Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[deliverable/linux.git] / drivers / net / wireless / ipw2200.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
10
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
14
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 more details.
19
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23
24 The full GNU General Public License is included in this distribution in the
25 file called LICENSE.
26
27 Contact Information:
28 James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34 #include <linux/version.h>
35
36
37 #ifndef KBUILD_EXTMOD
38 #define VK "k"
39 #else
40 #define VK
41 #endif
42
43 #ifdef CONFIG_IPW2200_DEBUG
44 #define VD "d"
45 #else
46 #define VD
47 #endif
48
49 #ifdef CONFIG_IPW2200_MONITOR
50 #define VM "m"
51 #else
52 #define VM
53 #endif
54
55 #ifdef CONFIG_IPW2200_PROMISCUOUS
56 #define VP "p"
57 #else
58 #define VP
59 #endif
60
61 #ifdef CONFIG_IPW2200_RADIOTAP
62 #define VR "r"
63 #else
64 #define VR
65 #endif
66
67 #ifdef CONFIG_IPW2200_QOS
68 #define VQ "q"
69 #else
70 #define VQ
71 #endif
72
73 #define IPW2200_VERSION "1.1.4" VK VD VM VP VR VQ
74 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
75 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
76 #define DRV_VERSION IPW2200_VERSION
77
78 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
79
80 MODULE_DESCRIPTION(DRV_DESCRIPTION);
81 MODULE_VERSION(DRV_VERSION);
82 MODULE_AUTHOR(DRV_COPYRIGHT);
83 MODULE_LICENSE("GPL");
84
85 static int cmdlog = 0;
86 static int debug = 0;
87 static int channel = 0;
88 static int mode = 0;
89
90 static u32 ipw_debug_level;
91 static int associate = 1;
92 static int auto_create = 1;
93 static int led = 0;
94 static int disable = 0;
95 static int bt_coexist = 0;
96 static int hwcrypto = 0;
97 static int roaming = 1;
98 static const char ipw_modes[] = {
99 'a', 'b', 'g', '?'
100 };
101 static int antenna = CFG_SYS_ANTENNA_BOTH;
102
103 #ifdef CONFIG_IPW2200_PROMISCUOUS
104 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
105 #endif
106
107
108 #ifdef CONFIG_IPW2200_QOS
109 static int qos_enable = 0;
110 static int qos_burst_enable = 0;
111 static int qos_no_ack_mask = 0;
112 static int burst_duration_CCK = 0;
113 static int burst_duration_OFDM = 0;
114
115 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
116 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
117 QOS_TX3_CW_MIN_OFDM},
118 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
119 QOS_TX3_CW_MAX_OFDM},
120 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
121 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
122 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
123 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
124 };
125
126 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
127 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
128 QOS_TX3_CW_MIN_CCK},
129 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
130 QOS_TX3_CW_MAX_CCK},
131 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
132 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
133 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
134 QOS_TX3_TXOP_LIMIT_CCK}
135 };
136
137 static struct ieee80211_qos_parameters def_parameters_OFDM = {
138 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
139 DEF_TX3_CW_MIN_OFDM},
140 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
141 DEF_TX3_CW_MAX_OFDM},
142 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
143 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
144 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
145 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
146 };
147
148 static struct ieee80211_qos_parameters def_parameters_CCK = {
149 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
150 DEF_TX3_CW_MIN_CCK},
151 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
152 DEF_TX3_CW_MAX_CCK},
153 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
154 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
155 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
156 DEF_TX3_TXOP_LIMIT_CCK}
157 };
158
159 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
160
161 static int from_priority_to_tx_queue[] = {
162 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
163 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
164 };
165
166 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
167
168 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
169 *qos_param);
170 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
171 *qos_param);
172 #endif /* CONFIG_IPW2200_QOS */
173
174 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
175 static void ipw_remove_current_network(struct ipw_priv *priv);
176 static void ipw_rx(struct ipw_priv *priv);
177 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
178 struct clx2_tx_queue *txq, int qindex);
179 static int ipw_queue_reset(struct ipw_priv *priv);
180
181 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
182 int len, int sync);
183
184 static void ipw_tx_queue_free(struct ipw_priv *);
185
186 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
187 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
188 static void ipw_rx_queue_replenish(void *);
189 static int ipw_up(struct ipw_priv *);
190 static void ipw_bg_up(struct work_struct *work);
191 static void ipw_down(struct ipw_priv *);
192 static void ipw_bg_down(struct work_struct *work);
193 static int ipw_config(struct ipw_priv *);
194 static int init_supported_rates(struct ipw_priv *priv,
195 struct ipw_supported_rates *prates);
196 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
197 static void ipw_send_wep_keys(struct ipw_priv *, int);
198
199 static int snprint_line(char *buf, size_t count,
200 const u8 * data, u32 len, u32 ofs)
201 {
202 int out, i, j, l;
203 char c;
204
205 out = snprintf(buf, count, "%08X", ofs);
206
207 for (l = 0, i = 0; i < 2; i++) {
208 out += snprintf(buf + out, count - out, " ");
209 for (j = 0; j < 8 && l < len; j++, l++)
210 out += snprintf(buf + out, count - out, "%02X ",
211 data[(i * 8 + j)]);
212 for (; j < 8; j++)
213 out += snprintf(buf + out, count - out, " ");
214 }
215
216 out += snprintf(buf + out, count - out, " ");
217 for (l = 0, i = 0; i < 2; i++) {
218 out += snprintf(buf + out, count - out, " ");
219 for (j = 0; j < 8 && l < len; j++, l++) {
220 c = data[(i * 8 + j)];
221 if (!isascii(c) || !isprint(c))
222 c = '.';
223
224 out += snprintf(buf + out, count - out, "%c", c);
225 }
226
227 for (; j < 8; j++)
228 out += snprintf(buf + out, count - out, " ");
229 }
230
231 return out;
232 }
233
234 static void printk_buf(int level, const u8 * data, u32 len)
235 {
236 char line[81];
237 u32 ofs = 0;
238 if (!(ipw_debug_level & level))
239 return;
240
241 while (len) {
242 snprint_line(line, sizeof(line), &data[ofs],
243 min(len, 16U), ofs);
244 printk(KERN_DEBUG "%s\n", line);
245 ofs += 16;
246 len -= min(len, 16U);
247 }
248 }
249
250 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
251 {
252 size_t out = size;
253 u32 ofs = 0;
254 int total = 0;
255
256 while (size && len) {
257 out = snprint_line(output, size, &data[ofs],
258 min_t(size_t, len, 16U), ofs);
259
260 ofs += 16;
261 output += out;
262 size -= out;
263 len -= min_t(size_t, len, 16U);
264 total += out;
265 }
266 return total;
267 }
268
269 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
270 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
271 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
272
273 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
274 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
275 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
276
277 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
278 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
279 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
280 {
281 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
282 __LINE__, (u32) (b), (u32) (c));
283 _ipw_write_reg8(a, b, c);
284 }
285
286 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
287 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
288 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
289 {
290 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
291 __LINE__, (u32) (b), (u32) (c));
292 _ipw_write_reg16(a, b, c);
293 }
294
295 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
296 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
297 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
298 {
299 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
300 __LINE__, (u32) (b), (u32) (c));
301 _ipw_write_reg32(a, b, c);
302 }
303
304 /* 8-bit direct write (low 4K) */
305 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
306
307 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
308 #define ipw_write8(ipw, ofs, val) \
309 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
310 _ipw_write8(ipw, ofs, val)
311
312 /* 16-bit direct write (low 4K) */
313 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
314
315 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
316 #define ipw_write16(ipw, ofs, val) \
317 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
318 _ipw_write16(ipw, ofs, val)
319
320 /* 32-bit direct write (low 4K) */
321 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
322
323 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
324 #define ipw_write32(ipw, ofs, val) \
325 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
326 _ipw_write32(ipw, ofs, val)
327
328 /* 8-bit direct read (low 4K) */
329 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
330
331 /* 8-bit direct read (low 4K), with debug wrapper */
332 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
333 {
334 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
335 return _ipw_read8(ipw, ofs);
336 }
337
338 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
339 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
340
341 /* 16-bit direct read (low 4K) */
342 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
343
344 /* 16-bit direct read (low 4K), with debug wrapper */
345 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
346 {
347 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
348 return _ipw_read16(ipw, ofs);
349 }
350
351 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
353
354 /* 32-bit direct read (low 4K) */
355 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
356
357 /* 32-bit direct read (low 4K), with debug wrapper */
358 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
359 {
360 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
361 return _ipw_read32(ipw, ofs);
362 }
363
364 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
366
367 /* multi-byte read (above 4K), with debug wrapper */
368 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
369 static inline void __ipw_read_indirect(const char *f, int l,
370 struct ipw_priv *a, u32 b, u8 * c, int d)
371 {
372 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
373 d);
374 _ipw_read_indirect(a, b, c, d);
375 }
376
377 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
378 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
379
380 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
381 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
382 int num);
383 #define ipw_write_indirect(a, b, c, d) \
384 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
385 _ipw_write_indirect(a, b, c, d)
386
387 /* 32-bit indirect write (above 4K) */
388 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
389 {
390 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
391 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
392 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
393 }
394
395 /* 8-bit indirect write (above 4K) */
396 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
397 {
398 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
399 u32 dif_len = reg - aligned_addr;
400
401 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
402 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
403 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
404 }
405
406 /* 16-bit indirect write (above 4K) */
407 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
408 {
409 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
410 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
411
412 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
413 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
414 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
415 }
416
417 /* 8-bit indirect read (above 4K) */
418 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
419 {
420 u32 word;
421 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
422 IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
423 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
424 return (word >> ((reg & 0x3) * 8)) & 0xff;
425 }
426
427 /* 32-bit indirect read (above 4K) */
428 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
429 {
430 u32 value;
431
432 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
433
434 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
435 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
436 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
437 return value;
438 }
439
440 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
441 /* for area above 1st 4K of SRAM/reg space */
442 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
443 int num)
444 {
445 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
446 u32 dif_len = addr - aligned_addr;
447 u32 i;
448
449 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
450
451 if (num <= 0) {
452 return;
453 }
454
455 /* Read the first dword (or portion) byte by byte */
456 if (unlikely(dif_len)) {
457 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
458 /* Start reading at aligned_addr + dif_len */
459 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
460 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
461 aligned_addr += 4;
462 }
463
464 /* Read all of the middle dwords as dwords, with auto-increment */
465 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
466 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
467 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
468
469 /* Read the last dword (or portion) byte by byte */
470 if (unlikely(num)) {
471 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472 for (i = 0; num > 0; i++, num--)
473 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
474 }
475 }
476
477 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
478 /* for area above 1st 4K of SRAM/reg space */
479 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
480 int num)
481 {
482 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
483 u32 dif_len = addr - aligned_addr;
484 u32 i;
485
486 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
487
488 if (num <= 0) {
489 return;
490 }
491
492 /* Write the first dword (or portion) byte by byte */
493 if (unlikely(dif_len)) {
494 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
495 /* Start writing at aligned_addr + dif_len */
496 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
497 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
498 aligned_addr += 4;
499 }
500
501 /* Write all of the middle dwords as dwords, with auto-increment */
502 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
503 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
504 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
505
506 /* Write the last dword (or portion) byte by byte */
507 if (unlikely(num)) {
508 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509 for (i = 0; num > 0; i++, num--, buf++)
510 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
511 }
512 }
513
514 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
515 /* for 1st 4K of SRAM/regs space */
516 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
517 int num)
518 {
519 memcpy_toio((priv->hw_base + addr), buf, num);
520 }
521
522 /* Set bit(s) in low 4K of SRAM/regs */
523 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
524 {
525 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
526 }
527
528 /* Clear bit(s) in low 4K of SRAM/regs */
529 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
530 {
531 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
532 }
533
534 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
535 {
536 if (priv->status & STATUS_INT_ENABLED)
537 return;
538 priv->status |= STATUS_INT_ENABLED;
539 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
540 }
541
542 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
543 {
544 if (!(priv->status & STATUS_INT_ENABLED))
545 return;
546 priv->status &= ~STATUS_INT_ENABLED;
547 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
548 }
549
550 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
551 {
552 unsigned long flags;
553
554 spin_lock_irqsave(&priv->irq_lock, flags);
555 __ipw_enable_interrupts(priv);
556 spin_unlock_irqrestore(&priv->irq_lock, flags);
557 }
558
559 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
560 {
561 unsigned long flags;
562
563 spin_lock_irqsave(&priv->irq_lock, flags);
564 __ipw_disable_interrupts(priv);
565 spin_unlock_irqrestore(&priv->irq_lock, flags);
566 }
567
568 static char *ipw_error_desc(u32 val)
569 {
570 switch (val) {
571 case IPW_FW_ERROR_OK:
572 return "ERROR_OK";
573 case IPW_FW_ERROR_FAIL:
574 return "ERROR_FAIL";
575 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
576 return "MEMORY_UNDERFLOW";
577 case IPW_FW_ERROR_MEMORY_OVERFLOW:
578 return "MEMORY_OVERFLOW";
579 case IPW_FW_ERROR_BAD_PARAM:
580 return "BAD_PARAM";
581 case IPW_FW_ERROR_BAD_CHECKSUM:
582 return "BAD_CHECKSUM";
583 case IPW_FW_ERROR_NMI_INTERRUPT:
584 return "NMI_INTERRUPT";
585 case IPW_FW_ERROR_BAD_DATABASE:
586 return "BAD_DATABASE";
587 case IPW_FW_ERROR_ALLOC_FAIL:
588 return "ALLOC_FAIL";
589 case IPW_FW_ERROR_DMA_UNDERRUN:
590 return "DMA_UNDERRUN";
591 case IPW_FW_ERROR_DMA_STATUS:
592 return "DMA_STATUS";
593 case IPW_FW_ERROR_DINO_ERROR:
594 return "DINO_ERROR";
595 case IPW_FW_ERROR_EEPROM_ERROR:
596 return "EEPROM_ERROR";
597 case IPW_FW_ERROR_SYSASSERT:
598 return "SYSASSERT";
599 case IPW_FW_ERROR_FATAL_ERROR:
600 return "FATAL_ERROR";
601 default:
602 return "UNKNOWN_ERROR";
603 }
604 }
605
606 static void ipw_dump_error_log(struct ipw_priv *priv,
607 struct ipw_fw_error *error)
608 {
609 u32 i;
610
611 if (!error) {
612 IPW_ERROR("Error allocating and capturing error log. "
613 "Nothing to dump.\n");
614 return;
615 }
616
617 IPW_ERROR("Start IPW Error Log Dump:\n");
618 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
619 error->status, error->config);
620
621 for (i = 0; i < error->elem_len; i++)
622 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
623 ipw_error_desc(error->elem[i].desc),
624 error->elem[i].time,
625 error->elem[i].blink1,
626 error->elem[i].blink2,
627 error->elem[i].link1,
628 error->elem[i].link2, error->elem[i].data);
629 for (i = 0; i < error->log_len; i++)
630 IPW_ERROR("%i\t0x%08x\t%i\n",
631 error->log[i].time,
632 error->log[i].data, error->log[i].event);
633 }
634
635 static inline int ipw_is_init(struct ipw_priv *priv)
636 {
637 return (priv->status & STATUS_INIT) ? 1 : 0;
638 }
639
640 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
641 {
642 u32 addr, field_info, field_len, field_count, total_len;
643
644 IPW_DEBUG_ORD("ordinal = %i\n", ord);
645
646 if (!priv || !val || !len) {
647 IPW_DEBUG_ORD("Invalid argument\n");
648 return -EINVAL;
649 }
650
651 /* verify device ordinal tables have been initialized */
652 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
653 IPW_DEBUG_ORD("Access ordinals before initialization\n");
654 return -EINVAL;
655 }
656
657 switch (IPW_ORD_TABLE_ID_MASK & ord) {
658 case IPW_ORD_TABLE_0_MASK:
659 /*
660 * TABLE 0: Direct access to a table of 32 bit values
661 *
662 * This is a very simple table with the data directly
663 * read from the table
664 */
665
666 /* remove the table id from the ordinal */
667 ord &= IPW_ORD_TABLE_VALUE_MASK;
668
669 /* boundary check */
670 if (ord > priv->table0_len) {
671 IPW_DEBUG_ORD("ordinal value (%i) longer then "
672 "max (%i)\n", ord, priv->table0_len);
673 return -EINVAL;
674 }
675
676 /* verify we have enough room to store the value */
677 if (*len < sizeof(u32)) {
678 IPW_DEBUG_ORD("ordinal buffer length too small, "
679 "need %zd\n", sizeof(u32));
680 return -EINVAL;
681 }
682
683 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
684 ord, priv->table0_addr + (ord << 2));
685
686 *len = sizeof(u32);
687 ord <<= 2;
688 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
689 break;
690
691 case IPW_ORD_TABLE_1_MASK:
692 /*
693 * TABLE 1: Indirect access to a table of 32 bit values
694 *
695 * This is a fairly large table of u32 values each
696 * representing starting addr for the data (which is
697 * also a u32)
698 */
699
700 /* remove the table id from the ordinal */
701 ord &= IPW_ORD_TABLE_VALUE_MASK;
702
703 /* boundary check */
704 if (ord > priv->table1_len) {
705 IPW_DEBUG_ORD("ordinal value too long\n");
706 return -EINVAL;
707 }
708
709 /* verify we have enough room to store the value */
710 if (*len < sizeof(u32)) {
711 IPW_DEBUG_ORD("ordinal buffer length too small, "
712 "need %zd\n", sizeof(u32));
713 return -EINVAL;
714 }
715
716 *((u32 *) val) =
717 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
718 *len = sizeof(u32);
719 break;
720
721 case IPW_ORD_TABLE_2_MASK:
722 /*
723 * TABLE 2: Indirect access to a table of variable sized values
724 *
725 * This table consist of six values, each containing
726 * - dword containing the starting offset of the data
727 * - dword containing the lengh in the first 16bits
728 * and the count in the second 16bits
729 */
730
731 /* remove the table id from the ordinal */
732 ord &= IPW_ORD_TABLE_VALUE_MASK;
733
734 /* boundary check */
735 if (ord > priv->table2_len) {
736 IPW_DEBUG_ORD("ordinal value too long\n");
737 return -EINVAL;
738 }
739
740 /* get the address of statistic */
741 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
742
743 /* get the second DW of statistics ;
744 * two 16-bit words - first is length, second is count */
745 field_info =
746 ipw_read_reg32(priv,
747 priv->table2_addr + (ord << 3) +
748 sizeof(u32));
749
750 /* get each entry length */
751 field_len = *((u16 *) & field_info);
752
753 /* get number of entries */
754 field_count = *(((u16 *) & field_info) + 1);
755
756 /* abort if not enought memory */
757 total_len = field_len * field_count;
758 if (total_len > *len) {
759 *len = total_len;
760 return -EINVAL;
761 }
762
763 *len = total_len;
764 if (!total_len)
765 return 0;
766
767 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
768 "field_info = 0x%08x\n",
769 addr, total_len, field_info);
770 ipw_read_indirect(priv, addr, val, total_len);
771 break;
772
773 default:
774 IPW_DEBUG_ORD("Invalid ordinal!\n");
775 return -EINVAL;
776
777 }
778
779 return 0;
780 }
781
782 static void ipw_init_ordinals(struct ipw_priv *priv)
783 {
784 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
785 priv->table0_len = ipw_read32(priv, priv->table0_addr);
786
787 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
788 priv->table0_addr, priv->table0_len);
789
790 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
791 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
792
793 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
794 priv->table1_addr, priv->table1_len);
795
796 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
797 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
798 priv->table2_len &= 0x0000ffff; /* use first two bytes */
799
800 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
801 priv->table2_addr, priv->table2_len);
802
803 }
804
805 static u32 ipw_register_toggle(u32 reg)
806 {
807 reg &= ~IPW_START_STANDBY;
808 if (reg & IPW_GATE_ODMA)
809 reg &= ~IPW_GATE_ODMA;
810 if (reg & IPW_GATE_IDMA)
811 reg &= ~IPW_GATE_IDMA;
812 if (reg & IPW_GATE_ADMA)
813 reg &= ~IPW_GATE_ADMA;
814 return reg;
815 }
816
817 /*
818 * LED behavior:
819 * - On radio ON, turn on any LEDs that require to be on during start
820 * - On initialization, start unassociated blink
821 * - On association, disable unassociated blink
822 * - On disassociation, start unassociated blink
823 * - On radio OFF, turn off any LEDs started during radio on
824 *
825 */
826 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
827 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
828 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
829
830 static void ipw_led_link_on(struct ipw_priv *priv)
831 {
832 unsigned long flags;
833 u32 led;
834
835 /* If configured to not use LEDs, or nic_type is 1,
836 * then we don't toggle a LINK led */
837 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
838 return;
839
840 spin_lock_irqsave(&priv->lock, flags);
841
842 if (!(priv->status & STATUS_RF_KILL_MASK) &&
843 !(priv->status & STATUS_LED_LINK_ON)) {
844 IPW_DEBUG_LED("Link LED On\n");
845 led = ipw_read_reg32(priv, IPW_EVENT_REG);
846 led |= priv->led_association_on;
847
848 led = ipw_register_toggle(led);
849
850 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
851 ipw_write_reg32(priv, IPW_EVENT_REG, led);
852
853 priv->status |= STATUS_LED_LINK_ON;
854
855 /* If we aren't associated, schedule turning the LED off */
856 if (!(priv->status & STATUS_ASSOCIATED))
857 queue_delayed_work(priv->workqueue,
858 &priv->led_link_off,
859 LD_TIME_LINK_ON);
860 }
861
862 spin_unlock_irqrestore(&priv->lock, flags);
863 }
864
865 static void ipw_bg_led_link_on(struct work_struct *work)
866 {
867 struct ipw_priv *priv =
868 container_of(work, struct ipw_priv, led_link_on.work);
869 mutex_lock(&priv->mutex);
870 ipw_led_link_on(priv);
871 mutex_unlock(&priv->mutex);
872 }
873
874 static void ipw_led_link_off(struct ipw_priv *priv)
875 {
876 unsigned long flags;
877 u32 led;
878
879 /* If configured not to use LEDs, or nic type is 1,
880 * then we don't goggle the LINK led. */
881 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
882 return;
883
884 spin_lock_irqsave(&priv->lock, flags);
885
886 if (priv->status & STATUS_LED_LINK_ON) {
887 led = ipw_read_reg32(priv, IPW_EVENT_REG);
888 led &= priv->led_association_off;
889 led = ipw_register_toggle(led);
890
891 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
892 ipw_write_reg32(priv, IPW_EVENT_REG, led);
893
894 IPW_DEBUG_LED("Link LED Off\n");
895
896 priv->status &= ~STATUS_LED_LINK_ON;
897
898 /* If we aren't associated and the radio is on, schedule
899 * turning the LED on (blink while unassociated) */
900 if (!(priv->status & STATUS_RF_KILL_MASK) &&
901 !(priv->status & STATUS_ASSOCIATED))
902 queue_delayed_work(priv->workqueue, &priv->led_link_on,
903 LD_TIME_LINK_OFF);
904
905 }
906
907 spin_unlock_irqrestore(&priv->lock, flags);
908 }
909
910 static void ipw_bg_led_link_off(struct work_struct *work)
911 {
912 struct ipw_priv *priv =
913 container_of(work, struct ipw_priv, led_link_off.work);
914 mutex_lock(&priv->mutex);
915 ipw_led_link_off(priv);
916 mutex_unlock(&priv->mutex);
917 }
918
919 static void __ipw_led_activity_on(struct ipw_priv *priv)
920 {
921 u32 led;
922
923 if (priv->config & CFG_NO_LED)
924 return;
925
926 if (priv->status & STATUS_RF_KILL_MASK)
927 return;
928
929 if (!(priv->status & STATUS_LED_ACT_ON)) {
930 led = ipw_read_reg32(priv, IPW_EVENT_REG);
931 led |= priv->led_activity_on;
932
933 led = ipw_register_toggle(led);
934
935 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
936 ipw_write_reg32(priv, IPW_EVENT_REG, led);
937
938 IPW_DEBUG_LED("Activity LED On\n");
939
940 priv->status |= STATUS_LED_ACT_ON;
941
942 cancel_delayed_work(&priv->led_act_off);
943 queue_delayed_work(priv->workqueue, &priv->led_act_off,
944 LD_TIME_ACT_ON);
945 } else {
946 /* Reschedule LED off for full time period */
947 cancel_delayed_work(&priv->led_act_off);
948 queue_delayed_work(priv->workqueue, &priv->led_act_off,
949 LD_TIME_ACT_ON);
950 }
951 }
952
953 #if 0
954 void ipw_led_activity_on(struct ipw_priv *priv)
955 {
956 unsigned long flags;
957 spin_lock_irqsave(&priv->lock, flags);
958 __ipw_led_activity_on(priv);
959 spin_unlock_irqrestore(&priv->lock, flags);
960 }
961 #endif /* 0 */
962
963 static void ipw_led_activity_off(struct ipw_priv *priv)
964 {
965 unsigned long flags;
966 u32 led;
967
968 if (priv->config & CFG_NO_LED)
969 return;
970
971 spin_lock_irqsave(&priv->lock, flags);
972
973 if (priv->status & STATUS_LED_ACT_ON) {
974 led = ipw_read_reg32(priv, IPW_EVENT_REG);
975 led &= priv->led_activity_off;
976
977 led = ipw_register_toggle(led);
978
979 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
980 ipw_write_reg32(priv, IPW_EVENT_REG, led);
981
982 IPW_DEBUG_LED("Activity LED Off\n");
983
984 priv->status &= ~STATUS_LED_ACT_ON;
985 }
986
987 spin_unlock_irqrestore(&priv->lock, flags);
988 }
989
990 static void ipw_bg_led_activity_off(struct work_struct *work)
991 {
992 struct ipw_priv *priv =
993 container_of(work, struct ipw_priv, led_act_off.work);
994 mutex_lock(&priv->mutex);
995 ipw_led_activity_off(priv);
996 mutex_unlock(&priv->mutex);
997 }
998
999 static void ipw_led_band_on(struct ipw_priv *priv)
1000 {
1001 unsigned long flags;
1002 u32 led;
1003
1004 /* Only nic type 1 supports mode LEDs */
1005 if (priv->config & CFG_NO_LED ||
1006 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1007 return;
1008
1009 spin_lock_irqsave(&priv->lock, flags);
1010
1011 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1012 if (priv->assoc_network->mode == IEEE_A) {
1013 led |= priv->led_ofdm_on;
1014 led &= priv->led_association_off;
1015 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1016 } else if (priv->assoc_network->mode == IEEE_G) {
1017 led |= priv->led_ofdm_on;
1018 led |= priv->led_association_on;
1019 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1020 } else {
1021 led &= priv->led_ofdm_off;
1022 led |= priv->led_association_on;
1023 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1024 }
1025
1026 led = ipw_register_toggle(led);
1027
1028 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1029 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1030
1031 spin_unlock_irqrestore(&priv->lock, flags);
1032 }
1033
1034 static void ipw_led_band_off(struct ipw_priv *priv)
1035 {
1036 unsigned long flags;
1037 u32 led;
1038
1039 /* Only nic type 1 supports mode LEDs */
1040 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1041 return;
1042
1043 spin_lock_irqsave(&priv->lock, flags);
1044
1045 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1046 led &= priv->led_ofdm_off;
1047 led &= priv->led_association_off;
1048
1049 led = ipw_register_toggle(led);
1050
1051 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1052 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1053
1054 spin_unlock_irqrestore(&priv->lock, flags);
1055 }
1056
1057 static void ipw_led_radio_on(struct ipw_priv *priv)
1058 {
1059 ipw_led_link_on(priv);
1060 }
1061
1062 static void ipw_led_radio_off(struct ipw_priv *priv)
1063 {
1064 ipw_led_activity_off(priv);
1065 ipw_led_link_off(priv);
1066 }
1067
1068 static void ipw_led_link_up(struct ipw_priv *priv)
1069 {
1070 /* Set the Link Led on for all nic types */
1071 ipw_led_link_on(priv);
1072 }
1073
1074 static void ipw_led_link_down(struct ipw_priv *priv)
1075 {
1076 ipw_led_activity_off(priv);
1077 ipw_led_link_off(priv);
1078
1079 if (priv->status & STATUS_RF_KILL_MASK)
1080 ipw_led_radio_off(priv);
1081 }
1082
1083 static void ipw_led_init(struct ipw_priv *priv)
1084 {
1085 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1086
1087 /* Set the default PINs for the link and activity leds */
1088 priv->led_activity_on = IPW_ACTIVITY_LED;
1089 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1090
1091 priv->led_association_on = IPW_ASSOCIATED_LED;
1092 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1093
1094 /* Set the default PINs for the OFDM leds */
1095 priv->led_ofdm_on = IPW_OFDM_LED;
1096 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1097
1098 switch (priv->nic_type) {
1099 case EEPROM_NIC_TYPE_1:
1100 /* In this NIC type, the LEDs are reversed.... */
1101 priv->led_activity_on = IPW_ASSOCIATED_LED;
1102 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1103 priv->led_association_on = IPW_ACTIVITY_LED;
1104 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1105
1106 if (!(priv->config & CFG_NO_LED))
1107 ipw_led_band_on(priv);
1108
1109 /* And we don't blink link LEDs for this nic, so
1110 * just return here */
1111 return;
1112
1113 case EEPROM_NIC_TYPE_3:
1114 case EEPROM_NIC_TYPE_2:
1115 case EEPROM_NIC_TYPE_4:
1116 case EEPROM_NIC_TYPE_0:
1117 break;
1118
1119 default:
1120 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1121 priv->nic_type);
1122 priv->nic_type = EEPROM_NIC_TYPE_0;
1123 break;
1124 }
1125
1126 if (!(priv->config & CFG_NO_LED)) {
1127 if (priv->status & STATUS_ASSOCIATED)
1128 ipw_led_link_on(priv);
1129 else
1130 ipw_led_link_off(priv);
1131 }
1132 }
1133
1134 static void ipw_led_shutdown(struct ipw_priv *priv)
1135 {
1136 ipw_led_activity_off(priv);
1137 ipw_led_link_off(priv);
1138 ipw_led_band_off(priv);
1139 cancel_delayed_work(&priv->led_link_on);
1140 cancel_delayed_work(&priv->led_link_off);
1141 cancel_delayed_work(&priv->led_act_off);
1142 }
1143
1144 /*
1145 * The following adds a new attribute to the sysfs representation
1146 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1147 * used for controling the debug level.
