr,
1426 char *buf)
1427 {
1428 struct ipw_priv *priv = dev_get_drvdata(d);
1429 return sprintf(buf, "0x%04X",
1430 priv->prom_priv ? priv->prom_priv->filter : 0);
1431 }
1432
1433 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1434 store_rtap_filter);
1435 #endif
1436
1437 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1438 char *buf)
1439 {
1440 struct ipw_priv *priv = dev_get_drvdata(d);
1441 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1442 }
1443
1444 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1445 const char *buf, size_t count)
1446 {
1447 struct ipw_priv *priv = dev_get_drvdata(d);
1448 struct net_device *dev = priv->net_dev;
1449 char buffer[] = "00000000";
1450 unsigned long len =
1451 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1452 unsigned long val;
1453 char *p = buffer;
1454
1455 IPW_DEBUG_INFO("enter\n");
1456
1457 strncpy(buffer, buf, len);
1458 buffer[len] = 0;
1459
1460 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1461 p++;
1462 if (p[0] == 'x' || p[0] == 'X')
1463 p++;
1464 val = simple_strtoul(p, &p, 16);
1465 } else
1466 val = simple_strtoul(p, &p, 10);
1467 if (p == buffer) {
1468 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1469 } else {
1470 priv->ieee->scan_age = val;
1471 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1472 }
1473
1474 IPW_DEBUG_INFO("exit\n");
1475 return len;
1476 }
1477
1478 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1479
1480 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1481 char *buf)
1482 {
1483 struct ipw_priv *priv = dev_get_drvdata(d);
1484 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1485 }
1486
1487 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1488 const char *buf, size_t count)
1489 {
1490 struct ipw_priv *priv = dev_get_drvdata(d);
1491
1492 IPW_DEBUG_INFO("enter\n");
1493
1494 if (count == 0)
1495 return 0;
1496
1497 if (*buf == 0) {
1498 IPW_DEBUG_LED("Disabling LED control.\n");
1499 priv->config |= CFG_NO_LED;
1500 ipw_led_shutdown(priv);
1501 } else {
1502 IPW_DEBUG_LED("Enabling LED control.\n");
1503 priv->config &= ~CFG_NO_LED;
1504 ipw_led_init(priv);
1505 }
1506
1507 IPW_DEBUG_INFO("exit\n");
1508 return count;
1509 }
1510
1511 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1512
1513 static ssize_t show_status(struct device *d,
1514 struct device_attribute *attr, char *buf)
1515 {
1516 struct ipw_priv *p = d->driver_data;
1517 return sprintf(buf, "0x%08x\n", (int)p->status);
1518 }
1519
1520 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1521
1522 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1523 char *buf)
1524 {
1525 struct ipw_priv *p = d->driver_data;
1526 return sprintf(buf, "0x%08x\n", (int)p->config);
1527 }
1528
1529 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1530
1531 static ssize_t show_nic_type(struct device *d,
1532 struct device_attribute *attr, char *buf)
1533 {
1534 struct ipw_priv *priv = d->driver_data;
1535 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1536 }
1537
1538 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1539
1540 static ssize_t show_ucode_version(struct device *d,
1541 struct device_attribute *attr, char *buf)
1542 {
1543 u32 len = sizeof(u32), tmp = 0;
1544 struct ipw_priv *p = d->driver_data;
1545
1546 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1547 return 0;
1548
1549 return sprintf(buf, "0x%08x\n", tmp);
1550 }
1551
1552 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1553
1554 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1555 char *buf)
1556 {
1557 u32 len = sizeof(u32), tmp = 0;
1558 struct ipw_priv *p = d->driver_data;
1559
1560 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1561 return 0;
1562
1563 return sprintf(buf, "0x%08x\n", tmp);
1564 }
1565
1566 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1567
1568 /*
1569 * Add a device attribute to view/control the delay between eeprom
1570 * operations.
1571 */
1572 static ssize_t show_eeprom_delay(struct device *d,
1573 struct device_attribute *attr, char *buf)
1574 {
1575 int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1576 return sprintf(buf, "%i\n", n);
1577 }
1578 static ssize_t store_eeprom_delay(struct device *d,
1579 struct device_attribute *attr,
1580 const char *buf, size_t count)
1581 {
1582 struct ipw_priv *p = d->driver_data;
1583 sscanf(buf, "%i", &p->eeprom_delay);
1584 return strnlen(buf, count);
1585 }
1586
1587 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1588 show_eeprom_delay, store_eeprom_delay);
1589
1590 static ssize_t show_command_event_reg(struct device *d,
1591 struct device_attribute *attr, char *buf)
1592 {
1593 u32 reg = 0;
1594 struct ipw_priv *p = d->driver_data;
1595
1596 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1597 return sprintf(buf, "0x%08x\n", reg);
1598 }
1599 static ssize_t store_command_event_reg(struct device *d,
1600 struct device_attribute *attr,
1601 const char *buf, size_t count)
1602 {
1603 u32 reg;
1604 struct ipw_priv *p = d->driver_data;
1605
1606 sscanf(buf, "%x", &reg);
1607 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1608 return strnlen(buf, count);
1609 }
1610
1611 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1612 show_command_event_reg, store_command_event_reg);
1613
1614 static ssize_t show_mem_gpio_reg(struct device *d,
1615 struct device_attribute *attr, char *buf)
1616 {
1617 u32 reg = 0;
1618 struct ipw_priv *p = d->driver_data;
1619
1620 reg = ipw_read_reg32(p, 0x301100);
1621 return sprintf(buf, "0x%08x\n", reg);
1622 }
1623 static ssize_t store_mem_gpio_reg(struct device *d,
1624 struct device_attribute *attr,
1625 const char *buf, size_t count)
1626 {
1627 u32 reg;
1628 struct ipw_priv *p = d->driver_data;
1629
1630 sscanf(buf, "%x", &reg);
1631 ipw_write_reg32(p, 0x301100, reg);
1632 return strnlen(buf, count);
1633 }
1634
1635 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1636 show_mem_gpio_reg, store_mem_gpio_reg);
1637
1638 static ssize_t show_indirect_dword(struct device *d,
1639 struct device_attribute *attr, char *buf)
1640 {
1641 u32 reg = 0;
1642 struct ipw_priv *priv = d->driver_data;
1643
1644 if (priv->status & STATUS_INDIRECT_DWORD)
1645 reg = ipw_read_reg32(priv, priv->indirect_dword);
1646 else
1647 reg = 0;
1648
1649 return sprintf(buf, "0x%08x\n", reg);
1650 }
1651 static ssize_t store_indirect_dword(struct device *d,
1652 struct device_attribute *attr,
1653 const char *buf, size_t count)
1654 {
1655 struct ipw_priv *priv = d->driver_data;
1656
1657 sscanf(buf, "%x", &priv->indirect_dword);
1658 priv->status |= STATUS_INDIRECT_DWORD;
1659 return strnlen(buf, count);
1660 }
1661
1662 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1663 show_indirect_dword, store_indirect_dword);
1664
1665 static ssize_t show_indirect_byte(struct device *d,
1666 struct device_attribute *attr, char *buf)
1667 {
1668 u8 reg = 0;
1669 struct ipw_priv *priv = d->driver_data;
1670
1671 if (priv->status & STATUS_INDIRECT_BYTE)
1672 reg = ipw_read_reg8(priv, priv->indirect_byte);
1673 else
1674 reg = 0;
1675
1676 return sprintf(buf, "0x%02x\n", reg);
1677 }
1678 static ssize_t store_indirect_byte(struct device *d,
1679 struct device_attribute *attr,
1680 const char *buf, size_t count)
1681 {
1682 struct ipw_priv *priv = d->driver_data;
1683
1684 sscanf(buf, "%x", &priv->indirect_byte);
1685 priv->status |= STATUS_INDIRECT_BYTE;
1686 return strnlen(buf, count);
1687 }
1688
1689 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1690 show_indirect_byte, store_indirect_byte);
1691
1692 static ssize_t show_direct_dword(struct device *d,
1693 struct device_attribute *attr, char *buf)
1694 {
1695 u32 reg = 0;
1696 struct ipw_priv *priv = d->driver_data;
1697
1698 if (priv->status & STATUS_DIRECT_DWORD)
1699 reg = ipw_read32(priv, priv->direct_dword);
1700 else
1701 reg = 0;
1702
1703 return sprintf(buf, "0x%08x\n", reg);
1704 }
1705 static ssize_t store_direct_dword(struct device *d,
1706 struct device_attribute *attr,
1707 const char *buf, size_t count)
1708 {
1709 struct ipw_priv *priv = d->driver_data;
1710
1711 sscanf(buf, "%x", &priv->direct_dword);
1712 priv->status |= STATUS_DIRECT_DWORD;
1713 return strnlen(buf, count);
1714 }
1715
1716 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1717 show_direct_dword, store_direct_dword);
1718
1719 static int rf_kill_active(struct ipw_priv *priv)
1720 {
1721 if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1722 priv->status |= STATUS_RF_KILL_HW;
1723 else
1724 priv->status &= ~STATUS_RF_KILL_HW;
1725
1726 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1727 }
1728
1729 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1730 char *buf)
1731 {
1732 /* 0 - RF kill not enabled
1733 1 - SW based RF kill active (sysfs)
1734 2 - HW based RF kill active
1735 3 - Both HW and SW baed RF kill active */
1736 struct ipw_priv *priv = d->driver_data;
1737 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1738 (rf_kill_active(priv) ? 0x2 : 0x0);
1739 return sprintf(buf, "%i\n", val);
1740 }
1741
1742 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1743 {
1744 if ((disable_radio ? 1 : 0) ==
1745 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1746 return 0;
1747
1748 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1749 disable_radio ? "OFF" : "ON");
1750
1751 if (disable_radio) {
1752 priv->status |= STATUS_RF_KILL_SW;
1753
1754 if (priv->workqueue) {
1755 cancel_delayed_work(&priv->request_scan);
1756 cancel_delayed_work(&priv->request_direct_scan);
1757 cancel_delayed_work(&priv->request_passive_scan);
1758 cancel_delayed_work(&priv->scan_event);
1759 }
1760 queue_work(priv->workqueue, &priv->down);
1761 } else {
1762 priv->status &= ~STATUS_RF_KILL_SW;
1763 if (rf_kill_active(priv)) {
1764 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1765 "disabled by HW switch\n");
1766 /* Make sure the RF_KILL check timer is running */
1767 cancel_delayed_work(&priv->rf_kill);
1768 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1769 round_jiffies_relative(2 * HZ));
1770 } else
1771 queue_work(priv->workqueue, &priv->up);
1772 }
1773
1774 return 1;
1775 }
1776
1777 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1778 const char *buf, size_t count)
1779 {
1780 struct ipw_priv *priv = d->driver_data;
1781
1782 ipw_radio_kill_sw(priv, buf[0] == '1');
1783
1784 return count;
1785 }
1786
1787 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1788
1789 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1790 char *buf)
1791 {
1792 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1793 int pos = 0, len = 0;
1794 if (priv->config & CFG_SPEED_SCAN) {
1795 while (priv->speed_scan[pos] != 0)
1796 len += sprintf(&buf[len], "%d ",
1797 priv->speed_scan[pos++]);
1798 return len + sprintf(&buf[len], "\n");
1799 }
1800
1801 return sprintf(buf, "0\n");
1802 }
1803
1804 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1805 const char *buf, size_t count)
1806 {
1807 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1808 int channel, pos = 0;
1809 const char *p = buf;
1810
1811 /* list of space separated channels to scan, optionally ending with 0 */
1812 while ((channel = simple_strtol(p, NULL, 0))) {
1813 if (pos == MAX_SPEED_SCAN - 1) {
1814 priv->speed_scan[pos] = 0;
1815 break;
1816 }
1817
1818 if (ieee80211_is_valid_channel(priv->ieee, channel))
1819 priv->speed_scan[pos++] = channel;
1820 else
1821 IPW_WARNING("Skipping invalid channel request: %d\n",
1822 channel);
1823 p = strchr(p, ' ');
1824 if (!p)
1825 break;
1826 while (*p == ' ' || *p == '\t')
1827 p++;
1828 }
1829
1830 if (pos == 0)
1831 priv->config &= ~CFG_SPEED_SCAN;
1832 else {
1833 priv->speed_scan_pos = 0;
1834 priv->config |= CFG_SPEED_SCAN;
1835 }
1836
1837 return count;
1838 }
1839
1840 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1841 store_speed_scan);
1842
1843 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1844 char *buf)
1845 {
1846 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1847 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1848 }
1849
1850 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1851 const char *buf, size_t count)
1852 {
1853 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1854 if (buf[0] == '1')
1855 priv->config |= CFG_NET_STATS;
1856 else
1857 priv->config &= ~CFG_NET_STATS;
1858
1859 return count;
1860 }
1861
1862 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1863 show_net_stats, store_net_stats);
1864
1865 static ssize_t show_channels(struct device *d,
1866 struct device_attribute *attr,
1867 char *buf)
1868 {
1869 struct ipw_priv *priv = dev_get_drvdata(d);
1870 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1871 int len = 0, i;
1872
1873 len = sprintf(&buf[len],
1874 "Displaying %d channels in 2.4Ghz band "
1875 "(802.11bg):\n", geo->bg_channels);
1876
1877 for (i = 0; i < geo->bg_channels; i++) {
1878 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1879 geo->bg[i].channel,
1880 geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1881 " (radar spectrum)" : "",
1882 ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1883 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1884 ? "" : ", IBSS",
1885 geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1886 "passive only" : "active/passive",
1887 geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1888 "B" : "B/G");
1889 }
1890
1891 len += sprintf(&buf[len],
1892 "Displaying %d channels in 5.2Ghz band "
1893 "(802.11a):\n", geo->a_channels);
1894 for (i = 0; i < geo->a_channels; i++) {
1895 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1896 geo->a[i].channel,
1897 geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1898 " (radar spectrum)" : "",
1899 ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1900 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1901 ? "" : ", IBSS",
1902 geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1903 "passive only" : "active/passive");
1904 }
1905
1906 return len;
1907 }
1908
1909 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1910
1911 static void notify_wx_assoc_event(struct ipw_priv *priv)
1912 {
1913 union iwreq_data wrqu;
1914 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1915 if (priv->status & STATUS_ASSOCIATED)
1916 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1917 else
1918 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1919 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1920 }
1921
1922 static void ipw_irq_tasklet(struct ipw_priv *priv)
1923 {
1924 u32 inta, inta_mask, handled = 0;
1925 unsigned long flags;
1926 int rc = 0;
1927
1928 spin_lock_irqsave(&priv->irq_lock, flags);
1929
1930 inta = ipw_read32(priv, IPW_INTA_RW);
1931 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1932 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1933
1934 /* Add any cached INTA values that need to be handled */
1935 inta |= priv->isr_inta;
1936
1937 spin_unlock_irqrestore(&priv->irq_lock, flags);
1938
1939 spin_lock_irqsave(&priv->lock, flags);
1940
1941 /* handle all the justifications for the interrupt */
1942 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1943 ipw_rx(priv);
1944 handled |= IPW_INTA_BIT_RX_TRANSFER;
1945 }
1946
1947 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1948 IPW_DEBUG_HC("Command completed.\n");
1949 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1950 priv->status &= ~STATUS_HCMD_ACTIVE;
1951 wake_up_interruptible(&priv->wait_command_queue);
1952 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1953 }
1954
1955 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1956 IPW_DEBUG_TX("TX_QUEUE_1\n");
1957 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1958 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1959 }
1960
1961 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1962 IPW_DEBUG_TX("TX_QUEUE_2\n");
1963 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1964 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1965 }
1966
1967 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1968 IPW_DEBUG_TX("TX_QUEUE_3\n");
1969 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1970 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1971 }
1972
1973 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1974 IPW_DEBUG_TX("TX_QUEUE_4\n");
1975 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1976 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1977 }
1978
1979 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1980 IPW_WARNING("STATUS_CHANGE\n");
1981 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1982 }
1983
1984 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1985 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1986 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1987 }
1988
1989 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1990 IPW_WARNING("HOST_CMD_DONE\n");
1991 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1992 }
1993
1994 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1995 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1996 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1997 }
1998
1999 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2000 IPW_WARNING("PHY_OFF_DONE\n");
2001 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2002 }
2003
2004 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2005 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2006 priv->status |= STATUS_RF_KILL_HW;
2007 wake_up_interruptible(&priv->wait_command_queue);
2008 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2009 cancel_delayed_work(&priv->request_scan);
2010 cancel_delayed_work(&priv->request_direct_scan);
2011 cancel_delayed_work(&priv->request_passive_scan);
2012 cancel_delayed_work(&priv->scan_event);
2013 schedule_work(&priv->link_down);
2014 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2015 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2016 }
2017
2018 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2019 IPW_WARNING("Firmware error detected. Restarting.\n");
2020 if (priv->error) {
2021 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2022 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2023 struct ipw_fw_error *error =
2024 ipw_alloc_error_log(priv);
2025 ipw_dump_error_log(priv, error);
2026 kfree(error);
2027 }
2028 } else {
2029 priv->error = ipw_alloc_error_log(priv);
2030 if (priv->error)
2031 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2032 else
2033 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2034 "log.\n");
2035 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2036 ipw_dump_error_log(priv, priv->error);
2037 }
2038
2039 /* XXX: If hardware encryption is for WPA/WPA2,
2040 * we have to notify the supplicant. */
2041 if (priv->ieee->sec.encrypt) {
2042 priv->status &= ~STATUS_ASSOCIATED;
2043 notify_wx_assoc_event(priv);
2044 }
2045
2046 /* Keep the restart process from trying to send host
2047 * commands by clearing the INIT status bit */
2048 priv->status &= ~STATUS_INIT;
2049
2050 /* Cancel currently queued command. */
2051 priv->status &= ~STATUS_HCMD_ACTIVE;
2052 wake_up_interruptible(&priv->wait_command_queue);
2053
2054 queue_work(priv->workqueue, &priv->adapter_restart);
2055 handled |= IPW_INTA_BIT_FATAL_ERROR;
2056 }
2057
2058 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2059 IPW_ERROR("Parity error\n");
2060 handled |= IPW_INTA_BIT_PARITY_ERROR;
2061 }
2062
2063 if (handled != inta) {
2064 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2065 }
2066
2067 spin_unlock_irqrestore(&priv->lock, flags);
2068
2069 /* enable all interrupts */
2070 ipw_enable_interrupts(priv);
2071 }
2072
2073 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2074 static char *get_cmd_string(u8 cmd)
2075 {
2076 switch (cmd) {
2077 IPW_CMD(HOST_COMPLETE);
2078 IPW_CMD(POWER_DOWN);
2079 IPW_CMD(SYSTEM_CONFIG);
2080 IPW_CMD(MULTICAST_ADDRESS);
2081 IPW_CMD(SSID);
2082 IPW_CMD(ADAPTER_ADDRESS);
2083 IPW_CMD(PORT_TYPE);
2084 IPW_CMD(RTS_THRESHOLD);
2085 IPW_CMD(FRAG_THRESHOLD);
2086 IPW_CMD(POWER_MODE);
2087 IPW_CMD(WEP_KEY);
2088 IPW_CMD(TGI_TX_KEY);
2089 IPW_CMD(SCAN_REQUEST);
2090 IPW_CMD(SCAN_REQUEST_EXT);
2091 IPW_CMD(ASSOCIATE);
2092 IPW_CMD(SUPPORTED_RATES);
2093 IPW_CMD(SCAN_ABORT);
2094 IPW_CMD(TX_FLUSH);
2095 IPW_CMD(QOS_PARAMETERS);
2096 IPW_CMD(DINO_CONFIG);
2097 IPW_CMD(RSN_CAPABILITIES);
2098 IPW_CMD(RX_KEY);
2099 IPW_CMD(CARD_DISABLE);
2100 IPW_CMD(SEED_NUMBER);
2101 IPW_CMD(TX_POWER);
2102 IPW_CMD(COUNTRY_INFO);
2103 IPW_CMD(AIRONET_INFO);
2104 IPW_CMD(AP_TX_POWER);
2105 IPW_CMD(CCKM_INFO);
2106 IPW_CMD(CCX_VER_INFO);
2107 IPW_CMD(SET_CALIBRATION);
2108 IPW_CMD(SENSITIVITY_CALIB);
2109 IPW_CMD(RETRY_LIMIT);
2110 IPW_CMD(IPW_PRE_POWER_DOWN);
2111 IPW_CMD(VAP_BEACON_TEMPLATE);
2112 IPW_CMD(VAP_DTIM_PERIOD);
2113 IPW_CMD(EXT_SUPPORTED_RATES);
2114 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2115 IPW_CMD(VAP_QUIET_INTERVALS);
2116 IPW_CMD(VAP_CHANNEL_SWITCH);
2117 IPW_CMD(VAP_MANDATORY_CHANNELS);
2118 IPW_CMD(VAP_CELL_PWR_LIMIT);
2119 IPW_CMD(VAP_CF_PARAM_SET);
2120 IPW_CMD(VAP_SET_BEACONING_STATE);
2121 IPW_CMD(MEASUREMENT);
2122 IPW_CMD(POWER_CAPABILITY);
2123 IPW_CMD(SUPPORTED_CHANNELS);
2124 IPW_CMD(TPC_REPORT);
2125 IPW_CMD(WME_INFO);
2126 IPW_CMD(PRODUCTION_COMMAND);
2127 default:
2128 return "UNKNOWN";
2129 }
2130 }
2131
2132 #define HOST_COMPLETE_TIMEOUT HZ
2133
2134 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2135 {
2136 int rc = 0;
2137 unsigned long flags;
2138
2139 spin_lock_irqsave(&priv->lock, flags);
2140 if (priv->status & STATUS_HCMD_ACTIVE) {
2141 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2142 get_cmd_string(cmd->cmd));
2143 spin_unlock_irqrestore(&priv->lock, flags);
2144 return -EAGAIN;
2145 }
2146
2147 priv->status |= STATUS_HCMD_ACTIVE;
2148
2149 if (priv->cmdlog) {
2150 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2151 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2152 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2153 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2154 cmd->len);
2155 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2156 }
2157
2158 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2159 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2160 priv->status);
2161
2162 #ifndef DEBUG_CMD_WEP_KEY
2163 if (cmd->cmd == IPW_CMD_WEP_KEY)
2164 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2165 else
2166 #endif
2167 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2168
2169 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2170 if (rc) {
2171 priv->status &= ~STATUS_HCMD_ACTIVE;
2172 IPW_ERROR("Failed to send %s: Reason %d\n",
2173 get_cmd_string(cmd->cmd), rc);
2174 spin_unlock_irqrestore(&priv->lock, flags);
2175 goto exit;
2176 }
2177 spin_unlock_irqrestore(&priv->lock, flags);
2178
2179 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2180 !(priv->
2181 status & STATUS_HCMD_ACTIVE),
2182 HOST_COMPLETE_TIMEOUT);
2183 if (rc == 0) {
2184 spin_lock_irqsave(&priv->lock, flags);
2185 if (priv->status & STATUS_HCMD_ACTIVE) {
2186 IPW_ERROR("Failed to send %s: Command timed out.\n",
2187 get_cmd_string(cmd->cmd));
2188 priv->status &= ~STATUS_HCMD_ACTIVE;
2189 spin_unlock_irqrestore(&priv->lock, flags);
2190 rc = -EIO;
2191 goto exit;
2192 }
2193 spin_unlock_irqrestore(&priv->lock, flags);
2194 } else
2195 rc = 0;
2196
2197 if (priv->status & STATUS_RF_KILL_HW) {
2198 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2199 get_cmd_string(cmd->cmd));
2200 rc = -EIO;
2201 goto exit;
2202 }
2203
2204 exit:
2205 if (priv->cmdlog) {
2206 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2207 priv->cmdlog_pos %= priv->cmdlog_len;
2208 }
2209 return rc;
2210 }
2211
2212 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2213 {
2214 struct host_cmd cmd = {
2215 .cmd = command,
2216 };
2217
2218 return __ipw_send_cmd(priv, &cmd);
2219 }
2220
2221 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2222 void *data)
2223 {
2224 struct host_cmd cmd = {
2225 .cmd = command,
2226 .len = len,
2227 .param = data,
2228 };
2229
2230 return __ipw_send_cmd(priv, &cmd);
2231 }
2232
2233 static int ipw_send_host_complete(struct ipw_priv *priv)
2234 {
2235 if (!priv) {
2236 IPW_ERROR("Invalid args\n");
2237 return -1;
2238 }
2239
2240 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2241 }
2242
2243 static int ipw_send_system_config(struct ipw_priv *priv)
2244 {
2245 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2246 sizeof(priv->sys_config),
2247 &priv->sys_config);
2248 }
2249
2250 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2251 {
2252 if (!priv || !ssid) {
2253 IPW_ERROR("Invalid args\n");
2254 return -1;
2255 }
2256
2257 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2258 ssid);
2259 }
2260
2261 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2262 {
2263 if (!priv || !mac) {
2264 IPW_ERROR("Invalid args\n");
2265 return -1;
2266 }
2267
2268 IPW_DEBUG_INFO("%s: Setting MAC to %s\n",
2269 priv->net_dev->name, print_mac(mac, mac));
2270
2271 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2272 }
2273
2274 /*
2275 * NOTE: This must be executed from our workqueue as it results in udelay
2276 * being called which may corrupt the keyboard if executed on default
2277 * workqueue
2278 */
2279 static void ipw_adapter_restart(void *adapter)
2280 {
2281 struct ipw_priv *priv = adapter;
2282
2283 if (priv->status & STATUS_RF_KILL_MASK)
2284 return;
2285
2286 ipw_down(priv);
2287
2288 if (priv->assoc_network &&
2289 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2290 ipw_remove_current_network(priv);
2291
2292 if (ipw_up(priv)) {
2293 IPW_ERROR("Failed to up device\n");
2294 return;
2295 }
2296 }
2297
2298 static void ipw_bg_adapter_restart(struct work_struct *work)
2299 {
2300 struct ipw_priv *priv =
2301 container_of(work, struct ipw_priv, adapter_restart);
2302 mutex_lock(&priv->mutex);
2303 ipw_adapter_restart(priv);
2304 mutex_unlock(&priv->mutex);
2305 }
2306
2307 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2308
2309 static void ipw_scan_check(void *data)
2310 {
2311 struct ipw_priv *priv = data;
2312 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2313 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2314 "adapter after (%dms).\n",
2315 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2316 queue_work(priv->workqueue, &priv->adapter_restart);
2317 }
2318 }
2319
2320 static void ipw_bg_scan_check(struct work_struct *work)
2321 {
2322 struct ipw_priv *priv =
2323 container_of(work, struct ipw_priv, scan_check.work);
2324 mutex_lock(&priv->mutex);
2325 ipw_scan_check(priv);
2326 mutex_unlock(&priv->mutex);
2327 }
2328
2329 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2330 struct ipw_scan_request_ext *request)
2331 {
2332 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2333 sizeof(*request), request);
2334 }
2335
2336 static int ipw_send_scan_abort(struct ipw_priv *priv)
2337 {
2338 if (!priv) {
2339 IPW_ERROR("Invalid args\n");
2340 return -1;
2341 }
2342
2343 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2344 }
2345
2346 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2347 {
2348 struct ipw_sensitivity_calib calib = {
2349 .beacon_rssi_raw = cpu_to_le16(sens),
2350 };
2351
2352 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2353 &calib);
2354 }
2355
2356 static int ipw_send_associate(struct ipw_priv *priv,
2357 struct ipw_associate *associate)
2358 {
2359 if (!priv || !associate) {
2360 IPW_ERROR("Invalid args\n");
2361 return -1;
2362 }
2363
2364 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2365 associate);
2366 }
2367
2368 static int ipw_send_supported_rates(struct ipw_priv *priv,
2369 struct ipw_supported_rates *rates)
2370 {
2371 if (!priv || !rates) {
2372 IPW_ERROR("Invalid args\n");
2373 return -1;
2374 }
2375
2376 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2377 rates);
2378 }
2379
2380 static int ipw_set_random_seed(struct ipw_priv *priv)
2381 {
2382 u32 val;
2383
2384 if (!priv) {
2385 IPW_ERROR("Invalid args\n");
2386 return -1;
2387 }
2388
2389 get_random_bytes(&val, sizeof(val));
2390
2391 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2392 }
2393
2394 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2395 {
2396 __le32 v = cpu_to_le32(phy_off);
2397 if (!priv) {
2398 IPW_ERROR("Invalid args\n");
2399 return -1;
2400 }
2401
2402 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2403 }
2404
2405 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2406 {
2407 if (!priv || !power) {
2408 IPW_ERROR("Invalid args\n");
2409 return -1;
2410 }
2411
2412 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2413 }
2414
2415 static int ipw_set_tx_power(struct ipw_priv *priv)
2416 {
2417 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2418 struct ipw_tx_power tx_power;
2419 s8 max_power;
2420 int i;
2421
2422 memset(&tx_power, 0, sizeof(tx_power));
2423
2424 /* configure device for 'G' band */
2425 tx_power.ieee_mode = IPW_G_MODE;
2426 tx_power.num_channels = geo->bg_channels;
2427 for (i = 0; i < geo->bg_channels; i++) {
2428 max_power = geo->bg[i].max_power;
2429 tx_power.channels_tx_power[i].channel_number =
2430 geo->bg[i].channel;
2431 tx_power.channels_tx_power[i].tx_power = max_power ?
2432 min(max_power, priv->tx_power) : priv->tx_power;
2433 }
2434 if (ipw_send_tx_power(priv, &tx_power))
2435 return -EIO;
2436
2437 /* configure device to also handle 'B' band */
2438 tx_power.ieee_mode = IPW_B_MODE;
2439 if (ipw_send_tx_power(priv, &tx_power))
2440 return -EIO;
2441
2442 /* configure device to also handle 'A' band */
2443 if (priv->ieee->abg_true) {
2444 tx_power.ieee_mode = IPW_A_MODE;
2445 tx_power.num_channels = geo->a_channels;
2446 for (i = 0; i < tx_power.num_channels; i++) {
2447 max_power = geo->a[i].max_power;
2448 tx_power.channels_tx_power[i].channel_number =
2449 geo->a[i].channel;
2450 tx_power.channels_tx_power[i].tx_power = max_power ?
2451 min(max_power, priv->tx_power) : priv->tx_power;
2452 }
2453 if (ipw_send_tx_power(priv, &tx_power))
2454 return -EIO;
2455 }
2456 return 0;
2457 }
2458
2459 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2460 {
2461 struct ipw_rts_threshold rts_threshold = {
2462 .rts_threshold = cpu_to_le16(rts),
2463 };
2464
2465 if (!priv) {
2466 IPW_ERROR("Invalid args\n");
2467 return -1;
2468 }
2469
2470 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2471 sizeof(rts_threshold), &rts_threshold);
2472 }
2473
2474 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2475 {
2476 struct ipw_frag_threshold frag_threshold = {
2477 .frag_threshold = cpu_to_le16(frag),
2478 };
2479
2480 if (!priv) {
2481 IPW_ERROR("Invalid args\n");
2482 return -1;
2483 }
2484
2485 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2486 sizeof(frag_threshold), &frag_threshold);
2487 }
2488
2489 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2490 {
2491 __le32 param;
2492
2493 if (!priv) {
2494 IPW_ERROR("Invalid args\n");
2495 return -1;
2496 }
2497
2498 /* If on battery, set to 3, if AC set to CAM, else user
2499 * level */
2500 switch (mode) {
2501 case IPW_POWER_BATTERY:
2502 param = cpu_to_le32(IPW_POWER_INDEX_3);
2503 break;
2504 case IPW_POWER_AC:
2505 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2506 break;
2507 default:
2508 param = cpu_to_le32(mode);
2509 break;
2510 }
2511
2512 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2513 &param);
2514 }
2515
2516 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2517 {
2518 struct ipw_retry_limit retry_limit = {
2519 .short_retry_limit = slimit,
2520 .long_retry_limit = llimit
2521 };
2522
2523 if (!priv) {
2524 IPW_ERROR("Invalid args\n");
2525 return -1;
2526 }
2527
2528 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2529 &retry_limit);
2530 }
2531
2532 /*
2533 * The IPW device contains a Microwire compatible EEPROM that stores
2534 * various data like the MAC address. Usually the firmware has exclusive
2535 * access to the eeprom, but during device initialization (before the
2536 * device driver has sent the HostComplete command to the firmware) the
2537 * device driver has read access to the EEPROM by way of indirect addressing
2538 * through a couple of memory mapped registers.
2539 *
2540 * The following is a simplified implementation for pulling data out of the
2541 * the eeprom, along with some helper functions to find information in
2542 * the per device private data's copy of the eeprom.
2543 *
2544 * NOTE: To better understand how these functions work (i.e what is a chip
2545 * select and why do have to keep driving the eeprom clock?), read
2546 * just about any data sheet for a Microwire compatible EEPROM.
2547 */
2548
2549 /* write a 32 bit value into the indirect accessor register */
2550 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2551 {
2552 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2553
2554 /* the eeprom requires some time to complete the operation */
2555 udelay(p->eeprom_delay);
2556
2557 return;
2558 }
2559
2560 /* perform a chip select operation */
2561 static void eeprom_cs(struct ipw_priv *priv)
2562 {
2563 eeprom_write_reg(priv, 0);
2564 eeprom_write_reg(priv, EEPROM_BIT_CS);
2565 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2566 eeprom_write_reg(priv, EEPROM_BIT_CS);
2567 }
2568
2569 /* perform a chip select operation */
2570 static void eeprom_disable_cs(struct ipw_priv *priv)
2571 {
2572 eeprom_write_reg(priv, EEPROM_BIT_CS);
2573 eeprom_write_reg(priv, 0);
2574 eeprom_write_reg(priv, EEPROM_BIT_SK);
2575 }
2576
2577 /* push a single bit down to the eeprom */
2578 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2579 {
2580 int d = (bit ? EEPROM_BIT_DI : 0);
2581 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2582 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2583 }
2584
2585 /* push an opcode followed by an address down to the eeprom */
2586 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2587 {
2588 int i;
2589
2590 eeprom_cs(priv);
2591 eeprom_write_bit(priv, 1);
2592 eeprom_write_bit(priv, op & 2);
2593 eeprom_write_bit(priv, op & 1);
2594 for (i = 7; i >= 0; i--) {
2595 eeprom_write_bit(priv, addr & (1 << i));
2596 }
2597 }
2598
2599 /* pull 16 bits off the eeprom, one bit at a time */
2600 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2601 {
2602 int i;
2603 u16 r = 0;
2604
2605 /* Send READ Opcode */
2606 eeprom_op(priv, EEPROM_CMD_READ, addr);
2607
2608 /* Send dummy bit */
2609 eeprom_write_reg(priv, EEPROM_BIT_CS);
2610
2611 /* Read the byte off the eeprom one bit at a time */
2612 for (i = 0; i < 16; i++) {
2613 u32 data = 0;
2614 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2615 eeprom_write_reg(priv, EEPROM_BIT_CS);
2616 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2617 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2618 }
2619
2620 /* Send another dummy bit */
2621 eeprom_write_reg(priv, 0);
2622 eeprom_disable_cs(priv);
2623
2624 return r;
2625 }
2626
2627 /* helper function for pulling the mac address out of the private */
2628 /* data's copy of the eeprom data */
2629 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2630 {
2631 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2632 }
2633
2634 /*
2635 * Either the device driver (i.e. the host) or the firmware can
2636 * load eeprom data into the designated region in SRAM. If neither
2637 * happens then the FW will shutdown with a fatal error.
2638 *
2639 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2640 * bit needs region of shared SRAM needs to be non-zero.
2641 */
2642 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2643 {
2644 int i;
2645 __le16 *eeprom = (__le16 *) priv->eeprom;
2646
2647 IPW_DEBUG_TRACE(">>\n");
2648
2649 /* read entire contents of eeprom into private buffer */
2650 for (i = 0; i < 128; i++)
2651 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2652
2653 /*
2654 If the data looks correct, then copy it to our private
2655 copy. Otherwise let the firmware know to perform the operation
2656 on its own.
