Merge ../bleed-2.6
[deliverable/linux.git] / drivers / net / wireless / ipw2200.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2004 Intel Corporation. All rights reserved.
4
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
10
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
14
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 more details.
19
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23
24 The full GNU General Public License is included in this distribution in the
25 file called LICENSE.
26
27 Contact Information:
28 James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34
35 #define IPW2200_VERSION "1.0.0"
36 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
37 #define DRV_COPYRIGHT "Copyright(c) 2003-2004 Intel Corporation"
38 #define DRV_VERSION IPW2200_VERSION
39
40 MODULE_DESCRIPTION(DRV_DESCRIPTION);
41 MODULE_VERSION(DRV_VERSION);
42 MODULE_AUTHOR(DRV_COPYRIGHT);
43 MODULE_LICENSE("GPL");
44
45 static int debug = 0;
46 static int channel = 0;
47 static char *ifname;
48 static int mode = 0;
49
50 static u32 ipw_debug_level;
51 static int associate = 1;
52 static int auto_create = 1;
53 static int disable = 0;
54 static const char ipw_modes[] = {
55 'a', 'b', 'g', '?'
56 };
57
58 static void ipw_rx(struct ipw_priv *priv);
59 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
60 struct clx2_tx_queue *txq, int qindex);
61 static int ipw_queue_reset(struct ipw_priv *priv);
62
63 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
64 int len, int sync);
65
66 static void ipw_tx_queue_free(struct ipw_priv *);
67
68 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
69 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
70 static void ipw_rx_queue_replenish(void *);
71
72 static int ipw_up(struct ipw_priv *);
73 static void ipw_down(struct ipw_priv *);
74 static int ipw_config(struct ipw_priv *);
75 static int init_supported_rates(struct ipw_priv *priv,
76 struct ipw_supported_rates *prates);
77
78 static u8 band_b_active_channel[MAX_B_CHANNELS] = {
79 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0
80 };
81 static u8 band_a_active_channel[MAX_A_CHANNELS] = {
82 36, 40, 44, 48, 149, 153, 157, 161, 165, 52, 56, 60, 64, 0
83 };
84
85 static int is_valid_channel(int mode_mask, int channel)
86 {
87 int i;
88
89 if (!channel)
90 return 0;
91
92 if (mode_mask & IEEE_A)
93 for (i = 0; i < MAX_A_CHANNELS; i++)
94 if (band_a_active_channel[i] == channel)
95 return IEEE_A;
96
97 if (mode_mask & (IEEE_B | IEEE_G))
98 for (i = 0; i < MAX_B_CHANNELS; i++)
99 if (band_b_active_channel[i] == channel)
100 return mode_mask & (IEEE_B | IEEE_G);
101
102 return 0;
103 }
104
105 static char *snprint_line(char *buf, size_t count,
106 const u8 * data, u32 len, u32 ofs)
107 {
108 int out, i, j, l;
109 char c;
110
111 out = snprintf(buf, count, "%08X", ofs);
112
113 for (l = 0, i = 0; i < 2; i++) {
114 out += snprintf(buf + out, count - out, " ");
115 for (j = 0; j < 8 && l < len; j++, l++)
116 out += snprintf(buf + out, count - out, "%02X ",
117 data[(i * 8 + j)]);
118 for (; j < 8; j++)
119 out += snprintf(buf + out, count - out, " ");
120 }
121
122 out += snprintf(buf + out, count - out, " ");
123 for (l = 0, i = 0; i < 2; i++) {
124 out += snprintf(buf + out, count - out, " ");
125 for (j = 0; j < 8 && l < len; j++, l++) {
126 c = data[(i * 8 + j)];
127 if (!isascii(c) || !isprint(c))
128 c = '.';
129
130 out += snprintf(buf + out, count - out, "%c", c);
131 }
132
133 for (; j < 8; j++)
134 out += snprintf(buf + out, count - out, " ");
135 }
136
137 return buf;
138 }
139
140 static void printk_buf(int level, const u8 * data, u32 len)
141 {
142 char line[81];
143 u32 ofs = 0;
144 if (!(ipw_debug_level & level))
145 return;
146
147 while (len) {
148 printk(KERN_DEBUG "%s\n",
149 snprint_line(line, sizeof(line), &data[ofs],
150 min(len, 16U), ofs));
151 ofs += 16;
152 len -= min(len, 16U);
153 }
154 }
155
156 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
157 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
158
159 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
160 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
161
162 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
163 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
164 {
165 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
166 __LINE__, (u32) (b), (u32) (c));
167 _ipw_write_reg8(a, b, c);
168 }
169
170 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
171 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
172 {
173 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
174 __LINE__, (u32) (b), (u32) (c));
175 _ipw_write_reg16(a, b, c);
176 }
177
178 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
179 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
180 {
181 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
182 __LINE__, (u32) (b), (u32) (c));
183 _ipw_write_reg32(a, b, c);
184 }
185
186 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
187 #define ipw_write8(ipw, ofs, val) \
188 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
189 _ipw_write8(ipw, ofs, val)
190
191 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
192 #define ipw_write16(ipw, ofs, val) \
193 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
194 _ipw_write16(ipw, ofs, val)
195
196 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
197 #define ipw_write32(ipw, ofs, val) \
198 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
199 _ipw_write32(ipw, ofs, val)
200
201 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
202 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
203 {
204 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
205 return _ipw_read8(ipw, ofs);
206 }
207
208 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
209
210 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
211 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
212 {
213 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
214 return _ipw_read16(ipw, ofs);
215 }
216
217 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
218
219 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
220 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
221 {
222 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
223 return _ipw_read32(ipw, ofs);
224 }
225
226 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
227
228 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
229 #define ipw_read_indirect(a, b, c, d) \
230 IPW_DEBUG_IO("%s %d: read_inddirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
231 _ipw_read_indirect(a, b, c, d)
232
233 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
234 int num);
235 #define ipw_write_indirect(a, b, c, d) \
236 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
237 _ipw_write_indirect(a, b, c, d)
238
239 /* indirect write s */
240 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
241 {
242 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
243 _ipw_write32(priv, CX2_INDIRECT_ADDR, reg);
244 _ipw_write32(priv, CX2_INDIRECT_DATA, value);
245 }
246
247 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
248 {
249 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
250 _ipw_write32(priv, CX2_INDIRECT_ADDR, reg & CX2_INDIRECT_ADDR_MASK);
251 _ipw_write8(priv, CX2_INDIRECT_DATA, value);
252 IPW_DEBUG_IO(" reg = 0x%8lX : value = 0x%8X\n",
253 (unsigned long)(priv->hw_base + CX2_INDIRECT_DATA), value);
254 }
255
256 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
257 {
258 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
259 _ipw_write32(priv, CX2_INDIRECT_ADDR, reg & CX2_INDIRECT_ADDR_MASK);
260 _ipw_write16(priv, CX2_INDIRECT_DATA, value);
261 }
262
263 /* indirect read s */
264
265 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
266 {
267 u32 word;
268 _ipw_write32(priv, CX2_INDIRECT_ADDR, reg & CX2_INDIRECT_ADDR_MASK);
269 IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
270 word = _ipw_read32(priv, CX2_INDIRECT_DATA);
271 return (word >> ((reg & 0x3) * 8)) & 0xff;
272 }
273
274 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
275 {
276 u32 value;
277
278 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
279
280 _ipw_write32(priv, CX2_INDIRECT_ADDR, reg);
281 value = _ipw_read32(priv, CX2_INDIRECT_DATA);
282 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
283 return value;
284 }
285
286 /* iterative/auto-increment 32 bit reads and writes */
287 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
288 int num)
289 {
290 u32 aligned_addr = addr & CX2_INDIRECT_ADDR_MASK;
291 u32 dif_len = addr - aligned_addr;
292 u32 aligned_len;
293 u32 i;
294
295 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
296
297 /* Read the first nibble byte by byte */
298 if (unlikely(dif_len)) {
299 /* Start reading at aligned_addr + dif_len */
300 _ipw_write32(priv, CX2_INDIRECT_ADDR, aligned_addr);
301 for (i = dif_len; i < 4; i++, buf++)
302 *buf = _ipw_read8(priv, CX2_INDIRECT_DATA + i);
303 num -= dif_len;
304 aligned_addr += 4;
305 }
306
307 /* Read DWs through autoinc register */
308 _ipw_write32(priv, CX2_AUTOINC_ADDR, aligned_addr);
309 aligned_len = num & CX2_INDIRECT_ADDR_MASK;
310 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
311 *(u32 *) buf = ipw_read32(priv, CX2_AUTOINC_DATA);
312
313 /* Copy the last nibble */
314 dif_len = num - aligned_len;
315 _ipw_write32(priv, CX2_INDIRECT_ADDR, aligned_addr);
316 for (i = 0; i < dif_len; i++, buf++)
317 *buf = ipw_read8(priv, CX2_INDIRECT_DATA + i);
318 }
319
320 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
321 int num)
322 {
323 u32 aligned_addr = addr & CX2_INDIRECT_ADDR_MASK;
324 u32 dif_len = addr - aligned_addr;
325 u32 aligned_len;
326 u32 i;
327
328 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
329
330 /* Write the first nibble byte by byte */
331 if (unlikely(dif_len)) {
332 /* Start writing at aligned_addr + dif_len */
333 _ipw_write32(priv, CX2_INDIRECT_ADDR, aligned_addr);
334 for (i = dif_len; i < 4; i++, buf++)
335 _ipw_write8(priv, CX2_INDIRECT_DATA + i, *buf);
336 num -= dif_len;
337 aligned_addr += 4;
338 }
339
340 /* Write DWs through autoinc register */
341 _ipw_write32(priv, CX2_AUTOINC_ADDR, aligned_addr);
342 aligned_len = num & CX2_INDIRECT_ADDR_MASK;
343 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
344 _ipw_write32(priv, CX2_AUTOINC_DATA, *(u32 *) buf);
345
346 /* Copy the last nibble */
347 dif_len = num - aligned_len;
348 _ipw_write32(priv, CX2_INDIRECT_ADDR, aligned_addr);
349 for (i = 0; i < dif_len; i++, buf++)
350 _ipw_write8(priv, CX2_INDIRECT_DATA + i, *buf);
351 }
352
353 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
354 int num)
355 {
356 memcpy_toio((priv->hw_base + addr), buf, num);
357 }
358
359 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
360 {
361 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
362 }
363
364 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
365 {
366 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
367 }
368
369 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
370 {
371 if (priv->status & STATUS_INT_ENABLED)
372 return;
373 priv->status |= STATUS_INT_ENABLED;
374 ipw_write32(priv, CX2_INTA_MASK_R, CX2_INTA_MASK_ALL);
375 }
376
377 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
378 {
379 if (!(priv->status & STATUS_INT_ENABLED))
380 return;
381 priv->status &= ~STATUS_INT_ENABLED;
382 ipw_write32(priv, CX2_INTA_MASK_R, ~CX2_INTA_MASK_ALL);
383 }
384
385 static char *ipw_error_desc(u32 val)
386 {
387 switch (val) {
388 case IPW_FW_ERROR_OK:
389 return "ERROR_OK";
390 case IPW_FW_ERROR_FAIL:
391 return "ERROR_FAIL";
392 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
393 return "MEMORY_UNDERFLOW";
394 case IPW_FW_ERROR_MEMORY_OVERFLOW:
395 return "MEMORY_OVERFLOW";
396 case IPW_FW_ERROR_BAD_PARAM:
397 return "ERROR_BAD_PARAM";
398 case IPW_FW_ERROR_BAD_CHECKSUM:
399 return "ERROR_BAD_CHECKSUM";
400 case IPW_FW_ERROR_NMI_INTERRUPT:
401 return "ERROR_NMI_INTERRUPT";
402 case IPW_FW_ERROR_BAD_DATABASE:
403 return "ERROR_BAD_DATABASE";
404 case IPW_FW_ERROR_ALLOC_FAIL:
405 return "ERROR_ALLOC_FAIL";
406 case IPW_FW_ERROR_DMA_UNDERRUN:
407 return "ERROR_DMA_UNDERRUN";
408 case IPW_FW_ERROR_DMA_STATUS:
409 return "ERROR_DMA_STATUS";
410 case IPW_FW_ERROR_DINOSTATUS_ERROR:
411 return "ERROR_DINOSTATUS_ERROR";
412 case IPW_FW_ERROR_EEPROMSTATUS_ERROR:
413 return "ERROR_EEPROMSTATUS_ERROR";
414 case IPW_FW_ERROR_SYSASSERT:
415 return "ERROR_SYSASSERT";
416 case IPW_FW_ERROR_FATAL_ERROR:
417 return "ERROR_FATALSTATUS_ERROR";
418 default:
419 return "UNKNOWNSTATUS_ERROR";
420 }
421 }
422
423 static void ipw_dump_nic_error_log(struct ipw_priv *priv)
424 {
425 u32 desc, time, blink1, blink2, ilink1, ilink2, idata, i, count, base;
426
427 base = ipw_read32(priv, IPWSTATUS_ERROR_LOG);
428 count = ipw_read_reg32(priv, base);
429
430 if (ERROR_START_OFFSET <= count * ERROR_ELEM_SIZE) {
431 IPW_ERROR("Start IPW Error Log Dump:\n");
432 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
433 priv->status, priv->config);
434 }
435
436 for (i = ERROR_START_OFFSET;
437 i <= count * ERROR_ELEM_SIZE; i += ERROR_ELEM_SIZE) {
438 desc = ipw_read_reg32(priv, base + i);
439 time = ipw_read_reg32(priv, base + i + 1 * sizeof(u32));
440 blink1 = ipw_read_reg32(priv, base + i + 2 * sizeof(u32));
441 blink2 = ipw_read_reg32(priv, base + i + 3 * sizeof(u32));
442 ilink1 = ipw_read_reg32(priv, base + i + 4 * sizeof(u32));
443 ilink2 = ipw_read_reg32(priv, base + i + 5 * sizeof(u32));
444 idata = ipw_read_reg32(priv, base + i + 6 * sizeof(u32));
445
446 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
447 ipw_error_desc(desc), time, blink1, blink2,
448 ilink1, ilink2, idata);
449 }
450 }
451
452 static void ipw_dump_nic_event_log(struct ipw_priv *priv)
453 {
454 u32 ev, time, data, i, count, base;
455
456 base = ipw_read32(priv, IPW_EVENT_LOG);
457 count = ipw_read_reg32(priv, base);
458
459 if (EVENT_START_OFFSET <= count * EVENT_ELEM_SIZE)
460 IPW_ERROR("Start IPW Event Log Dump:\n");
461
462 for (i = EVENT_START_OFFSET;
463 i <= count * EVENT_ELEM_SIZE; i += EVENT_ELEM_SIZE) {
464 ev = ipw_read_reg32(priv, base + i);
465 time = ipw_read_reg32(priv, base + i + 1 * sizeof(u32));
466 data = ipw_read_reg32(priv, base + i + 2 * sizeof(u32));
467
468 #ifdef CONFIG_IPW_DEBUG
469 IPW_ERROR("%i\t0x%08x\t%i\n", time, data, ev);
470 #endif
471 }
472 }
473
474 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
475 {
476 u32 addr, field_info, field_len, field_count, total_len;
477
478 IPW_DEBUG_ORD("ordinal = %i\n", ord);
479
480 if (!priv || !val || !len) {
481 IPW_DEBUG_ORD("Invalid argument\n");
482 return -EINVAL;
483 }
484
485 /* verify device ordinal tables have been initialized */
486 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
487 IPW_DEBUG_ORD("Access ordinals before initialization\n");
488 return -EINVAL;
489 }
490
491 switch (IPW_ORD_TABLE_ID_MASK & ord) {
492 case IPW_ORD_TABLE_0_MASK:
493 /*
494 * TABLE 0: Direct access to a table of 32 bit values
495 *
496 * This is a very simple table with the data directly
497 * read from the table
498 */
499
500 /* remove the table id from the ordinal */
501 ord &= IPW_ORD_TABLE_VALUE_MASK;
502
503 /* boundary check */
504 if (ord > priv->table0_len) {
505 IPW_DEBUG_ORD("ordinal value (%i) longer then "
506 "max (%i)\n", ord, priv->table0_len);
507 return -EINVAL;
508 }
509
510 /* verify we have enough room to store the value */
511 if (*len < sizeof(u32)) {
512 IPW_DEBUG_ORD("ordinal buffer length too small, "
513 "need %zd\n", sizeof(u32));
514 return -EINVAL;
515 }
516
517 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
518 ord, priv->table0_addr + (ord << 2));
519
520 *len = sizeof(u32);
521 ord <<= 2;
522 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
523 break;
524
525 case IPW_ORD_TABLE_1_MASK:
526 /*
527 * TABLE 1: Indirect access to a table of 32 bit values
528 *
529 * This is a fairly large table of u32 values each
530 * representing starting addr for the data (which is
531 * also a u32)
532 */
533
534 /* remove the table id from the ordinal */
535 ord &= IPW_ORD_TABLE_VALUE_MASK;
536
537 /* boundary check */
538 if (ord > priv->table1_len) {
539 IPW_DEBUG_ORD("ordinal value too long\n");
540 return -EINVAL;
541 }
542
543 /* verify we have enough room to store the value */
544 if (*len < sizeof(u32)) {
545 IPW_DEBUG_ORD("ordinal buffer length too small, "
546 "need %zd\n", sizeof(u32));
547 return -EINVAL;
548 }
549
550 *((u32 *) val) =
551 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
552 *len = sizeof(u32);
553 break;
554
555 case IPW_ORD_TABLE_2_MASK:
556 /*
557 * TABLE 2: Indirect access to a table of variable sized values
558 *
559 * This table consist of six values, each containing
560 * - dword containing the starting offset of the data
561 * - dword containing the lengh in the first 16bits
562 * and the count in the second 16bits
563 */
564
565 /* remove the table id from the ordinal */
566 ord &= IPW_ORD_TABLE_VALUE_MASK;
567
568 /* boundary check */
569 if (ord > priv->table2_len) {
570 IPW_DEBUG_ORD("ordinal value too long\n");
571 return -EINVAL;
572 }
573
574 /* get the address of statistic */
575 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
576
577 /* get the second DW of statistics ;
578 * two 16-bit words - first is length, second is count */
579 field_info =
580 ipw_read_reg32(priv,
581 priv->table2_addr + (ord << 3) +
582 sizeof(u32));
583
584 /* get each entry length */
585 field_len = *((u16 *) & field_info);
586
587 /* get number of entries */
588 field_count = *(((u16 *) & field_info) + 1);
589
590 /* abort if not enought memory */
591 total_len = field_len * field_count;
592 if (total_len > *len) {
593 *len = total_len;
594 return -EINVAL;
595 }
596
597 *len = total_len;
598 if (!total_len)
599 return 0;
600
601 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
602 "field_info = 0x%08x\n",
603 addr, total_len, field_info);
604 ipw_read_indirect(priv, addr, val, total_len);
605 break;
606
607 default:
608 IPW_DEBUG_ORD("Invalid ordinal!\n");
609 return -EINVAL;
610
611 }
612
613 return 0;
614 }
615
616 static void ipw_init_ordinals(struct ipw_priv *priv)
617 {
618 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
619 priv->table0_len = ipw_read32(priv, priv->table0_addr);
620
621 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
622 priv->table0_addr, priv->table0_len);
623
624 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
625 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
626
627 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
628 priv->table1_addr, priv->table1_len);
629
630 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
631 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
632 priv->table2_len &= 0x0000ffff; /* use first two bytes */
633
634 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
635 priv->table2_addr, priv->table2_len);
636
637 }
638
639 /*
640 * The following adds a new attribute to the sysfs representation
641 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
642 * used for controling the debug level.
643 *
644 * See the level definitions in ipw for details.
645 */
646 static ssize_t show_debug_level(struct device_driver *d, char *buf)
647 {
648 return sprintf(buf, "0x%08X\n", ipw_debug_level);
649 }
650 static ssize_t store_debug_level(struct device_driver *d,
651 const char *buf, size_t count)
652 {
653 char *p = (char *)buf;
654 u32 val;
655
656 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
657 p++;
658 if (p[0] == 'x' || p[0] == 'X')
659 p++;
660 val = simple_strtoul(p, &p, 16);
661 } else
662 val = simple_strtoul(p, &p, 10);
663 if (p == buf)
664 printk(KERN_INFO DRV_NAME
665 ": %s is not in hex or decimal form.\n", buf);
666 else
667 ipw_debug_level = val;
668
669 return strnlen(buf, count);
670 }
671
672 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
673 show_debug_level, store_debug_level);
674
675 static ssize_t show_status(struct device *d,
676 struct device_attribute *attr, char *buf)
677 {
678 struct ipw_priv *p = d->driver_data;
679 return sprintf(buf, "0x%08x\n", (int)p->status);
680 }
681
682 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
683
684 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
685 char *buf)
686 {
687 struct ipw_priv *p = d->driver_data;
688 return sprintf(buf, "0x%08x\n", (int)p->config);
689 }
690
691 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
692
693 static ssize_t show_nic_type(struct device *d,
694 struct device_attribute *attr, char *buf)
695 {
696 struct ipw_priv *p = d->driver_data;
697 u8 type = p->eeprom[EEPROM_NIC_TYPE];
698
699 switch (type) {
700 case EEPROM_NIC_TYPE_STANDARD:
701 return sprintf(buf, "STANDARD\n");
702 case EEPROM_NIC_TYPE_DELL:
703 return sprintf(buf, "DELL\n");
704 case EEPROM_NIC_TYPE_FUJITSU:
705 return sprintf(buf, "FUJITSU\n");
706 case EEPROM_NIC_TYPE_IBM:
707 return sprintf(buf, "IBM\n");
708 case EEPROM_NIC_TYPE_HP:
709 return sprintf(buf, "HP\n");
710 }
711
712 return sprintf(buf, "UNKNOWN\n");
713 }
714
715 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
716
717 static ssize_t dump_error_log(struct device *d,
718 struct device_attribute *attr, const char *buf,
719 size_t count)
720 {
721 char *p = (char *)buf;
722
723 if (p[0] == '1')
724 ipw_dump_nic_error_log((struct ipw_priv *)d->driver_data);
725
726 return strnlen(buf, count);
727 }
728
729 static DEVICE_ATTR(dump_errors, S_IWUSR, NULL, dump_error_log);
730
731 static ssize_t dump_event_log(struct device *d,
732 struct device_attribute *attr, const char *buf,
733 size_t count)
734 {
735 char *p = (char *)buf;
736
737 if (p[0] == '1')
738 ipw_dump_nic_event_log((struct ipw_priv *)d->driver_data);
739
740 return strnlen(buf, count);
741 }
742
743 static DEVICE_ATTR(dump_events, S_IWUSR, NULL, dump_event_log);
744
745 static ssize_t show_ucode_version(struct device *d,
746 struct device_attribute *attr, char *buf)
747 {
748 u32 len = sizeof(u32), tmp = 0;
749 struct ipw_priv *p = d->driver_data;
750
751 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
752 return 0;
753
754 return sprintf(buf, "0x%08x\n", tmp);
755 }
756
757 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
758
759 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
760 char *buf)
761 {
762 u32 len = sizeof(u32), tmp = 0;
763 struct ipw_priv *p = d->driver_data;
764
765 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
766 return 0;
767
768 return sprintf(buf, "0x%08x\n", tmp);
769 }
770
771 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
772
773 /*
774 * Add a device attribute to view/control the delay between eeprom
775 * operations.