1148 *
1149 * See the level definitions in ipw for details.
1150 */
1151 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1152 {
1153 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1154 }
1155
1156 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1157 size_t count)
1158 {
1159 char *p = (char *)buf;
1160 u32 val;
1161
1162 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1163 p++;
1164 if (p[0] == 'x' || p[0] == 'X')
1165 p++;
1166 val = simple_strtoul(p, &p, 16);
1167 } else
1168 val = simple_strtoul(p, &p, 10);
1169 if (p == buf)
1170 printk(KERN_INFO DRV_NAME
1171 ": %s is not in hex or decimal form.\n", buf);
1172 else
1173 ipw_debug_level = val;
1174
1175 return strnlen(buf, count);
1176 }
1177
1178 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1179 show_debug_level, store_debug_level);
1180
1181 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1182 {
1183 /* length = 1st dword in log */
1184 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1185 }
1186
1187 static void ipw_capture_event_log(struct ipw_priv *priv,
1188 u32 log_len, struct ipw_event *log)
1189 {
1190 u32 base;
1191
1192 if (log_len) {
1193 base = ipw_read32(priv, IPW_EVENT_LOG);
1194 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1195 (u8 *) log, sizeof(*log) * log_len);
1196 }
1197 }
1198
1199 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1200 {
1201 struct ipw_fw_error *error;
1202 u32 log_len = ipw_get_event_log_len(priv);
1203 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1204 u32 elem_len = ipw_read_reg32(priv, base);
1205
1206 error = kmalloc(sizeof(*error) +
1207 sizeof(*error->elem) * elem_len +
1208 sizeof(*error->log) * log_len, GFP_ATOMIC);
1209 if (!error) {
1210 IPW_ERROR("Memory allocation for firmware error log "
1211 "failed.\n");
1212 return NULL;
1213 }
1214 error->jiffies = jiffies;
1215 error->status = priv->status;
1216 error->config = priv->config;
1217 error->elem_len = elem_len;
1218 error->log_len = log_len;
1219 error->elem = (struct ipw_error_elem *)error->payload;
1220 error->log = (struct ipw_event *)(error->elem + elem_len);
1221
1222 ipw_capture_event_log(priv, log_len, error->log);
1223
1224 if (elem_len)
1225 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1226 sizeof(*error->elem) * elem_len);
1227
1228 return error;
1229 }
1230
1231 static ssize_t show_event_log(struct device *d,
1232 struct device_attribute *attr, char *buf)
1233 {
1234 struct ipw_priv *priv = dev_get_drvdata(d);
1235 u32 log_len = ipw_get_event_log_len(priv);
1236 struct ipw_event log[log_len];
1237 u32 len = 0, i;
1238
1239 ipw_capture_event_log(priv, log_len, log);
1240
1241 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1242 for (i = 0; i < log_len; i++)
1243 len += snprintf(buf + len, PAGE_SIZE - len,
1244 "\n%08X%08X%08X",
1245 log[i].time, log[i].event, log[i].data);
1246 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1247 return len;
1248 }
1249
1250 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1251
1252 static ssize_t show_error(struct device *d,
1253 struct device_attribute *attr, char *buf)
1254 {
1255 struct ipw_priv *priv = dev_get_drvdata(d);
1256 u32 len = 0, i;
1257 if (!priv->error)
1258 return 0;
1259 len += snprintf(buf + len, PAGE_SIZE - len,
1260 "%08lX%08X%08X%08X",
1261 priv->error->jiffies,
1262 priv->error->status,
1263 priv->error->config, priv->error->elem_len);
1264 for (i = 0; i < priv->error->elem_len; i++)
1265 len += snprintf(buf + len, PAGE_SIZE - len,
1266 "\n%08X%08X%08X%08X%08X%08X%08X",
1267 priv->error->elem[i].time,
1268 priv->error->elem[i].desc,
1269 priv->error->elem[i].blink1,
1270 priv->error->elem[i].blink2,
1271 priv->error->elem[i].link1,
1272 priv->error->elem[i].link2,
1273 priv->error->elem[i].data);
1274
1275 len += snprintf(buf + len, PAGE_SIZE - len,
1276 "\n%08X", priv->error->log_len);
1277 for (i = 0; i < priv->error->log_len; i++)
1278 len += snprintf(buf + len, PAGE_SIZE - len,
1279 "\n%08X%08X%08X",
1280 priv->error->log[i].time,
1281 priv->error->log[i].event,
1282 priv->error->log[i].data);
1283 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1284 return len;
1285 }
1286
1287 static ssize_t clear_error(struct device *d,
1288 struct device_attribute *attr,
1289 const char *buf, size_t count)
1290 {
1291 struct ipw_priv *priv = dev_get_drvdata(d);
1292
1293 kfree(priv->error);
1294 priv->error = NULL;
1295 return count;
1296 }
1297
1298 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1299
1300 static ssize_t show_cmd_log(struct device *d,
1301 struct device_attribute *attr, char *buf)
1302 {
1303 struct ipw_priv *priv = dev_get_drvdata(d);
1304 u32 len = 0, i;
1305 if (!priv->cmdlog)
1306 return 0;
1307 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1308 (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1309 i = (i + 1) % priv->cmdlog_len) {
1310 len +=
1311 snprintf(buf + len, PAGE_SIZE - len,
1312 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1313 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1314 priv->cmdlog[i].cmd.len);
1315 len +=
1316 snprintk_buf(buf + len, PAGE_SIZE - len,
1317 (u8 *) priv->cmdlog[i].cmd.param,
1318 priv->cmdlog[i].cmd.len);
1319 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1320 }
1321 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1322 return len;
1323 }
1324
1325 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1326
1327 #ifdef CONFIG_IPW2200_PROMISCUOUS
1328 static void ipw_prom_free(struct ipw_priv *priv);
1329 static int ipw_prom_alloc(struct ipw_priv *priv);
1330 static ssize_t store_rtap_iface(struct device *d,
1331 struct device_attribute *attr,
1332 const char *buf, size_t count)
1333 {
1334 struct ipw_priv *priv = dev_get_drvdata(d);
1335 int rc = 0;
1336
1337 if (count < 1)
1338 return -EINVAL;
1339
1340 switch (buf[0]) {
1341 case '0':
1342 if (!rtap_iface)
1343 return count;
1344
1345 if (netif_running(priv->prom_net_dev)) {
1346 IPW_WARNING("Interface is up. Cannot unregister.\n");
1347 return count;
1348 }
1349
1350 ipw_prom_free(priv);
1351 rtap_iface = 0;
1352 break;
1353
1354 case '1':
1355 if (rtap_iface)
1356 return count;
1357
1358 rc = ipw_prom_alloc(priv);
1359 if (!rc)
1360 rtap_iface = 1;
1361 break;
1362
1363 default:
1364 return -EINVAL;
1365 }
1366
1367 if (rc) {
1368 IPW_ERROR("Failed to register promiscuous network "
1369 "device (error %d).\n", rc);
1370 }
1371
1372 return count;
1373 }
1374
1375 static ssize_t show_rtap_iface(struct device *d,
1376 struct device_attribute *attr,
1377 char *buf)
1378 {
1379 struct ipw_priv *priv = dev_get_drvdata(d);
1380 if (rtap_iface)
1381 return sprintf(buf, "%s", priv->prom_net_dev->name);
1382 else {
1383 buf[0] = '-';
1384 buf[1] = '1';
1385 buf[2] = '\0';
1386 return 3;
1387 }
1388 }
1389
1390 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1391 store_rtap_iface);
1392
1393 static ssize_t store_rtap_filter(struct device *d,
1394 struct device_attribute *attr,
1395 const char *buf, size_t count)
1396 {
1397 struct ipw_priv *priv = dev_get_drvdata(d);
1398
1399 if (!priv->prom_priv) {
1400 IPW_ERROR("Attempting to set filter without "
1401 "rtap_iface enabled.\n");
1402 return -EPERM;
1403 }
1404
1405 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1406
1407 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1408 BIT_ARG16(priv->prom_priv->filter));
1409
1410 return count;
1411 }
1412
1413 static ssize_t show_rtap_filter(struct device *d,
1414 struct device_attribute *attr,
1415 char *buf)
1416 {
1417 struct ipw_priv *priv = dev_get_drvdata(d);
1418 return sprintf(buf, "0x%04X",
1419 priv->prom_priv ? priv->prom_priv->filter : 0);
1420 }
1421
1422 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1423 store_rtap_filter);
1424 #endif
1425
1426 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1427 char *buf)
1428 {
1429 struct ipw_priv *priv = dev_get_drvdata(d);
1430 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1431 }
1432
1433 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1434 const char *buf, size_t count)
1435 {
1436 struct ipw_priv *priv = dev_get_drvdata(d);
1437 struct net_device *dev = priv->net_dev;
1438 char buffer[] = "00000000";
1439 unsigned long len =
1440 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1441 unsigned long val;
1442 char *p = buffer;
1443
1444 IPW_DEBUG_INFO("enter\n");
1445
1446 strncpy(buffer, buf, len);
1447 buffer[len] = 0;
1448
1449 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1450 p++;
1451 if (p[0] == 'x' || p[0] == 'X')
1452 p++;
1453 val = simple_strtoul(p, &p, 16);
1454 } else
1455 val = simple_strtoul(p, &p, 10);
1456 if (p == buffer) {
1457 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1458 } else {
1459 priv->ieee->scan_age = val;
1460 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1461 }
1462
1463 IPW_DEBUG_INFO("exit\n");
1464 return len;
1465 }
1466
1467 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1468
1469 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1470 char *buf)
1471 {
1472 struct ipw_priv *priv = dev_get_drvdata(d);
1473 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1474 }
1475
1476 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1477 const char *buf, size_t count)
1478 {
1479 struct ipw_priv *priv = dev_get_drvdata(d);
1480
1481 IPW_DEBUG_INFO("enter\n");
1482
1483 if (count == 0)
1484 return 0;
1485
1486 if (*buf == 0) {
1487 IPW_DEBUG_LED("Disabling LED control.\n");
1488 priv->config |= CFG_NO_LED;
1489 ipw_led_shutdown(priv);
1490 } else {
1491 IPW_DEBUG_LED("Enabling LED control.\n");
1492 priv->config &= ~CFG_NO_LED;
1493 ipw_led_init(priv);
1494 }
1495
1496 IPW_DEBUG_INFO("exit\n");
1497 return count;
1498 }
1499
1500 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1501
1502 static ssize_t show_status(struct device *d,
1503 struct device_attribute *attr, char *buf)
1504 {
1505 struct ipw_priv *p = d->driver_data;
1506 return sprintf(buf, "0x%08x\n", (int)p->status);
1507 }
1508
1509 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1510
1511 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1512 char *buf)
1513 {
1514 struct ipw_priv *p = d->driver_data;
1515 return sprintf(buf, "0x%08x\n", (int)p->config);
1516 }
1517
1518 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1519
1520 static ssize_t show_nic_type(struct device *d,
1521 struct device_attribute *attr, char *buf)
1522 {
1523 struct ipw_priv *priv = d->driver_data;
1524 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1525 }
1526
1527 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1528
1529 static ssize_t show_ucode_version(struct device *d,
1530 struct device_attribute *attr, char *buf)
1531 {
1532 u32 len = sizeof(u32), tmp = 0;
1533 struct ipw_priv *p = d->driver_data;
1534
1535 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1536 return 0;
1537
1538 return sprintf(buf, "0x%08x\n", tmp);
1539 }
1540
1541 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1542
1543 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1544 char *buf)
1545 {
1546 u32 len = sizeof(u32), tmp = 0;
1547 struct ipw_priv *p = d->driver_data;
1548
1549 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1550 return 0;
1551
1552 return sprintf(buf, "0x%08x\n", tmp);
1553 }
1554
1555 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1556
1557 /*
1558 * Add a device attribute to view/control the delay between eeprom
1559 * operations.
1560 */
1561 static ssize_t show_eeprom_delay(struct device *d,
1562 struct device_attribute *attr, char *buf)
1563 {
1564 int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1565 return sprintf(buf, "%i\n", n);
1566 }
1567 static ssize_t store_eeprom_delay(struct device *d,
1568 struct device_attribute *attr,
1569 const char *buf, size_t count)
1570 {
1571 struct ipw_priv *p = d->driver_data;
1572 sscanf(buf, "%i", &p->eeprom_delay);
1573 return strnlen(buf, count);
1574 }
1575
1576 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1577 show_eeprom_delay, store_eeprom_delay);
1578
1579 static ssize_t show_command_event_reg(struct device *d,
1580 struct device_attribute *attr, char *buf)
1581 {
1582 u32 reg = 0;
1583 struct ipw_priv *p = d->driver_data;
1584
1585 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1586 return sprintf(buf, "0x%08x\n", reg);
1587 }
1588 static ssize_t store_command_event_reg(struct device *d,
1589 struct device_attribute *attr,
1590 const char *buf, size_t count)
1591 {
1592 u32 reg;
1593 struct ipw_priv *p = d->driver_data;
1594
1595 sscanf(buf, "%x", &reg);
1596 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1597 return strnlen(buf, count);
1598 }
1599
1600 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1601 show_command_event_reg, store_command_event_reg);
1602
1603 static ssize_t show_mem_gpio_reg(struct device *d,
1604 struct device_attribute *attr, char *buf)
1605 {
1606 u32 reg = 0;
1607 struct ipw_priv *p = d->driver_data;
1608
1609 reg = ipw_read_reg32(p, 0x301100);
1610 return sprintf(buf, "0x%08x\n", reg);
1611 }
1612 static ssize_t store_mem_gpio_reg(struct device *d,
1613 struct device_attribute *attr,
1614 const char *buf, size_t count)
1615 {
1616 u32 reg;
1617 struct ipw_priv *p = d->driver_data;
1618
1619 sscanf(buf, "%x", &reg);
1620 ipw_write_reg32(p, 0x301100, reg);
1621 return strnlen(buf, count);
1622 }
1623
1624 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1625 show_mem_gpio_reg, store_mem_gpio_reg);
1626
1627 static ssize_t show_indirect_dword(struct device *d,
1628 struct device_attribute *attr, char *buf)
1629 {
1630 u32 reg = 0;
1631 struct ipw_priv *priv = d->driver_data;
1632
1633 if (priv->status & STATUS_INDIRECT_DWORD)
1634 reg = ipw_read_reg32(priv, priv->indirect_dword);
1635 else
1636 reg = 0;
1637
1638 return sprintf(buf, "0x%08x\n", reg);
1639 }
1640 static ssize_t store_indirect_dword(struct device *d,
1641 struct device_attribute *attr,
1642 const char *buf, size_t count)
1643 {
1644 struct ipw_priv *priv = d->driver_data;
1645
1646 sscanf(buf, "%x", &priv->indirect_dword);
1647 priv->status |= STATUS_INDIRECT_DWORD;
1648 return strnlen(buf, count);
1649 }
1650
1651 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1652 show_indirect_dword, store_indirect_dword);
1653
1654 static ssize_t show_indirect_byte(struct device *d,
1655 struct device_attribute *attr, char *buf)
1656 {
1657 u8 reg = 0;
1658 struct ipw_priv *priv = d->driver_data;
1659
1660 if (priv->status & STATUS_INDIRECT_BYTE)
1661 reg = ipw_read_reg8(priv, priv->indirect_byte);
1662 else
1663 reg = 0;
1664
1665 return sprintf(buf, "0x%02x\n", reg);
1666 }
1667 static ssize_t store_indirect_byte(struct device *d,
1668 struct device_attribute *attr,
1669 const char *buf, size_t count)
1670 {
1671 struct ipw_priv *priv = d->driver_data;
1672
1673 sscanf(buf, "%x", &priv->indirect_byte);
1674 priv->status |= STATUS_INDIRECT_BYTE;
1675 return strnlen(buf, count);
1676 }
1677
1678 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1679 show_indirect_byte, store_indirect_byte);
1680
1681 static ssize_t show_direct_dword(struct device *d,
1682 struct device_attribute *attr, char *buf)
1683 {
1684 u32 reg = 0;
1685 struct ipw_priv *priv = d->driver_data;
1686
1687 if (priv->status & STATUS_DIRECT_DWORD)
1688 reg = ipw_read32(priv, priv->direct_dword);
1689 else
1690 reg = 0;
1691
1692 return sprintf(buf, "0x%08x\n", reg);
1693 }
1694 static ssize_t store_direct_dword(struct device *d,
1695 struct device_attribute *attr,
1696 const char *buf, size_t count)
1697 {
1698 struct ipw_priv *priv = d->driver_data;
1699
1700 sscanf(buf, "%x", &priv->direct_dword);
1701 priv->status |= STATUS_DIRECT_DWORD;
1702 return strnlen(buf, count);
1703 }
1704
1705 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1706 show_direct_dword, store_direct_dword);
1707
1708 static int rf_kill_active(struct ipw_priv *priv)
1709 {
1710 if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1711 priv->status |= STATUS_RF_KILL_HW;
1712 else
1713 priv->status &= ~STATUS_RF_KILL_HW;
1714
1715 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1716 }
1717
1718 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1719 char *buf)
1720 {
1721 /* 0 - RF kill not enabled
1722 1 - SW based RF kill active (sysfs)
1723 2 - HW based RF kill active
1724 3 - Both HW and SW baed RF kill active */
1725 struct ipw_priv *priv = d->driver_data;
1726 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1727 (rf_kill_active(priv) ? 0x2 : 0x0);
1728 return sprintf(buf, "%i\n", val);
1729 }
1730
1731 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1732 {
1733 if ((disable_radio ? 1 : 0) ==
1734 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1735 return 0;
1736
1737 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1738 disable_radio ? "OFF" : "ON");
1739
1740 if (disable_radio) {
1741 priv->status |= STATUS_RF_KILL_SW;
1742
1743 if (priv->workqueue)
1744 cancel_delayed_work(&priv->request_scan);
1745 queue_work(priv->workqueue, &priv->down);
1746 } else {
1747 priv->status &= ~STATUS_RF_KILL_SW;
1748 if (rf_kill_active(priv)) {
1749 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1750 "disabled by HW switch\n");
1751 /* Make sure the RF_KILL check timer is running */
1752 cancel_delayed_work(&priv->rf_kill);
1753 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1754 2 * HZ);
1755 } else
1756 queue_work(priv->workqueue, &priv->up);
1757 }
1758
1759 return 1;
1760 }
1761
1762 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1763 const char *buf, size_t count)
1764 {
1765 struct ipw_priv *priv = d->driver_data;
1766
1767 ipw_radio_kill_sw(priv, buf[0] == '1');
1768
1769 return count;
1770 }
1771
1772 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1773
1774 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1775 char *buf)
1776 {
1777 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1778 int pos = 0, len = 0;
1779 if (priv->config & CFG_SPEED_SCAN) {
1780 while (priv->speed_scan[pos] != 0)
1781 len += sprintf(&buf[len], "%d ",
1782 priv->speed_scan[pos++]);
1783 return len + sprintf(&buf[len], "\n");
1784 }
1785
1786 return sprintf(buf, "0\n");
1787 }
1788
1789 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1790 const char *buf, size_t count)
1791 {
1792 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1793 int channel, pos = 0;
1794 const char *p = buf;
1795
1796 /* list of space separated channels to scan, optionally ending with 0 */
1797 while ((channel = simple_strtol(p, NULL, 0))) {
1798 if (pos == MAX_SPEED_SCAN - 1) {
1799 priv->speed_scan[pos] = 0;
1800 break;
1801 }
1802
1803 if (ieee80211_is_valid_channel(priv->ieee, channel))
1804 priv->speed_scan[pos++] = channel;
1805 else
1806 IPW_WARNING("Skipping invalid channel request: %d\n",
1807 channel);
1808 p = strchr(p, ' ');
1809 if (!p)
1810 break;
1811 while (*p == ' ' || *p == '\t')
1812 p++;
1813 }
1814
1815 if (pos == 0)
1816 priv->config &= ~CFG_SPEED_SCAN;
1817 else {
1818 priv->speed_scan_pos = 0;
1819 priv->config |= CFG_SPEED_SCAN;
1820 }
1821
1822 return count;
1823 }
1824
1825 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1826 store_speed_scan);
1827
1828 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1829 char *buf)
1830 {
1831 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1832 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1833 }
1834
1835 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1836 const char *buf, size_t count)
1837 {
1838 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1839 if (buf[0] == '1')
1840 priv->config |= CFG_NET_STATS;
1841 else
1842 priv->config &= ~CFG_NET_STATS;
1843
1844 return count;
1845 }
1846
1847 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1848 show_net_stats, store_net_stats);
1849
1850 static void notify_wx_assoc_event(struct ipw_priv *priv)
1851 {
1852 union iwreq_data wrqu;
1853 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1854 if (priv->status & STATUS_ASSOCIATED)
1855 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1856 else
1857 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1858 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1859 }
1860
1861 static void ipw_irq_tasklet(struct ipw_priv *priv)
1862 {
1863 u32 inta, inta_mask, handled = 0;
1864 unsigned long flags;
1865 int rc = 0;
1866
1867 spin_lock_irqsave(&priv->irq_lock, flags);
1868
1869 inta = ipw_read32(priv, IPW_INTA_RW);
1870 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1871 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1872
1873 /* Add any cached INTA values that need to be handled */
1874 inta |= priv->isr_inta;
1875
1876 spin_unlock_irqrestore(&priv->irq_lock, flags);
1877
1878 spin_lock_irqsave(&priv->lock, flags);
1879
1880 /* handle all the justifications for the interrupt */
1881 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1882 ipw_rx(priv);
1883 handled |= IPW_INTA_BIT_RX_TRANSFER;
1884 }
1885
1886 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1887 IPW_DEBUG_HC("Command completed.\n");
1888 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1889 priv->status &= ~STATUS_HCMD_ACTIVE;