2657 */
2658 if (priv->eeprom[EEPROM_VERSION] != 0) {
2659 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2660
2661 /* write the eeprom data to sram */
2662 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2663 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2664
2665 /* Do not load eeprom data on fatal error or suspend */
2666 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2667 } else {
2668 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2669
2670 /* Load eeprom data on fatal error or suspend */
2671 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2672 }
2673
2674 IPW_DEBUG_TRACE("<<\n");
2675 }
2676
2677 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2678 {
2679 count >>= 2;
2680 if (!count)
2681 return;
2682 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2683 while (count--)
2684 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2685 }
2686
2687 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2688 {
2689 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2690 CB_NUMBER_OF_ELEMENTS_SMALL *
2691 sizeof(struct command_block));
2692 }
2693
2694 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2695 { /* start dma engine but no transfers yet */
2696
2697 IPW_DEBUG_FW(">> : \n");
2698
2699 /* Start the dma */
2700 ipw_fw_dma_reset_command_blocks(priv);
2701
2702 /* Write CB base address */
2703 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2704
2705 IPW_DEBUG_FW("<< : \n");
2706 return 0;
2707 }
2708
2709 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2710 {
2711 u32 control = 0;
2712
2713 IPW_DEBUG_FW(">> :\n");
2714
2715 /* set the Stop and Abort bit */
2716 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2717 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2718 priv->sram_desc.last_cb_index = 0;
2719
2720 IPW_DEBUG_FW("<< \n");
2721 }
2722
2723 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2724 struct command_block *cb)
2725 {
2726 u32 address =
2727 IPW_SHARED_SRAM_DMA_CONTROL +
2728 (sizeof(struct command_block) * index);
2729 IPW_DEBUG_FW(">> :\n");
2730
2731 ipw_write_indirect(priv, address, (u8 *) cb,
2732 (int)sizeof(struct command_block));
2733
2734 IPW_DEBUG_FW("<< :\n");
2735 return 0;
2736
2737 }
2738
2739 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2740 {
2741 u32 control = 0;
2742 u32 index = 0;
2743
2744 IPW_DEBUG_FW(">> :\n");
2745
2746 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2747 ipw_fw_dma_write_command_block(priv, index,
2748 &priv->sram_desc.cb_list[index]);
2749
2750 /* Enable the DMA in the CSR register */
2751 ipw_clear_bit(priv, IPW_RESET_REG,
2752 IPW_RESET_REG_MASTER_DISABLED |
2753 IPW_RESET_REG_STOP_MASTER);
2754
2755 /* Set the Start bit. */
2756 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2757 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2758
2759 IPW_DEBUG_FW("<< :\n");
2760 return 0;
2761 }
2762
2763 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2764 {
2765 u32 address;
2766 u32 register_value = 0;
2767 u32 cb_fields_address = 0;
2768
2769 IPW_DEBUG_FW(">> :\n");
2770 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2771 IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2772
2773 /* Read the DMA Controlor register */
2774 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2775 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2776
2777 /* Print the CB values */
2778 cb_fields_address = address;
2779 register_value = ipw_read_reg32(priv, cb_fields_address);
2780 IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2781
2782 cb_fields_address += sizeof(u32);
2783 register_value = ipw_read_reg32(priv, cb_fields_address);
2784 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2785
2786 cb_fields_address += sizeof(u32);
2787 register_value = ipw_read_reg32(priv, cb_fields_address);
2788 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2789 register_value);
2790
2791 cb_fields_address += sizeof(u32);
2792 register_value = ipw_read_reg32(priv, cb_fields_address);
2793 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2794
2795 IPW_DEBUG_FW(">> :\n");
2796 }
2797
2798 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2799 {
2800 u32 current_cb_address = 0;
2801 u32 current_cb_index = 0;
2802
2803 IPW_DEBUG_FW("<< :\n");
2804 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2805
2806 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2807 sizeof(struct command_block);
2808
2809 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2810 current_cb_index, current_cb_address);
2811
2812 IPW_DEBUG_FW(">> :\n");
2813 return current_cb_index;
2814
2815 }
2816
2817 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2818 u32 src_address,
2819 u32 dest_address,
2820 u32 length,
2821 int interrupt_enabled, int is_last)
2822 {
2823
2824 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2825 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2826 CB_DEST_SIZE_LONG;
2827 struct command_block *cb;
2828 u32 last_cb_element = 0;
2829
2830 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2831 src_address, dest_address, length);
2832
2833 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2834 return -1;
2835
2836 last_cb_element = priv->sram_desc.last_cb_index;
2837 cb = &priv->sram_desc.cb_list[last_cb_element];
2838 priv->sram_desc.last_cb_index++;
2839
2840 /* Calculate the new CB control word */
2841 if (interrupt_enabled)
2842 control |= CB_INT_ENABLED;
2843
2844 if (is_last)
2845 control |= CB_LAST_VALID;
2846
2847 control |= length;
2848
2849 /* Calculate the CB Element's checksum value */
2850 cb->status = control ^ src_address ^ dest_address;
2851
2852 /* Copy the Source and Destination addresses */
2853 cb->dest_addr = dest_address;
2854 cb->source_addr = src_address;
2855
2856 /* Copy the Control Word last */
2857 cb->control = control;
2858
2859 return 0;
2860 }
2861
2862 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2863 u32 src_phys, u32 dest_address, u32 length)
2864 {
2865 u32 bytes_left = length;
2866 u32 src_offset = 0;
2867 u32 dest_offset = 0;
2868 int status = 0;
2869 IPW_DEBUG_FW(">> \n");
2870 IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2871 src_phys, dest_address, length);
2872 while (bytes_left > CB_MAX_LENGTH) {
2873 status = ipw_fw_dma_add_command_block(priv,
2874 src_phys + src_offset,
2875 dest_address +
2876 dest_offset,
2877 CB_MAX_LENGTH, 0, 0);
2878 if (status) {
2879 IPW_DEBUG_FW_INFO(": Failed\n");
2880 return -1;
2881 } else
2882 IPW_DEBUG_FW_INFO(": Added new cb\n");
2883
2884 src_offset += CB_MAX_LENGTH;
2885 dest_offset += CB_MAX_LENGTH;
2886 bytes_left -= CB_MAX_LENGTH;
2887 }
2888
2889 /* add the buffer tail */
2890 if (bytes_left > 0) {
2891 status =
2892 ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2893 dest_address + dest_offset,
2894 bytes_left, 0, 0);
2895 if (status) {
2896 IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2897 return -1;
2898 } else
2899 IPW_DEBUG_FW_INFO
2900 (": Adding new cb - the buffer tail\n");
2901 }
2902
2903 IPW_DEBUG_FW("<< \n");
2904 return 0;
2905 }
2906
2907 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2908 {
2909 u32 current_index = 0, previous_index;
2910 u32 watchdog = 0;
2911
2912 IPW_DEBUG_FW(">> : \n");
2913
2914 current_index = ipw_fw_dma_command_block_index(priv);
2915 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2916 (int)priv->sram_desc.last_cb_index);
2917
2918 while (current_index < priv->sram_desc.last_cb_index) {
2919 udelay(50);
2920 previous_index = current_index;
2921 current_index = ipw_fw_dma_command_block_index(priv);
2922
2923 if (previous_index < current_index) {
2924 watchdog = 0;
2925 continue;
2926 }
2927 if (++watchdog > 400) {
2928 IPW_DEBUG_FW_INFO("Timeout\n");
2929 ipw_fw_dma_dump_command_block(priv);
2930 ipw_fw_dma_abort(priv);
2931 return -1;
2932 }
2933 }
2934
2935 ipw_fw_dma_abort(priv);
2936
2937 /*Disable the DMA in the CSR register */
2938 ipw_set_bit(priv, IPW_RESET_REG,
2939 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2940
2941 IPW_DEBUG_FW("<< dmaWaitSync \n");
2942 return 0;
2943 }
2944
2945 static void ipw_remove_current_network(struct ipw_priv *priv)
2946 {
2947 struct list_head *element, *safe;
2948 struct ieee80211_network *network = NULL;
2949 unsigned long flags;
2950
2951 spin_lock_irqsave(&priv->ieee->lock, flags);
2952 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2953 network = list_entry(element, struct ieee80211_network, list);
2954 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2955 list_del(element);
2956 list_add_tail(&network->list,
2957 &priv->ieee->network_free_list);
2958 }
2959 }
2960 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2961 }
2962
2963 /**
2964 * Check that card is still alive.
2965 * Reads debug register from domain0.
2966 * If card is present, pre-defined value should
2967 * be found there.
2968 *
2969 * @param priv
2970 * @return 1 if card is present, 0 otherwise
2971 */
2972 static inline int ipw_alive(struct ipw_priv *priv)
2973 {
2974 return ipw_read32(priv, 0x90) == 0xd55555d5;
2975 }
2976
2977 /* timeout in msec, attempted in 10-msec quanta */
2978 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2979 int timeout)
2980 {
2981 int i = 0;
2982
2983 do {
2984 if ((ipw_read32(priv, addr) & mask) == mask)
2985 return i;
2986 mdelay(10);
2987 i += 10;
2988 } while (i < timeout);
2989
2990 return -ETIME;
2991 }
2992
2993 /* These functions load the firmware and micro code for the operation of
2994 * the ipw hardware. It assumes the buffer has all the bits for the
2995 * image and the caller is handling the memory allocation and clean up.
2996 */
2997
2998 static int ipw_stop_master(struct ipw_priv *priv)
2999 {
3000 int rc;
3001
3002 IPW_DEBUG_TRACE(">> \n");
3003 /* stop master. typical delay - 0 */
3004 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3005
3006 /* timeout is in msec, polled in 10-msec quanta */
3007 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3008 IPW_RESET_REG_MASTER_DISABLED, 100);
3009 if (rc < 0) {
3010 IPW_ERROR("wait for stop master failed after 100ms\n");
3011 return -1;
3012 }
3013
3014 IPW_DEBUG_INFO("stop master %dms\n", rc);
3015
3016 return rc;
3017 }
3018
3019 static void ipw_arc_release(struct ipw_priv *priv)
3020 {
3021 IPW_DEBUG_TRACE(">> \n");
3022 mdelay(5);
3023
3024 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3025
3026 /* no one knows timing, for safety add some delay */
3027 mdelay(5);
3028 }
3029
3030 struct fw_chunk {
3031 __le32 address;
3032 __le32 length;
3033 };
3034
3035 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3036 {
3037 int rc = 0, i, addr;
3038 u8 cr = 0;
3039 __le16 *image;
3040
3041 image = (__le16 *) data;
3042
3043 IPW_DEBUG_TRACE(">> \n");
3044
3045 rc = ipw_stop_master(priv);
3046
3047 if (rc < 0)
3048 return rc;
3049
3050 for (addr = IPW_SHARED_LOWER_BOUND;
3051 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3052 ipw_write32(priv, addr, 0);
3053 }
3054
3055 /* no ucode (yet) */
3056 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3057 /* destroy DMA queues */
3058 /* reset sequence */
3059
3060 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3061 ipw_arc_release(priv);
3062 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3063 mdelay(1);
3064
3065 /* reset PHY */
3066 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3067 mdelay(1);
3068
3069 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3070 mdelay(1);
3071
3072 /* enable ucode store */
3073 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3074 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3075 mdelay(1);
3076
3077 /* write ucode */
3078 /**
3079 * @bug
3080 * Do NOT set indirect address register once and then
3081 * store data to indirect data register in the loop.
3082 * It seems very reasonable, but in this case DINO do not
3083 * accept ucode. It is essential to set address each time.
3084 */
3085 /* load new ipw uCode */
3086 for (i = 0; i < len / 2; i++)
3087 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3088 le16_to_cpu(image[i]));
3089
3090 /* enable DINO */
3091 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3092 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3093
3094 /* this is where the igx / win driver deveates from the VAP driver. */
3095
3096 /* wait for alive response */
3097 for (i = 0; i < 100; i++) {
3098 /* poll for incoming data */
3099 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3100 if (cr & DINO_RXFIFO_DATA)
3101 break;
3102 mdelay(1);
3103 }
3104
3105 if (cr & DINO_RXFIFO_DATA) {
3106 /* alive_command_responce size is NOT multiple of 4 */
3107 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3108
3109 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3110 response_buffer[i] =
3111 cpu_to_le32(ipw_read_reg32(priv,
3112 IPW_BASEBAND_RX_FIFO_READ));
3113 memcpy(&priv->dino_alive, response_buffer,
3114 sizeof(priv->dino_alive));
3115 if (priv->dino_alive.alive_command == 1
3116 && priv->dino_alive.ucode_valid == 1) {
3117 rc = 0;
3118 IPW_DEBUG_INFO
3119 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3120 "of %02d/%02d/%02d %02d:%02d\n",
3121 priv->dino_alive.software_revision,
3122 priv->dino_alive.software_revision,
3123 priv->dino_alive.device_identifier,
3124 priv->dino_alive.device_identifier,
3125 priv->dino_alive.time_stamp[0],
3126 priv->dino_alive.time_stamp[1],
3127 priv->dino_alive.time_stamp[2],
3128 priv->dino_alive.time_stamp[3],
3129 priv->dino_alive.time_stamp[4]);
3130 } else {
3131 IPW_DEBUG_INFO("Microcode is not alive\n");
3132 rc = -EINVAL;
3133 }
3134 } else {
3135 IPW_DEBUG_INFO("No alive response from DINO\n");
3136 rc = -ETIME;
3137 }
3138
3139 /* disable DINO, otherwise for some reason
3140 firmware have problem getting alive resp. */
3141 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3142
3143 return rc;
3144 }
3145
3146 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3147 {
3148 int rc = -1;
3149 int offset = 0;
3150 struct fw_chunk *chunk;
3151 dma_addr_t shared_phys;
3152 u8 *shared_virt;
3153
3154 IPW_DEBUG_TRACE("<< : \n");
3155 shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3156
3157 if (!shared_virt)
3158 return -ENOMEM;
3159
3160 memmove(shared_virt, data, len);
3161
3162 /* Start the Dma */
3163 rc = ipw_fw_dma_enable(priv);
3164
3165 if (priv->sram_desc.last_cb_index > 0) {
3166 /* the DMA is already ready this would be a bug. */
3167 BUG();
3168 goto out;
3169 }
3170
3171 do {
3172 chunk = (struct fw_chunk *)(data + offset);
3173 offset += sizeof(struct fw_chunk);
3174 /* build DMA packet and queue up for sending */
3175 /* dma to chunk->address, the chunk->length bytes from data +
3176 * offeset*/
3177 /* Dma loading */
3178 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3179 le32_to_cpu(chunk->address),
3180 le32_to_cpu(chunk->length));
3181 if (rc) {
3182 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3183 goto out;
3184 }
3185
3186 offset += le32_to_cpu(chunk->length);
3187 } while (offset < len);
3188
3189 /* Run the DMA and wait for the answer */
3190 rc = ipw_fw_dma_kick(priv);
3191 if (rc) {
3192 IPW_ERROR("dmaKick Failed\n");
3193 goto out;
3194 }
3195
3196 rc = ipw_fw_dma_wait(priv);
3197 if (rc) {
3198 IPW_ERROR("dmaWaitSync Failed\n");
3199 goto out;
3200 }
3201 out:
3202 pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3203 return rc;
3204 }
3205
3206 /* stop nic */
3207 static int ipw_stop_nic(struct ipw_priv *priv)
3208 {
3209 int rc = 0;
3210
3211 /* stop */
3212 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3213
3214 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3215 IPW_RESET_REG_MASTER_DISABLED, 500);
3216 if (rc < 0) {
3217 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3218 return rc;
3219 }
3220
3221 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3222
3223 return rc;
3224 }
3225
3226 static void ipw_start_nic(struct ipw_priv *priv)
3227 {
3228 IPW_DEBUG_TRACE(">>\n");
3229
3230 /* prvHwStartNic release ARC */
3231 ipw_clear_bit(priv, IPW_RESET_REG,
3232 IPW_RESET_REG_MASTER_DISABLED |
3233 IPW_RESET_REG_STOP_MASTER |
3234 CBD_RESET_REG_PRINCETON_RESET);
3235
3236 /* enable power management */
3237 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3238 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3239
3240 IPW_DEBUG_TRACE("<<\n");
3241 }
3242
3243 static int ipw_init_nic(struct ipw_priv *priv)
3244 {
3245 int rc;
3246
3247 IPW_DEBUG_TRACE(">>\n");
3248 /* reset */
3249 /*prvHwInitNic */
3250 /* set "initialization complete" bit to move adapter to D0 state */
3251 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3252
3253 /* low-level PLL activation */
3254 ipw_write32(priv, IPW_READ_INT_REGISTER,
3255 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3256
3257 /* wait for clock stabilization */
3258 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3259 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3260 if (rc < 0)
3261 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3262
3263 /* assert SW reset */
3264 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3265
3266 udelay(10);
3267
3268 /* set "initialization complete" bit to move adapter to D0 state */
3269 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3270
3271 IPW_DEBUG_TRACE(">>\n");
3272 return 0;
3273 }
3274
3275 /* Call this function from process context, it will sleep in request_firmware.
3276 * Probe is an ok place to call this from.
3277 */
3278 static int ipw_reset_nic(struct ipw_priv *priv)
3279 {
3280 int rc = 0;
3281 unsigned long flags;
3282
3283 IPW_DEBUG_TRACE(">>\n");
3284
3285 rc = ipw_init_nic(priv);
3286
3287 spin_lock_irqsave(&priv->lock, flags);
3288 /* Clear the 'host command active' bit... */
3289 priv->status &= ~STATUS_HCMD_ACTIVE;
3290 wake_up_interruptible(&priv->wait_command_queue);
3291 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3292 wake_up_interruptible(&priv->wait_state);
3293 spin_unlock_irqrestore(&priv->lock, flags);
3294
3295 IPW_DEBUG_TRACE("<<\n");
3296 return rc;
3297 }
3298
3299
3300 struct ipw_fw {
3301 __le32 ver;
3302 __le32 boot_size;
3303 __le32 ucode_size;
3304 __le32 fw_size;
3305 u8 data[0];
3306 };
3307
3308 static int ipw_get_fw(struct ipw_priv *priv,
3309 const struct firmware **raw, const char *name)
3310 {
3311 struct ipw_fw *fw;
3312 int rc;
3313
3314 /* ask firmware_class module to get the boot firmware off disk */
3315 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3316 if (rc < 0) {
3317 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3318 return rc;
3319 }
3320
3321 if ((*raw)->size < sizeof(*fw)) {
3322 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3323 return -EINVAL;
3324 }
3325
3326 fw = (void *)(*raw)->data;
3327
3328 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3329 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3330 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3331 name, (*raw)->size);
3332 return -EINVAL;
3333 }
3334
3335 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3336 name,
3337 le32_to_cpu(fw->ver) >> 16,
3338 le32_to_cpu(fw->ver) & 0xff,
3339 (*raw)->size - sizeof(*fw));
3340 return 0;
3341 }
3342
3343 #define IPW_RX_BUF_SIZE (3000)
3344
3345 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3346 struct ipw_rx_queue *rxq)
3347 {
3348 unsigned long flags;
3349 int i;
3350
3351 spin_lock_irqsave(&rxq->lock, flags);
3352
3353 INIT_LIST_HEAD(&rxq->rx_free);
3354 INIT_LIST_HEAD(&rxq->rx_used);
3355
3356 /* Fill the rx_used queue with _all_ of the Rx buffers */
3357 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3358 /* In the reset function, these buffers may have been allocated
3359 * to an SKB, so we need to unmap and free potential storage */
3360 if (rxq->pool[i].skb != NULL) {
3361 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3362 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3363 dev_kfree_skb(rxq->pool[i].skb);
3364 rxq->pool[i].skb = NULL;
3365 }
3366 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3367 }
3368
3369 /* Set us so that we have processed and used all buffers, but have
3370 * not restocked the Rx queue with fresh buffers */
3371 rxq->read = rxq->write = 0;
3372 rxq->free_count = 0;
3373 spin_unlock_irqrestore(&rxq->lock, flags);
3374 }
3375
3376 #ifdef CONFIG_PM
3377 static int fw_loaded = 0;
3378 static const struct firmware *raw = NULL;
3379
3380 static void free_firmware(void)
3381 {
3382 if (fw_loaded) {
3383 release_firmware(raw);
3384 raw = NULL;
3385 fw_loaded = 0;
3386 }
3387 }
3388 #else
3389 #define free_firmware() do {} while (0)
3390 #endif
3391
3392 static int ipw_load(struct ipw_priv *priv)
3393 {
3394 #ifndef CONFIG_PM
3395 const struct firmware *raw = NULL;
3396 #endif
3397 struct ipw_fw *fw;
3398 u8 *boot_img, *ucode_img, *fw_img;
3399 u8 *name = NULL;
3400 int rc = 0, retries = 3;
3401
3402 switch (priv->ieee->iw_mode) {
3403 case IW_MODE_ADHOC:
3404 name = "ipw2200-ibss.fw";
3405 break;
3406 #ifdef CONFIG_IPW2200_MONITOR
3407 case IW_MODE_MONITOR:
3408 name = "ipw2200-sniffer.fw";
3409 break;
3410 #endif
3411 case IW_MODE_INFRA:
3412 name = "ipw2200-bss.fw";
3413 break;
3414 }
3415
3416 if (!name) {
3417 rc = -EINVAL;
3418 goto error;
3419 }
3420
3421 #ifdef CONFIG_PM
3422 if (!fw_loaded) {
3423 #endif
3424 rc = ipw_get_fw(priv, &raw, name);
3425 if (rc < 0)
3426 goto error;
3427 #ifdef CONFIG_PM
3428 }
3429 #endif
3430
3431 fw = (void *)raw->data;
3432 boot_img = &fw->data[0];
3433 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3434 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3435 le32_to_cpu(fw->ucode_size)];
3436
3437 if (rc < 0)
3438 goto error;
3439
3440 if (!priv->rxq)
3441 priv->rxq = ipw_rx_queue_alloc(priv);
3442 else
3443 ipw_rx_queue_reset(priv, priv->rxq);
3444 if (!priv->rxq) {
3445 IPW_ERROR("Unable to initialize Rx queue\n");
3446 goto error;
3447 }
3448
3449 retry:
3450 /* Ensure interrupts are disabled */
3451 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3452 priv->status &= ~STATUS_INT_ENABLED;
3453
3454 /* ack pending interrupts */
3455 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3456
3457 ipw_stop_nic(priv);
3458
3459 rc = ipw_reset_nic(priv);
3460 if (rc < 0) {
3461 IPW_ERROR("Unable to reset NIC\n");
3462 goto error;
3463 }
3464
3465 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3466 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3467
3468 /* DMA the initial boot firmware into the device */
3469 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3470 if (rc < 0) {
3471 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3472 goto error;
3473 }
3474
3475 /* kick start the device */
3476 ipw_start_nic(priv);
3477
3478 /* wait for the device to finish its initial startup sequence */
3479 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3480 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3481 if (rc < 0) {
3482 IPW_ERROR("device failed to boot initial fw image\n");
3483 goto error;
3484 }
3485 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3486
3487 /* ack fw init done interrupt */
3488 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3489
3490 /* DMA the ucode into the device */
3491 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3492 if (rc < 0) {
3493 IPW_ERROR("Unable to load ucode: %d\n", rc);
3494 goto error;
3495 }
3496
3497 /* stop nic */
3498 ipw_stop_nic(priv);
3499
3500 /* DMA bss firmware into the device */
3501 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3502 if (rc < 0) {
3503 IPW_ERROR("Unable to load firmware: %d\n", rc);
3504 goto error;
3505 }
3506 #ifdef CONFIG_PM
3507 fw_loaded = 1;
3508 #endif
3509
3510 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3511
3512 rc = ipw_queue_reset(priv);
3513 if (rc < 0) {
3514 IPW_ERROR("Unable to initialize queues\n");
3515 goto error;
3516 }
3517
3518 /* Ensure interrupts are disabled */
3519 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3520 /* ack pending interrupts */
3521 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3522
3523 /* kick start the device */
3524 ipw_start_nic(priv);
3525
3526 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3527 if (retries > 0) {
3528 IPW_WARNING("Parity error. Retrying init.\n");
3529 retries--;
3530 goto retry;
3531 }
3532
3533 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3534 rc = -EIO;
3535 goto error;
3536 }
3537
3538 /* wait for the device */
3539 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3540 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3541 if (rc < 0) {
3542 IPW_ERROR("device failed to start within 500ms\n");
3543 goto error;
3544 }
3545 IPW_DEBUG_INFO("device response after %dms\n", rc);
3546
3547 /* ack fw init done interrupt */
3548 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3549
3550 /* read eeprom data and initialize the eeprom region of sram */
3551 priv->eeprom_delay = 1;
3552 ipw_eeprom_init_sram(priv);
3553
3554 /* enable interrupts */
3555 ipw_enable_interrupts(priv);
3556
3557 /* Ensure our queue has valid packets */
3558 ipw_rx_queue_replenish(priv);
3559
3560 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3561
3562 /* ack pending interrupts */
3563 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3564
3565 #ifndef CONFIG_PM
3566 release_firmware(raw);
3567 #endif
3568 return 0;
3569
3570 error:
3571 if (priv->rxq) {
3572 ipw_rx_queue_free(priv, priv->rxq);
3573 priv->rxq = NULL;
3574 }
3575 ipw_tx_queue_free(priv);
3576 if (raw)
3577 release_firmware(raw);
3578 #ifdef CONFIG_PM
3579 fw_loaded = 0;
3580 raw = NULL;
3581 #endif
3582
3583 return rc;
3584 }
3585
3586 /**
3587 * DMA services
3588 *
3589 * Theory of operation
3590 *
3591 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3592 * 2 empty entries always kept in the buffer to protect from overflow.
3593 *
3594 * For Tx queue, there are low mark and high mark limits. If, after queuing
3595 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3596 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3597 * Tx queue resumed.
3598 *
3599 * The IPW operates with six queues, one receive queue in the device's
3600 * sram, one transmit queue for sending commands to the device firmware,
3601 * and four transmit queues for data.
3602 *
3603 * The four transmit queues allow for performing quality of service (qos)
3604 * transmissions as per the 802.11 protocol. Currently Linux does not
3605 * provide a mechanism to the user for utilizing prioritized queues, so
3606 * we only utilize the first data transmit queue (queue1).
3607 */
3608
3609 /**
3610 * Driver allocates buffers of this size for Rx
3611 */
3612
3613 /**
3614 * ipw_rx_queue_space - Return number of free slots available in queue.
3615 */
3616 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3617 {
3618 int s = q->read - q->write;
3619 if (s <= 0)
3620 s += RX_QUEUE_SIZE;
3621 /* keep some buffer to not confuse full and empty queue */
3622 s -= 2;
3623 if (s < 0)
3624 s = 0;
3625 return s;
3626 }
3627
3628 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3629 {
3630 int s = q->last_used - q->first_empty;
3631 if (s <= 0)
3632 s += q->n_bd;
3633 s -= 2; /* keep some reserve to not confuse empty and full situations */
3634 if (s < 0)
3635 s = 0;
3636 return s;
3637 }
3638
3639 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3640 {
3641 return (++index == n_bd) ? 0 : index;
3642 }
3643
3644 /**
3645 * Initialize common DMA queue structure
3646 *
3647 * @param q queue to init
3648 * @param count Number of BD's to allocate. Should be power of 2
3649 * @param read_register Address for 'read' register
3650 * (not offset within BAR, full address)
3651 * @param write_register Address for 'write' register
3652 * (not offset within BAR, full address)
3653 * @param base_register Address for 'base' register
3654 * (not offset within BAR, full address)
3655 * @param size Address for 'size' register
3656 * (not offset within BAR, full address)
3657 */
3658 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3659 int count, u32 read, u32 write, u32 base, u32 size)
3660 {
3661 q->n_bd = count;
3662
3663 q->low_mark = q->n_bd / 4;
3664 if (q->low_mark < 4)
3665 q->low_mark = 4;
3666
3667 q->high_mark = q->n_bd / 8;
3668 if (q->high_mark < 2)
3669 q->high_mark = 2;
3670
3671 q->first_empty = q->last_used = 0;
3672 q->reg_r = read;
3673 q->reg_w = write;
3674
3675 ipw_write32(priv, base, q->dma_addr);
3676 ipw_write32(priv, size, count);
3677 ipw_write32(priv, read, 0);
3678 ipw_write32(priv, write, 0);
3679
3680 _ipw_read32(priv, 0x90);
3681 }
3682
3683 static int ipw_queue_tx_init(struct ipw_priv *priv,
3684 struct clx2_tx_queue *q,
3685 int count, u32 read, u32 write, u32 base, u32 size)
3686 {
3687 struct pci_dev *dev = priv->pci_dev;
3688
3689 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3690 if (!q->txb) {
3691 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3692 return -ENOMEM;
3693 }
3694
3695 q->bd =
3696 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3697 if (!q->bd) {
3698 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3699 sizeof(q->bd[0]) * count);
3700 kfree(q->txb);
3701 q->txb = NULL;
3702 return -ENOMEM;
3703 }
3704
3705 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3706 return 0;
3707 }
3708
3709 /**
3710 * Free one TFD, those at index [txq->q.last_used].
3711 * Do NOT advance any indexes
3712 *
3713 * @param dev
3714 * @param txq
3715 */
3716 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3717 struct clx2_tx_queue *txq)
3718 {
3719 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3720 struct pci_dev *dev = priv->pci_dev;
3721 int i;
3722
3723 /* classify bd */
3724 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3725 /* nothing to cleanup after for host commands */
3726 return;
3727
3728 /* sanity check */
3729 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3730 IPW_ERROR("Too many chunks: %i\n",
3731 le32_to_cpu(bd->u.data.num_chunks));
3732 /** @todo issue fatal error, it is quite serious situation */
3733 return;
3734 }
3735
3736 /* unmap chunks if any */
3737 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3738 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3739 le16_to_cpu(bd->u.data.chunk_len[i]),
3740 PCI_DMA_TODEVICE);
3741 if (txq->txb[txq->q.last_used]) {
3742 ieee80211_txb_free(txq->txb[txq->q.last_used]);
3743 txq->txb[txq->q.last_used] = NULL;
3744 }
3745 }
3746 }
3747
3748 /**
3749 * Deallocate DMA queue.
3750 *
3751 * Empty queue by removing and destroying all BD's.
3752 * Free all buffers.
3753 *
3754 * @param dev
3755 * @param q
3756 */
3757 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3758 {
3759 struct clx2_queue *q = &txq->q;
3760 struct pci_dev *dev = priv->pci_dev;
3761
3762 if (q->n_bd == 0)
3763 return;
3764
3765 /* first, empty all BD's */
3766 for (; q->first_empty != q->last_used;
3767 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3768 ipw_queue_tx_free_tfd(priv, txq);
3769 }
3770
3771 /* free buffers belonging to queue itself */
3772 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3773 q->dma_addr);
3774 kfree(txq->txb);
3775
3776 /* 0 fill whole structure */
3777 memset(txq, 0, sizeof(*txq));
3778 }
3779
3780 /**
3781 * Destroy all DMA queues and structures
3782 *
3783 * @param priv
3784 */
3785 static void ipw_tx_queue_free(struct ipw_priv *priv)
3786 {
3787 /* Tx CMD queue */
3788 ipw_queue_tx_free(priv, &priv->txq_cmd);
3789
3790 /* Tx queues */
3791 ipw_queue_tx_free(priv, &priv->txq[0]);
3792 ipw_queue_tx_free(priv, &priv->txq[1]);
3793 ipw_queue_tx_free(priv, &priv->txq[2]);
3794 ipw_queue_tx_free(priv, &priv->txq[3]);
3795 }
3796
3797 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3798 {
3799 /* First 3 bytes are manufacturer */
3800 bssid[0] = priv->mac_addr[0];
3801 bssid[1] = priv->mac_addr[1];
3802 bssid[2] = priv->mac_addr[2];
3803
3804 /* Last bytes are random */
3805 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3806
3807 bssid[0] &= 0xfe; /* clear multicast bit */
3808 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3809 }
3810
3811 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3812 {
3813 struct ipw_station_entry entry;
3814 int i;
3815 DECLARE_MAC_BUF(mac);
3816
3817 for (i = 0; i < priv->num_stations; i++) {
3818 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3819 /* Another node is active in network */
3820 priv->missed_adhoc_beacons = 0;
3821 if (!(priv->config & CFG_STATIC_CHANNEL))
3822 /* when other nodes drop out, we drop out */
3823 priv->config &= ~CFG_ADHOC_PERSIST;
3824
3825 return i;
3826 }
3827 }
3828
3829 if (i == MAX_STATIONS)
3830 return IPW_INVALID_STATION;
3831
3832 IPW_DEBUG_SCAN("Adding AdHoc station: %s\n", print_mac(mac, bssid));
3833
3834 entry.reserved = 0;
3835 entry.support_mode = 0;
3836 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3837 memcpy(priv->stations[i], bssid, ETH_ALEN);
3838 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3839 &entry, sizeof(entry));
3840 priv->num_stations++;
3841
3842 return i;
3843 }
3844
3845 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3846 {
3847 int i;
3848
3849 for (i = 0; i < priv->num_stations; i++)
3850 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3851 return i;
3852
3853 return IPW_INVALID_STATION;
3854 }
3855
3856 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3857 {
3858 int err;
3859 DECLARE_MAC_BUF(mac);
3860
3861 if (priv->status & STATUS_ASSOCIATING) {
3862 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3863 queue_work(priv->workqueue, &priv->disassociate);
3864 return;
3865 }
3866
3867 if (!(priv->status & STATUS_ASSOCIATED)) {
3868 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3869 return;
3870 }
3871
3872 IPW_DEBUG_ASSOC("Disassocation attempt from %s "
3873 "on channel %d.\n",
3874 print_mac(mac, priv->assoc_request.bssid),
3875 priv->assoc_request.channel);
3876
3877 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3878 priv->status |= STATUS_DISASSOCIATING;
3879
3880 if (quiet)
3881 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3882 else
3883 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3884
3885 err = ipw_send_associate(priv, &priv->assoc_request);
3886 if (err) {
3887 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3888 "failed.\n");
3889 return;
3890 }
3891
3892 }
3893
3894 static int ipw_disassociate(void *data)
3895 {
3896 struct ipw_priv *priv = data;
3897 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3898 return 0;
3899 ipw_send_disassociate(data, 0);
3900 return 1;
3901 }
3902
3903 static void ipw_bg_disassociate(struct work_struct *work)
3904 {
3905 struct ipw_priv *priv =
3906 container_of(work, struct ipw_priv, disassociate);
3907 mutex_lock(&priv->mutex);
3908 ipw_disassociate(priv);
3909 mutex_unlock(&priv->mutex);
3910 }
3911
3912 static void ipw_system_config(struct work_struct *work)
3913 {
3914 struct ipw_priv *priv =
3915 container_of(work, struct ipw_priv, system_config);
3916
3917 #ifdef CONFIG_IPW2200_PROMISCUOUS
3918 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3919 priv->sys_config.accept_all_data_frames = 1;
3920 priv->sys_config.accept_non_directed_frames = 1;
3921 priv->sys_config.accept_all_mgmt_bcpr = 1;
3922 priv->sys_config.accept_all_mgmt_frames = 1;
3923 }
3924 #endif
3925
3926 ipw_send_system_config(priv);
3927 }
3928
3929 struct ipw_status_code {
3930 u16 status;
3931 const char *reason;
3932 };
3933
3934 static const struct ipw_status_code ipw_status_codes[] = {
3935 {0x00, "Successful"},
3936 {0x01, "Unspecified failure"},
3937 {0x0A, "Cannot support all requested capabilities in the "
3938 "Capability information field"},
3939 {0x0B, "Reassociation denied due to inability to confirm that "
3940 "association exists"},
3941 {0x0C, "Association denied due to reason outside the scope of this "
3942 "standard"},
3943 {0x0D,
3944 "Responding station does not support the specified authentication "
3945 "algorithm"},
3946 {0x0E,
3947 "Received an Authentication frame with authentication sequence "
3948 "transaction sequence number out of expected sequence"},
3949 {0x0F, "Authentication rejected because of challenge failure"},
3950 {0x10, "Authentication rejected due to timeout waiting for next "
3951 "frame in sequence"},
3952 {0x11, "Association denied because AP is unable to handle additional "
3953 "associated stations"},
3954 {0x12,
3955 "Association denied due to requesting station not supporting all "
3956 "of the datarates in the BSSBasicServiceSet Parameter"},
3957 {0x13,
3958 "Association denied due to requesting station not supporting "
3959 "short preamble operation"},
3960 {0x14,
3961 "Association denied due to requesting station not supporting "
3962 "PBCC encoding"},
3963 {0x15,
3964 "Association denied due to requesting station not supporting "
3965 "channel agility"},
3966 {0x19,
3967 "Association denied due to requesting station not supporting "
3968 "short slot operation"},
3969 {0x1A,
3970 "Association denied due to requesting station not supporting "
3971 "DSSS-OFDM operation"},
3972 {0x28, "Invalid Information Element"},
3973 {0x29, "Group Cipher is not valid"},
3974 {0x2A, "Pairwise Cipher is not valid"},
3975 {0x2B, "AKMP is not valid"},
3976 {0x2C, "Unsupported RSN IE version"},
3977 {0x2D, "Invalid RSN IE Capabilities"},
3978 {0x2E, "Cipher suite is rejected per security policy"},
3979 };
3980
3981 static const char *ipw_get_status_code(u16 status)
3982 {
3983 int i;
3984 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3985 if (ipw_status_codes[i].status == (status & 0xff))
3986 return ipw_status_codes[i].reason;
3987 return "Unknown status value.";
3988 }
3989
3990 static void inline average_init(struct average *avg)
3991 {
3992 memset(avg, 0, sizeof(*avg));
3993 }
3994
3995 #define DEPTH_RSSI 8
3996 #define DEPTH_NOISE 16
3997 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
3998 {
3999 return ((depth-1)*prev_avg + val)/depth;
4000 }
4001
4002 static void average_add(struct average *avg, s16 val)
4003 {
4004 avg->sum -= avg->entries[avg->pos];
4005 avg->sum += val;
4006 avg->entries[avg->pos++] = val;
4007 if (unlikely(avg->pos == AVG_ENTRIES)) {
4008 avg->init = 1;
4009 avg->pos = 0;
4010 }
4011 }
4012
4013 static s16 average_value(struct average *avg)
4014 {
4015 if (!unlikely(avg->init)) {
4016 if (avg->pos)
4017 return avg->sum / avg->pos;
4018 return 0;
4019 }
4020
4021 return avg->sum / AVG_ENTRIES;
4022 }
4023
4024 static void ipw_reset_stats(struct ipw_priv *priv)
4025 {
4026 u32 len = sizeof(u32);
4027
4028 priv->quality = 0;
4029
4030 average_init(&priv->average_missed_beacons);
4031 priv->exp_avg_rssi = -60;
4032 priv->exp_avg_noise = -85 + 0x100;
4033
4034 priv->last_rate = 0;
4035 priv->last_missed_beacons = 0;
4036 priv->last_rx_packets = 0;
4037 priv->last_tx_packets = 0;
4038 priv->last_tx_failures = 0;
4039
4040 /* Firmware managed, reset only when NIC is restarted, so we have to
4041 * normalize on the current value */
4042 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4043 &priv->last_rx_err, &len);
4044 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4045 &priv->last_tx_failures, &len);
4046
4047 /* Driver managed, reset with each association */
4048 priv->missed_adhoc_beacons = 0;
4049 priv->missed_beacons = 0;
4050 priv->tx_packets = 0;
4051 priv->rx_packets = 0;
4052
4053 }
4054
4055 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4056 {
4057 u32 i = 0x80000000;
4058 u32 mask = priv->rates_mask;
4059 /* If currently associated in B mode, restrict the maximum
4060 * rate match to B rates */
4061 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4062 mask &= IEEE80211_CCK_RATES_MASK;
4063
4064 /* TODO: Verify that the rate is supported by the current rates
4065 * list. */
4066
4067 while (i && !(mask & i))
4068 i >>= 1;
4069 switch (i) {
4070 case IEEE80211_CCK_RATE_1MB_MASK:
4071 return 1000000;
4072 case IEEE80211_CCK_RATE_2MB_MASK:
4073 return 2000000;
4074 case IEEE80211_CCK_RATE_5MB_MASK:
4075 return 5500000;
4076 case IEEE80211_OFDM_RATE_6MB_MASK:
4077 return 6000000;
4078 case IEEE80211_OFDM_RATE_9MB_MASK:
4079 return 9000000;
4080 case IEEE80211_CCK_RATE_11MB_MASK:
4081 return 11000000;
4082 case IEEE80211_OFDM_RATE_12MB_MASK:
4083 return 12000000;
4084 case IEEE80211_OFDM_RATE_18MB_MASK:
4085 return 18000000;
4086 case IEEE80211_OFDM_RATE_24MB_MASK:
4087 return 24000000;
4088 case IEEE80211_OFDM_RATE_36MB_MASK:
4089 return 36000000;
4090 case IEEE80211_OFDM_RATE_48MB_MASK:
4091 return 48000000;
4092 case IEEE80211_OFDM_RATE_54MB_MASK:
4093 return 54000000;
4094 }
4095
4096 if (priv->ieee->mode == IEEE_B)
4097 return 11000000;
4098 else
4099 return 54000000;
4100 }
4101
4102 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4103 {
4104 u32 rate, len = sizeof(rate);
4105 int err;
4106
4107 if (!(priv->status & STATUS_ASSOCIATED))
4108 return 0;
4109
4110 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4111 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4112 &len);
4113 if (err) {
4114 IPW_DEBUG_INFO("failed querying ordinals.\n");
4115 return 0;
4116 }
4117 } else
4118 return ipw_get_max_rate(priv);
4119
4120 switch (rate) {
4121 case IPW_TX_RATE_1MB:
4122 return 1000000;
4123 case IPW_TX_RATE_2MB:
4124 return 2000000;
4125 case IPW_TX_RATE_5MB:
4126 return 5500000;
4127 case IPW_TX_RATE_6MB:
4128 return 6000000;
4129 case IPW_TX_RATE_9MB:
4130 return 9000000;
4131 case IPW_TX_RATE_11MB:
4132 return 11000000;
4133 case IPW_TX_RATE_12MB:
4134 return 12000000;
4135 case IPW_TX_RATE_18MB:
4136 return 18000000;
4137 case IPW_TX_RATE_24MB:
4138 return 24000000;
4139 case IPW_TX_RATE_36MB:
4140 return 36000000;
4141 case IPW_TX_RATE_48MB:
4142 return 48000000;
4143 case IPW_TX_RATE_54MB:
4144 return 54000000;
4145 }
4146
4147 return 0;
4148 }
4149
4150 #define IPW_STATS_INTERVAL (2 * HZ)
4151 static void ipw_gather_stats(struct ipw_priv *priv)
4152 {
4153 u32 rx_err, rx_err_delta, rx_packets_delta;
4154 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4155 u32 missed_beacons_percent, missed_beacons_delta;
4156 u32 quality = 0;
4157 u32 len = sizeof(u32);
4158 s16 rssi;
4159 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4160 rate_quality;
4161 u32 max_rate;
4162
4163 if (!(priv->status & STATUS_ASSOCIATED)) {
4164 priv->quality = 0;
4165 return;
4166 }
4167
4168 /* Update the statistics */
4169 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4170 &priv->missed_beacons, &len);
4171 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4172 priv->last_missed_beacons = priv->missed_beacons;
4173 if (priv->assoc_request.beacon_interval) {
4174 missed_beacons_percent = missed_beacons_delta *
4175 (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4176 (IPW_STATS_INTERVAL * 10);
4177 } else {
4178 missed_beacons_percent = 0;
4179 }
4180 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4181
4182 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4183 rx_err_delta = rx_err - priv->last_rx_err;
4184 priv->last_rx_err = rx_err;
4185
4186 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4187 tx_failures_delta = tx_failures - priv->last_tx_failures;
4188 priv->last_tx_failures = tx_failures;
4189
4190 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4191 priv->last_rx_packets = priv->rx_packets;
4192
4193 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4194 priv->last_tx_packets = priv->tx_packets;
4195
4196 /* Calculate quality based on the following:
4197 *
4198 * Missed beacon: 100% = 0, 0% = 70% missed
4199 * Rate: 60% = 1Mbs, 100% = Max
4200 * Rx and Tx errors represent a straight % of total Rx/Tx
4201 * RSSI: 100% = > -50, 0% = < -80
4202 * Rx errors: 100% = 0, 0% = 50% missed
4203 *
4204 * The lowest computed quality is used.