776 */
777 static ssize_t show_eeprom_delay(struct device *d,
778 struct device_attribute *attr, char *buf)
779 {
780 int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
781 return sprintf(buf, "%i\n", n);
782 }
783 static ssize_t store_eeprom_delay(struct device *d,
784 struct device_attribute *attr,
785 const char *buf, size_t count)
786 {
787 struct ipw_priv *p = d->driver_data;
788 sscanf(buf, "%i", &p->eeprom_delay);
789 return strnlen(buf, count);
790 }
791
792 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
793 show_eeprom_delay, store_eeprom_delay);
794
795 static ssize_t show_command_event_reg(struct device *d,
796 struct device_attribute *attr, char *buf)
797 {
798 u32 reg = 0;
799 struct ipw_priv *p = d->driver_data;
800
801 reg = ipw_read_reg32(p, CX2_INTERNAL_CMD_EVENT);
802 return sprintf(buf, "0x%08x\n", reg);
803 }
804 static ssize_t store_command_event_reg(struct device *d,
805 struct device_attribute *attr,
806 const char *buf, size_t count)
807 {
808 u32 reg;
809 struct ipw_priv *p = d->driver_data;
810
811 sscanf(buf, "%x", &reg);
812 ipw_write_reg32(p, CX2_INTERNAL_CMD_EVENT, reg);
813 return strnlen(buf, count);
814 }
815
816 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
817 show_command_event_reg, store_command_event_reg);
818
819 static ssize_t show_mem_gpio_reg(struct device *d,
820 struct device_attribute *attr, char *buf)
821 {
822 u32 reg = 0;
823 struct ipw_priv *p = d->driver_data;
824
825 reg = ipw_read_reg32(p, 0x301100);
826 return sprintf(buf, "0x%08x\n", reg);
827 }
828 static ssize_t store_mem_gpio_reg(struct device *d,
829 struct device_attribute *attr,
830 const char *buf, size_t count)
831 {
832 u32 reg;
833 struct ipw_priv *p = d->driver_data;
834
835 sscanf(buf, "%x", &reg);
836 ipw_write_reg32(p, 0x301100, reg);
837 return strnlen(buf, count);
838 }
839
840 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
841 show_mem_gpio_reg, store_mem_gpio_reg);
842
843 static ssize_t show_indirect_dword(struct device *d,
844 struct device_attribute *attr, char *buf)
845 {
846 u32 reg = 0;
847 struct ipw_priv *priv = d->driver_data;
848 if (priv->status & STATUS_INDIRECT_DWORD)
849 reg = ipw_read_reg32(priv, priv->indirect_dword);
850 else
851 reg = 0;
852
853 return sprintf(buf, "0x%08x\n", reg);
854 }
855 static ssize_t store_indirect_dword(struct device *d,
856 struct device_attribute *attr,
857 const char *buf, size_t count)
858 {
859 struct ipw_priv *priv = d->driver_data;
860
861 sscanf(buf, "%x", &priv->indirect_dword);
862 priv->status |= STATUS_INDIRECT_DWORD;
863 return strnlen(buf, count);
864 }
865
866 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
867 show_indirect_dword, store_indirect_dword);
868
869 static ssize_t show_indirect_byte(struct device *d,
870 struct device_attribute *attr, char *buf)
871 {
872 u8 reg = 0;
873 struct ipw_priv *priv = d->driver_data;
874 if (priv->status & STATUS_INDIRECT_BYTE)
875 reg = ipw_read_reg8(priv, priv->indirect_byte);
876 else
877 reg = 0;
878
879 return sprintf(buf, "0x%02x\n", reg);
880 }
881 static ssize_t store_indirect_byte(struct device *d,
882 struct device_attribute *attr,
883 const char *buf, size_t count)
884 {
885 struct ipw_priv *priv = d->driver_data;
886
887 sscanf(buf, "%x", &priv->indirect_byte);
888 priv->status |= STATUS_INDIRECT_BYTE;
889 return strnlen(buf, count);
890 }
891
892 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
893 show_indirect_byte, store_indirect_byte);
894
895 static ssize_t show_direct_dword(struct device *d,
896 struct device_attribute *attr, char *buf)
897 {
898 u32 reg = 0;
899 struct ipw_priv *priv = d->driver_data;
900
901 if (priv->status & STATUS_DIRECT_DWORD)
902 reg = ipw_read32(priv, priv->direct_dword);
903 else
904 reg = 0;
905
906 return sprintf(buf, "0x%08x\n", reg);
907 }
908 static ssize_t store_direct_dword(struct device *d,
909 struct device_attribute *attr,
910 const char *buf, size_t count)
911 {
912 struct ipw_priv *priv = d->driver_data;
913
914 sscanf(buf, "%x", &priv->direct_dword);
915 priv->status |= STATUS_DIRECT_DWORD;
916 return strnlen(buf, count);
917 }
918
919 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
920 show_direct_dword, store_direct_dword);
921
922 static inline int rf_kill_active(struct ipw_priv *priv)
923 {
924 if (0 == (ipw_read32(priv, 0x30) & 0x10000))
925 priv->status |= STATUS_RF_KILL_HW;
926 else
927 priv->status &= ~STATUS_RF_KILL_HW;
928
929 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
930 }
931
932 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
933 char *buf)
934 {
935 /* 0 - RF kill not enabled
936 1 - SW based RF kill active (sysfs)
937 2 - HW based RF kill active
938 3 - Both HW and SW baed RF kill active */
939 struct ipw_priv *priv = d->driver_data;
940 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
941 (rf_kill_active(priv) ? 0x2 : 0x0);
942 return sprintf(buf, "%i\n", val);
943 }
944
945 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
946 {
947 if ((disable_radio ? 1 : 0) ==
948 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
949 return 0;
950
951 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
952 disable_radio ? "OFF" : "ON");
953
954 if (disable_radio) {
955 priv->status |= STATUS_RF_KILL_SW;
956
957 if (priv->workqueue) {
958 cancel_delayed_work(&priv->request_scan);
959 }
960 wake_up_interruptible(&priv->wait_command_queue);
961 queue_work(priv->workqueue, &priv->down);
962 } else {
963 priv->status &= ~STATUS_RF_KILL_SW;
964 if (rf_kill_active(priv)) {
965 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
966 "disabled by HW switch\n");
967 /* Make sure the RF_KILL check timer is running */
968 cancel_delayed_work(&priv->rf_kill);
969 queue_delayed_work(priv->workqueue, &priv->rf_kill,
970 2 * HZ);
971 } else
972 queue_work(priv->workqueue, &priv->up);
973 }
974
975 return 1;
976 }
977
978 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
979 const char *buf, size_t count)
980 {
981 struct ipw_priv *priv = d->driver_data;
982
983 ipw_radio_kill_sw(priv, buf[0] == '1');
984
985 return count;
986 }
987
988 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
989
990 static void ipw_irq_tasklet(struct ipw_priv *priv)
991 {
992 u32 inta, inta_mask, handled = 0;
993 unsigned long flags;
994 int rc = 0;
995
996 spin_lock_irqsave(&priv->lock, flags);
997
998 inta = ipw_read32(priv, CX2_INTA_RW);
999 inta_mask = ipw_read32(priv, CX2_INTA_MASK_R);
1000 inta &= (CX2_INTA_MASK_ALL & inta_mask);
1001
1002 /* Add any cached INTA values that need to be handled */
1003 inta |= priv->isr_inta;
1004
1005 /* handle all the justifications for the interrupt */
1006 if (inta & CX2_INTA_BIT_RX_TRANSFER) {
1007 ipw_rx(priv);
1008 handled |= CX2_INTA_BIT_RX_TRANSFER;
1009 }
1010
1011 if (inta & CX2_INTA_BIT_TX_CMD_QUEUE) {
1012 IPW_DEBUG_HC("Command completed.\n");
1013 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1014 priv->status &= ~STATUS_HCMD_ACTIVE;
1015 wake_up_interruptible(&priv->wait_command_queue);
1016 handled |= CX2_INTA_BIT_TX_CMD_QUEUE;
1017 }
1018
1019 if (inta & CX2_INTA_BIT_TX_QUEUE_1) {
1020 IPW_DEBUG_TX("TX_QUEUE_1\n");
1021 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1022 handled |= CX2_INTA_BIT_TX_QUEUE_1;
1023 }
1024
1025 if (inta & CX2_INTA_BIT_TX_QUEUE_2) {
1026 IPW_DEBUG_TX("TX_QUEUE_2\n");
1027 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1028 handled |= CX2_INTA_BIT_TX_QUEUE_2;
1029 }
1030
1031 if (inta & CX2_INTA_BIT_TX_QUEUE_3) {
1032 IPW_DEBUG_TX("TX_QUEUE_3\n");
1033 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1034 handled |= CX2_INTA_BIT_TX_QUEUE_3;
1035 }
1036
1037 if (inta & CX2_INTA_BIT_TX_QUEUE_4) {
1038 IPW_DEBUG_TX("TX_QUEUE_4\n");
1039 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1040 handled |= CX2_INTA_BIT_TX_QUEUE_4;
1041 }
1042
1043 if (inta & CX2_INTA_BIT_STATUS_CHANGE) {
1044 IPW_WARNING("STATUS_CHANGE\n");
1045 handled |= CX2_INTA_BIT_STATUS_CHANGE;
1046 }
1047
1048 if (inta & CX2_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1049 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1050 handled |= CX2_INTA_BIT_BEACON_PERIOD_EXPIRED;
1051 }
1052
1053 if (inta & CX2_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1054 IPW_WARNING("HOST_CMD_DONE\n");
1055 handled |= CX2_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1056 }
1057
1058 if (inta & CX2_INTA_BIT_FW_INITIALIZATION_DONE) {
1059 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1060 handled |= CX2_INTA_BIT_FW_INITIALIZATION_DONE;
1061 }
1062
1063 if (inta & CX2_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1064 IPW_WARNING("PHY_OFF_DONE\n");
1065 handled |= CX2_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
1066 }
1067
1068 if (inta & CX2_INTA_BIT_RF_KILL_DONE) {
1069 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
1070 priv->status |= STATUS_RF_KILL_HW;
1071 wake_up_interruptible(&priv->wait_command_queue);
1072 netif_carrier_off(priv->net_dev);
1073 netif_stop_queue(priv->net_dev);
1074 cancel_delayed_work(&priv->request_scan);
1075 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
1076 handled |= CX2_INTA_BIT_RF_KILL_DONE;
1077 }
1078
1079 if (inta & CX2_INTA_BIT_FATAL_ERROR) {
1080 IPW_ERROR("Firmware error detected. Restarting.\n");
1081 #ifdef CONFIG_IPW_DEBUG
1082 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
1083 ipw_dump_nic_error_log(priv);
1084 ipw_dump_nic_event_log(priv);
1085 }
1086 #endif
1087 queue_work(priv->workqueue, &priv->adapter_restart);
1088 handled |= CX2_INTA_BIT_FATAL_ERROR;
1089 }
1090
1091 if (inta & CX2_INTA_BIT_PARITY_ERROR) {
1092 IPW_ERROR("Parity error\n");
1093 handled |= CX2_INTA_BIT_PARITY_ERROR;
1094 }
1095
1096 if (handled != inta) {
1097 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
1098 }
1099
1100 /* enable all interrupts */
1101 ipw_enable_interrupts(priv);
1102
1103 spin_unlock_irqrestore(&priv->lock, flags);
1104 }
1105
1106 #ifdef CONFIG_IPW_DEBUG
1107 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
1108 static char *get_cmd_string(u8 cmd)
1109 {
1110 switch (cmd) {
1111 IPW_CMD(HOST_COMPLETE);
1112 IPW_CMD(POWER_DOWN);
1113 IPW_CMD(SYSTEM_CONFIG);
1114 IPW_CMD(MULTICAST_ADDRESS);
1115 IPW_CMD(SSID);
1116 IPW_CMD(ADAPTER_ADDRESS);
1117 IPW_CMD(PORT_TYPE);
1118 IPW_CMD(RTS_THRESHOLD);
1119 IPW_CMD(FRAG_THRESHOLD);
1120 IPW_CMD(POWER_MODE);
1121 IPW_CMD(WEP_KEY);
1122 IPW_CMD(TGI_TX_KEY);
1123 IPW_CMD(SCAN_REQUEST);
1124 IPW_CMD(SCAN_REQUEST_EXT);
1125 IPW_CMD(ASSOCIATE);
1126 IPW_CMD(SUPPORTED_RATES);
1127 IPW_CMD(SCAN_ABORT);
1128 IPW_CMD(TX_FLUSH);
1129 IPW_CMD(QOS_PARAMETERS);
1130 IPW_CMD(DINO_CONFIG);
1131 IPW_CMD(RSN_CAPABILITIES);
1132 IPW_CMD(RX_KEY);
1133 IPW_CMD(CARD_DISABLE);
1134 IPW_CMD(SEED_NUMBER);
1135 IPW_CMD(TX_POWER);
1136 IPW_CMD(COUNTRY_INFO);
1137 IPW_CMD(AIRONET_INFO);
1138 IPW_CMD(AP_TX_POWER);
1139 IPW_CMD(CCKM_INFO);
1140 IPW_CMD(CCX_VER_INFO);
1141 IPW_CMD(SET_CALIBRATION);
1142 IPW_CMD(SENSITIVITY_CALIB);
1143 IPW_CMD(RETRY_LIMIT);
1144 IPW_CMD(IPW_PRE_POWER_DOWN);
1145 IPW_CMD(VAP_BEACON_TEMPLATE);
1146 IPW_CMD(VAP_DTIM_PERIOD);
1147 IPW_CMD(EXT_SUPPORTED_RATES);
1148 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
1149 IPW_CMD(VAP_QUIET_INTERVALS);
1150 IPW_CMD(VAP_CHANNEL_SWITCH);
1151 IPW_CMD(VAP_MANDATORY_CHANNELS);
1152 IPW_CMD(VAP_CELL_PWR_LIMIT);
1153 IPW_CMD(VAP_CF_PARAM_SET);
1154 IPW_CMD(VAP_SET_BEACONING_STATE);
1155 IPW_CMD(MEASUREMENT);
1156 IPW_CMD(POWER_CAPABILITY);
1157 IPW_CMD(SUPPORTED_CHANNELS);
1158 IPW_CMD(TPC_REPORT);
1159 IPW_CMD(WME_INFO);
1160 IPW_CMD(PRODUCTION_COMMAND);
1161 default:
1162 return "UNKNOWN";
1163 }
1164 }
1165 #endif /* CONFIG_IPW_DEBUG */
1166
1167 #define HOST_COMPLETE_TIMEOUT HZ
1168 static int ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
1169 {
1170 int rc = 0;
1171
1172 if (priv->status & STATUS_HCMD_ACTIVE) {
1173 IPW_ERROR("Already sending a command\n");
1174 return -1;
1175 }
1176
1177 priv->status |= STATUS_HCMD_ACTIVE;
1178
1179 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
1180 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len);
1181 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
1182
1183 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, &cmd->param, cmd->len, 0);
1184 if (rc)
1185 return rc;
1186
1187 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
1188 !(priv->
1189 status & STATUS_HCMD_ACTIVE),
1190 HOST_COMPLETE_TIMEOUT);
1191 if (rc == 0) {
1192 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
1193 jiffies_to_msecs(HOST_COMPLETE_TIMEOUT));
1194 priv->status &= ~STATUS_HCMD_ACTIVE;
1195 return -EIO;
1196 }
1197 if (priv->status & STATUS_RF_KILL_MASK) {
1198 IPW_DEBUG_INFO("Command aborted due to RF Kill Switch\n");
1199 return -EIO;
1200 }
1201
1202 return 0;
1203 }
1204
1205 static int ipw_send_host_complete(struct ipw_priv *priv)
1206 {
1207 struct host_cmd cmd = {
1208 .cmd = IPW_CMD_HOST_COMPLETE,
1209 .len = 0
1210 };
1211
1212 if (!priv) {
1213 IPW_ERROR("Invalid args\n");
1214 return -1;
1215 }
1216
1217 if (ipw_send_cmd(priv, &cmd)) {
1218 IPW_ERROR("failed to send HOST_COMPLETE command\n");
1219 return -1;
1220 }
1221
1222 return 0;
1223 }
1224
1225 static int ipw_send_system_config(struct ipw_priv *priv,
1226 struct ipw_sys_config *config)
1227 {
1228 struct host_cmd cmd = {
1229 .cmd = IPW_CMD_SYSTEM_CONFIG,
1230 .len = sizeof(*config)
1231 };
1232
1233 if (!priv || !config) {
1234 IPW_ERROR("Invalid args\n");
1235 return -1;
1236 }
1237
1238 memcpy(&cmd.param, config, sizeof(*config));
1239 if (ipw_send_cmd(priv, &cmd)) {
1240 IPW_ERROR("failed to send SYSTEM_CONFIG command\n");
1241 return -1;
1242 }
1243
1244 return 0;
1245 }
1246
1247 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
1248 {
1249 struct host_cmd cmd = {
1250 .cmd = IPW_CMD_SSID,
1251 .len = min(len, IW_ESSID_MAX_SIZE)
1252 };
1253
1254 if (!priv || !ssid) {
1255 IPW_ERROR("Invalid args\n");
1256 return -1;
1257 }
1258
1259 memcpy(&cmd.param, ssid, cmd.len);
1260 if (ipw_send_cmd(priv, &cmd)) {
1261 IPW_ERROR("failed to send SSID command\n");
1262 return -1;
1263 }
1264
1265 return 0;
1266 }
1267
1268 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
1269 {
1270 struct host_cmd cmd = {
1271 .cmd = IPW_CMD_ADAPTER_ADDRESS,
1272 .len = ETH_ALEN
1273 };
1274
1275 if (!priv || !mac) {
1276 IPW_ERROR("Invalid args\n");
1277 return -1;
1278 }
1279
1280 IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n",
1281 priv->net_dev->name, MAC_ARG(mac));
1282
1283 memcpy(&cmd.param, mac, ETH_ALEN);
1284
1285 if (ipw_send_cmd(priv, &cmd)) {
1286 IPW_ERROR("failed to send ADAPTER_ADDRESS command\n");
1287 return -1;
1288 }
1289
1290 return 0;
1291 }
1292
1293 static void ipw_adapter_restart(void *adapter)
1294 {
1295 struct ipw_priv *priv = adapter;
1296
1297 if (priv->status & STATUS_RF_KILL_MASK)
1298 return;
1299
1300 ipw_down(priv);
1301 if (ipw_up(priv)) {
1302 IPW_ERROR("Failed to up device\n");
1303 return;
1304 }
1305 }
1306
1307 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
1308
1309 static void ipw_scan_check(void *data)
1310 {
1311 struct ipw_priv *priv = data;
1312 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
1313 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
1314 "adapter (%dms).\n",
1315 IPW_SCAN_CHECK_WATCHDOG / 100);
1316 ipw_adapter_restart(priv);
1317 }
1318 }
1319
1320 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
1321 struct ipw_scan_request_ext *request)
1322 {
1323 struct host_cmd cmd = {
1324 .cmd = IPW_CMD_SCAN_REQUEST_EXT,
1325 .len = sizeof(*request)
1326 };
1327
1328 if (!priv || !request) {
1329 IPW_ERROR("Invalid args\n");
1330 return -1;
1331 }
1332
1333 memcpy(&cmd.param, request, sizeof(*request));
1334 if (ipw_send_cmd(priv, &cmd)) {
1335 IPW_ERROR("failed to send SCAN_REQUEST_EXT command\n");
1336 return -1;
1337 }
1338
1339 queue_delayed_work(priv->workqueue, &priv->scan_check,
1340 IPW_SCAN_CHECK_WATCHDOG);
1341 return 0;
1342 }
1343
1344 static int ipw_send_scan_abort(struct ipw_priv *priv)
1345 {
1346 struct host_cmd cmd = {
1347 .cmd = IPW_CMD_SCAN_ABORT,
1348 .len = 0
1349 };
1350
1351 if (!priv) {
1352 IPW_ERROR("Invalid args\n");
1353 return -1;
1354 }
1355
1356 if (ipw_send_cmd(priv, &cmd)) {
1357 IPW_ERROR("failed to send SCAN_ABORT command\n");
1358 return -1;
1359 }
1360
1361 return 0;
1362 }
1363
1364 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
1365 {
1366 struct host_cmd cmd = {
1367 .cmd = IPW_CMD_SENSITIVITY_CALIB,
1368 .len = sizeof(struct ipw_sensitivity_calib)
1369 };
1370 struct ipw_sensitivity_calib *calib = (struct ipw_sensitivity_calib *)
1371 &cmd.param;
1372 calib->beacon_rssi_raw = sens;
1373 if (ipw_send_cmd(priv, &cmd)) {
1374 IPW_ERROR("failed to send SENSITIVITY CALIB command\n");
1375 return -1;
1376 }
1377
1378 return 0;
1379 }
1380
1381 static int ipw_send_associate(struct ipw_priv *priv,
1382 struct ipw_associate *associate)
1383 {
1384 struct host_cmd cmd = {
1385 .cmd = IPW_CMD_ASSOCIATE,
1386 .len = sizeof(*associate)
1387 };
1388
1389 if (!priv || !associate) {
1390 IPW_ERROR("Invalid args\n");
1391 return -1;
1392 }
1393
1394 memcpy(&cmd.param, associate, sizeof(*associate));
1395 if (ipw_send_cmd(priv, &cmd)) {
1396 IPW_ERROR("failed to send ASSOCIATE command\n");
1397 return -1;
1398 }
1399
1400 return 0;
1401 }
1402
1403 static int ipw_send_supported_rates(struct ipw_priv *priv,
1404 struct ipw_supported_rates *rates)
1405 {
1406 struct host_cmd cmd = {
1407 .cmd = IPW_CMD_SUPPORTED_RATES,
1408 .len = sizeof(*rates)
1409 };
1410
1411 if (!priv || !rates) {
1412 IPW_ERROR("Invalid args\n");
1413 return -1;
1414 }
1415
1416 memcpy(&cmd.param, rates, sizeof(*rates));
1417 if (ipw_send_cmd(priv, &cmd)) {
1418 IPW_ERROR("failed to send SUPPORTED_RATES command\n");
1419 return -1;
1420 }
1421
1422 return 0;
1423 }
1424
1425 static int ipw_set_random_seed(struct ipw_priv *priv)
1426 {
1427 struct host_cmd cmd = {
1428 .cmd = IPW_CMD_SEED_NUMBER,
1429 .len = sizeof(u32)
1430 };
1431
1432 if (!priv) {
1433 IPW_ERROR("Invalid args\n");
1434 return -1;
1435 }
1436
1437 get_random_bytes(&cmd.param, sizeof(u32));
1438
1439 if (ipw_send_cmd(priv, &cmd)) {
1440 IPW_ERROR("failed to send SEED_NUMBER command\n");
1441 return -1;
1442 }
1443
1444 return 0;
1445 }
1446
1447 #if 0
1448 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
1449 {
1450 struct host_cmd cmd = {
1451 .cmd = IPW_CMD_CARD_DISABLE,
1452 .len = sizeof(u32)
1453 };
1454
1455 if (!priv) {
1456 IPW_ERROR("Invalid args\n");
1457 return -1;
1458 }
1459
1460 *((u32 *) & cmd.param) = phy_off;
1461
1462 if (ipw_send_cmd(priv, &cmd)) {
1463 IPW_ERROR("failed to send CARD_DISABLE command\n");
1464 return -1;
1465 }
1466
1467 return 0;
1468 }
1469 #endif
1470
1471 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
1472 {
1473 struct host_cmd cmd = {
1474 .cmd = IPW_CMD_TX_POWER,
1475 .len = sizeof(*power)
1476 };
1477
1478 if (!priv || !power) {
1479 IPW_ERROR("Invalid args\n");
1480 return -1;
1481 }
1482
1483 memcpy(&cmd.param, power, sizeof(*power));
1484 if (ipw_send_cmd(priv, &cmd)) {
1485 IPW_ERROR("failed to send TX_POWER command\n");
1486 return -1;
1487 }
1488
1489 return 0;
1490 }
1491
1492 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
1493 {
1494 struct ipw_rts_threshold rts_threshold = {
1495 .rts_threshold = rts,
1496 };
1497 struct host_cmd cmd = {
1498 .cmd = IPW_CMD_RTS_THRESHOLD,
1499 .len = sizeof(rts_threshold)
1500 };
1501
1502 if (!priv) {
1503 IPW_ERROR("Invalid args\n");
1504 return -1;
1505 }
1506
1507 memcpy(&cmd.param, &rts_threshold, sizeof(rts_threshold));
1508 if (ipw_send_cmd(priv, &cmd)) {
1509 IPW_ERROR("failed to send RTS_THRESHOLD command\n");
1510 return -1;
1511 }
1512
1513 return 0;
1514 }
1515
1516 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
1517 {
1518 struct ipw_frag_threshold frag_threshold = {
1519 .frag_threshold = frag,
1520 };
1521 struct host_cmd cmd = {
1522 .cmd = IPW_CMD_FRAG_THRESHOLD,
1523 .len = sizeof(frag_threshold)
1524 };
1525
1526 if (!priv) {
1527 IPW_ERROR("Invalid args\n");
1528 return -1;
1529 }
1530
1531 memcpy(&cmd.param, &frag_threshold, sizeof(frag_threshold));
1532 if (ipw_send_cmd(priv, &cmd)) {
1533 IPW_ERROR("failed to send FRAG_THRESHOLD command\n");
1534 return -1;
1535 }
1536
1537 return 0;
1538 }
1539
1540 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
1541 {
1542 struct host_cmd cmd = {
1543 .cmd = IPW_CMD_POWER_MODE,
1544 .len = sizeof(u32)
1545 };
1546 u32 *param = (u32 *) (&cmd.param);
1547
1548 if (!priv) {
1549 IPW_ERROR("Invalid args\n");
1550 return -1;
1551 }
1552
1553 /* If on battery, set to 3, if AC set to CAM, else user
1554 * level */
1555 switch (mode) {
1556 case IPW_POWER_BATTERY:
1557 *param = IPW_POWER_INDEX_3;
1558 break;
1559 case IPW_POWER_AC:
1560 *param = IPW_POWER_MODE_CAM;
1561 break;
1562 default:
1563 *param = mode;
1564 break;
1565 }
1566
1567 if (ipw_send_cmd(priv, &cmd)) {
1568 IPW_ERROR("failed to send POWER_MODE command\n");
1569 return -1;
1570 }
1571
1572 return 0;
1573 }
1574
1575 /*
1576 * The IPW device contains a Microwire compatible EEPROM that stores
1577 * various data like the MAC address. Usually the firmware has exclusive
1578 * access to the eeprom, but during device initialization (before the
1579 * device driver has sent the HostComplete command to the firmware) the
1580 * device driver has read access to the EEPROM by way of indirect addressing
1581 * through a couple of memory mapped registers.
1582 *
1583 * The following is a simplified implementation for pulling data out of the
1584 * the eeprom, along with some helper functions to find information in
1585 * the per device private data's copy of the eeprom.
1586 *
1587 * NOTE: To better understand how these functions work (i.e what is a chip
1588 * select and why do have to keep driving the eeprom clock?), read
1589 * just about any data sheet for a Microwire compatible EEPROM.
1590 */
1591
1592 /* write a 32 bit value into the indirect accessor register */
1593 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
1594 {
1595 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
1596
1597 /* the eeprom requires some time to complete the operation */
1598 udelay(p->eeprom_delay);
1599
1600 return;
1601 }
1602
1603 /* perform a chip select operation */
1604 static inline void eeprom_cs(struct ipw_priv *priv)
1605 {
1606 eeprom_write_reg(priv, 0);
1607 eeprom_write_reg(priv, EEPROM_BIT_CS);
1608 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
1609 eeprom_write_reg(priv, EEPROM_BIT_CS);
1610 }
1611
1612 /* perform a chip select operation */
1613 static inline void eeprom_disable_cs(struct ipw_priv *priv)
1614 {
1615 eeprom_write_reg(priv, EEPROM_BIT_CS);
1616 eeprom_write_reg(priv, 0);
1617 eeprom_write_reg(priv, EEPROM_BIT_SK);
1618 }
1619
1620 /* push a single bit down to the eeprom */
1621 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
1622 {
1623 int d = (bit ? EEPROM_BIT_DI : 0);
1624 eeprom_write_reg(p, EEPROM_BIT_CS | d);
1625 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
1626 }
1627
1628 /* push an opcode followed by an address down to the eeprom */
1629 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
1630 {
1631 int i;
1632
1633 eeprom_cs(priv);
1634 eeprom_write_bit(priv, 1);
1635 eeprom_write_bit(priv, op & 2);
1636 eeprom_write_bit(priv, op & 1);
1637 for (i = 7; i >= 0; i--) {
1638 eeprom_write_bit(priv, addr & (1 << i));
1639 }
1640 }
1641
1642 /* pull 16 bits off the eeprom, one bit at a time */
1643 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
1644 {
1645 int i;
1646 u16 r = 0;
1647
1648 /* Send READ Opcode */
1649 eeprom_op(priv, EEPROM_CMD_READ, addr);
1650
1651 /* Send dummy bit */
1652 eeprom_write_reg(priv, EEPROM_BIT_CS);
1653
1654 /* Read the byte off the eeprom one bit at a time */
1655 for (i = 0; i < 16; i++) {
1656 u32 data = 0;
1657 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
1658 eeprom_write_reg(priv, EEPROM_BIT_CS);
1659 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
1660 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
1661 }
1662
1663 /* Send another dummy bit */
1664 eeprom_write_reg(priv, 0);
1665 eeprom_disable_cs(priv);
1666
1667 return r;
1668 }
1669
1670 /* helper function for pulling the mac address out of the private */
1671 /* data's copy of the eeprom data */
1672 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
1673 {
1674 u8 *ee = (u8 *) priv->eeprom;
1675 memcpy(mac, &ee[EEPROM_MAC_ADDRESS], 6);
1676 }
1677
1678 /*
1679 * Either the device driver (i.e. the host) or the firmware can
1680 * load eeprom data into the designated region in SRAM. If neither
1681 * happens then the FW will shutdown with a fatal error.
1682 *
1683 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
1684 * bit needs region of shared SRAM needs to be non-zero.
1685 */
1686 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
1687 {
1688 int i;
1689 u16 *eeprom = (u16 *) priv->eeprom;
1690
1691 IPW_DEBUG_TRACE(">>\n");
1692
1693 /* read entire contents of eeprom into private buffer */
1694 for (i = 0; i < 128; i++)
1695 eeprom[i] = eeprom_read_u16(priv, (u8) i);
1696
1697 /*
1698 If the data looks correct, then copy it to our private
1699 copy. Otherwise let the firmware know to perform the operation
1700 on it's own
1701 */
1702 if ((priv->eeprom + EEPROM_VERSION) != 0) {
1703 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
1704
1705 /* write the eeprom data to sram */
1706 for (i = 0; i < CX2_EEPROM_IMAGE_SIZE; i++)
1707 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
1708
1709 /* Do not load eeprom data on fatal error or suspend */
1710 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
1711 } else {
1712 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
1713
1714 /* Load eeprom data on fatal error or suspend */
1715 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
1716 }
1717
1718 IPW_DEBUG_TRACE("<<\n");
1719 }
1720
1721 static inline void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
1722 {
1723 count >>= 2;
1724 if (!count)
1725 return;
1726 _ipw_write32(priv, CX2_AUTOINC_ADDR, start);
1727 while (count--)
1728 _ipw_write32(priv, CX2_AUTOINC_DATA, 0);
1729 }
1730
1731 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
1732 {
1733 ipw_zero_memory(priv, CX2_SHARED_SRAM_DMA_CONTROL,
1734 CB_NUMBER_OF_ELEMENTS_SMALL *
1735 sizeof(struct command_block));
1736 }
1737
1738 static int ipw_fw_dma_enable(struct ipw_priv *priv)
1739 { /* start dma engine but no transfers yet */
1740
1741 IPW_DEBUG_FW(">> : \n");
1742
1743 /* Start the dma */
1744 ipw_fw_dma_reset_command_blocks(priv);
1745
1746 /* Write CB base address */
1747 ipw_write_reg32(priv, CX2_DMA_I_CB_BASE, CX2_SHARED_SRAM_DMA_CONTROL);
1748
1749 IPW_DEBUG_FW("<< : \n");
1750 return 0;
1751 }
1752
1753 static void ipw_fw_dma_abort(struct ipw_priv *priv)
1754 {
1755 u32 control = 0;
1756
1757 IPW_DEBUG_FW(">> :\n");
1758
1759 //set the Stop and Abort bit
1760 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
1761 ipw_write_reg32(priv, CX2_DMA_I_DMA_CONTROL, control);
1762 priv->sram_desc.last_cb_index = 0;
1763
1764 IPW_DEBUG_FW("<< \n");
1765 }
1766
1767 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
1768 struct command_block *cb)
1769 {
1770 u32 address =
1771 CX2_SHARED_SRAM_DMA_CONTROL +
1772 (sizeof(struct command_block) * index);
1773 IPW_DEBUG_FW(">> :\n");
1774
1775 ipw_write_indirect(priv, address, (u8 *) cb,
1776 (int)sizeof(struct command_block));
1777
1778 IPW_DEBUG_FW("<< :\n");
1779 return 0;
1780
1781 }
1782
1783 static int ipw_fw_dma_kick(struct ipw_priv *priv)
1784 {
1785 u32 control = 0;
1786 u32 index = 0;
1787
1788 IPW_DEBUG_FW(">> :\n");
1789
1790 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
1791 ipw_fw_dma_write_command_block(priv, index,
1792 &priv->sram_desc.cb_list[index]);
1793
1794 /* Enable the DMA in the CSR register */
1795 ipw_clear_bit(priv, CX2_RESET_REG,
1796 CX2_RESET_REG_MASTER_DISABLED |
1797 CX2_RESET_REG_STOP_MASTER);
1798
1799 /* Set the Start bit. */
1800 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
1801 ipw_write_reg32(priv, CX2_DMA_I_DMA_CONTROL, control);
1802
1803 IPW_DEBUG_FW("<< :\n");
1804 return 0;
1805 }
1806
1807 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
1808 {
1809 u32 address;
1810 u32 register_value = 0;
1811 u32 cb_fields_address = 0;
1812
1813 IPW_DEBUG_FW(">> :\n");
1814 address = ipw_read_reg32(priv, CX2_DMA_I_CURRENT_CB);
1815 IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
1816
1817 /* Read the DMA Controlor register */
1818 register_value = ipw_read_reg32(priv, CX2_DMA_I_DMA_CONTROL);
1819 IPW_DEBUG_FW_INFO("CX2_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
1820
1821 /* Print the CB values */
1822 cb_fields_address = address;
1823 register_value = ipw_read_reg32(priv, cb_fields_address);
1824 IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
1825
1826 cb_fields_address += sizeof(u32);
1827 register_value = ipw_read_reg32(priv, cb_fields_address);
1828 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
1829
1830 cb_fields_address += sizeof(u32);
1831 register_value = ipw_read_reg32(priv, cb_fields_address);
1832 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
1833 register_value);
1834
1835 cb_fields_address += sizeof(u32);
1836 register_value = ipw_read_reg32(priv, cb_fields_address);
1837 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
1838
1839 IPW_DEBUG_FW(">> :\n");
1840 }
1841
1842 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
1843 {
1844 u32 current_cb_address = 0;
1845 u32 current_cb_index = 0;
1846
1847 IPW_DEBUG_FW("<< :\n");
1848 current_cb_address = ipw_read_reg32(priv, CX2_DMA_I_CURRENT_CB);
1849
1850 current_cb_index = (current_cb_address - CX2_SHARED_SRAM_DMA_CONTROL) /
1851 sizeof(struct command_block);
1852
1853 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
1854 current_cb_index, current_cb_address);
1855
1856 IPW_DEBUG_FW(">> :\n");
1857 return current_cb_index;
1858
1859 }
1860
1861 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
1862 u32 src_address,
1863 u32 dest_address,
1864 u32 length,
1865 int interrupt_enabled, int is_last)
1866 {
1867
1868 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
1869 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
1870 CB_DEST_SIZE_LONG;
1871 struct command_block *cb;
1872 u32 last_cb_element = 0;
1873
1874 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
1875 src_address, dest_address, length);
1876
1877 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
1878 return -1;
1879
1880 last_cb_element = priv->sram_desc.last_cb_index;
1881 cb = &priv->sram_desc.cb_list[last_cb_element];
1882 priv->sram_desc.last_cb_index++;
1883
1884 /* Calculate the new CB control word */
1885 if (interrupt_enabled)
1886 control |= CB_INT_ENABLED;
1887
1888 if (is_last)
1889 control |= CB_LAST_VALID;
1890
1891 control |= length;
1892
1893 /* Calculate the CB Element's checksum value */
1894 cb->status = control ^ src_address ^ dest_address;
1895
1896 /* Copy the Source and Destination addresses */
1897 cb->dest_addr = dest_address;
1898 cb->source_addr = src_address;
1899
1900 /* Copy the Control Word last */
1901 cb->control = control;
1902
1903 return 0;
1904 }
1905
1906 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
1907 u32 src_phys, u32 dest_address, u32 length)
1908 {
1909 u32 bytes_left = length;
1910 u32 src_offset = 0;
1911 u32 dest_offset = 0;
1912 int status = 0;
1913 IPW_DEBUG_FW(">> \n");
1914 IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
1915 src_phys, dest_address, length);
1916 while (bytes_left > CB_MAX_LENGTH) {
1917 status = ipw_fw_dma_add_command_block(priv,
1918 src_phys + src_offset,
1919 dest_address +
1920 dest_offset,
1921 CB_MAX_LENGTH, 0, 0);
1922 if (status) {
1923 IPW_DEBUG_FW_INFO(": Failed\n");
1924 return -1;
1925 } else
1926 IPW_DEBUG_FW_INFO(": Added new cb\n");
1927
1928 src_offset += CB_MAX_LENGTH;
1929 dest_offset += CB_MAX_LENGTH;
1930 bytes_left -= CB_MAX_LENGTH;
1931 }
1932
1933 /* add the buffer tail */
1934 if (bytes_left > 0) {
1935 status =
1936 ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
1937 dest_address + dest_offset,
1938 bytes_left, 0, 0);
1939 if (status) {
1940 IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
1941 return -1;
1942 } else
1943 IPW_DEBUG_FW_INFO
1944 (": Adding new cb - the buffer tail\n");
1945 }
1946
1947 IPW_DEBUG_FW("<< \n");
1948 return 0;
1949 }
1950
1951 static int ipw_fw_dma_wait(struct ipw_priv *priv)
1952 {
1953 u32 current_index = 0;
1954 u32 watchdog = 0;
1955
1956 IPW_DEBUG_FW(">> : \n");
1957
1958 current_index = ipw_fw_dma_command_block_index(priv);
1959 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%8X\n",
1960 (int)priv->sram_desc.last_cb_index);
1961
1962 while (current_index < priv->sram_desc.last_cb_index) {
1963 udelay(50);
1964 current_index = ipw_fw_dma_command_block_index(priv);
1965
1966 watchdog++;
1967
1968 if (watchdog > 400) {
1969 IPW_DEBUG_FW_INFO("Timeout\n");
1970 ipw_fw_dma_dump_command_block(priv);
1971 ipw_fw_dma_abort(priv);
1972 return -1;
1973 }
1974 }
1975
1976 ipw_fw_dma_abort(priv);
1977
1978 /*Disable the DMA in the CSR register */
1979 ipw_set_bit(priv, CX2_RESET_REG,
1980 CX2_RESET_REG_MASTER_DISABLED | CX2_RESET_REG_STOP_MASTER);
1981
1982 IPW_DEBUG_FW("<< dmaWaitSync \n");
1983 return 0;
1984 }
1985
1986 static void ipw_remove_current_network(struct ipw_priv *priv)
1987 {
1988 struct list_head *element, *safe;
1989 struct ieee80211_network *network = NULL;
1990 list_for_each_safe(element, safe, &priv->ieee->network_list) {
1991 network = list_entry(element, struct ieee80211_network, list);
1992 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
1993 list_del(element);
1994 list_add_tail(&network->list,
1995 &priv->ieee->network_free_list);
1996 }
1997 }
1998 }
1999
2000 /**
2001 * Check that card is still alive.