1890 wake_up_interruptible(&priv->wait_command_queue);
1891 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1892 }
1893
1894 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1895 IPW_DEBUG_TX("TX_QUEUE_1\n");
1896 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1897 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1898 }
1899
1900 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1901 IPW_DEBUG_TX("TX_QUEUE_2\n");
1902 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1903 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1904 }
1905
1906 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1907 IPW_DEBUG_TX("TX_QUEUE_3\n");
1908 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1909 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1910 }
1911
1912 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1913 IPW_DEBUG_TX("TX_QUEUE_4\n");
1914 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1915 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1916 }
1917
1918 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1919 IPW_WARNING("STATUS_CHANGE\n");
1920 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1921 }
1922
1923 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1924 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1925 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1926 }
1927
1928 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1929 IPW_WARNING("HOST_CMD_DONE\n");
1930 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1931 }
1932
1933 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1934 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1935 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1936 }
1937
1938 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1939 IPW_WARNING("PHY_OFF_DONE\n");
1940 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
1941 }
1942
1943 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
1944 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
1945 priv->status |= STATUS_RF_KILL_HW;
1946 wake_up_interruptible(&priv->wait_command_queue);
1947 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1948 cancel_delayed_work(&priv->request_scan);
1949 schedule_work(&priv->link_down);
1950 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
1951 handled |= IPW_INTA_BIT_RF_KILL_DONE;
1952 }
1953
1954 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
1955 IPW_WARNING("Firmware error detected. Restarting.\n");
1956 if (priv->error) {
1957 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
1958 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
1959 struct ipw_fw_error *error =
1960 ipw_alloc_error_log(priv);
1961 ipw_dump_error_log(priv, error);
1962 kfree(error);
1963 }
1964 } else {
1965 priv->error = ipw_alloc_error_log(priv);
1966 if (priv->error)
1967 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
1968 else
1969 IPW_DEBUG_FW("Error allocating sysfs 'error' "
1970 "log.\n");
1971 if (ipw_debug_level & IPW_DL_FW_ERRORS)
1972 ipw_dump_error_log(priv, priv->error);
1973 }
1974
1975 /* XXX: If hardware encryption is for WPA/WPA2,
1976 * we have to notify the supplicant. */
1977 if (priv->ieee->sec.encrypt) {
1978 priv->status &= ~STATUS_ASSOCIATED;
1979 notify_wx_assoc_event(priv);
1980 }
1981
1982 /* Keep the restart process from trying to send host
1983 * commands by clearing the INIT status bit */
1984 priv->status &= ~STATUS_INIT;
1985
1986 /* Cancel currently queued command. */
1987 priv->status &= ~STATUS_HCMD_ACTIVE;
1988 wake_up_interruptible(&priv->wait_command_queue);
1989
1990 queue_work(priv->workqueue, &priv->adapter_restart);
1991 handled |= IPW_INTA_BIT_FATAL_ERROR;
1992 }
1993
1994 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
1995 IPW_ERROR("Parity error\n");
1996 handled |= IPW_INTA_BIT_PARITY_ERROR;
1997 }
1998
1999 if (handled != inta) {
2000 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2001 }
2002
2003 spin_unlock_irqrestore(&priv->lock, flags);
2004
2005 /* enable all interrupts */
2006 ipw_enable_interrupts(priv);
2007 }
2008
2009 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2010 static char *get_cmd_string(u8 cmd)
2011 {
2012 switch (cmd) {
2013 IPW_CMD(HOST_COMPLETE);
2014 IPW_CMD(POWER_DOWN);
2015 IPW_CMD(SYSTEM_CONFIG);
2016 IPW_CMD(MULTICAST_ADDRESS);
2017 IPW_CMD(SSID);
2018 IPW_CMD(ADAPTER_ADDRESS);
2019 IPW_CMD(PORT_TYPE);
2020 IPW_CMD(RTS_THRESHOLD);
2021 IPW_CMD(FRAG_THRESHOLD);
2022 IPW_CMD(POWER_MODE);
2023 IPW_CMD(WEP_KEY);
2024 IPW_CMD(TGI_TX_KEY);
2025 IPW_CMD(SCAN_REQUEST);
2026 IPW_CMD(SCAN_REQUEST_EXT);
2027 IPW_CMD(ASSOCIATE);
2028 IPW_CMD(SUPPORTED_RATES);
2029 IPW_CMD(SCAN_ABORT);
2030 IPW_CMD(TX_FLUSH);
2031 IPW_CMD(QOS_PARAMETERS);
2032 IPW_CMD(DINO_CONFIG);
2033 IPW_CMD(RSN_CAPABILITIES);
2034 IPW_CMD(RX_KEY);
2035 IPW_CMD(CARD_DISABLE);
2036 IPW_CMD(SEED_NUMBER);
2037 IPW_CMD(TX_POWER);
2038 IPW_CMD(COUNTRY_INFO);
2039 IPW_CMD(AIRONET_INFO);
2040 IPW_CMD(AP_TX_POWER);
2041 IPW_CMD(CCKM_INFO);
2042 IPW_CMD(CCX_VER_INFO);
2043 IPW_CMD(SET_CALIBRATION);
2044 IPW_CMD(SENSITIVITY_CALIB);
2045 IPW_CMD(RETRY_LIMIT);
2046 IPW_CMD(IPW_PRE_POWER_DOWN);
2047 IPW_CMD(VAP_BEACON_TEMPLATE);
2048 IPW_CMD(VAP_DTIM_PERIOD);
2049 IPW_CMD(EXT_SUPPORTED_RATES);
2050 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2051 IPW_CMD(VAP_QUIET_INTERVALS);
2052 IPW_CMD(VAP_CHANNEL_SWITCH);
2053 IPW_CMD(VAP_MANDATORY_CHANNELS);
2054 IPW_CMD(VAP_CELL_PWR_LIMIT);
2055 IPW_CMD(VAP_CF_PARAM_SET);
2056 IPW_CMD(VAP_SET_BEACONING_STATE);
2057 IPW_CMD(MEASUREMENT);
2058 IPW_CMD(POWER_CAPABILITY);
2059 IPW_CMD(SUPPORTED_CHANNELS);
2060 IPW_CMD(TPC_REPORT);
2061 IPW_CMD(WME_INFO);
2062 IPW_CMD(PRODUCTION_COMMAND);
2063 default:
2064 return "UNKNOWN";
2065 }
2066 }
2067
2068 #define HOST_COMPLETE_TIMEOUT HZ
2069
2070 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2071 {
2072 int rc = 0;
2073 unsigned long flags;
2074
2075 spin_lock_irqsave(&priv->lock, flags);
2076 if (priv->status & STATUS_HCMD_ACTIVE) {
2077 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2078 get_cmd_string(cmd->cmd));
2079 spin_unlock_irqrestore(&priv->lock, flags);
2080 return -EAGAIN;
2081 }
2082
2083 priv->status |= STATUS_HCMD_ACTIVE;
2084
2085 if (priv->cmdlog) {
2086 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2087 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2088 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2089 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2090 cmd->len);
2091 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2092 }
2093
2094 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2095 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2096 priv->status);
2097
2098 #ifndef DEBUG_CMD_WEP_KEY
2099 if (cmd->cmd == IPW_CMD_WEP_KEY)
2100 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2101 else
2102 #endif
2103 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2104
2105 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2106 if (rc) {
2107 priv->status &= ~STATUS_HCMD_ACTIVE;
2108 IPW_ERROR("Failed to send %s: Reason %d\n",
2109 get_cmd_string(cmd->cmd), rc);
2110 spin_unlock_irqrestore(&priv->lock, flags);
2111 goto exit;
2112 }
2113 spin_unlock_irqrestore(&priv->lock, flags);
2114
2115 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2116 !(priv->
2117 status & STATUS_HCMD_ACTIVE),
2118 HOST_COMPLETE_TIMEOUT);
2119 if (rc == 0) {
2120 spin_lock_irqsave(&priv->lock, flags);
2121 if (priv->status & STATUS_HCMD_ACTIVE) {
2122 IPW_ERROR("Failed to send %s: Command timed out.\n",
2123 get_cmd_string(cmd->cmd));
2124 priv->status &= ~STATUS_HCMD_ACTIVE;
2125 spin_unlock_irqrestore(&priv->lock, flags);
2126 rc = -EIO;
2127 goto exit;
2128 }
2129 spin_unlock_irqrestore(&priv->lock, flags);
2130 } else
2131 rc = 0;
2132
2133 if (priv->status & STATUS_RF_KILL_HW) {
2134 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2135 get_cmd_string(cmd->cmd));
2136 rc = -EIO;
2137 goto exit;
2138 }
2139
2140 exit:
2141 if (priv->cmdlog) {
2142 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2143 priv->cmdlog_pos %= priv->cmdlog_len;
2144 }
2145 return rc;
2146 }
2147
2148 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2149 {
2150 struct host_cmd cmd = {
2151 .cmd = command,
2152 };
2153
2154 return __ipw_send_cmd(priv, &cmd);
2155 }
2156
2157 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2158 void *data)
2159 {
2160 struct host_cmd cmd = {
2161 .cmd = command,
2162 .len = len,
2163 .param = data,
2164 };
2165
2166 return __ipw_send_cmd(priv, &cmd);
2167 }
2168
2169 static int ipw_send_host_complete(struct ipw_priv *priv)
2170 {
2171 if (!priv) {
2172 IPW_ERROR("Invalid args\n");
2173 return -1;
2174 }
2175
2176 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2177 }
2178
2179 static int ipw_send_system_config(struct ipw_priv *priv)
2180 {
2181 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2182 sizeof(priv->sys_config),
2183 &priv->sys_config);
2184 }
2185
2186 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2187 {
2188 if (!priv || !ssid) {
2189 IPW_ERROR("Invalid args\n");
2190 return -1;
2191 }
2192
2193 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2194 ssid);
2195 }
2196
2197 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2198 {
2199 if (!priv || !mac) {
2200 IPW_ERROR("Invalid args\n");
2201 return -1;
2202 }
2203
2204 IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n",
2205 priv->net_dev->name, MAC_ARG(mac));
2206
2207 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2208 }
2209
2210 /*
2211 * NOTE: This must be executed from our workqueue as it results in udelay
2212 * being called which may corrupt the keyboard if executed on default
2213 * workqueue
2214 */
2215 static void ipw_adapter_restart(void *adapter)
2216 {
2217 struct ipw_priv *priv = adapter;
2218
2219 if (priv->status & STATUS_RF_KILL_MASK)
2220 return;
2221
2222 ipw_down(priv);
2223
2224 if (priv->assoc_network &&
2225 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2226 ipw_remove_current_network(priv);
2227
2228 if (ipw_up(priv)) {
2229 IPW_ERROR("Failed to up device\n");
2230 return;
2231 }
2232 }
2233
2234 static void ipw_bg_adapter_restart(struct work_struct *work)
2235 {
2236 struct ipw_priv *priv =
2237 container_of(work, struct ipw_priv, adapter_restart);
2238 mutex_lock(&priv->mutex);
2239 ipw_adapter_restart(priv);
2240 mutex_unlock(&priv->mutex);
2241 }
2242
2243 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2244
2245 static void ipw_scan_check(void *data)
2246 {
2247 struct ipw_priv *priv = data;
2248 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2249 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2250 "adapter after (%dms).\n",
2251 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2252 queue_work(priv->workqueue, &priv->adapter_restart);
2253 }
2254 }
2255
2256 static void ipw_bg_scan_check(struct work_struct *work)
2257 {
2258 struct ipw_priv *priv =
2259 container_of(work, struct ipw_priv, scan_check.work);
2260 mutex_lock(&priv->mutex);
2261 ipw_scan_check(priv);
2262 mutex_unlock(&priv->mutex);
2263 }
2264
2265 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2266 struct ipw_scan_request_ext *request)
2267 {
2268 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2269 sizeof(*request), request);
2270 }
2271
2272 static int ipw_send_scan_abort(struct ipw_priv *priv)
2273 {
2274 if (!priv) {
2275 IPW_ERROR("Invalid args\n");
2276 return -1;
2277 }
2278
2279 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2280 }
2281
2282 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2283 {
2284 struct ipw_sensitivity_calib calib = {
2285 .beacon_rssi_raw = cpu_to_le16(sens),
2286 };
2287
2288 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2289 &calib);
2290 }
2291
2292 static int ipw_send_associate(struct ipw_priv *priv,
2293 struct ipw_associate *associate)
2294 {
2295 struct ipw_associate tmp_associate;
2296
2297 if (!priv || !associate) {
2298 IPW_ERROR("Invalid args\n");
2299 return -1;
2300 }
2301
2302 memcpy(&tmp_associate, associate, sizeof(*associate));
2303 tmp_associate.policy_support =
2304 cpu_to_le16(tmp_associate.policy_support);
2305 tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
2306 tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
2307 tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
2308 tmp_associate.listen_interval =
2309 cpu_to_le16(tmp_associate.listen_interval);
2310 tmp_associate.beacon_interval =
2311 cpu_to_le16(tmp_associate.beacon_interval);
2312 tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);
2313
2314 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(tmp_associate),
2315 &tmp_associate);
2316 }
2317
2318 static int ipw_send_supported_rates(struct ipw_priv *priv,
2319 struct ipw_supported_rates *rates)
2320 {
2321 if (!priv || !rates) {
2322 IPW_ERROR("Invalid args\n");
2323 return -1;
2324 }
2325
2326 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2327 rates);
2328 }
2329
2330 static int ipw_set_random_seed(struct ipw_priv *priv)
2331 {
2332 u32 val;
2333
2334 if (!priv) {
2335 IPW_ERROR("Invalid args\n");
2336 return -1;
2337 }
2338
2339 get_random_bytes(&val, sizeof(val));
2340
2341 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2342 }
2343
2344 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2345 {
2346 if (!priv) {
2347 IPW_ERROR("Invalid args\n");
2348 return -1;
2349 }
2350
2351 phy_off = cpu_to_le32(phy_off);
2352 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(phy_off),
2353 &phy_off);
2354 }
2355
2356 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2357 {
2358 if (!priv || !power) {
2359 IPW_ERROR("Invalid args\n");
2360 return -1;
2361 }
2362
2363 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2364 }
2365
2366 static int ipw_set_tx_power(struct ipw_priv *priv)
2367 {
2368 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2369 struct ipw_tx_power tx_power;
2370 s8 max_power;
2371 int i;
2372
2373 memset(&tx_power, 0, sizeof(tx_power));
2374
2375 /* configure device for 'G' band */
2376 tx_power.ieee_mode = IPW_G_MODE;
2377 tx_power.num_channels = geo->bg_channels;
2378 for (i = 0; i < geo->bg_channels; i++) {
2379 max_power = geo->bg[i].max_power;
2380 tx_power.channels_tx_power[i].channel_number =
2381 geo->bg[i].channel;
2382 tx_power.channels_tx_power[i].tx_power = max_power ?
2383 min(max_power, priv->tx_power) : priv->tx_power;
2384 }
2385 if (ipw_send_tx_power(priv, &tx_power))
2386 return -EIO;
2387
2388 /* configure device to also handle 'B' band */
2389 tx_power.ieee_mode = IPW_B_MODE;
2390 if (ipw_send_tx_power(priv, &tx_power))
2391 return -EIO;
2392
2393 /* configure device to also handle 'A' band */
2394 if (priv->ieee->abg_true) {
2395 tx_power.ieee_mode = IPW_A_MODE;
2396 tx_power.num_channels = geo->a_channels;
2397 for (i = 0; i < tx_power.num_channels; i++) {
2398 max_power = geo->a[i].max_power;
2399 tx_power.channels_tx_power[i].channel_number =
2400 geo->a[i].channel;
2401 tx_power.channels_tx_power[i].tx_power = max_power ?
2402 min(max_power, priv->tx_power) : priv->tx_power;
2403 }
2404 if (ipw_send_tx_power(priv, &tx_power))
2405 return -EIO;
2406 }
2407 return 0;
2408 }
2409
2410 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2411 {
2412 struct ipw_rts_threshold rts_threshold = {
2413 .rts_threshold = cpu_to_le16(rts),
2414 };
2415
2416 if (!priv) {
2417 IPW_ERROR("Invalid args\n");
2418 return -1;
2419 }
2420
2421 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2422 sizeof(rts_threshold), &rts_threshold);
2423 }
2424
2425 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2426 {
2427 struct ipw_frag_threshold frag_threshold = {
2428 .frag_threshold = cpu_to_le16(frag),
2429 };
2430
2431 if (!priv) {
2432 IPW_ERROR("Invalid args\n");
2433 return -1;
2434 }
2435
2436 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2437 sizeof(frag_threshold), &frag_threshold);
2438 }
2439
2440 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2441 {
2442 u32 param;
2443
2444 if (!priv) {
2445 IPW_ERROR("Invalid args\n");
2446 return -1;
2447 }
2448
2449 /* If on battery, set to 3, if AC set to CAM, else user
2450 * level */
2451 switch (mode) {
2452 case IPW_POWER_BATTERY:
2453 param = IPW_POWER_INDEX_3;
2454 break;
2455 case IPW_POWER_AC:
2456 param = IPW_POWER_MODE_CAM;
2457 break;
2458 default:
2459 param = mode;
2460 break;
2461 }
2462
2463 param = cpu_to_le32(mode);
2464 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2465 &param);
2466 }
2467
2468 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2469 {
2470 struct ipw_retry_limit retry_limit = {
2471 .short_retry_limit = slimit,
2472 .long_retry_limit = llimit
2473 };
2474
2475 if (!priv) {
2476 IPW_ERROR("Invalid args\n");
2477 return -1;
2478 }
2479
2480 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2481 &retry_limit);
2482 }
2483
2484 /*
2485 * The IPW device contains a Microwire compatible EEPROM that stores
2486 * various data like the MAC address. Usually the firmware has exclusive
2487 * access to the eeprom, but during device initialization (before the
2488 * device driver has sent the HostComplete command to the firmware) the
2489 * device driver has read access to the EEPROM by way of indirect addressing
2490 * through a couple of memory mapped registers.
2491 *
2492 * The following is a simplified implementation for pulling data out of the
2493 * the eeprom, along with some helper functions to find information in
2494 * the per device private data's copy of the eeprom.
2495 *
2496 * NOTE: To better understand how these functions work (i.e what is a chip
2497 * select and why do have to keep driving the eeprom clock?), read
2498 * just about any data sheet for a Microwire compatible EEPROM.
2499 */
2500
2501 /* write a 32 bit value into the indirect accessor register */
2502 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2503 {
2504 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2505
2506 /* the eeprom requires some time to complete the operation */
2507 udelay(p->eeprom_delay);
2508
2509 return;
2510 }
2511
2512 /* perform a chip select operation */
2513 static void eeprom_cs(struct ipw_priv *priv)
2514 {
2515 eeprom_write_reg(priv, 0);
2516 eeprom_write_reg(priv, EEPROM_BIT_CS);
2517 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2518 eeprom_write_reg(priv, EEPROM_BIT_CS);
2519 }
2520
2521 /* perform a chip select operation */
2522 static void eeprom_disable_cs(struct ipw_priv *priv)
2523 {
2524 eeprom_write_reg(priv, EEPROM_BIT_CS);
2525 eeprom_write_reg(priv, 0);
2526 eeprom_write_reg(priv, EEPROM_BIT_SK);
2527 }
2528
2529 /* push a single bit down to the eeprom */
2530 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2531 {
2532 int d = (bit ? EEPROM_BIT_DI : 0);
2533 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2534 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2535 }
2536
2537 /* push an opcode followed by an address down to the eeprom */
2538 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2539 {
2540 int i;
2541
2542 eeprom_cs(priv);
2543 eeprom_write_bit(priv, 1);
2544 eeprom_write_bit(priv, op & 2);
2545 eeprom_write_bit(priv, op & 1);
2546 for (i = 7; i >= 0; i--) {
2547 eeprom_write_bit(priv, addr & (1 << i));
2548 }
2549 }
2550
2551 /* pull 16 bits off the eeprom, one bit at a time */
2552 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2553 {
2554 int i;
2555 u16 r = 0;
2556
2557 /* Send READ Opcode */
2558 eeprom_op(priv, EEPROM_CMD_READ, addr);
2559
2560 /* Send dummy bit */
2561 eeprom_write_reg(priv, EEPROM_BIT_CS);
2562
2563 /* Read the byte off the eeprom one bit at a time */
2564 for (i = 0; i < 16; i++) {
2565 u32 data = 0;
2566 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2567 eeprom_write_reg(priv, EEPROM_BIT_CS);
2568 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2569 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2570 }
2571
2572 /* Send another dummy bit */
2573 eeprom_write_reg(priv, 0);
2574 eeprom_disable_cs(priv);
2575
2576 return r;
2577 }
2578
2579 /* helper function for pulling the mac address out of the private */
2580 /* data's copy of the eeprom data */
2581 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2582 {
2583 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2584 }
2585
2586 /*
2587 * Either the device driver (i.e. the host) or the firmware can
2588 * load eeprom data into the designated region in SRAM. If neither
2589 * happens then the FW will shutdown with a fatal error.
2590 *
2591 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2592 * bit needs region of shared SRAM needs to be non-zero.
2593 */
2594 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2595 {
2596 int i;
2597 u16 *eeprom = (u16 *) priv->eeprom;
2598
2599 IPW_DEBUG_TRACE(">>\n");
2600
2601 /* read entire contents of eeprom into private buffer */
2602 for (i = 0; i < 128; i++)
2603 eeprom[i] = le16_to_cpu(eeprom_read_u16(priv, (u8) i));
2604
2605 /*
2606 If the data looks correct, then copy it to our private
2607 copy. Otherwise let the firmware know to perform the operation
2608 on its own.