4205 *
4206 */
4207 #define BEACON_THRESHOLD 5
4208 beacon_quality = 100 - missed_beacons_percent;
4209 if (beacon_quality < BEACON_THRESHOLD)
4210 beacon_quality = 0;
4211 else
4212 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4213 (100 - BEACON_THRESHOLD);
4214 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4215 beacon_quality, missed_beacons_percent);
4216
4217 priv->last_rate = ipw_get_current_rate(priv);
4218 max_rate = ipw_get_max_rate(priv);
4219 rate_quality = priv->last_rate * 40 / max_rate + 60;
4220 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4221 rate_quality, priv->last_rate / 1000000);
4222
4223 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4224 rx_quality = 100 - (rx_err_delta * 100) /
4225 (rx_packets_delta + rx_err_delta);
4226 else
4227 rx_quality = 100;
4228 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4229 rx_quality, rx_err_delta, rx_packets_delta);
4230
4231 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4232 tx_quality = 100 - (tx_failures_delta * 100) /
4233 (tx_packets_delta + tx_failures_delta);
4234 else
4235 tx_quality = 100;
4236 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4237 tx_quality, tx_failures_delta, tx_packets_delta);
4238
4239 rssi = priv->exp_avg_rssi;
4240 signal_quality =
4241 (100 *
4242 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4243 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4244 (priv->ieee->perfect_rssi - rssi) *
4245 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4246 62 * (priv->ieee->perfect_rssi - rssi))) /
4247 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4248 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4249 if (signal_quality > 100)
4250 signal_quality = 100;
4251 else if (signal_quality < 1)
4252 signal_quality = 0;
4253
4254 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4255 signal_quality, rssi);
4256
4257 quality = min(beacon_quality,
4258 min(rate_quality,
4259 min(tx_quality, min(rx_quality, signal_quality))));
4260 if (quality == beacon_quality)
4261 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4262 quality);
4263 if (quality == rate_quality)
4264 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4265 quality);
4266 if (quality == tx_quality)
4267 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4268 quality);
4269 if (quality == rx_quality)
4270 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4271 quality);
4272 if (quality == signal_quality)
4273 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4274 quality);
4275
4276 priv->quality = quality;
4277
4278 queue_delayed_work(priv->workqueue, &priv->gather_stats,
4279 IPW_STATS_INTERVAL);
4280 }
4281
4282 static void ipw_bg_gather_stats(struct work_struct *work)
4283 {
4284 struct ipw_priv *priv =
4285 container_of(work, struct ipw_priv, gather_stats.work);
4286 mutex_lock(&priv->mutex);
4287 ipw_gather_stats(priv);
4288 mutex_unlock(&priv->mutex);
4289 }
4290
4291 /* Missed beacon behavior:
4292 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4293 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4294 * Above disassociate threshold, give up and stop scanning.
4295 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4296 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4297 int missed_count)
4298 {
4299 priv->notif_missed_beacons = missed_count;
4300
4301 if (missed_count > priv->disassociate_threshold &&
4302 priv->status & STATUS_ASSOCIATED) {
4303 /* If associated and we've hit the missed
4304 * beacon threshold, disassociate, turn
4305 * off roaming, and abort any active scans */
4306 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4307 IPW_DL_STATE | IPW_DL_ASSOC,
4308 "Missed beacon: %d - disassociate\n", missed_count);
4309 priv->status &= ~STATUS_ROAMING;
4310 if (priv->status & STATUS_SCANNING) {
4311 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4312 IPW_DL_STATE,
4313 "Aborting scan with missed beacon.\n");
4314 queue_work(priv->workqueue, &priv->abort_scan);
4315 }
4316
4317 queue_work(priv->workqueue, &priv->disassociate);
4318 return;
4319 }
4320
4321 if (priv->status & STATUS_ROAMING) {
4322 /* If we are currently roaming, then just
4323 * print a debug statement... */
4324 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4325 "Missed beacon: %d - roam in progress\n",
4326 missed_count);
4327 return;
4328 }
4329
4330 if (roaming &&
4331 (missed_count > priv->roaming_threshold &&
4332 missed_count <= priv->disassociate_threshold)) {
4333 /* If we are not already roaming, set the ROAM
4334 * bit in the status and kick off a scan.
4335 * This can happen several times before we reach
4336 * disassociate_threshold. */
4337 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4338 "Missed beacon: %d - initiate "
4339 "roaming\n", missed_count);
4340 if (!(priv->status & STATUS_ROAMING)) {
4341 priv->status |= STATUS_ROAMING;
4342 if (!(priv->status & STATUS_SCANNING))
4343 queue_delayed_work(priv->workqueue,
4344 &priv->request_scan, 0);
4345 }
4346 return;
4347 }
4348
4349 if (priv->status & STATUS_SCANNING) {
4350 /* Stop scan to keep fw from getting
4351 * stuck (only if we aren't roaming --
4352 * otherwise we'll never scan more than 2 or 3
4353 * channels..) */
4354 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4355 "Aborting scan with missed beacon.\n");
4356 queue_work(priv->workqueue, &priv->abort_scan);
4357 }
4358
4359 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4360 }
4361
4362 static void ipw_scan_event(struct work_struct *work)
4363 {
4364 union iwreq_data wrqu;
4365
4366 struct ipw_priv *priv =
4367 container_of(work, struct ipw_priv, scan_event.work);
4368
4369 wrqu.data.length = 0;
4370 wrqu.data.flags = 0;
4371 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4372 }
4373
4374 static void handle_scan_event(struct ipw_priv *priv)
4375 {
4376 /* Only userspace-requested scan completion events go out immediately */
4377 if (!priv->user_requested_scan) {
4378 if (!delayed_work_pending(&priv->scan_event))
4379 queue_delayed_work(priv->workqueue, &priv->scan_event,
4380 round_jiffies_relative(msecs_to_jiffies(4000)));
4381 } else {
4382 union iwreq_data wrqu;
4383
4384 priv->user_requested_scan = 0;
4385 cancel_delayed_work(&priv->scan_event);
4386
4387 wrqu.data.length = 0;
4388 wrqu.data.flags = 0;
4389 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4390 }
4391 }
4392
4393 /**
4394 * Handle host notification packet.
4395 * Called from interrupt routine
4396 */
4397 static void ipw_rx_notification(struct ipw_priv *priv,
4398 struct ipw_rx_notification *notif)
4399 {
4400 DECLARE_MAC_BUF(mac);
4401 u16 size = le16_to_cpu(notif->size);
4402 notif->size = le16_to_cpu(notif->size);
4403
4404 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4405
4406 switch (notif->subtype) {
4407 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4408 struct notif_association *assoc = &notif->u.assoc;
4409
4410 switch (assoc->state) {
4411 case CMAS_ASSOCIATED:{
4412 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4413 IPW_DL_ASSOC,
4414 "associated: '%s' %s"
4415 " \n",
4416 escape_essid(priv->essid,
4417 priv->essid_len),
4418 print_mac(mac, priv->bssid));
4419
4420 switch (priv->ieee->iw_mode) {
4421 case IW_MODE_INFRA:
4422 memcpy(priv->ieee->bssid,
4423 priv->bssid, ETH_ALEN);
4424 break;
4425
4426 case IW_MODE_ADHOC:
4427 memcpy(priv->ieee->bssid,
4428 priv->bssid, ETH_ALEN);
4429
4430 /* clear out the station table */
4431 priv->num_stations = 0;
4432
4433 IPW_DEBUG_ASSOC
4434 ("queueing adhoc check\n");
4435 queue_delayed_work(priv->
4436 workqueue,
4437 &priv->
4438 adhoc_check,
4439 le16_to_cpu(priv->
4440 assoc_request.
4441 beacon_interval));
4442 break;
4443 }
4444
4445 priv->status &= ~STATUS_ASSOCIATING;
4446 priv->status |= STATUS_ASSOCIATED;
4447 queue_work(priv->workqueue,
4448 &priv->system_config);
4449
4450 #ifdef CONFIG_IPW2200_QOS
4451 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4452 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4453 if ((priv->status & STATUS_AUTH) &&
4454 (IPW_GET_PACKET_STYPE(&notif->u.raw)
4455 == IEEE80211_STYPE_ASSOC_RESP)) {
4456 if ((sizeof
4457 (struct
4458 ieee80211_assoc_response)
4459 <= size)
4460 && (size <= 2314)) {
4461 struct
4462 ieee80211_rx_stats
4463 stats = {
4464 .len = size - 1,
4465 };
4466
4467 IPW_DEBUG_QOS
4468 ("QoS Associate "
4469 "size %d\n", size);
4470 ieee80211_rx_mgt(priv->
4471 ieee,
4472 (struct
4473 ieee80211_hdr_4addr
4474 *)
4475 &notif->u.raw, &stats);
4476 }
4477 }
4478 #endif
4479
4480 schedule_work(&priv->link_up);
4481
4482 break;
4483 }
4484
4485 case CMAS_AUTHENTICATED:{
4486 if (priv->
4487 status & (STATUS_ASSOCIATED |
4488 STATUS_AUTH)) {
4489 struct notif_authenticate *auth
4490 = &notif->u.auth;
4491 IPW_DEBUG(IPW_DL_NOTIF |
4492 IPW_DL_STATE |
4493 IPW_DL_ASSOC,
4494 "deauthenticated: '%s' "
4495 "%s"
4496 ": (0x%04X) - %s \n",
4497 escape_essid(priv->
4498 essid,
4499 priv->
4500 essid_len),
4501 print_mac(mac, priv->bssid),
4502 le16_to_cpu(auth->status),
4503 ipw_get_status_code
4504 (le16_to_cpu
4505 (auth->status)));
4506
4507 priv->status &=
4508 ~(STATUS_ASSOCIATING |
4509 STATUS_AUTH |
4510 STATUS_ASSOCIATED);
4511
4512 schedule_work(&priv->link_down);
4513 break;
4514 }
4515
4516 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4517 IPW_DL_ASSOC,
4518 "authenticated: '%s' %s"
4519 "\n",
4520 escape_essid(priv->essid,
4521 priv->essid_len),
4522 print_mac(mac, priv->bssid));
4523 break;
4524 }
4525
4526 case CMAS_INIT:{
4527 if (priv->status & STATUS_AUTH) {
4528 struct
4529 ieee80211_assoc_response
4530 *resp;
4531 resp =
4532 (struct
4533 ieee80211_assoc_response
4534 *)&notif->u.raw;
4535 IPW_DEBUG(IPW_DL_NOTIF |
4536 IPW_DL_STATE |
4537 IPW_DL_ASSOC,
4538 "association failed (0x%04X): %s\n",
4539 le16_to_cpu(resp->status),
4540 ipw_get_status_code
4541 (le16_to_cpu
4542 (resp->status)));
4543 }
4544
4545 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4546 IPW_DL_ASSOC,
4547 "disassociated: '%s' %s"
4548 " \n",
4549 escape_essid(priv->essid,
4550 priv->essid_len),
4551 print_mac(mac, priv->bssid));
4552
4553 priv->status &=
4554 ~(STATUS_DISASSOCIATING |
4555 STATUS_ASSOCIATING |
4556 STATUS_ASSOCIATED | STATUS_AUTH);
4557 if (priv->assoc_network
4558 && (priv->assoc_network->
4559 capability &
4560 WLAN_CAPABILITY_IBSS))
4561 ipw_remove_current_network
4562 (priv);
4563
4564 schedule_work(&priv->link_down);
4565
4566 break;
4567 }
4568
4569 case CMAS_RX_ASSOC_RESP:
4570 break;
4571
4572 default:
4573 IPW_ERROR("assoc: unknown (%d)\n",
4574 assoc->state);
4575 break;
4576 }
4577
4578 break;
4579 }
4580
4581 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4582 struct notif_authenticate *auth = &notif->u.auth;
4583 switch (auth->state) {
4584 case CMAS_AUTHENTICATED:
4585 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4586 "authenticated: '%s' %s \n",
4587 escape_essid(priv->essid,
4588 priv->essid_len),
4589 print_mac(mac, priv->bssid));
4590 priv->status |= STATUS_AUTH;
4591 break;
4592
4593 case CMAS_INIT:
4594 if (priv->status & STATUS_AUTH) {
4595 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4596 IPW_DL_ASSOC,
4597 "authentication failed (0x%04X): %s\n",
4598 le16_to_cpu(auth->status),
4599 ipw_get_status_code(le16_to_cpu
4600 (auth->
4601 status)));
4602 }
4603 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4604 IPW_DL_ASSOC,
4605 "deauthenticated: '%s' %s\n",
4606 escape_essid(priv->essid,
4607 priv->essid_len),
4608 print_mac(mac, priv->bssid));
4609
4610 priv->status &= ~(STATUS_ASSOCIATING |
4611 STATUS_AUTH |
4612 STATUS_ASSOCIATED);
4613
4614 schedule_work(&priv->link_down);
4615 break;
4616
4617 case CMAS_TX_AUTH_SEQ_1:
4618 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4619 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4620 break;
4621 case CMAS_RX_AUTH_SEQ_2:
4622 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4623 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4624 break;
4625 case CMAS_AUTH_SEQ_1_PASS:
4626 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4627 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4628 break;
4629 case CMAS_AUTH_SEQ_1_FAIL:
4630 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4631 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4632 break;
4633 case CMAS_TX_AUTH_SEQ_3:
4634 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4635 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4636 break;
4637 case CMAS_RX_AUTH_SEQ_4:
4638 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4639 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4640 break;
4641 case CMAS_AUTH_SEQ_2_PASS:
4642 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4643 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4644 break;
4645 case CMAS_AUTH_SEQ_2_FAIL:
4646 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4647 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4648 break;
4649 case CMAS_TX_ASSOC:
4650 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4651 IPW_DL_ASSOC, "TX_ASSOC\n");
4652 break;
4653 case CMAS_RX_ASSOC_RESP:
4654 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4655 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4656
4657 break;
4658 case CMAS_ASSOCIATED:
4659 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4660 IPW_DL_ASSOC, "ASSOCIATED\n");
4661 break;
4662 default:
4663 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4664 auth->state);
4665 break;
4666 }
4667 break;
4668 }
4669
4670 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4671 struct notif_channel_result *x =
4672 &notif->u.channel_result;
4673
4674 if (size == sizeof(*x)) {
4675 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4676 x->channel_num);
4677 } else {
4678 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4679 "(should be %zd)\n",
4680 size, sizeof(*x));
4681 }
4682 break;
4683 }
4684
4685 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4686 struct notif_scan_complete *x = &notif->u.scan_complete;
4687 if (size == sizeof(*x)) {
4688 IPW_DEBUG_SCAN
4689 ("Scan completed: type %d, %d channels, "
4690 "%d status\n", x->scan_type,
4691 x->num_channels, x->status);
4692 } else {
4693 IPW_ERROR("Scan completed of wrong size %d "
4694 "(should be %zd)\n",
4695 size, sizeof(*x));
4696 }
4697
4698 priv->status &=
4699 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4700
4701 wake_up_interruptible(&priv->wait_state);
4702 cancel_delayed_work(&priv->scan_check);
4703
4704 if (priv->status & STATUS_EXIT_PENDING)
4705 break;
4706
4707 priv->ieee->scans++;
4708
4709 #ifdef CONFIG_IPW2200_MONITOR
4710 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4711 priv->status |= STATUS_SCAN_FORCED;
4712 queue_delayed_work(priv->workqueue,
4713 &priv->request_scan, 0);
4714 break;
4715 }
4716 priv->status &= ~STATUS_SCAN_FORCED;
4717 #endif /* CONFIG_IPW2200_MONITOR */
4718
4719 /* Do queued direct scans first */
4720 if (priv->status & STATUS_DIRECT_SCAN_PENDING) {
4721 queue_delayed_work(priv->workqueue,
4722 &priv->request_direct_scan, 0);
4723 }
4724
4725 if (!(priv->status & (STATUS_ASSOCIATED |
4726 STATUS_ASSOCIATING |
4727 STATUS_ROAMING |
4728 STATUS_DISASSOCIATING)))
4729 queue_work(priv->workqueue, &priv->associate);
4730 else if (priv->status & STATUS_ROAMING) {
4731 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4732 /* If a scan completed and we are in roam mode, then
4733 * the scan that completed was the one requested as a
4734 * result of entering roam... so, schedule the
4735 * roam work */
4736 queue_work(priv->workqueue,
4737 &priv->roam);
4738 else
4739 /* Don't schedule if we aborted the scan */
4740 priv->status &= ~STATUS_ROAMING;
4741 } else if (priv->status & STATUS_SCAN_PENDING)
4742 queue_delayed_work(priv->workqueue,
4743 &priv->request_scan, 0);
4744 else if (priv->config & CFG_BACKGROUND_SCAN
4745 && priv->status & STATUS_ASSOCIATED)
4746 queue_delayed_work(priv->workqueue,
4747 &priv->request_scan,
4748 round_jiffies_relative(HZ));
4749
4750 /* Send an empty event to user space.
4751 * We don't send the received data on the event because
4752 * it would require us to do complex transcoding, and
4753 * we want to minimise the work done in the irq handler
4754 * Use a request to extract the data.
4755 * Also, we generate this even for any scan, regardless
4756 * on how the scan was initiated. User space can just
4757 * sync on periodic scan to get fresh data...
4758 * Jean II */
4759 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4760 handle_scan_event(priv);
4761 break;
4762 }
4763
4764 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4765 struct notif_frag_length *x = &notif->u.frag_len;
4766
4767 if (size == sizeof(*x))
4768 IPW_ERROR("Frag length: %d\n",
4769 le16_to_cpu(x->frag_length));
4770 else
4771 IPW_ERROR("Frag length of wrong size %d "
4772 "(should be %zd)\n",
4773 size, sizeof(*x));
4774 break;
4775 }
4776
4777 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4778 struct notif_link_deterioration *x =
4779 &notif->u.link_deterioration;
4780
4781 if (size == sizeof(*x)) {
4782 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4783 "link deterioration: type %d, cnt %d\n",
4784 x->silence_notification_type,
4785 x->silence_count);
4786 memcpy(&priv->last_link_deterioration, x,
4787 sizeof(*x));
4788 } else {
4789 IPW_ERROR("Link Deterioration of wrong size %d "
4790 "(should be %zd)\n",
4791 size, sizeof(*x));
4792 }
4793 break;
4794 }
4795
4796 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4797 IPW_ERROR("Dino config\n");
4798 if (priv->hcmd
4799 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4800 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4801
4802 break;
4803 }
4804
4805 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4806 struct notif_beacon_state *x = &notif->u.beacon_state;
4807 if (size != sizeof(*x)) {
4808 IPW_ERROR
4809 ("Beacon state of wrong size %d (should "
4810 "be %zd)\n", size, sizeof(*x));
4811 break;
4812 }
4813
4814 if (le32_to_cpu(x->state) ==
4815 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4816 ipw_handle_missed_beacon(priv,
4817 le32_to_cpu(x->
4818 number));
4819
4820 break;
4821 }
4822
4823 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4824 struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4825 if (size == sizeof(*x)) {
4826 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4827 "0x%02x station %d\n",
4828 x->key_state, x->security_type,
4829 x->station_index);
4830 break;
4831 }
4832
4833 IPW_ERROR
4834 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4835 size, sizeof(*x));
4836 break;
4837 }
4838
4839 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4840 struct notif_calibration *x = &notif->u.calibration;
4841
4842 if (size == sizeof(*x)) {
4843 memcpy(&priv->calib, x, sizeof(*x));
4844 IPW_DEBUG_INFO("TODO: Calibration\n");
4845 break;
4846 }
4847
4848 IPW_ERROR
4849 ("Calibration of wrong size %d (should be %zd)\n",
4850 size, sizeof(*x));
4851 break;
4852 }
4853
4854 case HOST_NOTIFICATION_NOISE_STATS:{
4855 if (size == sizeof(u32)) {
4856 priv->exp_avg_noise =
4857 exponential_average(priv->exp_avg_noise,
4858 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4859 DEPTH_NOISE);
4860 break;
4861 }
4862
4863 IPW_ERROR
4864 ("Noise stat is wrong size %d (should be %zd)\n",
4865 size, sizeof(u32));
4866 break;
4867 }
4868
4869 default:
4870 IPW_DEBUG_NOTIF("Unknown notification: "
4871 "subtype=%d,flags=0x%2x,size=%d\n",
4872 notif->subtype, notif->flags, size);
4873 }
4874 }
4875
4876 /**
4877 * Destroys all DMA structures and initialise them again
4878 *
4879 * @param priv
4880 * @return error code
4881 */
4882 static int ipw_queue_reset(struct ipw_priv *priv)
4883 {
4884 int rc = 0;
4885 /** @todo customize queue sizes */
4886 int nTx = 64, nTxCmd = 8;
4887 ipw_tx_queue_free(priv);
4888 /* Tx CMD queue */
4889 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4890 IPW_TX_CMD_QUEUE_READ_INDEX,
4891 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4892 IPW_TX_CMD_QUEUE_BD_BASE,
4893 IPW_TX_CMD_QUEUE_BD_SIZE);
4894 if (rc) {
4895 IPW_ERROR("Tx Cmd queue init failed\n");
4896 goto error;
4897 }
4898 /* Tx queue(s) */
4899 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4900 IPW_TX_QUEUE_0_READ_INDEX,
4901 IPW_TX_QUEUE_0_WRITE_INDEX,
4902 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4903 if (rc) {
4904 IPW_ERROR("Tx 0 queue init failed\n");
4905 goto error;
4906 }
4907 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4908 IPW_TX_QUEUE_1_READ_INDEX,
4909 IPW_TX_QUEUE_1_WRITE_INDEX,
4910 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4911 if (rc) {
4912 IPW_ERROR("Tx 1 queue init failed\n");
4913 goto error;
4914 }
4915 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4916 IPW_TX_QUEUE_2_READ_INDEX,
4917 IPW_TX_QUEUE_2_WRITE_INDEX,
4918 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4919 if (rc) {
4920 IPW_ERROR("Tx 2 queue init failed\n");
4921 goto error;
4922 }
4923 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4924 IPW_TX_QUEUE_3_READ_INDEX,
4925 IPW_TX_QUEUE_3_WRITE_INDEX,
4926 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4927 if (rc) {
4928 IPW_ERROR("Tx 3 queue init failed\n");
4929 goto error;
4930 }
4931 /* statistics */
4932 priv->rx_bufs_min = 0;
4933 priv->rx_pend_max = 0;
4934 return rc;
4935
4936 error:
4937 ipw_tx_queue_free(priv);
4938 return rc;
4939 }
4940
4941 /**
4942 * Reclaim Tx queue entries no more used by NIC.
4943 *
4944 * When FW advances 'R' index, all entries between old and
4945 * new 'R' index need to be reclaimed. As result, some free space
4946 * forms. If there is enough free space (> low mark), wake Tx queue.
4947 *
4948 * @note Need to protect against garbage in 'R' index
4949 * @param priv
4950 * @param txq
4951 * @param qindex
4952 * @return Number of used entries remains in the queue
4953 */
4954 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4955 struct clx2_tx_queue *txq, int qindex)
4956 {
4957 u32 hw_tail;
4958 int used;
4959 struct clx2_queue *q = &txq->q;
4960
4961 hw_tail = ipw_read32(priv, q->reg_r);
4962 if (hw_tail >= q->n_bd) {
4963 IPW_ERROR
4964 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4965 hw_tail, q->n_bd);
4966 goto done;
4967 }
4968 for (; q->last_used != hw_tail;
4969 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4970 ipw_queue_tx_free_tfd(priv, txq);
4971 priv->tx_packets++;
4972 }
4973 done:
4974 if ((ipw_tx_queue_space(q) > q->low_mark) &&
4975 (qindex >= 0))
4976 netif_wake_queue(priv->net_dev);
4977 used = q->first_empty - q->last_used;
4978 if (used < 0)
4979 used += q->n_bd;
4980
4981 return used;
4982 }
4983
4984 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4985 int len, int sync)
4986 {
4987 struct clx2_tx_queue *txq = &priv->txq_cmd;
4988 struct clx2_queue *q = &txq->q;
4989 struct tfd_frame *tfd;
4990
4991 if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
4992 IPW_ERROR("No space for Tx\n");
4993 return -EBUSY;
4994 }
4995
4996 tfd = &txq->bd[q->first_empty];
4997 txq->txb[q->first_empty] = NULL;
4998
4999 memset(tfd, 0, sizeof(*tfd));
5000 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5001 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5002 priv->hcmd_seq++;
5003 tfd->u.cmd.index = hcmd;
5004 tfd->u.cmd.length = len;
5005 memcpy(tfd->u.cmd.payload, buf, len);
5006 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5007 ipw_write32(priv, q->reg_w, q->first_empty);
5008 _ipw_read32(priv, 0x90);
5009
5010 return 0;
5011 }
5012
5013 /*
5014 * Rx theory of operation
5015 *
5016 * The host allocates 32 DMA target addresses and passes the host address
5017 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5018 * 0 to 31
5019 *
5020 * Rx Queue Indexes
5021 * The host/firmware share two index registers for managing the Rx buffers.
5022 *
5023 * The READ index maps to the first position that the firmware may be writing
5024 * to -- the driver can read up to (but not including) this position and get
5025 * good data.
5026 * The READ index is managed by the firmware once the card is enabled.
5027 *
5028 * The WRITE index maps to the last position the driver has read from -- the
5029 * position preceding WRITE is the last slot the firmware can place a packet.
5030 *
5031 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5032 * WRITE = READ.
5033 *
5034 * During initialization the host sets up the READ queue position to the first
5035 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5036 *
5037 * When the firmware places a packet in a buffer it will advance the READ index
5038 * and fire the RX interrupt. The driver can then query the READ index and
5039 * process as many packets as possible, moving the WRITE index forward as it
5040 * resets the Rx queue buffers with new memory.
5041 *
5042 * The management in the driver is as follows:
5043 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5044 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5045 * to replensish the ipw->rxq->rx_free.
5046 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5047 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5048 * 'processed' and 'read' driver indexes as well)
5049 * + A received packet is processed and handed to the kernel network stack,
5050 * detached from the ipw->rxq. The driver 'processed' index is updated.
5051 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5052 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5053 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5054 * were enough free buffers and RX_STALLED is set it is cleared.
5055 *
5056 *
5057 * Driver sequence:
5058 *
5059 * ipw_rx_queue_alloc() Allocates rx_free
5060 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5061 * ipw_rx_queue_restock
5062 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5063 * queue, updates firmware pointers, and updates
5064 * the WRITE index. If insufficient rx_free buffers
5065 * are available, schedules ipw_rx_queue_replenish
5066 *
5067 * -- enable interrupts --
5068 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5069 * READ INDEX, detaching the SKB from the pool.
5070 * Moves the packet buffer from queue to rx_used.
5071 * Calls ipw_rx_queue_restock to refill any empty
5072 * slots.
5073 * ...
5074 *
5075 */
5076
5077 /*
5078 * If there are slots in the RX queue that need to be restocked,
5079 * and we have free pre-allocated buffers, fill the ranks as much
5080 * as we can pulling from rx_free.
5081 *
5082 * This moves the 'write' index forward to catch up with 'processed', and
5083 * also updates the memory address in the firmware to reference the new
5084 * target buffer.
5085 */
5086 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5087 {
5088 struct ipw_rx_queue *rxq = priv->rxq;
5089 struct list_head *element;
5090 struct ipw_rx_mem_buffer *rxb;
5091 unsigned long flags;
5092 int write;
5093
5094 spin_lock_irqsave(&rxq->lock, flags);
5095 write = rxq->write;
5096 while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5097 element = rxq->rx_free.next;
5098 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5099 list_del(element);
5100
5101 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5102 rxb->dma_addr);
5103 rxq->queue[rxq->write] = rxb;
5104 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5105 rxq->free_count--;
5106 }
5107 spin_unlock_irqrestore(&rxq->lock, flags);
5108
5109 /* If the pre-allocated buffer pool is dropping low, schedule to
5110 * refill it */
5111 if (rxq->free_count <= RX_LOW_WATERMARK)
5112 queue_work(priv->workqueue, &priv->rx_replenish);
5113
5114 /* If we've added more space for the firmware to place data, tell it */
5115 if (write != rxq->write)
5116 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5117 }
5118
5119 /*
5120 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5121 * Also restock the Rx queue via ipw_rx_queue_restock.