2002 * Reads debug register from domain0.
2003 * If card is present, pre-defined value should
2004 * be found there.
2005 *
2006 * @param priv
2007 * @return 1 if card is present, 0 otherwise
2008 */
2009 static inline int ipw_alive(struct ipw_priv *priv)
2010 {
2011 return ipw_read32(priv, 0x90) == 0xd55555d5;
2012 }
2013
2014 static inline int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2015 int timeout)
2016 {
2017 int i = 0;
2018
2019 do {
2020 if ((ipw_read32(priv, addr) & mask) == mask)
2021 return i;
2022 mdelay(10);
2023 i += 10;
2024 } while (i < timeout);
2025
2026 return -ETIME;
2027 }
2028
2029 /* These functions load the firmware and micro code for the operation of
2030 * the ipw hardware. It assumes the buffer has all the bits for the
2031 * image and the caller is handling the memory allocation and clean up.
2032 */
2033
2034 static int ipw_stop_master(struct ipw_priv *priv)
2035 {
2036 int rc;
2037
2038 IPW_DEBUG_TRACE(">> \n");
2039 /* stop master. typical delay - 0 */
2040 ipw_set_bit(priv, CX2_RESET_REG, CX2_RESET_REG_STOP_MASTER);
2041
2042 rc = ipw_poll_bit(priv, CX2_RESET_REG,
2043 CX2_RESET_REG_MASTER_DISABLED, 100);
2044 if (rc < 0) {
2045 IPW_ERROR("stop master failed in 10ms\n");
2046 return -1;
2047 }
2048
2049 IPW_DEBUG_INFO("stop master %dms\n", rc);
2050
2051 return rc;
2052 }
2053
2054 static void ipw_arc_release(struct ipw_priv *priv)
2055 {
2056 IPW_DEBUG_TRACE(">> \n");
2057 mdelay(5);
2058
2059 ipw_clear_bit(priv, CX2_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
2060
2061 /* no one knows timing, for safety add some delay */
2062 mdelay(5);
2063 }
2064
2065 struct fw_header {
2066 u32 version;
2067 u32 mode;
2068 };
2069
2070 struct fw_chunk {
2071 u32 address;
2072 u32 length;
2073 };
2074
2075 #define IPW_FW_MAJOR_VERSION 2
2076 #define IPW_FW_MINOR_VERSION 2
2077
2078 #define IPW_FW_MINOR(x) ((x & 0xff) >> 8)
2079 #define IPW_FW_MAJOR(x) (x & 0xff)
2080
2081 #define IPW_FW_VERSION ((IPW_FW_MINOR_VERSION << 8) | \
2082 IPW_FW_MAJOR_VERSION)
2083
2084 #define IPW_FW_PREFIX "ipw-" __stringify(IPW_FW_MAJOR_VERSION) \
2085 "." __stringify(IPW_FW_MINOR_VERSION) "-"
2086
2087 #if IPW_FW_MAJOR_VERSION >= 2 && IPW_FW_MINOR_VERSION > 0
2088 #define IPW_FW_NAME(x) IPW_FW_PREFIX "" x ".fw"
2089 #else
2090 #define IPW_FW_NAME(x) "ipw2200_" x ".fw"
2091 #endif
2092
2093 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
2094 {
2095 int rc = 0, i, addr;
2096 u8 cr = 0;
2097 u16 *image;
2098
2099 image = (u16 *) data;
2100
2101 IPW_DEBUG_TRACE(">> \n");
2102
2103 rc = ipw_stop_master(priv);
2104
2105 if (rc < 0)
2106 return rc;
2107
2108 // spin_lock_irqsave(&priv->lock, flags);
2109
2110 for (addr = CX2_SHARED_LOWER_BOUND;
2111 addr < CX2_REGISTER_DOMAIN1_END; addr += 4) {
2112 ipw_write32(priv, addr, 0);
2113 }
2114
2115 /* no ucode (yet) */
2116 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
2117 /* destroy DMA queues */
2118 /* reset sequence */
2119
2120 ipw_write_reg32(priv, CX2_MEM_HALT_AND_RESET, CX2_BIT_HALT_RESET_ON);
2121 ipw_arc_release(priv);
2122 ipw_write_reg32(priv, CX2_MEM_HALT_AND_RESET, CX2_BIT_HALT_RESET_OFF);
2123 mdelay(1);
2124
2125 /* reset PHY */
2126 ipw_write_reg32(priv, CX2_INTERNAL_CMD_EVENT, CX2_BASEBAND_POWER_DOWN);
2127 mdelay(1);
2128
2129 ipw_write_reg32(priv, CX2_INTERNAL_CMD_EVENT, 0);
2130 mdelay(1);
2131
2132 /* enable ucode store */
2133 ipw_write_reg8(priv, DINO_CONTROL_REG, 0x0);
2134 ipw_write_reg8(priv, DINO_CONTROL_REG, DINO_ENABLE_CS);
2135 mdelay(1);
2136
2137 /* write ucode */
2138 /**
2139 * @bug
2140 * Do NOT set indirect address register once and then
2141 * store data to indirect data register in the loop.
2142 * It seems very reasonable, but in this case DINO do not
2143 * accept ucode. It is essential to set address each time.
2144 */
2145 /* load new ipw uCode */
2146 for (i = 0; i < len / 2; i++)
2147 ipw_write_reg16(priv, CX2_BASEBAND_CONTROL_STORE, image[i]);
2148
2149 /* enable DINO */
2150 ipw_write_reg8(priv, CX2_BASEBAND_CONTROL_STATUS, 0);
2151 ipw_write_reg8(priv, CX2_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
2152
2153 /* this is where the igx / win driver deveates from the VAP driver. */
2154
2155 /* wait for alive response */
2156 for (i = 0; i < 100; i++) {
2157 /* poll for incoming data */
2158 cr = ipw_read_reg8(priv, CX2_BASEBAND_CONTROL_STATUS);
2159 if (cr & DINO_RXFIFO_DATA)
2160 break;
2161 mdelay(1);
2162 }
2163
2164 if (cr & DINO_RXFIFO_DATA) {
2165 /* alive_command_responce size is NOT multiple of 4 */
2166 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
2167
2168 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
2169 response_buffer[i] =
2170 ipw_read_reg32(priv, CX2_BASEBAND_RX_FIFO_READ);
2171 memcpy(&priv->dino_alive, response_buffer,
2172 sizeof(priv->dino_alive));
2173 if (priv->dino_alive.alive_command == 1
2174 && priv->dino_alive.ucode_valid == 1) {
2175 rc = 0;
2176 IPW_DEBUG_INFO
2177 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
2178 "of %02d/%02d/%02d %02d:%02d\n",
2179 priv->dino_alive.software_revision,
2180 priv->dino_alive.software_revision,
2181 priv->dino_alive.device_identifier,
2182 priv->dino_alive.device_identifier,
2183 priv->dino_alive.time_stamp[0],
2184 priv->dino_alive.time_stamp[1],
2185 priv->dino_alive.time_stamp[2],
2186 priv->dino_alive.time_stamp[3],
2187 priv->dino_alive.time_stamp[4]);
2188 } else {
2189 IPW_DEBUG_INFO("Microcode is not alive\n");
2190 rc = -EINVAL;
2191 }
2192 } else {
2193 IPW_DEBUG_INFO("No alive response from DINO\n");
2194 rc = -ETIME;
2195 }
2196
2197 /* disable DINO, otherwise for some reason
2198 firmware have problem getting alive resp. */
2199 ipw_write_reg8(priv, CX2_BASEBAND_CONTROL_STATUS, 0);
2200
2201 // spin_unlock_irqrestore(&priv->lock, flags);
2202
2203 return rc;
2204 }
2205
2206 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
2207 {
2208 int rc = -1;
2209 int offset = 0;
2210 struct fw_chunk *chunk;
2211 dma_addr_t shared_phys;
2212 u8 *shared_virt;
2213
2214 IPW_DEBUG_TRACE("<< : \n");
2215 shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
2216
2217 if (!shared_virt)
2218 return -ENOMEM;
2219
2220 memmove(shared_virt, data, len);
2221
2222 /* Start the Dma */
2223 rc = ipw_fw_dma_enable(priv);
2224
2225 if (priv->sram_desc.last_cb_index > 0) {
2226 /* the DMA is already ready this would be a bug. */
2227 BUG();
2228 goto out;
2229 }
2230
2231 do {
2232 chunk = (struct fw_chunk *)(data + offset);
2233 offset += sizeof(struct fw_chunk);
2234 /* build DMA packet and queue up for sending */
2235 /* dma to chunk->address, the chunk->length bytes from data +
2236 * offeset*/
2237 /* Dma loading */
2238 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
2239 chunk->address, chunk->length);
2240 if (rc) {
2241 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
2242 goto out;
2243 }
2244
2245 offset += chunk->length;
2246 } while (offset < len);
2247
2248 /* Run the DMA and wait for the answer */
2249 rc = ipw_fw_dma_kick(priv);
2250 if (rc) {
2251 IPW_ERROR("dmaKick Failed\n");
2252 goto out;
2253 }
2254
2255 rc = ipw_fw_dma_wait(priv);
2256 if (rc) {
2257 IPW_ERROR("dmaWaitSync Failed\n");
2258 goto out;
2259 }
2260 out:
2261 pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
2262 return rc;
2263 }
2264
2265 /* stop nic */
2266 static int ipw_stop_nic(struct ipw_priv *priv)
2267 {
2268 int rc = 0;
2269
2270 /* stop */
2271 ipw_write32(priv, CX2_RESET_REG, CX2_RESET_REG_STOP_MASTER);
2272
2273 rc = ipw_poll_bit(priv, CX2_RESET_REG,
2274 CX2_RESET_REG_MASTER_DISABLED, 500);
2275 if (rc < 0) {
2276 IPW_ERROR("wait for reg master disabled failed\n");
2277 return rc;
2278 }
2279
2280 ipw_set_bit(priv, CX2_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
2281
2282 return rc;
2283 }
2284
2285 static void ipw_start_nic(struct ipw_priv *priv)
2286 {
2287 IPW_DEBUG_TRACE(">>\n");
2288
2289 /* prvHwStartNic release ARC */
2290 ipw_clear_bit(priv, CX2_RESET_REG,
2291 CX2_RESET_REG_MASTER_DISABLED |
2292 CX2_RESET_REG_STOP_MASTER |
2293 CBD_RESET_REG_PRINCETON_RESET);
2294
2295 /* enable power management */
2296 ipw_set_bit(priv, CX2_GP_CNTRL_RW,
2297 CX2_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
2298
2299 IPW_DEBUG_TRACE("<<\n");
2300 }
2301
2302 static int ipw_init_nic(struct ipw_priv *priv)
2303 {
2304 int rc;
2305
2306 IPW_DEBUG_TRACE(">>\n");
2307 /* reset */
2308 /*prvHwInitNic */
2309 /* set "initialization complete" bit to move adapter to D0 state */
2310 ipw_set_bit(priv, CX2_GP_CNTRL_RW, CX2_GP_CNTRL_BIT_INIT_DONE);
2311
2312 /* low-level PLL activation */
2313 ipw_write32(priv, CX2_READ_INT_REGISTER,
2314 CX2_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
2315
2316 /* wait for clock stabilization */
2317 rc = ipw_poll_bit(priv, CX2_GP_CNTRL_RW,
2318 CX2_GP_CNTRL_BIT_CLOCK_READY, 250);
2319 if (rc < 0)
2320 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
2321
2322 /* assert SW reset */
2323 ipw_set_bit(priv, CX2_RESET_REG, CX2_RESET_REG_SW_RESET);
2324
2325 udelay(10);
2326
2327 /* set "initialization complete" bit to move adapter to D0 state */
2328 ipw_set_bit(priv, CX2_GP_CNTRL_RW, CX2_GP_CNTRL_BIT_INIT_DONE);
2329
2330 IPW_DEBUG_TRACE(">>\n");
2331 return 0;
2332 }
2333
2334 /* Call this function from process context, it will sleep in request_firmware.
2335 * Probe is an ok place to call this from.
2336 */
2337 static int ipw_reset_nic(struct ipw_priv *priv)
2338 {
2339 int rc = 0;
2340
2341 IPW_DEBUG_TRACE(">>\n");
2342
2343 rc = ipw_init_nic(priv);
2344
2345 /* Clear the 'host command active' bit... */
2346 priv->status &= ~STATUS_HCMD_ACTIVE;
2347 wake_up_interruptible(&priv->wait_command_queue);
2348
2349 IPW_DEBUG_TRACE("<<\n");
2350 return rc;
2351 }
2352
2353 static int ipw_get_fw(struct ipw_priv *priv,
2354 const struct firmware **fw, const char *name)
2355 {
2356 struct fw_header *header;
2357 int rc;
2358
2359 /* ask firmware_class module to get the boot firmware off disk */
2360 rc = request_firmware(fw, name, &priv->pci_dev->dev);
2361 if (rc < 0) {
2362 IPW_ERROR("%s load failed: Reason %d\n", name, rc);
2363 return rc;
2364 }
2365
2366 header = (struct fw_header *)(*fw)->data;
2367 if (IPW_FW_MAJOR(header->version) != IPW_FW_MAJOR_VERSION) {
2368 IPW_ERROR("'%s' firmware version not compatible (%d != %d)\n",
2369 name,
2370 IPW_FW_MAJOR(header->version), IPW_FW_MAJOR_VERSION);
2371 return -EINVAL;
2372 }
2373
2374 IPW_DEBUG_INFO("Loading firmware '%s' file v%d.%d (%zd bytes)\n",
2375 name,
2376 IPW_FW_MAJOR(header->version),
2377 IPW_FW_MINOR(header->version),
2378 (*fw)->size - sizeof(struct fw_header));
2379 return 0;
2380 }
2381
2382 #define CX2_RX_BUF_SIZE (3000)
2383
2384 static inline void ipw_rx_queue_reset(struct ipw_priv *priv,
2385 struct ipw_rx_queue *rxq)
2386 {
2387 unsigned long flags;
2388 int i;
2389
2390 spin_lock_irqsave(&rxq->lock, flags);
2391
2392 INIT_LIST_HEAD(&rxq->rx_free);
2393 INIT_LIST_HEAD(&rxq->rx_used);
2394
2395 /* Fill the rx_used queue with _all_ of the Rx buffers */
2396 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
2397 /* In the reset function, these buffers may have been allocated
2398 * to an SKB, so we need to unmap and free potential storage */
2399 if (rxq->pool[i].skb != NULL) {
2400 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
2401 CX2_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
2402 dev_kfree_skb(rxq->pool[i].skb);
2403 }
2404 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
2405 }
2406
2407 /* Set us so that we have processed and used all buffers, but have
2408 * not restocked the Rx queue with fresh buffers */
2409 rxq->read = rxq->write = 0;
2410 rxq->processed = RX_QUEUE_SIZE - 1;
2411 rxq->free_count = 0;
2412 spin_unlock_irqrestore(&rxq->lock, flags);
2413 }
2414
2415 #ifdef CONFIG_PM
2416 static int fw_loaded = 0;
2417 static const struct firmware *bootfw = NULL;
2418 static const struct firmware *firmware = NULL;
2419 static const struct firmware *ucode = NULL;
2420 #endif
2421
2422 static int ipw_load(struct ipw_priv *priv)
2423 {
2424 #ifndef CONFIG_PM
2425 const struct firmware *bootfw = NULL;
2426 const struct firmware *firmware = NULL;
2427 const struct firmware *ucode = NULL;
2428 #endif
2429 int rc = 0, retries = 3;
2430
2431 #ifdef CONFIG_PM
2432 if (!fw_loaded) {
2433 #endif
2434 rc = ipw_get_fw(priv, &bootfw, IPW_FW_NAME("boot"));
2435 if (rc)
2436 goto error;
2437
2438 switch (priv->ieee->iw_mode) {
2439 case IW_MODE_ADHOC:
2440 rc = ipw_get_fw(priv, &ucode,
2441 IPW_FW_NAME("ibss_ucode"));
2442 if (rc)
2443 goto error;
2444
2445 rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("ibss"));
2446 break;
2447
2448 #ifdef CONFIG_IPW_PROMISC
2449 case IW_MODE_MONITOR:
2450 rc = ipw_get_fw(priv, &ucode,
2451 IPW_FW_NAME("ibss_ucode"));
2452 if (rc)
2453 goto error;
2454
2455 rc = ipw_get_fw(priv, &firmware,
2456 IPW_FW_NAME("sniffer"));
2457 break;
2458 #endif
2459 case IW_MODE_INFRA:
2460 rc = ipw_get_fw(priv, &ucode, IPW_FW_NAME("bss_ucode"));
2461 if (rc)
2462 goto error;
2463
2464 rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("bss"));
2465 break;
2466
2467 default:
2468 rc = -EINVAL;
2469 }
2470
2471 if (rc)
2472 goto error;
2473
2474 #ifdef CONFIG_PM
2475 fw_loaded = 1;
2476 }
2477 #endif
2478
2479 if (!priv->rxq)
2480 priv->rxq = ipw_rx_queue_alloc(priv);
2481 else
2482 ipw_rx_queue_reset(priv, priv->rxq);
2483 if (!priv->rxq) {
2484 IPW_ERROR("Unable to initialize Rx queue\n");
2485 goto error;
2486 }
2487
2488 retry:
2489 /* Ensure interrupts are disabled */
2490 ipw_write32(priv, CX2_INTA_MASK_R, ~CX2_INTA_MASK_ALL);
2491 priv->status &= ~STATUS_INT_ENABLED;
2492
2493 /* ack pending interrupts */
2494 ipw_write32(priv, CX2_INTA_RW, CX2_INTA_MASK_ALL);
2495
2496 ipw_stop_nic(priv);
2497
2498 rc = ipw_reset_nic(priv);
2499 if (rc) {
2500 IPW_ERROR("Unable to reset NIC\n");
2501 goto error;
2502 }
2503
2504 ipw_zero_memory(priv, CX2_NIC_SRAM_LOWER_BOUND,
2505 CX2_NIC_SRAM_UPPER_BOUND - CX2_NIC_SRAM_LOWER_BOUND);
2506
2507 /* DMA the initial boot firmware into the device */
2508 rc = ipw_load_firmware(priv, bootfw->data + sizeof(struct fw_header),
2509 bootfw->size - sizeof(struct fw_header));
2510 if (rc < 0) {
2511 IPW_ERROR("Unable to load boot firmware\n");
2512 goto error;
2513 }
2514
2515 /* kick start the device */
2516 ipw_start_nic(priv);
2517
2518 /* wait for the device to finish it's initial startup sequence */
2519 rc = ipw_poll_bit(priv, CX2_INTA_RW,
2520 CX2_INTA_BIT_FW_INITIALIZATION_DONE, 500);
2521 if (rc < 0) {
2522 IPW_ERROR("device failed to boot initial fw image\n");
2523 goto error;
2524 }
2525 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
2526
2527 /* ack fw init done interrupt */
2528 ipw_write32(priv, CX2_INTA_RW, CX2_INTA_BIT_FW_INITIALIZATION_DONE);
2529
2530 /* DMA the ucode into the device */
2531 rc = ipw_load_ucode(priv, ucode->data + sizeof(struct fw_header),
2532 ucode->size - sizeof(struct fw_header));
2533 if (rc < 0) {
2534 IPW_ERROR("Unable to load ucode\n");
2535 goto error;
2536 }
2537
2538 /* stop nic */
2539 ipw_stop_nic(priv);
2540
2541 /* DMA bss firmware into the device */
2542 rc = ipw_load_firmware(priv, firmware->data +
2543 sizeof(struct fw_header),
2544 firmware->size - sizeof(struct fw_header));
2545 if (rc < 0) {
2546 IPW_ERROR("Unable to load firmware\n");
2547 goto error;
2548 }
2549
2550 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2551
2552 rc = ipw_queue_reset(priv);
2553 if (rc) {
2554 IPW_ERROR("Unable to initialize queues\n");
2555 goto error;
2556 }
2557
2558 /* Ensure interrupts are disabled */
2559 ipw_write32(priv, CX2_INTA_MASK_R, ~CX2_INTA_MASK_ALL);
2560
2561 /* kick start the device */
2562 ipw_start_nic(priv);
2563
2564 if (ipw_read32(priv, CX2_INTA_RW) & CX2_INTA_BIT_PARITY_ERROR) {
2565 if (retries > 0) {
2566 IPW_WARNING("Parity error. Retrying init.\n");
2567 retries--;
2568 goto retry;
2569 }
2570
2571 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
2572 rc = -EIO;
2573 goto error;
2574 }
2575
2576 /* wait for the device */
2577 rc = ipw_poll_bit(priv, CX2_INTA_RW,
2578 CX2_INTA_BIT_FW_INITIALIZATION_DONE, 500);
2579 if (rc < 0) {
2580 IPW_ERROR("device failed to start after 500ms\n");
2581 goto error;
2582 }
2583 IPW_DEBUG_INFO("device response after %dms\n", rc);
2584
2585 /* ack fw init done interrupt */
2586 ipw_write32(priv, CX2_INTA_RW, CX2_INTA_BIT_FW_INITIALIZATION_DONE);
2587
2588 /* read eeprom data and initialize the eeprom region of sram */
2589 priv->eeprom_delay = 1;
2590 ipw_eeprom_init_sram(priv);
2591
2592 /* enable interrupts */
2593 ipw_enable_interrupts(priv);
2594
2595 /* Ensure our queue has valid packets */
2596 ipw_rx_queue_replenish(priv);
2597
2598 ipw_write32(priv, CX2_RX_READ_INDEX, priv->rxq->read);
2599
2600 /* ack pending interrupts */
2601 ipw_write32(priv, CX2_INTA_RW, CX2_INTA_MASK_ALL);
2602
2603 #ifndef CONFIG_PM
2604 release_firmware(bootfw);
2605 release_firmware(ucode);
2606 release_firmware(firmware);
2607 #endif
2608 return 0;
2609
2610 error:
2611 if (priv->rxq) {
2612 ipw_rx_queue_free(priv, priv->rxq);
2613 priv->rxq = NULL;
2614 }
2615 ipw_tx_queue_free(priv);
2616 if (bootfw)
2617 release_firmware(bootfw);
2618 if (ucode)
2619 release_firmware(ucode);
2620 if (firmware)
2621 release_firmware(firmware);
2622 #ifdef CONFIG_PM
2623 fw_loaded = 0;
2624 bootfw = ucode = firmware = NULL;
2625 #endif
2626
2627 return rc;
2628 }
2629
2630 /**
2631 * DMA services
2632 *
2633 * Theory of operation
2634 *
2635 * A queue is a circular buffers with 'Read' and 'Write' pointers.
2636 * 2 empty entries always kept in the buffer to protect from overflow.
2637 *
2638 * For Tx queue, there are low mark and high mark limits. If, after queuing
2639 * the packet for Tx, free space become < low mark, Tx queue stopped. When
2640 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
2641 * Tx queue resumed.
2642 *
2643 * The IPW operates with six queues, one receive queue in the device's
2644 * sram, one transmit queue for sending commands to the device firmware,
2645 * and four transmit queues for data.
2646 *
2647 * The four transmit queues allow for performing quality of service (qos)
2648 * transmissions as per the 802.11 protocol. Currently Linux does not
2649 * provide a mechanism to the user for utilizing prioritized queues, so
2650 * we only utilize the first data transmit queue (queue1).
2651 */
2652
2653 /**
2654 * Driver allocates buffers of this size for Rx
2655 */
2656
2657 static inline int ipw_queue_space(const struct clx2_queue *q)
2658 {
2659 int s = q->last_used - q->first_empty;
2660 if (s <= 0)
2661 s += q->n_bd;
2662 s -= 2; /* keep some reserve to not confuse empty and full situations */
2663 if (s < 0)
2664 s = 0;
2665 return s;
2666 }
2667
2668 static inline int ipw_queue_inc_wrap(int index, int n_bd)
2669 {
2670 return (++index == n_bd) ? 0 : index;
2671 }
2672
2673 /**
2674 * Initialize common DMA queue structure
2675 *
2676 * @param q queue to init
2677 * @param count Number of BD's to allocate. Should be power of 2
2678 * @param read_register Address for 'read' register
2679 * (not offset within BAR, full address)
2680 * @param write_register Address for 'write' register
2681 * (not offset within BAR, full address)
2682 * @param base_register Address for 'base' register
2683 * (not offset within BAR, full address)
2684 * @param size Address for 'size' register
2685 * (not offset within BAR, full address)
2686 */
2687 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
2688 int count, u32 read, u32 write, u32 base, u32 size)
2689 {
2690 q->n_bd = count;
2691
2692 q->low_mark = q->n_bd / 4;
2693 if (q->low_mark < 4)
2694 q->low_mark = 4;
2695
2696 q->high_mark = q->n_bd / 8;
2697 if (q->high_mark < 2)
2698 q->high_mark = 2;
2699
2700 q->first_empty = q->last_used = 0;
2701 q->reg_r = read;
2702 q->reg_w = write;
2703
2704 ipw_write32(priv, base, q->dma_addr);
2705 ipw_write32(priv, size, count);
2706 ipw_write32(priv, read, 0);
2707 ipw_write32(priv, write, 0);
2708
2709 _ipw_read32(priv, 0x90);
2710 }
2711
2712 static int ipw_queue_tx_init(struct ipw_priv *priv,
2713 struct clx2_tx_queue *q,
2714 int count, u32 read, u32 write, u32 base, u32 size)
2715 {
2716 struct pci_dev *dev = priv->pci_dev;
2717
2718 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
2719 if (!q->txb) {
2720 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
2721 return -ENOMEM;
2722 }
2723
2724 q->bd =
2725 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
2726 if (!q->bd) {
2727 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
2728 sizeof(q->bd[0]) * count);
2729 kfree(q->txb);
2730 q->txb = NULL;
2731 return -ENOMEM;
2732 }
2733
2734 ipw_queue_init(priv, &q->q, count, read, write, base, size);
2735 return 0;
2736 }
2737
2738 /**
2739 * Free one TFD, those at index [txq->q.last_used].
2740 * Do NOT advance any indexes
2741 *
2742 * @param dev
2743 * @param txq
2744 */
2745 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
2746 struct clx2_tx_queue *txq)
2747 {
2748 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
2749 struct pci_dev *dev = priv->pci_dev;
2750 int i;
2751
2752 /* classify bd */
2753 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
2754 /* nothing to cleanup after for host commands */
2755 return;
2756
2757 /* sanity check */
2758 if (bd->u.data.num_chunks > NUM_TFD_CHUNKS) {
2759 IPW_ERROR("Too many chunks: %i\n", bd->u.data.num_chunks);
2760 /** @todo issue fatal error, it is quite serious situation */
2761 return;
2762 }
2763
2764 /* unmap chunks if any */
2765 for (i = 0; i < bd->u.data.num_chunks; i++) {
2766 pci_unmap_single(dev, bd->u.data.chunk_ptr[i],
2767 bd->u.data.chunk_len[i], PCI_DMA_TODEVICE);
2768 if (txq->txb[txq->q.last_used]) {
2769 ieee80211_txb_free(txq->txb[txq->q.last_used]);
2770 txq->txb[txq->q.last_used] = NULL;
2771 }
2772 }
2773 }
2774
2775 /**
2776 * Deallocate DMA queue.
2777 *
2778 * Empty queue by removing and destroying all BD's.
2779 * Free all buffers.