2609 */
2610 if (priv->eeprom[EEPROM_VERSION] != 0) {
2611 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2612
2613 /* write the eeprom data to sram */
2614 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2615 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2616
2617 /* Do not load eeprom data on fatal error or suspend */
2618 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2619 } else {
2620 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2621
2622 /* Load eeprom data on fatal error or suspend */
2623 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2624 }
2625
2626 IPW_DEBUG_TRACE("<<\n");
2627 }
2628
2629 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2630 {
2631 count >>= 2;
2632 if (!count)
2633 return;
2634 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2635 while (count--)
2636 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2637 }
2638
2639 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2640 {
2641 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2642 CB_NUMBER_OF_ELEMENTS_SMALL *
2643 sizeof(struct command_block));
2644 }
2645
2646 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2647 { /* start dma engine but no transfers yet */
2648
2649 IPW_DEBUG_FW(">> : \n");
2650
2651 /* Start the dma */
2652 ipw_fw_dma_reset_command_blocks(priv);
2653
2654 /* Write CB base address */
2655 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2656
2657 IPW_DEBUG_FW("<< : \n");
2658 return 0;
2659 }
2660
2661 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2662 {
2663 u32 control = 0;
2664
2665 IPW_DEBUG_FW(">> :\n");
2666
2667 /* set the Stop and Abort bit */
2668 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2669 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2670 priv->sram_desc.last_cb_index = 0;
2671
2672 IPW_DEBUG_FW("<< \n");
2673 }
2674
2675 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2676 struct command_block *cb)
2677 {
2678 u32 address =
2679 IPW_SHARED_SRAM_DMA_CONTROL +
2680 (sizeof(struct command_block) * index);
2681 IPW_DEBUG_FW(">> :\n");
2682
2683 ipw_write_indirect(priv, address, (u8 *) cb,
2684 (int)sizeof(struct command_block));
2685
2686 IPW_DEBUG_FW("<< :\n");
2687 return 0;
2688
2689 }
2690
2691 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2692 {
2693 u32 control = 0;
2694 u32 index = 0;
2695
2696 IPW_DEBUG_FW(">> :\n");
2697
2698 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2699 ipw_fw_dma_write_command_block(priv, index,
2700 &priv->sram_desc.cb_list[index]);
2701
2702 /* Enable the DMA in the CSR register */
2703 ipw_clear_bit(priv, IPW_RESET_REG,
2704 IPW_RESET_REG_MASTER_DISABLED |
2705 IPW_RESET_REG_STOP_MASTER);
2706
2707 /* Set the Start bit. */
2708 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2709 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2710
2711 IPW_DEBUG_FW("<< :\n");
2712 return 0;
2713 }
2714
2715 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2716 {
2717 u32 address;
2718 u32 register_value = 0;
2719 u32 cb_fields_address = 0;
2720
2721 IPW_DEBUG_FW(">> :\n");
2722 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2723 IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2724
2725 /* Read the DMA Controlor register */
2726 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2727 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2728
2729 /* Print the CB values */
2730 cb_fields_address = address;
2731 register_value = ipw_read_reg32(priv, cb_fields_address);
2732 IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2733
2734 cb_fields_address += sizeof(u32);
2735 register_value = ipw_read_reg32(priv, cb_fields_address);
2736 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2737
2738 cb_fields_address += sizeof(u32);
2739 register_value = ipw_read_reg32(priv, cb_fields_address);
2740 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2741 register_value);
2742
2743 cb_fields_address += sizeof(u32);
2744 register_value = ipw_read_reg32(priv, cb_fields_address);
2745 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2746
2747 IPW_DEBUG_FW(">> :\n");
2748 }
2749
2750 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2751 {
2752 u32 current_cb_address = 0;
2753 u32 current_cb_index = 0;
2754
2755 IPW_DEBUG_FW("<< :\n");
2756 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2757
2758 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2759 sizeof(struct command_block);
2760
2761 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2762 current_cb_index, current_cb_address);
2763
2764 IPW_DEBUG_FW(">> :\n");
2765 return current_cb_index;
2766
2767 }
2768
2769 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2770 u32 src_address,
2771 u32 dest_address,
2772 u32 length,
2773 int interrupt_enabled, int is_last)
2774 {
2775
2776 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2777 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2778 CB_DEST_SIZE_LONG;
2779 struct command_block *cb;
2780 u32 last_cb_element = 0;
2781
2782 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2783 src_address, dest_address, length);
2784
2785 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2786 return -1;
2787
2788 last_cb_element = priv->sram_desc.last_cb_index;
2789 cb = &priv->sram_desc.cb_list[last_cb_element];
2790 priv->sram_desc.last_cb_index++;
2791
2792 /* Calculate the new CB control word */
2793 if (interrupt_enabled)
2794 control |= CB_INT_ENABLED;
2795
2796 if (is_last)
2797 control |= CB_LAST_VALID;
2798
2799 control |= length;
2800
2801 /* Calculate the CB Element's checksum value */
2802 cb->status = control ^ src_address ^ dest_address;
2803
2804 /* Copy the Source and Destination addresses */
2805 cb->dest_addr = dest_address;
2806 cb->source_addr = src_address;
2807
2808 /* Copy the Control Word last */
2809 cb->control = control;
2810
2811 return 0;
2812 }
2813
2814 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2815 u32 src_phys, u32 dest_address, u32 length)
2816 {
2817 u32 bytes_left = length;
2818 u32 src_offset = 0;
2819 u32 dest_offset = 0;
2820 int status = 0;
2821 IPW_DEBUG_FW(">> \n");
2822 IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2823 src_phys, dest_address, length);
2824 while (bytes_left > CB_MAX_LENGTH) {
2825 status = ipw_fw_dma_add_command_block(priv,
2826 src_phys + src_offset,
2827 dest_address +
2828 dest_offset,
2829 CB_MAX_LENGTH, 0, 0);
2830 if (status) {
2831 IPW_DEBUG_FW_INFO(": Failed\n");
2832 return -1;
2833 } else
2834 IPW_DEBUG_FW_INFO(": Added new cb\n");
2835
2836 src_offset += CB_MAX_LENGTH;
2837 dest_offset += CB_MAX_LENGTH;
2838 bytes_left -= CB_MAX_LENGTH;
2839 }
2840
2841 /* add the buffer tail */
2842 if (bytes_left > 0) {
2843 status =
2844 ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2845 dest_address + dest_offset,
2846 bytes_left, 0, 0);
2847 if (status) {
2848 IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2849 return -1;
2850 } else
2851 IPW_DEBUG_FW_INFO
2852 (": Adding new cb - the buffer tail\n");
2853 }
2854
2855 IPW_DEBUG_FW("<< \n");
2856 return 0;
2857 }
2858
2859 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2860 {
2861 u32 current_index = 0, previous_index;
2862 u32 watchdog = 0;
2863
2864 IPW_DEBUG_FW(">> : \n");
2865
2866 current_index = ipw_fw_dma_command_block_index(priv);
2867 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2868 (int)priv->sram_desc.last_cb_index);
2869
2870 while (current_index < priv->sram_desc.last_cb_index) {
2871 udelay(50);
2872 previous_index = current_index;
2873 current_index = ipw_fw_dma_command_block_index(priv);
2874
2875 if (previous_index < current_index) {
2876 watchdog = 0;
2877 continue;
2878 }
2879 if (++watchdog > 400) {
2880 IPW_DEBUG_FW_INFO("Timeout\n");
2881 ipw_fw_dma_dump_command_block(priv);
2882 ipw_fw_dma_abort(priv);
2883 return -1;
2884 }
2885 }
2886
2887 ipw_fw_dma_abort(priv);
2888
2889 /*Disable the DMA in the CSR register */
2890 ipw_set_bit(priv, IPW_RESET_REG,
2891 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2892
2893 IPW_DEBUG_FW("<< dmaWaitSync \n");
2894 return 0;
2895 }
2896
2897 static void ipw_remove_current_network(struct ipw_priv *priv)
2898 {
2899 struct list_head *element, *safe;
2900 struct ieee80211_network *network = NULL;
2901 unsigned long flags;
2902
2903 spin_lock_irqsave(&priv->ieee->lock, flags);
2904 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2905 network = list_entry(element, struct ieee80211_network, list);
2906 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2907 list_del(element);
2908 list_add_tail(&network->list,
2909 &priv->ieee->network_free_list);
2910 }
2911 }
2912 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2913 }
2914
2915 /**
2916 * Check that card is still alive.
2917 * Reads debug register from domain0.
2918 * If card is present, pre-defined value should
2919 * be found there.
2920 *
2921 * @param priv
2922 * @return 1 if card is present, 0 otherwise
2923 */
2924 static inline int ipw_alive(struct ipw_priv *priv)
2925 {
2926 return ipw_read32(priv, 0x90) == 0xd55555d5;
2927 }
2928
2929 /* timeout in msec, attempted in 10-msec quanta */
2930 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2931 int timeout)
2932 {
2933 int i = 0;
2934
2935 do {
2936 if ((ipw_read32(priv, addr) & mask) == mask)
2937 return i;
2938 mdelay(10);
2939 i += 10;
2940 } while (i < timeout);
2941
2942 return -ETIME;
2943 }
2944
2945 /* These functions load the firmware and micro code for the operation of
2946 * the ipw hardware. It assumes the buffer has all the bits for the
2947 * image and the caller is handling the memory allocation and clean up.
2948 */
2949
2950 static int ipw_stop_master(struct ipw_priv *priv)
2951 {
2952 int rc;
2953
2954 IPW_DEBUG_TRACE(">> \n");
2955 /* stop master. typical delay - 0 */
2956 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
2957
2958 /* timeout is in msec, polled in 10-msec quanta */
2959 rc = ipw_poll_bit(priv, IPW_RESET_REG,
2960 IPW_RESET_REG_MASTER_DISABLED, 100);
2961 if (rc < 0) {
2962 IPW_ERROR("wait for stop master failed after 100ms\n");
2963 return -1;
2964 }
2965
2966 IPW_DEBUG_INFO("stop master %dms\n", rc);
2967
2968 return rc;
2969 }
2970
2971 static void ipw_arc_release(struct ipw_priv *priv)
2972 {
2973 IPW_DEBUG_TRACE(">> \n");
2974 mdelay(5);
2975
2976 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
2977
2978 /* no one knows timing, for safety add some delay */
2979 mdelay(5);
2980 }
2981
2982 struct fw_chunk {
2983 u32 address;
2984 u32 length;
2985 };
2986
2987 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
2988 {
2989 int rc = 0, i, addr;
2990 u8 cr = 0;
2991 u16 *image;
2992
2993 image = (u16 *) data;
2994
2995 IPW_DEBUG_TRACE(">> \n");
2996
2997 rc = ipw_stop_master(priv);
2998
2999 if (rc < 0)
3000 return rc;
3001
3002 for (addr = IPW_SHARED_LOWER_BOUND;
3003 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3004 ipw_write32(priv, addr, 0);
3005 }
3006
3007 /* no ucode (yet) */
3008 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3009 /* destroy DMA queues */
3010 /* reset sequence */
3011
3012 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3013 ipw_arc_release(priv);
3014 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3015 mdelay(1);
3016
3017 /* reset PHY */
3018 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3019 mdelay(1);
3020
3021 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3022 mdelay(1);
3023
3024 /* enable ucode store */
3025 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3026 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3027 mdelay(1);
3028
3029 /* write ucode */
3030 /**
3031 * @bug
3032 * Do NOT set indirect address register once and then
3033 * store data to indirect data register in the loop.
3034 * It seems very reasonable, but in this case DINO do not
3035 * accept ucode. It is essential to set address each time.
3036 */
3037 /* load new ipw uCode */
3038 for (i = 0; i < len / 2; i++)
3039 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3040 cpu_to_le16(image[i]));
3041
3042 /* enable DINO */
3043 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3044 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3045
3046 /* this is where the igx / win driver deveates from the VAP driver. */
3047
3048 /* wait for alive response */
3049 for (i = 0; i < 100; i++) {
3050 /* poll for incoming data */
3051 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3052 if (cr & DINO_RXFIFO_DATA)
3053 break;
3054 mdelay(1);
3055 }
3056
3057 if (cr & DINO_RXFIFO_DATA) {
3058 /* alive_command_responce size is NOT multiple of 4 */
3059 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3060
3061 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3062 response_buffer[i] =
3063 le32_to_cpu(ipw_read_reg32(priv,
3064 IPW_BASEBAND_RX_FIFO_READ));
3065 memcpy(&priv->dino_alive, response_buffer,
3066 sizeof(priv->dino_alive));
3067 if (priv->dino_alive.alive_command == 1
3068 && priv->dino_alive.ucode_valid == 1) {
3069 rc = 0;
3070 IPW_DEBUG_INFO
3071 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3072 "of %02d/%02d/%02d %02d:%02d\n",
3073 priv->dino_alive.software_revision,
3074 priv->dino_alive.software_revision,
3075 priv->dino_alive.device_identifier,
3076 priv->dino_alive.device_identifier,
3077 priv->dino_alive.time_stamp[0],
3078 priv->dino_alive.time_stamp[1],
3079 priv->dino_alive.time_stamp[2],
3080 priv->dino_alive.time_stamp[3],
3081 priv->dino_alive.time_stamp[4]);
3082 } else {
3083 IPW_DEBUG_INFO("Microcode is not alive\n");
3084 rc = -EINVAL;
3085 }
3086 } else {
3087 IPW_DEBUG_INFO("No alive response from DINO\n");
3088 rc = -ETIME;
3089 }
3090
3091 /* disable DINO, otherwise for some reason
3092 firmware have problem getting alive resp. */
3093 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3094
3095 return rc;
3096 }
3097
3098 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3099 {
3100 int rc = -1;
3101 int offset = 0;
3102 struct fw_chunk *chunk;
3103 dma_addr_t shared_phys;
3104 u8 *shared_virt;
3105
3106 IPW_DEBUG_TRACE("<< : \n");
3107 shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3108
3109 if (!shared_virt)
3110 return -ENOMEM;
3111
3112 memmove(shared_virt, data, len);
3113
3114 /* Start the Dma */
3115 rc = ipw_fw_dma_enable(priv);
3116
3117 if (priv->sram_desc.last_cb_index > 0) {
3118 /* the DMA is already ready this would be a bug. */
3119 BUG();
3120 goto out;
3121 }
3122
3123 do {
3124 chunk = (struct fw_chunk *)(data + offset);
3125 offset += sizeof(struct fw_chunk);
3126 /* build DMA packet and queue up for sending */
3127 /* dma to chunk->address, the chunk->length bytes from data +
3128 * offeset*/
3129 /* Dma loading */
3130 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3131 le32_to_cpu(chunk->address),
3132 le32_to_cpu(chunk->length));
3133 if (rc) {
3134 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3135 goto out;
3136 }
3137
3138 offset += le32_to_cpu(chunk->length);
3139 } while (offset < len);
3140
3141 /* Run the DMA and wait for the answer */
3142 rc = ipw_fw_dma_kick(priv);
3143 if (rc) {
3144 IPW_ERROR("dmaKick Failed\n");
3145 goto out;
3146 }
3147
3148 rc = ipw_fw_dma_wait(priv);
3149 if (rc) {
3150 IPW_ERROR("dmaWaitSync Failed\n");
3151 goto out;
3152 }
3153 out:
3154 pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3155 return rc;
3156 }
3157
3158 /* stop nic */
3159 static int ipw_stop_nic(struct ipw_priv *priv)
3160 {
3161 int rc = 0;
3162
3163 /* stop */
3164 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3165
3166 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3167 IPW_RESET_REG_MASTER_DISABLED, 500);
3168 if (rc < 0) {
3169 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3170 return rc;
3171 }
3172
3173 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3174
3175 return rc;
3176 }
3177
3178 static void ipw_start_nic(struct ipw_priv *priv)
3179 {
3180 IPW_DEBUG_TRACE(">>\n");
3181
3182 /* prvHwStartNic release ARC */
3183 ipw_clear_bit(priv, IPW_RESET_REG,
3184 IPW_RESET_REG_MASTER_DISABLED |
3185 IPW_RESET_REG_STOP_MASTER |
3186 CBD_RESET_REG_PRINCETON_RESET);
3187
3188 /* enable power management */
3189 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3190 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3191
3192 IPW_DEBUG_TRACE("<<\n");
3193 }
3194
3195 static int ipw_init_nic(struct ipw_priv *priv)
3196 {
3197 int rc;
3198
3199 IPW_DEBUG_TRACE(">>\n");
3200 /* reset */
3201 /*prvHwInitNic */
3202 /* set "initialization complete" bit to move adapter to D0 state */
3203 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3204
3205 /* low-level PLL activation */
3206 ipw_write32(priv, IPW_READ_INT_REGISTER,
3207 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3208
3209 /* wait for clock stabilization */
3210 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3211 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3212 if (rc < 0)
3213 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3214
3215 /* assert SW reset */
3216 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3217
3218 udelay(10);
3219
3220 /* set "initialization complete" bit to move adapter to D0 state */
3221 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3222
3223 IPW_DEBUG_TRACE(">>\n");
3224 return 0;
3225 }
3226
3227 /* Call this function from process context, it will sleep in request_firmware.
3228 * Probe is an ok place to call this from.
3229 */
3230 static int ipw_reset_nic(struct ipw_priv *priv)
3231 {
3232 int rc = 0;
3233 unsigned long flags;
3234
3235 IPW_DEBUG_TRACE(">>\n");
3236
3237 rc = ipw_init_nic(priv);
3238
3239 spin_lock_irqsave(&priv->lock, flags);
3240 /* Clear the 'host command active' bit... */
3241 priv->status &= ~STATUS_HCMD_ACTIVE;
3242 wake_up_interruptible(&priv->wait_command_queue);
3243 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3244 wake_up_interruptible(&priv->wait_state);
3245 spin_unlock_irqrestore(&priv->lock, flags);
3246
3247 IPW_DEBUG_TRACE("<<\n");
3248 return rc;
3249 }
3250
3251
3252 struct ipw_fw {
3253 __le32 ver;
3254 __le32 boot_size;
3255 __le32 ucode_size;
3256 __le32 fw_size;
3257 u8 data[0];
3258 };
3259
3260 static int ipw_get_fw(struct ipw_priv *priv,
3261 const struct firmware **raw, const char *name)
3262 {
3263 struct ipw_fw *fw;
3264 int rc;
3265
3266 /* ask firmware_class module to get the boot firmware off disk */
3267 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3268 if (rc < 0) {
3269 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3270 return rc;
3271 }
3272
3273 if ((*raw)->size < sizeof(*fw)) {
3274 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3275 return -EINVAL;
3276 }
3277
3278 fw = (void *)(*raw)->data;
3279
3280 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3281 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3282 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3283 name, (*raw)->size);
3284 return -EINVAL;
3285 }
3286
3287 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3288 name,
3289 le32_to_cpu(fw->ver) >> 16,
3290 le32_to_cpu(fw->ver) & 0xff,
3291 (*raw)->size - sizeof(*fw));
3292 return 0;
3293 }
3294
3295 #define IPW_RX_BUF_SIZE (3000)
3296
3297 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3298 struct ipw_rx_queue *rxq)
3299 {
3300 unsigned long flags;
3301 int i;
3302
3303 spin_lock_irqsave(&rxq->lock, flags);
3304
3305 INIT_LIST_HEAD(&rxq->rx_free);
3306 INIT_LIST_HEAD(&rxq->rx_used);
3307
3308 /* Fill the rx_used queue with _all_ of the Rx buffers */
3309 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3310 /* In the reset function, these buffers may have been allocated
3311 * to an SKB, so we need to unmap and free potential storage */
3312 if (rxq->pool[i].skb != NULL) {
3313 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3314 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3315 dev_kfree_skb(rxq->pool[i].skb);
3316 rxq->pool[i].skb = NULL;
3317 }
3318 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3319 }
3320
3321 /* Set us so that we have processed and used all buffers, but have
3322 * not restocked the Rx queue with fresh buffers */
3323 rxq->read = rxq->write = 0;
3324 rxq->processed = RX_QUEUE_SIZE - 1;
3325 rxq->free_count = 0;
3326 spin_unlock_irqrestore(&rxq->lock, flags);
3327 }
3328
3329 #ifdef CONFIG_PM
3330 static int fw_loaded = 0;
3331 static const struct firmware *raw = NULL;
3332
3333 static void free_firmware(void)
3334 {
3335 if (fw_loaded) {
3336 release_firmware(raw);
3337 raw = NULL;
3338 fw_loaded = 0;
3339 }
3340 }
3341 #else
3342 #define free_firmware() do {} while (0)
3343 #endif
3344
3345 static int ipw_load(struct ipw_priv *priv)
3346 {
3347 #ifndef CONFIG_PM
3348 const struct firmware *raw = NULL;
3349 #endif
3350 struct ipw_fw *fw;
3351 u8 *boot_img, *ucode_img, *fw_img;
3352 u8 *name = NULL;
3353 int rc = 0, retries = 3;
3354
3355 switch (priv->ieee->iw_mode) {
3356 case IW_MODE_ADHOC:
3357 name = "ipw2200-ibss.fw";
3358 break;
3359 #ifdef CONFIG_IPW2200_MONITOR
3360 case IW_MODE_MONITOR:
3361 name = "ipw2200-sniffer.fw";
3362 break;
3363 #endif
3364 case IW_MODE_INFRA:
3365 name = "ipw2200-bss.fw";
3366 break;
3367 }
3368
3369 if (!name) {
3370 rc = -EINVAL;
3371 goto error;
3372 }
3373
3374 #ifdef CONFIG_PM
3375 if (!fw_loaded) {
3376 #endif
3377 rc = ipw_get_fw(priv, &raw, name);
3378 if (rc < 0)
3379 goto error;
3380 #ifdef CONFIG_PM
3381 }
3382 #endif
3383
3384 fw = (void *)raw->data;
3385 boot_img = &fw->data[0];
3386 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3387 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3388 le32_to_cpu(fw->ucode_size)];
3389
3390 if (rc < 0)
3391 goto error;
3392
3393 if (!priv->rxq)
3394 priv->rxq = ipw_rx_queue_alloc(priv);
3395 else
3396 ipw_rx_queue_reset(priv, priv->rxq);
3397 if (!priv->rxq) {
3398 IPW_ERROR("Unable to initialize Rx queue\n");
3399 goto error;
3400 }
3401
3402 retry:
3403 /* Ensure interrupts are disabled */
3404 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3405 priv->status &= ~STATUS_INT_ENABLED;
3406
3407 /* ack pending interrupts */
3408 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3409
3410 ipw_stop_nic(priv);
3411
3412 rc = ipw_reset_nic(priv);
3413 if (rc < 0) {
3414 IPW_ERROR("Unable to reset NIC\n");
3415 goto error;
3416 }
3417
3418 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3419 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3420
3421 /* DMA the initial boot firmware into the device */
3422 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3423 if (rc < 0) {
3424 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3425 goto error;
3426 }
3427
3428 /* kick start the device */
3429 ipw_start_nic(priv);
3430
3431 /* wait for the device to finish its initial startup sequence */
3432 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3433 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3434 if (rc < 0) {
3435 IPW_ERROR("device failed to boot initial fw image\n");
3436 goto error;
3437 }
3438 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3439
3440 /* ack fw init done interrupt */
3441 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3442
3443 /* DMA the ucode into the device */
3444 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3445 if (rc < 0) {
3446 IPW_ERROR("Unable to load ucode: %d\n", rc);
3447 goto error;
3448 }
3449
3450 /* stop nic */
3451 ipw_stop_nic(priv);
3452
3453 /* DMA bss firmware into the device */
3454 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3455 if (rc < 0) {
3456 IPW_ERROR("Unable to load firmware: %d\n", rc);
3457 goto error;
3458 }
3459 #ifdef CONFIG_PM
3460 fw_loaded = 1;
3461 #endif
3462
3463 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3464
3465 rc = ipw_queue_reset(priv);
3466 if (rc < 0) {
3467 IPW_ERROR("Unable to initialize queues\n");
3468 goto error;
3469 }
3470
3471 /* Ensure interrupts are disabled */
3472 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3473 /* ack pending interrupts */
3474 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3475
3476 /* kick start the device */
3477 ipw_start_nic(priv);
3478
3479 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3480 if (retries > 0) {
3481 IPW_WARNING("Parity error. Retrying init.\n");
3482 retries--;
3483 goto retry;
3484 }
3485
3486 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3487 rc = -EIO;
3488 goto error;
3489 }
3490
3491 /* wait for the device */
3492 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3493 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3494 if (rc < 0) {
3495 IPW_ERROR("device failed to start within 500ms\n");
3496 goto error;
3497 }
3498 IPW_DEBUG_INFO("device response after %dms\n", rc);
3499
3500 /* ack fw init done interrupt */
3501 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3502
3503 /* read eeprom data and initialize the eeprom region of sram */
3504 priv->eeprom_delay = 1;
3505 ipw_eeprom_init_sram(priv);
3506
3507 /* enable interrupts */
3508 ipw_enable_interrupts(priv);
3509
3510 /* Ensure our queue has valid packets */
3511 ipw_rx_queue_replenish(priv);
3512
3513 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3514
3515 /* ack pending interrupts */
3516 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3517
3518 #ifndef CONFIG_PM
3519 release_firmware(raw);
3520 #endif
3521 return 0;
3522
3523 error:
3524 if (priv->rxq) {
3525 ipw_rx_queue_free(priv, priv->rxq);
3526 priv->rxq = NULL;
3527 }
3528 ipw_tx_queue_free(priv);
3529 if (raw)
3530 release_firmware(raw);
3531 #ifdef CONFIG_PM
3532 fw_loaded = 0;
3533 raw = NULL;
3534 #endif
3535
3536 return rc;
3537 }
3538
3539 /**
3540 * DMA services
3541 *
3542 * Theory of operation
3543 *
3544 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3545 * 2 empty entries always kept in the buffer to protect from overflow.
3546 *
3547 * For Tx queue, there are low mark and high mark limits. If, after queuing
3548 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3549 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3550 * Tx queue resumed.
3551 *
3552 * The IPW operates with six queues, one receive queue in the device's
3553 * sram, one transmit queue for sending commands to the device firmware,
3554 * and four transmit queues for data.
3555 *
3556 * The four transmit queues allow for performing quality of service (qos)
3557 * transmissions as per the 802.11 protocol. Currently Linux does not
3558 * provide a mechanism to the user for utilizing prioritized queues, so
3559 * we only utilize the first data transmit queue (queue1).