5122 *
5123 * This is called as a scheduled work item (except for during intialization)
5124 */
5125 static void ipw_rx_queue_replenish(void *data)
5126 {
5127 struct ipw_priv *priv = data;
5128 struct ipw_rx_queue *rxq = priv->rxq;
5129 struct list_head *element;
5130 struct ipw_rx_mem_buffer *rxb;
5131 unsigned long flags;
5132
5133 spin_lock_irqsave(&rxq->lock, flags);
5134 while (!list_empty(&rxq->rx_used)) {
5135 element = rxq->rx_used.next;
5136 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5137 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5138 if (!rxb->skb) {
5139 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5140 priv->net_dev->name);
5141 /* We don't reschedule replenish work here -- we will
5142 * call the restock method and if it still needs
5143 * more buffers it will schedule replenish */
5144 break;
5145 }
5146 list_del(element);
5147
5148 rxb->dma_addr =
5149 pci_map_single(priv->pci_dev, rxb->skb->data,
5150 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5151
5152 list_add_tail(&rxb->list, &rxq->rx_free);
5153 rxq->free_count++;
5154 }
5155 spin_unlock_irqrestore(&rxq->lock, flags);
5156
5157 ipw_rx_queue_restock(priv);
5158 }
5159
5160 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5161 {
5162 struct ipw_priv *priv =
5163 container_of(work, struct ipw_priv, rx_replenish);
5164 mutex_lock(&priv->mutex);
5165 ipw_rx_queue_replenish(priv);
5166 mutex_unlock(&priv->mutex);
5167 }
5168
5169 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5170 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5171 * This free routine walks the list of POOL entries and if SKB is set to
5172 * non NULL it is unmapped and freed
5173 */
5174 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5175 {
5176 int i;
5177
5178 if (!rxq)
5179 return;
5180
5181 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5182 if (rxq->pool[i].skb != NULL) {
5183 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5184 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5185 dev_kfree_skb(rxq->pool[i].skb);
5186 }
5187 }
5188
5189 kfree(rxq);
5190 }
5191
5192 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5193 {
5194 struct ipw_rx_queue *rxq;
5195 int i;
5196
5197 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5198 if (unlikely(!rxq)) {
5199 IPW_ERROR("memory allocation failed\n");
5200 return NULL;
5201 }
5202 spin_lock_init(&rxq->lock);
5203 INIT_LIST_HEAD(&rxq->rx_free);
5204 INIT_LIST_HEAD(&rxq->rx_used);
5205
5206 /* Fill the rx_used queue with _all_ of the Rx buffers */
5207 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5208 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5209
5210 /* Set us so that we have processed and used all buffers, but have
5211 * not restocked the Rx queue with fresh buffers */
5212 rxq->read = rxq->write = 0;
5213 rxq->free_count = 0;
5214
5215 return rxq;
5216 }
5217
5218 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5219 {
5220 rate &= ~IEEE80211_BASIC_RATE_MASK;
5221 if (ieee_mode == IEEE_A) {
5222 switch (rate) {
5223 case IEEE80211_OFDM_RATE_6MB:
5224 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5225 1 : 0;
5226 case IEEE80211_OFDM_RATE_9MB:
5227 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5228 1 : 0;
5229 case IEEE80211_OFDM_RATE_12MB:
5230 return priv->
5231 rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5232 case IEEE80211_OFDM_RATE_18MB:
5233 return priv->
5234 rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5235 case IEEE80211_OFDM_RATE_24MB:
5236 return priv->
5237 rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5238 case IEEE80211_OFDM_RATE_36MB:
5239 return priv->
5240 rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5241 case IEEE80211_OFDM_RATE_48MB:
5242 return priv->
5243 rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5244 case IEEE80211_OFDM_RATE_54MB:
5245 return priv->
5246 rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5247 default:
5248 return 0;
5249 }
5250 }
5251
5252 /* B and G mixed */
5253 switch (rate) {
5254 case IEEE80211_CCK_RATE_1MB:
5255 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5256 case IEEE80211_CCK_RATE_2MB:
5257 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5258 case IEEE80211_CCK_RATE_5MB:
5259 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5260 case IEEE80211_CCK_RATE_11MB:
5261 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5262 }
5263
5264 /* If we are limited to B modulations, bail at this point */
5265 if (ieee_mode == IEEE_B)
5266 return 0;
5267
5268 /* G */
5269 switch (rate) {
5270 case IEEE80211_OFDM_RATE_6MB:
5271 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5272 case IEEE80211_OFDM_RATE_9MB:
5273 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5274 case IEEE80211_OFDM_RATE_12MB:
5275 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5276 case IEEE80211_OFDM_RATE_18MB:
5277 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5278 case IEEE80211_OFDM_RATE_24MB:
5279 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5280 case IEEE80211_OFDM_RATE_36MB:
5281 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5282 case IEEE80211_OFDM_RATE_48MB:
5283 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5284 case IEEE80211_OFDM_RATE_54MB:
5285 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5286 }
5287
5288 return 0;
5289 }
5290
5291 static int ipw_compatible_rates(struct ipw_priv *priv,
5292 const struct ieee80211_network *network,
5293 struct ipw_supported_rates *rates)
5294 {
5295 int num_rates, i;
5296
5297 memset(rates, 0, sizeof(*rates));
5298 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5299 rates->num_rates = 0;
5300 for (i = 0; i < num_rates; i++) {
5301 if (!ipw_is_rate_in_mask(priv, network->mode,
5302 network->rates[i])) {
5303
5304 if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5305 IPW_DEBUG_SCAN("Adding masked mandatory "
5306 "rate %02X\n",
5307 network->rates[i]);
5308 rates->supported_rates[rates->num_rates++] =
5309 network->rates[i];
5310 continue;
5311 }
5312
5313 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5314 network->rates[i], priv->rates_mask);
5315 continue;
5316 }
5317
5318 rates->supported_rates[rates->num_rates++] = network->rates[i];
5319 }
5320
5321 num_rates = min(network->rates_ex_len,
5322 (u8) (IPW_MAX_RATES - num_rates));
5323 for (i = 0; i < num_rates; i++) {
5324 if (!ipw_is_rate_in_mask(priv, network->mode,
5325 network->rates_ex[i])) {
5326 if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5327 IPW_DEBUG_SCAN("Adding masked mandatory "
5328 "rate %02X\n",
5329 network->rates_ex[i]);
5330 rates->supported_rates[rates->num_rates++] =
5331 network->rates[i];
5332 continue;
5333 }
5334
5335 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5336 network->rates_ex[i], priv->rates_mask);
5337 continue;
5338 }
5339
5340 rates->supported_rates[rates->num_rates++] =
5341 network->rates_ex[i];
5342 }
5343
5344 return 1;
5345 }
5346
5347 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5348 const struct ipw_supported_rates *src)
5349 {
5350 u8 i;
5351 for (i = 0; i < src->num_rates; i++)
5352 dest->supported_rates[i] = src->supported_rates[i];
5353 dest->num_rates = src->num_rates;
5354 }
5355
5356 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5357 * mask should ever be used -- right now all callers to add the scan rates are
5358 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5359 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5360 u8 modulation, u32 rate_mask)
5361 {
5362 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5363 IEEE80211_BASIC_RATE_MASK : 0;
5364
5365 if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5366 rates->supported_rates[rates->num_rates++] =
5367 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5368
5369 if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5370 rates->supported_rates[rates->num_rates++] =
5371 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5372
5373 if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5374 rates->supported_rates[rates->num_rates++] = basic_mask |
5375 IEEE80211_CCK_RATE_5MB;
5376
5377 if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5378 rates->supported_rates[rates->num_rates++] = basic_mask |
5379 IEEE80211_CCK_RATE_11MB;
5380 }
5381
5382 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5383 u8 modulation, u32 rate_mask)
5384 {
5385 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5386 IEEE80211_BASIC_RATE_MASK : 0;
5387
5388 if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5389 rates->supported_rates[rates->num_rates++] = basic_mask |
5390 IEEE80211_OFDM_RATE_6MB;
5391
5392 if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5393 rates->supported_rates[rates->num_rates++] =
5394 IEEE80211_OFDM_RATE_9MB;
5395
5396 if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5397 rates->supported_rates[rates->num_rates++] = basic_mask |
5398 IEEE80211_OFDM_RATE_12MB;
5399
5400 if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5401 rates->supported_rates[rates->num_rates++] =
5402 IEEE80211_OFDM_RATE_18MB;
5403
5404 if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5405 rates->supported_rates[rates->num_rates++] = basic_mask |
5406 IEEE80211_OFDM_RATE_24MB;
5407
5408 if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5409 rates->supported_rates[rates->num_rates++] =
5410 IEEE80211_OFDM_RATE_36MB;
5411
5412 if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5413 rates->supported_rates[rates->num_rates++] =
5414 IEEE80211_OFDM_RATE_48MB;
5415
5416 if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5417 rates->supported_rates[rates->num_rates++] =
5418 IEEE80211_OFDM_RATE_54MB;
5419 }
5420
5421 struct ipw_network_match {
5422 struct ieee80211_network *network;
5423 struct ipw_supported_rates rates;
5424 };
5425
5426 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5427 struct ipw_network_match *match,
5428 struct ieee80211_network *network,
5429 int roaming)
5430 {
5431 struct ipw_supported_rates rates;
5432 DECLARE_MAC_BUF(mac);
5433 DECLARE_MAC_BUF(mac2);
5434
5435 /* Verify that this network's capability is compatible with the
5436 * current mode (AdHoc or Infrastructure) */
5437 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5438 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5439 IPW_DEBUG_MERGE("Network '%s (%s)' excluded due to "
5440 "capability mismatch.\n",
5441 escape_essid(network->ssid, network->ssid_len),
5442 print_mac(mac, network->bssid));
5443 return 0;
5444 }
5445
5446 /* If we do not have an ESSID for this AP, we can not associate with
5447 * it */
5448 if (network->flags & NETWORK_EMPTY_ESSID) {
5449 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5450 "because of hidden ESSID.\n",
5451 escape_essid(network->ssid, network->ssid_len),
5452 print_mac(mac, network->bssid));
5453 return 0;
5454 }
5455
5456 if (unlikely(roaming)) {
5457 /* If we are roaming, then ensure check if this is a valid
5458 * network to try and roam to */
5459 if ((network->ssid_len != match->network->ssid_len) ||
5460 memcmp(network->ssid, match->network->ssid,
5461 network->ssid_len)) {
5462 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5463 "because of non-network ESSID.\n",
5464 escape_essid(network->ssid,
5465 network->ssid_len),
5466 print_mac(mac, network->bssid));
5467 return 0;
5468 }
5469 } else {
5470 /* If an ESSID has been configured then compare the broadcast
5471 * ESSID to ours */
5472 if ((priv->config & CFG_STATIC_ESSID) &&
5473 ((network->ssid_len != priv->essid_len) ||
5474 memcmp(network->ssid, priv->essid,
5475 min(network->ssid_len, priv->essid_len)))) {
5476 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5477
5478 strncpy(escaped,
5479 escape_essid(network->ssid, network->ssid_len),
5480 sizeof(escaped));
5481 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5482 "because of ESSID mismatch: '%s'.\n",
5483 escaped, print_mac(mac, network->bssid),
5484 escape_essid(priv->essid,
5485 priv->essid_len));
5486 return 0;
5487 }
5488 }
5489
5490 /* If the old network rate is better than this one, don't bother
5491 * testing everything else. */
5492
5493 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5494 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5495 "current network.\n",
5496 escape_essid(match->network->ssid,
5497 match->network->ssid_len));
5498 return 0;
5499 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5500 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5501 "current network.\n",
5502 escape_essid(match->network->ssid,
5503 match->network->ssid_len));
5504 return 0;
5505 }
5506
5507 /* Now go through and see if the requested network is valid... */
5508 if (priv->ieee->scan_age != 0 &&
5509 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5510 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5511 "because of age: %ums.\n",
5512 escape_essid(network->ssid, network->ssid_len),
5513 print_mac(mac, network->bssid),
5514 jiffies_to_msecs(jiffies -
5515 network->last_scanned));
5516 return 0;
5517 }
5518
5519 if ((priv->config & CFG_STATIC_CHANNEL) &&
5520 (network->channel != priv->channel)) {
5521 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5522 "because of channel mismatch: %d != %d.\n",
5523 escape_essid(network->ssid, network->ssid_len),
5524 print_mac(mac, network->bssid),
5525 network->channel, priv->channel);
5526 return 0;
5527 }
5528
5529 /* Verify privacy compatability */
5530 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5531 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5532 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5533 "because of privacy mismatch: %s != %s.\n",
5534 escape_essid(network->ssid, network->ssid_len),
5535 print_mac(mac, network->bssid),
5536 priv->
5537 capability & CAP_PRIVACY_ON ? "on" : "off",
5538 network->
5539 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5540 "off");
5541 return 0;
5542 }
5543
5544 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5545 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5546 "because of the same BSSID match: %s"
5547 ".\n", escape_essid(network->ssid,
5548 network->ssid_len),
5549 print_mac(mac, network->bssid),
5550 print_mac(mac2, priv->bssid));
5551 return 0;
5552 }
5553
5554 /* Filter out any incompatible freq / mode combinations */
5555 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5556 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5557 "because of invalid frequency/mode "
5558 "combination.\n",
5559 escape_essid(network->ssid, network->ssid_len),
5560 print_mac(mac, network->bssid));
5561 return 0;
5562 }
5563
5564 /* Ensure that the rates supported by the driver are compatible with
5565 * this AP, including verification of basic rates (mandatory) */
5566 if (!ipw_compatible_rates(priv, network, &rates)) {
5567 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5568 "because configured rate mask excludes "
5569 "AP mandatory rate.\n",
5570 escape_essid(network->ssid, network->ssid_len),
5571 print_mac(mac, network->bssid));
5572 return 0;
5573 }
5574
5575 if (rates.num_rates == 0) {
5576 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5577 "because of no compatible rates.\n",
5578 escape_essid(network->ssid, network->ssid_len),
5579 print_mac(mac, network->bssid));
5580 return 0;
5581 }
5582
5583 /* TODO: Perform any further minimal comparititive tests. We do not
5584 * want to put too much policy logic here; intelligent scan selection
5585 * should occur within a generic IEEE 802.11 user space tool. */
5586
5587 /* Set up 'new' AP to this network */
5588 ipw_copy_rates(&match->rates, &rates);
5589 match->network = network;
5590 IPW_DEBUG_MERGE("Network '%s (%s)' is a viable match.\n",
5591 escape_essid(network->ssid, network->ssid_len),
5592 print_mac(mac, network->bssid));
5593
5594 return 1;
5595 }
5596
5597 static void ipw_merge_adhoc_network(struct work_struct *work)
5598 {
5599 struct ipw_priv *priv =
5600 container_of(work, struct ipw_priv, merge_networks);
5601 struct ieee80211_network *network = NULL;
5602 struct ipw_network_match match = {
5603 .network = priv->assoc_network
5604 };
5605
5606 if ((priv->status & STATUS_ASSOCIATED) &&
5607 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5608 /* First pass through ROAM process -- look for a better
5609 * network */
5610 unsigned long flags;
5611
5612 spin_lock_irqsave(&priv->ieee->lock, flags);
5613 list_for_each_entry(network, &priv->ieee->network_list, list) {
5614 if (network != priv->assoc_network)
5615 ipw_find_adhoc_network(priv, &match, network,
5616 1);
5617 }
5618 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5619
5620 if (match.network == priv->assoc_network) {
5621 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5622 "merge to.\n");
5623 return;
5624 }
5625
5626 mutex_lock(&priv->mutex);
5627 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5628 IPW_DEBUG_MERGE("remove network %s\n",
5629 escape_essid(priv->essid,
5630 priv->essid_len));
5631 ipw_remove_current_network(priv);
5632 }
5633
5634 ipw_disassociate(priv);
5635 priv->assoc_network = match.network;
5636 mutex_unlock(&priv->mutex);
5637 return;
5638 }
5639 }
5640
5641 static int ipw_best_network(struct ipw_priv *priv,
5642 struct ipw_network_match *match,
5643 struct ieee80211_network *network, int roaming)
5644 {
5645 struct ipw_supported_rates rates;
5646 DECLARE_MAC_BUF(mac);
5647
5648 /* Verify that this network's capability is compatible with the
5649 * current mode (AdHoc or Infrastructure) */
5650 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5651 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5652 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5653 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5654 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded due to "
5655 "capability mismatch.\n",
5656 escape_essid(network->ssid, network->ssid_len),
5657 print_mac(mac, network->bssid));
5658 return 0;
5659 }
5660
5661 /* If we do not have an ESSID for this AP, we can not associate with
5662 * it */
5663 if (network->flags & NETWORK_EMPTY_ESSID) {
5664 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5665 "because of hidden ESSID.\n",
5666 escape_essid(network->ssid, network->ssid_len),
5667 print_mac(mac, network->bssid));
5668 return 0;
5669 }
5670
5671 if (unlikely(roaming)) {
5672 /* If we are roaming, then ensure check if this is a valid
5673 * network to try and roam to */
5674 if ((network->ssid_len != match->network->ssid_len) ||
5675 memcmp(network->ssid, match->network->ssid,
5676 network->ssid_len)) {
5677 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5678 "because of non-network ESSID.\n",
5679 escape_essid(network->ssid,
5680 network->ssid_len),
5681 print_mac(mac, network->bssid));
5682 return 0;
5683 }
5684 } else {
5685 /* If an ESSID has been configured then compare the broadcast
5686 * ESSID to ours */
5687 if ((priv->config & CFG_STATIC_ESSID) &&
5688 ((network->ssid_len != priv->essid_len) ||
5689 memcmp(network->ssid, priv->essid,
5690 min(network->ssid_len, priv->essid_len)))) {
5691 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5692 strncpy(escaped,
5693 escape_essid(network->ssid, network->ssid_len),
5694 sizeof(escaped));
5695 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5696 "because of ESSID mismatch: '%s'.\n",
5697 escaped, print_mac(mac, network->bssid),
5698 escape_essid(priv->essid,
5699 priv->essid_len));
5700 return 0;
5701 }
5702 }
5703
5704 /* If the old network rate is better than this one, don't bother
5705 * testing everything else. */
5706 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5707 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5708 strncpy(escaped,
5709 escape_essid(network->ssid, network->ssid_len),
5710 sizeof(escaped));
5711 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded because "
5712 "'%s (%s)' has a stronger signal.\n",
5713 escaped, print_mac(mac, network->bssid),
5714 escape_essid(match->network->ssid,
5715 match->network->ssid_len),
5716 print_mac(mac, match->network->bssid));
5717 return 0;
5718 }
5719
5720 /* If this network has already had an association attempt within the
5721 * last 3 seconds, do not try and associate again... */
5722 if (network->last_associate &&
5723 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5724 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5725 "because of storming (%ums since last "
5726 "assoc attempt).\n",
5727 escape_essid(network->ssid, network->ssid_len),
5728 print_mac(mac, network->bssid),
5729 jiffies_to_msecs(jiffies -
5730 network->last_associate));
5731 return 0;
5732 }
5733
5734 /* Now go through and see if the requested network is valid... */
5735 if (priv->ieee->scan_age != 0 &&
5736 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5737 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5738 "because of age: %ums.\n",
5739 escape_essid(network->ssid, network->ssid_len),
5740 print_mac(mac, network->bssid),
5741 jiffies_to_msecs(jiffies -
5742 network->last_scanned));
5743 return 0;
5744 }
5745
5746 if ((priv->config & CFG_STATIC_CHANNEL) &&
5747 (network->channel != priv->channel)) {
5748 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5749 "because of channel mismatch: %d != %d.\n",
5750 escape_essid(network->ssid, network->ssid_len),
5751 print_mac(mac, network->bssid),
5752 network->channel, priv->channel);
5753 return 0;
5754 }
5755
5756 /* Verify privacy compatability */
5757 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5758 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5759 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5760 "because of privacy mismatch: %s != %s.\n",
5761 escape_essid(network->ssid, network->ssid_len),
5762 print_mac(mac, network->bssid),
5763 priv->capability & CAP_PRIVACY_ON ? "on" :
5764 "off",
5765 network->capability &
5766 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5767 return 0;
5768 }
5769
5770 if ((priv->config & CFG_STATIC_BSSID) &&
5771 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5772 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5773 "because of BSSID mismatch: %s.\n",
5774 escape_essid(network->ssid, network->ssid_len),
5775 print_mac(mac, network->bssid), print_mac(mac, priv->bssid));
5776 return 0;
5777 }
5778
5779 /* Filter out any incompatible freq / mode combinations */
5780 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5781 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5782 "because of invalid frequency/mode "
5783 "combination.\n",
5784 escape_essid(network->ssid, network->ssid_len),
5785 print_mac(mac, network->bssid));
5786 return 0;
5787 }
5788
5789 /* Filter out invalid channel in current GEO */
5790 if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5791 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5792 "because of invalid channel in current GEO\n",
5793 escape_essid(network->ssid, network->ssid_len),
5794 print_mac(mac, network->bssid));
5795 return 0;
5796 }
5797
5798 /* Ensure that the rates supported by the driver are compatible with
5799 * this AP, including verification of basic rates (mandatory) */
5800 if (!ipw_compatible_rates(priv, network, &rates)) {
5801 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5802 "because configured rate mask excludes "
5803 "AP mandatory rate.\n",
5804 escape_essid(network->ssid, network->ssid_len),
5805 print_mac(mac, network->bssid));
5806 return 0;
5807 }
5808
5809 if (rates.num_rates == 0) {
5810 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5811 "because of no compatible rates.\n",
5812 escape_essid(network->ssid, network->ssid_len),
5813 print_mac(mac, network->bssid));
5814 return 0;
5815 }
5816
5817 /* TODO: Perform any further minimal comparititive tests. We do not
5818 * want to put too much policy logic here; intelligent scan selection
5819 * should occur within a generic IEEE 802.11 user space tool. */
5820
5821 /* Set up 'new' AP to this network */
5822 ipw_copy_rates(&match->rates, &rates);
5823 match->network = network;
5824
5825 IPW_DEBUG_ASSOC("Network '%s (%s)' is a viable match.\n",
5826 escape_essid(network->ssid, network->ssid_len),
5827 print_mac(mac, network->bssid));
5828
5829 return 1;
5830 }
5831
5832 static void ipw_adhoc_create(struct ipw_priv *priv,
5833 struct ieee80211_network *network)
5834 {
5835 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5836 int i;
5837
5838 /*
5839 * For the purposes of scanning, we can set our wireless mode
5840 * to trigger scans across combinations of bands, but when it
5841 * comes to creating a new ad-hoc network, we have tell the FW
5842 * exactly which band to use.
5843 *
5844 * We also have the possibility of an invalid channel for the
5845 * chossen band. Attempting to create a new ad-hoc network
5846 * with an invalid channel for wireless mode will trigger a
5847 * FW fatal error.
5848 *
5849 */
5850 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5851 case IEEE80211_52GHZ_BAND:
5852 network->mode = IEEE_A;
5853 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5854 BUG_ON(i == -1);
5855 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5856 IPW_WARNING("Overriding invalid channel\n");
5857 priv->channel = geo->a[0].channel;
5858 }
5859 break;
5860
5861 case IEEE80211_24GHZ_BAND:
5862 if (priv->ieee->mode & IEEE_G)
5863 network->mode = IEEE_G;
5864 else
5865 network->mode = IEEE_B;
5866 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5867 BUG_ON(i == -1);
5868 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5869 IPW_WARNING("Overriding invalid channel\n");
5870 priv->channel = geo->bg[0].channel;
5871 }
5872 break;
5873
5874 default:
5875 IPW_WARNING("Overriding invalid channel\n");
5876 if (priv->ieee->mode & IEEE_A) {
5877 network->mode = IEEE_A;
5878 priv->channel = geo->a[0].channel;
5879 } else if (priv->ieee->mode & IEEE_G) {
5880 network->mode = IEEE_G;
5881 priv->channel = geo->bg[0].channel;
5882 } else {
5883 network->mode = IEEE_B;
5884 priv->channel = geo->bg[0].channel;
5885 }
5886 break;
5887 }
5888
5889 network->channel = priv->channel;
5890 priv->config |= CFG_ADHOC_PERSIST;
5891 ipw_create_bssid(priv, network->bssid);
5892 network->ssid_len = priv->essid_len;
5893 memcpy(network->ssid, priv->essid, priv->essid_len);
5894 memset(&network->stats, 0, sizeof(network->stats));
5895 network->capability = WLAN_CAPABILITY_IBSS;
5896 if (!(priv->config & CFG_PREAMBLE_LONG))
5897 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5898 if (priv->capability & CAP_PRIVACY_ON)
5899 network->capability |= WLAN_CAPABILITY_PRIVACY;
5900 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5901 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5902 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5903 memcpy(network->rates_ex,
5904 &priv->rates.supported_rates[network->rates_len],
5905 network->rates_ex_len);
5906 network->last_scanned = 0;
5907 network->flags = 0;
5908 network->last_associate = 0;
5909 network->time_stamp[0] = 0;
5910 network->time_stamp[1] = 0;
5911 network->beacon_interval = 100; /* Default */
5912 network->listen_interval = 10; /* Default */
5913 network->atim_window = 0; /* Default */
5914 network->wpa_ie_len = 0;
5915 network->rsn_ie_len = 0;
5916 }
5917
5918 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5919 {
5920 struct ipw_tgi_tx_key key;
5921
5922 if (!(priv->ieee->sec.flags & (1 << index)))
5923 return;
5924
5925 key.key_id = index;
5926 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5927 key.security_type = type;
5928 key.station_index = 0; /* always 0 for BSS */
5929 key.flags = 0;
5930 /* 0 for new key; previous value of counter (after fatal error) */
5931 key.tx_counter[0] = cpu_to_le32(0);
5932 key.tx_counter[1] = cpu_to_le32(0);
5933
5934 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5935 }
5936
5937 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5938 {
5939 struct ipw_wep_key key;
5940 int i;
5941
5942 key.cmd_id = DINO_CMD_WEP_KEY;
5943 key.seq_num = 0;
5944
5945 /* Note: AES keys cannot be set for multiple times.
5946 * Only set it at the first time. */
5947 for (i = 0; i < 4; i++) {
5948 key.key_index = i | type;
5949 if (!(priv->ieee->sec.flags & (1 << i))) {
5950 key.key_size = 0;
5951 continue;
5952 }
5953
5954 key.key_size = priv->ieee->sec.key_sizes[i];
5955 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5956
5957 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5958 }
5959 }
5960
5961 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5962 {
5963 if (priv->ieee->host_encrypt)
5964 return;
5965
5966 switch (level) {
5967 case SEC_LEVEL_3:
5968 priv->sys_config.disable_unicast_decryption = 0;
5969 priv->ieee->host_decrypt = 0;
5970 break;
5971 case SEC_LEVEL_2:
5972 priv->sys_config.disable_unicast_decryption = 1;
5973 priv->ieee->host_decrypt = 1;
5974 break;
5975 case SEC_LEVEL_1:
5976 priv->sys_config.disable_unicast_decryption = 0;
5977 priv->ieee->host_decrypt = 0;
5978 break;
5979 case SEC_LEVEL_0:
5980 priv->sys_config.disable_unicast_decryption = 1;
5981 break;
5982 default:
5983 break;
5984 }
5985 }
5986
5987 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5988 {
5989 if (priv->ieee->host_encrypt)
5990 return;
5991
5992 switch (level) {
5993 case SEC_LEVEL_3:
5994 priv->sys_config.disable_multicast_decryption = 0;
5995 break;
5996 case SEC_LEVEL_2:
5997 priv->sys_config.disable_multicast_decryption = 1;
5998 break;
5999 case SEC_LEVEL_1:
6000 priv->sys_config.disable_multicast_decryption = 0;
6001 break;
6002 case SEC_LEVEL_0:
6003 priv->sys_config.disable_multicast_decryption = 1;
6004 break;
6005 default:
6006 break;
6007 }
6008 }
6009
6010 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6011 {
6012 switch (priv->ieee->sec.level) {
6013 case SEC_LEVEL_3:
6014 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6015 ipw_send_tgi_tx_key(priv,
6016 DCT_FLAG_EXT_SECURITY_CCM,
6017 priv->ieee->sec.active_key);
6018
6019 if (!priv->ieee->host_mc_decrypt)
6020 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6021 break;
6022 case SEC_LEVEL_2:
6023 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6024 ipw_send_tgi_tx_key(priv,
6025 DCT_FLAG_EXT_SECURITY_TKIP,
6026 priv->ieee->sec.active_key);
6027 break;
6028 case SEC_LEVEL_1:
6029 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6030 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6031 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6032 break;
6033 case SEC_LEVEL_0:
6034 default:
6035 break;
6036 }
6037 }
6038
6039 static void ipw_adhoc_check(void *data)
6040 {
6041 struct ipw_priv *priv = data;
6042
6043 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6044 !(priv->config & CFG_ADHOC_PERSIST)) {
6045 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6046 IPW_DL_STATE | IPW_DL_ASSOC,
6047 "Missed beacon: %d - disassociate\n",
6048 priv->missed_adhoc_beacons);
6049 ipw_remove_current_network(priv);
6050 ipw_disassociate(priv);
6051 return;
6052 }
6053
6054 queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6055 le16_to_cpu(priv->assoc_request.beacon_interval));
6056 }
6057
6058 static void ipw_bg_adhoc_check(struct work_struct *work)
6059 {
6060 struct ipw_priv *priv =
6061 container_of(work, struct ipw_priv, adhoc_check.work);
6062 mutex_lock(&priv->mutex);
6063 ipw_adhoc_check(priv);
6064 mutex_unlock(&priv->mutex);
6065 }
6066
6067 static void ipw_debug_config(struct ipw_priv *priv)
6068 {
6069 DECLARE_MAC_BUF(mac);
6070 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6071 "[CFG 0x%08X]\n", priv->config);
6072 if (priv->config & CFG_STATIC_CHANNEL)
6073 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6074 else
6075 IPW_DEBUG_INFO("Channel unlocked.\n");
6076 if (priv->config & CFG_STATIC_ESSID)
6077 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6078 escape_essid(priv->essid, priv->essid_len));
6079 else
6080 IPW_DEBUG_INFO("ESSID unlocked.\n");
6081 if (priv->config & CFG_STATIC_BSSID)
6082 IPW_DEBUG_INFO("BSSID locked to %s\n",
6083 print_mac(mac, priv->bssid));
6084 else
6085 IPW_DEBUG_INFO("BSSID unlocked.\n");
6086 if (priv->capability & CAP_PRIVACY_ON)
6087 IPW_DEBUG_INFO("PRIVACY on\n");
6088 else
6089 IPW_DEBUG_INFO("PRIVACY off\n");
6090 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6091 }
6092
6093 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6094 {
6095 /* TODO: Verify that this works... */
6096 struct ipw_fixed_rate fr = {
6097 .tx_rates = priv->rates_mask
6098 };
6099 u32 reg;
6100 u16 mask = 0;
6101
6102 /* Identify 'current FW band' and match it with the fixed
6103 * Tx rates */
6104
6105 switch (priv->ieee->freq_band) {
6106 case IEEE80211_52GHZ_BAND: /* A only */
6107 /* IEEE_A */
6108 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6109 /* Invalid fixed rate mask */
6110 IPW_DEBUG_WX
6111 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6112 fr.tx_rates = 0;
6113 break;
6114 }
6115
6116 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6117 break;
6118
6119 default: /* 2.4Ghz or Mixed */
6120 /* IEEE_B */
6121 if (mode == IEEE_B) {
6122 if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6123 /* Invalid fixed rate mask */
6124 IPW_DEBUG_WX
6125 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6126 fr.tx_rates = 0;
6127 }
6128 break;
6129 }
6130
6131 /* IEEE_G */
6132 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6133 IEEE80211_OFDM_RATES_MASK)) {
6134 /* Invalid fixed rate mask */
6135 IPW_DEBUG_WX
6136 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6137 fr.tx_rates = 0;
6138 break;
6139 }
6140
6141 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6142 mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6143 fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6144 }
6145
6146 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6147 mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6148 fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6149 }
6150
6151 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6152 mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6153 fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6154 }
6155
6156 fr.tx_rates |= mask;
6157 break;
6158 }
6159
6160 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6161 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6162 }
6163
6164 static void ipw_abort_scan(struct ipw_priv *priv)
6165 {
6166 int err;
6167
6168 if (priv->status & STATUS_SCAN_ABORTING) {
6169 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6170 return;
6171 }
6172 priv->status |= STATUS_SCAN_ABORTING;
6173
6174 err = ipw_send_scan_abort(priv);
6175 if (err)
6176 IPW_DEBUG_HC("Request to abort scan failed.\n");
6177 }
6178
6179 static void ipw_add_scan_channels(struct ipw_priv *priv,
6180 struct ipw_scan_request_ext *scan,
6181 int scan_type)
6182 {
6183 int channel_index = 0;
6184 const struct ieee80211_geo *geo;
6185 int i;
6186
6187 geo = ieee80211_get_geo(priv->ieee);
6188
6189 if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6190 int start = channel_index;
6191 for (i = 0; i < geo->a_channels; i++) {
6192 if ((priv->status & STATUS_ASSOCIATED) &&
6193 geo->a[i].channel == priv->channel)
6194 continue;
6195 channel_index++;
6196 scan->channels_list[channel_index] = geo->a[i].channel;
6197 ipw_set_scan_type(scan, channel_index,
6198 geo->a[i].
6199 flags & IEEE80211_CH_PASSIVE_ONLY ?
6200 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6201 scan_type);
6202 }
6203
6204 if (start != channel_index) {
6205 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6206 (channel_index - start);
6207 channel_index++;
6208 }
6209 }
6210
6211 if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6212 int start = channel_index;
6213 if (priv->config & CFG_SPEED_SCAN) {
6214 int index;
6215 u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6216 /* nop out the list */
6217 [0] = 0
6218 };
6219
6220 u8 channel;
6221 while (channel_index < IPW_SCAN_CHANNELS) {
6222 channel =
6223 priv->speed_scan[priv->speed_scan_pos];
6224 if (channel == 0) {
6225 priv->speed_scan_pos = 0;
6226 channel = priv->speed_scan[0];
6227 }
6228 if ((priv->status & STATUS_ASSOCIATED) &&
6229 channel == priv->channel) {
6230 priv->speed_scan_pos++;
6231 continue;
6232 }
6233
6234 /* If this channel has already been
6235 * added in scan, break from loop
6236 * and this will be the first channel
6237 * in the next scan.
6238 */
6239 if (channels[channel - 1] != 0)
6240 break;
6241
6242 channels[channel - 1] = 1;
6243 priv->speed_scan_pos++;
6244 channel_index++;
6245 scan->channels_list[channel_index] = channel;
6246 index =
6247 ieee80211_channel_to_index(priv->ieee, channel);
6248 ipw_set_scan_type(scan, channel_index,
6249 geo->bg[index].
6250 flags &
6251 IEEE80211_CH_PASSIVE_ONLY ?
6252 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6253 : scan_type);
6254 }
6255 } else {
6256 for (i = 0; i < geo->bg_channels; i++) {
6257 if ((priv->status & STATUS_ASSOCIATED) &&
6258 geo->bg[i].channel == priv->channel)
6259 continue;
6260 channel_index++;
6261 scan->channels_list[channel_index] =
6262 geo->bg[i].channel;
6263 ipw_set_scan_type(scan, channel_index,
6264 geo->bg[i].
6265 flags &
6266 IEEE80211_CH_PASSIVE_ONLY ?
6267 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6268 : scan_type);
6269 }
6270 }
6271
6272 if (start != channel_index) {
6273 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6274 (channel_index - start);
6275 }
6276 }
6277 }
6278
6279 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6280 {
6281 struct ipw_scan_request_ext scan;
6282 int err = 0, scan_type;
6283
6284 if (!(priv->status & STATUS_INIT) ||
6285 (priv->status & STATUS_EXIT_PENDING))
6286 return 0;
6287
6288 mutex_lock(&priv->mutex);
6289
6290 if (direct && (priv->direct_scan_ssid_len == 0)) {
6291 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6292 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6293 goto done;
6294 }
6295
6296 if (priv->status & STATUS_SCANNING) {
6297 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n");
6298 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6299 STATUS_SCAN_PENDING;
6300 goto done;
6301 }
6302
6303 if (!(priv->status & STATUS_SCAN_FORCED) &&
6304 priv->status & STATUS_SCAN_ABORTING) {
6305 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6306 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6307 STATUS_SCAN_PENDING;
6308 goto done;
6309 }
6310
6311 if (priv->status & STATUS_RF_KILL_MASK) {
6312 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6313 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6314 STATUS_SCAN_PENDING;
6315 goto done;
6316 }
6317
6318 memset(&scan, 0, sizeof(scan));
6319 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6320
6321 if (type == IW_SCAN_TYPE_PASSIVE) {
6322 IPW_DEBUG_WX("use passive scanning\n");
6323 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6324 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6325 cpu_to_le16(120);
6326 ipw_add_scan_channels(priv, &scan, scan_type);
6327 goto send_request;
6328 }
6329
6330 /* Use active scan by default. */
6331 if (priv->config & CFG_SPEED_SCAN)
6332 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6333 cpu_to_le16(30);
6334 else
6335 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6336 cpu_to_le16(20);
6337
6338 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6339 cpu_to_le16(20);
6340
6341 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6342 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6343
6344 #ifdef CONFIG_IPW2200_MONITOR
6345 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6346 u8 channel;
6347 u8 band = 0;
6348
6349 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6350 case IEEE80211_52GHZ_BAND:
6351 band = (u8) (IPW_A_MODE << 6) | 1;
6352 channel = priv->channel;
6353 break;
6354
6355 case IEEE80211_24GHZ_BAND:
6356 band = (u8) (IPW_B_MODE << 6) | 1;
6357 channel = priv->channel;
6358 break;
6359
6360 default:
6361 band = (u8) (IPW_B_MODE << 6) | 1;
6362 channel = 9;
6363 break;
6364 }
6365
6366 scan.channels_list[0] = band;
6367 scan.channels_list[1] = channel;
6368 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6369
6370 /* NOTE: The card will sit on this channel for this time
6371 * period. Scan aborts are timing sensitive and frequently
6372 * result in firmware restarts. As such, it is best to
6373 * set a small dwell_time here and just keep re-issuing
6374 * scans. Otherwise fast channel hopping will not actually
6375 * hop channels.
6376 *
6377 * TODO: Move SPEED SCAN support to all modes and bands */
6378 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6379 cpu_to_le16(2000);
6380 } else {
6381 #endif /* CONFIG_IPW2200_MONITOR */
6382 /* Honor direct scans first, otherwise if we are roaming make
6383 * this a direct scan for the current network. Finally,
6384 * ensure that every other scan is a fast channel hop scan */
6385 if (direct) {
6386 err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6387 priv->direct_scan_ssid_len);
6388 if (err) {
6389 IPW_DEBUG_HC("Attempt to send SSID command "
6390 "failed\n");
6391 goto done;
6392 }
6393
6394 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6395 } else if ((priv->status & STATUS_ROAMING)
6396 || (!(priv->status & STATUS_ASSOCIATED)
6397 && (priv->config & CFG_STATIC_ESSID)
6398 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6399 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6400 if (err) {
6401 IPW_DEBUG_HC("Attempt to send SSID command "
6402 "failed.\n");
6403 goto done;
6404 }
6405
6406 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6407 } else
6408 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6409
6410 ipw_add_scan_channels(priv, &scan, scan_type);
6411 #ifdef CONFIG_IPW2200_MONITOR
6412 }
6413 #endif
6414
6415 send_request:
6416 err = ipw_send_scan_request_ext(priv, &scan);
6417 if (err) {
6418 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6419 goto done;
6420 }
6421
6422 priv->status |= STATUS_SCANNING;
6423 if (direct) {
6424 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6425 priv->direct_scan_ssid_len = 0;
6426 } else
6427 priv->status &= ~STATUS_SCAN_PENDING;
6428
6429 queue_delayed_work(priv->workqueue, &priv->scan_check,
6430 IPW_SCAN_CHECK_WATCHDOG);
6431 done:
6432 mutex_unlock(&priv->mutex);
6433 return err;
6434 }
6435
6436 static void ipw_request_passive_scan(struct work_struct *work)
6437 {
6438 struct ipw_priv *priv =
6439 container_of(work, struct ipw_priv, request_passive_scan.work);
6440 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6441 }
6442
6443 static void ipw_request_scan(struct work_struct *work)
6444 {
6445 struct ipw_priv *priv =
6446 container_of(work, struct ipw_priv, request_scan.work);
6447 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6448 }
6449
6450 static void ipw_request_direct_scan(struct work_struct *work)
6451 {
6452 struct ipw_priv *priv =
6453 container_of(work, struct ipw_priv, request_direct_scan.work);
6454 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6455 }
6456
6457 static void ipw_bg_abort_scan(struct work_struct *work)
6458 {
6459 struct ipw_priv *priv =
6460 container_of(work, struct ipw_priv, abort_scan);
6461 mutex_lock(&priv->mutex);
6462 ipw_abort_scan(priv);
6463 mutex_unlock(&priv->mutex);
6464 }
6465
6466 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6467 {
6468 /* This is called when wpa_supplicant loads and closes the driver
6469 * interface. */
6470 priv->ieee->wpa_enabled = value;
6471 return 0;
6472 }
6473
6474 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6475 {
6476 struct ieee80211_device *ieee = priv->ieee;
6477 struct ieee80211_security sec = {
6478 .flags = SEC_AUTH_MODE,
6479 };
6480 int ret = 0;
6481
6482 if (value & IW_AUTH_ALG_SHARED_KEY) {
6483 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6484 ieee->open_wep = 0;
6485 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6486 sec.auth_mode = WLAN_AUTH_OPEN;
6487 ieee->open_wep = 1;
6488 } else if (value & IW_AUTH_ALG_LEAP) {
6489 sec.auth_mode = WLAN_AUTH_LEAP;
6490 ieee->open_wep = 1;
6491 } else
6492 return -EINVAL;
6493
6494 if (ieee->set_security)
6495 ieee->set_security(ieee->dev, &sec);
6496 else
6497 ret = -EOPNOTSUPP;
6498
6499 return ret;
6500 }
6501
6502 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6503 int wpa_ie_len)
6504 {
6505 /* make sure WPA is enabled */
6506 ipw_wpa_enable(priv, 1);
6507 }
6508
6509 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6510 char *capabilities, int length)
6511 {
6512 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6513
6514 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6515 capabilities);
6516 }
6517
6518 /*
6519 * WE-18 support
6520 */
6521
6522 /* SIOCSIWGENIE */
6523 static int ipw_wx_set_genie(struct net_device *dev,
6524 struct iw_request_info *info,
6525 union iwreq_data *wrqu, char *extra)
6526 {
6527 struct ipw_priv *priv = ieee80211_priv(dev);
6528 struct ieee80211_device *ieee = priv->ieee;
6529 u8 *buf;
6530 int err = 0;
6531
6532 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6533 (wrqu->data.length && extra == NULL))
6534 return -EINVAL;
6535
6536 if (wrqu->data.length) {
6537 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6538 if (buf == NULL) {
6539 err = -ENOMEM;
6540 goto out;
6541 }
6542
6543 memcpy(buf, extra, wrqu->data.length);
6544 kfree(ieee->wpa_ie);
6545 ieee->wpa_ie = buf;
6546 ieee->wpa_ie_len = wrqu->data.length;
6547 } else {
6548 kfree(ieee->wpa_ie);
6549 ieee->wpa_ie = NULL;
6550 ieee->wpa_ie_len = 0;
6551 }
6552
6553 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6554 out:
6555 return err;
6556 }
6557
6558 /* SIOCGIWGENIE */
6559 static int ipw_wx_get_genie(struct net_device *dev,
6560 struct iw_request_info *info,
6561 union iwreq_data *wrqu, char *extra)
6562 {
6563 struct ipw_priv *priv = ieee80211_priv(dev);
6564 struct ieee80211_device *ieee = priv->ieee;
6565 int err = 0;
6566
6567 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6568 wrqu->data.length = 0;
6569 goto out;
6570 }
6571
6572 if (wrqu->data.length < ieee->wpa_ie_len) {
6573 err = -E2BIG;
6574 goto out;
6575 }
6576
6577 wrqu->data.length = ieee->wpa_ie_len;
6578 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6579
6580 out:
6581 return err;
6582 }
6583
6584 static int wext_cipher2level(int cipher)
6585 {
6586 switch (cipher) {
6587 case IW_AUTH_CIPHER_NONE:
6588 return SEC_LEVEL_0;
6589 case IW_AUTH_CIPHER_WEP40:
6590 case IW_AUTH_CIPHER_WEP104:
6591 return SEC_LEVEL_1;
6592 case IW_AUTH_CIPHER_TKIP:
6593 return SEC_LEVEL_2;
6594 case IW_AUTH_CIPHER_CCMP:
6595 return SEC_LEVEL_3;
6596 default:
6597 return -1;
6598 }
6599 }
6600
6601 /* SIOCSIWAUTH */
6602 static int ipw_wx_set_auth(struct net_device *dev,
6603 struct iw_request_info *info,
6604 union iwreq_data *wrqu, char *extra)
6605 {
6606 struct ipw_priv *priv = ieee80211_priv(dev);
6607 struct ieee80211_device *ieee = priv->ieee;
6608 struct iw_param *param = &wrqu->param;
6609 struct ieee80211_crypt_data *crypt;
6610 unsigned long flags;
6611 int ret = 0;
6612
6613 switch (param->flags & IW_AUTH_INDEX) {
6614 case IW_AUTH_WPA_VERSION:
6615 break;
6616 case IW_AUTH_CIPHER_PAIRWISE:
6617 ipw_set_hw_decrypt_unicast(priv,
6618 wext_cipher2level(param->value));
6619 break;
6620 case IW_AUTH_CIPHER_GROUP:
6621 ipw_set_hw_decrypt_multicast(priv,
6622 wext_cipher2level(param->value));
6623 break;
6624 case IW_AUTH_KEY_MGMT:
6625 /*
6626 * ipw2200 does not use these parameters
6627 */
6628 break;
6629
6630 case IW_AUTH_TKIP_COUNTERMEASURES:
6631 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6632 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6633 break;
6634
6635 flags = crypt->ops->get_flags(crypt->priv);
6636
6637 if (param->value)
6638 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6639 else
6640 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6641
6642 crypt->ops->set_flags(flags, crypt->priv);
6643
6644 break;
6645
6646 case IW_AUTH_DROP_UNENCRYPTED:{
6647 /* HACK:
6648 *
6649 * wpa_supplicant calls set_wpa_enabled when the driver
6650 * is loaded and unloaded, regardless of if WPA is being
6651 * used. No other calls are made which can be used to
6652 * determine if encryption will be used or not prior to
6653 * association being expected. If encryption is not being
6654 * used, drop_unencrypted is set to false, else true -- we
6655 * can use this to determine if the CAP_PRIVACY_ON bit should
6656 * be set.
6657 */
6658 struct ieee80211_security sec = {
6659 .flags = SEC_ENABLED,
6660 .enabled = param->value,
6661 };
6662 priv->ieee->drop_unencrypted = param->value;
6663 /* We only change SEC_LEVEL for open mode. Others
6664 * are set by ipw_wpa_set_encryption.