2780 *
2781 * @param dev
2782 * @param q
2783 */
2784 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
2785 {
2786 struct clx2_queue *q = &txq->q;
2787 struct pci_dev *dev = priv->pci_dev;
2788
2789 if (q->n_bd == 0)
2790 return;
2791
2792 /* first, empty all BD's */
2793 for (; q->first_empty != q->last_used;
2794 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
2795 ipw_queue_tx_free_tfd(priv, txq);
2796 }
2797
2798 /* free buffers belonging to queue itself */
2799 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
2800 q->dma_addr);
2801 kfree(txq->txb);
2802
2803 /* 0 fill whole structure */
2804 memset(txq, 0, sizeof(*txq));
2805 }
2806
2807 /**
2808 * Destroy all DMA queues and structures
2809 *
2810 * @param priv
2811 */
2812 static void ipw_tx_queue_free(struct ipw_priv *priv)
2813 {
2814 /* Tx CMD queue */
2815 ipw_queue_tx_free(priv, &priv->txq_cmd);
2816
2817 /* Tx queues */
2818 ipw_queue_tx_free(priv, &priv->txq[0]);
2819 ipw_queue_tx_free(priv, &priv->txq[1]);
2820 ipw_queue_tx_free(priv, &priv->txq[2]);
2821 ipw_queue_tx_free(priv, &priv->txq[3]);
2822 }
2823
2824 static void inline __maybe_wake_tx(struct ipw_priv *priv)
2825 {
2826 if (netif_running(priv->net_dev)) {
2827 switch (priv->port_type) {
2828 case DCR_TYPE_MU_BSS:
2829 case DCR_TYPE_MU_IBSS:
2830 if (!(priv->status & STATUS_ASSOCIATED)) {
2831 return;
2832 }
2833 }
2834 netif_wake_queue(priv->net_dev);
2835 }
2836
2837 }
2838
2839 static inline void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
2840 {
2841 /* First 3 bytes are manufacturer */
2842 bssid[0] = priv->mac_addr[0];
2843 bssid[1] = priv->mac_addr[1];
2844 bssid[2] = priv->mac_addr[2];
2845
2846 /* Last bytes are random */
2847 get_random_bytes(&bssid[3], ETH_ALEN - 3);
2848
2849 bssid[0] &= 0xfe; /* clear multicast bit */
2850 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
2851 }
2852
2853 static inline u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
2854 {
2855 struct ipw_station_entry entry;
2856 int i;
2857
2858 for (i = 0; i < priv->num_stations; i++) {
2859 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
2860 /* Another node is active in network */
2861 priv->missed_adhoc_beacons = 0;
2862 if (!(priv->config & CFG_STATIC_CHANNEL))
2863 /* when other nodes drop out, we drop out */
2864 priv->config &= ~CFG_ADHOC_PERSIST;
2865
2866 return i;
2867 }
2868 }
2869
2870 if (i == MAX_STATIONS)
2871 return IPW_INVALID_STATION;
2872
2873 IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid));
2874
2875 entry.reserved = 0;
2876 entry.support_mode = 0;
2877 memcpy(entry.mac_addr, bssid, ETH_ALEN);
2878 memcpy(priv->stations[i], bssid, ETH_ALEN);
2879 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
2880 &entry, sizeof(entry));
2881 priv->num_stations++;
2882
2883 return i;
2884 }
2885
2886 static inline u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
2887 {
2888 int i;
2889
2890 for (i = 0; i < priv->num_stations; i++)
2891 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
2892 return i;
2893
2894 return IPW_INVALID_STATION;
2895 }
2896
2897 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
2898 {
2899 int err;
2900
2901 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED))) {
2902 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
2903 return;
2904 }
2905
2906 IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " "
2907 "on channel %d.\n",
2908 MAC_ARG(priv->assoc_request.bssid),
2909 priv->assoc_request.channel);
2910
2911 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
2912 priv->status |= STATUS_DISASSOCIATING;
2913
2914 if (quiet)
2915 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
2916 else
2917 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
2918 err = ipw_send_associate(priv, &priv->assoc_request);
2919 if (err) {
2920 IPW_DEBUG_HC("Attempt to send [dis]associate command "
2921 "failed.\n");
2922 return;
2923 }
2924
2925 }
2926
2927 static void ipw_disassociate(void *data)
2928 {
2929 ipw_send_disassociate(data, 0);
2930 }
2931
2932 static void notify_wx_assoc_event(struct ipw_priv *priv)
2933 {
2934 union iwreq_data wrqu;
2935 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
2936 if (priv->status & STATUS_ASSOCIATED)
2937 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
2938 else
2939 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
2940 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
2941 }
2942
2943 struct ipw_status_code {
2944 u16 status;
2945 const char *reason;
2946 };
2947
2948 static const struct ipw_status_code ipw_status_codes[] = {
2949 {0x00, "Successful"},
2950 {0x01, "Unspecified failure"},
2951 {0x0A, "Cannot support all requested capabilities in the "
2952 "Capability information field"},
2953 {0x0B, "Reassociation denied due to inability to confirm that "
2954 "association exists"},
2955 {0x0C, "Association denied due to reason outside the scope of this "
2956 "standard"},
2957 {0x0D,
2958 "Responding station does not support the specified authentication "
2959 "algorithm"},
2960 {0x0E,
2961 "Received an Authentication frame with authentication sequence "
2962 "transaction sequence number out of expected sequence"},
2963 {0x0F, "Authentication rejected because of challenge failure"},
2964 {0x10, "Authentication rejected due to timeout waiting for next "
2965 "frame in sequence"},
2966 {0x11, "Association denied because AP is unable to handle additional "
2967 "associated stations"},
2968 {0x12,
2969 "Association denied due to requesting station not supporting all "
2970 "of the datarates in the BSSBasicServiceSet Parameter"},
2971 {0x13,
2972 "Association denied due to requesting station not supporting "
2973 "short preamble operation"},
2974 {0x14,
2975 "Association denied due to requesting station not supporting "
2976 "PBCC encoding"},
2977 {0x15,
2978 "Association denied due to requesting station not supporting "
2979 "channel agility"},
2980 {0x19,
2981 "Association denied due to requesting station not supporting "
2982 "short slot operation"},
2983 {0x1A,
2984 "Association denied due to requesting station not supporting "
2985 "DSSS-OFDM operation"},
2986 {0x28, "Invalid Information Element"},
2987 {0x29, "Group Cipher is not valid"},
2988 {0x2A, "Pairwise Cipher is not valid"},
2989 {0x2B, "AKMP is not valid"},
2990 {0x2C, "Unsupported RSN IE version"},
2991 {0x2D, "Invalid RSN IE Capabilities"},
2992 {0x2E, "Cipher suite is rejected per security policy"},
2993 };
2994
2995 #ifdef CONFIG_IPW_DEBUG
2996 static const char *ipw_get_status_code(u16 status)
2997 {
2998 int i;
2999 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3000 if (ipw_status_codes[i].status == status)
3001 return ipw_status_codes[i].reason;
3002 return "Unknown status value.";
3003 }
3004 #endif
3005
3006 static void inline average_init(struct average *avg)
3007 {
3008 memset(avg, 0, sizeof(*avg));
3009 }
3010
3011 static void inline average_add(struct average *avg, s16 val)
3012 {
3013 avg->sum -= avg->entries[avg->pos];
3014 avg->sum += val;
3015 avg->entries[avg->pos++] = val;
3016 if (unlikely(avg->pos == AVG_ENTRIES)) {
3017 avg->init = 1;
3018 avg->pos = 0;
3019 }
3020 }
3021
3022 static s16 inline average_value(struct average *avg)
3023 {
3024 if (!unlikely(avg->init)) {
3025 if (avg->pos)
3026 return avg->sum / avg->pos;
3027 return 0;
3028 }
3029
3030 return avg->sum / AVG_ENTRIES;
3031 }
3032
3033 static void ipw_reset_stats(struct ipw_priv *priv)
3034 {
3035 u32 len = sizeof(u32);
3036
3037 priv->quality = 0;
3038
3039 average_init(&priv->average_missed_beacons);
3040 average_init(&priv->average_rssi);
3041 average_init(&priv->average_noise);
3042
3043 priv->last_rate = 0;
3044 priv->last_missed_beacons = 0;
3045 priv->last_rx_packets = 0;
3046 priv->last_tx_packets = 0;
3047 priv->last_tx_failures = 0;
3048
3049 /* Firmware managed, reset only when NIC is restarted, so we have to
3050 * normalize on the current value */
3051 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
3052 &priv->last_rx_err, &len);
3053 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
3054 &priv->last_tx_failures, &len);
3055
3056 /* Driver managed, reset with each association */
3057 priv->missed_adhoc_beacons = 0;
3058 priv->missed_beacons = 0;
3059 priv->tx_packets = 0;
3060 priv->rx_packets = 0;
3061
3062 }
3063
3064 static inline u32 ipw_get_max_rate(struct ipw_priv *priv)
3065 {
3066 u32 i = 0x80000000;
3067 u32 mask = priv->rates_mask;
3068 /* If currently associated in B mode, restrict the maximum
3069 * rate match to B rates */
3070 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
3071 mask &= IEEE80211_CCK_RATES_MASK;
3072
3073 /* TODO: Verify that the rate is supported by the current rates
3074 * list. */
3075
3076 while (i && !(mask & i))
3077 i >>= 1;
3078 switch (i) {
3079 case IEEE80211_CCK_RATE_1MB_MASK: return 1000000;
3080 case IEEE80211_CCK_RATE_2MB_MASK: return 2000000;
3081 case IEEE80211_CCK_RATE_5MB_MASK: return 5500000;
3082 case IEEE80211_OFDM_RATE_6MB_MASK: return 6000000;
3083 case IEEE80211_OFDM_RATE_9MB_MASK: return 9000000;
3084 case IEEE80211_CCK_RATE_11MB_MASK: return 11000000;
3085 case IEEE80211_OFDM_RATE_12MB_MASK: return 12000000;
3086 case IEEE80211_OFDM_RATE_18MB_MASK: return 18000000;
3087 case IEEE80211_OFDM_RATE_24MB_MASK: return 24000000;
3088 case IEEE80211_OFDM_RATE_36MB_MASK: return 36000000;
3089 case IEEE80211_OFDM_RATE_48MB_MASK: return 48000000;
3090 case IEEE80211_OFDM_RATE_54MB_MASK: return 54000000;
3091 }
3092
3093 if (priv->ieee->mode == IEEE_B)
3094 return 11000000;
3095 else
3096 return 54000000;
3097 }
3098
3099 static u32 ipw_get_current_rate(struct ipw_priv *priv)
3100 {
3101 u32 rate, len = sizeof(rate);
3102 int err;
3103
3104 if (!(priv->status & STATUS_ASSOCIATED))
3105 return 0;
3106
3107 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
3108 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
3109 &len);
3110 if (err) {
3111 IPW_DEBUG_INFO("failed querying ordinals.\n");
3112 return 0;
3113 }
3114 } else
3115 return ipw_get_max_rate(priv);
3116
3117 switch (rate) {
3118 case IPW_TX_RATE_1MB: return 1000000;
3119 case IPW_TX_RATE_2MB: return 2000000;
3120 case IPW_TX_RATE_5MB: return 5500000;
3121 case IPW_TX_RATE_6MB: return 6000000;
3122 case IPW_TX_RATE_9MB: return 9000000;
3123 case IPW_TX_RATE_11MB: return 11000000;
3124 case IPW_TX_RATE_12MB: return 12000000;
3125 case IPW_TX_RATE_18MB: return 18000000;
3126 case IPW_TX_RATE_24MB: return 24000000;
3127 case IPW_TX_RATE_36MB: return 36000000;
3128 case IPW_TX_RATE_48MB: return 48000000;
3129 case IPW_TX_RATE_54MB: return 54000000;
3130 }
3131
3132 return 0;
3133 }
3134
3135 #define PERFECT_RSSI (-50)
3136 #define WORST_RSSI (-85)
3137 #define IPW_STATS_INTERVAL (2 * HZ)
3138 static void ipw_gather_stats(struct ipw_priv *priv)
3139 {
3140 u32 rx_err, rx_err_delta, rx_packets_delta;
3141 u32 tx_failures, tx_failures_delta, tx_packets_delta;
3142 u32 missed_beacons_percent, missed_beacons_delta;
3143 u32 quality = 0;
3144 u32 len = sizeof(u32);
3145 s16 rssi;
3146 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
3147 rate_quality;
3148
3149 if (!(priv->status & STATUS_ASSOCIATED)) {
3150 priv->quality = 0;
3151 return;
3152 }
3153
3154 /* Update the statistics */
3155 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
3156 &priv->missed_beacons, &len);
3157 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
3158 priv->last_missed_beacons = priv->missed_beacons;
3159 if (priv->assoc_request.beacon_interval) {
3160 missed_beacons_percent = missed_beacons_delta *
3161 (HZ * priv->assoc_request.beacon_interval) /
3162 (IPW_STATS_INTERVAL * 10);
3163 } else {
3164 missed_beacons_percent = 0;
3165 }
3166 average_add(&priv->average_missed_beacons, missed_beacons_percent);
3167
3168 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
3169 rx_err_delta = rx_err - priv->last_rx_err;
3170 priv->last_rx_err = rx_err;
3171
3172 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
3173 tx_failures_delta = tx_failures - priv->last_tx_failures;
3174 priv->last_tx_failures = tx_failures;
3175
3176 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
3177 priv->last_rx_packets = priv->rx_packets;
3178
3179 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
3180 priv->last_tx_packets = priv->tx_packets;
3181
3182 /* Calculate quality based on the following:
3183 *
3184 * Missed beacon: 100% = 0, 0% = 70% missed
3185 * Rate: 60% = 1Mbs, 100% = Max
3186 * Rx and Tx errors represent a straight % of total Rx/Tx
3187 * RSSI: 100% = > -50, 0% = < -80
3188 * Rx errors: 100% = 0, 0% = 50% missed
3189 *
3190 * The lowest computed quality is used.
3191 *
3192 */
3193 #define BEACON_THRESHOLD 5
3194 beacon_quality = 100 - missed_beacons_percent;
3195 if (beacon_quality < BEACON_THRESHOLD)
3196 beacon_quality = 0;
3197 else
3198 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
3199 (100 - BEACON_THRESHOLD);
3200 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
3201 beacon_quality, missed_beacons_percent);
3202
3203 priv->last_rate = ipw_get_current_rate(priv);
3204 rate_quality = priv->last_rate * 40 / priv->last_rate + 60;
3205 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
3206 rate_quality, priv->last_rate / 1000000);
3207
3208 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
3209 rx_quality = 100 - (rx_err_delta * 100) /
3210 (rx_packets_delta + rx_err_delta);
3211 else
3212 rx_quality = 100;
3213 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
3214 rx_quality, rx_err_delta, rx_packets_delta);
3215
3216 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
3217 tx_quality = 100 - (tx_failures_delta * 100) /
3218 (tx_packets_delta + tx_failures_delta);
3219 else
3220 tx_quality = 100;
3221 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
3222 tx_quality, tx_failures_delta, tx_packets_delta);
3223
3224 rssi = average_value(&priv->average_rssi);
3225 if (rssi > PERFECT_RSSI)
3226 signal_quality = 100;
3227 else if (rssi < WORST_RSSI)
3228 signal_quality = 0;
3229 else
3230 signal_quality = (rssi - WORST_RSSI) * 100 /
3231 (PERFECT_RSSI - WORST_RSSI);
3232 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
3233 signal_quality, rssi);
3234
3235 quality = min(beacon_quality,
3236 min(rate_quality,
3237 min(tx_quality, min(rx_quality, signal_quality))));
3238 if (quality == beacon_quality)
3239 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
3240 quality);
3241 if (quality == rate_quality)
3242 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
3243 quality);
3244 if (quality == tx_quality)
3245 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
3246 quality);
3247 if (quality == rx_quality)
3248 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
3249 quality);
3250 if (quality == signal_quality)
3251 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
3252 quality);
3253
3254 priv->quality = quality;
3255
3256 queue_delayed_work(priv->workqueue, &priv->gather_stats,
3257 IPW_STATS_INTERVAL);
3258 }
3259
3260 /**
3261 * Handle host notification packet.
3262 * Called from interrupt routine
3263 */
3264 static inline void ipw_rx_notification(struct ipw_priv *priv,
3265 struct ipw_rx_notification *notif)
3266 {
3267 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
3268
3269 switch (notif->subtype) {
3270 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
3271 struct notif_association *assoc = &notif->u.assoc;
3272
3273 switch (assoc->state) {
3274 case CMAS_ASSOCIATED:{
3275 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3276 IPW_DL_ASSOC,
3277 "associated: '%s' " MAC_FMT
3278 " \n",
3279 escape_essid(priv->essid,
3280 priv->essid_len),
3281 MAC_ARG(priv->bssid));
3282
3283 switch (priv->ieee->iw_mode) {
3284 case IW_MODE_INFRA:
3285 memcpy(priv->ieee->bssid,
3286 priv->bssid, ETH_ALEN);
3287 break;
3288
3289 case IW_MODE_ADHOC:
3290 memcpy(priv->ieee->bssid,
3291 priv->bssid, ETH_ALEN);
3292
3293 /* clear out the station table */
3294 priv->num_stations = 0;
3295
3296 IPW_DEBUG_ASSOC
3297 ("queueing adhoc check\n");
3298 queue_delayed_work(priv->
3299 workqueue,
3300 &priv->
3301 adhoc_check,
3302 priv->
3303 assoc_request.
3304 beacon_interval);
3305 break;
3306 }
3307
3308 priv->status &= ~STATUS_ASSOCIATING;
3309 priv->status |= STATUS_ASSOCIATED;
3310
3311 netif_carrier_on(priv->net_dev);
3312 if (netif_queue_stopped(priv->net_dev)) {
3313 IPW_DEBUG_NOTIF
3314 ("waking queue\n");
3315 netif_wake_queue(priv->net_dev);
3316 } else {
3317 IPW_DEBUG_NOTIF
3318 ("starting queue\n");
3319 netif_start_queue(priv->
3320 net_dev);
3321 }
3322
3323 ipw_reset_stats(priv);
3324 /* Ensure the rate is updated immediately */
3325 priv->last_rate =
3326 ipw_get_current_rate(priv);
3327 schedule_work(&priv->gather_stats);
3328 notify_wx_assoc_event(priv);
3329
3330 /* queue_delayed_work(priv->workqueue,
3331 &priv->request_scan,
3332 SCAN_ASSOCIATED_INTERVAL);
3333 */
3334 break;
3335 }
3336
3337 case CMAS_AUTHENTICATED:{
3338 if (priv->
3339 status & (STATUS_ASSOCIATED |
3340 STATUS_AUTH)) {
3341 #ifdef CONFIG_IPW_DEBUG
3342 struct notif_authenticate *auth
3343 = &notif->u.auth;
3344 IPW_DEBUG(IPW_DL_NOTIF |
3345 IPW_DL_STATE |
3346 IPW_DL_ASSOC,
3347 "deauthenticated: '%s' "
3348 MAC_FMT
3349 ": (0x%04X) - %s \n",
3350 escape_essid(priv->
3351 essid,
3352 priv->
3353 essid_len),
3354 MAC_ARG(priv->bssid),
3355 ntohs(auth->status),
3356 ipw_get_status_code
3357 (ntohs
3358 (auth->status)));
3359 #endif
3360
3361 priv->status &=
3362 ~(STATUS_ASSOCIATING |
3363 STATUS_AUTH |
3364 STATUS_ASSOCIATED);
3365
3366 netif_carrier_off(priv->
3367 net_dev);
3368 netif_stop_queue(priv->net_dev);
3369 queue_work(priv->workqueue,
3370 &priv->request_scan);
3371 notify_wx_assoc_event(priv);
3372 break;
3373 }
3374
3375 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3376 IPW_DL_ASSOC,
3377 "authenticated: '%s' " MAC_FMT
3378 "\n",
3379 escape_essid(priv->essid,
3380 priv->essid_len),
3381 MAC_ARG(priv->bssid));
3382 break;
3383 }
3384
3385 case CMAS_INIT:{
3386 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3387 IPW_DL_ASSOC,
3388 "disassociated: '%s' " MAC_FMT
3389 " \n",
3390 escape_essid(priv->essid,
3391 priv->essid_len),
3392 MAC_ARG(priv->bssid));
3393
3394 priv->status &=
3395 ~(STATUS_DISASSOCIATING |
3396 STATUS_ASSOCIATING |
3397 STATUS_ASSOCIATED | STATUS_AUTH);
3398
3399 netif_stop_queue(priv->net_dev);
3400 if (!(priv->status & STATUS_ROAMING)) {
3401 netif_carrier_off(priv->
3402 net_dev);
3403 notify_wx_assoc_event(priv);
3404
3405 /* Cancel any queued work ... */
3406 cancel_delayed_work(&priv->
3407 request_scan);
3408 cancel_delayed_work(&priv->
3409 adhoc_check);
3410
3411 /* Queue up another scan... */
3412 queue_work(priv->workqueue,
3413 &priv->request_scan);
3414
3415 cancel_delayed_work(&priv->
3416 gather_stats);
3417 } else {
3418 priv->status |= STATUS_ROAMING;
3419 queue_work(priv->workqueue,
3420 &priv->request_scan);
3421 }
3422
3423 ipw_reset_stats(priv);
3424 break;
3425 }
3426
3427 default:
3428 IPW_ERROR("assoc: unknown (%d)\n",
3429 assoc->state);
3430 break;
3431 }
3432
3433 break;
3434 }
3435
3436 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
3437 struct notif_authenticate *auth = &notif->u.auth;
3438 switch (auth->state) {
3439 case CMAS_AUTHENTICATED:
3440 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
3441 "authenticated: '%s' " MAC_FMT " \n",
3442 escape_essid(priv->essid,
3443 priv->essid_len),
3444 MAC_ARG(priv->bssid));
3445 priv->status |= STATUS_AUTH;
3446 break;
3447
3448 case CMAS_INIT:
3449 if (priv->status & STATUS_AUTH) {
3450 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3451 IPW_DL_ASSOC,
3452 "authentication failed (0x%04X): %s\n",
3453 ntohs(auth->status),
3454 ipw_get_status_code(ntohs
3455 (auth->
3456 status)));
3457 }
3458 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3459 IPW_DL_ASSOC,
3460 "deauthenticated: '%s' " MAC_FMT "\n",
3461 escape_essid(priv->essid,
3462 priv->essid_len),
3463 MAC_ARG(priv->bssid));
3464
3465 priv->status &= ~(STATUS_ASSOCIATING |
3466 STATUS_AUTH |
3467 STATUS_ASSOCIATED);
3468
3469 netif_carrier_off(priv->net_dev);
3470 netif_stop_queue(priv->net_dev);
3471 queue_work(priv->workqueue,
3472 &priv->request_scan);
3473 notify_wx_assoc_event(priv);
3474 break;
3475
3476 case CMAS_TX_AUTH_SEQ_1:
3477 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3478 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
3479 break;
3480 case CMAS_RX_AUTH_SEQ_2:
3481 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3482 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
3483 break;
3484 case CMAS_AUTH_SEQ_1_PASS:
3485 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3486 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
3487 break;
3488 case CMAS_AUTH_SEQ_1_FAIL:
3489 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3490 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
3491 break;
3492 case CMAS_TX_AUTH_SEQ_3:
3493 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3494 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
3495 break;
3496 case CMAS_RX_AUTH_SEQ_4:
3497 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3498 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
3499 break;
3500 case CMAS_AUTH_SEQ_2_PASS:
3501 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3502 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
3503 break;
3504 case CMAS_AUTH_SEQ_2_FAIL:
3505 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3506 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
3507 break;
3508 case CMAS_TX_ASSOC:
3509 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3510 IPW_DL_ASSOC, "TX_ASSOC\n");
3511 break;
3512 case CMAS_RX_ASSOC_RESP:
3513 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3514 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
3515 break;
3516 case CMAS_ASSOCIATED:
3517 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
3518 IPW_DL_ASSOC, "ASSOCIATED\n");
3519 break;
3520 default:
3521 IPW_DEBUG_NOTIF("auth: failure - %d\n",
3522 auth->state);
3523 break;
3524 }
3525 break;
3526 }
3527
3528 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
3529 struct notif_channel_result *x =
3530 &notif->u.channel_result;
3531
3532 if (notif->size == sizeof(*x)) {
3533 IPW_DEBUG_SCAN("Scan result for channel %d\n",
3534 x->channel_num);
3535 } else {
3536 IPW_DEBUG_SCAN("Scan result of wrong size %d "
3537 "(should be %zd)\n",
3538 notif->size, sizeof(*x));
3539 }
3540 break;
3541 }
3542
3543 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
3544 struct notif_scan_complete *x = &notif->u.scan_complete;
3545 if (notif->size == sizeof(*x)) {
3546 IPW_DEBUG_SCAN
3547 ("Scan completed: type %d, %d channels, "
3548 "%d status\n", x->scan_type,
3549 x->num_channels, x->status);
3550 } else {
3551 IPW_ERROR("Scan completed of wrong size %d "
3552 "(should be %zd)\n",
3553 notif->size, sizeof(*x));
3554 }
3555
3556 priv->status &=
3557 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3558
3559 cancel_delayed_work(&priv->scan_check);
3560
3561 if (!(priv->status & (STATUS_ASSOCIATED |
3562 STATUS_ASSOCIATING |
3563 STATUS_ROAMING |
3564 STATUS_DISASSOCIATING)))
3565 queue_work(priv->workqueue, &priv->associate);
3566 else if (priv->status & STATUS_ROAMING) {
3567 /* If a scan completed and we are in roam mode, then
3568 * the scan that completed was the one requested as a
3569 * result of entering roam... so, schedule the
3570 * roam work */
3571 queue_work(priv->workqueue, &priv->roam);
3572 } else if (priv->status & STATUS_SCAN_PENDING)
3573 queue_work(priv->workqueue,
3574 &priv->request_scan);
3575
3576 priv->ieee->scans++;
3577 break;
3578 }
3579
3580 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
3581 struct notif_frag_length *x = &notif->u.frag_len;
3582
3583 if (notif->size == sizeof(*x)) {
3584 IPW_ERROR("Frag length: %d\n", x->frag_length);
3585 } else {
3586 IPW_ERROR("Frag length of wrong size %d "
3587 "(should be %zd)\n",
3588 notif->size, sizeof(*x));
3589 }
3590 break;
3591 }
3592
3593 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
3594 struct notif_link_deterioration *x =
3595 &notif->u.link_deterioration;
3596 if (notif->size == sizeof(*x)) {
3597 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
3598 "link deterioration: '%s' " MAC_FMT
3599 " \n", escape_essid(priv->essid,
3600 priv->essid_len),
3601 MAC_ARG(priv->bssid));
3602 memcpy(&priv->last_link_deterioration, x,
3603 sizeof(*x));
3604 } else {
3605 IPW_ERROR("Link Deterioration of wrong size %d "
3606 "(should be %zd)\n",
3607 notif->size, sizeof(*x));
3608 }
3609 break;
3610 }
3611
3612 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
3613 IPW_ERROR("Dino config\n");
3614 if (priv->hcmd
3615 && priv->hcmd->cmd == HOST_CMD_DINO_CONFIG) {
3616 /* TODO: Do anything special? */
3617 } else {
3618 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
3619 }
3620 break;
3621 }
3622
3623 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
3624 struct notif_beacon_state *x = &notif->u.beacon_state;
3625 if (notif->size != sizeof(*x)) {
3626 IPW_ERROR
3627 ("Beacon state of wrong size %d (should "
3628 "be %zd)\n", notif->size, sizeof(*x));
3629 break;
3630 }
3631
3632 if (x->state == HOST_NOTIFICATION_STATUS_BEACON_MISSING) {
3633 if (priv->status & STATUS_SCANNING) {
3634 /* Stop scan to keep fw from getting
3635 * stuck... */
3636 queue_work(priv->workqueue,
3637 &priv->abort_scan);
3638 }
3639
3640 if (x->number > priv->missed_beacon_threshold &&
3641 priv->status & STATUS_ASSOCIATED) {
3642 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
3643 IPW_DL_STATE,
3644 "Missed beacon: %d - disassociate\n",
3645 x->number);
3646 queue_work(priv->workqueue,
3647 &priv->disassociate);
3648 } else if (x->number > priv->roaming_threshold) {
3649 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
3650 "Missed beacon: %d - initiate "
3651 "roaming\n", x->number);
3652 queue_work(priv->workqueue,
3653 &priv->roam);
3654 } else {
3655 IPW_DEBUG_NOTIF("Missed beacon: %d\n",
3656 x->number);
3657 }
3658
3659 priv->notif_missed_beacons = x->number;
3660
3661 }
3662
3663 break;
3664 }
3665
3666 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
3667 struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
3668 if (notif->size == sizeof(*x)) {
3669 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
3670 "0x%02x station %d\n",
3671 x->key_state, x->security_type,
3672 x->station_index);
3673 break;
3674 }
3675
3676 IPW_ERROR
3677 ("TGi Tx Key of wrong size %d (should be %zd)\n",
3678 notif->size, sizeof(*x));
3679 break;
3680 }
3681
3682 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
3683 struct notif_calibration *x = &notif->u.calibration;
3684
3685 if (notif->size == sizeof(*x)) {
3686 memcpy(&priv->calib, x, sizeof(*x));
3687 IPW_DEBUG_INFO("TODO: Calibration\n");
3688 break;
3689 }
3690
3691 IPW_ERROR
3692 ("Calibration of wrong size %d (should be %zd)\n",
3693 notif->size, sizeof(*x));
3694 break;
3695 }
3696
3697 case HOST_NOTIFICATION_NOISE_STATS:{
3698 if (notif->size == sizeof(u32)) {
3699 priv->last_noise =
3700 (u8) (notif->u.noise.value & 0xff);
3701 average_add(&priv->average_noise,
3702 priv->last_noise);
3703 break;
3704 }
3705
3706 IPW_ERROR
3707 ("Noise stat is wrong size %d (should be %zd)\n",
3708 notif->size, sizeof(u32));
3709 break;
3710 }
3711
3712 default:
3713 IPW_ERROR("Unknown notification: "
3714 "subtype=%d,flags=0x%2x,size=%d\n",
3715 notif->subtype, notif->flags, notif->size);
3716 }
3717 }
3718
3719 /**
3720 * Destroys all DMA structures and initialise them again
3721 *
3722 * @param priv
3723 * @return error code
3724 */
3725 static int ipw_queue_reset(struct ipw_priv *priv)
3726 {
3727 int rc = 0;
3728 /** @todo customize queue sizes */
3729 int nTx = 64, nTxCmd = 8;
3730 ipw_tx_queue_free(priv);
3731 /* Tx CMD queue */
3732 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
3733 CX2_TX_CMD_QUEUE_READ_INDEX,
3734 CX2_TX_CMD_QUEUE_WRITE_INDEX,
3735 CX2_TX_CMD_QUEUE_BD_BASE,
3736 CX2_TX_CMD_QUEUE_BD_SIZE);
3737 if (rc) {
3738 IPW_ERROR("Tx Cmd queue init failed\n");
3739 goto error;
3740 }
3741 /* Tx queue(s) */
3742 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
3743 CX2_TX_QUEUE_0_READ_INDEX,
3744 CX2_TX_QUEUE_0_WRITE_INDEX,
3745 CX2_TX_QUEUE_0_BD_BASE, CX2_TX_QUEUE_0_BD_SIZE);
3746 if (rc) {
3747 IPW_ERROR("Tx 0 queue init failed\n");
3748 goto error;
3749 }
3750 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
3751 CX2_TX_QUEUE_1_READ_INDEX,
3752 CX2_TX_QUEUE_1_WRITE_INDEX,
3753 CX2_TX_QUEUE_1_BD_BASE, CX2_TX_QUEUE_1_BD_SIZE);
3754 if (rc) {
3755 IPW_ERROR("Tx 1 queue init failed\n");
3756 goto error;
3757 }
3758 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
3759 CX2_TX_QUEUE_2_READ_INDEX,
3760 CX2_TX_QUEUE_2_WRITE_INDEX,
3761 CX2_TX_QUEUE_2_BD_BASE, CX2_TX_QUEUE_2_BD_SIZE);
3762 if (rc) {
3763 IPW_ERROR("Tx 2 queue init failed\n");
3764 goto error;
3765 }
3766 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
3767 CX2_TX_QUEUE_3_READ_INDEX,
3768 CX2_TX_QUEUE_3_WRITE_INDEX,
3769 CX2_TX_QUEUE_3_BD_BASE, CX2_TX_QUEUE_3_BD_SIZE);
3770 if (rc) {
3771 IPW_ERROR("Tx 3 queue init failed\n");
3772 goto error;
3773 }
3774 /* statistics */
3775 priv->rx_bufs_min = 0;
3776 priv->rx_pend_max = 0;
3777 return rc;
3778
3779 error:
3780 ipw_tx_queue_free(priv);
3781 return rc;
3782 }
3783
3784 /**
3785 * Reclaim Tx queue entries no more used by NIC.