3560 */
3561
3562 /**
3563 * Driver allocates buffers of this size for Rx
3564 */
3565
3566 static inline int ipw_queue_space(const struct clx2_queue *q)
3567 {
3568 int s = q->last_used - q->first_empty;
3569 if (s <= 0)
3570 s += q->n_bd;
3571 s -= 2; /* keep some reserve to not confuse empty and full situations */
3572 if (s < 0)
3573 s = 0;
3574 return s;
3575 }
3576
3577 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3578 {
3579 return (++index == n_bd) ? 0 : index;
3580 }
3581
3582 /**
3583 * Initialize common DMA queue structure
3584 *
3585 * @param q queue to init
3586 * @param count Number of BD's to allocate. Should be power of 2
3587 * @param read_register Address for 'read' register
3588 * (not offset within BAR, full address)
3589 * @param write_register Address for 'write' register
3590 * (not offset within BAR, full address)
3591 * @param base_register Address for 'base' register
3592 * (not offset within BAR, full address)
3593 * @param size Address for 'size' register
3594 * (not offset within BAR, full address)
3595 */
3596 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3597 int count, u32 read, u32 write, u32 base, u32 size)
3598 {
3599 q->n_bd = count;
3600
3601 q->low_mark = q->n_bd / 4;
3602 if (q->low_mark < 4)
3603 q->low_mark = 4;
3604
3605 q->high_mark = q->n_bd / 8;
3606 if (q->high_mark < 2)
3607 q->high_mark = 2;
3608
3609 q->first_empty = q->last_used = 0;
3610 q->reg_r = read;
3611 q->reg_w = write;
3612
3613 ipw_write32(priv, base, q->dma_addr);
3614 ipw_write32(priv, size, count);
3615 ipw_write32(priv, read, 0);
3616 ipw_write32(priv, write, 0);
3617
3618 _ipw_read32(priv, 0x90);
3619 }
3620
3621 static int ipw_queue_tx_init(struct ipw_priv *priv,
3622 struct clx2_tx_queue *q,
3623 int count, u32 read, u32 write, u32 base, u32 size)
3624 {
3625 struct pci_dev *dev = priv->pci_dev;
3626
3627 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3628 if (!q->txb) {
3629 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3630 return -ENOMEM;
3631 }
3632
3633 q->bd =
3634 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3635 if (!q->bd) {
3636 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3637 sizeof(q->bd[0]) * count);
3638 kfree(q->txb);
3639 q->txb = NULL;
3640 return -ENOMEM;
3641 }
3642
3643 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3644 return 0;
3645 }
3646
3647 /**
3648 * Free one TFD, those at index [txq->q.last_used].
3649 * Do NOT advance any indexes
3650 *
3651 * @param dev
3652 * @param txq
3653 */
3654 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3655 struct clx2_tx_queue *txq)
3656 {
3657 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3658 struct pci_dev *dev = priv->pci_dev;
3659 int i;
3660
3661 /* classify bd */
3662 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3663 /* nothing to cleanup after for host commands */
3664 return;
3665
3666 /* sanity check */
3667 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3668 IPW_ERROR("Too many chunks: %i\n",
3669 le32_to_cpu(bd->u.data.num_chunks));
3670 /** @todo issue fatal error, it is quite serious situation */
3671 return;
3672 }
3673
3674 /* unmap chunks if any */
3675 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3676 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3677 le16_to_cpu(bd->u.data.chunk_len[i]),
3678 PCI_DMA_TODEVICE);
3679 if (txq->txb[txq->q.last_used]) {
3680 ieee80211_txb_free(txq->txb[txq->q.last_used]);
3681 txq->txb[txq->q.last_used] = NULL;
3682 }
3683 }
3684 }
3685
3686 /**
3687 * Deallocate DMA queue.
3688 *
3689 * Empty queue by removing and destroying all BD's.
3690 * Free all buffers.
3691 *
3692 * @param dev
3693 * @param q
3694 */
3695 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3696 {
3697 struct clx2_queue *q = &txq->q;
3698 struct pci_dev *dev = priv->pci_dev;
3699
3700 if (q->n_bd == 0)
3701 return;
3702
3703 /* first, empty all BD's */
3704 for (; q->first_empty != q->last_used;
3705 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3706 ipw_queue_tx_free_tfd(priv, txq);
3707 }
3708
3709 /* free buffers belonging to queue itself */
3710 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3711 q->dma_addr);
3712 kfree(txq->txb);
3713
3714 /* 0 fill whole structure */
3715 memset(txq, 0, sizeof(*txq));
3716 }
3717
3718 /**
3719 * Destroy all DMA queues and structures
3720 *
3721 * @param priv
3722 */
3723 static void ipw_tx_queue_free(struct ipw_priv *priv)
3724 {
3725 /* Tx CMD queue */
3726 ipw_queue_tx_free(priv, &priv->txq_cmd);
3727
3728 /* Tx queues */
3729 ipw_queue_tx_free(priv, &priv->txq[0]);
3730 ipw_queue_tx_free(priv, &priv->txq[1]);
3731 ipw_queue_tx_free(priv, &priv->txq[2]);
3732 ipw_queue_tx_free(priv, &priv->txq[3]);
3733 }
3734
3735 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3736 {
3737 /* First 3 bytes are manufacturer */
3738 bssid[0] = priv->mac_addr[0];
3739 bssid[1] = priv->mac_addr[1];
3740 bssid[2] = priv->mac_addr[2];
3741
3742 /* Last bytes are random */
3743 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3744
3745 bssid[0] &= 0xfe; /* clear multicast bit */
3746 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3747 }
3748
3749 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3750 {
3751 struct ipw_station_entry entry;
3752 int i;
3753
3754 for (i = 0; i < priv->num_stations; i++) {
3755 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3756 /* Another node is active in network */
3757 priv->missed_adhoc_beacons = 0;
3758 if (!(priv->config & CFG_STATIC_CHANNEL))
3759 /* when other nodes drop out, we drop out */
3760 priv->config &= ~CFG_ADHOC_PERSIST;
3761
3762 return i;
3763 }
3764 }
3765
3766 if (i == MAX_STATIONS)
3767 return IPW_INVALID_STATION;
3768
3769 IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid));
3770
3771 entry.reserved = 0;
3772 entry.support_mode = 0;
3773 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3774 memcpy(priv->stations[i], bssid, ETH_ALEN);
3775 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3776 &entry, sizeof(entry));
3777 priv->num_stations++;
3778
3779 return i;
3780 }
3781
3782 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3783 {
3784 int i;
3785
3786 for (i = 0; i < priv->num_stations; i++)
3787 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3788 return i;
3789
3790 return IPW_INVALID_STATION;
3791 }
3792
3793 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3794 {
3795 int err;
3796
3797 if (priv->status & STATUS_ASSOCIATING) {
3798 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3799 queue_work(priv->workqueue, &priv->disassociate);
3800 return;
3801 }
3802
3803 if (!(priv->status & STATUS_ASSOCIATED)) {
3804 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3805 return;
3806 }
3807
3808 IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " "
3809 "on channel %d.\n",
3810 MAC_ARG(priv->assoc_request.bssid),
3811 priv->assoc_request.channel);
3812
3813 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3814 priv->status |= STATUS_DISASSOCIATING;
3815
3816 if (quiet)
3817 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3818 else
3819 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3820
3821 err = ipw_send_associate(priv, &priv->assoc_request);
3822 if (err) {
3823 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3824 "failed.\n");
3825 return;
3826 }
3827
3828 }
3829
3830 static int ipw_disassociate(void *data)
3831 {
3832 struct ipw_priv *priv = data;
3833 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3834 return 0;
3835 ipw_send_disassociate(data, 0);
3836 return 1;
3837 }
3838
3839 static void ipw_bg_disassociate(struct work_struct *work)
3840 {
3841 struct ipw_priv *priv =
3842 container_of(work, struct ipw_priv, disassociate);
3843 mutex_lock(&priv->mutex);
3844 ipw_disassociate(priv);
3845 mutex_unlock(&priv->mutex);
3846 }
3847
3848 static void ipw_system_config(struct work_struct *work)
3849 {
3850 struct ipw_priv *priv =
3851 container_of(work, struct ipw_priv, system_config);
3852
3853 #ifdef CONFIG_IPW2200_PROMISCUOUS
3854 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3855 priv->sys_config.accept_all_data_frames = 1;
3856 priv->sys_config.accept_non_directed_frames = 1;
3857 priv->sys_config.accept_all_mgmt_bcpr = 1;
3858 priv->sys_config.accept_all_mgmt_frames = 1;
3859 }
3860 #endif
3861
3862 ipw_send_system_config(priv);
3863 }
3864
3865 struct ipw_status_code {
3866 u16 status;
3867 const char *reason;
3868 };
3869
3870 static const struct ipw_status_code ipw_status_codes[] = {
3871 {0x00, "Successful"},
3872 {0x01, "Unspecified failure"},
3873 {0x0A, "Cannot support all requested capabilities in the "
3874 "Capability information field"},
3875 {0x0B, "Reassociation denied due to inability to confirm that "
3876 "association exists"},
3877 {0x0C, "Association denied due to reason outside the scope of this "
3878 "standard"},
3879 {0x0D,
3880 "Responding station does not support the specified authentication "
3881 "algorithm"},
3882 {0x0E,
3883 "Received an Authentication frame with authentication sequence "
3884 "transaction sequence number out of expected sequence"},
3885 {0x0F, "Authentication rejected because of challenge failure"},
3886 {0x10, "Authentication rejected due to timeout waiting for next "
3887 "frame in sequence"},
3888 {0x11, "Association denied because AP is unable to handle additional "
3889 "associated stations"},
3890 {0x12,
3891 "Association denied due to requesting station not supporting all "
3892 "of the datarates in the BSSBasicServiceSet Parameter"},
3893 {0x13,
3894 "Association denied due to requesting station not supporting "
3895 "short preamble operation"},
3896 {0x14,
3897 "Association denied due to requesting station not supporting "
3898 "PBCC encoding"},
3899 {0x15,
3900 "Association denied due to requesting station not supporting "
3901 "channel agility"},
3902 {0x19,
3903 "Association denied due to requesting station not supporting "
3904 "short slot operation"},
3905 {0x1A,
3906 "Association denied due to requesting station not supporting "
3907 "DSSS-OFDM operation"},
3908 {0x28, "Invalid Information Element"},
3909 {0x29, "Group Cipher is not valid"},
3910 {0x2A, "Pairwise Cipher is not valid"},
3911 {0x2B, "AKMP is not valid"},
3912 {0x2C, "Unsupported RSN IE version"},
3913 {0x2D, "Invalid RSN IE Capabilities"},
3914 {0x2E, "Cipher suite is rejected per security policy"},
3915 };
3916
3917 static const char *ipw_get_status_code(u16 status)
3918 {
3919 int i;
3920 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3921 if (ipw_status_codes[i].status == (status & 0xff))
3922 return ipw_status_codes[i].reason;
3923 return "Unknown status value.";
3924 }
3925
3926 static void inline average_init(struct average *avg)
3927 {
3928 memset(avg, 0, sizeof(*avg));
3929 }
3930
3931 #define DEPTH_RSSI 8
3932 #define DEPTH_NOISE 16
3933 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
3934 {
3935 return ((depth-1)*prev_avg + val)/depth;
3936 }
3937
3938 static void average_add(struct average *avg, s16 val)
3939 {
3940 avg->sum -= avg->entries[avg->pos];
3941 avg->sum += val;
3942 avg->entries[avg->pos++] = val;
3943 if (unlikely(avg->pos == AVG_ENTRIES)) {
3944 avg->init = 1;
3945 avg->pos = 0;
3946 }
3947 }
3948
3949 static s16 average_value(struct average *avg)
3950 {
3951 if (!unlikely(avg->init)) {
3952 if (avg->pos)
3953 return avg->sum / avg->pos;
3954 return 0;
3955 }
3956
3957 return avg->sum / AVG_ENTRIES;
3958 }
3959
3960 static void ipw_reset_stats(struct ipw_priv *priv)
3961 {
3962 u32 len = sizeof(u32);
3963
3964 priv->quality = 0;
3965
3966 average_init(&priv->average_missed_beacons);
3967 priv->exp_avg_rssi = -60;
3968 priv->exp_avg_noise = -85 + 0x100;
3969
3970 priv->last_rate = 0;
3971 priv->last_missed_beacons = 0;
3972 priv->last_rx_packets = 0;
3973 priv->last_tx_packets = 0;
3974 priv->last_tx_failures = 0;
3975
3976 /* Firmware managed, reset only when NIC is restarted, so we have to
3977 * normalize on the current value */
3978 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
3979 &priv->last_rx_err, &len);
3980 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
3981 &priv->last_tx_failures, &len);
3982
3983 /* Driver managed, reset with each association */
3984 priv->missed_adhoc_beacons = 0;
3985 priv->missed_beacons = 0;
3986 priv->tx_packets = 0;
3987 priv->rx_packets = 0;
3988
3989 }
3990
3991 static u32 ipw_get_max_rate(struct ipw_priv *priv)
3992 {
3993 u32 i = 0x80000000;
3994 u32 mask = priv->rates_mask;
3995 /* If currently associated in B mode, restrict the maximum
3996 * rate match to B rates */
3997 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
3998 mask &= IEEE80211_CCK_RATES_MASK;
3999
4000 /* TODO: Verify that the rate is supported by the current rates
4001 * list. */
4002
4003 while (i && !(mask & i))
4004 i >>= 1;
4005 switch (i) {
4006 case IEEE80211_CCK_RATE_1MB_MASK:
4007 return 1000000;
4008 case IEEE80211_CCK_RATE_2MB_MASK:
4009 return 2000000;
4010 case IEEE80211_CCK_RATE_5MB_MASK:
4011 return 5500000;
4012 case IEEE80211_OFDM_RATE_6MB_MASK:
4013 return 6000000;
4014 case IEEE80211_OFDM_RATE_9MB_MASK:
4015 return 9000000;
4016 case IEEE80211_CCK_RATE_11MB_MASK:
4017 return 11000000;
4018 case IEEE80211_OFDM_RATE_12MB_MASK:
4019 return 12000000;
4020 case IEEE80211_OFDM_RATE_18MB_MASK:
4021 return 18000000;
4022 case IEEE80211_OFDM_RATE_24MB_MASK:
4023 return 24000000;
4024 case IEEE80211_OFDM_RATE_36MB_MASK:
4025 return 36000000;
4026 case IEEE80211_OFDM_RATE_48MB_MASK:
4027 return 48000000;
4028 case IEEE80211_OFDM_RATE_54MB_MASK:
4029 return 54000000;
4030 }
4031
4032 if (priv->ieee->mode == IEEE_B)
4033 return 11000000;
4034 else
4035 return 54000000;
4036 }
4037
4038 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4039 {
4040 u32 rate, len = sizeof(rate);
4041 int err;
4042
4043 if (!(priv->status & STATUS_ASSOCIATED))
4044 return 0;
4045
4046 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4047 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4048 &len);
4049 if (err) {
4050 IPW_DEBUG_INFO("failed querying ordinals.\n");
4051 return 0;
4052 }
4053 } else
4054 return ipw_get_max_rate(priv);
4055
4056 switch (rate) {
4057 case IPW_TX_RATE_1MB:
4058 return 1000000;
4059 case IPW_TX_RATE_2MB:
4060 return 2000000;
4061 case IPW_TX_RATE_5MB:
4062 return 5500000;
4063 case IPW_TX_RATE_6MB:
4064 return 6000000;
4065 case IPW_TX_RATE_9MB:
4066 return 9000000;
4067 case IPW_TX_RATE_11MB:
4068 return 11000000;
4069 case IPW_TX_RATE_12MB:
4070 return 12000000;
4071 case IPW_TX_RATE_18MB:
4072 return 18000000;
4073 case IPW_TX_RATE_24MB:
4074 return 24000000;
4075 case IPW_TX_RATE_36MB:
4076 return 36000000;
4077 case IPW_TX_RATE_48MB:
4078 return 48000000;
4079 case IPW_TX_RATE_54MB:
4080 return 54000000;
4081 }
4082
4083 return 0;
4084 }
4085
4086 #define IPW_STATS_INTERVAL (2 * HZ)
4087 static void ipw_gather_stats(struct ipw_priv *priv)
4088 {
4089 u32 rx_err, rx_err_delta, rx_packets_delta;
4090 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4091 u32 missed_beacons_percent, missed_beacons_delta;
4092 u32 quality = 0;
4093 u32 len = sizeof(u32);
4094 s16 rssi;
4095 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4096 rate_quality;
4097 u32 max_rate;
4098
4099 if (!(priv->status & STATUS_ASSOCIATED)) {
4100 priv->quality = 0;
4101 return;
4102 }
4103
4104 /* Update the statistics */
4105 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4106 &priv->missed_beacons, &len);
4107 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4108 priv->last_missed_beacons = priv->missed_beacons;
4109 if (priv->assoc_request.beacon_interval) {
4110 missed_beacons_percent = missed_beacons_delta *
4111 (HZ * priv->assoc_request.beacon_interval) /
4112 (IPW_STATS_INTERVAL * 10);
4113 } else {
4114 missed_beacons_percent = 0;
4115 }
4116 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4117
4118 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4119 rx_err_delta = rx_err - priv->last_rx_err;
4120 priv->last_rx_err = rx_err;
4121
4122 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4123 tx_failures_delta = tx_failures - priv->last_tx_failures;
4124 priv->last_tx_failures = tx_failures;
4125
4126 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4127 priv->last_rx_packets = priv->rx_packets;
4128
4129 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4130 priv->last_tx_packets = priv->tx_packets;
4131
4132 /* Calculate quality based on the following:
4133 *
4134 * Missed beacon: 100% = 0, 0% = 70% missed
4135 * Rate: 60% = 1Mbs, 100% = Max
4136 * Rx and Tx errors represent a straight % of total Rx/Tx
4137 * RSSI: 100% = > -50, 0% = < -80
4138 * Rx errors: 100% = 0, 0% = 50% missed
4139 *
4140 * The lowest computed quality is used.
4141 *
4142 */
4143 #define BEACON_THRESHOLD 5
4144 beacon_quality = 100 - missed_beacons_percent;
4145 if (beacon_quality < BEACON_THRESHOLD)
4146 beacon_quality = 0;
4147 else
4148 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4149 (100 - BEACON_THRESHOLD);
4150 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4151 beacon_quality, missed_beacons_percent);
4152
4153 priv->last_rate = ipw_get_current_rate(priv);
4154 max_rate = ipw_get_max_rate(priv);
4155 rate_quality = priv->last_rate * 40 / max_rate + 60;
4156 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4157 rate_quality, priv->last_rate / 1000000);
4158
4159 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4160 rx_quality = 100 - (rx_err_delta * 100) /
4161 (rx_packets_delta + rx_err_delta);
4162 else
4163 rx_quality = 100;
4164 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4165 rx_quality, rx_err_delta, rx_packets_delta);
4166
4167 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4168 tx_quality = 100 - (tx_failures_delta * 100) /
4169 (tx_packets_delta + tx_failures_delta);
4170 else
4171 tx_quality = 100;
4172 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4173 tx_quality, tx_failures_delta, tx_packets_delta);
4174
4175 rssi = priv->exp_avg_rssi;
4176 signal_quality =
4177 (100 *
4178 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4179 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4180 (priv->ieee->perfect_rssi - rssi) *
4181 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4182 62 * (priv->ieee->perfect_rssi - rssi))) /
4183 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4184 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4185 if (signal_quality > 100)
4186 signal_quality = 100;
4187 else if (signal_quality < 1)
4188 signal_quality = 0;
4189
4190 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4191 signal_quality, rssi);
4192
4193 quality = min(beacon_quality,
4194 min(rate_quality,
4195 min(tx_quality, min(rx_quality, signal_quality))));
4196 if (quality == beacon_quality)
4197 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4198 quality);
4199 if (quality == rate_quality)
4200 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4201 quality);
4202 if (quality == tx_quality)
4203 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4204 quality);
4205 if (quality == rx_quality)
4206 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4207 quality);
4208 if (quality == signal_quality)
4209 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4210 quality);
4211
4212 priv->quality = quality;
4213
4214 queue_delayed_work(priv->workqueue, &priv->gather_stats,
4215 IPW_STATS_INTERVAL);
4216 }
4217
4218 static void ipw_bg_gather_stats(struct work_struct *work)
4219 {
4220 struct ipw_priv *priv =
4221 container_of(work, struct ipw_priv, gather_stats.work);
4222 mutex_lock(&priv->mutex);
4223 ipw_gather_stats(priv);
4224 mutex_unlock(&priv->mutex);
4225 }
4226
4227 /* Missed beacon behavior:
4228 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4229 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4230 * Above disassociate threshold, give up and stop scanning.
4231 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4232 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4233 int missed_count)
4234 {
4235 priv->notif_missed_beacons = missed_count;
4236
4237 if (missed_count > priv->disassociate_threshold &&
4238 priv->status & STATUS_ASSOCIATED) {
4239 /* If associated and we've hit the missed
4240 * beacon threshold, disassociate, turn
4241 * off roaming, and abort any active scans */
4242 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4243 IPW_DL_STATE | IPW_DL_ASSOC,
4244 "Missed beacon: %d - disassociate\n", missed_count);
4245 priv->status &= ~STATUS_ROAMING;
4246 if (priv->status & STATUS_SCANNING) {
4247 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4248 IPW_DL_STATE,
4249 "Aborting scan with missed beacon.\n");
4250 queue_work(priv->workqueue, &priv->abort_scan);
4251 }
4252
4253 queue_work(priv->workqueue, &priv->disassociate);
4254 return;
4255 }
4256
4257 if (priv->status & STATUS_ROAMING) {
4258 /* If we are currently roaming, then just
4259 * print a debug statement... */
4260 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4261 "Missed beacon: %d - roam in progress\n",
4262 missed_count);
4263 return;
4264 }
4265
4266 if (roaming &&
4267 (missed_count > priv->roaming_threshold &&
4268 missed_count <= priv->disassociate_threshold)) {
4269 /* If we are not already roaming, set the ROAM
4270 * bit in the status and kick off a scan.
4271 * This can happen several times before we reach
4272 * disassociate_threshold. */
4273 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4274 "Missed beacon: %d - initiate "
4275 "roaming\n", missed_count);
4276 if (!(priv->status & STATUS_ROAMING)) {
4277 priv->status |= STATUS_ROAMING;
4278 if (!(priv->status & STATUS_SCANNING))
4279 queue_delayed_work(priv->workqueue,
4280 &priv->request_scan, 0);
4281 }
4282 return;
4283 }
4284
4285 if (priv->status & STATUS_SCANNING) {
4286 /* Stop scan to keep fw from getting
4287 * stuck (only if we aren't roaming --
4288 * otherwise we'll never scan more than 2 or 3
4289 * channels..) */
4290 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4291 "Aborting scan with missed beacon.\n");
4292 queue_work(priv->workqueue, &priv->abort_scan);
4293 }
4294
4295 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4296 }
4297
4298 /**
4299 * Handle host notification packet.
4300 * Called from interrupt routine
4301 */
4302 static void ipw_rx_notification(struct ipw_priv *priv,
4303 struct ipw_rx_notification *notif)
4304 {
4305 notif->size = le16_to_cpu(notif->size);
4306
4307 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
4308
4309 switch (notif->subtype) {
4310 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4311 struct notif_association *assoc = &notif->u.assoc;
4312
4313 switch (assoc->state) {
4314 case CMAS_ASSOCIATED:{
4315 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4316 IPW_DL_ASSOC,
4317 "associated: '%s' " MAC_FMT
4318 " \n",
4319 escape_essid(priv->essid,
4320 priv->essid_len),
4321 MAC_ARG(priv->bssid));
4322
4323 switch (priv->ieee->iw_mode) {
4324 case IW_MODE_INFRA:
4325 memcpy(priv->ieee->bssid,
4326 priv->bssid, ETH_ALEN);
4327 break;
4328
4329 case IW_MODE_ADHOC:
4330 memcpy(priv->ieee->bssid,
4331 priv->bssid, ETH_ALEN);
4332
4333 /* clear out the station table */
4334 priv->num_stations = 0;
4335
4336 IPW_DEBUG_ASSOC
4337 ("queueing adhoc check\n");
4338 queue_delayed_work(priv->
4339 workqueue,
4340 &priv->
4341 adhoc_check,
4342 priv->
4343 assoc_request.