6665 */
6666 if (!param->value) {
6667 sec.flags |= SEC_LEVEL;
6668 sec.level = SEC_LEVEL_0;
6669 } else {
6670 sec.flags |= SEC_LEVEL;
6671 sec.level = SEC_LEVEL_1;
6672 }
6673 if (priv->ieee->set_security)
6674 priv->ieee->set_security(priv->ieee->dev, &sec);
6675 break;
6676 }
6677
6678 case IW_AUTH_80211_AUTH_ALG:
6679 ret = ipw_wpa_set_auth_algs(priv, param->value);
6680 break;
6681
6682 case IW_AUTH_WPA_ENABLED:
6683 ret = ipw_wpa_enable(priv, param->value);
6684 ipw_disassociate(priv);
6685 break;
6686
6687 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6688 ieee->ieee802_1x = param->value;
6689 break;
6690
6691 case IW_AUTH_PRIVACY_INVOKED:
6692 ieee->privacy_invoked = param->value;
6693 break;
6694
6695 default:
6696 return -EOPNOTSUPP;
6697 }
6698 return ret;
6699 }
6700
6701 /* SIOCGIWAUTH */
6702 static int ipw_wx_get_auth(struct net_device *dev,
6703 struct iw_request_info *info,
6704 union iwreq_data *wrqu, char *extra)
6705 {
6706 struct ipw_priv *priv = ieee80211_priv(dev);
6707 struct ieee80211_device *ieee = priv->ieee;
6708 struct ieee80211_crypt_data *crypt;
6709 struct iw_param *param = &wrqu->param;
6710 int ret = 0;
6711
6712 switch (param->flags & IW_AUTH_INDEX) {
6713 case IW_AUTH_WPA_VERSION:
6714 case IW_AUTH_CIPHER_PAIRWISE:
6715 case IW_AUTH_CIPHER_GROUP:
6716 case IW_AUTH_KEY_MGMT:
6717 /*
6718 * wpa_supplicant will control these internally
6719 */
6720 ret = -EOPNOTSUPP;
6721 break;
6722
6723 case IW_AUTH_TKIP_COUNTERMEASURES:
6724 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6725 if (!crypt || !crypt->ops->get_flags)
6726 break;
6727
6728 param->value = (crypt->ops->get_flags(crypt->priv) &
6729 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6730
6731 break;
6732
6733 case IW_AUTH_DROP_UNENCRYPTED:
6734 param->value = ieee->drop_unencrypted;
6735 break;
6736
6737 case IW_AUTH_80211_AUTH_ALG:
6738 param->value = ieee->sec.auth_mode;
6739 break;
6740
6741 case IW_AUTH_WPA_ENABLED:
6742 param->value = ieee->wpa_enabled;
6743 break;
6744
6745 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6746 param->value = ieee->ieee802_1x;
6747 break;
6748
6749 case IW_AUTH_ROAMING_CONTROL:
6750 case IW_AUTH_PRIVACY_INVOKED:
6751 param->value = ieee->privacy_invoked;
6752 break;
6753
6754 default:
6755 return -EOPNOTSUPP;
6756 }
6757 return 0;
6758 }
6759
6760 /* SIOCSIWENCODEEXT */
6761 static int ipw_wx_set_encodeext(struct net_device *dev,
6762 struct iw_request_info *info,
6763 union iwreq_data *wrqu, char *extra)
6764 {
6765 struct ipw_priv *priv = ieee80211_priv(dev);
6766 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6767
6768 if (hwcrypto) {
6769 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6770 /* IPW HW can't build TKIP MIC,
6771 host decryption still needed */
6772 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6773 priv->ieee->host_mc_decrypt = 1;
6774 else {
6775 priv->ieee->host_encrypt = 0;
6776 priv->ieee->host_encrypt_msdu = 1;
6777 priv->ieee->host_decrypt = 1;
6778 }
6779 } else {
6780 priv->ieee->host_encrypt = 0;
6781 priv->ieee->host_encrypt_msdu = 0;
6782 priv->ieee->host_decrypt = 0;
6783 priv->ieee->host_mc_decrypt = 0;
6784 }
6785 }
6786
6787 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6788 }
6789
6790 /* SIOCGIWENCODEEXT */
6791 static int ipw_wx_get_encodeext(struct net_device *dev,
6792 struct iw_request_info *info,
6793 union iwreq_data *wrqu, char *extra)
6794 {
6795 struct ipw_priv *priv = ieee80211_priv(dev);
6796 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6797 }
6798
6799 /* SIOCSIWMLME */
6800 static int ipw_wx_set_mlme(struct net_device *dev,
6801 struct iw_request_info *info,
6802 union iwreq_data *wrqu, char *extra)
6803 {
6804 struct ipw_priv *priv = ieee80211_priv(dev);
6805 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6806 __le16 reason;
6807
6808 reason = cpu_to_le16(mlme->reason_code);
6809
6810 switch (mlme->cmd) {
6811 case IW_MLME_DEAUTH:
6812 /* silently ignore */
6813 break;
6814
6815 case IW_MLME_DISASSOC:
6816 ipw_disassociate(priv);
6817 break;
6818
6819 default:
6820 return -EOPNOTSUPP;
6821 }
6822 return 0;
6823 }
6824
6825 #ifdef CONFIG_IPW2200_QOS
6826
6827 /* QoS */
6828 /*
6829 * get the modulation type of the current network or
6830 * the card current mode
6831 */
6832 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6833 {
6834 u8 mode = 0;
6835
6836 if (priv->status & STATUS_ASSOCIATED) {
6837 unsigned long flags;
6838
6839 spin_lock_irqsave(&priv->ieee->lock, flags);
6840 mode = priv->assoc_network->mode;
6841 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6842 } else {
6843 mode = priv->ieee->mode;
6844 }
6845 IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6846 return mode;
6847 }
6848
6849 /*
6850 * Handle management frame beacon and probe response
6851 */
6852 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6853 int active_network,
6854 struct ieee80211_network *network)
6855 {
6856 u32 size = sizeof(struct ieee80211_qos_parameters);
6857
6858 if (network->capability & WLAN_CAPABILITY_IBSS)
6859 network->qos_data.active = network->qos_data.supported;
6860
6861 if (network->flags & NETWORK_HAS_QOS_MASK) {
6862 if (active_network &&
6863 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6864 network->qos_data.active = network->qos_data.supported;
6865
6866 if ((network->qos_data.active == 1) && (active_network == 1) &&
6867 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6868 (network->qos_data.old_param_count !=
6869 network->qos_data.param_count)) {
6870 network->qos_data.old_param_count =
6871 network->qos_data.param_count;
6872 schedule_work(&priv->qos_activate);
6873 IPW_DEBUG_QOS("QoS parameters change call "
6874 "qos_activate\n");
6875 }
6876 } else {
6877 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6878 memcpy(&network->qos_data.parameters,
6879 &def_parameters_CCK, size);
6880 else
6881 memcpy(&network->qos_data.parameters,
6882 &def_parameters_OFDM, size);
6883
6884 if ((network->qos_data.active == 1) && (active_network == 1)) {
6885 IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6886 schedule_work(&priv->qos_activate);
6887 }
6888
6889 network->qos_data.active = 0;
6890 network->qos_data.supported = 0;
6891 }
6892 if ((priv->status & STATUS_ASSOCIATED) &&
6893 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6894 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6895 if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6896 !(network->flags & NETWORK_EMPTY_ESSID))
6897 if ((network->ssid_len ==
6898 priv->assoc_network->ssid_len) &&
6899 !memcmp(network->ssid,
6900 priv->assoc_network->ssid,
6901 network->ssid_len)) {
6902 queue_work(priv->workqueue,
6903 &priv->merge_networks);
6904 }
6905 }
6906
6907 return 0;
6908 }
6909
6910 /*
6911 * This function set up the firmware to support QoS. It sends
6912 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6913 */
6914 static int ipw_qos_activate(struct ipw_priv *priv,
6915 struct ieee80211_qos_data *qos_network_data)
6916 {
6917 int err;
6918 struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6919 struct ieee80211_qos_parameters *active_one = NULL;
6920 u32 size = sizeof(struct ieee80211_qos_parameters);
6921 u32 burst_duration;
6922 int i;
6923 u8 type;
6924
6925 type = ipw_qos_current_mode(priv);
6926
6927 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6928 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6929 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6930 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6931
6932 if (qos_network_data == NULL) {
6933 if (type == IEEE_B) {
6934 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6935 active_one = &def_parameters_CCK;
6936 } else
6937 active_one = &def_parameters_OFDM;
6938
6939 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6940 burst_duration = ipw_qos_get_burst_duration(priv);
6941 for (i = 0; i < QOS_QUEUE_NUM; i++)
6942 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6943 cpu_to_le16(burst_duration);
6944 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6945 if (type == IEEE_B) {
6946 IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6947 type);
6948 if (priv->qos_data.qos_enable == 0)
6949 active_one = &def_parameters_CCK;
6950 else
6951 active_one = priv->qos_data.def_qos_parm_CCK;
6952 } else {
6953 if (priv->qos_data.qos_enable == 0)
6954 active_one = &def_parameters_OFDM;
6955 else
6956 active_one = priv->qos_data.def_qos_parm_OFDM;
6957 }
6958 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6959 } else {
6960 unsigned long flags;
6961 int active;
6962
6963 spin_lock_irqsave(&priv->ieee->lock, flags);
6964 active_one = &(qos_network_data->parameters);
6965 qos_network_data->old_param_count =
6966 qos_network_data->param_count;
6967 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6968 active = qos_network_data->supported;
6969 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6970
6971 if (active == 0) {
6972 burst_duration = ipw_qos_get_burst_duration(priv);
6973 for (i = 0; i < QOS_QUEUE_NUM; i++)
6974 qos_parameters[QOS_PARAM_SET_ACTIVE].
6975 tx_op_limit[i] = cpu_to_le16(burst_duration);
6976 }
6977 }
6978
6979 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6980 err = ipw_send_qos_params_command(priv,
6981 (struct ieee80211_qos_parameters *)
6982 &(qos_parameters[0]));
6983 if (err)
6984 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6985
6986 return err;
6987 }
6988
6989 /*
6990 * send IPW_CMD_WME_INFO to the firmware
6991 */
6992 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6993 {
6994 int ret = 0;
6995 struct ieee80211_qos_information_element qos_info;
6996
6997 if (priv == NULL)
6998 return -1;
6999
7000 qos_info.elementID = QOS_ELEMENT_ID;
7001 qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
7002
7003 qos_info.version = QOS_VERSION_1;
7004 qos_info.ac_info = 0;
7005
7006 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7007 qos_info.qui_type = QOS_OUI_TYPE;
7008 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7009
7010 ret = ipw_send_qos_info_command(priv, &qos_info);
7011 if (ret != 0) {
7012 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7013 }
7014 return ret;
7015 }
7016
7017 /*
7018 * Set the QoS parameter with the association request structure
7019 */
7020 static int ipw_qos_association(struct ipw_priv *priv,
7021 struct ieee80211_network *network)
7022 {
7023 int err = 0;
7024 struct ieee80211_qos_data *qos_data = NULL;
7025 struct ieee80211_qos_data ibss_data = {
7026 .supported = 1,
7027 .active = 1,
7028 };
7029
7030 switch (priv->ieee->iw_mode) {
7031 case IW_MODE_ADHOC:
7032 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7033
7034 qos_data = &ibss_data;
7035 break;
7036
7037 case IW_MODE_INFRA:
7038 qos_data = &network->qos_data;
7039 break;
7040
7041 default:
7042 BUG();
7043 break;
7044 }
7045
7046 err = ipw_qos_activate(priv, qos_data);
7047 if (err) {
7048 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7049 return err;
7050 }
7051
7052 if (priv->qos_data.qos_enable && qos_data->supported) {
7053 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7054 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7055 return ipw_qos_set_info_element(priv);
7056 }
7057
7058 return 0;
7059 }
7060
7061 /*
7062 * handling the beaconing responses. if we get different QoS setting
7063 * off the network from the associated setting, adjust the QoS
7064 * setting
7065 */
7066 static int ipw_qos_association_resp(struct ipw_priv *priv,
7067 struct ieee80211_network *network)
7068 {
7069 int ret = 0;
7070 unsigned long flags;
7071 u32 size = sizeof(struct ieee80211_qos_parameters);
7072 int set_qos_param = 0;
7073
7074 if ((priv == NULL) || (network == NULL) ||
7075 (priv->assoc_network == NULL))
7076 return ret;
7077
7078 if (!(priv->status & STATUS_ASSOCIATED))
7079 return ret;
7080
7081 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7082 return ret;
7083
7084 spin_lock_irqsave(&priv->ieee->lock, flags);
7085 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7086 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7087 sizeof(struct ieee80211_qos_data));
7088 priv->assoc_network->qos_data.active = 1;
7089 if ((network->qos_data.old_param_count !=
7090 network->qos_data.param_count)) {
7091 set_qos_param = 1;
7092 network->qos_data.old_param_count =
7093 network->qos_data.param_count;
7094 }
7095
7096 } else {
7097 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7098 memcpy(&priv->assoc_network->qos_data.parameters,
7099 &def_parameters_CCK, size);
7100 else
7101 memcpy(&priv->assoc_network->qos_data.parameters,
7102 &def_parameters_OFDM, size);
7103 priv->assoc_network->qos_data.active = 0;
7104 priv->assoc_network->qos_data.supported = 0;
7105 set_qos_param = 1;
7106 }
7107
7108 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7109
7110 if (set_qos_param == 1)
7111 schedule_work(&priv->qos_activate);
7112
7113 return ret;
7114 }
7115
7116 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7117 {
7118 u32 ret = 0;
7119
7120 if ((priv == NULL))
7121 return 0;
7122
7123 if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7124 ret = priv->qos_data.burst_duration_CCK;
7125 else
7126 ret = priv->qos_data.burst_duration_OFDM;
7127
7128 return ret;
7129 }
7130
7131 /*
7132 * Initialize the setting of QoS global
7133 */
7134 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7135 int burst_enable, u32 burst_duration_CCK,
7136 u32 burst_duration_OFDM)
7137 {
7138 priv->qos_data.qos_enable = enable;
7139
7140 if (priv->qos_data.qos_enable) {
7141 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7142 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7143 IPW_DEBUG_QOS("QoS is enabled\n");
7144 } else {
7145 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7146 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7147 IPW_DEBUG_QOS("QoS is not enabled\n");
7148 }
7149
7150 priv->qos_data.burst_enable = burst_enable;
7151
7152 if (burst_enable) {
7153 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7154 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7155 } else {
7156 priv->qos_data.burst_duration_CCK = 0;
7157 priv->qos_data.burst_duration_OFDM = 0;
7158 }
7159 }
7160
7161 /*
7162 * map the packet priority to the right TX Queue
7163 */
7164 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7165 {
7166 if (priority > 7 || !priv->qos_data.qos_enable)
7167 priority = 0;
7168
7169 return from_priority_to_tx_queue[priority] - 1;
7170 }
7171
7172 static int ipw_is_qos_active(struct net_device *dev,
7173 struct sk_buff *skb)
7174 {
7175 struct ipw_priv *priv = ieee80211_priv(dev);
7176 struct ieee80211_qos_data *qos_data = NULL;
7177 int active, supported;
7178 u8 *daddr = skb->data + ETH_ALEN;
7179 int unicast = !is_multicast_ether_addr(daddr);
7180
7181 if (!(priv->status & STATUS_ASSOCIATED))
7182 return 0;
7183
7184 qos_data = &priv->assoc_network->qos_data;
7185
7186 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7187 if (unicast == 0)
7188 qos_data->active = 0;
7189 else
7190 qos_data->active = qos_data->supported;
7191 }
7192 active = qos_data->active;
7193 supported = qos_data->supported;
7194 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7195 "unicast %d\n",
7196 priv->qos_data.qos_enable, active, supported, unicast);
7197 if (active && priv->qos_data.qos_enable)
7198 return 1;
7199
7200 return 0;
7201
7202 }
7203 /*
7204 * add QoS parameter to the TX command
7205 */
7206 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7207 u16 priority,
7208 struct tfd_data *tfd)
7209 {
7210 int tx_queue_id = 0;
7211
7212
7213 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7214 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7215
7216 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7217 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7218 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7219 }
7220 return 0;
7221 }
7222
7223 /*
7224 * background support to run QoS activate functionality
7225 */
7226 static void ipw_bg_qos_activate(struct work_struct *work)
7227 {
7228 struct ipw_priv *priv =
7229 container_of(work, struct ipw_priv, qos_activate);
7230
7231 if (priv == NULL)
7232 return;
7233
7234 mutex_lock(&priv->mutex);
7235
7236 if (priv->status & STATUS_ASSOCIATED)
7237 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7238
7239 mutex_unlock(&priv->mutex);
7240 }
7241
7242 static int ipw_handle_probe_response(struct net_device *dev,
7243 struct ieee80211_probe_response *resp,
7244 struct ieee80211_network *network)
7245 {
7246 struct ipw_priv *priv = ieee80211_priv(dev);
7247 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7248 (network == priv->assoc_network));
7249
7250 ipw_qos_handle_probe_response(priv, active_network, network);
7251
7252 return 0;
7253 }
7254
7255 static int ipw_handle_beacon(struct net_device *dev,
7256 struct ieee80211_beacon *resp,
7257 struct ieee80211_network *network)
7258 {
7259 struct ipw_priv *priv = ieee80211_priv(dev);
7260 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7261 (network == priv->assoc_network));
7262
7263 ipw_qos_handle_probe_response(priv, active_network, network);
7264
7265 return 0;
7266 }
7267
7268 static int ipw_handle_assoc_response(struct net_device *dev,
7269 struct ieee80211_assoc_response *resp,
7270 struct ieee80211_network *network)
7271 {
7272 struct ipw_priv *priv = ieee80211_priv(dev);
7273 ipw_qos_association_resp(priv, network);
7274 return 0;
7275 }
7276
7277 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7278 *qos_param)
7279 {
7280 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7281 sizeof(*qos_param) * 3, qos_param);
7282 }
7283
7284 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7285 *qos_param)
7286 {
7287 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7288 qos_param);
7289 }
7290
7291 #endif /* CONFIG_IPW2200_QOS */
7292
7293 static int ipw_associate_network(struct ipw_priv *priv,
7294 struct ieee80211_network *network,
7295 struct ipw_supported_rates *rates, int roaming)
7296 {
7297 int err;
7298 DECLARE_MAC_BUF(mac);
7299
7300 if (priv->config & CFG_FIXED_RATE)
7301 ipw_set_fixed_rate(priv, network->mode);
7302
7303 if (!(priv->config & CFG_STATIC_ESSID)) {
7304 priv->essid_len = min(network->ssid_len,
7305 (u8) IW_ESSID_MAX_SIZE);
7306 memcpy(priv->essid, network->ssid, priv->essid_len);
7307 }
7308
7309 network->last_associate = jiffies;
7310
7311 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7312 priv->assoc_request.channel = network->channel;
7313 priv->assoc_request.auth_key = 0;
7314
7315 if ((priv->capability & CAP_PRIVACY_ON) &&
7316 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7317 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7318 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7319
7320 if (priv->ieee->sec.level == SEC_LEVEL_1)
7321 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7322
7323 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7324 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7325 priv->assoc_request.auth_type = AUTH_LEAP;
7326 else
7327 priv->assoc_request.auth_type = AUTH_OPEN;
7328
7329 if (priv->ieee->wpa_ie_len) {
7330 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7331 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7332 priv->ieee->wpa_ie_len);
7333 }
7334
7335 /*
7336 * It is valid for our ieee device to support multiple modes, but
7337 * when it comes to associating to a given network we have to choose
7338 * just one mode.
7339 */
7340 if (network->mode & priv->ieee->mode & IEEE_A)
7341 priv->assoc_request.ieee_mode = IPW_A_MODE;
7342 else if (network->mode & priv->ieee->mode & IEEE_G)
7343 priv->assoc_request.ieee_mode = IPW_G_MODE;
7344 else if (network->mode & priv->ieee->mode & IEEE_B)
7345 priv->assoc_request.ieee_mode = IPW_B_MODE;
7346
7347 priv->assoc_request.capability = cpu_to_le16(network->capability);
7348 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7349 && !(priv->config & CFG_PREAMBLE_LONG)) {
7350 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7351 } else {
7352 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7353
7354 /* Clear the short preamble if we won't be supporting it */
7355 priv->assoc_request.capability &=
7356 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7357 }
7358
7359 /* Clear capability bits that aren't used in Ad Hoc */
7360 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7361 priv->assoc_request.capability &=
7362 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7363
7364 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7365 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7366 roaming ? "Rea" : "A",
7367 escape_essid(priv->essid, priv->essid_len),
7368 network->channel,
7369 ipw_modes[priv->assoc_request.ieee_mode],
7370 rates->num_rates,
7371 (priv->assoc_request.preamble_length ==
7372 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7373 network->capability &
7374 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7375 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7376 priv->capability & CAP_PRIVACY_ON ?
7377 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7378 "(open)") : "",
7379 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7380 priv->capability & CAP_PRIVACY_ON ?
7381 '1' + priv->ieee->sec.active_key : '.',
7382 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7383
7384 priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7385 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7386 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7387 priv->assoc_request.assoc_type = HC_IBSS_START;
7388 priv->assoc_request.assoc_tsf_msw = 0;
7389 priv->assoc_request.assoc_tsf_lsw = 0;
7390 } else {
7391 if (unlikely(roaming))
7392 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7393 else
7394 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7395 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7396 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7397 }
7398
7399 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7400
7401 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7402 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7403 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7404 } else {
7405 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7406 priv->assoc_request.atim_window = 0;
7407 }
7408
7409 priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7410
7411 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7412 if (err) {
7413 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7414 return err;
7415 }
7416
7417 rates->ieee_mode = priv->assoc_request.ieee_mode;
7418 rates->purpose = IPW_RATE_CONNECT;
7419 ipw_send_supported_rates(priv, rates);
7420
7421 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7422 priv->sys_config.dot11g_auto_detection = 1;
7423 else
7424 priv->sys_config.dot11g_auto_detection = 0;
7425
7426 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7427 priv->sys_config.answer_broadcast_ssid_probe = 1;
7428 else
7429 priv->sys_config.answer_broadcast_ssid_probe = 0;
7430
7431 err = ipw_send_system_config(priv);
7432 if (err) {
7433 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7434 return err;
7435 }
7436
7437 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7438 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7439 if (err) {
7440 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7441 return err;
7442 }
7443
7444 /*
7445 * If preemption is enabled, it is possible for the association
7446 * to complete before we return from ipw_send_associate. Therefore
7447 * we have to be sure and update our priviate data first.
7448 */
7449 priv->channel = network->channel;
7450 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7451 priv->status |= STATUS_ASSOCIATING;
7452 priv->status &= ~STATUS_SECURITY_UPDATED;
7453
7454 priv->assoc_network = network;
7455
7456 #ifdef CONFIG_IPW2200_QOS
7457 ipw_qos_association(priv, network);
7458 #endif
7459
7460 err = ipw_send_associate(priv, &priv->assoc_request);
7461 if (err) {
7462 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7463 return err;
7464 }
7465
7466 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %s \n",
7467 escape_essid(priv->essid, priv->essid_len),
7468 print_mac(mac, priv->bssid));
7469
7470 return 0;
7471 }
7472
7473 static void ipw_roam(void *data)
7474 {
7475 struct ipw_priv *priv = data;
7476 struct ieee80211_network *network = NULL;
7477 struct ipw_network_match match = {
7478 .network = priv->assoc_network
7479 };
7480
7481 /* The roaming process is as follows:
7482 *
7483 * 1. Missed beacon threshold triggers the roaming process by
7484 * setting the status ROAM bit and requesting a scan.
7485 * 2. When the scan completes, it schedules the ROAM work
7486 * 3. The ROAM work looks at all of the known networks for one that
7487 * is a better network than the currently associated. If none
7488 * found, the ROAM process is over (ROAM bit cleared)
7489 * 4. If a better network is found, a disassociation request is
7490 * sent.
7491 * 5. When the disassociation completes, the roam work is again
7492 * scheduled. The second time through, the driver is no longer
7493 * associated, and the newly selected network is sent an
7494 * association request.
7495 * 6. At this point ,the roaming process is complete and the ROAM
7496 * status bit is cleared.
7497 */
7498
7499 /* If we are no longer associated, and the roaming bit is no longer
7500 * set, then we are not actively roaming, so just return */
7501 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7502 return;
7503
7504 if (priv->status & STATUS_ASSOCIATED) {
7505 /* First pass through ROAM process -- look for a better
7506 * network */
7507 unsigned long flags;
7508 u8 rssi = priv->assoc_network->stats.rssi;
7509 priv->assoc_network->stats.rssi = -128;
7510 spin_lock_irqsave(&priv->ieee->lock, flags);
7511 list_for_each_entry(network, &priv->ieee->network_list, list) {
7512 if (network != priv->assoc_network)
7513 ipw_best_network(priv, &match, network, 1);
7514 }
7515 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7516 priv->assoc_network->stats.rssi = rssi;
7517
7518 if (match.network == priv->assoc_network) {
7519 IPW_DEBUG_ASSOC("No better APs in this network to "
7520 "roam to.\n");
7521 priv->status &= ~STATUS_ROAMING;
7522 ipw_debug_config(priv);
7523 return;
7524 }
7525
7526 ipw_send_disassociate(priv, 1);
7527 priv->assoc_network = match.network;
7528
7529 return;
7530 }
7531
7532 /* Second pass through ROAM process -- request association */
7533 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7534 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7535 priv->status &= ~STATUS_ROAMING;
7536 }
7537
7538 static void ipw_bg_roam(struct work_struct *work)
7539 {
7540 struct ipw_priv *priv =
7541 container_of(work, struct ipw_priv, roam);
7542 mutex_lock(&priv->mutex);
7543 ipw_roam(priv);
7544 mutex_unlock(&priv->mutex);
7545 }
7546
7547 static int ipw_associate(void *data)
7548 {
7549 struct ipw_priv *priv = data;
7550
7551 struct ieee80211_network *network = NULL;
7552 struct ipw_network_match match = {
7553 .network = NULL
7554 };
7555 struct ipw_supported_rates *rates;
7556 struct list_head *element;
7557 unsigned long flags;
7558
7559 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7560 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7561 return 0;
7562 }
7563
7564 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7565 IPW_DEBUG_ASSOC("Not attempting association (already in "
7566 "progress)\n");
7567 return 0;
7568 }
7569
7570 if (priv->status & STATUS_DISASSOCIATING) {
7571 IPW_DEBUG_ASSOC("Not attempting association (in "
7572 "disassociating)\n ");
7573 queue_work(priv->workqueue, &priv->associate);
7574 return 0;
7575 }
7576
7577 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7578 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7579 "initialized)\n");
7580 return 0;
7581 }
7582
7583 if (!(priv->config & CFG_ASSOCIATE) &&
7584 !(priv->config & (CFG_STATIC_ESSID |
7585 CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7586 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7587 return 0;
7588 }
7589
7590 /* Protect our use of the network_list */
7591 spin_lock_irqsave(&priv->ieee->lock, flags);
7592 list_for_each_entry(network, &priv->ieee->network_list, list)
7593 ipw_best_network(priv, &match, network, 0);
7594
7595 network = match.network;
7596 rates = &match.rates;
7597
7598 if (network == NULL &&
7599 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7600 priv->config & CFG_ADHOC_CREATE &&
7601 priv->config & CFG_STATIC_ESSID &&
7602 priv->config & CFG_STATIC_CHANNEL) {
7603 /* Use oldest network if the free list is empty */
7604 if (list_empty(&priv->ieee->network_free_list)) {
7605 struct ieee80211_network *oldest = NULL;
7606 struct ieee80211_network *target;
7607 DECLARE_MAC_BUF(mac);
7608
7609 list_for_each_entry(target, &priv->ieee->network_list, list) {
7610 if ((oldest == NULL) ||
7611 (target->last_scanned < oldest->last_scanned))
7612 oldest = target;
7613 }
7614
7615 /* If there are no more slots, expire the oldest */
7616 list_del(&oldest->list);
7617 target = oldest;
7618 IPW_DEBUG_ASSOC("Expired '%s' (%s) from "
7619 "network list.\n",
7620 escape_essid(target->ssid,
7621 target->ssid_len),
7622 print_mac(mac, target->bssid));
7623 list_add_tail(&target->list,
7624 &priv->ieee->network_free_list);
7625 }
7626
7627 element = priv->ieee->network_free_list.next;
7628 network = list_entry(element, struct ieee80211_network, list);
7629 ipw_adhoc_create(priv, network);
7630 rates = &priv->rates;
7631 list_del(element);
7632 list_add_tail(&network->list, &priv->ieee->network_list);
7633 }
7634 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7635
7636 /* If we reached the end of the list, then we don't have any valid
7637 * matching APs */
7638 if (!network) {
7639 ipw_debug_config(priv);
7640
7641 if (!(priv->status & STATUS_SCANNING)) {
7642 if (!(priv->config & CFG_SPEED_SCAN))
7643 queue_delayed_work(priv->workqueue,
7644 &priv->request_scan,
7645 SCAN_INTERVAL);
7646 else
7647 queue_delayed_work(priv->workqueue,
7648 &priv->request_scan, 0);
7649 }
7650
7651 return 0;
7652 }
7653
7654 ipw_associate_network(priv, network, rates, 0);
7655
7656 return 1;
7657 }
7658
7659 static void ipw_bg_associate(struct work_struct *work)
7660 {
7661 struct ipw_priv *priv =
7662 container_of(work, struct ipw_priv, associate);
7663 mutex_lock(&priv->mutex);
7664 ipw_associate(priv);
7665 mutex_unlock(&priv->mutex);
7666 }
7667
7668 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7669 struct sk_buff *skb)
7670 {
7671 struct ieee80211_hdr *hdr;
7672 u16 fc;
7673
7674 hdr = (struct ieee80211_hdr *)skb->data;
7675 fc = le16_to_cpu(hdr->frame_ctl);
7676 if (!(fc & IEEE80211_FCTL_PROTECTED))
7677 return;
7678
7679 fc &= ~IEEE80211_FCTL_PROTECTED;
7680 hdr->frame_ctl = cpu_to_le16(fc);
7681 switch (priv->ieee->sec.level) {
7682 case SEC_LEVEL_3:
7683 /* Remove CCMP HDR */
7684 memmove(skb->data + IEEE80211_3ADDR_LEN,
7685 skb->data + IEEE80211_3ADDR_LEN + 8,
7686 skb->len - IEEE80211_3ADDR_LEN - 8);
7687 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7688 break;
7689 case SEC_LEVEL_2:
7690 break;
7691 case SEC_LEVEL_1:
7692 /* Remove IV */
7693 memmove(skb->data + IEEE80211_3ADDR_LEN,
7694 skb->data + IEEE80211_3ADDR_LEN + 4,
7695 skb->len - IEEE80211_3ADDR_LEN - 4);
7696 skb_trim(skb, skb->len - 8); /* IV + ICV */
7697 break;
7698 case SEC_LEVEL_0:
7699 break;
7700 default:
7701 printk(KERN_ERR "Unknow security level %d\n",
7702 priv->ieee->sec.level);
7703 break;
7704 }
7705 }
7706
7707 static void ipw_handle_data_packet(struct ipw_priv *priv,
7708 struct ipw_rx_mem_buffer *rxb,
7709 struct ieee80211_rx_stats *stats)
7710 {
7711 struct ieee80211_hdr_4addr *hdr;
7712 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7713
7714 /* We received data from the HW, so stop the watchdog */
7715 priv->net_dev->trans_start = jiffies;
7716
7717 /* We only process data packets if the
7718 * interface is open */
7719 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7720 skb_tailroom(rxb->skb))) {
7721 priv->ieee->stats.rx_errors++;
7722 priv->wstats.discard.misc++;
7723 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7724 return;
7725 } else if (unlikely(!netif_running(priv->net_dev))) {
7726 priv->ieee->stats.rx_dropped++;
7727 priv->wstats.discard.misc++;
7728 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7729 return;
7730 }
7731
7732 /* Advance skb->data to the start of the actual payload */
7733 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7734
7735 /* Set the size of the skb to the size of the frame */
7736 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7737
7738 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7739
7740 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7741 hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7742 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7743 (is_multicast_ether_addr(hdr->addr1) ?
7744 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7745 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7746
7747 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7748 priv->ieee->stats.rx_errors++;
7749 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7750 rxb->skb = NULL;
7751 __ipw_led_activity_on(priv);
7752 }
7753 }
7754
7755 #ifdef CONFIG_IPW2200_RADIOTAP
7756 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7757 struct ipw_rx_mem_buffer *rxb,
7758 struct ieee80211_rx_stats *stats)
7759 {
7760 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7761 struct ipw_rx_frame *frame = &pkt->u.frame;
7762
7763 /* initial pull of some data */
7764 u16 received_channel = frame->received_channel;
7765 u8 antennaAndPhy = frame->antennaAndPhy;
7766 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7767 u16 pktrate = frame->rate;
7768
7769 /* Magic struct that slots into the radiotap header -- no reason
7770 * to build this manually element by element, we can write it much
7771 * more efficiently than we can parse it. ORDER MATTERS HERE */
7772 struct ipw_rt_hdr *ipw_rt;
7773
7774 short len = le16_to_cpu(pkt->u.frame.length);
7775
7776 /* We received data from the HW, so stop the watchdog */
7777 priv->net_dev->trans_start = jiffies;
7778
7779 /* We only process data packets if the
7780 * interface is open */
7781 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7782 skb_tailroom(rxb->skb))) {
7783 priv->ieee->stats.rx_errors++;
7784 priv->wstats.discard.misc++;
7785 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7786 return;
7787 } else if (unlikely(!netif_running(priv->net_dev))) {
7788 priv->ieee->stats.rx_dropped++;
7789 priv->wstats.discard.misc++;
7790 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7791 return;
7792 }
7793
7794 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7795 * that now */
7796 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7797 /* FIXME: Should alloc bigger skb instead */
7798 priv->ieee->stats.rx_dropped++;
7799 priv->wstats.discard.misc++;
7800 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7801 return;
7802 }
7803
7804 /* copy the frame itself */
7805 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7806 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7807
7808 /* Zero the radiotap static buffer ... We only need to zero the bytes NOT
7809 * part of our real header, saves a little time.
7810 *
7811 * No longer necessary since we fill in all our data. Purge before merging
7812 * patch officially.
7813 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7814 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7815 */
7816
7817 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7818
7819 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7820 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7821 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7822
7823 /* Big bitfield of all the fields we provide in radiotap */
7824 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7825 (1 << IEEE80211_RADIOTAP_TSFT) |
7826 (1 << IEEE80211_RADIOTAP_FLAGS) |
7827 (1 << IEEE80211_RADIOTAP_RATE) |
7828 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7829 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7830 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7831 (1 << IEEE80211_RADIOTAP_ANTENNA));
7832
7833 /* Zero the flags, we'll add to them as we go */
7834 ipw_rt->rt_flags = 0;
7835 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7836 frame->parent_tsf[2] << 16 |
7837 frame->parent_tsf[1] << 8 |
7838 frame->parent_tsf[0]);
7839
7840 /* Convert signal to DBM */
7841 ipw_rt->rt_dbmsignal = antsignal;
7842 ipw_rt->rt_dbmnoise = frame->noise;
7843
7844 /* Convert the channel data and set the flags */
7845 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7846 if (received_channel > 14) { /* 802.11a */
7847 ipw_rt->rt_chbitmask =
7848 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7849 } else if (antennaAndPhy & 32) { /* 802.11b */
7850 ipw_rt->rt_chbitmask =
7851 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7852 } else { /* 802.11g */
7853 ipw_rt->rt_chbitmask =
7854 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7855 }
7856
7857 /* set the rate in multiples of 500k/s */
7858 switch (pktrate) {
7859 case IPW_TX_RATE_1MB:
7860 ipw_rt->rt_rate = 2;
7861 break;
7862 case IPW_TX_RATE_2MB:
7863 ipw_rt->rt_rate = 4;
7864 break;
7865 case IPW_TX_RATE_5MB:
7866 ipw_rt->rt_rate = 10;
7867 break;
7868 case IPW_TX_RATE_6MB:
7869 ipw_rt->rt_rate = 12;
7870 break;
7871 case IPW_TX_RATE_9MB:
7872 ipw_rt->rt_rate = 18;
7873 break;
7874 case IPW_TX_RATE_11MB:
7875 ipw_rt->rt_rate = 22;
7876 break;
7877 case IPW_TX_RATE_12MB:
7878 ipw_rt->rt_rate = 24;
7879 break;
7880 case IPW_TX_RATE_18MB:
7881 ipw_rt->rt_rate = 36;
7882 break;
7883 case IPW_TX_RATE_24MB:
7884 ipw_rt->rt_rate = 48;
7885 break;
7886 case IPW_TX_RATE_36MB:
7887 ipw_rt->rt_rate = 72;
7888 break;
7889 case IPW_TX_RATE_48MB:
7890 ipw_rt->rt_rate = 96;
7891 break;
7892 case IPW_TX_RATE_54MB:
7893 ipw_rt->rt_rate = 108;
7894 break;
7895 default:
7896 ipw_rt->rt_rate = 0;
7897 break;
7898 }
7899
7900 /* antenna number */
7901 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7902
7903 /* set the preamble flag if we have it */
7904 if ((antennaAndPhy & 64))
7905 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7906
7907 /* Set the size of the skb to the size of the frame */
7908 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7909
7910 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7911
7912 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7913 priv->ieee->stats.rx_errors++;
7914 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7915 rxb->skb = NULL;
7916 /* no LED during capture */
7917 }
7918 }
7919 #endif
7920
7921 #ifdef CONFIG_IPW2200_PROMISCUOUS
7922 #define ieee80211_is_probe_response(fc) \
7923 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7924 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7925
7926 #define ieee80211_is_management(fc) \
7927 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7928
7929 #define ieee80211_is_control(fc) \
7930 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7931
7932 #define ieee80211_is_data(fc) \
7933 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7934
7935 #define ieee80211_is_assoc_request(fc) \
7936 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7937
7938 #define ieee80211_is_reassoc_request(fc) \
7939 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7940
7941 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7942 struct ipw_rx_mem_buffer *rxb,
7943 struct ieee80211_rx_stats *stats)
7944 {
7945 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7946 struct ipw_rx_frame *frame = &pkt->u.frame;
7947 struct ipw_rt_hdr *ipw_rt;
7948
7949 /* First cache any information we need before we overwrite
7950 * the information provided in the skb from the hardware */
7951 struct ieee80211_hdr *hdr;
7952 u16 channel = frame->received_channel;
7953 u8 phy_flags = frame->antennaAndPhy;
7954 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7955 s8 noise = frame->noise;
7956 u8 rate = frame->rate;
7957 short len = le16_to_cpu(pkt->u.frame.length);
7958 struct sk_buff *skb;
7959 int hdr_only = 0;
7960 u16 filter = priv->prom_priv->filter;
7961
7962 /* If the filter is set to not include Rx frames then return */
7963 if (filter & IPW_PROM_NO_RX)
7964 return;
7965
7966 /* We received data from the HW, so stop the watchdog */
7967 priv->prom_net_dev->trans_start = jiffies;
7968
7969 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7970 priv->prom_priv->ieee->stats.rx_errors++;
7971 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7972 return;
7973 }
7974
7975 /* We only process data packets if the interface is open */
7976 if (unlikely(!netif_running(priv->prom_net_dev))) {
7977 priv->prom_priv->ieee->stats.rx_dropped++;
7978 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7979 return;
7980 }
7981
7982 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7983 * that now */
7984 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7985 /* FIXME: Should alloc bigger skb instead */
7986 priv->prom_priv->ieee->stats.rx_dropped++;
7987 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7988 return;
7989 }
7990
7991 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7992 if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
7993 if (filter & IPW_PROM_NO_MGMT)
7994 return;
7995 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7996 hdr_only = 1;
7997 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
7998 if (filter & IPW_PROM_NO_CTL)
7999 return;
8000 if (filter & IPW_PROM_CTL_HEADER_ONLY)
8001 hdr_only = 1;
8002 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
8003 if (filter & IPW_PROM_NO_DATA)
8004 return;
8005 if (filter & IPW_PROM_DATA_HEADER_ONLY)
8006 hdr_only = 1;
8007 }
8008
8009 /* Copy the SKB since this is for the promiscuous side */
8010 skb = skb_copy(rxb->skb, GFP_ATOMIC);
8011 if (skb == NULL) {
8012 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8013 return;
8014 }
8015
8016 /* copy the frame data to write after where the radiotap header goes */
8017 ipw_rt = (void *)skb->data;
8018
8019 if (hdr_only)
8020 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
8021
8022 memcpy(ipw_rt->payload, hdr, len);
8023
8024 /* Zero the radiotap static buffer ... We only need to zero the bytes
8025 * NOT part of our real header, saves a little time.
8026 *
8027 * No longer necessary since we fill in all our data. Purge before
8028 * merging patch officially.