3786 *
3787 * When FW adwances 'R' index, all entries between old and
3788 * new 'R' index need to be reclaimed. As result, some free space
3789 * forms. If there is enough free space (> low mark), wake Tx queue.
3790 *
3791 * @note Need to protect against garbage in 'R' index
3792 * @param priv
3793 * @param txq
3794 * @param qindex
3795 * @return Number of used entries remains in the queue
3796 */
3797 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
3798 struct clx2_tx_queue *txq, int qindex)
3799 {
3800 u32 hw_tail;
3801 int used;
3802 struct clx2_queue *q = &txq->q;
3803
3804 hw_tail = ipw_read32(priv, q->reg_r);
3805 if (hw_tail >= q->n_bd) {
3806 IPW_ERROR
3807 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
3808 hw_tail, q->n_bd);
3809 goto done;
3810 }
3811 for (; q->last_used != hw_tail;
3812 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3813 ipw_queue_tx_free_tfd(priv, txq);
3814 priv->tx_packets++;
3815 }
3816 done:
3817 if (ipw_queue_space(q) > q->low_mark && qindex >= 0) {
3818 __maybe_wake_tx(priv);
3819 }
3820 used = q->first_empty - q->last_used;
3821 if (used < 0)
3822 used += q->n_bd;
3823
3824 return used;
3825 }
3826
3827 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
3828 int len, int sync)
3829 {
3830 struct clx2_tx_queue *txq = &priv->txq_cmd;
3831 struct clx2_queue *q = &txq->q;
3832 struct tfd_frame *tfd;
3833
3834 if (ipw_queue_space(q) < (sync ? 1 : 2)) {
3835 IPW_ERROR("No space for Tx\n");
3836 return -EBUSY;
3837 }
3838
3839 tfd = &txq->bd[q->first_empty];
3840 txq->txb[q->first_empty] = NULL;
3841
3842 memset(tfd, 0, sizeof(*tfd));
3843 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
3844 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
3845 priv->hcmd_seq++;
3846 tfd->u.cmd.index = hcmd;
3847 tfd->u.cmd.length = len;
3848 memcpy(tfd->u.cmd.payload, buf, len);
3849 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
3850 ipw_write32(priv, q->reg_w, q->first_empty);
3851 _ipw_read32(priv, 0x90);
3852
3853 return 0;
3854 }
3855
3856 /*
3857 * Rx theory of operation
3858 *
3859 * The host allocates 32 DMA target addresses and passes the host address
3860 * to the firmware at register CX2_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
3861 * 0 to 31
3862 *
3863 * Rx Queue Indexes
3864 * The host/firmware share two index registers for managing the Rx buffers.
3865 *
3866 * The READ index maps to the first position that the firmware may be writing
3867 * to -- the driver can read up to (but not including) this position and get
3868 * good data.
3869 * The READ index is managed by the firmware once the card is enabled.
3870 *
3871 * The WRITE index maps to the last position the driver has read from -- the
3872 * position preceding WRITE is the last slot the firmware can place a packet.
3873 *
3874 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
3875 * WRITE = READ.
3876 *
3877 * During initialization the host sets up the READ queue position to the first
3878 * INDEX position, and WRITE to the last (READ - 1 wrapped)
3879 *
3880 * When the firmware places a packet in a buffer it will advance the READ index
3881 * and fire the RX interrupt. The driver can then query the READ index and
3882 * process as many packets as possible, moving the WRITE index forward as it
3883 * resets the Rx queue buffers with new memory.
3884 *
3885 * The management in the driver is as follows:
3886 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
3887 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
3888 * to replensish the ipw->rxq->rx_free.
3889 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
3890 * ipw->rxq is replenished and the READ INDEX is updated (updating the
3891 * 'processed' and 'read' driver indexes as well)
3892 * + A received packet is processed and handed to the kernel network stack,
3893 * detached from the ipw->rxq. The driver 'processed' index is updated.
3894 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
3895 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
3896 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
3897 * were enough free buffers and RX_STALLED is set it is cleared.
3898 *
3899 *
3900 * Driver sequence:
3901 *
3902 * ipw_rx_queue_alloc() Allocates rx_free
3903 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
3904 * ipw_rx_queue_restock
3905 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
3906 * queue, updates firmware pointers, and updates
3907 * the WRITE index. If insufficient rx_free buffers
3908 * are available, schedules ipw_rx_queue_replenish
3909 *
3910 * -- enable interrupts --
3911 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
3912 * READ INDEX, detaching the SKB from the pool.
3913 * Moves the packet buffer from queue to rx_used.
3914 * Calls ipw_rx_queue_restock to refill any empty
3915 * slots.
3916 * ...
3917 *
3918 */
3919
3920 /*
3921 * If there are slots in the RX queue that need to be restocked,
3922 * and we have free pre-allocated buffers, fill the ranks as much
3923 * as we can pulling from rx_free.
3924 *
3925 * This moves the 'write' index forward to catch up with 'processed', and
3926 * also updates the memory address in the firmware to reference the new
3927 * target buffer.
3928 */
3929 static void ipw_rx_queue_restock(struct ipw_priv *priv)
3930 {
3931 struct ipw_rx_queue *rxq = priv->rxq;
3932 struct list_head *element;
3933 struct ipw_rx_mem_buffer *rxb;
3934 unsigned long flags;
3935 int write;
3936
3937 spin_lock_irqsave(&rxq->lock, flags);
3938 write = rxq->write;
3939 while ((rxq->write != rxq->processed) && (rxq->free_count)) {
3940 element = rxq->rx_free.next;
3941 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
3942 list_del(element);
3943
3944 ipw_write32(priv, CX2_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
3945 rxb->dma_addr);
3946 rxq->queue[rxq->write] = rxb;
3947 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
3948 rxq->free_count--;
3949 }
3950 spin_unlock_irqrestore(&rxq->lock, flags);
3951
3952 /* If the pre-allocated buffer pool is dropping low, schedule to
3953 * refill it */
3954 if (rxq->free_count <= RX_LOW_WATERMARK)
3955 queue_work(priv->workqueue, &priv->rx_replenish);
3956
3957 /* If we've added more space for the firmware to place data, tell it */
3958 if (write != rxq->write)
3959 ipw_write32(priv, CX2_RX_WRITE_INDEX, rxq->write);
3960 }
3961
3962 /*
3963 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
3964 * Also restock the Rx queue via ipw_rx_queue_restock.
3965 *
3966 * This is called as a scheduled work item (except for during intialization)
3967 */
3968 static void ipw_rx_queue_replenish(void *data)
3969 {
3970 struct ipw_priv *priv = data;
3971 struct ipw_rx_queue *rxq = priv->rxq;
3972 struct list_head *element;
3973 struct ipw_rx_mem_buffer *rxb;
3974 unsigned long flags;
3975
3976 spin_lock_irqsave(&rxq->lock, flags);
3977 while (!list_empty(&rxq->rx_used)) {
3978 element = rxq->rx_used.next;
3979 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
3980 rxb->skb = alloc_skb(CX2_RX_BUF_SIZE, GFP_ATOMIC);
3981 if (!rxb->skb) {
3982 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
3983 priv->net_dev->name);
3984 /* We don't reschedule replenish work here -- we will
3985 * call the restock method and if it still needs
3986 * more buffers it will schedule replenish */
3987 break;
3988 }
3989 list_del(element);
3990
3991 rxb->rxb = (struct ipw_rx_buffer *)rxb->skb->data;
3992 rxb->dma_addr =
3993 pci_map_single(priv->pci_dev, rxb->skb->data,
3994 CX2_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3995
3996 list_add_tail(&rxb->list, &rxq->rx_free);
3997 rxq->free_count++;
3998 }
3999 spin_unlock_irqrestore(&rxq->lock, flags);
4000
4001 ipw_rx_queue_restock(priv);
4002 }
4003
4004 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
4005 * If an SKB has been detached, the POOL needs to have it's SKB set to NULL
4006 * This free routine walks the list of POOL entries and if SKB is set to
4007 * non NULL it is unmapped and freed
4008 */
4009 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
4010 {
4011 int i;
4012
4013 if (!rxq)
4014 return;
4015
4016 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
4017 if (rxq->pool[i].skb != NULL) {
4018 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
4019 CX2_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
4020 dev_kfree_skb(rxq->pool[i].skb);
4021 }
4022 }
4023
4024 kfree(rxq);
4025 }
4026
4027 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
4028 {
4029 struct ipw_rx_queue *rxq;
4030 int i;
4031
4032 rxq = (struct ipw_rx_queue *)kmalloc(sizeof(*rxq), GFP_KERNEL);
4033 memset(rxq, 0, sizeof(*rxq));
4034 spin_lock_init(&rxq->lock);
4035 INIT_LIST_HEAD(&rxq->rx_free);
4036 INIT_LIST_HEAD(&rxq->rx_used);
4037
4038 /* Fill the rx_used queue with _all_ of the Rx buffers */
4039 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
4040 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
4041
4042 /* Set us so that we have processed and used all buffers, but have
4043 * not restocked the Rx queue with fresh buffers */
4044 rxq->read = rxq->write = 0;
4045 rxq->processed = RX_QUEUE_SIZE - 1;
4046 rxq->free_count = 0;
4047
4048 return rxq;
4049 }
4050
4051 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
4052 {
4053 rate &= ~IEEE80211_BASIC_RATE_MASK;
4054 if (ieee_mode == IEEE_A) {
4055 switch (rate) {
4056 case IEEE80211_OFDM_RATE_6MB:
4057 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
4058 1 : 0;
4059 case IEEE80211_OFDM_RATE_9MB:
4060 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
4061 1 : 0;
4062 case IEEE80211_OFDM_RATE_12MB:
4063 return priv->
4064 rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
4065 case IEEE80211_OFDM_RATE_18MB:
4066 return priv->
4067 rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
4068 case IEEE80211_OFDM_RATE_24MB:
4069 return priv->
4070 rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
4071 case IEEE80211_OFDM_RATE_36MB:
4072 return priv->
4073 rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
4074 case IEEE80211_OFDM_RATE_48MB:
4075 return priv->
4076 rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
4077 case IEEE80211_OFDM_RATE_54MB:
4078 return priv->
4079 rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
4080 default:
4081 return 0;
4082 }
4083 }
4084
4085 /* B and G mixed */
4086 switch (rate) {
4087 case IEEE80211_CCK_RATE_1MB:
4088 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
4089 case IEEE80211_CCK_RATE_2MB:
4090 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
4091 case IEEE80211_CCK_RATE_5MB:
4092 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
4093 case IEEE80211_CCK_RATE_11MB:
4094 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
4095 }
4096
4097 /* If we are limited to B modulations, bail at this point */
4098 if (ieee_mode == IEEE_B)
4099 return 0;
4100
4101 /* G */
4102 switch (rate) {
4103 case IEEE80211_OFDM_RATE_6MB:
4104 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
4105 case IEEE80211_OFDM_RATE_9MB:
4106 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
4107 case IEEE80211_OFDM_RATE_12MB:
4108 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
4109 case IEEE80211_OFDM_RATE_18MB:
4110 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
4111 case IEEE80211_OFDM_RATE_24MB:
4112 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
4113 case IEEE80211_OFDM_RATE_36MB:
4114 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
4115 case IEEE80211_OFDM_RATE_48MB:
4116 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
4117 case IEEE80211_OFDM_RATE_54MB:
4118 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
4119 }
4120
4121 return 0;
4122 }
4123
4124 static int ipw_compatible_rates(struct ipw_priv *priv,
4125 const struct ieee80211_network *network,
4126 struct ipw_supported_rates *rates)
4127 {
4128 int num_rates, i;
4129
4130 memset(rates, 0, sizeof(*rates));
4131 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
4132 rates->num_rates = 0;
4133 for (i = 0; i < num_rates; i++) {
4134 if (!ipw_is_rate_in_mask
4135 (priv, network->mode, network->rates[i])) {
4136 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
4137 network->rates[i], priv->rates_mask);
4138 continue;
4139 }
4140
4141 rates->supported_rates[rates->num_rates++] = network->rates[i];
4142 }
4143
4144 num_rates =
4145 min(network->rates_ex_len, (u8) (IPW_MAX_RATES - num_rates));
4146 for (i = 0; i < num_rates; i++) {
4147 if (!ipw_is_rate_in_mask
4148 (priv, network->mode, network->rates_ex[i])) {
4149 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
4150 network->rates_ex[i], priv->rates_mask);
4151 continue;
4152 }
4153
4154 rates->supported_rates[rates->num_rates++] =
4155 network->rates_ex[i];
4156 }
4157
4158 return rates->num_rates;
4159 }
4160
4161 static inline void ipw_copy_rates(struct ipw_supported_rates *dest,
4162 const struct ipw_supported_rates *src)
4163 {
4164 u8 i;
4165 for (i = 0; i < src->num_rates; i++)
4166 dest->supported_rates[i] = src->supported_rates[i];
4167 dest->num_rates = src->num_rates;
4168 }
4169
4170 /* TODO: Look at sniffed packets in the air to determine if the basic rate
4171 * mask should ever be used -- right now all callers to add the scan rates are
4172 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
4173 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
4174 u8 modulation, u32 rate_mask)
4175 {
4176 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
4177 IEEE80211_BASIC_RATE_MASK : 0;
4178
4179 if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
4180 rates->supported_rates[rates->num_rates++] =
4181 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
4182
4183 if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
4184 rates->supported_rates[rates->num_rates++] =
4185 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
4186
4187 if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
4188 rates->supported_rates[rates->num_rates++] = basic_mask |
4189 IEEE80211_CCK_RATE_5MB;
4190
4191 if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
4192 rates->supported_rates[rates->num_rates++] = basic_mask |
4193 IEEE80211_CCK_RATE_11MB;
4194 }
4195
4196 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
4197 u8 modulation, u32 rate_mask)
4198 {
4199 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
4200 IEEE80211_BASIC_RATE_MASK : 0;
4201
4202 if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
4203 rates->supported_rates[rates->num_rates++] = basic_mask |
4204 IEEE80211_OFDM_RATE_6MB;
4205
4206 if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
4207 rates->supported_rates[rates->num_rates++] =
4208 IEEE80211_OFDM_RATE_9MB;
4209
4210 if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
4211 rates->supported_rates[rates->num_rates++] = basic_mask |
4212 IEEE80211_OFDM_RATE_12MB;
4213
4214 if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
4215 rates->supported_rates[rates->num_rates++] =
4216 IEEE80211_OFDM_RATE_18MB;
4217
4218 if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
4219 rates->supported_rates[rates->num_rates++] = basic_mask |
4220 IEEE80211_OFDM_RATE_24MB;
4221
4222 if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
4223 rates->supported_rates[rates->num_rates++] =
4224 IEEE80211_OFDM_RATE_36MB;
4225
4226 if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
4227 rates->supported_rates[rates->num_rates++] =
4228 IEEE80211_OFDM_RATE_48MB;
4229
4230 if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
4231 rates->supported_rates[rates->num_rates++] =
4232 IEEE80211_OFDM_RATE_54MB;
4233 }
4234
4235 struct ipw_network_match {
4236 struct ieee80211_network *network;
4237 struct ipw_supported_rates rates;
4238 };
4239
4240 static int ipw_best_network(struct ipw_priv *priv,
4241 struct ipw_network_match *match,
4242 struct ieee80211_network *network, int roaming)
4243 {
4244 struct ipw_supported_rates rates;
4245
4246 /* Verify that this network's capability is compatible with the
4247 * current mode (AdHoc or Infrastructure) */
4248 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
4249 !(network->capability & WLAN_CAPABILITY_ESS)) ||
4250 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
4251 !(network->capability & WLAN_CAPABILITY_IBSS))) {
4252 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to "
4253 "capability mismatch.\n",
4254 escape_essid(network->ssid, network->ssid_len),
4255 MAC_ARG(network->bssid));
4256 return 0;
4257 }
4258
4259 /* If we do not have an ESSID for this AP, we can not associate with
4260 * it */
4261 if (network->flags & NETWORK_EMPTY_ESSID) {
4262 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
4263 "because of hidden ESSID.\n",
4264 escape_essid(network->ssid, network->ssid_len),
4265 MAC_ARG(network->bssid));
4266 return 0;
4267 }
4268
4269 if (unlikely(roaming)) {
4270 /* If we are roaming, then ensure check if this is a valid
4271 * network to try and roam to */
4272 if ((network->ssid_len != match->network->ssid_len) ||
4273 memcmp(network->ssid, match->network->ssid,
4274 network->ssid_len)) {
4275 IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded "
4276 "because of non-network ESSID.\n",
4277 escape_essid(network->ssid,
4278 network->ssid_len),
4279 MAC_ARG(network->bssid));
4280 return 0;
4281 }
4282 } else {
4283 /* If an ESSID has been configured then compare the broadcast
4284 * ESSID to ours */
4285 if ((priv->config & CFG_STATIC_ESSID) &&
4286 ((network->ssid_len != priv->essid_len) ||
4287 memcmp(network->ssid, priv->essid,
4288 min(network->ssid_len, priv->essid_len)))) {
4289 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
4290 strncpy(escaped,
4291 escape_essid(network->ssid, network->ssid_len),
4292 sizeof(escaped));
4293 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
4294 "because of ESSID mismatch: '%s'.\n",
4295 escaped, MAC_ARG(network->bssid),
4296 escape_essid(priv->essid,
4297 priv->essid_len));
4298 return 0;
4299 }
4300 }
4301
4302 /* If the old network rate is better than this one, don't bother
4303 * testing everything else. */
4304 if (match->network && match->network->stats.rssi > network->stats.rssi) {
4305 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
4306 strncpy(escaped,
4307 escape_essid(network->ssid, network->ssid_len),
4308 sizeof(escaped));
4309 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because "
4310 "'%s (" MAC_FMT ")' has a stronger signal.\n",
4311 escaped, MAC_ARG(network->bssid),
4312 escape_essid(match->network->ssid,
4313 match->network->ssid_len),
4314 MAC_ARG(match->network->bssid));
4315 return 0;
4316 }
4317
4318 /* If this network has already had an association attempt within the
4319 * last 3 seconds, do not try and associate again... */
4320 if (network->last_associate &&
4321 time_after(network->last_associate + (HZ * 5UL), jiffies)) {
4322 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
4323 "because of storming (%lu since last "
4324 "assoc attempt).\n",
4325 escape_essid(network->ssid, network->ssid_len),
4326 MAC_ARG(network->bssid),
4327 (jiffies - network->last_associate) / HZ);
4328 return 0;
4329 }
4330
4331 /* Now go through and see if the requested network is valid... */
4332 if (priv->ieee->scan_age != 0 &&
4333 jiffies - network->last_scanned > priv->ieee->scan_age) {
4334 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
4335 "because of age: %lums.\n",
4336 escape_essid(network->ssid, network->ssid_len),
4337 MAC_ARG(network->bssid),
4338 (jiffies - network->last_scanned) / (HZ / 100));
4339 return 0;
4340 }
4341
4342 if ((priv->config & CFG_STATIC_CHANNEL) &&
4343 (network->channel != priv->channel)) {
4344 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
4345 "because of channel mismatch: %d != %d.\n",
4346 escape_essid(network->ssid, network->ssid_len),
4347 MAC_ARG(network->bssid),
4348 network->channel, priv->channel);
4349 return 0;
4350 }
4351
4352 /* Verify privacy compatability */
4353 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
4354 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
4355 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
4356 "because of privacy mismatch: %s != %s.\n",
4357 escape_essid(network->ssid, network->ssid_len),
4358 MAC_ARG(network->bssid),
4359 priv->capability & CAP_PRIVACY_ON ? "on" :
4360 "off",
4361 network->capability &
4362 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
4363 return 0;
4364 }
4365
4366 if ((priv->config & CFG_STATIC_BSSID) &&
4367 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
4368 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
4369 "because of BSSID mismatch: " MAC_FMT ".\n",
4370 escape_essid(network->ssid, network->ssid_len),
4371 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
4372 return 0;
4373 }
4374
4375 /* Filter out any incompatible freq / mode combinations */
4376 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
4377 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
4378 "because of invalid frequency/mode "
4379 "combination.\n",
4380 escape_essid(network->ssid, network->ssid_len),
4381 MAC_ARG(network->bssid));
4382 return 0;
4383 }
4384
4385 ipw_compatible_rates(priv, network, &rates);
4386 if (rates.num_rates == 0) {
4387 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
4388 "because of no compatible rates.\n",
4389 escape_essid(network->ssid, network->ssid_len),
4390 MAC_ARG(network->bssid));
4391 return 0;
4392 }
4393
4394 /* TODO: Perform any further minimal comparititive tests. We do not
4395 * want to put too much policy logic here; intelligent scan selection
4396 * should occur within a generic IEEE 802.11 user space tool. */
4397
4398 /* Set up 'new' AP to this network */
4399 ipw_copy_rates(&match->rates, &rates);
4400 match->network = network;
4401
4402 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n",
4403 escape_essid(network->ssid, network->ssid_len),
4404 MAC_ARG(network->bssid));
4405
4406 return 1;
4407 }
4408
4409 static void ipw_adhoc_create(struct ipw_priv *priv,
4410 struct ieee80211_network *network)
4411 {
4412 /*
4413 * For the purposes of scanning, we can set our wireless mode
4414 * to trigger scans across combinations of bands, but when it
4415 * comes to creating a new ad-hoc network, we have tell the FW
4416 * exactly which band to use.
4417 *
4418 * We also have the possibility of an invalid channel for the
4419 * chossen band. Attempting to create a new ad-hoc network
4420 * with an invalid channel for wireless mode will trigger a
4421 * FW fatal error.
4422 */
4423 network->mode = is_valid_channel(priv->ieee->mode, priv->channel);
4424 if (network->mode) {
4425 network->channel = priv->channel;
4426 } else {
4427 IPW_WARNING("Overriding invalid channel\n");
4428 if (priv->ieee->mode & IEEE_A) {
4429 network->mode = IEEE_A;
4430 priv->channel = band_a_active_channel[0];
4431 } else if (priv->ieee->mode & IEEE_G) {
4432 network->mode = IEEE_G;
4433 priv->channel = band_b_active_channel[0];
4434 } else {
4435 network->mode = IEEE_B;
4436 priv->channel = band_b_active_channel[0];
4437 }
4438 }
4439
4440 network->channel = priv->channel;
4441 priv->config |= CFG_ADHOC_PERSIST;
4442 ipw_create_bssid(priv, network->bssid);
4443 network->ssid_len = priv->essid_len;
4444 memcpy(network->ssid, priv->essid, priv->essid_len);
4445 memset(&network->stats, 0, sizeof(network->stats));
4446 network->capability = WLAN_CAPABILITY_IBSS;
4447 if (priv->capability & CAP_PRIVACY_ON)
4448 network->capability |= WLAN_CAPABILITY_PRIVACY;
4449 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
4450 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
4451 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
4452 memcpy(network->rates_ex,
4453 &priv->rates.supported_rates[network->rates_len],
4454 network->rates_ex_len);
4455 network->last_scanned = 0;
4456 network->flags = 0;
4457 network->last_associate = 0;
4458 network->time_stamp[0] = 0;
4459 network->time_stamp[1] = 0;
4460 network->beacon_interval = 100; /* Default */
4461 network->listen_interval = 10; /* Default */
4462 network->atim_window = 0; /* Default */
4463 #ifdef CONFIG_IEEE80211_WPA
4464 network->wpa_ie_len = 0;
4465 network->rsn_ie_len = 0;
4466 #endif /* CONFIG_IEEE80211_WPA */
4467 }
4468
4469 static void ipw_send_wep_keys(struct ipw_priv *priv)
4470 {
4471 struct ipw_wep_key *key;
4472 int i;
4473 struct host_cmd cmd = {
4474 .cmd = IPW_CMD_WEP_KEY,
4475 .len = sizeof(*key)
4476 };
4477
4478 key = (struct ipw_wep_key *)&cmd.param;
4479 key->cmd_id = DINO_CMD_WEP_KEY;
4480 key->seq_num = 0;
4481
4482 for (i = 0; i < 4; i++) {
4483 key->key_index = i;
4484 if (!(priv->sec.flags & (1 << i))) {
4485 key->key_size = 0;
4486 } else {
4487 key->key_size = priv->sec.key_sizes[i];
4488 memcpy(key->key, priv->sec.keys[i], key->key_size);
4489 }
4490
4491 if (ipw_send_cmd(priv, &cmd)) {
4492 IPW_ERROR("failed to send WEP_KEY command\n");
4493 return;
4494 }
4495 }
4496 }
4497
4498 static void ipw_adhoc_check(void *data)
4499 {
4500 struct ipw_priv *priv = data;
4501
4502 if (priv->missed_adhoc_beacons++ > priv->missed_beacon_threshold &&
4503 !(priv->config & CFG_ADHOC_PERSIST)) {
4504 IPW_DEBUG_SCAN("Disassociating due to missed beacons\n");
4505 ipw_remove_current_network(priv);
4506 ipw_disassociate(priv);
4507 return;
4508 }
4509
4510 queue_delayed_work(priv->workqueue, &priv->adhoc_check,
4511 priv->assoc_request.beacon_interval);
4512 }
4513
4514 #ifdef CONFIG_IPW_DEBUG
4515 static void ipw_debug_config(struct ipw_priv *priv)
4516 {
4517 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
4518 "[CFG 0x%08X]\n", priv->config);
4519 if (priv->config & CFG_STATIC_CHANNEL)
4520 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
4521 else
4522 IPW_DEBUG_INFO("Channel unlocked.\n");
4523 if (priv->config & CFG_STATIC_ESSID)
4524 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
4525 escape_essid(priv->essid, priv->essid_len));
4526 else
4527 IPW_DEBUG_INFO("ESSID unlocked.\n");
4528 if (priv->config & CFG_STATIC_BSSID)
4529 IPW_DEBUG_INFO("BSSID locked to %d\n", priv->channel);
4530 else
4531 IPW_DEBUG_INFO("BSSID unlocked.\n");
4532 if (priv->capability & CAP_PRIVACY_ON)
4533 IPW_DEBUG_INFO("PRIVACY on\n");
4534 else
4535 IPW_DEBUG_INFO("PRIVACY off\n");
4536 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
4537 }
4538 #else
4539 #define ipw_debug_config(x) do {} while (0)
4540 #endif
4541
4542 static inline void ipw_set_fixed_rate(struct ipw_priv *priv,
4543 struct ieee80211_network *network)
4544 {
4545 /* TODO: Verify that this works... */
4546 struct ipw_fixed_rate fr = {
4547 .tx_rates = priv->rates_mask
4548 };
4549 u32 reg;
4550 u16 mask = 0;
4551
4552 /* Identify 'current FW band' and match it with the fixed
4553 * Tx rates */
4554
4555 switch (priv->ieee->freq_band) {
4556 case IEEE80211_52GHZ_BAND: /* A only */
4557 /* IEEE_A */
4558 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
4559 /* Invalid fixed rate mask */
4560 fr.tx_rates = 0;
4561 break;
4562 }
4563
4564 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
4565 break;
4566
4567 default: /* 2.4Ghz or Mixed */
4568 /* IEEE_B */
4569 if (network->mode == IEEE_B) {
4570 if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
4571 /* Invalid fixed rate mask */
4572 fr.tx_rates = 0;
4573 }
4574 break;
4575 }
4576
4577 /* IEEE_G */
4578 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
4579 IEEE80211_OFDM_RATES_MASK)) {
4580 /* Invalid fixed rate mask */
4581 fr.tx_rates = 0;
4582 break;
4583 }
4584
4585 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
4586 mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
4587 fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
4588 }
4589
4590 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
4591 mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
4592 fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
4593 }
4594
4595 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
4596 mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
4597 fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
4598 }
4599
4600 fr.tx_rates |= mask;
4601 break;
4602 }
4603
4604 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
4605 ipw_write_reg32(priv, reg, *(u32 *) & fr);
4606 }
4607
4608 static int ipw_associate_network(struct ipw_priv *priv,
4609 struct ieee80211_network *network,
4610 struct ipw_supported_rates *rates, int roaming)
4611 {
4612 int err;
4613
4614 if (priv->config & CFG_FIXED_RATE)
4615 ipw_set_fixed_rate(priv, network);
4616
4617 if (!(priv->config & CFG_STATIC_ESSID)) {
4618 priv->essid_len = min(network->ssid_len,
4619 (u8) IW_ESSID_MAX_SIZE);
4620 memcpy(priv->essid, network->ssid, priv->essid_len);
4621 }
4622
4623 network->last_associate = jiffies;
4624
4625 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
4626 priv->assoc_request.channel = network->channel;
4627 if ((priv->capability & CAP_PRIVACY_ON) &&
4628 (priv->capability & CAP_SHARED_KEY)) {
4629 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
4630 priv->assoc_request.auth_key = priv->sec.active_key;
4631 } else {
4632 priv->assoc_request.auth_type = AUTH_OPEN;
4633 priv->assoc_request.auth_key = 0;
4634 }
4635
4636 if (priv->capability & CAP_PRIVACY_ON)
4637 ipw_send_wep_keys(priv);
4638
4639 /*
4640 * It is valid for our ieee device to support multiple modes, but
4641 * when it comes to associating to a given network we have to choose
4642 * just one mode.