4344 beacon_interval);
4345 break;
4346 }
4347
4348 priv->status &= ~STATUS_ASSOCIATING;
4349 priv->status |= STATUS_ASSOCIATED;
4350 queue_work(priv->workqueue,
4351 &priv->system_config);
4352
4353 #ifdef CONFIG_IPW2200_QOS
4354 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4355 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4356 if ((priv->status & STATUS_AUTH) &&
4357 (IPW_GET_PACKET_STYPE(&notif->u.raw)
4358 == IEEE80211_STYPE_ASSOC_RESP)) {
4359 if ((sizeof
4360 (struct
4361 ieee80211_assoc_response)
4362 <= notif->size)
4363 && (notif->size <= 2314)) {
4364 struct
4365 ieee80211_rx_stats
4366 stats = {
4367 .len =
4368 notif->
4369 size - 1,
4370 };
4371
4372 IPW_DEBUG_QOS
4373 ("QoS Associate "
4374 "size %d\n",
4375 notif->size);
4376 ieee80211_rx_mgt(priv->
4377 ieee,
4378 (struct
4379 ieee80211_hdr_4addr
4380 *)
4381 &notif->u.raw, &stats);
4382 }
4383 }
4384 #endif
4385
4386 schedule_work(&priv->link_up);
4387
4388 break;
4389 }
4390
4391 case CMAS_AUTHENTICATED:{
4392 if (priv->
4393 status & (STATUS_ASSOCIATED |
4394 STATUS_AUTH)) {
4395 struct notif_authenticate *auth
4396 = &notif->u.auth;
4397 IPW_DEBUG(IPW_DL_NOTIF |
4398 IPW_DL_STATE |
4399 IPW_DL_ASSOC,
4400 "deauthenticated: '%s' "
4401 MAC_FMT
4402 ": (0x%04X) - %s \n",
4403 escape_essid(priv->
4404 essid,
4405 priv->
4406 essid_len),
4407 MAC_ARG(priv->bssid),
4408 ntohs(auth->status),
4409 ipw_get_status_code
4410 (ntohs
4411 (auth->status)));
4412
4413 priv->status &=
4414 ~(STATUS_ASSOCIATING |
4415 STATUS_AUTH |
4416 STATUS_ASSOCIATED);
4417
4418 schedule_work(&priv->link_down);
4419 break;
4420 }
4421
4422 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4423 IPW_DL_ASSOC,
4424 "authenticated: '%s' " MAC_FMT
4425 "\n",
4426 escape_essid(priv->essid,
4427 priv->essid_len),
4428 MAC_ARG(priv->bssid));
4429 break;
4430 }
4431
4432 case CMAS_INIT:{
4433 if (priv->status & STATUS_AUTH) {
4434 struct
4435 ieee80211_assoc_response
4436 *resp;
4437 resp =
4438 (struct
4439 ieee80211_assoc_response
4440 *)&notif->u.raw;
4441 IPW_DEBUG(IPW_DL_NOTIF |
4442 IPW_DL_STATE |
4443 IPW_DL_ASSOC,
4444 "association failed (0x%04X): %s\n",
4445 ntohs(resp->status),
4446 ipw_get_status_code
4447 (ntohs
4448 (resp->status)));
4449 }
4450
4451 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4452 IPW_DL_ASSOC,
4453 "disassociated: '%s' " MAC_FMT
4454 " \n",
4455 escape_essid(priv->essid,
4456 priv->essid_len),
4457 MAC_ARG(priv->bssid));
4458
4459 priv->status &=
4460 ~(STATUS_DISASSOCIATING |
4461 STATUS_ASSOCIATING |
4462 STATUS_ASSOCIATED | STATUS_AUTH);
4463 if (priv->assoc_network
4464 && (priv->assoc_network->
4465 capability &
4466 WLAN_CAPABILITY_IBSS))
4467 ipw_remove_current_network
4468 (priv);
4469
4470 schedule_work(&priv->link_down);
4471
4472 break;
4473 }
4474
4475 case CMAS_RX_ASSOC_RESP:
4476 break;
4477
4478 default:
4479 IPW_ERROR("assoc: unknown (%d)\n",
4480 assoc->state);
4481 break;
4482 }
4483
4484 break;
4485 }
4486
4487 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4488 struct notif_authenticate *auth = &notif->u.auth;
4489 switch (auth->state) {
4490 case CMAS_AUTHENTICATED:
4491 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4492 "authenticated: '%s' " MAC_FMT " \n",
4493 escape_essid(priv->essid,
4494 priv->essid_len),
4495 MAC_ARG(priv->bssid));
4496 priv->status |= STATUS_AUTH;
4497 break;
4498
4499 case CMAS_INIT:
4500 if (priv->status & STATUS_AUTH) {
4501 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4502 IPW_DL_ASSOC,
4503 "authentication failed (0x%04X): %s\n",
4504 ntohs(auth->status),
4505 ipw_get_status_code(ntohs
4506 (auth->
4507 status)));
4508 }
4509 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4510 IPW_DL_ASSOC,
4511 "deauthenticated: '%s' " MAC_FMT "\n",
4512 escape_essid(priv->essid,
4513 priv->essid_len),
4514 MAC_ARG(priv->bssid));
4515
4516 priv->status &= ~(STATUS_ASSOCIATING |
4517 STATUS_AUTH |
4518 STATUS_ASSOCIATED);
4519
4520 schedule_work(&priv->link_down);
4521 break;
4522
4523 case CMAS_TX_AUTH_SEQ_1:
4524 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4525 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4526 break;
4527 case CMAS_RX_AUTH_SEQ_2:
4528 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4529 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4530 break;
4531 case CMAS_AUTH_SEQ_1_PASS:
4532 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4533 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4534 break;
4535 case CMAS_AUTH_SEQ_1_FAIL:
4536 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4537 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4538 break;
4539 case CMAS_TX_AUTH_SEQ_3:
4540 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4541 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4542 break;
4543 case CMAS_RX_AUTH_SEQ_4:
4544 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4545 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4546 break;
4547 case CMAS_AUTH_SEQ_2_PASS:
4548 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4549 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4550 break;
4551 case CMAS_AUTH_SEQ_2_FAIL:
4552 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4553 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4554 break;
4555 case CMAS_TX_ASSOC:
4556 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4557 IPW_DL_ASSOC, "TX_ASSOC\n");
4558 break;
4559 case CMAS_RX_ASSOC_RESP:
4560 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4561 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4562
4563 break;
4564 case CMAS_ASSOCIATED:
4565 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4566 IPW_DL_ASSOC, "ASSOCIATED\n");
4567 break;
4568 default:
4569 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4570 auth->state);
4571 break;
4572 }
4573 break;
4574 }
4575
4576 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4577 struct notif_channel_result *x =
4578 &notif->u.channel_result;
4579
4580 if (notif->size == sizeof(*x)) {
4581 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4582 x->channel_num);
4583 } else {
4584 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4585 "(should be %zd)\n",
4586 notif->size, sizeof(*x));
4587 }
4588 break;
4589 }
4590
4591 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4592 struct notif_scan_complete *x = &notif->u.scan_complete;
4593 if (notif->size == sizeof(*x)) {
4594 IPW_DEBUG_SCAN
4595 ("Scan completed: type %d, %d channels, "
4596 "%d status\n", x->scan_type,
4597 x->num_channels, x->status);
4598 } else {
4599 IPW_ERROR("Scan completed of wrong size %d "
4600 "(should be %zd)\n",
4601 notif->size, sizeof(*x));
4602 }
4603
4604 priv->status &=
4605 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4606
4607 wake_up_interruptible(&priv->wait_state);
4608 cancel_delayed_work(&priv->scan_check);
4609
4610 if (priv->status & STATUS_EXIT_PENDING)
4611 break;
4612
4613 priv->ieee->scans++;
4614
4615 #ifdef CONFIG_IPW2200_MONITOR
4616 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4617 priv->status |= STATUS_SCAN_FORCED;
4618 queue_delayed_work(priv->workqueue,
4619 &priv->request_scan, 0);
4620 break;
4621 }
4622 priv->status &= ~STATUS_SCAN_FORCED;
4623 #endif /* CONFIG_IPW2200_MONITOR */
4624
4625 if (!(priv->status & (STATUS_ASSOCIATED |
4626 STATUS_ASSOCIATING |
4627 STATUS_ROAMING |
4628 STATUS_DISASSOCIATING)))
4629 queue_work(priv->workqueue, &priv->associate);
4630 else if (priv->status & STATUS_ROAMING) {
4631 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4632 /* If a scan completed and we are in roam mode, then
4633 * the scan that completed was the one requested as a
4634 * result of entering roam... so, schedule the
4635 * roam work */
4636 queue_work(priv->workqueue,
4637 &priv->roam);
4638 else
4639 /* Don't schedule if we aborted the scan */
4640 priv->status &= ~STATUS_ROAMING;
4641 } else if (priv->status & STATUS_SCAN_PENDING)
4642 queue_delayed_work(priv->workqueue,
4643 &priv->request_scan, 0);
4644 else if (priv->config & CFG_BACKGROUND_SCAN
4645 && priv->status & STATUS_ASSOCIATED)
4646 queue_delayed_work(priv->workqueue,
4647 &priv->request_scan, HZ);
4648
4649 /* Send an empty event to user space.
4650 * We don't send the received data on the event because
4651 * it would require us to do complex transcoding, and
4652 * we want to minimise the work done in the irq handler
4653 * Use a request to extract the data.
4654 * Also, we generate this even for any scan, regardless
4655 * on how the scan was initiated. User space can just
4656 * sync on periodic scan to get fresh data...
4657 * Jean II */
4658 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE) {
4659 union iwreq_data wrqu;
4660
4661 wrqu.data.length = 0;
4662 wrqu.data.flags = 0;
4663 wireless_send_event(priv->net_dev, SIOCGIWSCAN,
4664 &wrqu, NULL);
4665 }
4666 break;
4667 }
4668
4669 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4670 struct notif_frag_length *x = &notif->u.frag_len;
4671
4672 if (notif->size == sizeof(*x))
4673 IPW_ERROR("Frag length: %d\n",
4674 le16_to_cpu(x->frag_length));
4675 else
4676 IPW_ERROR("Frag length of wrong size %d "
4677 "(should be %zd)\n",
4678 notif->size, sizeof(*x));
4679 break;
4680 }
4681
4682 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4683 struct notif_link_deterioration *x =
4684 &notif->u.link_deterioration;
4685
4686 if (notif->size == sizeof(*x)) {
4687 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4688 "link deterioration: type %d, cnt %d\n",
4689 x->silence_notification_type,
4690 x->silence_count);
4691 memcpy(&priv->last_link_deterioration, x,
4692 sizeof(*x));
4693 } else {
4694 IPW_ERROR("Link Deterioration of wrong size %d "
4695 "(should be %zd)\n",
4696 notif->size, sizeof(*x));
4697 }
4698 break;
4699 }
4700
4701 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4702 IPW_ERROR("Dino config\n");
4703 if (priv->hcmd
4704 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4705 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4706
4707 break;
4708 }
4709
4710 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4711 struct notif_beacon_state *x = &notif->u.beacon_state;
4712 if (notif->size != sizeof(*x)) {
4713 IPW_ERROR
4714 ("Beacon state of wrong size %d (should "
4715 "be %zd)\n", notif->size, sizeof(*x));
4716 break;
4717 }
4718
4719 if (le32_to_cpu(x->state) ==
4720 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4721 ipw_handle_missed_beacon(priv,
4722 le32_to_cpu(x->
4723 number));
4724
4725 break;
4726 }
4727
4728 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4729 struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4730 if (notif->size == sizeof(*x)) {
4731 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4732 "0x%02x station %d\n",
4733 x->key_state, x->security_type,
4734 x->station_index);
4735 break;
4736 }
4737
4738 IPW_ERROR
4739 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4740 notif->size, sizeof(*x));
4741 break;
4742 }
4743
4744 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4745 struct notif_calibration *x = &notif->u.calibration;
4746
4747 if (notif->size == sizeof(*x)) {
4748 memcpy(&priv->calib, x, sizeof(*x));
4749 IPW_DEBUG_INFO("TODO: Calibration\n");
4750 break;
4751 }
4752
4753 IPW_ERROR
4754 ("Calibration of wrong size %d (should be %zd)\n",
4755 notif->size, sizeof(*x));
4756 break;
4757 }
4758
4759 case HOST_NOTIFICATION_NOISE_STATS:{
4760 if (notif->size == sizeof(u32)) {
4761 priv->exp_avg_noise =
4762 exponential_average(priv->exp_avg_noise,
4763 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4764 DEPTH_NOISE);
4765 break;
4766 }
4767
4768 IPW_ERROR
4769 ("Noise stat is wrong size %d (should be %zd)\n",
4770 notif->size, sizeof(u32));
4771 break;
4772 }
4773
4774 default:
4775 IPW_DEBUG_NOTIF("Unknown notification: "
4776 "subtype=%d,flags=0x%2x,size=%d\n",
4777 notif->subtype, notif->flags, notif->size);
4778 }
4779 }
4780
4781 /**
4782 * Destroys all DMA structures and initialise them again
4783 *
4784 * @param priv
4785 * @return error code
4786 */
4787 static int ipw_queue_reset(struct ipw_priv *priv)
4788 {
4789 int rc = 0;
4790 /** @todo customize queue sizes */
4791 int nTx = 64, nTxCmd = 8;
4792 ipw_tx_queue_free(priv);
4793 /* Tx CMD queue */
4794 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4795 IPW_TX_CMD_QUEUE_READ_INDEX,
4796 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4797 IPW_TX_CMD_QUEUE_BD_BASE,
4798 IPW_TX_CMD_QUEUE_BD_SIZE);
4799 if (rc) {
4800 IPW_ERROR("Tx Cmd queue init failed\n");
4801 goto error;
4802 }
4803 /* Tx queue(s) */
4804 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4805 IPW_TX_QUEUE_0_READ_INDEX,
4806 IPW_TX_QUEUE_0_WRITE_INDEX,
4807 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4808 if (rc) {
4809 IPW_ERROR("Tx 0 queue init failed\n");
4810 goto error;
4811 }
4812 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4813 IPW_TX_QUEUE_1_READ_INDEX,
4814 IPW_TX_QUEUE_1_WRITE_INDEX,
4815 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4816 if (rc) {
4817 IPW_ERROR("Tx 1 queue init failed\n");
4818 goto error;
4819 }
4820 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4821 IPW_TX_QUEUE_2_READ_INDEX,
4822 IPW_TX_QUEUE_2_WRITE_INDEX,
4823 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4824 if (rc) {
4825 IPW_ERROR("Tx 2 queue init failed\n");
4826 goto error;
4827 }
4828 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4829 IPW_TX_QUEUE_3_READ_INDEX,
4830 IPW_TX_QUEUE_3_WRITE_INDEX,
4831 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4832 if (rc) {
4833 IPW_ERROR("Tx 3 queue init failed\n");
4834 goto error;
4835 }
4836 /* statistics */
4837 priv->rx_bufs_min = 0;
4838 priv->rx_pend_max = 0;
4839 return rc;
4840
4841 error:
4842 ipw_tx_queue_free(priv);
4843 return rc;
4844 }
4845
4846 /**
4847 * Reclaim Tx queue entries no more used by NIC.
4848 *
4849 * When FW adwances 'R' index, all entries between old and
4850 * new 'R' index need to be reclaimed. As result, some free space
4851 * forms. If there is enough free space (> low mark), wake Tx queue.
4852 *
4853 * @note Need to protect against garbage in 'R' index
4854 * @param priv
4855 * @param txq
4856 * @param qindex
4857 * @return Number of used entries remains in the queue
4858 */
4859 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4860 struct clx2_tx_queue *txq, int qindex)
4861 {
4862 u32 hw_tail;
4863 int used;
4864 struct clx2_queue *q = &txq->q;
4865
4866 hw_tail = ipw_read32(priv, q->reg_r);
4867 if (hw_tail >= q->n_bd) {
4868 IPW_ERROR
4869 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4870 hw_tail, q->n_bd);
4871 goto done;
4872 }
4873 for (; q->last_used != hw_tail;
4874 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4875 ipw_queue_tx_free_tfd(priv, txq);
4876 priv->tx_packets++;
4877 }
4878 done:
4879 if ((ipw_queue_space(q) > q->low_mark) &&
4880 (qindex >= 0) &&
4881 (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4882 netif_wake_queue(priv->net_dev);
4883 used = q->first_empty - q->last_used;
4884 if (used < 0)
4885 used += q->n_bd;
4886
4887 return used;
4888 }
4889
4890 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4891 int len, int sync)
4892 {
4893 struct clx2_tx_queue *txq = &priv->txq_cmd;
4894 struct clx2_queue *q = &txq->q;
4895 struct tfd_frame *tfd;
4896
4897 if (ipw_queue_space(q) < (sync ? 1 : 2)) {
4898 IPW_ERROR("No space for Tx\n");
4899 return -EBUSY;
4900 }
4901
4902 tfd = &txq->bd[q->first_empty];
4903 txq->txb[q->first_empty] = NULL;
4904
4905 memset(tfd, 0, sizeof(*tfd));
4906 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4907 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4908 priv->hcmd_seq++;
4909 tfd->u.cmd.index = hcmd;
4910 tfd->u.cmd.length = len;
4911 memcpy(tfd->u.cmd.payload, buf, len);
4912 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
4913 ipw_write32(priv, q->reg_w, q->first_empty);
4914 _ipw_read32(priv, 0x90);
4915
4916 return 0;
4917 }
4918
4919 /*
4920 * Rx theory of operation
4921 *
4922 * The host allocates 32 DMA target addresses and passes the host address
4923 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
4924 * 0 to 31
4925 *
4926 * Rx Queue Indexes
4927 * The host/firmware share two index registers for managing the Rx buffers.
4928 *
4929 * The READ index maps to the first position that the firmware may be writing
4930 * to -- the driver can read up to (but not including) this position and get
4931 * good data.
4932 * The READ index is managed by the firmware once the card is enabled.
4933 *
4934 * The WRITE index maps to the last position the driver has read from -- the
4935 * position preceding WRITE is the last slot the firmware can place a packet.
4936 *
4937 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
4938 * WRITE = READ.
4939 *
4940 * During initialization the host sets up the READ queue position to the first
4941 * INDEX position, and WRITE to the last (READ - 1 wrapped)
4942 *
4943 * When the firmware places a packet in a buffer it will advance the READ index
4944 * and fire the RX interrupt. The driver can then query the READ index and
4945 * process as many packets as possible, moving the WRITE index forward as it
4946 * resets the Rx queue buffers with new memory.
4947 *
4948 * The management in the driver is as follows:
4949 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
4950 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
4951 * to replensish the ipw->rxq->rx_free.
4952 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
4953 * ipw->rxq is replenished and the READ INDEX is updated (updating the
4954 * 'processed' and 'read' driver indexes as well)
4955 * + A received packet is processed and handed to the kernel network stack,
4956 * detached from the ipw->rxq. The driver 'processed' index is updated.
4957 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
4958 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
4959 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
4960 * were enough free buffers and RX_STALLED is set it is cleared.
4961 *
4962 *
4963 * Driver sequence:
4964 *
4965 * ipw_rx_queue_alloc() Allocates rx_free
4966 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
4967 * ipw_rx_queue_restock
4968 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
4969 * queue, updates firmware pointers, and updates
4970 * the WRITE index. If insufficient rx_free buffers
4971 * are available, schedules ipw_rx_queue_replenish
4972 *
4973 * -- enable interrupts --
4974 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
4975 * READ INDEX, detaching the SKB from the pool.
4976 * Moves the packet buffer from queue to rx_used.
4977 * Calls ipw_rx_queue_restock to refill any empty
4978 * slots.
4979 * ...
4980 *
4981 */
4982
4983 /*
4984 * If there are slots in the RX queue that need to be restocked,
4985 * and we have free pre-allocated buffers, fill the ranks as much
4986 * as we can pulling from rx_free.
4987 *
4988 * This moves the 'write' index forward to catch up with 'processed', and
4989 * also updates the memory address in the firmware to reference the new
4990 * target buffer.
4991 */
4992 static void ipw_rx_queue_restock(struct ipw_priv *priv)
4993 {
4994 struct ipw_rx_queue *rxq = priv->rxq;
4995 struct list_head *element;
4996 struct ipw_rx_mem_buffer *rxb;
4997 unsigned long flags;
4998 int write;
4999
5000 spin_lock_irqsave(&rxq->lock, flags);
5001 write = rxq->write;
5002 while ((rxq->write != rxq->processed) && (rxq->free_count)) {
5003 element = rxq->rx_free.next;
5004 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5005 list_del(element);
5006
5007 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5008 rxb->dma_addr);
5009 rxq->queue[rxq->write] = rxb;
5010 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5011 rxq->free_count--;
5012 }
5013 spin_unlock_irqrestore(&rxq->lock, flags);
5014
5015 /* If the pre-allocated buffer pool is dropping low, schedule to
5016 * refill it */
5017 if (rxq->free_count <= RX_LOW_WATERMARK)
5018 queue_work(priv->workqueue, &priv->rx_replenish);
5019
5020 /* If we've added more space for the firmware to place data, tell it */
5021 if (write != rxq->write)
5022 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5023 }
5024
5025 /*
5026 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5027 * Also restock the Rx queue via ipw_rx_queue_restock.