8029 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
8030 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
8031 */
8032
8033 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8034 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
8035 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */
8036
8037 /* Set the size of the skb to the size of the frame */
8038 skb_put(skb, sizeof(*ipw_rt) + len);
8039
8040 /* Big bitfield of all the fields we provide in radiotap */
8041 ipw_rt->rt_hdr.it_present = cpu_to_le32(
8042 (1 << IEEE80211_RADIOTAP_TSFT) |
8043 (1 << IEEE80211_RADIOTAP_FLAGS) |
8044 (1 << IEEE80211_RADIOTAP_RATE) |
8045 (1 << IEEE80211_RADIOTAP_CHANNEL) |
8046 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8047 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8048 (1 << IEEE80211_RADIOTAP_ANTENNA));
8049
8050 /* Zero the flags, we'll add to them as we go */
8051 ipw_rt->rt_flags = 0;
8052 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8053 frame->parent_tsf[2] << 16 |
8054 frame->parent_tsf[1] << 8 |
8055 frame->parent_tsf[0]);
8056
8057 /* Convert to DBM */
8058 ipw_rt->rt_dbmsignal = signal;
8059 ipw_rt->rt_dbmnoise = noise;
8060
8061 /* Convert the channel data and set the flags */
8062 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8063 if (channel > 14) { /* 802.11a */
8064 ipw_rt->rt_chbitmask =
8065 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8066 } else if (phy_flags & (1 << 5)) { /* 802.11b */
8067 ipw_rt->rt_chbitmask =
8068 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8069 } else { /* 802.11g */
8070 ipw_rt->rt_chbitmask =
8071 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8072 }
8073
8074 /* set the rate in multiples of 500k/s */
8075 switch (rate) {
8076 case IPW_TX_RATE_1MB:
8077 ipw_rt->rt_rate = 2;
8078 break;
8079 case IPW_TX_RATE_2MB:
8080 ipw_rt->rt_rate = 4;
8081 break;
8082 case IPW_TX_RATE_5MB:
8083 ipw_rt->rt_rate = 10;
8084 break;
8085 case IPW_TX_RATE_6MB:
8086 ipw_rt->rt_rate = 12;
8087 break;
8088 case IPW_TX_RATE_9MB:
8089 ipw_rt->rt_rate = 18;
8090 break;
8091 case IPW_TX_RATE_11MB:
8092 ipw_rt->rt_rate = 22;
8093 break;
8094 case IPW_TX_RATE_12MB:
8095 ipw_rt->rt_rate = 24;
8096 break;
8097 case IPW_TX_RATE_18MB:
8098 ipw_rt->rt_rate = 36;
8099 break;
8100 case IPW_TX_RATE_24MB:
8101 ipw_rt->rt_rate = 48;
8102 break;
8103 case IPW_TX_RATE_36MB:
8104 ipw_rt->rt_rate = 72;
8105 break;
8106 case IPW_TX_RATE_48MB:
8107 ipw_rt->rt_rate = 96;
8108 break;
8109 case IPW_TX_RATE_54MB:
8110 ipw_rt->rt_rate = 108;
8111 break;
8112 default:
8113 ipw_rt->rt_rate = 0;
8114 break;
8115 }
8116
8117 /* antenna number */
8118 ipw_rt->rt_antenna = (phy_flags & 3);
8119
8120 /* set the preamble flag if we have it */
8121 if (phy_flags & (1 << 6))
8122 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8123
8124 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8125
8126 if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
8127 priv->prom_priv->ieee->stats.rx_errors++;
8128 dev_kfree_skb_any(skb);
8129 }
8130 }
8131 #endif
8132
8133 static int is_network_packet(struct ipw_priv *priv,
8134 struct ieee80211_hdr_4addr *header)
8135 {
8136 /* Filter incoming packets to determine if they are targetted toward
8137 * this network, discarding packets coming from ourselves */
8138 switch (priv->ieee->iw_mode) {
8139 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8140 /* packets from our adapter are dropped (echo) */
8141 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8142 return 0;
8143
8144 /* {broad,multi}cast packets to our BSSID go through */
8145 if (is_multicast_ether_addr(header->addr1))
8146 return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8147
8148 /* packets to our adapter go through */
8149 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8150 ETH_ALEN);
8151
8152 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8153 /* packets from our adapter are dropped (echo) */
8154 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8155 return 0;
8156
8157 /* {broad,multi}cast packets to our BSS go through */
8158 if (is_multicast_ether_addr(header->addr1))
8159 return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8160
8161 /* packets to our adapter go through */
8162 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8163 ETH_ALEN);
8164 }
8165
8166 return 1;
8167 }
8168
8169 #define IPW_PACKET_RETRY_TIME HZ
8170
8171 static int is_duplicate_packet(struct ipw_priv *priv,
8172 struct ieee80211_hdr_4addr *header)
8173 {
8174 u16 sc = le16_to_cpu(header->seq_ctl);
8175 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8176 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8177 u16 *last_seq, *last_frag;
8178 unsigned long *last_time;
8179
8180 switch (priv->ieee->iw_mode) {
8181 case IW_MODE_ADHOC:
8182 {
8183 struct list_head *p;
8184 struct ipw_ibss_seq *entry = NULL;
8185 u8 *mac = header->addr2;
8186 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8187
8188 __list_for_each(p, &priv->ibss_mac_hash[index]) {
8189 entry =
8190 list_entry(p, struct ipw_ibss_seq, list);
8191 if (!memcmp(entry->mac, mac, ETH_ALEN))
8192 break;
8193 }
8194 if (p == &priv->ibss_mac_hash[index]) {
8195 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8196 if (!entry) {
8197 IPW_ERROR
8198 ("Cannot malloc new mac entry\n");
8199 return 0;
8200 }
8201 memcpy(entry->mac, mac, ETH_ALEN);
8202 entry->seq_num = seq;
8203 entry->frag_num = frag;
8204 entry->packet_time = jiffies;
8205 list_add(&entry->list,
8206 &priv->ibss_mac_hash[index]);
8207 return 0;
8208 }
8209 last_seq = &entry->seq_num;
8210 last_frag = &entry->frag_num;
8211 last_time = &entry->packet_time;
8212 break;
8213 }
8214 case IW_MODE_INFRA:
8215 last_seq = &priv->last_seq_num;
8216 last_frag = &priv->last_frag_num;
8217 last_time = &priv->last_packet_time;
8218 break;
8219 default:
8220 return 0;
8221 }
8222 if ((*last_seq == seq) &&
8223 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8224 if (*last_frag == frag)
8225 goto drop;
8226 if (*last_frag + 1 != frag)
8227 /* out-of-order fragment */
8228 goto drop;
8229 } else
8230 *last_seq = seq;
8231
8232 *last_frag = frag;
8233 *last_time = jiffies;
8234 return 0;
8235
8236 drop:
8237 /* Comment this line now since we observed the card receives
8238 * duplicate packets but the FCTL_RETRY bit is not set in the
8239 * IBSS mode with fragmentation enabled.
8240 BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
8241 return 1;
8242 }
8243
8244 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8245 struct ipw_rx_mem_buffer *rxb,
8246 struct ieee80211_rx_stats *stats)
8247 {
8248 struct sk_buff *skb = rxb->skb;
8249 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8250 struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8251 (skb->data + IPW_RX_FRAME_SIZE);
8252
8253 ieee80211_rx_mgt(priv->ieee, header, stats);
8254
8255 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8256 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8257 IEEE80211_STYPE_PROBE_RESP) ||
8258 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8259 IEEE80211_STYPE_BEACON))) {
8260 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8261 ipw_add_station(priv, header->addr2);
8262 }
8263
8264 if (priv->config & CFG_NET_STATS) {
8265 IPW_DEBUG_HC("sending stat packet\n");
8266
8267 /* Set the size of the skb to the size of the full
8268 * ipw header and 802.11 frame */
8269 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8270 IPW_RX_FRAME_SIZE);
8271
8272 /* Advance past the ipw packet header to the 802.11 frame */
8273 skb_pull(skb, IPW_RX_FRAME_SIZE);
8274
8275 /* Push the ieee80211_rx_stats before the 802.11 frame */
8276 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8277
8278 skb->dev = priv->ieee->dev;
8279
8280 /* Point raw at the ieee80211_stats */
8281 skb_reset_mac_header(skb);
8282
8283 skb->pkt_type = PACKET_OTHERHOST;
8284 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8285 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8286 netif_rx(skb);
8287 rxb->skb = NULL;
8288 }
8289 }
8290
8291 /*
8292 * Main entry function for recieving a packet with 80211 headers. This
8293 * should be called when ever the FW has notified us that there is a new
8294 * skb in the recieve queue.
8295 */
8296 static void ipw_rx(struct ipw_priv *priv)
8297 {
8298 struct ipw_rx_mem_buffer *rxb;
8299 struct ipw_rx_packet *pkt;
8300 struct ieee80211_hdr_4addr *header;
8301 u32 r, w, i;
8302 u8 network_packet;
8303 u8 fill_rx = 0;
8304 DECLARE_MAC_BUF(mac);
8305 DECLARE_MAC_BUF(mac2);
8306 DECLARE_MAC_BUF(mac3);
8307
8308 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8309 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8310 i = priv->rxq->read;
8311
8312 if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8313 fill_rx = 1;
8314
8315 while (i != r) {
8316 rxb = priv->rxq->queue[i];
8317 if (unlikely(rxb == NULL)) {
8318 printk(KERN_CRIT "Queue not allocated!\n");
8319 break;
8320 }
8321 priv->rxq->queue[i] = NULL;
8322
8323 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8324 IPW_RX_BUF_SIZE,
8325 PCI_DMA_FROMDEVICE);
8326
8327 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8328 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8329 pkt->header.message_type,
8330 pkt->header.rx_seq_num, pkt->header.control_bits);
8331
8332 switch (pkt->header.message_type) {
8333 case RX_FRAME_TYPE: /* 802.11 frame */ {
8334 struct ieee80211_rx_stats stats = {
8335 .rssi = pkt->u.frame.rssi_dbm -
8336 IPW_RSSI_TO_DBM,
8337 .signal =
8338 le16_to_cpu(pkt->u.frame.rssi_dbm) -
8339 IPW_RSSI_TO_DBM + 0x100,
8340 .noise =
8341 le16_to_cpu(pkt->u.frame.noise),
8342 .rate = pkt->u.frame.rate,
8343 .mac_time = jiffies,
8344 .received_channel =
8345 pkt->u.frame.received_channel,
8346 .freq =
8347 (pkt->u.frame.
8348 control & (1 << 0)) ?
8349 IEEE80211_24GHZ_BAND :
8350 IEEE80211_52GHZ_BAND,
8351 .len = le16_to_cpu(pkt->u.frame.length),
8352 };
8353
8354 if (stats.rssi != 0)
8355 stats.mask |= IEEE80211_STATMASK_RSSI;
8356 if (stats.signal != 0)
8357 stats.mask |= IEEE80211_STATMASK_SIGNAL;
8358 if (stats.noise != 0)
8359 stats.mask |= IEEE80211_STATMASK_NOISE;
8360 if (stats.rate != 0)
8361 stats.mask |= IEEE80211_STATMASK_RATE;
8362
8363 priv->rx_packets++;
8364
8365 #ifdef CONFIG_IPW2200_PROMISCUOUS
8366 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8367 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8368 #endif
8369
8370 #ifdef CONFIG_IPW2200_MONITOR
8371 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8372 #ifdef CONFIG_IPW2200_RADIOTAP
8373
8374 ipw_handle_data_packet_monitor(priv,
8375 rxb,
8376 &stats);
8377 #else
8378 ipw_handle_data_packet(priv, rxb,
8379 &stats);
8380 #endif
8381 break;
8382 }
8383 #endif
8384
8385 header =
8386 (struct ieee80211_hdr_4addr *)(rxb->skb->
8387 data +
8388 IPW_RX_FRAME_SIZE);
8389 /* TODO: Check Ad-Hoc dest/source and make sure
8390 * that we are actually parsing these packets
8391 * correctly -- we should probably use the
8392 * frame control of the packet and disregard
8393 * the current iw_mode */
8394
8395 network_packet =
8396 is_network_packet(priv, header);
8397 if (network_packet && priv->assoc_network) {
8398 priv->assoc_network->stats.rssi =
8399 stats.rssi;
8400 priv->exp_avg_rssi =
8401 exponential_average(priv->exp_avg_rssi,
8402 stats.rssi, DEPTH_RSSI);
8403 }
8404
8405 IPW_DEBUG_RX("Frame: len=%u\n",
8406 le16_to_cpu(pkt->u.frame.length));
8407
8408 if (le16_to_cpu(pkt->u.frame.length) <
8409 ieee80211_get_hdrlen(le16_to_cpu(
8410 header->frame_ctl))) {
8411 IPW_DEBUG_DROP
8412 ("Received packet is too small. "
8413 "Dropping.\n");
8414 priv->ieee->stats.rx_errors++;
8415 priv->wstats.discard.misc++;
8416 break;
8417 }
8418
8419 switch (WLAN_FC_GET_TYPE
8420 (le16_to_cpu(header->frame_ctl))) {
8421
8422 case IEEE80211_FTYPE_MGMT:
8423 ipw_handle_mgmt_packet(priv, rxb,
8424 &stats);
8425 break;
8426
8427 case IEEE80211_FTYPE_CTL:
8428 break;
8429
8430 case IEEE80211_FTYPE_DATA:
8431 if (unlikely(!network_packet ||
8432 is_duplicate_packet(priv,
8433 header)))
8434 {
8435 IPW_DEBUG_DROP("Dropping: "
8436 "%s, "
8437 "%s, "
8438 "%s\n",
8439 print_mac(mac,
8440 header->
8441 addr1),
8442 print_mac(mac2,
8443 header->
8444 addr2),
8445 print_mac(mac3,
8446 header->
8447 addr3));
8448 break;
8449 }
8450
8451 ipw_handle_data_packet(priv, rxb,
8452 &stats);
8453
8454 break;
8455 }
8456 break;
8457 }
8458
8459 case RX_HOST_NOTIFICATION_TYPE:{
8460 IPW_DEBUG_RX
8461 ("Notification: subtype=%02X flags=%02X size=%d\n",
8462 pkt->u.notification.subtype,
8463 pkt->u.notification.flags,
8464 le16_to_cpu(pkt->u.notification.size));
8465 ipw_rx_notification(priv, &pkt->u.notification);
8466 break;
8467 }
8468
8469 default:
8470 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8471 pkt->header.message_type);
8472 break;
8473 }
8474
8475 /* For now we just don't re-use anything. We can tweak this
8476 * later to try and re-use notification packets and SKBs that
8477 * fail to Rx correctly */
8478 if (rxb->skb != NULL) {
8479 dev_kfree_skb_any(rxb->skb);
8480 rxb->skb = NULL;
8481 }
8482
8483 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8484 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8485 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8486
8487 i = (i + 1) % RX_QUEUE_SIZE;
8488
8489 /* If there are a lot of unsued frames, restock the Rx queue
8490 * so the ucode won't assert */
8491 if (fill_rx) {
8492 priv->rxq->read = i;
8493 ipw_rx_queue_replenish(priv);
8494 }
8495 }
8496
8497 /* Backtrack one entry */
8498 priv->rxq->read = i;
8499 ipw_rx_queue_restock(priv);
8500 }
8501
8502 #define DEFAULT_RTS_THRESHOLD 2304U
8503 #define MIN_RTS_THRESHOLD 1U
8504 #define MAX_RTS_THRESHOLD 2304U
8505 #define DEFAULT_BEACON_INTERVAL 100U
8506 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8507 #define DEFAULT_LONG_RETRY_LIMIT 4U
8508
8509 /**
8510 * ipw_sw_reset
8511 * @option: options to control different reset behaviour
8512 * 0 = reset everything except the 'disable' module_param
8513 * 1 = reset everything and print out driver info (for probe only)
8514 * 2 = reset everything
8515 */
8516 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8517 {
8518 int band, modulation;
8519 int old_mode = priv->ieee->iw_mode;
8520
8521 /* Initialize module parameter values here */
8522 priv->config = 0;
8523
8524 /* We default to disabling the LED code as right now it causes
8525 * too many systems to lock up... */
8526 if (!led)
8527 priv->config |= CFG_NO_LED;
8528
8529 if (associate)
8530 priv->config |= CFG_ASSOCIATE;
8531 else
8532 IPW_DEBUG_INFO("Auto associate disabled.\n");
8533
8534 if (auto_create)
8535 priv->config |= CFG_ADHOC_CREATE;
8536 else
8537 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8538
8539 priv->config &= ~CFG_STATIC_ESSID;
8540 priv->essid_len = 0;
8541 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8542
8543 if (disable && option) {
8544 priv->status |= STATUS_RF_KILL_SW;
8545 IPW_DEBUG_INFO("Radio disabled.\n");
8546 }
8547
8548 if (channel != 0) {
8549 priv->config |= CFG_STATIC_CHANNEL;
8550 priv->channel = channel;
8551 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8552 /* TODO: Validate that provided channel is in range */
8553 }
8554 #ifdef CONFIG_IPW2200_QOS
8555 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8556 burst_duration_CCK, burst_duration_OFDM);
8557 #endif /* CONFIG_IPW2200_QOS */
8558
8559 switch (mode) {
8560 case 1:
8561 priv->ieee->iw_mode = IW_MODE_ADHOC;
8562 priv->net_dev->type = ARPHRD_ETHER;
8563
8564 break;
8565 #ifdef CONFIG_IPW2200_MONITOR
8566 case 2:
8567 priv->ieee->iw_mode = IW_MODE_MONITOR;
8568 #ifdef CONFIG_IPW2200_RADIOTAP
8569 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8570 #else
8571 priv->net_dev->type = ARPHRD_IEEE80211;
8572 #endif
8573 break;
8574 #endif
8575 default:
8576 case 0:
8577 priv->net_dev->type = ARPHRD_ETHER;
8578 priv->ieee->iw_mode = IW_MODE_INFRA;
8579 break;
8580 }
8581
8582 if (hwcrypto) {
8583 priv->ieee->host_encrypt = 0;
8584 priv->ieee->host_encrypt_msdu = 0;
8585 priv->ieee->host_decrypt = 0;
8586 priv->ieee->host_mc_decrypt = 0;
8587 }
8588 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8589
8590 /* IPW2200/2915 is abled to do hardware fragmentation. */
8591 priv->ieee->host_open_frag = 0;
8592
8593 if ((priv->pci_dev->device == 0x4223) ||
8594 (priv->pci_dev->device == 0x4224)) {
8595 if (option == 1)
8596 printk(KERN_INFO DRV_NAME
8597 ": Detected Intel PRO/Wireless 2915ABG Network "
8598 "Connection\n");
8599 priv->ieee->abg_true = 1;
8600 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8601 modulation = IEEE80211_OFDM_MODULATION |
8602 IEEE80211_CCK_MODULATION;
8603 priv->adapter = IPW_2915ABG;
8604 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8605 } else {
8606 if (option == 1)
8607 printk(KERN_INFO DRV_NAME
8608 ": Detected Intel PRO/Wireless 2200BG Network "
8609 "Connection\n");
8610
8611 priv->ieee->abg_true = 0;
8612 band = IEEE80211_24GHZ_BAND;
8613 modulation = IEEE80211_OFDM_MODULATION |
8614 IEEE80211_CCK_MODULATION;
8615 priv->adapter = IPW_2200BG;
8616 priv->ieee->mode = IEEE_G | IEEE_B;
8617 }
8618
8619 priv->ieee->freq_band = band;
8620 priv->ieee->modulation = modulation;
8621
8622 priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8623
8624 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8625 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8626
8627 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8628 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8629 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8630
8631 /* If power management is turned on, default to AC mode */
8632 priv->power_mode = IPW_POWER_AC;
8633 priv->tx_power = IPW_TX_POWER_DEFAULT;
8634
8635 return old_mode == priv->ieee->iw_mode;
8636 }
8637
8638 /*
8639 * This file defines the Wireless Extension handlers. It does not
8640 * define any methods of hardware manipulation and relies on the
8641 * functions defined in ipw_main to provide the HW interaction.
8642 *
8643 * The exception to this is the use of the ipw_get_ordinal()
8644 * function used to poll the hardware vs. making unecessary calls.
8645 *
8646 */
8647
8648 static int ipw_wx_get_name(struct net_device *dev,
8649 struct iw_request_info *info,
8650 union iwreq_data *wrqu, char *extra)
8651 {
8652 struct ipw_priv *priv = ieee80211_priv(dev);
8653 mutex_lock(&priv->mutex);
8654 if (priv->status & STATUS_RF_KILL_MASK)
8655 strcpy(wrqu->name, "radio off");
8656 else if (!(priv->status & STATUS_ASSOCIATED))
8657 strcpy(wrqu->name, "unassociated");
8658 else
8659 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8660 ipw_modes[priv->assoc_request.ieee_mode]);
8661 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8662 mutex_unlock(&priv->mutex);
8663 return 0;
8664 }
8665
8666 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8667 {
8668 if (channel == 0) {
8669 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8670 priv->config &= ~CFG_STATIC_CHANNEL;
8671 IPW_DEBUG_ASSOC("Attempting to associate with new "
8672 "parameters.\n");
8673 ipw_associate(priv);
8674 return 0;
8675 }
8676
8677 priv->config |= CFG_STATIC_CHANNEL;
8678
8679 if (priv->channel == channel) {
8680 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8681 channel);
8682 return 0;
8683 }
8684
8685 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8686 priv->channel = channel;
8687
8688 #ifdef CONFIG_IPW2200_MONITOR
8689 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8690 int i;
8691 if (priv->status & STATUS_SCANNING) {
8692 IPW_DEBUG_SCAN("Scan abort triggered due to "
8693 "channel change.\n");
8694 ipw_abort_scan(priv);
8695 }
8696
8697 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8698 udelay(10);
8699
8700 if (priv->status & STATUS_SCANNING)
8701 IPW_DEBUG_SCAN("Still scanning...\n");
8702 else
8703 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8704 1000 - i);
8705
8706 return 0;
8707 }
8708 #endif /* CONFIG_IPW2200_MONITOR */
8709
8710 /* Network configuration changed -- force [re]association */
8711 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8712 if (!ipw_disassociate(priv))
8713 ipw_associate(priv);
8714
8715 return 0;
8716 }
8717
8718 static int ipw_wx_set_freq(struct net_device *dev,
8719 struct iw_request_info *info,
8720 union iwreq_data *wrqu, char *extra)
8721 {
8722 struct ipw_priv *priv = ieee80211_priv(dev);
8723 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8724 struct iw_freq *fwrq = &wrqu->freq;
8725 int ret = 0, i;
8726 u8 channel, flags;
8727 int band;
8728
8729 if (fwrq->m == 0) {
8730 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8731 mutex_lock(&priv->mutex);
8732 ret = ipw_set_channel(priv, 0);
8733 mutex_unlock(&priv->mutex);
8734 return ret;
8735 }
8736 /* if setting by freq convert to channel */
8737 if (fwrq->e == 1) {
8738 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8739 if (channel == 0)
8740 return -EINVAL;
8741 } else
8742 channel = fwrq->m;
8743
8744 if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8745 return -EINVAL;
8746
8747 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8748 i = ieee80211_channel_to_index(priv->ieee, channel);
8749 if (i == -1)
8750 return -EINVAL;
8751
8752 flags = (band == IEEE80211_24GHZ_BAND) ?
8753 geo->bg[i].flags : geo->a[i].flags;
8754 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8755 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8756 return -EINVAL;
8757 }
8758 }
8759
8760 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8761 mutex_lock(&priv->mutex);
8762 ret = ipw_set_channel(priv, channel);
8763 mutex_unlock(&priv->mutex);
8764 return ret;
8765 }
8766
8767 static int ipw_wx_get_freq(struct net_device *dev,
8768 struct iw_request_info *info,
8769 union iwreq_data *wrqu, char *extra)
8770 {
8771 struct ipw_priv *priv = ieee80211_priv(dev);
8772
8773 wrqu->freq.e = 0;
8774
8775 /* If we are associated, trying to associate, or have a statically
8776 * configured CHANNEL then return that; otherwise return ANY */
8777 mutex_lock(&priv->mutex);
8778 if (priv->config & CFG_STATIC_CHANNEL ||
8779 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8780 int i;
8781
8782 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8783 BUG_ON(i == -1);
8784 wrqu->freq.e = 1;
8785
8786 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8787 case IEEE80211_52GHZ_BAND:
8788 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8789 break;
8790
8791 case IEEE80211_24GHZ_BAND:
8792 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8793 break;
8794
8795 default:
8796 BUG();
8797 }
8798 } else
8799 wrqu->freq.m = 0;
8800
8801 mutex_unlock(&priv->mutex);
8802 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8803 return 0;
8804 }
8805
8806 static int ipw_wx_set_mode(struct net_device *dev,
8807 struct iw_request_info *info,
8808 union iwreq_data *wrqu, char *extra)
8809 {
8810 struct ipw_priv *priv = ieee80211_priv(dev);
8811 int err = 0;
8812
8813 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8814
8815 switch (wrqu->mode) {
8816 #ifdef CONFIG_IPW2200_MONITOR
8817 case IW_MODE_MONITOR:
8818 #endif
8819 case IW_MODE_ADHOC:
8820 case IW_MODE_INFRA:
8821 break;
8822 case IW_MODE_AUTO:
8823 wrqu->mode = IW_MODE_INFRA;
8824 break;
8825 default:
8826 return -EINVAL;
8827 }
8828 if (wrqu->mode == priv->ieee->iw_mode)
8829 return 0;
8830
8831 mutex_lock(&priv->mutex);
8832
8833 ipw_sw_reset(priv, 0);
8834
8835 #ifdef CONFIG_IPW2200_MONITOR
8836 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8837 priv->net_dev->type = ARPHRD_ETHER;
8838
8839 if (wrqu->mode == IW_MODE_MONITOR)
8840 #ifdef CONFIG_IPW2200_RADIOTAP
8841 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8842 #else
8843 priv->net_dev->type = ARPHRD_IEEE80211;
8844 #endif
8845 #endif /* CONFIG_IPW2200_MONITOR */
8846
8847 /* Free the existing firmware and reset the fw_loaded
8848 * flag so ipw_load() will bring in the new firmawre */
8849 free_firmware();
8850
8851 priv->ieee->iw_mode = wrqu->mode;
8852
8853 queue_work(priv->workqueue, &priv->adapter_restart);
8854 mutex_unlock(&priv->mutex);
8855 return err;
8856 }
8857
8858 static int ipw_wx_get_mode(struct net_device *dev,
8859 struct iw_request_info *info,
8860 union iwreq_data *wrqu, char *extra)
8861 {
8862 struct ipw_priv *priv = ieee80211_priv(dev);
8863 mutex_lock(&priv->mutex);
8864 wrqu->mode = priv->ieee->iw_mode;
8865 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8866 mutex_unlock(&priv->mutex);
8867 return 0;
8868 }
8869
8870 /* Values are in microsecond */
8871 static const s32 timeout_duration[] = {
8872 350000,
8873 250000,
8874 75000,
8875 37000,
8876 25000,
8877 };
8878
8879 static const s32 period_duration[] = {
8880 400000,
8881 700000,
8882 1000000,
8883 1000000,
8884 1000000
8885 };
8886
8887 static int ipw_wx_get_range(struct net_device *dev,
8888 struct iw_request_info *info,
8889 union iwreq_data *wrqu, char *extra)
8890 {
8891 struct ipw_priv *priv = ieee80211_priv(dev);
8892 struct iw_range *range = (struct iw_range *)extra;
8893 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8894 int i = 0, j;
8895
8896 wrqu->data.length = sizeof(*range);
8897 memset(range, 0, sizeof(*range));
8898
8899 /* 54Mbs == ~27 Mb/s real (802.11g) */
8900 range->throughput = 27 * 1000 * 1000;
8901
8902 range->max_qual.qual = 100;
8903 /* TODO: Find real max RSSI and stick here */
8904 range->max_qual.level = 0;
8905 range->max_qual.noise = 0;
8906 range->max_qual.updated = 7; /* Updated all three */
8907
8908 range->avg_qual.qual = 70;
8909 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8910 range->avg_qual.level = 0; /* FIXME to real average level */
8911 range->avg_qual.noise = 0;
8912 range->avg_qual.updated = 7; /* Updated all three */
8913 mutex_lock(&priv->mutex);
8914 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8915
8916 for (i = 0; i < range->num_bitrates; i++)
8917 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8918 500000;
8919
8920 range->max_rts = DEFAULT_RTS_THRESHOLD;
8921 range->min_frag = MIN_FRAG_THRESHOLD;
8922 range->max_frag = MAX_FRAG_THRESHOLD;
8923
8924 range->encoding_size[0] = 5;
8925 range->encoding_size[1] = 13;
8926 range->num_encoding_sizes = 2;
8927 range->max_encoding_tokens = WEP_KEYS;
8928
8929 /* Set the Wireless Extension versions */
8930 range->we_version_compiled = WIRELESS_EXT;
8931 range->we_version_source = 18;
8932
8933 i = 0;
8934 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8935 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8936 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8937 (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8938 continue;
8939
8940 range->freq[i].i = geo->bg[j].channel;
8941 range->freq[i].m = geo->bg[j].freq * 100000;
8942 range->freq[i].e = 1;
8943 i++;
8944 }
8945 }
8946
8947 if (priv->ieee->mode & IEEE_A) {
8948 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8949 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8950 (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8951 continue;
8952
8953 range->freq[i].i = geo->a[j].channel;
8954 range->freq[i].m = geo->a[j].freq * 100000;
8955 range->freq[i].e = 1;
8956 i++;
8957 }
8958 }
8959
8960 range->num_channels = i;
8961 range->num_frequency = i;
8962
8963 mutex_unlock(&priv->mutex);
8964
8965 /* Event capability (kernel + driver) */
8966 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8967 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8968 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8969 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8970 range->event_capa[1] = IW_EVENT_CAPA_K_1;
8971
8972 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8973 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8974
8975 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8976
8977 IPW_DEBUG_WX("GET Range\n");
8978 return 0;
8979 }
8980
8981 static int ipw_wx_set_wap(struct net_device *dev,
8982 struct iw_request_info *info,
8983 union iwreq_data *wrqu, char *extra)
8984 {
8985 struct ipw_priv *priv = ieee80211_priv(dev);
8986 DECLARE_MAC_BUF(mac);
8987
8988 static const unsigned char any[] = {
8989 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8990 };
8991 static const unsigned char off[] = {
8992 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8993 };
8994
8995 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8996 return -EINVAL;
8997 mutex_lock(&priv->mutex);
8998 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8999 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9000 /* we disable mandatory BSSID association */
9001 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
9002 priv->config &= ~CFG_STATIC_BSSID;
9003 IPW_DEBUG_ASSOC("Attempting to associate with new "
9004 "parameters.\n");
9005 ipw_associate(priv);
9006 mutex_unlock(&priv->mutex);
9007 return 0;
9008 }
9009
9010 priv->config |= CFG_STATIC_BSSID;
9011 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9012 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9013 mutex_unlock(&priv->mutex);
9014 return 0;
9015 }
9016
9017 IPW_DEBUG_WX("Setting mandatory BSSID to %s\n",
9018 print_mac(mac, wrqu->ap_addr.sa_data));
9019
9020 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9021
9022 /* Network configuration changed -- force [re]association */
9023 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9024 if (!ipw_disassociate(priv))
9025 ipw_associate(priv);
9026
9027 mutex_unlock(&priv->mutex);
9028 return 0;
9029 }
9030
9031 static int ipw_wx_get_wap(struct net_device *dev,
9032 struct iw_request_info *info,
9033 union iwreq_data *wrqu, char *extra)
9034 {
9035 struct ipw_priv *priv = ieee80211_priv(dev);
9036 DECLARE_MAC_BUF(mac);
9037
9038 /* If we are associated, trying to associate, or have a statically
9039 * configured BSSID then return that; otherwise return ANY */
9040 mutex_lock(&priv->mutex);
9041 if (priv->config & CFG_STATIC_BSSID ||
9042 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9043 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9044 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9045 } else
9046 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9047
9048 IPW_DEBUG_WX("Getting WAP BSSID: %s\n",
9049 print_mac(mac, wrqu->ap_addr.sa_data));
9050 mutex_unlock(&priv->mutex);
9051 return 0;
9052 }
9053
9054 static int ipw_wx_set_essid(struct net_device *dev,
9055 struct iw_request_info *info,
9056 union iwreq_data *wrqu, char *extra)
9057 {
9058 struct ipw_priv *priv = ieee80211_priv(dev);
9059 int length;
9060
9061 mutex_lock(&priv->mutex);
9062
9063 if (!wrqu->essid.flags)
9064 {
9065 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9066 ipw_disassociate(priv);
9067 priv->config &= ~CFG_STATIC_ESSID;
9068 ipw_associate(priv);
9069 mutex_unlock(&priv->mutex);
9070 return 0;
9071 }
9072
9073 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9074
9075 priv->config |= CFG_STATIC_ESSID;
9076
9077 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9078 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9079 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9080 mutex_unlock(&priv->mutex);
9081 return 0;
9082 }
9083
9084 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(extra, length),
9085 length);
9086
9087 priv->essid_len = length;
9088 memcpy(priv->essid, extra, priv->essid_len);
9089
9090 /* Network configuration changed -- force [re]association */
9091 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9092 if (!ipw_disassociate(priv))
9093 ipw_associate(priv);
9094
9095 mutex_unlock(&priv->mutex);
9096 return 0;
9097 }
9098
9099 static int ipw_wx_get_essid(struct net_device *dev,
9100 struct iw_request_info *info,
9101 union iwreq_data *wrqu, char *extra)
9102 {
9103 struct ipw_priv *priv = ieee80211_priv(dev);
9104
9105 /* If we are associated, trying to associate, or have a statically
9106 * configured ESSID then return that; otherwise return ANY */
9107 mutex_lock(&priv->mutex);
9108 if (priv->config & CFG_STATIC_ESSID ||
9109 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9110 IPW_DEBUG_WX("Getting essid: '%s'\n",
9111 escape_essid(priv->essid, priv->essid_len));
9112 memcpy(extra, priv->essid, priv->essid_len);
9113 wrqu->essid.length = priv->essid_len;
9114 wrqu->essid.flags = 1; /* active */
9115 } else {
9116 IPW_DEBUG_WX("Getting essid: ANY\n");
9117 wrqu->essid.length = 0;
9118 wrqu->essid.flags = 0; /* active */
9119 }
9120 mutex_unlock(&priv->mutex);
9121 return 0;
9122 }
9123
9124 static int ipw_wx_set_nick(struct net_device *dev,
9125 struct iw_request_info *info,
9126 union iwreq_data *wrqu, char *extra)
9127 {
9128 struct ipw_priv *priv = ieee80211_priv(dev);
9129
9130 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9131 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9132 return -E2BIG;
9133 mutex_lock(&priv->mutex);
9134 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9135 memset(priv->nick, 0, sizeof(priv->nick));
9136 memcpy(priv->nick, extra, wrqu->data.length);
9137 IPW_DEBUG_TRACE("<<\n");
9138 mutex_unlock(&priv->mutex);
9139 return 0;
9140
9141 }
9142
9143 static int ipw_wx_get_nick(struct net_device *dev,
9144 struct iw_request_info *info,
9145 union iwreq_data *wrqu, char *extra)
9146 {
9147 struct ipw_priv *priv = ieee80211_priv(dev);
9148 IPW_DEBUG_WX("Getting nick\n");
9149 mutex_lock(&priv->mutex);
9150 wrqu->data.length = strlen(priv->nick);
9151 memcpy(extra, priv->nick, wrqu->data.length);
9152 wrqu->data.flags = 1; /* active */
9153 mutex_unlock(&priv->mutex);
9154 return 0;
9155 }
9156
9157 static int ipw_wx_set_sens(struct net_device *dev,
9158 struct iw_request_info *info,
9159 union iwreq_data *wrqu, char *extra)
9160 {
9161 struct ipw_priv *priv = ieee80211_priv(dev);
9162 int err = 0;
9163
9164 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9165 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9166 mutex_lock(&priv->mutex);
9167
9168 if (wrqu->sens.fixed == 0)
9169 {
9170 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9171 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9172 goto out;
9173 }
9174 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9175 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9176 err = -EINVAL;
9177 goto out;
9178 }
9179
9180 priv->roaming_threshold = wrqu->sens.value;
9181 priv->disassociate_threshold = 3*wrqu->sens.value;
9182 out:
9183 mutex_unlock(&priv->mutex);
9184 return err;
9185 }
9186
9187 static int ipw_wx_get_sens(struct net_device *dev,
9188 struct iw_request_info *info,
9189 union iwreq_data *wrqu, char *extra)
9190 {
9191 struct ipw_priv *priv = ieee80211_priv(dev);
9192 mutex_lock(&priv->mutex);
9193 wrqu->sens.fixed = 1;
9194 wrqu->sens.value = priv->roaming_threshold;
9195 mutex_unlock(&priv->mutex);
9196
9197 IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9198 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9199
9200 return 0;
9201 }
9202
9203 static int ipw_wx_set_rate(struct net_device *dev,
9204 struct iw_request_info *info,
9205 union iwreq_data *wrqu, char *extra)
9206 {
9207 /* TODO: We should use semaphores or locks for access to priv */
9208 struct ipw_priv *priv = ieee80211_priv(dev);
9209 u32 target_rate = wrqu->bitrate.value;
9210 u32 fixed, mask;
9211
9212 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9213 /* value = X, fixed = 1 means only rate X */
9214 /* value = X, fixed = 0 means all rates lower equal X */
9215
9216 if (target_rate == -1) {
9217 fixed = 0;
9218 mask = IEEE80211_DEFAULT_RATES_MASK;
9219 /* Now we should reassociate */
9220 goto apply;
9221 }
9222
9223 mask = 0;
9224 fixed = wrqu->bitrate.fixed;
9225
9226 if (target_rate == 1000000 || !fixed)
9227 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9228 if (target_rate == 1000000)
9229 goto apply;
9230
9231 if (target_rate == 2000000 || !fixed)
9232 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9233 if (target_rate == 2000000)
9234 goto apply;
9235
9236 if (target_rate == 5500000 || !fixed)
9237 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9238 if (target_rate == 5500000)
9239 goto apply;
9240
9241 if (target_rate == 6000000 || !fixed)
9242 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9243 if (target_rate == 6000000)
9244 goto apply;
9245
9246 if (target_rate == 9000000 || !fixed)
9247 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9248 if (target_rate == 9000000)
9249 goto apply;
9250
9251 if (target_rate == 11000000 || !fixed)
9252 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9253 if (target_rate == 11000000)
9254 goto apply;
9255
9256 if (target_rate == 12000000 || !fixed)
9257 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9258 if (target_rate == 12000000)
9259 goto apply;
9260
9261 if (target_rate == 18000000 || !fixed)
9262 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9263 if (target_rate == 18000000)
9264 goto apply;
9265
9266 if (target_rate == 24000000 || !fixed)
9267 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9268 if (target_rate == 24000000)
9269 goto apply;
9270
9271 if (target_rate == 36000000 || !fixed)
9272 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9273 if (target_rate == 36000000)
9274 goto apply;
9275
9276 if (target_rate == 48000000 || !fixed)
9277 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9278 if (target_rate == 48000000)
9279 goto apply;
9280
9281 if (target_rate == 54000000 || !fixed)
9282 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9283 if (target_rate == 54000000)
9284 goto apply;
9285
9286 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9287 return -EINVAL;
9288
9289 apply:
9290 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9291 mask, fixed ? "fixed" : "sub-rates");
9292 mutex_lock(&priv->mutex);
9293 if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9294 priv->config &= ~CFG_FIXED_RATE;
9295 ipw_set_fixed_rate(priv, priv->ieee->mode);
9296 } else
9297 priv->config |= CFG_FIXED_RATE;
9298
9299 if (priv->rates_mask == mask) {
9300 IPW_DEBUG_WX("Mask set to current mask.\n");
9301 mutex_unlock(&priv->mutex);
9302 return 0;
9303 }
9304
9305 priv->rates_mask = mask;
9306
9307 /* Network configuration changed -- force [re]association */
9308 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9309 if (!ipw_disassociate(priv))
9310 ipw_associate(priv);
9311
9312 mutex_unlock(&priv->mutex);
9313 return 0;
9314 }
9315
9316 static int ipw_wx_get_rate(struct net_device *dev,
9317 struct iw_request_info *info,
9318 union iwreq_data *wrqu, char *extra)
9319 {
9320 struct ipw_priv *priv = ieee80211_priv(dev);
9321 mutex_lock(&priv->mutex);
9322 wrqu->bitrate.value = priv->last_rate;
9323 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9324 mutex_unlock(&priv->mutex);
9325 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9326 return 0;
9327 }
9328
9329 static int ipw_wx_set_rts(struct net_device *dev,
9330 struct iw_request_info *info,
9331 union iwreq_data *wrqu, char *extra)
9332 {
9333 struct ipw_priv *priv = ieee80211_priv(dev);
9334 mutex_lock(&priv->mutex);
9335 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9336 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9337 else {
9338 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9339 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9340 mutex_unlock(&priv->mutex);
9341 return -EINVAL;
9342 }
9343 priv->rts_threshold = wrqu->rts.value;
9344 }
9345
9346 ipw_send_rts_threshold(priv, priv->rts_threshold);
9347 mutex_unlock(&priv->mutex);
9348 IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9349 return 0;
9350 }
9351
9352 static int ipw_wx_get_rts(struct net_device *dev,
9353 struct iw_request_info *info,
9354 union iwreq_data *wrqu, char *extra)
9355 {
9356 struct ipw_priv *priv = ieee80211_priv(dev);
9357 mutex_lock(&priv->mutex);
9358 wrqu->rts.value = priv->rts_threshold;
9359 wrqu->rts.fixed = 0; /* no auto select */
9360 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9361 mutex_unlock(&priv->mutex);
9362 IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9363 return 0;
9364 }
9365
9366 static int ipw_wx_set_txpow(struct net_device *dev,
9367 struct iw_request_info *info,
9368 union iwreq_data *wrqu, char *extra)
9369 {
9370 struct ipw_priv *priv = ieee80211_priv(dev);
9371 int err = 0;
9372
9373 mutex_lock(&priv->mutex);
9374 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9375 err = -EINPROGRESS;
9376 goto out;
9377 }
9378
9379 if (!wrqu->power.fixed)
9380 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9381
9382 if (wrqu->power.flags != IW_TXPOW_DBM) {
9383 err = -EINVAL;
9384 goto out;
9385 }
9386
9387 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9388 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9389 err = -EINVAL;
9390 goto out;
9391 }
9392
9393 priv->tx_power = wrqu->power.value;
9394 err = ipw_set_tx_power(priv);
9395 out:
9396 mutex_unlock(&priv->mutex);
9397 return err;
9398 }
9399
9400 static int ipw_wx_get_txpow(struct net_device *dev,
9401 struct iw_request_info *info,
9402 union iwreq_data *wrqu, char *extra)
9403 {
9404 struct ipw_priv *priv = ieee80211_priv(dev);
9405 mutex_lock(&priv->mutex);
9406 wrqu->power.value = priv->tx_power;
9407 wrqu->power.fixed = 1;
9408 wrqu->power.flags = IW_TXPOW_DBM;
9409 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9410 mutex_unlock(&priv->mutex);
9411
9412 IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9413 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9414
9415 return 0;
9416 }
9417
9418 static int ipw_wx_set_frag(struct net_device *dev,
9419 struct iw_request_info *info,
9420 union iwreq_data *wrqu, char *extra)
9421 {
9422 struct ipw_priv *priv = ieee80211_priv(dev);
9423 mutex_lock(&priv->mutex);
9424 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9425 priv->ieee->fts = DEFAULT_FTS;
9426 else {
9427 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9428 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9429 mutex_unlock(&priv->mutex);
9430 return -EINVAL;
9431 }
9432
9433 priv->ieee->fts = wrqu->frag.value & ~0x1;
9434 }
9435
9436 ipw_send_frag_threshold(priv, wrqu->frag.value);
9437 mutex_unlock(&priv->mutex);
9438 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9439 return 0;
9440 }
9441
9442 static int ipw_wx_get_frag(struct net_device *dev,
9443 struct iw_request_info *info,
9444 union iwreq_data *wrqu, char *extra)
9445 {
9446 struct ipw_priv *priv = ieee80211_priv(dev);
9447 mutex_lock(&priv->mutex);
9448 wrqu->frag.value = priv->ieee->fts;
9449 wrqu->frag.fixed = 0; /* no auto select */
9450 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9451 mutex_unlock(&priv->mutex);
9452 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9453
9454 return 0;
9455 }
9456
9457 static int ipw_wx_set_retry(struct net_device *dev,
9458 struct iw_request_info *info,
9459 union iwreq_data *wrqu, char *extra)
9460 {
9461 struct ipw_priv *priv = ieee80211_priv(dev);
9462
9463 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9464 return -EINVAL;
9465
9466 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9467 return 0;
9468
9469 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9470 return -EINVAL;
9471
9472 mutex_lock(&priv->mutex);
9473 if (wrqu->retry.flags & IW_RETRY_SHORT)
9474 priv->short_retry_limit = (u8) wrqu->retry.value;
9475 else if (wrqu->retry.flags & IW_RETRY_LONG)
9476 priv->long_retry_limit = (u8) wrqu->retry.value;
9477 else {
9478 priv->short_retry_limit = (u8) wrqu->retry.value;
9479 priv->long_retry_limit = (u8) wrqu->retry.value;
9480 }
9481
9482 ipw_send_retry_limit(priv, priv->short_retry_limit,
9483 priv->long_retry_limit);
9484 mutex_unlock(&priv->mutex);
9485 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9486 priv->short_retry_limit, priv->long_retry_limit);
9487 return 0;
9488 }
9489
9490 static int ipw_wx_get_retry(struct net_device *dev,
9491 struct iw_request_info *info,
9492 union iwreq_data *wrqu, char *extra)
9493 {
9494 struct ipw_priv *priv = ieee80211_priv(dev);
9495
9496 mutex_lock(&priv->mutex);
9497 wrqu->retry.disabled = 0;
9498
9499 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9500 mutex_unlock(&priv->mutex);
9501 return -EINVAL;
9502 }
9503
9504 if (wrqu->retry.flags & IW_RETRY_LONG) {
9505 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9506 wrqu->retry.value = priv->long_retry_limit;
9507 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9508 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9509 wrqu->retry.value = priv->short_retry_limit;
9510 } else {
9511 wrqu->retry.flags = IW_RETRY_LIMIT;
9512 wrqu->retry.value = priv->short_retry_limit;
9513 }
9514 mutex_unlock(&priv->mutex);
9515
9516 IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9517
9518 return 0;
9519 }
9520
9521 static int ipw_wx_set_scan(struct net_device *dev,
9522 struct iw_request_info *info,
9523 union iwreq_data *wrqu, char *extra)
9524 {
9525 struct ipw_priv *priv = ieee80211_priv(dev);
9526 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9527 struct delayed_work *work = NULL;
9528
9529 mutex_lock(&priv->mutex);
9530
9531 priv->user_requested_scan = 1;
9532
9533 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9534 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9535 int len = min((int)req->essid_len,
9536 (int)sizeof(priv->direct_scan_ssid));
9537 memcpy(priv->direct_scan_ssid, req->essid, len);
9538 priv->direct_scan_ssid_len = len;
9539 work = &priv->request_direct_scan;
9540 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9541 work = &priv->request_passive_scan;
9542 }
9543 } else {
9544 /* Normal active broadcast scan */
9545 work = &priv->request_scan;
9546 }
9547
9548 mutex_unlock(&priv->mutex);
9549
9550 IPW_DEBUG_WX("Start scan\n");
9551
9552 queue_delayed_work(priv->workqueue, work, 0);
9553
9554 return 0;
9555 }
9556
9557 static int ipw_wx_get_scan(struct net_device *dev,
9558 struct iw_request_info *info,
9559 union iwreq_data *wrqu, char *extra)
9560 {
9561 struct ipw_priv *priv = ieee80211_priv(dev);
9562 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9563 }
9564
9565 static int ipw_wx_set_encode(struct net_device *dev,
9566 struct iw_request_info *info,
9567 union iwreq_data *wrqu, char *key)
9568 {
9569 struct ipw_priv *priv = ieee80211_priv(dev);