4643 */
4644 if (network->mode & priv->ieee->mode & IEEE_A)
4645 priv->assoc_request.ieee_mode = IPW_A_MODE;
4646 else if (network->mode & priv->ieee->mode & IEEE_G)
4647 priv->assoc_request.ieee_mode = IPW_G_MODE;
4648 else if (network->mode & priv->ieee->mode & IEEE_B)
4649 priv->assoc_request.ieee_mode = IPW_B_MODE;
4650
4651 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
4652 "802.11%c [%d], enc=%s%s%s%c%c\n",
4653 roaming ? "Rea" : "A",
4654 escape_essid(priv->essid, priv->essid_len),
4655 network->channel,
4656 ipw_modes[priv->assoc_request.ieee_mode],
4657 rates->num_rates,
4658 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
4659 priv->capability & CAP_PRIVACY_ON ?
4660 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
4661 "(open)") : "",
4662 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
4663 priv->capability & CAP_PRIVACY_ON ?
4664 '1' + priv->sec.active_key : '.',
4665 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
4666
4667 priv->assoc_request.beacon_interval = network->beacon_interval;
4668 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
4669 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
4670 priv->assoc_request.assoc_type = HC_IBSS_START;
4671 priv->assoc_request.assoc_tsf_msw = 0;
4672 priv->assoc_request.assoc_tsf_lsw = 0;
4673 } else {
4674 if (unlikely(roaming))
4675 priv->assoc_request.assoc_type = HC_REASSOCIATE;
4676 else
4677 priv->assoc_request.assoc_type = HC_ASSOCIATE;
4678 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
4679 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
4680 }
4681
4682 memcpy(&priv->assoc_request.bssid, network->bssid, ETH_ALEN);
4683
4684 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
4685 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
4686 priv->assoc_request.atim_window = network->atim_window;
4687 } else {
4688 memcpy(&priv->assoc_request.dest, network->bssid, ETH_ALEN);
4689 priv->assoc_request.atim_window = 0;
4690 }
4691
4692 priv->assoc_request.capability = network->capability;
4693 priv->assoc_request.listen_interval = network->listen_interval;
4694
4695 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
4696 if (err) {
4697 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
4698 return err;
4699 }
4700
4701 rates->ieee_mode = priv->assoc_request.ieee_mode;
4702 rates->purpose = IPW_RATE_CONNECT;
4703 ipw_send_supported_rates(priv, rates);
4704
4705 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
4706 priv->sys_config.dot11g_auto_detection = 1;
4707 else
4708 priv->sys_config.dot11g_auto_detection = 0;
4709 err = ipw_send_system_config(priv, &priv->sys_config);
4710 if (err) {
4711 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
4712 return err;
4713 }
4714
4715 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
4716 err = ipw_set_sensitivity(priv, network->stats.rssi);
4717 if (err) {
4718 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
4719 return err;
4720 }
4721
4722 /*
4723 * If preemption is enabled, it is possible for the association
4724 * to complete before we return from ipw_send_associate. Therefore
4725 * we have to be sure and update our priviate data first.
4726 */
4727 priv->channel = network->channel;
4728 memcpy(priv->bssid, network->bssid, ETH_ALEN);
4729 priv->status |= STATUS_ASSOCIATING;
4730 priv->status &= ~STATUS_SECURITY_UPDATED;
4731
4732 priv->assoc_network = network;
4733
4734 err = ipw_send_associate(priv, &priv->assoc_request);
4735 if (err) {
4736 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
4737 return err;
4738 }
4739
4740 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n",
4741 escape_essid(priv->essid, priv->essid_len),
4742 MAC_ARG(priv->bssid));
4743
4744 return 0;
4745 }
4746
4747 static void ipw_roam(void *data)
4748 {
4749 struct ipw_priv *priv = data;
4750 struct ieee80211_network *network = NULL;
4751 struct ipw_network_match match = {
4752 .network = priv->assoc_network
4753 };
4754
4755 /* The roaming process is as follows:
4756 *
4757 * 1. Missed beacon threshold triggers the roaming process by
4758 * setting the status ROAM bit and requesting a scan.
4759 * 2. When the scan completes, it schedules the ROAM work
4760 * 3. The ROAM work looks at all of the known networks for one that
4761 * is a better network than the currently associated. If none
4762 * found, the ROAM process is over (ROAM bit cleared)
4763 * 4. If a better network is found, a disassociation request is
4764 * sent.
4765 * 5. When the disassociation completes, the roam work is again
4766 * scheduled. The second time through, the driver is no longer
4767 * associated, and the newly selected network is sent an
4768 * association request.
4769 * 6. At this point ,the roaming process is complete and the ROAM
4770 * status bit is cleared.
4771 */
4772
4773 /* If we are no longer associated, and the roaming bit is no longer
4774 * set, then we are not actively roaming, so just return */
4775 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
4776 return;
4777
4778 if (priv->status & STATUS_ASSOCIATED) {
4779 /* First pass through ROAM process -- look for a better
4780 * network */
4781 u8 rssi = priv->assoc_network->stats.rssi;
4782 priv->assoc_network->stats.rssi = -128;
4783 list_for_each_entry(network, &priv->ieee->network_list, list) {
4784 if (network != priv->assoc_network)
4785 ipw_best_network(priv, &match, network, 1);
4786 }
4787 priv->assoc_network->stats.rssi = rssi;
4788
4789 if (match.network == priv->assoc_network) {
4790 IPW_DEBUG_ASSOC("No better APs in this network to "
4791 "roam to.\n");
4792 priv->status &= ~STATUS_ROAMING;
4793 ipw_debug_config(priv);
4794 return;
4795 }
4796
4797 ipw_send_disassociate(priv, 1);
4798 priv->assoc_network = match.network;
4799
4800 return;
4801 }
4802
4803 /* Second pass through ROAM process -- request association */
4804 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
4805 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
4806 priv->status &= ~STATUS_ROAMING;
4807 }
4808
4809 static void ipw_associate(void *data)
4810 {
4811 struct ipw_priv *priv = data;
4812
4813 struct ieee80211_network *network = NULL;
4814 struct ipw_network_match match = {
4815 .network = NULL
4816 };
4817 struct ipw_supported_rates *rates;
4818 struct list_head *element;
4819
4820 if (!(priv->config & CFG_ASSOCIATE) &&
4821 !(priv->config & (CFG_STATIC_ESSID |
4822 CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
4823 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
4824 return;
4825 }
4826
4827 list_for_each_entry(network, &priv->ieee->network_list, list)
4828 ipw_best_network(priv, &match, network, 0);
4829
4830 network = match.network;
4831 rates = &match.rates;
4832
4833 if (network == NULL &&
4834 priv->ieee->iw_mode == IW_MODE_ADHOC &&
4835 priv->config & CFG_ADHOC_CREATE &&
4836 priv->config & CFG_STATIC_ESSID &&
4837 !list_empty(&priv->ieee->network_free_list)) {
4838 element = priv->ieee->network_free_list.next;
4839 network = list_entry(element, struct ieee80211_network, list);
4840 ipw_adhoc_create(priv, network);
4841 rates = &priv->rates;
4842 list_del(element);
4843 list_add_tail(&network->list, &priv->ieee->network_list);
4844 }
4845
4846 /* If we reached the end of the list, then we don't have any valid
4847 * matching APs */
4848 if (!network) {
4849 ipw_debug_config(priv);
4850
4851 queue_delayed_work(priv->workqueue, &priv->request_scan,
4852 SCAN_INTERVAL);
4853
4854 return;
4855 }
4856
4857 ipw_associate_network(priv, network, rates, 0);
4858 }
4859
4860 static inline void ipw_handle_data_packet(struct ipw_priv *priv,
4861 struct ipw_rx_mem_buffer *rxb,
4862 struct ieee80211_rx_stats *stats)
4863 {
4864 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
4865
4866 /* We received data from the HW, so stop the watchdog */
4867 priv->net_dev->trans_start = jiffies;
4868
4869 /* We only process data packets if the
4870 * interface is open */
4871 if (unlikely((pkt->u.frame.length + IPW_RX_FRAME_SIZE) >
4872 skb_tailroom(rxb->skb))) {
4873 priv->ieee->stats.rx_errors++;
4874 priv->wstats.discard.misc++;
4875 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
4876 return;
4877 } else if (unlikely(!netif_running(priv->net_dev))) {
4878 priv->ieee->stats.rx_dropped++;
4879 priv->wstats.discard.misc++;
4880 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
4881 return;
4882 }
4883
4884 /* Advance skb->data to the start of the actual payload */
4885 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
4886
4887 /* Set the size of the skb to the size of the frame */
4888 skb_put(rxb->skb, pkt->u.frame.length);
4889
4890 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
4891
4892 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
4893 priv->ieee->stats.rx_errors++;
4894 else /* ieee80211_rx succeeded, so it now owns the SKB */
4895 rxb->skb = NULL;
4896 }
4897
4898 /*
4899 * Main entry function for recieving a packet with 80211 headers. This
4900 * should be called when ever the FW has notified us that there is a new
4901 * skb in the recieve queue.
4902 */
4903 static void ipw_rx(struct ipw_priv *priv)
4904 {
4905 struct ipw_rx_mem_buffer *rxb;
4906 struct ipw_rx_packet *pkt;
4907 struct ieee80211_hdr_4addr *header;
4908 u32 r, w, i;
4909 u8 network_packet;
4910
4911 r = ipw_read32(priv, CX2_RX_READ_INDEX);
4912 w = ipw_read32(priv, CX2_RX_WRITE_INDEX);
4913 i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
4914
4915 while (i != r) {
4916 rxb = priv->rxq->queue[i];
4917 #ifdef CONFIG_IPW_DEBUG
4918 if (unlikely(rxb == NULL)) {
4919 printk(KERN_CRIT "Queue not allocated!\n");
4920 break;
4921 }
4922 #endif
4923 priv->rxq->queue[i] = NULL;
4924
4925 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
4926 CX2_RX_BUF_SIZE,
4927 PCI_DMA_FROMDEVICE);
4928
4929 pkt = (struct ipw_rx_packet *)rxb->skb->data;
4930 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
4931 pkt->header.message_type,
4932 pkt->header.rx_seq_num, pkt->header.control_bits);
4933
4934 switch (pkt->header.message_type) {
4935 case RX_FRAME_TYPE: /* 802.11 frame */ {
4936 struct ieee80211_rx_stats stats = {
4937 .rssi = pkt->u.frame.rssi_dbm -
4938 IPW_RSSI_TO_DBM,
4939 .signal = pkt->u.frame.signal,
4940 .rate = pkt->u.frame.rate,
4941 .mac_time = jiffies,
4942 .received_channel =
4943 pkt->u.frame.received_channel,
4944 .freq =
4945 (pkt->u.frame.
4946 control & (1 << 0)) ?
4947 IEEE80211_24GHZ_BAND :
4948 IEEE80211_52GHZ_BAND,
4949 .len = pkt->u.frame.length,
4950 };
4951
4952 if (stats.rssi != 0)
4953 stats.mask |= IEEE80211_STATMASK_RSSI;
4954 if (stats.signal != 0)
4955 stats.mask |= IEEE80211_STATMASK_SIGNAL;
4956 if (stats.rate != 0)
4957 stats.mask |= IEEE80211_STATMASK_RATE;
4958
4959 priv->rx_packets++;
4960
4961 #ifdef CONFIG_IPW_PROMISC
4962 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4963 ipw_handle_data_packet(priv, rxb,
4964 &stats);
4965 break;
4966 }
4967 #endif
4968
4969 header =
4970 (struct ieee80211_hdr_4addr *)(rxb->skb->
4971 data +
4972 IPW_RX_FRAME_SIZE);
4973 /* TODO: Check Ad-Hoc dest/source and make sure
4974 * that we are actually parsing these packets
4975 * correctly -- we should probably use the
4976 * frame control of the packet and disregard
4977 * the current iw_mode */
4978 switch (priv->ieee->iw_mode) {
4979 case IW_MODE_ADHOC:
4980 network_packet =
4981 !memcmp(header->addr1,
4982 priv->net_dev->dev_addr,
4983 ETH_ALEN) ||
4984 !memcmp(header->addr3,
4985 priv->bssid, ETH_ALEN) ||
4986 is_broadcast_ether_addr(header->
4987 addr1)
4988 || is_multicast_ether_addr(header->
4989 addr1);
4990 break;
4991
4992 case IW_MODE_INFRA:
4993 default:
4994 network_packet =
4995 !memcmp(header->addr3,
4996 priv->bssid, ETH_ALEN) ||
4997 !memcmp(header->addr1,
4998 priv->net_dev->dev_addr,
4999 ETH_ALEN) ||
5000 is_broadcast_ether_addr(header->
5001 addr1)
5002 || is_multicast_ether_addr(header->
5003 addr1);
5004 break;
5005 }
5006
5007 if (network_packet && priv->assoc_network) {
5008 priv->assoc_network->stats.rssi =
5009 stats.rssi;
5010 average_add(&priv->average_rssi,
5011 stats.rssi);
5012 priv->last_rx_rssi = stats.rssi;
5013 }
5014
5015 IPW_DEBUG_RX("Frame: len=%u\n",
5016 pkt->u.frame.length);
5017
5018 if (pkt->u.frame.length < frame_hdr_len(header)) {
5019 IPW_DEBUG_DROP
5020 ("Received packet is too small. "
5021 "Dropping.\n");
5022 priv->ieee->stats.rx_errors++;
5023 priv->wstats.discard.misc++;
5024 break;
5025 }
5026
5027 switch (WLAN_FC_GET_TYPE(header->frame_ctl)) {
5028 case IEEE80211_FTYPE_MGMT:
5029 ieee80211_rx_mgt(priv->ieee, header,
5030 &stats);
5031 if (priv->ieee->iw_mode == IW_MODE_ADHOC
5032 &&
5033 ((WLAN_FC_GET_STYPE
5034 (header->frame_ctl) ==
5035 IEEE80211_STYPE_PROBE_RESP)
5036 ||
5037 (WLAN_FC_GET_STYPE
5038 (header->frame_ctl) ==
5039 IEEE80211_STYPE_BEACON))
5040 && !memcmp(header->addr3,
5041 priv->bssid, ETH_ALEN))
5042 ipw_add_station(priv,
5043 header->addr2);
5044 break;
5045
5046 case IEEE80211_FTYPE_CTL:
5047 break;
5048
5049 case IEEE80211_FTYPE_DATA:
5050 if (network_packet)
5051 ipw_handle_data_packet(priv,
5052 rxb,
5053 &stats);
5054 else
5055 IPW_DEBUG_DROP("Dropping: "
5056 MAC_FMT ", "
5057 MAC_FMT ", "
5058 MAC_FMT "\n",
5059 MAC_ARG(header->
5060 addr1),
5061 MAC_ARG(header->
5062 addr2),
5063 MAC_ARG(header->
5064 addr3));
5065 break;
5066 }
5067 break;
5068 }
5069
5070 case RX_HOST_NOTIFICATION_TYPE:{
5071 IPW_DEBUG_RX
5072 ("Notification: subtype=%02X flags=%02X size=%d\n",
5073 pkt->u.notification.subtype,
5074 pkt->u.notification.flags,
5075 pkt->u.notification.size);
5076 ipw_rx_notification(priv, &pkt->u.notification);
5077 break;
5078 }
5079
5080 default:
5081 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
5082 pkt->header.message_type);
5083 break;
5084 }
5085
5086 /* For now we just don't re-use anything. We can tweak this
5087 * later to try and re-use notification packets and SKBs that
5088 * fail to Rx correctly */
5089 if (rxb->skb != NULL) {
5090 dev_kfree_skb_any(rxb->skb);
5091 rxb->skb = NULL;
5092 }
5093
5094 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
5095 CX2_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5096 list_add_tail(&rxb->list, &priv->rxq->rx_used);
5097
5098 i = (i + 1) % RX_QUEUE_SIZE;
5099 }
5100
5101 /* Backtrack one entry */
5102 priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
5103
5104 ipw_rx_queue_restock(priv);
5105 }
5106
5107 static void ipw_abort_scan(struct ipw_priv *priv)
5108 {
5109 int err;
5110
5111 if (priv->status & STATUS_SCAN_ABORTING) {
5112 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
5113 return;
5114 }
5115 priv->status |= STATUS_SCAN_ABORTING;
5116
5117 err = ipw_send_scan_abort(priv);
5118 if (err)
5119 IPW_DEBUG_HC("Request to abort scan failed.\n");
5120 }
5121
5122 static int ipw_request_scan(struct ipw_priv *priv)
5123 {
5124 struct ipw_scan_request_ext scan;
5125 int channel_index = 0;
5126 int i, err, scan_type;
5127
5128 if (priv->status & STATUS_EXIT_PENDING) {
5129 IPW_DEBUG_SCAN("Aborting scan due to device shutdown\n");
5130 priv->status |= STATUS_SCAN_PENDING;
5131 return 0;
5132 }
5133
5134 if (priv->status & STATUS_SCANNING) {
5135 IPW_DEBUG_HC("Concurrent scan requested. Aborting first.\n");
5136 priv->status |= STATUS_SCAN_PENDING;
5137 ipw_abort_scan(priv);
5138 return 0;
5139 }
5140
5141 if (priv->status & STATUS_SCAN_ABORTING) {
5142 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
5143 priv->status |= STATUS_SCAN_PENDING;
5144 return 0;
5145 }
5146
5147 if (priv->status & STATUS_RF_KILL_MASK) {
5148 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
5149 priv->status |= STATUS_SCAN_PENDING;
5150 return 0;
5151 }
5152
5153 memset(&scan, 0, sizeof(scan));
5154
5155 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] = 20;
5156 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] = 20;
5157 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = 20;
5158
5159 scan.full_scan_index = ieee80211_get_scans(priv->ieee);
5160 /* If we are roaming, then make this a directed scan for the current
5161 * network. Otherwise, ensure that every other scan is a fast
5162 * channel hop scan */
5163 if ((priv->status & STATUS_ROAMING)
5164 || (!(priv->status & STATUS_ASSOCIATED)
5165 && (priv->config & CFG_STATIC_ESSID)
5166 && (scan.full_scan_index % 2))) {
5167 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
5168 if (err) {
5169 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
5170 return err;
5171 }
5172
5173 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
5174 } else {
5175 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
5176 }
5177
5178 if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
5179 int start = channel_index;
5180 for (i = 0; i < MAX_A_CHANNELS; i++) {
5181 if (band_a_active_channel[i] == 0)
5182 break;
5183 if ((priv->status & STATUS_ASSOCIATED) &&
5184 band_a_active_channel[i] == priv->channel)
5185 continue;
5186 channel_index++;
5187 scan.channels_list[channel_index] =
5188 band_a_active_channel[i];
5189 ipw_set_scan_type(&scan, channel_index, scan_type);
5190 }
5191
5192 if (start != channel_index) {
5193 scan.channels_list[start] = (u8) (IPW_A_MODE << 6) |
5194 (channel_index - start);
5195 channel_index++;
5196 }
5197 }
5198
5199 if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
5200 int start = channel_index;
5201 for (i = 0; i < MAX_B_CHANNELS; i++) {
5202 if (band_b_active_channel[i] == 0)
5203 break;
5204 if ((priv->status & STATUS_ASSOCIATED) &&
5205 band_b_active_channel[i] == priv->channel)
5206 continue;
5207 channel_index++;
5208 scan.channels_list[channel_index] =
5209 band_b_active_channel[i];
5210 ipw_set_scan_type(&scan, channel_index, scan_type);
5211 }
5212
5213 if (start != channel_index) {
5214 scan.channels_list[start] = (u8) (IPW_B_MODE << 6) |
5215 (channel_index - start);
5216 }
5217 }
5218
5219 err = ipw_send_scan_request_ext(priv, &scan);
5220 if (err) {
5221 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
5222 return -EIO;
5223 }
5224
5225 priv->status |= STATUS_SCANNING;
5226 priv->status &= ~STATUS_SCAN_PENDING;
5227
5228 return 0;
5229 }
5230
5231 /*
5232 * This file defines the Wireless Extension handlers. It does not
5233 * define any methods of hardware manipulation and relies on the
5234 * functions defined in ipw_main to provide the HW interaction.
5235 *
5236 * The exception to this is the use of the ipw_get_ordinal()
5237 * function used to poll the hardware vs. making unecessary calls.
5238 *
5239 */
5240
5241 static int ipw_wx_get_name(struct net_device *dev,
5242 struct iw_request_info *info,
5243 union iwreq_data *wrqu, char *extra)
5244 {
5245 struct ipw_priv *priv = ieee80211_priv(dev);
5246 if (!(priv->status & STATUS_ASSOCIATED))
5247 strcpy(wrqu->name, "unassociated");
5248 else
5249 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
5250 ipw_modes[priv->assoc_request.ieee_mode]);
5251 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
5252 return 0;
5253 }
5254
5255 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
5256 {
5257 if (channel == 0) {
5258 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
5259 priv->config &= ~CFG_STATIC_CHANNEL;
5260 if (!(priv->status & (STATUS_SCANNING | STATUS_ASSOCIATED |
5261 STATUS_ASSOCIATING))) {
5262 IPW_DEBUG_ASSOC("Attempting to associate with new "
5263 "parameters.\n");
5264 ipw_associate(priv);
5265 }
5266
5267 return 0;
5268 }
5269
5270 priv->config |= CFG_STATIC_CHANNEL;
5271
5272 if (priv->channel == channel) {
5273 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
5274 channel);
5275 return 0;
5276 }
5277
5278 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
5279 priv->channel = channel;
5280
5281 /* If we are currently associated, or trying to associate
5282 * then see if this is a new channel (causing us to disassociate) */
5283 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
5284 IPW_DEBUG_ASSOC("Disassociating due to channel change.\n");
5285 ipw_disassociate(priv);
5286 } else {
5287 ipw_associate(priv);
5288 }
5289
5290 return 0;
5291 }
5292
5293 static int ipw_wx_set_freq(struct net_device *dev,
5294 struct iw_request_info *info,
5295 union iwreq_data *wrqu, char *extra)
5296 {
5297 struct ipw_priv *priv = ieee80211_priv(dev);
5298 struct iw_freq *fwrq = &wrqu->freq;
5299
5300 /* if setting by freq convert to channel */
5301 if (fwrq->e == 1) {
5302 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
5303 int f = fwrq->m / 100000;
5304 int c = 0;
5305
5306 while ((c < REG_MAX_CHANNEL) &&
5307 (f != ipw_frequencies[c]))
5308 c++;
5309
5310 /* hack to fall through */
5311 fwrq->e = 0;
5312 fwrq->m = c + 1;
5313 }
5314 }
5315
5316 if (fwrq->e > 0 || fwrq->m > 1000)
5317 return -EOPNOTSUPP;
5318
5319 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
5320 return ipw_set_channel(priv, (u8) fwrq->m);
5321 }
5322
5323 static int ipw_wx_get_freq(struct net_device *dev,
5324 struct iw_request_info *info,
5325 union iwreq_data *wrqu, char *extra)
5326 {
5327 struct ipw_priv *priv = ieee80211_priv(dev);
5328
5329 wrqu->freq.e = 0;
5330
5331 /* If we are associated, trying to associate, or have a statically
5332 * configured CHANNEL then return that; otherwise return ANY */
5333 if (priv->config & CFG_STATIC_CHANNEL ||
5334 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED))
5335 wrqu->freq.m = priv->channel;
5336 else
5337 wrqu->freq.m = 0;
5338
5339 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
5340 return 0;
5341 }
5342
5343 static int ipw_wx_set_mode(struct net_device *dev,
5344 struct iw_request_info *info,
5345 union iwreq_data *wrqu, char *extra)
5346 {
5347 struct ipw_priv *priv = ieee80211_priv(dev);
5348 int err = 0;
5349
5350 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
5351
5352 if (wrqu->mode == priv->ieee->iw_mode)
5353 return 0;
5354
5355 switch (wrqu->mode) {
5356 #ifdef CONFIG_IPW_PROMISC
5357 case IW_MODE_MONITOR:
5358 #endif
5359 case IW_MODE_ADHOC:
5360 case IW_MODE_INFRA:
5361 break;
5362 case IW_MODE_AUTO:
5363 wrqu->mode = IW_MODE_INFRA;
5364 break;
5365 default:
5366 return -EINVAL;
5367 }
5368
5369 #ifdef CONFIG_IPW_PROMISC
5370 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5371 priv->net_dev->type = ARPHRD_ETHER;
5372
5373 if (wrqu->mode == IW_MODE_MONITOR)
5374 priv->net_dev->type = ARPHRD_IEEE80211;
5375 #endif /* CONFIG_IPW_PROMISC */
5376
5377 #ifdef CONFIG_PM
5378 /* Free the existing firmware and reset the fw_loaded
5379 * flag so ipw_load() will bring in the new firmawre */
5380 if (fw_loaded) {
5381 fw_loaded = 0;
5382 }
5383
5384 release_firmware(bootfw);
5385 release_firmware(ucode);
5386 release_firmware(firmware);
5387 bootfw = ucode = firmware = NULL;
5388 #endif
5389
5390 priv->ieee->iw_mode = wrqu->mode;
5391 ipw_adapter_restart(priv);
5392
5393 return err;
5394 }
5395
5396 static int ipw_wx_get_mode(struct net_device *dev,
5397 struct iw_request_info *info,
5398 union iwreq_data *wrqu, char *extra)
5399 {
5400 struct ipw_priv *priv = ieee80211_priv(dev);
5401
5402 wrqu->mode = priv->ieee->iw_mode;
5403 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
5404
5405 return 0;
5406 }
5407
5408 #define DEFAULT_RTS_THRESHOLD 2304U
5409 #define MIN_RTS_THRESHOLD 1U
5410 #define MAX_RTS_THRESHOLD 2304U
5411 #define DEFAULT_BEACON_INTERVAL 100U
5412 #define DEFAULT_SHORT_RETRY_LIMIT 7U
5413 #define DEFAULT_LONG_RETRY_LIMIT 4U
5414
5415 /* Values are in microsecond */
5416 static const s32 timeout_duration[] = {
5417 350000,
5418 250000,
5419 75000,
5420 37000,
5421 25000,
5422 };
5423
5424 static const s32 period_duration[] = {
5425 400000,
5426 700000,
5427 1000000,
5428 1000000,
5429 1000000
5430 };
5431
5432 static int ipw_wx_get_range(struct net_device *dev,
5433 struct iw_request_info *info,
5434 union iwreq_data *wrqu, char *extra)
5435 {
5436 struct ipw_priv *priv = ieee80211_priv(dev);
5437 struct iw_range *range = (struct iw_range *)extra;
5438 u16 val;
5439 int i;
5440
5441 wrqu->data.length = sizeof(*range);
5442 memset(range, 0, sizeof(*range));
5443
5444 /* 54Mbs == ~27 Mb/s real (802.11g) */
5445 range->throughput = 27 * 1000 * 1000;
5446
5447 range->max_qual.qual = 100;
5448 /* TODO: Find real max RSSI and stick here */
5449 range->max_qual.level = 0;
5450 range->max_qual.noise = 0;
5451 range->max_qual.updated = 7; /* Updated all three */
5452
5453 range->avg_qual.qual = 70;
5454 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
5455 range->avg_qual.level = 0; /* FIXME to real average level */
5456 range->avg_qual.noise = 0;
5457 range->avg_qual.updated = 7; /* Updated all three */
5458
5459 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
5460
5461 for (i = 0; i < range->num_bitrates; i++)
5462 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
5463 500000;
5464
5465 range->max_rts = DEFAULT_RTS_THRESHOLD;
5466 range->min_frag = MIN_FRAG_THRESHOLD;
5467 range->max_frag = MAX_FRAG_THRESHOLD;
5468
5469 range->encoding_size[0] = 5;
5470 range->encoding_size[1] = 13;
5471 range->num_encoding_sizes = 2;
5472 range->max_encoding_tokens = WEP_KEYS;
5473
5474 /* Set the Wireless Extension versions */
5475 range->we_version_compiled = WIRELESS_EXT;
5476 range->we_version_source = 16;
5477
5478 range->num_channels = FREQ_COUNT;
5479
5480 val = 0;
5481 for (i = 0; i < FREQ_COUNT; i++) {
5482 range->freq[val].i = i + 1;
5483 range->freq[val].m = ipw_frequencies[i] * 100000;
5484 range->freq[val].e = 1;
5485 val++;
5486
5487 if (val == IW_MAX_FREQUENCIES)
5488 break;
5489 }
5490 range->num_frequency = val;
5491
5492 IPW_DEBUG_WX("GET Range\n");
5493 return 0;
5494 }
5495
5496 static int ipw_wx_set_wap(struct net_device *dev,
5497 struct iw_request_info *info,
5498 union iwreq_data *wrqu, char *extra)
5499 {
5500 struct ipw_priv *priv = ieee80211_priv(dev);
5501
5502 static const unsigned char any[] = {
5503 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