5028 *
5029 * This is called as a scheduled work item (except for during intialization)
5030 */
5031 static void ipw_rx_queue_replenish(void *data)
5032 {
5033 struct ipw_priv *priv = data;
5034 struct ipw_rx_queue *rxq = priv->rxq;
5035 struct list_head *element;
5036 struct ipw_rx_mem_buffer *rxb;
5037 unsigned long flags;
5038
5039 spin_lock_irqsave(&rxq->lock, flags);
5040 while (!list_empty(&rxq->rx_used)) {
5041 element = rxq->rx_used.next;
5042 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5043 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5044 if (!rxb->skb) {
5045 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5046 priv->net_dev->name);
5047 /* We don't reschedule replenish work here -- we will
5048 * call the restock method and if it still needs
5049 * more buffers it will schedule replenish */
5050 break;
5051 }
5052 list_del(element);
5053
5054 rxb->dma_addr =
5055 pci_map_single(priv->pci_dev, rxb->skb->data,
5056 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5057
5058 list_add_tail(&rxb->list, &rxq->rx_free);
5059 rxq->free_count++;
5060 }
5061 spin_unlock_irqrestore(&rxq->lock, flags);
5062
5063 ipw_rx_queue_restock(priv);
5064 }
5065
5066 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5067 {
5068 struct ipw_priv *priv =
5069 container_of(work, struct ipw_priv, rx_replenish);
5070 mutex_lock(&priv->mutex);
5071 ipw_rx_queue_replenish(priv);
5072 mutex_unlock(&priv->mutex);
5073 }
5074
5075 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5076 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5077 * This free routine walks the list of POOL entries and if SKB is set to
5078 * non NULL it is unmapped and freed
5079 */
5080 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5081 {
5082 int i;
5083
5084 if (!rxq)
5085 return;
5086
5087 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5088 if (rxq->pool[i].skb != NULL) {
5089 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5090 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5091 dev_kfree_skb(rxq->pool[i].skb);
5092 }
5093 }
5094
5095 kfree(rxq);
5096 }
5097
5098 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5099 {
5100 struct ipw_rx_queue *rxq;
5101 int i;
5102
5103 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5104 if (unlikely(!rxq)) {
5105 IPW_ERROR("memory allocation failed\n");
5106 return NULL;
5107 }
5108 spin_lock_init(&rxq->lock);
5109 INIT_LIST_HEAD(&rxq->rx_free);
5110 INIT_LIST_HEAD(&rxq->rx_used);
5111
5112 /* Fill the rx_used queue with _all_ of the Rx buffers */
5113 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5114 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5115
5116 /* Set us so that we have processed and used all buffers, but have
5117 * not restocked the Rx queue with fresh buffers */
5118 rxq->read = rxq->write = 0;
5119 rxq->processed = RX_QUEUE_SIZE - 1;
5120 rxq->free_count = 0;
5121
5122 return rxq;
5123 }
5124
5125 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5126 {
5127 rate &= ~IEEE80211_BASIC_RATE_MASK;
5128 if (ieee_mode == IEEE_A) {
5129 switch (rate) {
5130 case IEEE80211_OFDM_RATE_6MB:
5131 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5132 1 : 0;
5133 case IEEE80211_OFDM_RATE_9MB:
5134 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5135 1 : 0;
5136 case IEEE80211_OFDM_RATE_12MB:
5137 return priv->
5138 rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5139 case IEEE80211_OFDM_RATE_18MB:
5140 return priv->
5141 rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5142 case IEEE80211_OFDM_RATE_24MB:
5143 return priv->
5144 rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5145 case IEEE80211_OFDM_RATE_36MB:
5146 return priv->
5147 rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5148 case IEEE80211_OFDM_RATE_48MB:
5149 return priv->
5150 rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5151 case IEEE80211_OFDM_RATE_54MB:
5152 return priv->
5153 rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5154 default:
5155 return 0;
5156 }
5157 }
5158
5159 /* B and G mixed */
5160 switch (rate) {
5161 case IEEE80211_CCK_RATE_1MB:
5162 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5163 case IEEE80211_CCK_RATE_2MB:
5164 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5165 case IEEE80211_CCK_RATE_5MB:
5166 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5167 case IEEE80211_CCK_RATE_11MB:
5168 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5169 }
5170
5171 /* If we are limited to B modulations, bail at this point */
5172 if (ieee_mode == IEEE_B)
5173 return 0;
5174
5175 /* G */
5176 switch (rate) {
5177 case IEEE80211_OFDM_RATE_6MB:
5178 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5179 case IEEE80211_OFDM_RATE_9MB:
5180 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5181 case IEEE80211_OFDM_RATE_12MB:
5182 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5183 case IEEE80211_OFDM_RATE_18MB:
5184 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5185 case IEEE80211_OFDM_RATE_24MB:
5186 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5187 case IEEE80211_OFDM_RATE_36MB:
5188 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5189 case IEEE80211_OFDM_RATE_48MB:
5190 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5191 case IEEE80211_OFDM_RATE_54MB:
5192 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5193 }
5194
5195 return 0;
5196 }
5197
5198 static int ipw_compatible_rates(struct ipw_priv *priv,
5199 const struct ieee80211_network *network,
5200 struct ipw_supported_rates *rates)
5201 {
5202 int num_rates, i;
5203
5204 memset(rates, 0, sizeof(*rates));
5205 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5206 rates->num_rates = 0;
5207 for (i = 0; i < num_rates; i++) {
5208 if (!ipw_is_rate_in_mask(priv, network->mode,
5209 network->rates[i])) {
5210
5211 if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5212 IPW_DEBUG_SCAN("Adding masked mandatory "
5213 "rate %02X\n",
5214 network->rates[i]);
5215 rates->supported_rates[rates->num_rates++] =
5216 network->rates[i];
5217 continue;
5218 }
5219
5220 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5221 network->rates[i], priv->rates_mask);
5222 continue;
5223 }
5224
5225 rates->supported_rates[rates->num_rates++] = network->rates[i];
5226 }
5227
5228 num_rates = min(network->rates_ex_len,
5229 (u8) (IPW_MAX_RATES - num_rates));
5230 for (i = 0; i < num_rates; i++) {
5231 if (!ipw_is_rate_in_mask(priv, network->mode,
5232 network->rates_ex[i])) {
5233 if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5234 IPW_DEBUG_SCAN("Adding masked mandatory "
5235 "rate %02X\n",
5236 network->rates_ex[i]);
5237 rates->supported_rates[rates->num_rates++] =
5238 network->rates[i];
5239 continue;
5240 }
5241
5242 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5243 network->rates_ex[i], priv->rates_mask);
5244 continue;
5245 }
5246
5247 rates->supported_rates[rates->num_rates++] =
5248 network->rates_ex[i];
5249 }
5250
5251 return 1;
5252 }
5253
5254 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5255 const struct ipw_supported_rates *src)
5256 {
5257 u8 i;
5258 for (i = 0; i < src->num_rates; i++)
5259 dest->supported_rates[i] = src->supported_rates[i];
5260 dest->num_rates = src->num_rates;
5261 }
5262
5263 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5264 * mask should ever be used -- right now all callers to add the scan rates are
5265 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5266 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5267 u8 modulation, u32 rate_mask)
5268 {
5269 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5270 IEEE80211_BASIC_RATE_MASK : 0;
5271
5272 if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5273 rates->supported_rates[rates->num_rates++] =
5274 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5275
5276 if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5277 rates->supported_rates[rates->num_rates++] =
5278 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5279
5280 if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5281 rates->supported_rates[rates->num_rates++] = basic_mask |
5282 IEEE80211_CCK_RATE_5MB;
5283
5284 if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5285 rates->supported_rates[rates->num_rates++] = basic_mask |
5286 IEEE80211_CCK_RATE_11MB;
5287 }
5288
5289 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5290 u8 modulation, u32 rate_mask)
5291 {
5292 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5293 IEEE80211_BASIC_RATE_MASK : 0;
5294
5295 if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5296 rates->supported_rates[rates->num_rates++] = basic_mask |
5297 IEEE80211_OFDM_RATE_6MB;
5298
5299 if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5300 rates->supported_rates[rates->num_rates++] =
5301 IEEE80211_OFDM_RATE_9MB;
5302
5303 if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5304 rates->supported_rates[rates->num_rates++] = basic_mask |
5305 IEEE80211_OFDM_RATE_12MB;
5306
5307 if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5308 rates->supported_rates[rates->num_rates++] =
5309 IEEE80211_OFDM_RATE_18MB;
5310
5311 if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5312 rates->supported_rates[rates->num_rates++] = basic_mask |
5313 IEEE80211_OFDM_RATE_24MB;
5314
5315 if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5316 rates->supported_rates[rates->num_rates++] =
5317 IEEE80211_OFDM_RATE_36MB;
5318
5319 if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5320 rates->supported_rates[rates->num_rates++] =
5321 IEEE80211_OFDM_RATE_48MB;
5322
5323 if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5324 rates->supported_rates[rates->num_rates++] =
5325 IEEE80211_OFDM_RATE_54MB;
5326 }
5327
5328 struct ipw_network_match {
5329 struct ieee80211_network *network;
5330 struct ipw_supported_rates rates;
5331 };
5332
5333 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5334 struct ipw_network_match *match,
5335 struct ieee80211_network *network,
5336 int roaming)
5337 {
5338 struct ipw_supported_rates rates;
5339
5340 /* Verify that this network's capability is compatible with the
5341 * current mode (AdHoc or Infrastructure) */
5342 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5343 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5344 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded due to "
5345 "capability mismatch.\n",
5346 escape_essid(network->ssid, network->ssid_len),
5347 MAC_ARG(network->bssid));
5348 return 0;
5349 }
5350
5351 /* If we do not have an ESSID for this AP, we can not associate with
5352 * it */
5353 if (network->flags & NETWORK_EMPTY_ESSID) {
5354 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5355 "because of hidden ESSID.\n",
5356 escape_essid(network->ssid, network->ssid_len),
5357 MAC_ARG(network->bssid));
5358 return 0;
5359 }
5360
5361 if (unlikely(roaming)) {
5362 /* If we are roaming, then ensure check if this is a valid
5363 * network to try and roam to */
5364 if ((network->ssid_len != match->network->ssid_len) ||
5365 memcmp(network->ssid, match->network->ssid,
5366 network->ssid_len)) {
5367 IPW_DEBUG_MERGE("Netowrk '%s (" MAC_FMT ")' excluded "
5368 "because of non-network ESSID.\n",
5369 escape_essid(network->ssid,
5370 network->ssid_len),
5371 MAC_ARG(network->bssid));
5372 return 0;
5373 }
5374 } else {
5375 /* If an ESSID has been configured then compare the broadcast
5376 * ESSID to ours */
5377 if ((priv->config & CFG_STATIC_ESSID) &&
5378 ((network->ssid_len != priv->essid_len) ||
5379 memcmp(network->ssid, priv->essid,
5380 min(network->ssid_len, priv->essid_len)))) {
5381 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5382
5383 strncpy(escaped,
5384 escape_essid(network->ssid, network->ssid_len),
5385 sizeof(escaped));
5386 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5387 "because of ESSID mismatch: '%s'.\n",
5388 escaped, MAC_ARG(network->bssid),
5389 escape_essid(priv->essid,
5390 priv->essid_len));
5391 return 0;
5392 }
5393 }
5394
5395 /* If the old network rate is better than this one, don't bother
5396 * testing everything else. */
5397
5398 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5399 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5400 "current network.\n",
5401 escape_essid(match->network->ssid,
5402 match->network->ssid_len));
5403 return 0;
5404 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5405 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5406 "current network.\n",
5407 escape_essid(match->network->ssid,
5408 match->network->ssid_len));
5409 return 0;
5410 }
5411
5412 /* Now go through and see if the requested network is valid... */
5413 if (priv->ieee->scan_age != 0 &&
5414 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5415 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5416 "because of age: %ums.\n",
5417 escape_essid(network->ssid, network->ssid_len),
5418 MAC_ARG(network->bssid),
5419 jiffies_to_msecs(jiffies -
5420 network->last_scanned));
5421 return 0;
5422 }
5423
5424 if ((priv->config & CFG_STATIC_CHANNEL) &&
5425 (network->channel != priv->channel)) {
5426 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5427 "because of channel mismatch: %d != %d.\n",
5428 escape_essid(network->ssid, network->ssid_len),
5429 MAC_ARG(network->bssid),
5430 network->channel, priv->channel);
5431 return 0;
5432 }
5433
5434 /* Verify privacy compatability */
5435 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5436 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5437 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5438 "because of privacy mismatch: %s != %s.\n",
5439 escape_essid(network->ssid, network->ssid_len),
5440 MAC_ARG(network->bssid),
5441 priv->
5442 capability & CAP_PRIVACY_ON ? "on" : "off",
5443 network->
5444 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5445 "off");
5446 return 0;
5447 }
5448
5449 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5450 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5451 "because of the same BSSID match: " MAC_FMT
5452 ".\n", escape_essid(network->ssid,
5453 network->ssid_len),
5454 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5455 return 0;
5456 }
5457
5458 /* Filter out any incompatible freq / mode combinations */
5459 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5460 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5461 "because of invalid frequency/mode "
5462 "combination.\n",
5463 escape_essid(network->ssid, network->ssid_len),
5464 MAC_ARG(network->bssid));
5465 return 0;
5466 }
5467
5468 /* Ensure that the rates supported by the driver are compatible with
5469 * this AP, including verification of basic rates (mandatory) */
5470 if (!ipw_compatible_rates(priv, network, &rates)) {
5471 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5472 "because configured rate mask excludes "
5473 "AP mandatory rate.\n",
5474 escape_essid(network->ssid, network->ssid_len),
5475 MAC_ARG(network->bssid));
5476 return 0;
5477 }
5478
5479 if (rates.num_rates == 0) {
5480 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5481 "because of no compatible rates.\n",
5482 escape_essid(network->ssid, network->ssid_len),
5483 MAC_ARG(network->bssid));
5484 return 0;
5485 }
5486
5487 /* TODO: Perform any further minimal comparititive tests. We do not
5488 * want to put too much policy logic here; intelligent scan selection
5489 * should occur within a generic IEEE 802.11 user space tool. */
5490
5491 /* Set up 'new' AP to this network */
5492 ipw_copy_rates(&match->rates, &rates);
5493 match->network = network;
5494 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' is a viable match.\n",
5495 escape_essid(network->ssid, network->ssid_len),
5496 MAC_ARG(network->bssid));
5497
5498 return 1;
5499 }
5500
5501 static void ipw_merge_adhoc_network(struct work_struct *work)
5502 {
5503 struct ipw_priv *priv =
5504 container_of(work, struct ipw_priv, merge_networks);
5505 struct ieee80211_network *network = NULL;
5506 struct ipw_network_match match = {
5507 .network = priv->assoc_network
5508 };
5509
5510 if ((priv->status & STATUS_ASSOCIATED) &&
5511 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5512 /* First pass through ROAM process -- look for a better
5513 * network */
5514 unsigned long flags;
5515
5516 spin_lock_irqsave(&priv->ieee->lock, flags);
5517 list_for_each_entry(network, &priv->ieee->network_list, list) {
5518 if (network != priv->assoc_network)
5519 ipw_find_adhoc_network(priv, &match, network,
5520 1);
5521 }
5522 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5523
5524 if (match.network == priv->assoc_network) {
5525 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5526 "merge to.\n");
5527 return;
5528 }
5529
5530 mutex_lock(&priv->mutex);
5531 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5532 IPW_DEBUG_MERGE("remove network %s\n",
5533 escape_essid(priv->essid,
5534 priv->essid_len));
5535 ipw_remove_current_network(priv);
5536 }
5537
5538 ipw_disassociate(priv);
5539 priv->assoc_network = match.network;
5540 mutex_unlock(&priv->mutex);
5541 return;
5542 }
5543 }
5544
5545 static int ipw_best_network(struct ipw_priv *priv,
5546 struct ipw_network_match *match,
5547 struct ieee80211_network *network, int roaming)
5548 {
5549 struct ipw_supported_rates rates;
5550
5551 /* Verify that this network's capability is compatible with the
5552 * current mode (AdHoc or Infrastructure) */
5553 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5554 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5555 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5556 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5557 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to "
5558 "capability mismatch.\n",
5559 escape_essid(network->ssid, network->ssid_len),
5560 MAC_ARG(network->bssid));
5561 return 0;
5562 }
5563
5564 /* If we do not have an ESSID for this AP, we can not associate with
5565 * it */
5566 if (network->flags & NETWORK_EMPTY_ESSID) {
5567 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5568 "because of hidden ESSID.\n",
5569 escape_essid(network->ssid, network->ssid_len),
5570 MAC_ARG(network->bssid));
5571 return 0;
5572 }
5573
5574 if (unlikely(roaming)) {
5575 /* If we are roaming, then ensure check if this is a valid
5576 * network to try and roam to */
5577 if ((network->ssid_len != match->network->ssid_len) ||
5578 memcmp(network->ssid, match->network->ssid,
5579 network->ssid_len)) {
5580 IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded "
5581 "because of non-network ESSID.\n",
5582 escape_essid(network->ssid,
5583 network->ssid_len),
5584 MAC_ARG(network->bssid));
5585 return 0;
5586 }
5587 } else {
5588 /* If an ESSID has been configured then compare the broadcast
5589 * ESSID to ours */
5590 if ((priv->config & CFG_STATIC_ESSID) &&
5591 ((network->ssid_len != priv->essid_len) ||
5592 memcmp(network->ssid, priv->essid,
5593 min(network->ssid_len, priv->essid_len)))) {
5594 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5595 strncpy(escaped,
5596 escape_essid(network->ssid, network->ssid_len),
5597 sizeof(escaped));
5598 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5599 "because of ESSID mismatch: '%s'.\n",
5600 escaped, MAC_ARG(network->bssid),
5601 escape_essid(priv->essid,
5602 priv->essid_len));
5603 return 0;
5604 }
5605 }
5606
5607 /* If the old network rate is better than this one, don't bother
5608 * testing everything else. */
5609 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5610 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5611 strncpy(escaped,
5612 escape_essid(network->ssid, network->ssid_len),
5613 sizeof(escaped));
5614 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because "
5615 "'%s (" MAC_FMT ")' has a stronger signal.\n",
5616 escaped, MAC_ARG(network->bssid),
5617 escape_essid(match->network->ssid,
5618 match->network->ssid_len),
5619 MAC_ARG(match->network->bssid));
5620 return 0;
5621 }
5622
5623 /* If this network has already had an association attempt within the
5624 * last 3 seconds, do not try and associate again... */
5625 if (network->last_associate &&
5626 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5627 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5628 "because of storming (%ums since last "
5629 "assoc attempt).\n",
5630 escape_essid(network->ssid, network->ssid_len),
5631 MAC_ARG(network->bssid),
5632 jiffies_to_msecs(jiffies -
5633 network->last_associate));
5634 return 0;
5635 }
5636
5637 /* Now go through and see if the requested network is valid... */
5638 if (priv->ieee->scan_age != 0 &&
5639 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5640 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5641 "because of age: %ums.\n",
5642 escape_essid(network->ssid, network->ssid_len),
5643 MAC_ARG(network->bssid),
5644 jiffies_to_msecs(jiffies -
5645 network->last_scanned));
5646 return 0;
5647 }
5648
5649 if ((priv->config & CFG_STATIC_CHANNEL) &&
5650 (network->channel != priv->channel)) {
5651 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5652 "because of channel mismatch: %d != %d.\n",
5653 escape_essid(network->ssid, network->ssid_len),
5654 MAC_ARG(network->bssid),
5655 network->channel, priv->channel);
5656 return 0;
5657 }
5658
5659 /* Verify privacy compatability */
5660 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5661 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5662 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5663 "because of privacy mismatch: %s != %s.\n",
5664 escape_essid(network->ssid, network->ssid_len),
5665 MAC_ARG(network->bssid),
5666 priv->capability & CAP_PRIVACY_ON ? "on" :
5667 "off",
5668 network->capability &
5669 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5670 return 0;
5671 }
5672
5673 if ((priv->config & CFG_STATIC_BSSID) &&
5674 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5675 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5676 "because of BSSID mismatch: " MAC_FMT ".\n",
5677 escape_essid(network->ssid, network->ssid_len),
5678 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5679 return 0;
5680 }
5681
5682 /* Filter out any incompatible freq / mode combinations */
5683 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5684 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5685 "because of invalid frequency/mode "
5686 "combination.\n",
5687 escape_essid(network->ssid, network->ssid_len),
5688 MAC_ARG(network->bssid));
5689 return 0;
5690 }
5691
5692 /* Filter out invalid channel in current GEO */
5693 if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5694 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5695 "because of invalid channel in current GEO\n",
5696 escape_essid(network->ssid, network->ssid_len),
5697 MAC_ARG(network->bssid));
5698 return 0;
5699 }
5700
5701 /* Ensure that the rates supported by the driver are compatible with
5702 * this AP, including verification of basic rates (mandatory) */
5703 if (!ipw_compatible_rates(priv, network, &rates)) {
5704 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5705 "because configured rate mask excludes "
5706 "AP mandatory rate.\n",
5707 escape_essid(network->ssid, network->ssid_len),
5708 MAC_ARG(network->bssid));
5709 return 0;
5710 }
5711
5712 if (rates.num_rates == 0) {
5713 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5714 "because of no compatible rates.\n",
5715 escape_essid(network->ssid, network->ssid_len),
5716 MAC_ARG(network->bssid));
5717 return 0;
5718 }
5719
5720 /* TODO: Perform any further minimal comparititive tests. We do not
5721 * want to put too much policy logic here; intelligent scan selection
5722 * should occur within a generic IEEE 802.11 user space tool. */
5723
5724 /* Set up 'new' AP to this network */
5725 ipw_copy_rates(&match->rates, &rates);
5726 match->network = network;
5727
5728 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n",
5729 escape_essid(network->ssid, network->ssid_len),
5730 MAC_ARG(network->bssid));
5731
5732 return 1;
5733 }
5734
5735 static void ipw_adhoc_create(struct ipw_priv *priv,
5736 struct ieee80211_network *network)
5737 {
5738 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5739 int i;
5740
5741 /*
5742 * For the purposes of scanning, we can set our wireless mode
5743 * to trigger scans across combinations of bands, but when it
5744 * comes to creating a new ad-hoc network, we have tell the FW
5745 * exactly which band to use.
5746 *
5747 * We also have the possibility of an invalid channel for the
5748 * chossen band. Attempting to create a new ad-hoc network
5749 * with an invalid channel for wireless mode will trigger a
5750 * FW fatal error.
5751 *
5752 */
5753 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5754 case IEEE80211_52GHZ_BAND:
5755 network->mode = IEEE_A;
5756 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5757 BUG_ON(i == -1);
5758 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5759 IPW_WARNING("Overriding invalid channel\n");
5760 priv->channel = geo->a[0].channel;
5761 }
5762 break;
5763
5764 case IEEE80211_24GHZ_BAND:
5765 if (priv->ieee->mode & IEEE_G)
5766 network->mode = IEEE_G;
5767 else
5768 network->mode = IEEE_B;
5769 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5770 BUG_ON(i == -1);
5771 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5772 IPW_WARNING("Overriding invalid channel\n");
5773 priv->channel = geo->bg[0].channel;
5774 }
5775 break;
5776
5777 default:
5778 IPW_WARNING("Overriding invalid channel\n");
5779 if (priv->ieee->mode & IEEE_A) {
5780 network->mode = IEEE_A;
5781 priv->channel = geo->a[0].channel;
5782 } else if (priv->ieee->mode & IEEE_G) {
5783 network->mode = IEEE_G;
5784 priv->channel = geo->bg[0].channel;
5785 } else {
5786 network->mode = IEEE_B;
5787 priv->channel = geo->bg[0].channel;
5788 }
5789 break;
5790 }
5791
5792 network->channel = priv->channel;
5793 priv->config |= CFG_ADHOC_PERSIST;
5794 ipw_create_bssid(priv, network->bssid);
5795 network->ssid_len = priv->essid_len;
5796 memcpy(network->ssid, priv->essid, priv->essid_len);
5797 memset(&network->stats, 0, sizeof(network->stats));
5798 network->capability = WLAN_CAPABILITY_IBSS;
5799 if (!(priv->config & CFG_PREAMBLE_LONG))
5800 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5801 if (priv->capability & CAP_PRIVACY_ON)
5802 network->capability |= WLAN_CAPABILITY_PRIVACY;
5803 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5804 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5805 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5806 memcpy(network->rates_ex,
5807 &priv->rates.supported_rates[network->rates_len],
5808 network->rates_ex_len);
5809 network->last_scanned = 0;
5810 network->flags = 0;
5811 network->last_associate = 0;
5812 network->time_stamp[0] = 0;
5813 network->time_stamp[1] = 0;
5814 network->beacon_interval = 100; /* Default */
5815 network->listen_interval = 10; /* Default */
5816 network->atim_window = 0; /* Default */
5817 network->wpa_ie_len = 0;
5818 network->rsn_ie_len = 0;
5819 }
5820
5821 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5822 {
5823 struct ipw_tgi_tx_key key;
5824
5825 if (!(priv->ieee->sec.flags & (1 << index)))
5826 return;
5827
5828 key.key_id = index;
5829 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5830 key.security_type = type;
5831 key.station_index = 0; /* always 0 for BSS */
5832 key.flags = 0;
5833 /* 0 for new key; previous value of counter (after fatal error) */
5834 key.tx_counter[0] = cpu_to_le32(0);
5835 key.tx_counter[1] = cpu_to_le32(0);
5836
5837 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5838 }
5839
5840 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5841 {
5842 struct ipw_wep_key key;
5843 int i;
5844
5845 key.cmd_id = DINO_CMD_WEP_KEY;
5846 key.seq_num = 0;
5847
5848 /* Note: AES keys cannot be set for multiple times.
5849 * Only set it at the first time. */
5850 for (i = 0; i < 4; i++) {
5851 key.key_index = i | type;
5852 if (!(priv->ieee->sec.flags & (1 << i))) {
5853 key.key_size = 0;
5854 continue;
5855 }
5856
5857 key.key_size = priv->ieee->sec.key_sizes[i];
5858 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5859
5860 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5861 }
5862 }
5863
5864 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5865 {
5866 if (priv->ieee->host_encrypt)
5867 return;
5868
5869 switch (level) {
5870 case SEC_LEVEL_3:
5871 priv->sys_config.disable_unicast_decryption = 0;
5872 priv->ieee->host_decrypt = 0;
5873 break;
5874 case SEC_LEVEL_2:
5875 priv->sys_config.disable_unicast_decryption = 1;
5876 priv->ieee->host_decrypt = 1;
5877 break;
5878 case SEC_LEVEL_1:
5879 priv->sys_config.disable_unicast_decryption = 0;
5880 priv->ieee->host_decrypt = 0;
5881 break;
5882 case SEC_LEVEL_0:
5883 priv->sys_config.disable_unicast_decryption = 1;
5884 break;
5885 default:
5886 break;
5887 }
5888 }
5889
5890 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5891 {
5892 if (priv->ieee->host_encrypt)
5893 return;
5894
5895 switch (level) {
5896 case SEC_LEVEL_3:
5897 priv->sys_config.disable_multicast_decryption = 0;
5898 break;
5899 case SEC_LEVEL_2:
5900 priv->sys_config.disable_multicast_decryption = 1;
5901 break;
5902 case SEC_LEVEL_1:
5903 priv->sys_config.disable_multicast_decryption = 0;
5904 break;
5905 case SEC_LEVEL_0:
5906 priv->sys_config.disable_multicast_decryption = 1;
5907 break;
5908 default:
5909 break;
5910 }
5911 }
5912
5913 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5914 {
5915 switch (priv->ieee->sec.level) {
5916 case SEC_LEVEL_3:
5917 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5918 ipw_send_tgi_tx_key(priv,
5919 DCT_FLAG_EXT_SECURITY_CCM,
5920 priv->ieee->sec.active_key);
5921
5922 if (!priv->ieee->host_mc_decrypt)
5923 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5924 break;
5925 case SEC_LEVEL_2:
5926 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5927 ipw_send_tgi_tx_key(priv,
5928 DCT_FLAG_EXT_SECURITY_TKIP,
5929 priv->ieee->sec.active_key);
5930 break;
5931 case SEC_LEVEL_1:
5932 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
5933 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
5934 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
5935 break;
5936 case SEC_LEVEL_0:
5937 default:
5938 break;
5939 }
5940 }
5941
5942 static void ipw_adhoc_check(void *data)
5943 {
5944 struct ipw_priv *priv = data;
5945
5946 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
5947 !(priv->config & CFG_ADHOC_PERSIST)) {
5948 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
5949 IPW_DL_STATE | IPW_DL_ASSOC,
5950 "Missed beacon: %d - disassociate\n",
5951 priv->missed_adhoc_beacons);
5952 ipw_remove_current_network(priv);
5953 ipw_disassociate(priv);
5954 return;
5955 }
5956
5957 queue_delayed_work(priv->workqueue, &priv->adhoc_check,
5958 priv->assoc_request.beacon_interval);
5959 }
5960
5961 static void ipw_bg_adhoc_check(struct work_struct *work)
5962 {
5963 struct ipw_priv *priv =
5964 container_of(work, struct ipw_priv, adhoc_check.work);
5965 mutex_lock(&priv->mutex);
5966 ipw_adhoc_check(priv);
5967 mutex_unlock(&priv->mutex);
5968 }
5969
5970 static void ipw_debug_config(struct ipw_priv *priv)
5971 {
5972 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
5973 "[CFG 0x%08X]\n", priv->config);
5974 if (priv->config & CFG_STATIC_CHANNEL)
5975 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
5976 else
5977 IPW_DEBUG_INFO("Channel unlocked.\n");
5978 if (priv->config & CFG_STATIC_ESSID)
5979 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
5980 escape_essid(priv->essid, priv->essid_len));
5981 else
5982 IPW_DEBUG_INFO("ESSID unlocked.\n");
5983 if (priv->config & CFG_STATIC_BSSID)
5984 IPW_DEBUG_INFO("BSSID locked to " MAC_FMT "\n",
5985 MAC_ARG(priv->bssid));
5986 else
5987 IPW_DEBUG_INFO("BSSID unlocked.\n");
5988 if (priv->capability & CAP_PRIVACY_ON)
5989 IPW_DEBUG_INFO("PRIVACY on\n");
5990 else
5991 IPW_DEBUG_INFO("PRIVACY off\n");
5992 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
5993 }
5994
5995 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
5996 {
5997 /* TODO: Verify that this works... */
5998 struct ipw_fixed_rate fr = {
5999 .tx_rates = priv->rates_mask
6000 };
6001 u32 reg;
6002 u16 mask = 0;
6003
6004 /* Identify 'current FW band' and match it with the fixed
6005 * Tx rates */
6006
6007 switch (priv->ieee->freq_band) {
6008 case IEEE80211_52GHZ_BAND: /* A only */
6009 /* IEEE_A */
6010 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6011 /* Invalid fixed rate mask */
6012 IPW_DEBUG_WX
6013 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6014 fr.tx_rates = 0;
6015 break;
6016 }
6017
6018 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6019 break;
6020
6021 default: /* 2.4Ghz or Mixed */
6022 /* IEEE_B */
6023 if (mode == IEEE_B) {
6024 if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6025 /* Invalid fixed rate mask */
6026 IPW_DEBUG_WX
6027 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6028 fr.tx_rates = 0;
6029 }
6030 break;
6031 }
6032
6033 /* IEEE_G */
6034 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6035 IEEE80211_OFDM_RATES_MASK)) {
6036 /* Invalid fixed rate mask */
6037 IPW_DEBUG_WX
6038 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6039 fr.tx_rates = 0;
6040 break;
6041 }
6042
6043 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6044 mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6045 fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6046 }
6047
6048 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6049 mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6050 fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6051 }
6052
6053 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6054 mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6055 fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6056 }
6057
6058 fr.tx_rates |= mask;
6059 break;
6060 }
6061
6062 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6063 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6064 }
6065
6066 static void ipw_abort_scan(struct ipw_priv *priv)
6067 {
6068 int err;
6069
6070 if (priv->status & STATUS_SCAN_ABORTING) {
6071 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6072 return;
6073 }
6074 priv->status |= STATUS_SCAN_ABORTING;
6075
6076 err = ipw_send_scan_abort(priv);
6077 if (err)
6078 IPW_DEBUG_HC("Request to abort scan failed.\n");
6079 }
6080
6081 static void ipw_add_scan_channels(struct ipw_priv *priv,
6082 struct ipw_scan_request_ext *scan,
6083 int scan_type)
6084 {
6085 int channel_index = 0;
6086 const struct ieee80211_geo *geo;
6087 int i;
6088
6089 geo = ieee80211_get_geo(priv->ieee);
6090
6091 if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6092 int start = channel_index;
6093 for (i = 0; i < geo->a_channels; i++) {
6094 if ((priv->status & STATUS_ASSOCIATED) &&
6095 geo->a[i].channel == priv->channel)
6096 continue;
6097 channel_index++;
6098 scan->channels_list[channel_index] = geo->a[i].channel;
6099 ipw_set_scan_type(scan, channel_index,
6100 geo->a[i].