9570 int ret;
9571 u32 cap = priv->capability;
9572
9573 mutex_lock(&priv->mutex);
9574 ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9575
9576 /* In IBSS mode, we need to notify the firmware to update
9577 * the beacon info after we changed the capability. */
9578 if (cap != priv->capability &&
9579 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9580 priv->status & STATUS_ASSOCIATED)
9581 ipw_disassociate(priv);
9582
9583 mutex_unlock(&priv->mutex);
9584 return ret;
9585 }
9586
9587 static int ipw_wx_get_encode(struct net_device *dev,
9588 struct iw_request_info *info,
9589 union iwreq_data *wrqu, char *key)
9590 {
9591 struct ipw_priv *priv = ieee80211_priv(dev);
9592 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9593 }
9594
9595 static int ipw_wx_set_power(struct net_device *dev,
9596 struct iw_request_info *info,
9597 union iwreq_data *wrqu, char *extra)
9598 {
9599 struct ipw_priv *priv = ieee80211_priv(dev);
9600 int err;
9601 mutex_lock(&priv->mutex);
9602 if (wrqu->power.disabled) {
9603 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9604 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9605 if (err) {
9606 IPW_DEBUG_WX("failed setting power mode.\n");
9607 mutex_unlock(&priv->mutex);
9608 return err;
9609 }
9610 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9611 mutex_unlock(&priv->mutex);
9612 return 0;
9613 }
9614
9615 switch (wrqu->power.flags & IW_POWER_MODE) {
9616 case IW_POWER_ON: /* If not specified */
9617 case IW_POWER_MODE: /* If set all mask */
9618 case IW_POWER_ALL_R: /* If explicitly state all */
9619 break;
9620 default: /* Otherwise we don't support it */
9621 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9622 wrqu->power.flags);
9623 mutex_unlock(&priv->mutex);
9624 return -EOPNOTSUPP;
9625 }
9626
9627 /* If the user hasn't specified a power management mode yet, default
9628 * to BATTERY */
9629 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9630 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9631 else
9632 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9633
9634 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9635 if (err) {
9636 IPW_DEBUG_WX("failed setting power mode.\n");
9637 mutex_unlock(&priv->mutex);
9638 return err;
9639 }
9640
9641 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9642 mutex_unlock(&priv->mutex);
9643 return 0;
9644 }
9645
9646 static int ipw_wx_get_power(struct net_device *dev,
9647 struct iw_request_info *info,
9648 union iwreq_data *wrqu, char *extra)
9649 {
9650 struct ipw_priv *priv = ieee80211_priv(dev);
9651 mutex_lock(&priv->mutex);
9652 if (!(priv->power_mode & IPW_POWER_ENABLED))
9653 wrqu->power.disabled = 1;
9654 else
9655 wrqu->power.disabled = 0;
9656
9657 mutex_unlock(&priv->mutex);
9658 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9659
9660 return 0;
9661 }
9662
9663 static int ipw_wx_set_powermode(struct net_device *dev,
9664 struct iw_request_info *info,
9665 union iwreq_data *wrqu, char *extra)
9666 {
9667 struct ipw_priv *priv = ieee80211_priv(dev);
9668 int mode = *(int *)extra;
9669 int err;
9670
9671 mutex_lock(&priv->mutex);
9672 if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9673 mode = IPW_POWER_AC;
9674
9675 if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9676 err = ipw_send_power_mode(priv, mode);
9677 if (err) {
9678 IPW_DEBUG_WX("failed setting power mode.\n");
9679 mutex_unlock(&priv->mutex);
9680 return err;
9681 }
9682 priv->power_mode = IPW_POWER_ENABLED | mode;
9683 }
9684 mutex_unlock(&priv->mutex);
9685 return 0;
9686 }
9687
9688 #define MAX_WX_STRING 80
9689 static int ipw_wx_get_powermode(struct net_device *dev,
9690 struct iw_request_info *info,
9691 union iwreq_data *wrqu, char *extra)
9692 {
9693 struct ipw_priv *priv = ieee80211_priv(dev);
9694 int level = IPW_POWER_LEVEL(priv->power_mode);
9695 char *p = extra;
9696
9697 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9698
9699 switch (level) {
9700 case IPW_POWER_AC:
9701 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9702 break;
9703 case IPW_POWER_BATTERY:
9704 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9705 break;
9706 default:
9707 p += snprintf(p, MAX_WX_STRING - (p - extra),
9708 "(Timeout %dms, Period %dms)",
9709 timeout_duration[level - 1] / 1000,
9710 period_duration[level - 1] / 1000);
9711 }
9712
9713 if (!(priv->power_mode & IPW_POWER_ENABLED))
9714 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9715
9716 wrqu->data.length = p - extra + 1;
9717
9718 return 0;
9719 }
9720
9721 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9722 struct iw_request_info *info,
9723 union iwreq_data *wrqu, char *extra)
9724 {
9725 struct ipw_priv *priv = ieee80211_priv(dev);
9726 int mode = *(int *)extra;
9727 u8 band = 0, modulation = 0;
9728
9729 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9730 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9731 return -EINVAL;
9732 }
9733 mutex_lock(&priv->mutex);
9734 if (priv->adapter == IPW_2915ABG) {
9735 priv->ieee->abg_true = 1;
9736 if (mode & IEEE_A) {
9737 band |= IEEE80211_52GHZ_BAND;
9738 modulation |= IEEE80211_OFDM_MODULATION;
9739 } else
9740 priv->ieee->abg_true = 0;
9741 } else {
9742 if (mode & IEEE_A) {
9743 IPW_WARNING("Attempt to set 2200BG into "
9744 "802.11a mode\n");
9745 mutex_unlock(&priv->mutex);
9746 return -EINVAL;
9747 }
9748
9749 priv->ieee->abg_true = 0;
9750 }
9751
9752 if (mode & IEEE_B) {
9753 band |= IEEE80211_24GHZ_BAND;
9754 modulation |= IEEE80211_CCK_MODULATION;
9755 } else
9756 priv->ieee->abg_true = 0;
9757
9758 if (mode & IEEE_G) {
9759 band |= IEEE80211_24GHZ_BAND;
9760 modulation |= IEEE80211_OFDM_MODULATION;
9761 } else
9762 priv->ieee->abg_true = 0;
9763
9764 priv->ieee->mode = mode;
9765 priv->ieee->freq_band = band;
9766 priv->ieee->modulation = modulation;
9767 init_supported_rates(priv, &priv->rates);
9768
9769 /* Network configuration changed -- force [re]association */
9770 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9771 if (!ipw_disassociate(priv)) {
9772 ipw_send_supported_rates(priv, &priv->rates);
9773 ipw_associate(priv);
9774 }
9775
9776 /* Update the band LEDs */
9777 ipw_led_band_on(priv);
9778
9779 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9780 mode & IEEE_A ? 'a' : '.',
9781 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9782 mutex_unlock(&priv->mutex);
9783 return 0;
9784 }
9785
9786 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9787 struct iw_request_info *info,
9788 union iwreq_data *wrqu, char *extra)
9789 {
9790 struct ipw_priv *priv = ieee80211_priv(dev);
9791 mutex_lock(&priv->mutex);
9792 switch (priv->ieee->mode) {
9793 case IEEE_A:
9794 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9795 break;
9796 case IEEE_B:
9797 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9798 break;
9799 case IEEE_A | IEEE_B:
9800 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9801 break;
9802 case IEEE_G:
9803 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9804 break;
9805 case IEEE_A | IEEE_G:
9806 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9807 break;
9808 case IEEE_B | IEEE_G:
9809 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9810 break;
9811 case IEEE_A | IEEE_B | IEEE_G:
9812 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9813 break;
9814 default:
9815 strncpy(extra, "unknown", MAX_WX_STRING);
9816 break;
9817 }
9818
9819 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9820
9821 wrqu->data.length = strlen(extra) + 1;
9822 mutex_unlock(&priv->mutex);
9823
9824 return 0;
9825 }
9826
9827 static int ipw_wx_set_preamble(struct net_device *dev,
9828 struct iw_request_info *info,
9829 union iwreq_data *wrqu, char *extra)
9830 {
9831 struct ipw_priv *priv = ieee80211_priv(dev);
9832 int mode = *(int *)extra;
9833 mutex_lock(&priv->mutex);
9834 /* Switching from SHORT -> LONG requires a disassociation */
9835 if (mode == 1) {
9836 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9837 priv->config |= CFG_PREAMBLE_LONG;
9838
9839 /* Network configuration changed -- force [re]association */
9840 IPW_DEBUG_ASSOC
9841 ("[re]association triggered due to preamble change.\n");
9842 if (!ipw_disassociate(priv))
9843 ipw_associate(priv);
9844 }
9845 goto done;
9846 }
9847
9848 if (mode == 0) {
9849 priv->config &= ~CFG_PREAMBLE_LONG;
9850 goto done;
9851 }
9852 mutex_unlock(&priv->mutex);
9853 return -EINVAL;
9854
9855 done:
9856 mutex_unlock(&priv->mutex);
9857 return 0;
9858 }
9859
9860 static int ipw_wx_get_preamble(struct net_device *dev,
9861 struct iw_request_info *info,
9862 union iwreq_data *wrqu, char *extra)
9863 {
9864 struct ipw_priv *priv = ieee80211_priv(dev);
9865 mutex_lock(&priv->mutex);
9866 if (priv->config & CFG_PREAMBLE_LONG)
9867 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9868 else
9869 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9870 mutex_unlock(&priv->mutex);
9871 return 0;
9872 }
9873
9874 #ifdef CONFIG_IPW2200_MONITOR
9875 static int ipw_wx_set_monitor(struct net_device *dev,
9876 struct iw_request_info *info,
9877 union iwreq_data *wrqu, char *extra)
9878 {
9879 struct ipw_priv *priv = ieee80211_priv(dev);
9880 int *parms = (int *)extra;
9881 int enable = (parms[0] > 0);
9882 mutex_lock(&priv->mutex);
9883 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9884 if (enable) {
9885 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9886 #ifdef CONFIG_IPW2200_RADIOTAP
9887 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9888 #else
9889 priv->net_dev->type = ARPHRD_IEEE80211;
9890 #endif
9891 queue_work(priv->workqueue, &priv->adapter_restart);
9892 }
9893
9894 ipw_set_channel(priv, parms[1]);
9895 } else {
9896 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9897 mutex_unlock(&priv->mutex);
9898 return 0;
9899 }
9900 priv->net_dev->type = ARPHRD_ETHER;
9901 queue_work(priv->workqueue, &priv->adapter_restart);
9902 }
9903 mutex_unlock(&priv->mutex);
9904 return 0;
9905 }
9906
9907 #endif /* CONFIG_IPW2200_MONITOR */
9908
9909 static int ipw_wx_reset(struct net_device *dev,
9910 struct iw_request_info *info,
9911 union iwreq_data *wrqu, char *extra)
9912 {
9913 struct ipw_priv *priv = ieee80211_priv(dev);
9914 IPW_DEBUG_WX("RESET\n");
9915 queue_work(priv->workqueue, &priv->adapter_restart);
9916 return 0;
9917 }
9918
9919 static int ipw_wx_sw_reset(struct net_device *dev,
9920 struct iw_request_info *info,
9921 union iwreq_data *wrqu, char *extra)
9922 {
9923 struct ipw_priv *priv = ieee80211_priv(dev);
9924 union iwreq_data wrqu_sec = {
9925 .encoding = {
9926 .flags = IW_ENCODE_DISABLED,
9927 },
9928 };
9929 int ret;
9930
9931 IPW_DEBUG_WX("SW_RESET\n");
9932
9933 mutex_lock(&priv->mutex);
9934
9935 ret = ipw_sw_reset(priv, 2);
9936 if (!ret) {
9937 free_firmware();
9938 ipw_adapter_restart(priv);
9939 }
9940
9941 /* The SW reset bit might have been toggled on by the 'disable'
9942 * module parameter, so take appropriate action */
9943 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9944
9945 mutex_unlock(&priv->mutex);
9946 ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9947 mutex_lock(&priv->mutex);
9948
9949 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9950 /* Configuration likely changed -- force [re]association */
9951 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9952 "reset.\n");
9953 if (!ipw_disassociate(priv))
9954 ipw_associate(priv);
9955 }
9956
9957 mutex_unlock(&priv->mutex);
9958
9959 return 0;
9960 }
9961
9962 /* Rebase the WE IOCTLs to zero for the handler array */
9963 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9964 static iw_handler ipw_wx_handlers[] = {
9965 IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9966 IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9967 IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9968 IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9969 IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9970 IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9971 IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9972 IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9973 IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9974 IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9975 IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9976 IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9977 IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9978 IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9979 IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9980 IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9981 IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9982 IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9983 IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9984 IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9985 IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9986 IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9987 IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9988 IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9989 IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9990 IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9991 IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9992 IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9993 IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9994 IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9995 IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9996 IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9997 IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9998 IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9999 IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
10000 IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
10001 IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
10002 IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
10003 IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
10004 IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
10005 IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
10006 };
10007
10008 enum {
10009 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10010 IPW_PRIV_GET_POWER,
10011 IPW_PRIV_SET_MODE,
10012 IPW_PRIV_GET_MODE,
10013 IPW_PRIV_SET_PREAMBLE,
10014 IPW_PRIV_GET_PREAMBLE,
10015 IPW_PRIV_RESET,
10016 IPW_PRIV_SW_RESET,
10017 #ifdef CONFIG_IPW2200_MONITOR
10018 IPW_PRIV_SET_MONITOR,
10019 #endif
10020 };
10021
10022 static struct iw_priv_args ipw_priv_args[] = {
10023 {
10024 .cmd = IPW_PRIV_SET_POWER,
10025 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10026 .name = "set_power"},
10027 {
10028 .cmd = IPW_PRIV_GET_POWER,
10029 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10030 .name = "get_power"},
10031 {
10032 .cmd = IPW_PRIV_SET_MODE,
10033 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10034 .name = "set_mode"},
10035 {
10036 .cmd = IPW_PRIV_GET_MODE,
10037 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10038 .name = "get_mode"},
10039 {
10040 .cmd = IPW_PRIV_SET_PREAMBLE,
10041 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10042 .name = "set_preamble"},
10043 {
10044 .cmd = IPW_PRIV_GET_PREAMBLE,
10045 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10046 .name = "get_preamble"},
10047 {
10048 IPW_PRIV_RESET,
10049 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10050 {
10051 IPW_PRIV_SW_RESET,
10052 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10053 #ifdef CONFIG_IPW2200_MONITOR
10054 {
10055 IPW_PRIV_SET_MONITOR,
10056 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10057 #endif /* CONFIG_IPW2200_MONITOR */
10058 };
10059
10060 static iw_handler ipw_priv_handler[] = {
10061 ipw_wx_set_powermode,
10062 ipw_wx_get_powermode,
10063 ipw_wx_set_wireless_mode,
10064 ipw_wx_get_wireless_mode,
10065 ipw_wx_set_preamble,
10066 ipw_wx_get_preamble,
10067 ipw_wx_reset,
10068 ipw_wx_sw_reset,
10069 #ifdef CONFIG_IPW2200_MONITOR
10070 ipw_wx_set_monitor,
10071 #endif
10072 };
10073
10074 static struct iw_handler_def ipw_wx_handler_def = {
10075 .standard = ipw_wx_handlers,
10076 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10077 .num_private = ARRAY_SIZE(ipw_priv_handler),
10078 .num_private_args = ARRAY_SIZE(ipw_priv_args),
10079 .private = ipw_priv_handler,
10080 .private_args = ipw_priv_args,
10081 .get_wireless_stats = ipw_get_wireless_stats,
10082 };
10083
10084 /*
10085 * Get wireless statistics.
10086 * Called by /proc/net/wireless
10087 * Also called by SIOCGIWSTATS
10088 */
10089 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10090 {
10091 struct ipw_priv *priv = ieee80211_priv(dev);
10092 struct iw_statistics *wstats;
10093
10094 wstats = &priv->wstats;
10095
10096 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10097 * netdev->get_wireless_stats seems to be called before fw is
10098 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10099 * and associated; if not associcated, the values are all meaningless
10100 * anyway, so set them all to NULL and INVALID */
10101 if (!(priv->status & STATUS_ASSOCIATED)) {
10102 wstats->miss.beacon = 0;
10103 wstats->discard.retries = 0;
10104 wstats->qual.qual = 0;
10105 wstats->qual.level = 0;
10106 wstats->qual.noise = 0;
10107 wstats->qual.updated = 7;
10108 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10109 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10110 return wstats;
10111 }
10112
10113 wstats->qual.qual = priv->quality;
10114 wstats->qual.level = priv->exp_avg_rssi;
10115 wstats->qual.noise = priv->exp_avg_noise;
10116 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10117 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10118
10119 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10120 wstats->discard.retries = priv->last_tx_failures;
10121 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10122
10123 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10124 goto fail_get_ordinal;
10125 wstats->discard.retries += tx_retry; */
10126
10127 return wstats;
10128 }
10129
10130 /* net device stuff */
10131
10132 static void init_sys_config(struct ipw_sys_config *sys_config)
10133 {
10134 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10135 sys_config->bt_coexistence = 0;
10136 sys_config->answer_broadcast_ssid_probe = 0;
10137 sys_config->accept_all_data_frames = 0;
10138 sys_config->accept_non_directed_frames = 1;
10139 sys_config->exclude_unicast_unencrypted = 0;
10140 sys_config->disable_unicast_decryption = 1;
10141 sys_config->exclude_multicast_unencrypted = 0;
10142 sys_config->disable_multicast_decryption = 1;
10143 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10144 antenna = CFG_SYS_ANTENNA_BOTH;
10145 sys_config->antenna_diversity = antenna;
10146 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10147 sys_config->dot11g_auto_detection = 0;
10148 sys_config->enable_cts_to_self = 0;
10149 sys_config->bt_coexist_collision_thr = 0;
10150 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10151 sys_config->silence_threshold = 0x1e;
10152 }
10153
10154 static int ipw_net_open(struct net_device *dev)
10155 {
10156 IPW_DEBUG_INFO("dev->open\n");
10157 netif_start_queue(dev);
10158 return 0;
10159 }
10160
10161 static int ipw_net_stop(struct net_device *dev)
10162 {
10163 IPW_DEBUG_INFO("dev->close\n");
10164 netif_stop_queue(dev);
10165 return 0;
10166 }
10167
10168 /*
10169 todo:
10170
10171 modify to send one tfd per fragment instead of using chunking. otherwise
10172 we need to heavily modify the ieee80211_skb_to_txb.
10173 */
10174
10175 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10176 int pri)
10177 {
10178 struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10179 txb->fragments[0]->data;
10180 int i = 0;
10181 struct tfd_frame *tfd;
10182 #ifdef CONFIG_IPW2200_QOS
10183 int tx_id = ipw_get_tx_queue_number(priv, pri);
10184 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10185 #else
10186 struct clx2_tx_queue *txq = &priv->txq[0];
10187 #endif
10188 struct clx2_queue *q = &txq->q;
10189 u8 id, hdr_len, unicast;
10190 u16 remaining_bytes;
10191 int fc;
10192
10193 hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10194 switch (priv->ieee->iw_mode) {
10195 case IW_MODE_ADHOC:
10196 unicast = !is_multicast_ether_addr(hdr->addr1);
10197 id = ipw_find_station(priv, hdr->addr1);
10198 if (id == IPW_INVALID_STATION) {
10199 id = ipw_add_station(priv, hdr->addr1);
10200 if (id == IPW_INVALID_STATION) {
10201 IPW_WARNING("Attempt to send data to "
10202 "invalid cell: " MAC_FMT "\n",
10203 hdr->addr1[0], hdr->addr1[1],
10204 hdr->addr1[2], hdr->addr1[3],
10205 hdr->addr1[4], hdr->addr1[5]);
10206 goto drop;
10207 }
10208 }
10209 break;
10210
10211 case IW_MODE_INFRA:
10212 default:
10213 unicast = !is_multicast_ether_addr(hdr->addr3);
10214 id = 0;
10215 break;
10216 }
10217
10218 tfd = &txq->bd[q->first_empty];
10219 txq->txb[q->first_empty] = txb;
10220 memset(tfd, 0, sizeof(*tfd));
10221 tfd->u.data.station_number = id;
10222
10223 tfd->control_flags.message_type = TX_FRAME_TYPE;
10224 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10225
10226 tfd->u.data.cmd_id = DINO_CMD_TX;
10227 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10228 remaining_bytes = txb->payload_size;
10229
10230 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10231 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10232 else
10233 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10234
10235 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10236 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10237
10238 fc = le16_to_cpu(hdr->frame_ctl);
10239 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10240
10241 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10242
10243 if (likely(unicast))
10244 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10245
10246 if (txb->encrypted && !priv->ieee->host_encrypt) {
10247 switch (priv->ieee->sec.level) {
10248 case SEC_LEVEL_3:
10249 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10250 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10251 /* XXX: ACK flag must be set for CCMP even if it
10252 * is a multicast/broadcast packet, because CCMP
10253 * group communication encrypted by GTK is
10254 * actually done by the AP. */
10255 if (!unicast)
10256 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10257
10258 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10259 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10260 tfd->u.data.key_index = 0;
10261 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10262 break;
10263 case SEC_LEVEL_2:
10264 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10265 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10266 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10267 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10268 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10269 break;
10270 case SEC_LEVEL_1:
10271 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10272 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10273 tfd->u.data.key_index = priv->ieee->tx_keyidx;
10274 if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
10275 40)
10276 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10277 else
10278 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10279 break;
10280 case SEC_LEVEL_0:
10281 break;
10282 default:
10283 printk(KERN_ERR "Unknow security level %d\n",
10284 priv->ieee->sec.level);
10285 break;
10286 }
10287 } else
10288 /* No hardware encryption */
10289 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10290
10291 #ifdef CONFIG_IPW2200_QOS
10292 if (fc & IEEE80211_STYPE_QOS_DATA)
10293 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10294 #endif /* CONFIG_IPW2200_QOS */
10295
10296 /* payload */
10297 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10298 txb->nr_frags));
10299 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10300 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10301 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10302 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10303 i, le32_to_cpu(tfd->u.data.num_chunks),
10304 txb->fragments[i]->len - hdr_len);
10305 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10306 i, tfd->u.data.num_chunks,
10307 txb->fragments[i]->len - hdr_len);
10308 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10309 txb->fragments[i]->len - hdr_len);
10310
10311 tfd->u.data.chunk_ptr[i] =
10312 cpu_to_le32(pci_map_single
10313 (priv->pci_dev,
10314 txb->fragments[i]->data + hdr_len,
10315 txb->fragments[i]->len - hdr_len,
10316 PCI_DMA_TODEVICE));
10317 tfd->u.data.chunk_len[i] =
10318 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10319 }
10320
10321 if (i != txb->nr_frags) {
10322 struct sk_buff *skb;
10323 u16 remaining_bytes = 0;
10324 int j;
10325
10326 for (j = i; j < txb->nr_frags; j++)
10327 remaining_bytes += txb->fragments[j]->len - hdr_len;
10328
10329 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10330 remaining_bytes);
10331 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10332 if (skb != NULL) {
10333 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10334 for (j = i; j < txb->nr_frags; j++) {
10335 int size = txb->fragments[j]->len - hdr_len;
10336
10337 printk(KERN_INFO "Adding frag %d %d...\n",
10338 j, size);
10339 memcpy(skb_put(skb, size),
10340 txb->fragments[j]->data + hdr_len, size);
10341 }
10342 dev_kfree_skb_any(txb->fragments[i]);
10343 txb->fragments[i] = skb;
10344 tfd->u.data.chunk_ptr[i] =
10345 cpu_to_le32(pci_map_single
10346 (priv->pci_dev, skb->data,
10347 remaining_bytes,
10348 PCI_DMA_TODEVICE));
10349
10350 le32_add_cpu(&tfd->u.data.num_chunks, 1);
10351 }
10352 }
10353
10354 /* kick DMA */
10355 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10356 ipw_write32(priv, q->reg_w, q->first_empty);
10357
10358 if (ipw_tx_queue_space(q) < q->high_mark)
10359 netif_stop_queue(priv->net_dev);
10360
10361 return NETDEV_TX_OK;
10362
10363 drop:
10364 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10365 ieee80211_txb_free(txb);
10366 return NETDEV_TX_OK;
10367 }
10368
10369 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10370 {
10371 struct ipw_priv *priv = ieee80211_priv(dev);
10372 #ifdef CONFIG_IPW2200_QOS
10373 int tx_id = ipw_get_tx_queue_number(priv, pri);
10374 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10375 #else
10376 struct clx2_tx_queue *txq = &priv->txq[0];
10377 #endif /* CONFIG_IPW2200_QOS */
10378
10379 if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10380 return 1;
10381
10382 return 0;
10383 }
10384
10385 #ifdef CONFIG_IPW2200_PROMISCUOUS
10386 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10387 struct ieee80211_txb *txb)
10388 {
10389 struct ieee80211_rx_stats dummystats;
10390 struct ieee80211_hdr *hdr;
10391 u8 n;
10392 u16 filter = priv->prom_priv->filter;
10393 int hdr_only = 0;
10394
10395 if (filter & IPW_PROM_NO_TX)
10396 return;
10397
10398 memset(&dummystats, 0, sizeof(dummystats));
10399
10400 /* Filtering of fragment chains is done agains the first fragment */
10401 hdr = (void *)txb->fragments[0]->data;
10402 if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
10403 if (filter & IPW_PROM_NO_MGMT)
10404 return;
10405 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10406 hdr_only = 1;
10407 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
10408 if (filter & IPW_PROM_NO_CTL)
10409 return;
10410 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10411 hdr_only = 1;
10412 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
10413 if (filter & IPW_PROM_NO_DATA)
10414 return;
10415 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10416 hdr_only = 1;
10417 }
10418
10419 for(n=0; n<txb->nr_frags; ++n) {
10420 struct sk_buff *src = txb->fragments[n];
10421 struct sk_buff *dst;
10422 struct ieee80211_radiotap_header *rt_hdr;
10423 int len;
10424
10425 if (hdr_only) {
10426 hdr = (void *)src->data;
10427 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10428 } else
10429 len = src->len;
10430
10431 dst = alloc_skb(
10432 len + IEEE80211_RADIOTAP_HDRLEN, GFP_ATOMIC);
10433 if (!dst) continue;
10434
10435 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10436
10437 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10438 rt_hdr->it_pad = 0;
10439 rt_hdr->it_present = 0; /* after all, it's just an idea */
10440 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10441
10442 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10443 ieee80211chan2mhz(priv->channel));
10444 if (priv->channel > 14) /* 802.11a */
10445 *(__le16*)skb_put(dst, sizeof(u16)) =
10446 cpu_to_le16(IEEE80211_CHAN_OFDM |
10447 IEEE80211_CHAN_5GHZ);
10448 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10449 *(__le16*)skb_put(dst, sizeof(u16)) =
10450 cpu_to_le16(IEEE80211_CHAN_CCK |
10451 IEEE80211_CHAN_2GHZ);
10452 else /* 802.11g */
10453 *(__le16*)skb_put(dst, sizeof(u16)) =
10454 cpu_to_le16(IEEE80211_CHAN_OFDM |
10455 IEEE80211_CHAN_2GHZ);
10456
10457 rt_hdr->it_len = cpu_to_le16(dst->len);
10458
10459 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10460
10461 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10462 dev_kfree_skb_any(dst);
10463 }
10464 }
10465 #endif
10466
10467 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10468 struct net_device *dev, int pri)
10469 {
10470 struct ipw_priv *priv = ieee80211_priv(dev);
10471 unsigned long flags;
10472 int ret;
10473
10474 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10475 spin_lock_irqsave(&priv->lock, flags);
10476
10477 #ifdef CONFIG_IPW2200_PROMISCUOUS
10478 if (rtap_iface && netif_running(priv->prom_net_dev))
10479 ipw_handle_promiscuous_tx(priv, txb);
10480 #endif
10481
10482 ret = ipw_tx_skb(priv, txb, pri);
10483 if (ret == NETDEV_TX_OK)
10484 __ipw_led_activity_on(priv);
10485 spin_unlock_irqrestore(&priv->lock, flags);
10486
10487 return ret;
10488 }
10489
10490 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10491 {
10492 struct ipw_priv *priv = ieee80211_priv(dev);
10493
10494 priv->ieee->stats.tx_packets = priv->tx_packets;
10495 priv->ieee->stats.rx_packets = priv->rx_packets;
10496 return &priv->ieee->stats;
10497 }
10498
10499 static void ipw_net_set_multicast_list(struct net_device *dev)
10500 {
10501
10502 }
10503
10504 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10505 {
10506 struct ipw_priv *priv = ieee80211_priv(dev);
10507 struct sockaddr *addr = p;
10508 DECLARE_MAC_BUF(mac);
10509
10510 if (!is_valid_ether_addr(addr->sa_data))
10511 return -EADDRNOTAVAIL;
10512 mutex_lock(&priv->mutex);
10513 priv->config |= CFG_CUSTOM_MAC;
10514 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10515 printk(KERN_INFO "%s: Setting MAC to %s\n",
10516 priv->net_dev->name, print_mac(mac, priv->mac_addr));
10517 queue_work(priv->workqueue, &priv->adapter_restart);
10518 mutex_unlock(&priv->mutex);
10519 return 0;
10520 }
10521
10522 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10523 struct ethtool_drvinfo *info)
10524 {
10525 struct ipw_priv *p = ieee80211_priv(dev);
10526 char vers[64];
10527 char date[32];
10528 u32 len;
10529
10530 strcpy(info->driver, DRV_NAME);
10531 strcpy(info->version, DRV_VERSION);
10532
10533 len = sizeof(vers);
10534 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10535 len = sizeof(date);
10536 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10537
10538 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10539 vers, date);
10540 strcpy(info->bus_info, pci_name(p->pci_dev));
10541 info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10542 }
10543
10544 static u32 ipw_ethtool_get_link(struct net_device *dev)
10545 {
10546 struct ipw_priv *priv = ieee80211_priv(dev);
10547 return (priv->status & STATUS_ASSOCIATED) != 0;
10548 }
10549
10550 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10551 {
10552 return IPW_EEPROM_IMAGE_SIZE;
10553 }
10554
10555 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10556 struct ethtool_eeprom *eeprom, u8 * bytes)
10557 {
10558 struct ipw_priv *p = ieee80211_priv(dev);
10559
10560 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10561 return -EINVAL;
10562 mutex_lock(&p->mutex);
10563 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10564 mutex_unlock(&p->mutex);
10565 return 0;
10566 }
10567
10568 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10569 struct ethtool_eeprom *eeprom, u8 * bytes)
10570 {
10571 struct ipw_priv *p = ieee80211_priv(dev);
10572 int i;
10573
10574 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10575 return -EINVAL;
10576 mutex_lock(&p->mutex);
10577 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10578 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10579 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10580 mutex_unlock(&p->mutex);
10581 return 0;
10582 }
10583
10584 static const struct ethtool_ops ipw_ethtool_ops = {
10585 .get_link = ipw_ethtool_get_link,
10586 .get_drvinfo = ipw_ethtool_get_drvinfo,
10587 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10588 .get_eeprom = ipw_ethtool_get_eeprom,
10589 .set_eeprom = ipw_ethtool_set_eeprom,
10590 };
10591
10592 static irqreturn_t ipw_isr(int irq, void *data)
10593 {
10594 struct ipw_priv *priv = data;
10595 u32 inta, inta_mask;
10596
10597 if (!priv)
10598 return IRQ_NONE;
10599
10600 spin_lock(&priv->irq_lock);
10601
10602 if (!(priv->status & STATUS_INT_ENABLED)) {
10603 /* IRQ is disabled */
10604 goto none;
10605 }
10606
10607 inta = ipw_read32(priv, IPW_INTA_RW);
10608 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10609
10610 if (inta == 0xFFFFFFFF) {
10611 /* Hardware disappeared */
10612 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10613 goto none;
10614 }
10615
10616 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10617 /* Shared interrupt */
10618 goto none;
10619 }
10620
10621 /* tell the device to stop sending interrupts */
10622 __ipw_disable_interrupts(priv);
10623
10624 /* ack current interrupts */
10625 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10626 ipw_write32(priv, IPW_INTA_RW, inta);
10627
10628 /* Cache INTA value for our tasklet */
10629 priv->isr_inta = inta;
10630
10631 tasklet_schedule(&priv->irq_tasklet);
10632
10633 spin_unlock(&priv->irq_lock);
10634
10635 return IRQ_HANDLED;
10636 none:
10637 spin_unlock(&priv->irq_lock);
10638 return IRQ_NONE;
10639 }
10640
10641 static void ipw_rf_kill(void *adapter)
10642 {
10643 struct ipw_priv *priv = adapter;
10644 unsigned long flags;
10645
10646 spin_lock_irqsave(&priv->lock, flags);
10647
10648 if (rf_kill_active(priv)) {
10649 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10650 if (priv->workqueue)
10651 queue_delayed_work(priv->workqueue,
10652 &priv->rf_kill, 2 * HZ);
10653 goto exit_unlock;
10654 }
10655
10656 /* RF Kill is now disabled, so bring the device back up */
10657
10658 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10659 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10660 "device\n");
10661
10662 /* we can not do an adapter restart while inside an irq lock */
10663 queue_work(priv->workqueue, &priv->adapter_restart);
10664 } else
10665 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10666 "enabled\n");
10667
10668 exit_unlock:
10669 spin_unlock_irqrestore(&priv->lock, flags);
10670 }
10671
10672 static void ipw_bg_rf_kill(struct work_struct *work)
10673 {
10674 struct ipw_priv *priv =
10675 container_of(work, struct ipw_priv, rf_kill.work);
10676 mutex_lock(&priv->mutex);
10677 ipw_rf_kill(priv);
10678 mutex_unlock(&priv->mutex);
10679 }
10680
10681 static void ipw_link_up(struct ipw_priv *priv)
10682 {
10683 priv->last_seq_num = -1;
10684 priv->last_frag_num = -1;
10685 priv->last_packet_time = 0;
10686
10687 netif_carrier_on(priv->net_dev);
10688
10689 cancel_delayed_work(&priv->request_scan);
10690 cancel_delayed_work(&priv->request_direct_scan);
10691 cancel_delayed_work(&priv->request_passive_scan);
10692 cancel_delayed_work(&priv->scan_event);
10693 ipw_reset_stats(priv);
10694 /* Ensure the rate is updated immediately */
10695 priv->last_rate = ipw_get_current_rate(priv);
10696 ipw_gather_stats(priv);
10697 ipw_led_link_up(priv);
10698 notify_wx_assoc_event(priv);
10699
10700 if (priv->config & CFG_BACKGROUND_SCAN)
10701 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10702 }
10703
10704 static void ipw_bg_link_up(struct work_struct *work)
10705 {
10706 struct ipw_priv *priv =
10707 container_of(work, struct ipw_priv, link_up);
10708 mutex_lock(&priv->mutex);
10709 ipw_link_up(priv);
10710 mutex_unlock(&priv->mutex);
10711 }
10712
10713 static void ipw_link_down(struct ipw_priv *priv)
10714 {
10715 ipw_led_link_down(priv);
10716 netif_carrier_off(priv->net_dev);
10717 notify_wx_assoc_event(priv);
10718
10719 /* Cancel any queued work ... */
10720 cancel_delayed_work(&priv->request_scan);
10721 cancel_delayed_work(&priv->request_direct_scan);
10722 cancel_delayed_work(&priv->request_passive_scan);
10723 cancel_delayed_work(&priv->adhoc_check);
10724 cancel_delayed_work(&priv->gather_stats);
10725
10726 ipw_reset_stats(priv);
10727
10728 if (!(priv->status & STATUS_EXIT_PENDING)) {
10729 /* Queue up another scan... */
10730 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10731 } else
10732 cancel_delayed_work(&priv->scan_event);
10733 }
10734
10735 static void ipw_bg_link_down(struct work_struct *work)
10736 {
10737 struct ipw_priv *priv =
10738 container_of(work, struct ipw_priv, link_down);
10739 mutex_lock(&priv->mutex);
10740 ipw_link_down(priv);
10741 mutex_unlock(&priv->mutex);
10742 }
10743
10744 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10745 {
10746 int ret = 0;
10747
10748 priv->workqueue = create_workqueue(DRV_NAME);
10749 init_waitqueue_head(&priv->wait_command_queue);
10750 init_waitqueue_head(&priv->wait_state);
10751
10752 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10753 INIT_WORK(&priv->associate, ipw_bg_associate);
10754 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10755 INIT_WORK(&priv->system_config, ipw_system_config);
10756 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10757 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10758 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10759 INIT_WORK(&priv->up, ipw_bg_up);
10760 INIT_WORK(&priv->down, ipw_bg_down);
10761 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10762 INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10763 INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10764 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10765 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10766 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10767 INIT_WORK(&priv->roam, ipw_bg_roam);
10768 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10769 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10770 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10771 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10772 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10773 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10774 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10775
10776 #ifdef CONFIG_IPW2200_QOS
10777 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10778 #endif /* CONFIG_IPW2200_QOS */
10779
10780 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10781 ipw_irq_tasklet, (unsigned long)priv);
10782
10783 return ret;
10784 }
10785
10786 static void shim__set_security(struct net_device *dev,
10787 struct ieee80211_security *sec)
10788 {
10789 struct ipw_priv *priv = ieee80211_priv(dev);
10790 int i;
10791 for (i = 0; i < 4; i++) {
10792 if (sec->flags & (1 << i)) {
10793 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10794 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10795 if (sec->key_sizes[i] == 0)
10796 priv->ieee->sec.flags &= ~(1 << i);
10797 else {
10798 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10799 sec->key_sizes[i]);
10800 priv->ieee->sec.flags |= (1 << i);
10801 }
10802 priv->status |= STATUS_SECURITY_UPDATED;
10803 } else if (sec->level != SEC_LEVEL_1)
10804 priv->ieee->sec.flags &= ~(1 << i);
10805 }
10806
10807 if (sec->flags & SEC_ACTIVE_KEY) {
10808 if (sec->active_key <= 3) {
10809 priv->ieee->sec.active_key = sec->active_key;
10810 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10811 } else
10812 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10813 priv->status |= STATUS_SECURITY_UPDATED;
10814 } else
10815 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10816
10817 if ((sec->flags & SEC_AUTH_MODE) &&
10818 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10819 priv->ieee->sec.auth_mode = sec->auth_mode;
10820 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10821 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10822 priv->capability |= CAP_SHARED_KEY;
10823 else
10824 priv->capability &= ~CAP_SHARED_KEY;
10825 priv->status |= STATUS_SECURITY_UPDATED;
10826 }
10827
10828 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10829 priv->ieee->sec.flags |= SEC_ENABLED;
10830 priv->ieee->sec.enabled = sec->enabled;
10831 priv->status |= STATUS_SECURITY_UPDATED;
10832 if (sec->enabled)
10833 priv->capability |= CAP_PRIVACY_ON;
10834 else
10835 priv->capability &= ~CAP_PRIVACY_ON;
10836 }
10837
10838 if (sec->flags & SEC_ENCRYPT)
10839 priv->ieee->sec.encrypt = sec->encrypt;
10840
10841 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10842 priv->ieee->sec.level = sec->level;
10843 priv->ieee->sec.flags |= SEC_LEVEL;
10844 priv->status |= STATUS_SECURITY_UPDATED;
10845 }
10846
10847 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10848 ipw_set_hwcrypto_keys(priv);
10849
10850 /* To match current functionality of ipw2100 (which works well w/
10851 * various supplicants, we don't force a disassociate if the
10852 * privacy capability changes ... */
10853 #if 0
10854 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10855 (((priv->assoc_request.capability &
10856 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10857 (!(priv->assoc_request.capability &
10858 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10859 IPW_DEBUG_ASSOC("Disassociating due to capability "
10860 "change.\n");
10861 ipw_disassociate(priv);
10862 }
10863 #endif
10864 }
10865
10866 static int init_supported_rates(struct ipw_priv *priv,
10867 struct ipw_supported_rates *rates)
10868 {
10869 /* TODO: Mask out rates based on priv->rates_mask */
10870
10871 memset(rates, 0, sizeof(*rates));
10872 /* configure supported rates */
10873 switch (priv->ieee->freq_band) {
10874 case IEEE80211_52GHZ_BAND:
10875 rates->ieee_mode = IPW_A_MODE;
10876 rates->purpose = IPW_RATE_CAPABILITIES;
10877 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10878 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10879 break;
10880
10881 default: /* Mixed or 2.4Ghz */
10882 rates->ieee_mode = IPW_G_MODE;
10883 rates->purpose = IPW_RATE_CAPABILITIES;
10884 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10885 IEEE80211_CCK_DEFAULT_RATES_MASK);
10886 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10887 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10888 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10889 }
10890 break;
10891 }
10892
10893 return 0;
10894 }
10895
10896 static int ipw_config(struct ipw_priv *priv)
10897 {
10898 /* This is only called from ipw_up, which resets/reloads the firmware
10899 so, we don't need to first disable the card before we configure
10900 it */
10901 if (ipw_set_tx_power(priv))
10902 goto error;
10903
10904 /* initialize adapter address */
10905 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10906 goto error;
10907
10908 /* set basic system config settings */
10909 init_sys_config(&priv->sys_config);
10910
10911 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10912 * Does not support BT priority yet (don't abort or defer our Tx) */
10913 if (bt_coexist) {
10914 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10915
10916 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10917 priv->sys_config.bt_coexistence
10918 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10919 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10920 priv->sys_config.bt_coexistence
10921 |= CFG_BT_COEXISTENCE_OOB;
10922 }
10923
10924 #ifdef CONFIG_IPW2200_PROMISCUOUS
10925 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10926 priv->sys_config.accept_all_data_frames = 1;
10927 priv->sys_config.accept_non_directed_frames = 1;
10928 priv->sys_config.accept_all_mgmt_bcpr = 1;
10929 priv->sys_config.accept_all_mgmt_frames = 1;
10930 }
10931 #endif
10932
10933 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10934 priv->sys_config.answer_broadcast_ssid_probe = 1;
10935 else
10936 priv->sys_config.answer_broadcast_ssid_probe = 0;
10937
10938 if (ipw_send_system_config(priv))
10939 goto error;
10940
10941 init_supported_rates(priv, &priv->rates);
10942 if (ipw_send_supported_rates(priv, &priv->rates))
10943 goto error;
10944
10945 /* Set request-to-send threshold */
10946 if (priv->rts_threshold) {
10947 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10948 goto error;
10949 }
10950 #ifdef CONFIG_IPW2200_QOS
10951 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10952 ipw_qos_activate(priv, NULL);
10953 #endif /* CONFIG_IPW2200_QOS */
10954
10955 if (ipw_set_random_seed(priv))
10956 goto error;
10957
10958 /* final state transition to the RUN state */
10959 if (ipw_send_host_complete(priv))
10960 goto error;
10961
10962 priv->status |= STATUS_INIT;
10963
10964 ipw_led_init(priv);
10965 ipw_led_radio_on(priv);
10966 priv->notif_missed_beacons = 0;
10967
10968 /* Set hardware WEP key if it is configured. */
10969 if ((priv->capability & CAP_PRIVACY_ON) &&
10970 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10971 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10972 ipw_set_hwcrypto_keys(priv);
10973
10974 return 0;
10975
10976 error:
10977 return -EIO;
10978 }
10979
10980 /*
10981 * NOTE:
10982 *
10983 * These tables have been tested in conjunction with the
10984 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10985 *
10986 * Altering this values, using it on other hardware, or in geographies
10987 * not intended for resale of the above mentioned Intel adapters has
10988 * not been tested.