5504 };
5505 static const unsigned char off[] = {
5506 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
5507 };
5508
5509 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
5510 return -EINVAL;
5511
5512 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
5513 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
5514 /* we disable mandatory BSSID association */
5515 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
5516 priv->config &= ~CFG_STATIC_BSSID;
5517 if (!(priv->status & (STATUS_SCANNING | STATUS_ASSOCIATED |
5518 STATUS_ASSOCIATING))) {
5519 IPW_DEBUG_ASSOC("Attempting to associate with new "
5520 "parameters.\n");
5521 ipw_associate(priv);
5522 }
5523
5524 return 0;
5525 }
5526
5527 priv->config |= CFG_STATIC_BSSID;
5528 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
5529 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
5530 return 0;
5531 }
5532
5533 IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n",
5534 MAC_ARG(wrqu->ap_addr.sa_data));
5535
5536 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
5537
5538 /* If we are currently associated, or trying to associate
5539 * then see if this is a new BSSID (causing us to disassociate) */
5540 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
5541 IPW_DEBUG_ASSOC("Disassociating due to BSSID change.\n");
5542 ipw_disassociate(priv);
5543 } else {
5544 ipw_associate(priv);
5545 }
5546
5547 return 0;
5548 }
5549
5550 static int ipw_wx_get_wap(struct net_device *dev,
5551 struct iw_request_info *info,
5552 union iwreq_data *wrqu, char *extra)
5553 {
5554 struct ipw_priv *priv = ieee80211_priv(dev);
5555 /* If we are associated, trying to associate, or have a statically
5556 * configured BSSID then return that; otherwise return ANY */
5557 if (priv->config & CFG_STATIC_BSSID ||
5558 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
5559 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
5560 memcpy(wrqu->ap_addr.sa_data, &priv->bssid, ETH_ALEN);
5561 } else
5562 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
5563
5564 IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
5565 MAC_ARG(wrqu->ap_addr.sa_data));
5566 return 0;
5567 }
5568
5569 static int ipw_wx_set_essid(struct net_device *dev,
5570 struct iw_request_info *info,
5571 union iwreq_data *wrqu, char *extra)
5572 {
5573 struct ipw_priv *priv = ieee80211_priv(dev);
5574 char *essid = ""; /* ANY */
5575 int length = 0;
5576
5577 if (wrqu->essid.flags && wrqu->essid.length) {
5578 length = wrqu->essid.length - 1;
5579 essid = extra;
5580 }
5581 if (length == 0) {
5582 IPW_DEBUG_WX("Setting ESSID to ANY\n");
5583 priv->config &= ~CFG_STATIC_ESSID;
5584 if (!(priv->status & (STATUS_SCANNING | STATUS_ASSOCIATED |
5585 STATUS_ASSOCIATING))) {
5586 IPW_DEBUG_ASSOC("Attempting to associate with new "
5587 "parameters.\n");
5588 ipw_associate(priv);
5589 }
5590
5591 return 0;
5592 }
5593
5594 length = min(length, IW_ESSID_MAX_SIZE);
5595
5596 priv->config |= CFG_STATIC_ESSID;
5597
5598 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
5599 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
5600 return 0;
5601 }
5602
5603 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
5604 length);
5605
5606 priv->essid_len = length;
5607 memcpy(priv->essid, essid, priv->essid_len);
5608
5609 /* If we are currently associated, or trying to associate
5610 * then see if this is a new ESSID (causing us to disassociate) */
5611 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
5612 IPW_DEBUG_ASSOC("Disassociating due to ESSID change.\n");
5613 ipw_disassociate(priv);
5614 } else {
5615 ipw_associate(priv);
5616 }
5617
5618 return 0;
5619 }
5620
5621 static int ipw_wx_get_essid(struct net_device *dev,
5622 struct iw_request_info *info,
5623 union iwreq_data *wrqu, char *extra)
5624 {
5625 struct ipw_priv *priv = ieee80211_priv(dev);
5626
5627 /* If we are associated, trying to associate, or have a statically
5628 * configured ESSID then return that; otherwise return ANY */
5629 if (priv->config & CFG_STATIC_ESSID ||
5630 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
5631 IPW_DEBUG_WX("Getting essid: '%s'\n",
5632 escape_essid(priv->essid, priv->essid_len));
5633 memcpy(extra, priv->essid, priv->essid_len);
5634 wrqu->essid.length = priv->essid_len;
5635 wrqu->essid.flags = 1; /* active */
5636 } else {
5637 IPW_DEBUG_WX("Getting essid: ANY\n");
5638 wrqu->essid.length = 0;
5639 wrqu->essid.flags = 0; /* active */
5640 }
5641
5642 return 0;
5643 }
5644
5645 static int ipw_wx_set_nick(struct net_device *dev,
5646 struct iw_request_info *info,
5647 union iwreq_data *wrqu, char *extra)
5648 {
5649 struct ipw_priv *priv = ieee80211_priv(dev);
5650
5651 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
5652 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
5653 return -E2BIG;
5654
5655 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
5656 memset(priv->nick, 0, sizeof(priv->nick));
5657 memcpy(priv->nick, extra, wrqu->data.length);
5658 IPW_DEBUG_TRACE("<<\n");
5659 return 0;
5660
5661 }
5662
5663 static int ipw_wx_get_nick(struct net_device *dev,
5664 struct iw_request_info *info,
5665 union iwreq_data *wrqu, char *extra)
5666 {
5667 struct ipw_priv *priv = ieee80211_priv(dev);
5668 IPW_DEBUG_WX("Getting nick\n");
5669 wrqu->data.length = strlen(priv->nick) + 1;
5670 memcpy(extra, priv->nick, wrqu->data.length);
5671 wrqu->data.flags = 1; /* active */
5672 return 0;
5673 }
5674
5675 static int ipw_wx_set_rate(struct net_device *dev,
5676 struct iw_request_info *info,
5677 union iwreq_data *wrqu, char *extra)
5678 {
5679 IPW_DEBUG_WX("0x%p, 0x%p, 0x%p\n", dev, info, wrqu);
5680 return -EOPNOTSUPP;
5681 }
5682
5683 static int ipw_wx_get_rate(struct net_device *dev,
5684 struct iw_request_info *info,
5685 union iwreq_data *wrqu, char *extra)
5686 {
5687 struct ipw_priv *priv = ieee80211_priv(dev);
5688 wrqu->bitrate.value = priv->last_rate;
5689
5690 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
5691 return 0;
5692 }
5693
5694 static int ipw_wx_set_rts(struct net_device *dev,
5695 struct iw_request_info *info,
5696 union iwreq_data *wrqu, char *extra)
5697 {
5698 struct ipw_priv *priv = ieee80211_priv(dev);
5699
5700 if (wrqu->rts.disabled)
5701 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
5702 else {
5703 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
5704 wrqu->rts.value > MAX_RTS_THRESHOLD)
5705 return -EINVAL;
5706
5707 priv->rts_threshold = wrqu->rts.value;
5708 }
5709
5710 ipw_send_rts_threshold(priv, priv->rts_threshold);
5711 IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
5712 return 0;
5713 }
5714
5715 static int ipw_wx_get_rts(struct net_device *dev,
5716 struct iw_request_info *info,
5717 union iwreq_data *wrqu, char *extra)
5718 {
5719 struct ipw_priv *priv = ieee80211_priv(dev);
5720 wrqu->rts.value = priv->rts_threshold;
5721 wrqu->rts.fixed = 0; /* no auto select */
5722 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
5723
5724 IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
5725 return 0;
5726 }
5727
5728 static int ipw_wx_set_txpow(struct net_device *dev,
5729 struct iw_request_info *info,
5730 union iwreq_data *wrqu, char *extra)
5731 {
5732 struct ipw_priv *priv = ieee80211_priv(dev);
5733 struct ipw_tx_power tx_power;
5734 int i;
5735
5736 if (ipw_radio_kill_sw(priv, wrqu->power.disabled))
5737 return -EINPROGRESS;
5738
5739 if (wrqu->power.flags != IW_TXPOW_DBM)
5740 return -EINVAL;
5741
5742 if ((wrqu->power.value > 20) || (wrqu->power.value < -12))
5743 return -EINVAL;
5744
5745 priv->tx_power = wrqu->power.value;
5746
5747 memset(&tx_power, 0, sizeof(tx_power));
5748
5749 /* configure device for 'G' band */
5750 tx_power.ieee_mode = IPW_G_MODE;
5751 tx_power.num_channels = 11;
5752 for (i = 0; i < 11; i++) {
5753 tx_power.channels_tx_power[i].channel_number = i + 1;
5754 tx_power.channels_tx_power[i].tx_power = priv->tx_power;
5755 }
5756 if (ipw_send_tx_power(priv, &tx_power))
5757 goto error;
5758
5759 /* configure device to also handle 'B' band */
5760 tx_power.ieee_mode = IPW_B_MODE;
5761 if (ipw_send_tx_power(priv, &tx_power))
5762 goto error;
5763
5764 return 0;
5765
5766 error:
5767 return -EIO;
5768 }
5769
5770 static int ipw_wx_get_txpow(struct net_device *dev,
5771 struct iw_request_info *info,
5772 union iwreq_data *wrqu, char *extra)
5773 {
5774 struct ipw_priv *priv = ieee80211_priv(dev);
5775
5776 wrqu->power.value = priv->tx_power;
5777 wrqu->power.fixed = 1;
5778 wrqu->power.flags = IW_TXPOW_DBM;
5779 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
5780
5781 IPW_DEBUG_WX("GET TX Power -> %s %d \n",
5782 wrqu->power.disabled ? "ON" : "OFF", wrqu->power.value);
5783
5784 return 0;
5785 }
5786
5787 static int ipw_wx_set_frag(struct net_device *dev,
5788 struct iw_request_info *info,
5789 union iwreq_data *wrqu, char *extra)
5790 {
5791 struct ipw_priv *priv = ieee80211_priv(dev);
5792
5793 if (wrqu->frag.disabled)
5794 priv->ieee->fts = DEFAULT_FTS;
5795 else {
5796 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
5797 wrqu->frag.value > MAX_FRAG_THRESHOLD)
5798 return -EINVAL;
5799
5800 priv->ieee->fts = wrqu->frag.value & ~0x1;
5801 }
5802
5803 ipw_send_frag_threshold(priv, wrqu->frag.value);
5804 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
5805 return 0;
5806 }
5807
5808 static int ipw_wx_get_frag(struct net_device *dev,
5809 struct iw_request_info *info,
5810 union iwreq_data *wrqu, char *extra)
5811 {
5812 struct ipw_priv *priv = ieee80211_priv(dev);
5813 wrqu->frag.value = priv->ieee->fts;
5814 wrqu->frag.fixed = 0; /* no auto select */
5815 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
5816
5817 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
5818
5819 return 0;
5820 }
5821
5822 static int ipw_wx_set_retry(struct net_device *dev,
5823 struct iw_request_info *info,
5824 union iwreq_data *wrqu, char *extra)
5825 {
5826 IPW_DEBUG_WX("0x%p, 0x%p, 0x%p\n", dev, info, wrqu);
5827 return -EOPNOTSUPP;
5828 }
5829
5830 static int ipw_wx_get_retry(struct net_device *dev,
5831 struct iw_request_info *info,
5832 union iwreq_data *wrqu, char *extra)
5833 {
5834 IPW_DEBUG_WX("0x%p, 0x%p, 0x%p\n", dev, info, wrqu);
5835 return -EOPNOTSUPP;
5836 }
5837
5838 static int ipw_wx_set_scan(struct net_device *dev,
5839 struct iw_request_info *info,
5840 union iwreq_data *wrqu, char *extra)
5841 {
5842 struct ipw_priv *priv = ieee80211_priv(dev);
5843 IPW_DEBUG_WX("Start scan\n");
5844 if (ipw_request_scan(priv))
5845 return -EIO;
5846 return 0;
5847 }
5848
5849 static int ipw_wx_get_scan(struct net_device *dev,
5850 struct iw_request_info *info,
5851 union iwreq_data *wrqu, char *extra)
5852 {
5853 struct ipw_priv *priv = ieee80211_priv(dev);
5854 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
5855 }
5856
5857 static int ipw_wx_set_encode(struct net_device *dev,
5858 struct iw_request_info *info,
5859 union iwreq_data *wrqu, char *key)
5860 {
5861 struct ipw_priv *priv = ieee80211_priv(dev);
5862 return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
5863 }
5864
5865 static int ipw_wx_get_encode(struct net_device *dev,
5866 struct iw_request_info *info,
5867 union iwreq_data *wrqu, char *key)
5868 {
5869 struct ipw_priv *priv = ieee80211_priv(dev);
5870 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
5871 }
5872
5873 static int ipw_wx_set_power(struct net_device *dev,
5874 struct iw_request_info *info,
5875 union iwreq_data *wrqu, char *extra)
5876 {
5877 struct ipw_priv *priv = ieee80211_priv(dev);
5878 int err;
5879
5880 if (wrqu->power.disabled) {
5881 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
5882 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
5883 if (err) {
5884 IPW_DEBUG_WX("failed setting power mode.\n");
5885 return err;
5886 }
5887
5888 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
5889
5890 return 0;
5891 }
5892
5893 switch (wrqu->power.flags & IW_POWER_MODE) {
5894 case IW_POWER_ON: /* If not specified */
5895 case IW_POWER_MODE: /* If set all mask */
5896 case IW_POWER_ALL_R: /* If explicitely state all */
5897 break;
5898 default: /* Otherwise we don't support it */
5899 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
5900 wrqu->power.flags);
5901 return -EOPNOTSUPP;
5902 }
5903
5904 /* If the user hasn't specified a power management mode yet, default
5905 * to BATTERY */
5906 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
5907 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
5908 else
5909 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
5910 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
5911 if (err) {
5912 IPW_DEBUG_WX("failed setting power mode.\n");
5913 return err;
5914 }
5915
5916 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
5917
5918 return 0;
5919 }
5920
5921 static int ipw_wx_get_power(struct net_device *dev,
5922 struct iw_request_info *info,
5923 union iwreq_data *wrqu, char *extra)
5924 {
5925 struct ipw_priv *priv = ieee80211_priv(dev);
5926
5927 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
5928 wrqu->power.disabled = 1;
5929 } else {
5930 wrqu->power.disabled = 0;
5931 }
5932
5933 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
5934
5935 return 0;
5936 }
5937
5938 static int ipw_wx_set_powermode(struct net_device *dev,
5939 struct iw_request_info *info,
5940 union iwreq_data *wrqu, char *extra)
5941 {
5942 struct ipw_priv *priv = ieee80211_priv(dev);
5943 int mode = *(int *)extra;
5944 int err;
5945
5946 if ((mode < 1) || (mode > IPW_POWER_LIMIT)) {
5947 mode = IPW_POWER_AC;
5948 priv->power_mode = mode;
5949 } else {
5950 priv->power_mode = IPW_POWER_ENABLED | mode;
5951 }
5952
5953 if (priv->power_mode != mode) {
5954 err = ipw_send_power_mode(priv, mode);
5955
5956 if (err) {
5957 IPW_DEBUG_WX("failed setting power mode.\n");
5958 return err;
5959 }
5960 }
5961
5962 return 0;
5963 }
5964
5965 #define MAX_WX_STRING 80
5966 static int ipw_wx_get_powermode(struct net_device *dev,
5967 struct iw_request_info *info,
5968 union iwreq_data *wrqu, char *extra)
5969 {
5970 struct ipw_priv *priv = ieee80211_priv(dev);
5971 int level = IPW_POWER_LEVEL(priv->power_mode);
5972 char *p = extra;
5973
5974 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
5975
5976 switch (level) {
5977 case IPW_POWER_AC:
5978 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
5979 break;
5980 case IPW_POWER_BATTERY:
5981 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
5982 break;
5983 default:
5984 p += snprintf(p, MAX_WX_STRING - (p - extra),
5985 "(Timeout %dms, Period %dms)",
5986 timeout_duration[level - 1] / 1000,
5987 period_duration[level - 1] / 1000);
5988 }
5989
5990 if (!(priv->power_mode & IPW_POWER_ENABLED))
5991 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
5992
5993 wrqu->data.length = p - extra + 1;
5994
5995 return 0;
5996 }
5997
5998 static int ipw_wx_set_wireless_mode(struct net_device *dev,
5999 struct iw_request_info *info,
6000 union iwreq_data *wrqu, char *extra)
6001 {
6002 struct ipw_priv *priv = ieee80211_priv(dev);
6003 int mode = *(int *)extra;
6004 u8 band = 0, modulation = 0;
6005
6006 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
6007 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
6008 return -EINVAL;
6009 }
6010
6011 if (priv->adapter == IPW_2915ABG) {
6012 priv->ieee->abg_true = 1;
6013 if (mode & IEEE_A) {
6014 band |= IEEE80211_52GHZ_BAND;
6015 modulation |= IEEE80211_OFDM_MODULATION;
6016 } else
6017 priv->ieee->abg_true = 0;
6018 } else {
6019 if (mode & IEEE_A) {
6020 IPW_WARNING("Attempt to set 2200BG into "
6021 "802.11a mode\n");
6022 return -EINVAL;
6023 }
6024
6025 priv->ieee->abg_true = 0;
6026 }
6027
6028 if (mode & IEEE_B) {
6029 band |= IEEE80211_24GHZ_BAND;
6030 modulation |= IEEE80211_CCK_MODULATION;
6031 } else
6032 priv->ieee->abg_true = 0;
6033
6034 if (mode & IEEE_G) {
6035 band |= IEEE80211_24GHZ_BAND;
6036 modulation |= IEEE80211_OFDM_MODULATION;
6037 } else
6038 priv->ieee->abg_true = 0;
6039
6040 priv->ieee->mode = mode;
6041 priv->ieee->freq_band = band;
6042 priv->ieee->modulation = modulation;
6043 init_supported_rates(priv, &priv->rates);
6044
6045 /* If we are currently associated, or trying to associate
6046 * then see if this is a new configuration (causing us to
6047 * disassociate) */
6048 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
6049 /* The resulting association will trigger
6050 * the new rates to be sent to the device */
6051 IPW_DEBUG_ASSOC("Disassociating due to mode change.\n");
6052 ipw_disassociate(priv);
6053 } else
6054 ipw_send_supported_rates(priv, &priv->rates);
6055
6056 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
6057 mode & IEEE_A ? 'a' : '.',
6058 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
6059 return 0;
6060 }
6061
6062 static int ipw_wx_get_wireless_mode(struct net_device *dev,
6063 struct iw_request_info *info,
6064 union iwreq_data *wrqu, char *extra)
6065 {
6066 struct ipw_priv *priv = ieee80211_priv(dev);
6067
6068 switch (priv->ieee->freq_band) {
6069 case IEEE80211_24GHZ_BAND:
6070 switch (priv->ieee->modulation) {
6071 case IEEE80211_CCK_MODULATION:
6072 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
6073 break;
6074 case IEEE80211_OFDM_MODULATION:
6075 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
6076 break;
6077 default:
6078 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
6079 break;
6080 }
6081 break;
6082
6083 case IEEE80211_52GHZ_BAND:
6084 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
6085 break;
6086
6087 default: /* Mixed Band */
6088 switch (priv->ieee->modulation) {
6089 case IEEE80211_CCK_MODULATION:
6090 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
6091 break;
6092 case IEEE80211_OFDM_MODULATION:
6093 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
6094 break;
6095 default:
6096 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
6097 break;
6098 }
6099 break;
6100 }
6101
6102 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
6103
6104 wrqu->data.length = strlen(extra) + 1;
6105
6106 return 0;
6107 }
6108
6109 #ifdef CONFIG_IPW_PROMISC
6110 static int ipw_wx_set_promisc(struct net_device *dev,
6111 struct iw_request_info *info,
6112 union iwreq_data *wrqu, char *extra)
6113 {
6114 struct ipw_priv *priv = ieee80211_priv(dev);
6115 int *parms = (int *)extra;
6116 int enable = (parms[0] > 0);
6117
6118 IPW_DEBUG_WX("SET PROMISC: %d %d\n", enable, parms[1]);
6119 if (enable) {
6120 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
6121 priv->net_dev->type = ARPHRD_IEEE80211;
6122 ipw_adapter_restart(priv);
6123 }
6124
6125 ipw_set_channel(priv, parms[1]);
6126 } else {
6127 if (priv->ieee->iw_mode != IW_MODE_MONITOR)
6128 return 0;
6129 priv->net_dev->type = ARPHRD_ETHER;
6130 ipw_adapter_restart(priv);
6131 }
6132 return 0;
6133 }
6134
6135 static int ipw_wx_reset(struct net_device *dev,
6136 struct iw_request_info *info,
6137 union iwreq_data *wrqu, char *extra)
6138 {
6139 struct ipw_priv *priv = ieee80211_priv(dev);
6140 IPW_DEBUG_WX("RESET\n");
6141 ipw_adapter_restart(priv);
6142 return 0;
6143 }
6144 #endif // CONFIG_IPW_PROMISC
6145
6146 /* Rebase the WE IOCTLs to zero for the handler array */
6147 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
6148 static iw_handler ipw_wx_handlers[] = {
6149 IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
6150 IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
6151 IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
6152 IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
6153 IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
6154 IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
6155 IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
6156 IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
6157 IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
6158 IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
6159 IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
6160 IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
6161 IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
6162 IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
6163 IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
6164 IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
6165 IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
6166 IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
6167 IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
6168 IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
6169 IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
6170 IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
6171 IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
6172 IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
6173 IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
6174 IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
6175 IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
6176 IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
6177 };
6178
6179 #define IPW_PRIV_SET_POWER SIOCIWFIRSTPRIV
6180 #define IPW_PRIV_GET_POWER SIOCIWFIRSTPRIV+1
6181 #define IPW_PRIV_SET_MODE SIOCIWFIRSTPRIV+2
6182 #define IPW_PRIV_GET_MODE SIOCIWFIRSTPRIV+3
6183 #define IPW_PRIV_SET_PROMISC SIOCIWFIRSTPRIV+4
6184 #define IPW_PRIV_RESET SIOCIWFIRSTPRIV+5
6185
6186 static struct iw_priv_args ipw_priv_args[] = {
6187 {
6188 .cmd = IPW_PRIV_SET_POWER,
6189 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
6190 .name = "set_power"},
6191 {
6192 .cmd = IPW_PRIV_GET_POWER,
6193 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
6194 .name = "get_power"},
6195 {
6196 .cmd = IPW_PRIV_SET_MODE,
6197 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
6198 .name = "set_mode"},
6199 {
6200 .cmd = IPW_PRIV_GET_MODE,
6201 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
6202 .name = "get_mode"},
6203 #ifdef CONFIG_IPW_PROMISC
6204 {
6205 IPW_PRIV_SET_PROMISC,
6206 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
6207 {
6208 IPW_PRIV_RESET,
6209 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
6210 #endif /* CONFIG_IPW_PROMISC */
6211 };
6212
6213 static iw_handler ipw_priv_handler[] = {
6214 ipw_wx_set_powermode,
6215 ipw_wx_get_powermode,
6216 ipw_wx_set_wireless_mode,
6217 ipw_wx_get_wireless_mode,
6218 #ifdef CONFIG_IPW_PROMISC
6219 ipw_wx_set_promisc,
6220 ipw_wx_reset,
6221 #endif
6222 };
6223
6224 static struct iw_handler_def ipw_wx_handler_def = {
6225 .standard = ipw_wx_handlers,
6226 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
6227 .num_private = ARRAY_SIZE(ipw_priv_handler),
6228 .num_private_args = ARRAY_SIZE(ipw_priv_args),
6229 .private = ipw_priv_handler,
6230 .private_args = ipw_priv_args,
6231 };
6232
6233 /*
6234 * Get wireless statistics.
6235 * Called by /proc/net/wireless
6236 * Also called by SIOCGIWSTATS
6237 */
6238 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
6239 {
6240 struct ipw_priv *priv = ieee80211_priv(dev);
6241 struct iw_statistics *wstats;
6242
6243 wstats = &priv->wstats;
6244
6245 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
6246 * ipw2100_wx_wireless_stats seems to be called before fw is
6247 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
6248 * and associated; if not associcated, the values are all meaningless
6249 * anyway, so set them all to NULL and INVALID */
6250 if (!(priv->status & STATUS_ASSOCIATED)) {
6251 wstats->miss.beacon = 0;
6252 wstats->discard.retries = 0;
6253 wstats->qual.qual = 0;
6254 wstats->qual.level = 0;
6255 wstats->qual.noise = 0;
6256 wstats->qual.updated = 7;
6257 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
6258 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
6259 return wstats;
6260 }
6261
6262 wstats->qual.qual = priv->quality;
6263 wstats->qual.level = average_value(&priv->average_rssi);
6264 wstats->qual.noise = average_value(&priv->average_noise);
6265 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
6266 IW_QUAL_NOISE_UPDATED;
6267
6268 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
6269 wstats->discard.retries = priv->last_tx_failures;
6270 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
6271
6272 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
6273 goto fail_get_ordinal;
6274 wstats->discard.retries += tx_retry; */
6275
6276 return wstats;
6277 }
6278
6279 /* net device stuff */
6280
6281 static inline void init_sys_config(struct ipw_sys_config *sys_config)
6282 {
6283 memset(sys_config, 0, sizeof(struct ipw_sys_config));
6284 sys_config->bt_coexistence = 1; /* We may need to look into prvStaBtConfig */
6285 sys_config->answer_broadcast_ssid_probe = 0;
6286 sys_config->accept_all_data_frames = 0;
6287 sys_config->accept_non_directed_frames = 1;
6288 sys_config->exclude_unicast_unencrypted = 0;
6289 sys_config->disable_unicast_decryption = 1;
6290 sys_config->exclude_multicast_unencrypted = 0;
6291 sys_config->disable_multicast_decryption = 1;
6292 sys_config->antenna_diversity = CFG_SYS_ANTENNA_BOTH;
6293 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
6294 sys_config->dot11g_auto_detection = 0;
6295 sys_config->enable_cts_to_self = 0;
6296 sys_config->bt_coexist_collision_thr = 0;
6297 sys_config->pass_noise_stats_to_host = 1;
6298 }
6299
6300 static int ipw_net_open(struct net_device *dev)
6301 {
6302 struct ipw_priv *priv = ieee80211_priv(dev);
6303 IPW_DEBUG_INFO("dev->open\n");
6304 /* we should be verifying the device is ready to be opened */
6305 if (!(priv->status & STATUS_RF_KILL_MASK) &&
6306 (priv->status & STATUS_ASSOCIATED))
6307 netif_start_queue(dev);
6308 return 0;
6309 }
6310
6311 static int ipw_net_stop(struct net_device *dev)
6312 {
6313 IPW_DEBUG_INFO("dev->close\n");
6314 netif_stop_queue(dev);
6315 return 0;
6316 }
6317
6318 /*
6319 todo:
6320
6321 modify to send one tfd per fragment instead of using chunking. otherwise
6322 we need to heavily modify the ieee80211_skb_to_txb.