10989 *
10990 * Remember to update the table in README.ipw2200 when changing this
10991 * table.
10992 *
10993 */
10994 static const struct ieee80211_geo ipw_geos[] = {
10995 { /* Restricted */
10996 "---",
10997 .bg_channels = 11,
10998 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10999 {2427, 4}, {2432, 5}, {2437, 6},
11000 {2442, 7}, {2447, 8}, {2452, 9},
11001 {2457, 10}, {2462, 11}},
11002 },
11003
11004 { /* Custom US/Canada */
11005 "ZZF",
11006 .bg_channels = 11,
11007 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11008 {2427, 4}, {2432, 5}, {2437, 6},
11009 {2442, 7}, {2447, 8}, {2452, 9},
11010 {2457, 10}, {2462, 11}},
11011 .a_channels = 8,
11012 .a = {{5180, 36},
11013 {5200, 40},
11014 {5220, 44},
11015 {5240, 48},
11016 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11017 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11018 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11019 {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
11020 },
11021
11022 { /* Rest of World */
11023 "ZZD",
11024 .bg_channels = 13,
11025 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11026 {2427, 4}, {2432, 5}, {2437, 6},
11027 {2442, 7}, {2447, 8}, {2452, 9},
11028 {2457, 10}, {2462, 11}, {2467, 12},
11029 {2472, 13}},
11030 },
11031
11032 { /* Custom USA & Europe & High */
11033 "ZZA",
11034 .bg_channels = 11,
11035 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11036 {2427, 4}, {2432, 5}, {2437, 6},
11037 {2442, 7}, {2447, 8}, {2452, 9},
11038 {2457, 10}, {2462, 11}},
11039 .a_channels = 13,
11040 .a = {{5180, 36},
11041 {5200, 40},
11042 {5220, 44},
11043 {5240, 48},
11044 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11045 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11046 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11047 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11048 {5745, 149},
11049 {5765, 153},
11050 {5785, 157},
11051 {5805, 161},
11052 {5825, 165}},
11053 },
11054
11055 { /* Custom NA & Europe */
11056 "ZZB",
11057 .bg_channels = 11,
11058 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11059 {2427, 4}, {2432, 5}, {2437, 6},
11060 {2442, 7}, {2447, 8}, {2452, 9},
11061 {2457, 10}, {2462, 11}},
11062 .a_channels = 13,
11063 .a = {{5180, 36},
11064 {5200, 40},
11065 {5220, 44},
11066 {5240, 48},
11067 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11068 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11069 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11070 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11071 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11072 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11073 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11074 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11075 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11076 },
11077
11078 { /* Custom Japan */
11079 "ZZC",
11080 .bg_channels = 11,
11081 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11082 {2427, 4}, {2432, 5}, {2437, 6},
11083 {2442, 7}, {2447, 8}, {2452, 9},
11084 {2457, 10}, {2462, 11}},
11085 .a_channels = 4,
11086 .a = {{5170, 34}, {5190, 38},
11087 {5210, 42}, {5230, 46}},
11088 },
11089
11090 { /* Custom */
11091 "ZZM",
11092 .bg_channels = 11,
11093 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11094 {2427, 4}, {2432, 5}, {2437, 6},
11095 {2442, 7}, {2447, 8}, {2452, 9},
11096 {2457, 10}, {2462, 11}},
11097 },
11098
11099 { /* Europe */
11100 "ZZE",
11101 .bg_channels = 13,
11102 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11103 {2427, 4}, {2432, 5}, {2437, 6},
11104 {2442, 7}, {2447, 8}, {2452, 9},
11105 {2457, 10}, {2462, 11}, {2467, 12},
11106 {2472, 13}},
11107 .a_channels = 19,
11108 .a = {{5180, 36},
11109 {5200, 40},
11110 {5220, 44},
11111 {5240, 48},
11112 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11113 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11114 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11115 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11116 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11117 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11118 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11119 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11120 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11121 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11122 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11123 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11124 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11125 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11126 {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11127 },
11128
11129 { /* Custom Japan */
11130 "ZZJ",
11131 .bg_channels = 14,
11132 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11133 {2427, 4}, {2432, 5}, {2437, 6},
11134 {2442, 7}, {2447, 8}, {2452, 9},
11135 {2457, 10}, {2462, 11}, {2467, 12},
11136 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11137 .a_channels = 4,
11138 .a = {{5170, 34}, {5190, 38},
11139 {5210, 42}, {5230, 46}},
11140 },
11141
11142 { /* Rest of World */
11143 "ZZR",
11144 .bg_channels = 14,
11145 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11146 {2427, 4}, {2432, 5}, {2437, 6},
11147 {2442, 7}, {2447, 8}, {2452, 9},
11148 {2457, 10}, {2462, 11}, {2467, 12},
11149 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11150 IEEE80211_CH_PASSIVE_ONLY}},
11151 },
11152
11153 { /* High Band */
11154 "ZZH",
11155 .bg_channels = 13,
11156 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11157 {2427, 4}, {2432, 5}, {2437, 6},
11158 {2442, 7}, {2447, 8}, {2452, 9},
11159 {2457, 10}, {2462, 11},
11160 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11161 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11162 .a_channels = 4,
11163 .a = {{5745, 149}, {5765, 153},
11164 {5785, 157}, {5805, 161}},
11165 },
11166
11167 { /* Custom Europe */
11168 "ZZG",
11169 .bg_channels = 13,
11170 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11171 {2427, 4}, {2432, 5}, {2437, 6},
11172 {2442, 7}, {2447, 8}, {2452, 9},
11173 {2457, 10}, {2462, 11},
11174 {2467, 12}, {2472, 13}},
11175 .a_channels = 4,
11176 .a = {{5180, 36}, {5200, 40},
11177 {5220, 44}, {5240, 48}},
11178 },
11179
11180 { /* Europe */
11181 "ZZK",
11182 .bg_channels = 13,
11183 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11184 {2427, 4}, {2432, 5}, {2437, 6},
11185 {2442, 7}, {2447, 8}, {2452, 9},
11186 {2457, 10}, {2462, 11},
11187 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11188 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11189 .a_channels = 24,
11190 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11191 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11192 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11193 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11194 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11195 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11196 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11197 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11198 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11199 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11200 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11201 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11202 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11203 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11204 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11205 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11206 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11207 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11208 {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11209 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11210 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11211 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11212 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11213 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11214 },
11215
11216 { /* Europe */
11217 "ZZL",
11218 .bg_channels = 11,
11219 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11220 {2427, 4}, {2432, 5}, {2437, 6},
11221 {2442, 7}, {2447, 8}, {2452, 9},
11222 {2457, 10}, {2462, 11}},
11223 .a_channels = 13,
11224 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11225 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11226 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11227 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11228 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11229 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11230 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11231 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11232 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11233 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11234 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11235 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11236 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11237 }
11238 };
11239
11240 #define MAX_HW_RESTARTS 5
11241 static int ipw_up(struct ipw_priv *priv)
11242 {
11243 int rc, i, j;
11244
11245 if (priv->status & STATUS_EXIT_PENDING)
11246 return -EIO;
11247
11248 if (cmdlog && !priv->cmdlog) {
11249 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11250 GFP_KERNEL);
11251 if (priv->cmdlog == NULL) {
11252 IPW_ERROR("Error allocating %d command log entries.\n",
11253 cmdlog);
11254 return -ENOMEM;
11255 } else {
11256 priv->cmdlog_len = cmdlog;
11257 }
11258 }
11259
11260 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11261 /* Load the microcode, firmware, and eeprom.
11262 * Also start the clocks. */
11263 rc = ipw_load(priv);
11264 if (rc) {
11265 IPW_ERROR("Unable to load firmware: %d\n", rc);
11266 return rc;
11267 }
11268
11269 ipw_init_ordinals(priv);
11270 if (!(priv->config & CFG_CUSTOM_MAC))
11271 eeprom_parse_mac(priv, priv->mac_addr);
11272 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11273
11274 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11275 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11276 ipw_geos[j].name, 3))
11277 break;
11278 }
11279 if (j == ARRAY_SIZE(ipw_geos)) {
11280 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11281 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11282 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11283 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11284 j = 0;
11285 }
11286 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11287 IPW_WARNING("Could not set geography.");
11288 return 0;
11289 }
11290
11291 if (priv->status & STATUS_RF_KILL_SW) {
11292 IPW_WARNING("Radio disabled by module parameter.\n");
11293 return 0;
11294 } else if (rf_kill_active(priv)) {
11295 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11296 "Kill switch must be turned off for "
11297 "wireless networking to work.\n");
11298 queue_delayed_work(priv->workqueue, &priv->rf_kill,
11299 2 * HZ);
11300 return 0;
11301 }
11302
11303 rc = ipw_config(priv);
11304 if (!rc) {
11305 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11306
11307 /* If configure to try and auto-associate, kick
11308 * off a scan. */
11309 queue_delayed_work(priv->workqueue,
11310 &priv->request_scan, 0);
11311
11312 return 0;
11313 }
11314
11315 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11316 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11317 i, MAX_HW_RESTARTS);
11318
11319 /* We had an error bringing up the hardware, so take it
11320 * all the way back down so we can try again */
11321 ipw_down(priv);
11322 }
11323
11324 /* tried to restart and config the device for as long as our
11325 * patience could withstand */
11326 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11327
11328 return -EIO;
11329 }
11330
11331 static void ipw_bg_up(struct work_struct *work)
11332 {
11333 struct ipw_priv *priv =
11334 container_of(work, struct ipw_priv, up);
11335 mutex_lock(&priv->mutex);
11336 ipw_up(priv);
11337 mutex_unlock(&priv->mutex);
11338 }
11339
11340 static void ipw_deinit(struct ipw_priv *priv)
11341 {
11342 int i;
11343
11344 if (priv->status & STATUS_SCANNING) {
11345 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11346 ipw_abort_scan(priv);
11347 }
11348
11349 if (priv->status & STATUS_ASSOCIATED) {
11350 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11351 ipw_disassociate(priv);
11352 }
11353
11354 ipw_led_shutdown(priv);
11355
11356 /* Wait up to 1s for status to change to not scanning and not
11357 * associated (disassociation can take a while for a ful 802.11
11358 * exchange */
11359 for (i = 1000; i && (priv->status &
11360 (STATUS_DISASSOCIATING |
11361 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11362 udelay(10);
11363
11364 if (priv->status & (STATUS_DISASSOCIATING |
11365 STATUS_ASSOCIATED | STATUS_SCANNING))
11366 IPW_DEBUG_INFO("Still associated or scanning...\n");
11367 else
11368 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11369
11370 /* Attempt to disable the card */
11371 ipw_send_card_disable(priv, 0);
11372
11373 priv->status &= ~STATUS_INIT;
11374 }
11375
11376 static void ipw_down(struct ipw_priv *priv)
11377 {
11378 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11379
11380 priv->status |= STATUS_EXIT_PENDING;
11381
11382 if (ipw_is_init(priv))
11383 ipw_deinit(priv);
11384
11385 /* Wipe out the EXIT_PENDING status bit if we are not actually
11386 * exiting the module */
11387 if (!exit_pending)
11388 priv->status &= ~STATUS_EXIT_PENDING;
11389
11390 /* tell the device to stop sending interrupts */
11391 ipw_disable_interrupts(priv);
11392
11393 /* Clear all bits but the RF Kill */
11394 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11395 netif_carrier_off(priv->net_dev);
11396
11397 ipw_stop_nic(priv);
11398
11399 ipw_led_radio_off(priv);
11400 }
11401
11402 static void ipw_bg_down(struct work_struct *work)
11403 {
11404 struct ipw_priv *priv =
11405 container_of(work, struct ipw_priv, down);
11406 mutex_lock(&priv->mutex);
11407 ipw_down(priv);
11408 mutex_unlock(&priv->mutex);
11409 }
11410
11411 /* Called by register_netdev() */
11412 static int ipw_net_init(struct net_device *dev)
11413 {
11414 struct ipw_priv *priv = ieee80211_priv(dev);
11415 mutex_lock(&priv->mutex);
11416
11417 if (ipw_up(priv)) {
11418 mutex_unlock(&priv->mutex);
11419 return -EIO;
11420 }
11421
11422 mutex_unlock(&priv->mutex);
11423 return 0;
11424 }
11425
11426 /* PCI driver stuff */
11427 static struct pci_device_id card_ids[] = {
11428 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11429 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11430 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11431 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11432 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11433 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11434 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11435 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11436 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11437 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11438 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11439 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11440 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11441 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11442 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11443 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11444 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11445 {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11446 {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11447 {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11448 {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11449 {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11450
11451 /* required last entry */
11452 {0,}
11453 };
11454
11455 MODULE_DEVICE_TABLE(pci, card_ids);
11456
11457 static struct attribute *ipw_sysfs_entries[] = {
11458 &dev_attr_rf_kill.attr,
11459 &dev_attr_direct_dword.attr,
11460 &dev_attr_indirect_byte.attr,
11461 &dev_attr_indirect_dword.attr,
11462 &dev_attr_mem_gpio_reg.attr,
11463 &dev_attr_command_event_reg.attr,
11464 &dev_attr_nic_type.attr,
11465 &dev_attr_status.attr,
11466 &dev_attr_cfg.attr,
11467 &dev_attr_error.attr,
11468 &dev_attr_event_log.attr,
11469 &dev_attr_cmd_log.attr,
11470 &dev_attr_eeprom_delay.attr,
11471 &dev_attr_ucode_version.attr,
11472 &dev_attr_rtc.attr,
11473 &dev_attr_scan_age.attr,
11474 &dev_attr_led.attr,
11475 &dev_attr_speed_scan.attr,
11476 &dev_attr_net_stats.attr,
11477 &dev_attr_channels.attr,
11478 #ifdef CONFIG_IPW2200_PROMISCUOUS
11479 &dev_attr_rtap_iface.attr,
11480 &dev_attr_rtap_filter.attr,
11481 #endif
11482 NULL
11483 };
11484
11485 static struct attribute_group ipw_attribute_group = {
11486 .name = NULL, /* put in device directory */
11487 .attrs = ipw_sysfs_entries,
11488 };
11489
11490 #ifdef CONFIG_IPW2200_PROMISCUOUS
11491 static int ipw_prom_open(struct net_device *dev)
11492 {
11493 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11494 struct ipw_priv *priv = prom_priv->priv;
11495
11496 IPW_DEBUG_INFO("prom dev->open\n");
11497 netif_carrier_off(dev);
11498
11499 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11500 priv->sys_config.accept_all_data_frames = 1;
11501 priv->sys_config.accept_non_directed_frames = 1;
11502 priv->sys_config.accept_all_mgmt_bcpr = 1;
11503 priv->sys_config.accept_all_mgmt_frames = 1;
11504
11505 ipw_send_system_config(priv);
11506 }
11507
11508 return 0;
11509 }
11510
11511 static int ipw_prom_stop(struct net_device *dev)
11512 {
11513 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11514 struct ipw_priv *priv = prom_priv->priv;
11515
11516 IPW_DEBUG_INFO("prom dev->stop\n");
11517
11518 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11519 priv->sys_config.accept_all_data_frames = 0;
11520 priv->sys_config.accept_non_directed_frames = 0;
11521 priv->sys_config.accept_all_mgmt_bcpr = 0;
11522 priv->sys_config.accept_all_mgmt_frames = 0;
11523
11524 ipw_send_system_config(priv);
11525 }
11526
11527 return 0;
11528 }
11529
11530 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11531 {
11532 IPW_DEBUG_INFO("prom dev->xmit\n");
11533 return -EOPNOTSUPP;
11534 }
11535
11536 static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
11537 {
11538 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11539 return &prom_priv->ieee->stats;
11540 }
11541
11542 static int ipw_prom_alloc(struct ipw_priv *priv)
11543 {
11544 int rc = 0;
11545
11546 if (priv->prom_net_dev)
11547 return -EPERM;
11548
11549 priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11550 if (priv->prom_net_dev == NULL)
11551 return -ENOMEM;
11552
11553 priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11554 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11555 priv->prom_priv->priv = priv;
11556
11557 strcpy(priv->prom_net_dev->name, "rtap%d");
11558 memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11559
11560 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11561 priv->prom_net_dev->open = ipw_prom_open;
11562 priv->prom_net_dev->stop = ipw_prom_stop;
11563 priv->prom_net_dev->get_stats = ipw_prom_get_stats;
11564 priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;
11565
11566 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11567 SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11568
11569 rc = register_netdev(priv->prom_net_dev);
11570 if (rc) {
11571 free_ieee80211(priv->prom_net_dev);
11572 priv->prom_net_dev = NULL;
11573 return rc;
11574 }
11575
11576 return 0;
11577 }
11578
11579 static void ipw_prom_free(struct ipw_priv *priv)
11580 {
11581 if (!priv->prom_net_dev)
11582 return;
11583
11584 unregister_netdev(priv->prom_net_dev);
11585 free_ieee80211(priv->prom_net_dev);
11586
11587 priv->prom_net_dev = NULL;
11588 }
11589
11590 #endif
11591
11592
11593 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11594 const struct pci_device_id *ent)
11595 {
11596 int err = 0;
11597 struct net_device *net_dev;
11598 void __iomem *base;
11599 u32 length, val;
11600 struct ipw_priv *priv;
11601 int i;
11602
11603 net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11604 if (net_dev == NULL) {
11605 err = -ENOMEM;
11606 goto out;
11607 }
11608
11609 priv = ieee80211_priv(net_dev);
11610 priv->ieee = netdev_priv(net_dev);
11611
11612 priv->net_dev = net_dev;
11613 priv->pci_dev = pdev;
11614 ipw_debug_level = debug;
11615 spin_lock_init(&priv->irq_lock);
11616 spin_lock_init(&priv->lock);
11617 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11618 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11619
11620 mutex_init(&priv->mutex);
11621 if (pci_enable_device(pdev)) {
11622 err = -ENODEV;
11623 goto out_free_ieee80211;
11624 }
11625
11626 pci_set_master(pdev);
11627
11628 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11629 if (!err)
11630 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11631 if (err) {
11632 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11633 goto out_pci_disable_device;
11634 }
11635
11636 pci_set_drvdata(pdev, priv);
11637
11638 err = pci_request_regions(pdev, DRV_NAME);
11639 if (err)
11640 goto out_pci_disable_device;
11641
11642 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11643 * PCI Tx retries from interfering with C3 CPU state */
11644 pci_read_config_dword(pdev, 0x40, &val);
11645 if ((val & 0x0000ff00) != 0)
11646 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11647
11648 length = pci_resource_len(pdev, 0);
11649 priv->hw_len = length;
11650
11651 base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11652 if (!base) {
11653 err = -ENODEV;
11654 goto out_pci_release_regions;
11655 }
11656
11657 priv->hw_base = base;
11658 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11659 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11660
11661 err = ipw_setup_deferred_work(priv);
11662 if (err) {
11663 IPW_ERROR("Unable to setup deferred work\n");
11664 goto out_iounmap;
11665 }
11666
11667 ipw_sw_reset(priv, 1);
11668
11669 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11670 if (err) {
11671 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11672 goto out_destroy_workqueue;
11673 }
11674
11675 SET_NETDEV_DEV(net_dev, &pdev->dev);
11676
11677 mutex_lock(&priv->mutex);
11678
11679 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11680 priv->ieee->set_security = shim__set_security;
11681 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11682
11683 #ifdef CONFIG_IPW2200_QOS
11684 priv->ieee->is_qos_active = ipw_is_qos_active;
11685 priv->ieee->handle_probe_response = ipw_handle_beacon;
11686 priv->ieee->handle_beacon = ipw_handle_probe_response;
11687 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11688 #endif /* CONFIG_IPW2200_QOS */
11689
11690 priv->ieee->perfect_rssi = -20;
11691 priv->ieee->worst_rssi = -85;
11692
11693 net_dev->open = ipw_net_open;
11694 net_dev->stop = ipw_net_stop;
11695 net_dev->init = ipw_net_init;
11696 net_dev->get_stats = ipw_net_get_stats;
11697 net_dev->set_multicast_list = ipw_net_set_multicast_list;
11698 net_dev->set_mac_address = ipw_net_set_mac_address;
11699 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11700 net_dev->wireless_data = &priv->wireless_data;
11701 net_dev->wireless_handlers = &ipw_wx_handler_def;
11702 net_dev->ethtool_ops = &ipw_ethtool_ops;
11703 net_dev->irq = pdev->irq;
11704 net_dev->base_addr = (unsigned long)priv->hw_base;
11705 net_dev->mem_start = pci_resource_start(pdev, 0);
11706 net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11707
11708 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11709 if (err) {
11710 IPW_ERROR("failed to create sysfs device attributes\n");
11711 mutex_unlock(&priv->mutex);
11712 goto out_release_irq;
11713 }
11714
11715 mutex_unlock(&priv->mutex);
11716 err = register_netdev(net_dev);
11717 if (err) {
11718 IPW_ERROR("failed to register network device\n");
11719 goto out_remove_sysfs;
11720 }
11721
11722 #ifdef CONFIG_IPW2200_PROMISCUOUS
11723 if (rtap_iface) {
11724 err = ipw_prom_alloc(priv);
11725 if (err) {
11726 IPW_ERROR("Failed to register promiscuous network "
11727 "device (error %d).\n", err);
11728 unregister_netdev(priv->net_dev);
11729 goto out_remove_sysfs;
11730 }
11731 }
11732 #endif
11733
11734 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11735 "channels, %d 802.11a channels)\n",
11736 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11737 priv->ieee->geo.a_channels);
11738
11739 return 0;
11740
11741 out_remove_sysfs:
11742 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11743 out_release_irq:
11744 free_irq(pdev->irq, priv);
11745 out_destroy_workqueue:
11746 destroy_workqueue(priv->workqueue);
11747 priv->workqueue = NULL;
11748 out_iounmap:
11749 iounmap(priv->hw_base);
11750 out_pci_release_regions:
11751 pci_release_regions(pdev);
11752 out_pci_disable_device:
11753 pci_disable_device(pdev);
11754 pci_set_drvdata(pdev, NULL);
11755 out_free_ieee80211:
11756 free_ieee80211(priv->net_dev);
11757 out:
11758 return err;
11759 }
11760
11761 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11762 {
11763 struct ipw_priv *priv = pci_get_drvdata(pdev);
11764 struct list_head *p, *q;
11765 int i;
11766
11767 if (!priv)
11768 return;
11769
11770 mutex_lock(&priv->mutex);
11771
11772 priv->status |= STATUS_EXIT_PENDING;
11773 ipw_down(priv);
11774 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11775
11776 mutex_unlock(&priv->mutex);
11777
11778 unregister_netdev(priv->net_dev);
11779
11780 if (priv->rxq) {
11781 ipw_rx_queue_free(priv, priv->rxq);
11782 priv->rxq = NULL;
11783 }
11784 ipw_tx_queue_free(priv);
11785
11786 if (priv->cmdlog) {
11787 kfree(priv->cmdlog);
11788 priv->cmdlog = NULL;
11789 }
11790 /* ipw_down will ensure that there is no more pending work
11791 * in the workqueue's, so we can safely remove them now. */
11792 cancel_delayed_work(&priv->adhoc_check);
11793 cancel_delayed_work(&priv->gather_stats);
11794 cancel_delayed_work(&priv->request_scan);
11795 cancel_delayed_work(&priv->request_direct_scan);
11796 cancel_delayed_work(&priv->request_passive_scan);
11797 cancel_delayed_work(&priv->scan_event);
11798 cancel_delayed_work(&priv->rf_kill);
11799 cancel_delayed_work(&priv->scan_check);
11800 destroy_workqueue(priv->workqueue);
11801 priv->workqueue = NULL;
11802
11803 /* Free MAC hash list for ADHOC */
11804 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11805 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11806 list_del(p);
11807 kfree(list_entry(p, struct ipw_ibss_seq, list));
11808 }
11809 }
11810
11811 kfree(priv->error);
11812 priv->error = NULL;
11813
11814 #ifdef CONFIG_IPW2200_PROMISCUOUS
11815 ipw_prom_free(priv);
11816 #endif
11817
11818 free_irq(pdev->irq, priv);
11819 iounmap(priv->hw_base);
11820 pci_release_regions(pdev);
11821 pci_disable_device(pdev);
11822 pci_set_drvdata(pdev, NULL);
11823 free_ieee80211(priv->net_dev);
11824 free_firmware();
11825 }
11826
11827 #ifdef CONFIG_PM
11828 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11829 {
11830 struct ipw_priv *priv = pci_get_drvdata(pdev);
11831 struct net_device *dev = priv->net_dev;
11832
11833 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11834
11835 /* Take down the device; powers it off, etc. */
11836 ipw_down(priv);
11837
11838 /* Remove the PRESENT state of the device */
11839 netif_device_detach(dev);
11840
11841 pci_save_state(pdev);
11842 pci_disable_device(pdev);
11843 pci_set_power_state(pdev, pci_choose_state(pdev, state));
11844
11845 return 0;
11846 }
11847
11848 static int ipw_pci_resume(struct pci_dev *pdev)
11849 {
11850 struct ipw_priv *priv = pci_get_drvdata(pdev);
11851 struct net_device *dev = priv->net_dev;
11852 int err;
11853 u32 val;
11854
11855 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11856
11857 pci_set_power_state(pdev, PCI_D0);
11858 err = pci_enable_device(pdev);
11859 if (err) {
11860 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11861 dev->name);
11862 return err;
11863 }
11864 pci_restore_state(pdev);
11865
11866 /*
11867 * Suspend/Resume resets the PCI configuration space, so we have to
11868 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11869 * from interfering with C3 CPU state. pci_restore_state won't help
11870 * here since it only restores the first 64 bytes pci config header.
11871 */
11872 pci_read_config_dword(pdev, 0x40, &val);
11873 if ((val & 0x0000ff00) != 0)
11874 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11875
11876 /* Set the device back into the PRESENT state; this will also wake
11877 * the queue of needed */
11878 netif_device_attach(dev);
11879
11880 /* Bring the device back up */
11881 queue_work(priv->workqueue, &priv->up);
11882
11883 return 0;
11884 }
11885 #endif
11886
11887 static void ipw_pci_shutdown(struct pci_dev *pdev)
11888 {
11889 struct ipw_priv *priv = pci_get_drvdata(pdev);
11890
11891 /* Take down the device; powers it off, etc. */
11892 ipw_down(priv);
11893
11894 pci_disable_device(pdev);
11895 }
11896
11897 /* driver initialization stuff */
11898 static struct pci_driver ipw_driver = {
11899 .name = DRV_NAME,
11900 .id_table = card_ids,
11901 .probe = ipw_pci_probe,
11902 .remove = __devexit_p(ipw_pci_remove),
11903 #ifdef CONFIG_PM
11904 .suspend = ipw_pci_suspend,
11905 .resume = ipw_pci_resume,
11906 #endif
11907 .shutdown = ipw_pci_shutdown,
11908 };
11909
11910 static int __init ipw_init(void)
11911 {
11912 int ret;
11913
11914 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11915 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11916
11917 ret = pci_register_driver(&ipw_driver);
11918 if (ret) {
11919 IPW_ERROR("Unable to initialize PCI module\n");
11920 return ret;
11921 }
11922
11923 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11924 if (ret) {
11925 IPW_ERROR("Unable to create driver sysfs file\n");
11926 pci_unregister_driver(&ipw_driver);
11927 return ret;
11928 }
11929
11930 return ret;
11931 }
11932
11933 static void __exit ipw_exit(void)
11934 {
11935 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11936 pci_unregister_driver(&ipw_driver);
11937 }
11938
11939 module_param(disable, int, 0444);
11940 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11941
11942 module_param(associate, int, 0444);
11943 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11944
11945 module_param(auto_create, int, 0444);
11946 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11947
11948 module_param(led, int, 0444);
11949 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)");
11950
11951 module_param(debug, int, 0444);
11952 MODULE_PARM_DESC(debug, "debug output mask");
11953
11954 module_param(channel, int, 0444);
11955 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11956
11957 #ifdef CONFIG_IPW2200_PROMISCUOUS
11958 module_param(rtap_iface, int, 0444);
11959 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11960 #endif
11961
11962 #ifdef CONFIG_IPW2200_QOS
11963 module_param(qos_enable, int, 0444);
11964 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11965
11966 module_param(qos_burst_enable, int, 0444);
11967 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11968
11969 module_param(qos_no_ack_mask, int, 0444);
11970 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11971
11972 module_param(burst_duration_CCK, int, 0444);
11973 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11974
11975 module_param(burst_duration_OFDM, int, 0444);
11976 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11977 #endif /* CONFIG_IPW2200_QOS */
11978
11979 #ifdef CONFIG_IPW2200_MONITOR
11980 module_param(mode, int, 0444);
11981 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11982 #else
11983 module_param(mode, int, 0444);
11984 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11985 #endif
11986
11987 module_param(bt_coexist, int, 0444);
11988 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11989
11990 module_param(hwcrypto, int, 0444);
11991 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11992
11993 module_param(cmdlog, int, 0444);
11994 MODULE_PARM_DESC(cmdlog,
11995 "allocate a ring buffer for logging firmware commands");
11996
11997 module_param(roaming, int, 0444);
11998 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
11999
12000 module_param(antenna, int, 0444);
12001 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12002
12003 module_exit(ipw_exit);
12004 module_init(ipw_init);
This page took 0.483512 seconds and 5 git commands to generate.