6323 */
6324
6325 static inline void ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb)
6326 {
6327 struct ieee80211_hdr_3addr *hdr = (struct ieee80211_hdr_3addr *)
6328 txb->fragments[0]->data;
6329 int i = 0;
6330 struct tfd_frame *tfd;
6331 struct clx2_tx_queue *txq = &priv->txq[0];
6332 struct clx2_queue *q = &txq->q;
6333 u8 id, hdr_len, unicast;
6334 u16 remaining_bytes;
6335
6336 switch (priv->ieee->iw_mode) {
6337 case IW_MODE_ADHOC:
6338 hdr_len = IEEE80211_3ADDR_LEN;
6339 unicast = !is_broadcast_ether_addr(hdr->addr1) &&
6340 !is_multicast_ether_addr(hdr->addr1);
6341 id = ipw_find_station(priv, hdr->addr1);
6342 if (id == IPW_INVALID_STATION) {
6343 id = ipw_add_station(priv, hdr->addr1);
6344 if (id == IPW_INVALID_STATION) {
6345 IPW_WARNING("Attempt to send data to "
6346 "invalid cell: " MAC_FMT "\n",
6347 MAC_ARG(hdr->addr1));
6348 goto drop;
6349 }
6350 }
6351 break;
6352
6353 case IW_MODE_INFRA:
6354 default:
6355 unicast = !is_broadcast_ether_addr(hdr->addr3) &&
6356 !is_multicast_ether_addr(hdr->addr3);
6357 hdr_len = IEEE80211_3ADDR_LEN;
6358 id = 0;
6359 break;
6360 }
6361
6362 tfd = &txq->bd[q->first_empty];
6363 txq->txb[q->first_empty] = txb;
6364 memset(tfd, 0, sizeof(*tfd));
6365 tfd->u.data.station_number = id;
6366
6367 tfd->control_flags.message_type = TX_FRAME_TYPE;
6368 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
6369
6370 tfd->u.data.cmd_id = DINO_CMD_TX;
6371 tfd->u.data.len = txb->payload_size;
6372 remaining_bytes = txb->payload_size;
6373 if (unlikely(!unicast))
6374 tfd->u.data.tx_flags = DCT_FLAG_NO_WEP;
6375 else
6376 tfd->u.data.tx_flags = DCT_FLAG_NO_WEP | DCT_FLAG_ACK_REQD;
6377
6378 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
6379 tfd->u.data.tx_flags_ext = DCT_FLAG_EXT_MODE_CCK;
6380 else
6381 tfd->u.data.tx_flags_ext = DCT_FLAG_EXT_MODE_OFDM;
6382
6383 if (priv->config & CFG_PREAMBLE)
6384 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREMBL;
6385
6386 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
6387
6388 /* payload */
6389 tfd->u.data.num_chunks = min((u8) (NUM_TFD_CHUNKS - 2), txb->nr_frags);
6390 for (i = 0; i < tfd->u.data.num_chunks; i++) {
6391 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
6392 i, tfd->u.data.num_chunks,
6393 txb->fragments[i]->len - hdr_len);
6394 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
6395 txb->fragments[i]->len - hdr_len);
6396
6397 tfd->u.data.chunk_ptr[i] =
6398 pci_map_single(priv->pci_dev,
6399 txb->fragments[i]->data + hdr_len,
6400 txb->fragments[i]->len - hdr_len,
6401 PCI_DMA_TODEVICE);
6402 tfd->u.data.chunk_len[i] = txb->fragments[i]->len - hdr_len;
6403 }
6404
6405 if (i != txb->nr_frags) {
6406 struct sk_buff *skb;
6407 u16 remaining_bytes = 0;
6408 int j;
6409
6410 for (j = i; j < txb->nr_frags; j++)
6411 remaining_bytes += txb->fragments[j]->len - hdr_len;
6412
6413 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
6414 remaining_bytes);
6415 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
6416 if (skb != NULL) {
6417 tfd->u.data.chunk_len[i] = remaining_bytes;
6418 for (j = i; j < txb->nr_frags; j++) {
6419 int size = txb->fragments[j]->len - hdr_len;
6420 printk(KERN_INFO "Adding frag %d %d...\n",
6421 j, size);
6422 memcpy(skb_put(skb, size),
6423 txb->fragments[j]->data + hdr_len, size);
6424 }
6425 dev_kfree_skb_any(txb->fragments[i]);
6426 txb->fragments[i] = skb;
6427 tfd->u.data.chunk_ptr[i] =
6428 pci_map_single(priv->pci_dev, skb->data,
6429 tfd->u.data.chunk_len[i],
6430 PCI_DMA_TODEVICE);
6431 tfd->u.data.num_chunks++;
6432 }
6433 }
6434
6435 /* kick DMA */
6436 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
6437 ipw_write32(priv, q->reg_w, q->first_empty);
6438
6439 if (ipw_queue_space(q) < q->high_mark)
6440 netif_stop_queue(priv->net_dev);
6441
6442 return;
6443
6444 drop:
6445 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
6446 ieee80211_txb_free(txb);
6447 }
6448
6449 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
6450 struct net_device *dev, int pri)
6451 {
6452 struct ipw_priv *priv = ieee80211_priv(dev);
6453 unsigned long flags;
6454
6455 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
6456
6457 spin_lock_irqsave(&priv->lock, flags);
6458
6459 if (!(priv->status & STATUS_ASSOCIATED)) {
6460 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
6461 priv->ieee->stats.tx_carrier_errors++;
6462 netif_stop_queue(dev);
6463 goto fail_unlock;
6464 }
6465
6466 ipw_tx_skb(priv, txb);
6467
6468 spin_unlock_irqrestore(&priv->lock, flags);
6469 return 0;
6470
6471 fail_unlock:
6472 spin_unlock_irqrestore(&priv->lock, flags);
6473 return 1;
6474 }
6475
6476 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
6477 {
6478 struct ipw_priv *priv = ieee80211_priv(dev);
6479
6480 priv->ieee->stats.tx_packets = priv->tx_packets;
6481 priv->ieee->stats.rx_packets = priv->rx_packets;
6482 return &priv->ieee->stats;
6483 }
6484
6485 static void ipw_net_set_multicast_list(struct net_device *dev)
6486 {
6487
6488 }
6489
6490 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
6491 {
6492 struct ipw_priv *priv = ieee80211_priv(dev);
6493 struct sockaddr *addr = p;
6494 if (!is_valid_ether_addr(addr->sa_data))
6495 return -EADDRNOTAVAIL;
6496 priv->config |= CFG_CUSTOM_MAC;
6497 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
6498 printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n",
6499 priv->net_dev->name, MAC_ARG(priv->mac_addr));
6500 ipw_adapter_restart(priv);
6501 return 0;
6502 }
6503
6504 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
6505 struct ethtool_drvinfo *info)
6506 {
6507 struct ipw_priv *p = ieee80211_priv(dev);
6508 char vers[64];
6509 char date[32];
6510 u32 len;
6511
6512 strcpy(info->driver, DRV_NAME);
6513 strcpy(info->version, DRV_VERSION);
6514
6515 len = sizeof(vers);
6516 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
6517 len = sizeof(date);
6518 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
6519
6520 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
6521 vers, date);
6522 strcpy(info->bus_info, pci_name(p->pci_dev));
6523 info->eedump_len = CX2_EEPROM_IMAGE_SIZE;
6524 }
6525
6526 static u32 ipw_ethtool_get_link(struct net_device *dev)
6527 {
6528 struct ipw_priv *priv = ieee80211_priv(dev);
6529 return (priv->status & STATUS_ASSOCIATED) != 0;
6530 }
6531
6532 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
6533 {
6534 return CX2_EEPROM_IMAGE_SIZE;
6535 }
6536
6537 static int ipw_ethtool_get_eeprom(struct net_device *dev,
6538 struct ethtool_eeprom *eeprom, u8 * bytes)
6539 {
6540 struct ipw_priv *p = ieee80211_priv(dev);
6541
6542 if (eeprom->offset + eeprom->len > CX2_EEPROM_IMAGE_SIZE)
6543 return -EINVAL;
6544
6545 memcpy(bytes, &((u8 *) p->eeprom)[eeprom->offset], eeprom->len);
6546 return 0;
6547 }
6548
6549 static int ipw_ethtool_set_eeprom(struct net_device *dev,
6550 struct ethtool_eeprom *eeprom, u8 * bytes)
6551 {
6552 struct ipw_priv *p = ieee80211_priv(dev);
6553 int i;
6554
6555 if (eeprom->offset + eeprom->len > CX2_EEPROM_IMAGE_SIZE)
6556 return -EINVAL;
6557
6558 memcpy(&((u8 *) p->eeprom)[eeprom->offset], bytes, eeprom->len);
6559 for (i = IPW_EEPROM_DATA;
6560 i < IPW_EEPROM_DATA + CX2_EEPROM_IMAGE_SIZE; i++)
6561 ipw_write8(p, i, p->eeprom[i]);
6562
6563 return 0;
6564 }
6565
6566 static struct ethtool_ops ipw_ethtool_ops = {
6567 .get_link = ipw_ethtool_get_link,
6568 .get_drvinfo = ipw_ethtool_get_drvinfo,
6569 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
6570 .get_eeprom = ipw_ethtool_get_eeprom,
6571 .set_eeprom = ipw_ethtool_set_eeprom,
6572 };
6573
6574 static irqreturn_t ipw_isr(int irq, void *data, struct pt_regs *regs)
6575 {
6576 struct ipw_priv *priv = data;
6577 u32 inta, inta_mask;
6578
6579 if (!priv)
6580 return IRQ_NONE;
6581
6582 spin_lock(&priv->lock);
6583
6584 if (!(priv->status & STATUS_INT_ENABLED)) {
6585 /* Shared IRQ */
6586 goto none;
6587 }
6588
6589 inta = ipw_read32(priv, CX2_INTA_RW);
6590 inta_mask = ipw_read32(priv, CX2_INTA_MASK_R);
6591
6592 if (inta == 0xFFFFFFFF) {
6593 /* Hardware disappeared */
6594 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
6595 goto none;
6596 }
6597
6598 if (!(inta & (CX2_INTA_MASK_ALL & inta_mask))) {
6599 /* Shared interrupt */
6600 goto none;
6601 }
6602
6603 /* tell the device to stop sending interrupts */
6604 ipw_disable_interrupts(priv);
6605
6606 /* ack current interrupts */
6607 inta &= (CX2_INTA_MASK_ALL & inta_mask);
6608 ipw_write32(priv, CX2_INTA_RW, inta);
6609
6610 /* Cache INTA value for our tasklet */
6611 priv->isr_inta = inta;
6612
6613 tasklet_schedule(&priv->irq_tasklet);
6614
6615 spin_unlock(&priv->lock);
6616
6617 return IRQ_HANDLED;
6618 none:
6619 spin_unlock(&priv->lock);
6620 return IRQ_NONE;
6621 }
6622
6623 static void ipw_rf_kill(void *adapter)
6624 {
6625 struct ipw_priv *priv = adapter;
6626 unsigned long flags;
6627
6628 spin_lock_irqsave(&priv->lock, flags);
6629
6630 if (rf_kill_active(priv)) {
6631 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6632 if (priv->workqueue)
6633 queue_delayed_work(priv->workqueue,
6634 &priv->rf_kill, 2 * HZ);
6635 goto exit_unlock;
6636 }
6637
6638 /* RF Kill is now disabled, so bring the device back up */
6639
6640 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6641 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6642 "device\n");
6643
6644 /* we can not do an adapter restart while inside an irq lock */
6645 queue_work(priv->workqueue, &priv->adapter_restart);
6646 } else
6647 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
6648 "enabled\n");
6649
6650 exit_unlock:
6651 spin_unlock_irqrestore(&priv->lock, flags);
6652 }
6653
6654 static int ipw_setup_deferred_work(struct ipw_priv *priv)
6655 {
6656 int ret = 0;
6657
6658 priv->workqueue = create_workqueue(DRV_NAME);
6659 init_waitqueue_head(&priv->wait_command_queue);
6660
6661 INIT_WORK(&priv->adhoc_check, ipw_adhoc_check, priv);
6662 INIT_WORK(&priv->associate, ipw_associate, priv);
6663 INIT_WORK(&priv->disassociate, ipw_disassociate, priv);
6664 INIT_WORK(&priv->rx_replenish, ipw_rx_queue_replenish, priv);
6665 INIT_WORK(&priv->adapter_restart, ipw_adapter_restart, priv);
6666 INIT_WORK(&priv->rf_kill, ipw_rf_kill, priv);
6667 INIT_WORK(&priv->up, (void (*)(void *))ipw_up, priv);
6668 INIT_WORK(&priv->down, (void (*)(void *))ipw_down, priv);
6669 INIT_WORK(&priv->request_scan,
6670 (void (*)(void *))ipw_request_scan, priv);
6671 INIT_WORK(&priv->gather_stats,
6672 (void (*)(void *))ipw_gather_stats, priv);
6673 INIT_WORK(&priv->abort_scan, (void (*)(void *))ipw_abort_scan, priv);
6674 INIT_WORK(&priv->roam, ipw_roam, priv);
6675 INIT_WORK(&priv->scan_check, ipw_scan_check, priv);
6676
6677 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6678 ipw_irq_tasklet, (unsigned long)priv);
6679
6680 return ret;
6681 }
6682
6683 static void shim__set_security(struct net_device *dev,
6684 struct ieee80211_security *sec)
6685 {
6686 struct ipw_priv *priv = ieee80211_priv(dev);
6687 int i;
6688
6689 for (i = 0; i < 4; i++) {
6690 if (sec->flags & (1 << i)) {
6691 priv->sec.key_sizes[i] = sec->key_sizes[i];
6692 if (sec->key_sizes[i] == 0)
6693 priv->sec.flags &= ~(1 << i);
6694 else
6695 memcpy(priv->sec.keys[i], sec->keys[i],
6696 sec->key_sizes[i]);
6697 priv->sec.flags |= (1 << i);
6698 priv->status |= STATUS_SECURITY_UPDATED;
6699 }
6700 }
6701
6702 if ((sec->flags & SEC_ACTIVE_KEY) &&
6703 priv->sec.active_key != sec->active_key) {
6704 if (sec->active_key <= 3) {
6705 priv->sec.active_key = sec->active_key;
6706 priv->sec.flags |= SEC_ACTIVE_KEY;
6707 } else
6708 priv->sec.flags &= ~SEC_ACTIVE_KEY;
6709 priv->status |= STATUS_SECURITY_UPDATED;
6710 }
6711
6712 if ((sec->flags & SEC_AUTH_MODE) &&
6713 (priv->sec.auth_mode != sec->auth_mode)) {
6714 priv->sec.auth_mode = sec->auth_mode;
6715 priv->sec.flags |= SEC_AUTH_MODE;
6716 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
6717 priv->capability |= CAP_SHARED_KEY;
6718 else
6719 priv->capability &= ~CAP_SHARED_KEY;
6720 priv->status |= STATUS_SECURITY_UPDATED;
6721 }
6722
6723 if (sec->flags & SEC_ENABLED && priv->sec.enabled != sec->enabled) {
6724 priv->sec.flags |= SEC_ENABLED;
6725 priv->sec.enabled = sec->enabled;
6726 priv->status |= STATUS_SECURITY_UPDATED;
6727 if (sec->enabled)
6728 priv->capability |= CAP_PRIVACY_ON;
6729 else
6730 priv->capability &= ~CAP_PRIVACY_ON;
6731 }
6732
6733 if (sec->flags & SEC_LEVEL && priv->sec.level != sec->level) {
6734 priv->sec.level = sec->level;
6735 priv->sec.flags |= SEC_LEVEL;
6736 priv->status |= STATUS_SECURITY_UPDATED;
6737 }
6738
6739 /* To match current functionality of ipw2100 (which works well w/
6740 * various supplicants, we don't force a disassociate if the
6741 * privacy capability changes ... */
6742 #if 0
6743 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
6744 (((priv->assoc_request.capability &
6745 WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
6746 (!(priv->assoc_request.capability &
6747 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
6748 IPW_DEBUG_ASSOC("Disassociating due to capability "
6749 "change.\n");
6750 ipw_disassociate(priv);
6751 }
6752 #endif
6753 }
6754
6755 static int init_supported_rates(struct ipw_priv *priv,
6756 struct ipw_supported_rates *rates)
6757 {
6758 /* TODO: Mask out rates based on priv->rates_mask */
6759
6760 memset(rates, 0, sizeof(*rates));
6761 /* configure supported rates */
6762 switch (priv->ieee->freq_band) {
6763 case IEEE80211_52GHZ_BAND:
6764 rates->ieee_mode = IPW_A_MODE;
6765 rates->purpose = IPW_RATE_CAPABILITIES;
6766 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
6767 IEEE80211_OFDM_DEFAULT_RATES_MASK);
6768 break;
6769
6770 default: /* Mixed or 2.4Ghz */
6771 rates->ieee_mode = IPW_G_MODE;
6772 rates->purpose = IPW_RATE_CAPABILITIES;
6773 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
6774 IEEE80211_CCK_DEFAULT_RATES_MASK);
6775 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
6776 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
6777 IEEE80211_OFDM_DEFAULT_RATES_MASK);
6778 }
6779 break;
6780 }
6781
6782 return 0;
6783 }
6784
6785 static int ipw_config(struct ipw_priv *priv)
6786 {
6787 int i;
6788 struct ipw_tx_power tx_power;
6789
6790 memset(&priv->sys_config, 0, sizeof(priv->sys_config));
6791 memset(&tx_power, 0, sizeof(tx_power));
6792
6793 /* This is only called from ipw_up, which resets/reloads the firmware
6794 so, we don't need to first disable the card before we configure
6795 it */
6796
6797 /* configure device for 'G' band */
6798 tx_power.ieee_mode = IPW_G_MODE;
6799 tx_power.num_channels = 11;
6800 for (i = 0; i < 11; i++) {
6801 tx_power.channels_tx_power[i].channel_number = i + 1;
6802 tx_power.channels_tx_power[i].tx_power = priv->tx_power;
6803 }
6804 if (ipw_send_tx_power(priv, &tx_power))
6805 goto error;
6806
6807 /* configure device to also handle 'B' band */
6808 tx_power.ieee_mode = IPW_B_MODE;
6809 if (ipw_send_tx_power(priv, &tx_power))
6810 goto error;
6811
6812 /* initialize adapter address */
6813 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
6814 goto error;
6815
6816 /* set basic system config settings */
6817 init_sys_config(&priv->sys_config);
6818 if (ipw_send_system_config(priv, &priv->sys_config))
6819 goto error;
6820
6821 init_supported_rates(priv, &priv->rates);
6822 if (ipw_send_supported_rates(priv, &priv->rates))
6823 goto error;
6824
6825 /* Set request-to-send threshold */
6826 if (priv->rts_threshold) {
6827 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
6828 goto error;
6829 }
6830
6831 if (ipw_set_random_seed(priv))
6832 goto error;
6833
6834 /* final state transition to the RUN state */
6835 if (ipw_send_host_complete(priv))
6836 goto error;
6837
6838 /* If configured to try and auto-associate, kick off a scan */
6839 if ((priv->config & CFG_ASSOCIATE) && ipw_request_scan(priv))
6840 goto error;
6841
6842 return 0;
6843
6844 error:
6845 return -EIO;
6846 }
6847
6848 #define MAX_HW_RESTARTS 5
6849 static int ipw_up(struct ipw_priv *priv)
6850 {
6851 int rc, i;
6852
6853 if (priv->status & STATUS_EXIT_PENDING)
6854 return -EIO;
6855
6856 for (i = 0; i < MAX_HW_RESTARTS; i++) {
6857 /* Load the microcode, firmware, and eeprom.
6858 * Also start the clocks. */
6859 rc = ipw_load(priv);
6860 if (rc) {
6861 IPW_ERROR("Unable to load firmware: 0x%08X\n", rc);
6862 return rc;
6863 }
6864
6865 ipw_init_ordinals(priv);
6866 if (!(priv->config & CFG_CUSTOM_MAC))
6867 eeprom_parse_mac(priv, priv->mac_addr);
6868 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
6869
6870 if (priv->status & STATUS_RF_KILL_MASK)
6871 return 0;
6872
6873 rc = ipw_config(priv);
6874 if (!rc) {
6875 IPW_DEBUG_INFO("Configured device on count %i\n", i);
6876 priv->notif_missed_beacons = 0;
6877 netif_start_queue(priv->net_dev);
6878 return 0;
6879 } else {
6880 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n",
6881 rc);
6882 }
6883
6884 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
6885 i, MAX_HW_RESTARTS);
6886
6887 /* We had an error bringing up the hardware, so take it
6888 * all the way back down so we can try again */
6889 ipw_down(priv);
6890 }
6891
6892 /* tried to restart and config the device for as long as our
6893 * patience could withstand */
6894 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
6895 return -EIO;
6896 }
6897
6898 static void ipw_down(struct ipw_priv *priv)
6899 {
6900 /* Attempt to disable the card */
6901 #if 0
6902 ipw_send_card_disable(priv, 0);
6903 #endif
6904
6905 /* tell the device to stop sending interrupts */
6906 ipw_disable_interrupts(priv);
6907
6908 /* Clear all bits but the RF Kill */
6909 priv->status &= STATUS_RF_KILL_MASK;
6910
6911 netif_carrier_off(priv->net_dev);
6912 netif_stop_queue(priv->net_dev);
6913
6914 ipw_stop_nic(priv);
6915 }
6916
6917 /* Called by register_netdev() */
6918 static int ipw_net_init(struct net_device *dev)
6919 {
6920 struct ipw_priv *priv = ieee80211_priv(dev);
6921
6922 if (priv->status & STATUS_RF_KILL_SW) {
6923 IPW_WARNING("Radio disabled by module parameter.\n");
6924 return 0;
6925 } else if (rf_kill_active(priv)) {
6926 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
6927 "Kill switch must be turned off for "
6928 "wireless networking to work.\n");
6929 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
6930 return 0;
6931 }
6932
6933 if (ipw_up(priv))
6934 return -EIO;
6935
6936 return 0;
6937 }
6938
6939 /* PCI driver stuff */
6940 static struct pci_device_id card_ids[] = {
6941 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
6942 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
6943 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
6944 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
6945 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
6946 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
6947 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
6948 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
6949 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
6950 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
6951 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
6952 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
6953 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
6954 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
6955 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
6956 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
6957 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
6958 {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
6959 {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
6960 {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* 2225BG */
6961 {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
6962 {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
6963
6964 /* required last entry */
6965 {0,}
6966 };
6967
6968 MODULE_DEVICE_TABLE(pci, card_ids);
6969
6970 static struct attribute *ipw_sysfs_entries[] = {
6971 &dev_attr_rf_kill.attr,
6972 &dev_attr_direct_dword.attr,
6973 &dev_attr_indirect_byte.attr,
6974 &dev_attr_indirect_dword.attr,
6975 &dev_attr_mem_gpio_reg.attr,
6976 &dev_attr_command_event_reg.attr,
6977 &dev_attr_nic_type.attr,
6978 &dev_attr_status.attr,
6979 &dev_attr_cfg.attr,
6980 &dev_attr_dump_errors.attr,
6981 &dev_attr_dump_events.attr,
6982 &dev_attr_eeprom_delay.attr,
6983 &dev_attr_ucode_version.attr,
6984 &dev_attr_rtc.attr,
6985 NULL
6986 };
6987
6988 static struct attribute_group ipw_attribute_group = {
6989 .name = NULL, /* put in device directory */
6990 .attrs = ipw_sysfs_entries,
6991 };
6992
6993 static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
6994 {
6995 int err = 0;
6996 struct net_device *net_dev;
6997 void __iomem *base;
6998 u32 length, val;
6999 struct ipw_priv *priv;
7000 int band, modulation;
7001
7002 net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
7003 if (net_dev == NULL) {
7004 err = -ENOMEM;
7005 goto out;
7006 }
7007
7008 priv = ieee80211_priv(net_dev);
7009 priv->ieee = netdev_priv(net_dev);
7010 priv->net_dev = net_dev;
7011 priv->pci_dev = pdev;
7012 #ifdef CONFIG_IPW_DEBUG
7013 ipw_debug_level = debug;
7014 #endif
7015 spin_lock_init(&priv->lock);
7016
7017 if (pci_enable_device(pdev)) {
7018 err = -ENODEV;
7019 goto out_free_ieee80211;
7020 }
7021
7022 pci_set_master(pdev);
7023
7024 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
7025 if (!err)
7026 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
7027 if (err) {
7028 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
7029 goto out_pci_disable_device;
7030 }
7031
7032 pci_set_drvdata(pdev, priv);
7033
7034 err = pci_request_regions(pdev, DRV_NAME);
7035 if (err)
7036 goto out_pci_disable_device;
7037
7038 /* We disable the RETRY_TIMEOUT register (0x41) to keep
7039 * PCI Tx retries from interfering with C3 CPU state */
7040 pci_read_config_dword(pdev, 0x40, &val);
7041 if ((val & 0x0000ff00) != 0)
7042 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
7043
7044 length = pci_resource_len(pdev, 0);
7045 priv->hw_len = length;
7046
7047 base = ioremap_nocache(pci_resource_start(pdev, 0), length);
7048 if (!base) {
7049 err = -ENODEV;
7050 goto out_pci_release_regions;
7051 }
7052
7053 priv->hw_base = base;
7054 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
7055 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
7056
7057 err = ipw_setup_deferred_work(priv);
7058 if (err) {
7059 IPW_ERROR("Unable to setup deferred work\n");
7060 goto out_iounmap;
7061 }
7062
7063 /* Initialize module parameter values here */
7064 if (ifname)
7065 strncpy(net_dev->name, ifname, IFNAMSIZ);
7066
7067 if (associate)
7068 priv->config |= CFG_ASSOCIATE;
7069 else
7070 IPW_DEBUG_INFO("Auto associate disabled.\n");
7071
7072 if (auto_create)
7073 priv->config |= CFG_ADHOC_CREATE;
7074 else
7075 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
7076
7077 if (disable) {
7078 priv->status |= STATUS_RF_KILL_SW;
7079 IPW_DEBUG_INFO("Radio disabled.\n");
7080 }
7081
7082 if (channel != 0) {
7083 priv->config |= CFG_STATIC_CHANNEL;
7084 priv->channel = channel;
7085 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
7086 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
7087 /* TODO: Validate that provided channel is in range */
7088 }
7089
7090 switch (mode) {
7091 case 1:
7092 priv->ieee->iw_mode = IW_MODE_ADHOC;
7093 break;
7094 #ifdef CONFIG_IPW_PROMISC
7095 case 2:
7096 priv->ieee->iw_mode = IW_MODE_MONITOR;
7097 break;
7098 #endif
7099 default:
7100 case 0:
7101 priv->ieee->iw_mode = IW_MODE_INFRA;
7102 break;
7103 }
7104
7105 if ((priv->pci_dev->device == 0x4223) ||
7106 (priv->pci_dev->device == 0x4224)) {
7107 printk(KERN_INFO DRV_NAME
7108 ": Detected Intel PRO/Wireless 2915ABG Network "
7109 "Connection\n");
7110 priv->ieee->abg_true = 1;
7111 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
7112 modulation = IEEE80211_OFDM_MODULATION |
7113 IEEE80211_CCK_MODULATION;
7114 priv->adapter = IPW_2915ABG;
7115 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
7116 } else {
7117 if (priv->pci_dev->device == 0x4221)
7118 printk(KERN_INFO DRV_NAME
7119 ": Detected Intel PRO/Wireless 2225BG Network "
7120 "Connection\n");
7121 else
7122 printk(KERN_INFO DRV_NAME
7123 ": Detected Intel PRO/Wireless 2200BG Network "
7124 "Connection\n");
7125
7126 priv->ieee->abg_true = 0;
7127 band = IEEE80211_24GHZ_BAND;
7128 modulation = IEEE80211_OFDM_MODULATION |
7129 IEEE80211_CCK_MODULATION;
7130 priv->adapter = IPW_2200BG;
7131 priv->ieee->mode = IEEE_G | IEEE_B;
7132 }
7133
7134 priv->ieee->freq_band = band;
7135 priv->ieee->modulation = modulation;
7136
7137 priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
7138
7139 priv->missed_beacon_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
7140 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
7141
7142 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
7143
7144 /* If power management is turned on, default to AC mode */
7145 priv->power_mode = IPW_POWER_AC;
7146 priv->tx_power = IPW_DEFAULT_TX_POWER;
7147
7148 err = request_irq(pdev->irq, ipw_isr, SA_SHIRQ, DRV_NAME, priv);
7149 if (err) {
7150 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
7151 goto out_destroy_workqueue;
7152 }
7153
7154 SET_MODULE_OWNER(net_dev);
7155 SET_NETDEV_DEV(net_dev, &pdev->dev);
7156
7157 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
7158 priv->ieee->set_security = shim__set_security;
7159
7160 net_dev->open = ipw_net_open;
7161 net_dev->stop = ipw_net_stop;
7162 net_dev->init = ipw_net_init;
7163 net_dev->get_stats = ipw_net_get_stats;
7164 net_dev->set_multicast_list = ipw_net_set_multicast_list;
7165 net_dev->set_mac_address = ipw_net_set_mac_address;
7166 net_dev->get_wireless_stats = ipw_get_wireless_stats;
7167 net_dev->wireless_handlers = &ipw_wx_handler_def;
7168 net_dev->ethtool_ops = &ipw_ethtool_ops;
7169 net_dev->irq = pdev->irq;
7170 net_dev->base_addr = (unsigned long)priv->hw_base;
7171 net_dev->mem_start = pci_resource_start(pdev, 0);
7172 net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
7173
7174 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
7175 if (err) {
7176 IPW_ERROR("failed to create sysfs device attributes\n");
7177 goto out_release_irq;
7178 }
7179
7180 err = register_netdev(net_dev);
7181 if (err) {
7182 IPW_ERROR("failed to register network device\n");
7183 goto out_remove_group;
7184 }
7185
7186 return 0;
7187
7188 out_remove_group:
7189 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
7190 out_release_irq:
7191 free_irq(pdev->irq, priv);
7192 out_destroy_workqueue:
7193 destroy_workqueue(priv->workqueue);
7194 priv->workqueue = NULL;
7195 out_iounmap:
7196 iounmap(priv->hw_base);
7197 out_pci_release_regions:
7198 pci_release_regions(pdev);
7199 out_pci_disable_device:
7200 pci_disable_device(pdev);
7201 pci_set_drvdata(pdev, NULL);
7202 out_free_ieee80211:
7203 free_ieee80211(priv->net_dev);
7204 out:
7205 return err;
7206 }
7207
7208 static void ipw_pci_remove(struct pci_dev *pdev)
7209 {
7210 struct ipw_priv *priv = pci_get_drvdata(pdev);
7211 if (!priv)
7212 return;
7213
7214 priv->status |= STATUS_EXIT_PENDING;
7215
7216 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
7217
7218 ipw_down(priv);
7219
7220 unregister_netdev(priv->net_dev);
7221
7222 if (priv->rxq) {
7223 ipw_rx_queue_free(priv, priv->rxq);
7224 priv->rxq = NULL;
7225 }
7226 ipw_tx_queue_free(priv);
7227
7228 /* ipw_down will ensure that there is no more pending work
7229 * in the workqueue's, so we can safely remove them now. */
7230 if (priv->workqueue) {
7231 cancel_delayed_work(&priv->adhoc_check);
7232 cancel_delayed_work(&priv->gather_stats);
7233 cancel_delayed_work(&priv->request_scan);
7234 cancel_delayed_work(&priv->rf_kill);
7235 cancel_delayed_work(&priv->scan_check);
7236 destroy_workqueue(priv->workqueue);
7237 priv->workqueue = NULL;
7238 }
7239
7240 free_irq(pdev->irq, priv);
7241 iounmap(priv->hw_base);
7242 pci_release_regions(pdev);
7243 pci_disable_device(pdev);
7244 pci_set_drvdata(pdev, NULL);
7245 free_ieee80211(priv->net_dev);
7246
7247 #ifdef CONFIG_PM
7248 if (fw_loaded) {
7249 release_firmware(bootfw);
7250 release_firmware(ucode);
7251 release_firmware(firmware);
7252 fw_loaded = 0;
7253 }
7254 #endif
7255 }
7256
7257 #ifdef CONFIG_PM
7258 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
7259 {
7260 struct ipw_priv *priv = pci_get_drvdata(pdev);
7261 struct net_device *dev = priv->net_dev;
7262
7263 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
7264
7265 /* Take down the device; powers it off, etc. */
7266 ipw_down(priv);
7267
7268 /* Remove the PRESENT state of the device */
7269 netif_device_detach(dev);
7270
7271 pci_save_state(pdev);
7272 pci_disable_device(pdev);
7273 pci_set_power_state(pdev, pci_choose_state(pdev, state));
7274
7275 return 0;
7276 }
7277
7278 static int ipw_pci_resume(struct pci_dev *pdev)
7279 {
7280 struct ipw_priv *priv = pci_get_drvdata(pdev);
7281 struct net_device *dev = priv->net_dev;
7282 u32 val;
7283
7284 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
7285
7286 pci_set_power_state(pdev, 0);
7287 pci_enable_device(pdev);
7288 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,10)
7289 pci_restore_state(pdev, priv->pm_state);
7290 #else
7291 pci_restore_state(pdev);
7292 #endif
7293 /*
7294 * Suspend/Resume resets the PCI configuration space, so we have to
7295 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
7296 * from interfering with C3 CPU state. pci_restore_state won't help
7297 * here since it only restores the first 64 bytes pci config header.
7298 */
7299 pci_read_config_dword(pdev, 0x40, &val);
7300 if ((val & 0x0000ff00) != 0)
7301 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
7302
7303 /* Set the device back into the PRESENT state; this will also wake
7304 * the queue of needed */
7305 netif_device_attach(dev);
7306
7307 /* Bring the device back up */
7308 queue_work(priv->workqueue, &priv->up);
7309
7310 return 0;
7311 }
7312 #endif
7313
7314 /* driver initialization stuff */
7315 static struct pci_driver ipw_driver = {
7316 .name = DRV_NAME,
7317 .id_table = card_ids,
7318 .probe = ipw_pci_probe,
7319 .remove = __devexit_p(ipw_pci_remove),
7320 #ifdef CONFIG_PM
7321 .suspend = ipw_pci_suspend,
7322 .resume = ipw_pci_resume,
7323 #endif
7324 };
7325
7326 static int __init ipw_init(void)
7327 {
7328 int ret;
7329
7330 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
7331 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
7332
7333 ret = pci_module_init(&ipw_driver);
7334 if (ret) {
7335 IPW_ERROR("Unable to initialize PCI module\n");
7336 return ret;
7337 }
7338
7339 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
7340 if (ret) {
7341 IPW_ERROR("Unable to create driver sysfs file\n");
7342 pci_unregister_driver(&ipw_driver);
7343 return ret;
7344 }
7345
7346 return ret;
7347 }
7348
7349 static void __exit ipw_exit(void)
7350 {
7351 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
7352 pci_unregister_driver(&ipw_driver);
7353 }
7354
7355 module_param(disable, int, 0444);
7356 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
7357
7358 module_param(associate, int, 0444);
7359 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
7360
7361 module_param(auto_create, int, 0444);
7362 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
7363
7364 module_param(debug, int, 0444);
7365 MODULE_PARM_DESC(debug, "debug output mask");
7366
7367 module_param(channel, int, 0444);
7368 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
7369
7370 module_param(ifname, charp, 0444);
7371 MODULE_PARM_DESC(ifname, "network device name (default eth%d)");
7372
7373 #ifdef CONFIG_IPW_PROMISC
7374 module_param(mode, int, 0444);
7375 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
7376 #else
7377 module_param(mode, int, 0444);
7378 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
7379 #endif
7380
7381 module_exit(ipw_exit);
7382 module_init(ipw_init);
This page took 0.286473 seconds and 5 git commands to generate.