6101 flags & IEEE80211_CH_PASSIVE_ONLY ?
6102 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6103 scan_type);
6104 }
6105
6106 if (start != channel_index) {
6107 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6108 (channel_index - start);
6109 channel_index++;
6110 }
6111 }
6112
6113 if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6114 int start = channel_index;
6115 if (priv->config & CFG_SPEED_SCAN) {
6116 int index;
6117 u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6118 /* nop out the list */
6119 [0] = 0
6120 };
6121
6122 u8 channel;
6123 while (channel_index < IPW_SCAN_CHANNELS) {
6124 channel =
6125 priv->speed_scan[priv->speed_scan_pos];
6126 if (channel == 0) {
6127 priv->speed_scan_pos = 0;
6128 channel = priv->speed_scan[0];
6129 }
6130 if ((priv->status & STATUS_ASSOCIATED) &&
6131 channel == priv->channel) {
6132 priv->speed_scan_pos++;
6133 continue;
6134 }
6135
6136 /* If this channel has already been
6137 * added in scan, break from loop
6138 * and this will be the first channel
6139 * in the next scan.
6140 */
6141 if (channels[channel - 1] != 0)
6142 break;
6143
6144 channels[channel - 1] = 1;
6145 priv->speed_scan_pos++;
6146 channel_index++;
6147 scan->channels_list[channel_index] = channel;
6148 index =
6149 ieee80211_channel_to_index(priv->ieee, channel);
6150 ipw_set_scan_type(scan, channel_index,
6151 geo->bg[index].
6152 flags &
6153 IEEE80211_CH_PASSIVE_ONLY ?
6154 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6155 : scan_type);
6156 }
6157 } else {
6158 for (i = 0; i < geo->bg_channels; i++) {
6159 if ((priv->status & STATUS_ASSOCIATED) &&
6160 geo->bg[i].channel == priv->channel)
6161 continue;
6162 channel_index++;
6163 scan->channels_list[channel_index] =
6164 geo->bg[i].channel;
6165 ipw_set_scan_type(scan, channel_index,
6166 geo->bg[i].
6167 flags &
6168 IEEE80211_CH_PASSIVE_ONLY ?
6169 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6170 : scan_type);
6171 }
6172 }
6173
6174 if (start != channel_index) {
6175 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6176 (channel_index - start);
6177 }
6178 }
6179 }
6180
6181 static int ipw_request_scan_helper(struct ipw_priv *priv, int type)
6182 {
6183 struct ipw_scan_request_ext scan;
6184 int err = 0, scan_type;
6185
6186 if (!(priv->status & STATUS_INIT) ||
6187 (priv->status & STATUS_EXIT_PENDING))
6188 return 0;
6189
6190 mutex_lock(&priv->mutex);
6191
6192 if (priv->status & STATUS_SCANNING) {
6193 IPW_DEBUG_HC("Concurrent scan requested. Ignoring.\n");
6194 priv->status |= STATUS_SCAN_PENDING;
6195 goto done;
6196 }
6197
6198 if (!(priv->status & STATUS_SCAN_FORCED) &&
6199 priv->status & STATUS_SCAN_ABORTING) {
6200 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6201 priv->status |= STATUS_SCAN_PENDING;
6202 goto done;
6203 }
6204
6205 if (priv->status & STATUS_RF_KILL_MASK) {
6206 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6207 priv->status |= STATUS_SCAN_PENDING;
6208 goto done;
6209 }
6210
6211 memset(&scan, 0, sizeof(scan));
6212 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6213
6214 if (type == IW_SCAN_TYPE_PASSIVE) {
6215 IPW_DEBUG_WX("use passive scanning\n");
6216 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6217 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6218 cpu_to_le16(120);
6219 ipw_add_scan_channels(priv, &scan, scan_type);
6220 goto send_request;
6221 }
6222
6223 /* Use active scan by default. */
6224 if (priv->config & CFG_SPEED_SCAN)
6225 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6226 cpu_to_le16(30);
6227 else
6228 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6229 cpu_to_le16(20);
6230
6231 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6232 cpu_to_le16(20);
6233
6234 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6235
6236 #ifdef CONFIG_IPW2200_MONITOR
6237 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6238 u8 channel;
6239 u8 band = 0;
6240
6241 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6242 case IEEE80211_52GHZ_BAND:
6243 band = (u8) (IPW_A_MODE << 6) | 1;
6244 channel = priv->channel;
6245 break;
6246
6247 case IEEE80211_24GHZ_BAND:
6248 band = (u8) (IPW_B_MODE << 6) | 1;
6249 channel = priv->channel;
6250 break;
6251
6252 default:
6253 band = (u8) (IPW_B_MODE << 6) | 1;
6254 channel = 9;
6255 break;
6256 }
6257
6258 scan.channels_list[0] = band;
6259 scan.channels_list[1] = channel;
6260 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6261
6262 /* NOTE: The card will sit on this channel for this time
6263 * period. Scan aborts are timing sensitive and frequently
6264 * result in firmware restarts. As such, it is best to
6265 * set a small dwell_time here and just keep re-issuing
6266 * scans. Otherwise fast channel hopping will not actually
6267 * hop channels.
6268 *
6269 * TODO: Move SPEED SCAN support to all modes and bands */
6270 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6271 cpu_to_le16(2000);
6272 } else {
6273 #endif /* CONFIG_IPW2200_MONITOR */
6274 /* If we are roaming, then make this a directed scan for the
6275 * current network. Otherwise, ensure that every other scan
6276 * is a fast channel hop scan */
6277 if ((priv->status & STATUS_ROAMING)
6278 || (!(priv->status & STATUS_ASSOCIATED)
6279 && (priv->config & CFG_STATIC_ESSID)
6280 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6281 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6282 if (err) {
6283 IPW_DEBUG_HC("Attempt to send SSID command "
6284 "failed.\n");
6285 goto done;
6286 }
6287
6288 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6289 } else
6290 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6291
6292 ipw_add_scan_channels(priv, &scan, scan_type);
6293 #ifdef CONFIG_IPW2200_MONITOR
6294 }
6295 #endif
6296
6297 send_request:
6298 err = ipw_send_scan_request_ext(priv, &scan);
6299 if (err) {
6300 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6301 goto done;
6302 }
6303
6304 priv->status |= STATUS_SCANNING;
6305 priv->status &= ~STATUS_SCAN_PENDING;
6306 queue_delayed_work(priv->workqueue, &priv->scan_check,
6307 IPW_SCAN_CHECK_WATCHDOG);
6308 done:
6309 mutex_unlock(&priv->mutex);
6310 return err;
6311 }
6312
6313 static void ipw_request_passive_scan(struct work_struct *work)
6314 {
6315 struct ipw_priv *priv =
6316 container_of(work, struct ipw_priv, request_passive_scan);
6317 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE);
6318 }
6319
6320 static void ipw_request_scan(struct work_struct *work)
6321 {
6322 struct ipw_priv *priv =
6323 container_of(work, struct ipw_priv, request_scan.work);
6324 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE);
6325 }
6326
6327 static void ipw_bg_abort_scan(struct work_struct *work)
6328 {
6329 struct ipw_priv *priv =
6330 container_of(work, struct ipw_priv, abort_scan);
6331 mutex_lock(&priv->mutex);
6332 ipw_abort_scan(priv);
6333 mutex_unlock(&priv->mutex);
6334 }
6335
6336 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6337 {
6338 /* This is called when wpa_supplicant loads and closes the driver
6339 * interface. */
6340 priv->ieee->wpa_enabled = value;
6341 return 0;
6342 }
6343
6344 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6345 {
6346 struct ieee80211_device *ieee = priv->ieee;
6347 struct ieee80211_security sec = {
6348 .flags = SEC_AUTH_MODE,
6349 };
6350 int ret = 0;
6351
6352 if (value & IW_AUTH_ALG_SHARED_KEY) {
6353 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6354 ieee->open_wep = 0;
6355 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6356 sec.auth_mode = WLAN_AUTH_OPEN;
6357 ieee->open_wep = 1;
6358 } else if (value & IW_AUTH_ALG_LEAP) {
6359 sec.auth_mode = WLAN_AUTH_LEAP;
6360 ieee->open_wep = 1;
6361 } else
6362 return -EINVAL;
6363
6364 if (ieee->set_security)
6365 ieee->set_security(ieee->dev, &sec);
6366 else
6367 ret = -EOPNOTSUPP;
6368
6369 return ret;
6370 }
6371
6372 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6373 int wpa_ie_len)
6374 {
6375 /* make sure WPA is enabled */
6376 ipw_wpa_enable(priv, 1);
6377 }
6378
6379 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6380 char *capabilities, int length)
6381 {
6382 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6383
6384 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6385 capabilities);
6386 }
6387
6388 /*
6389 * WE-18 support
6390 */
6391
6392 /* SIOCSIWGENIE */
6393 static int ipw_wx_set_genie(struct net_device *dev,
6394 struct iw_request_info *info,
6395 union iwreq_data *wrqu, char *extra)
6396 {
6397 struct ipw_priv *priv = ieee80211_priv(dev);
6398 struct ieee80211_device *ieee = priv->ieee;
6399 u8 *buf;
6400 int err = 0;
6401
6402 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6403 (wrqu->data.length && extra == NULL))
6404 return -EINVAL;
6405
6406 if (wrqu->data.length) {
6407 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6408 if (buf == NULL) {
6409 err = -ENOMEM;
6410 goto out;
6411 }
6412
6413 memcpy(buf, extra, wrqu->data.length);
6414 kfree(ieee->wpa_ie);
6415 ieee->wpa_ie = buf;
6416 ieee->wpa_ie_len = wrqu->data.length;
6417 } else {
6418 kfree(ieee->wpa_ie);
6419 ieee->wpa_ie = NULL;
6420 ieee->wpa_ie_len = 0;
6421 }
6422
6423 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6424 out:
6425 return err;
6426 }
6427
6428 /* SIOCGIWGENIE */
6429 static int ipw_wx_get_genie(struct net_device *dev,
6430 struct iw_request_info *info,
6431 union iwreq_data *wrqu, char *extra)
6432 {
6433 struct ipw_priv *priv = ieee80211_priv(dev);
6434 struct ieee80211_device *ieee = priv->ieee;
6435 int err = 0;
6436
6437 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6438 wrqu->data.length = 0;
6439 goto out;
6440 }
6441
6442 if (wrqu->data.length < ieee->wpa_ie_len) {
6443 err = -E2BIG;
6444 goto out;
6445 }
6446
6447 wrqu->data.length = ieee->wpa_ie_len;
6448 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6449
6450 out:
6451 return err;
6452 }
6453
6454 static int wext_cipher2level(int cipher)
6455 {
6456 switch (cipher) {
6457 case IW_AUTH_CIPHER_NONE:
6458 return SEC_LEVEL_0;
6459 case IW_AUTH_CIPHER_WEP40:
6460 case IW_AUTH_CIPHER_WEP104:
6461 return SEC_LEVEL_1;
6462 case IW_AUTH_CIPHER_TKIP:
6463 return SEC_LEVEL_2;
6464 case IW_AUTH_CIPHER_CCMP:
6465 return SEC_LEVEL_3;
6466 default:
6467 return -1;
6468 }
6469 }
6470
6471 /* SIOCSIWAUTH */
6472 static int ipw_wx_set_auth(struct net_device *dev,
6473 struct iw_request_info *info,
6474 union iwreq_data *wrqu, char *extra)
6475 {
6476 struct ipw_priv *priv = ieee80211_priv(dev);
6477 struct ieee80211_device *ieee = priv->ieee;
6478 struct iw_param *param = &wrqu->param;
6479 struct ieee80211_crypt_data *crypt;
6480 unsigned long flags;
6481 int ret = 0;
6482
6483 switch (param->flags & IW_AUTH_INDEX) {
6484 case IW_AUTH_WPA_VERSION:
6485 break;
6486 case IW_AUTH_CIPHER_PAIRWISE:
6487 ipw_set_hw_decrypt_unicast(priv,
6488 wext_cipher2level(param->value));
6489 break;
6490 case IW_AUTH_CIPHER_GROUP:
6491 ipw_set_hw_decrypt_multicast(priv,
6492 wext_cipher2level(param->value));
6493 break;
6494 case IW_AUTH_KEY_MGMT:
6495 /*
6496 * ipw2200 does not use these parameters
6497 */
6498 break;
6499
6500 case IW_AUTH_TKIP_COUNTERMEASURES:
6501 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6502 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6503 break;
6504
6505 flags = crypt->ops->get_flags(crypt->priv);
6506
6507 if (param->value)
6508 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6509 else
6510 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6511
6512 crypt->ops->set_flags(flags, crypt->priv);
6513
6514 break;
6515
6516 case IW_AUTH_DROP_UNENCRYPTED:{
6517 /* HACK:
6518 *
6519 * wpa_supplicant calls set_wpa_enabled when the driver
6520 * is loaded and unloaded, regardless of if WPA is being
6521 * used. No other calls are made which can be used to
6522 * determine if encryption will be used or not prior to
6523 * association being expected. If encryption is not being
6524 * used, drop_unencrypted is set to false, else true -- we
6525 * can use this to determine if the CAP_PRIVACY_ON bit should
6526 * be set.
6527 */
6528 struct ieee80211_security sec = {
6529 .flags = SEC_ENABLED,
6530 .enabled = param->value,
6531 };
6532 priv->ieee->drop_unencrypted = param->value;
6533 /* We only change SEC_LEVEL for open mode. Others
6534 * are set by ipw_wpa_set_encryption.
6535 */
6536 if (!param->value) {
6537 sec.flags |= SEC_LEVEL;
6538 sec.level = SEC_LEVEL_0;
6539 } else {
6540 sec.flags |= SEC_LEVEL;
6541 sec.level = SEC_LEVEL_1;
6542 }
6543 if (priv->ieee->set_security)
6544 priv->ieee->set_security(priv->ieee->dev, &sec);
6545 break;
6546 }
6547
6548 case IW_AUTH_80211_AUTH_ALG:
6549 ret = ipw_wpa_set_auth_algs(priv, param->value);
6550 break;
6551
6552 case IW_AUTH_WPA_ENABLED:
6553 ret = ipw_wpa_enable(priv, param->value);
6554 ipw_disassociate(priv);
6555 break;
6556
6557 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6558 ieee->ieee802_1x = param->value;
6559 break;
6560
6561 case IW_AUTH_PRIVACY_INVOKED:
6562 ieee->privacy_invoked = param->value;
6563 break;
6564
6565 default:
6566 return -EOPNOTSUPP;
6567 }
6568 return ret;
6569 }
6570
6571 /* SIOCGIWAUTH */
6572 static int ipw_wx_get_auth(struct net_device *dev,
6573 struct iw_request_info *info,
6574 union iwreq_data *wrqu, char *extra)
6575 {
6576 struct ipw_priv *priv = ieee80211_priv(dev);
6577 struct ieee80211_device *ieee = priv->ieee;
6578 struct ieee80211_crypt_data *crypt;
6579 struct iw_param *param = &wrqu->param;
6580 int ret = 0;
6581
6582 switch (param->flags & IW_AUTH_INDEX) {
6583 case IW_AUTH_WPA_VERSION:
6584 case IW_AUTH_CIPHER_PAIRWISE:
6585 case IW_AUTH_CIPHER_GROUP:
6586 case IW_AUTH_KEY_MGMT:
6587 /*
6588 * wpa_supplicant will control these internally
6589 */
6590 ret = -EOPNOTSUPP;
6591 break;
6592
6593 case IW_AUTH_TKIP_COUNTERMEASURES:
6594 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6595 if (!crypt || !crypt->ops->get_flags)
6596 break;
6597
6598 param->value = (crypt->ops->get_flags(crypt->priv) &
6599 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6600
6601 break;
6602
6603 case IW_AUTH_DROP_UNENCRYPTED:
6604 param->value = ieee->drop_unencrypted;
6605 break;
6606
6607 case IW_AUTH_80211_AUTH_ALG:
6608 param->value = ieee->sec.auth_mode;
6609 break;
6610
6611 case IW_AUTH_WPA_ENABLED:
6612 param->value = ieee->wpa_enabled;
6613 break;
6614
6615 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6616 param->value = ieee->ieee802_1x;
6617 break;
6618
6619 case IW_AUTH_ROAMING_CONTROL:
6620 case IW_AUTH_PRIVACY_INVOKED:
6621 param->value = ieee->privacy_invoked;
6622 break;
6623
6624 default:
6625 return -EOPNOTSUPP;
6626 }
6627 return 0;
6628 }
6629
6630 /* SIOCSIWENCODEEXT */
6631 static int ipw_wx_set_encodeext(struct net_device *dev,
6632 struct iw_request_info *info,
6633 union iwreq_data *wrqu, char *extra)
6634 {
6635 struct ipw_priv *priv = ieee80211_priv(dev);
6636 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6637
6638 if (hwcrypto) {
6639 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6640 /* IPW HW can't build TKIP MIC,
6641 host decryption still needed */
6642 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6643 priv->ieee->host_mc_decrypt = 1;
6644 else {
6645 priv->ieee->host_encrypt = 0;
6646 priv->ieee->host_encrypt_msdu = 1;
6647 priv->ieee->host_decrypt = 1;
6648 }
6649 } else {
6650 priv->ieee->host_encrypt = 0;
6651 priv->ieee->host_encrypt_msdu = 0;
6652 priv->ieee->host_decrypt = 0;
6653 priv->ieee->host_mc_decrypt = 0;
6654 }
6655 }
6656
6657 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6658 }
6659
6660 /* SIOCGIWENCODEEXT */
6661 static int ipw_wx_get_encodeext(struct net_device *dev,
6662 struct iw_request_info *info,
6663 union iwreq_data *wrqu, char *extra)
6664 {
6665 struct ipw_priv *priv = ieee80211_priv(dev);
6666 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6667 }
6668
6669 /* SIOCSIWMLME */
6670 static int ipw_wx_set_mlme(struct net_device *dev,
6671 struct iw_request_info *info,
6672 union iwreq_data *wrqu, char *extra)
6673 {
6674 struct ipw_priv *priv = ieee80211_priv(dev);
6675 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6676 u16 reason;
6677
6678 reason = cpu_to_le16(mlme->reason_code);
6679
6680 switch (mlme->cmd) {
6681 case IW_MLME_DEAUTH:
6682 /* silently ignore */
6683 break;
6684
6685 case IW_MLME_DISASSOC:
6686 ipw_disassociate(priv);
6687 break;
6688
6689 default:
6690 return -EOPNOTSUPP;
6691 }
6692 return 0;
6693 }
6694
6695 #ifdef CONFIG_IPW2200_QOS
6696
6697 /* QoS */
6698 /*
6699 * get the modulation type of the current network or
6700 * the card current mode
6701 */
6702 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6703 {
6704 u8 mode = 0;
6705
6706 if (priv->status & STATUS_ASSOCIATED) {
6707 unsigned long flags;
6708
6709 spin_lock_irqsave(&priv->ieee->lock, flags);
6710 mode = priv->assoc_network->mode;
6711 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6712 } else {
6713 mode = priv->ieee->mode;
6714 }
6715 IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6716 return mode;
6717 }
6718
6719 /*
6720 * Handle management frame beacon and probe response
6721 */
6722 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6723 int active_network,
6724 struct ieee80211_network *network)
6725 {
6726 u32 size = sizeof(struct ieee80211_qos_parameters);
6727
6728 if (network->capability & WLAN_CAPABILITY_IBSS)
6729 network->qos_data.active = network->qos_data.supported;
6730
6731 if (network->flags & NETWORK_HAS_QOS_MASK) {
6732 if (active_network &&
6733 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6734 network->qos_data.active = network->qos_data.supported;
6735
6736 if ((network->qos_data.active == 1) && (active_network == 1) &&
6737 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6738 (network->qos_data.old_param_count !=
6739 network->qos_data.param_count)) {
6740 network->qos_data.old_param_count =
6741 network->qos_data.param_count;
6742 schedule_work(&priv->qos_activate);
6743 IPW_DEBUG_QOS("QoS parameters change call "
6744 "qos_activate\n");
6745 }
6746 } else {
6747 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6748 memcpy(&network->qos_data.parameters,
6749 &def_parameters_CCK, size);
6750 else
6751 memcpy(&network->qos_data.parameters,
6752 &def_parameters_OFDM, size);
6753
6754 if ((network->qos_data.active == 1) && (active_network == 1)) {
6755 IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6756 schedule_work(&priv->qos_activate);
6757 }
6758
6759 network->qos_data.active = 0;
6760 network->qos_data.supported = 0;
6761 }
6762 if ((priv->status & STATUS_ASSOCIATED) &&
6763 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6764 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6765 if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6766 !(network->flags & NETWORK_EMPTY_ESSID))
6767 if ((network->ssid_len ==
6768 priv->assoc_network->ssid_len) &&
6769 !memcmp(network->ssid,
6770 priv->assoc_network->ssid,
6771 network->ssid_len)) {
6772 queue_work(priv->workqueue,
6773 &priv->merge_networks);
6774 }
6775 }
6776
6777 return 0;
6778 }
6779
6780 /*
6781 * This function set up the firmware to support QoS. It sends
6782 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6783 */
6784 static int ipw_qos_activate(struct ipw_priv *priv,
6785 struct ieee80211_qos_data *qos_network_data)
6786 {
6787 int err;
6788 struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6789 struct ieee80211_qos_parameters *active_one = NULL;
6790 u32 size = sizeof(struct ieee80211_qos_parameters);
6791 u32 burst_duration;
6792 int i;
6793 u8 type;
6794
6795 type = ipw_qos_current_mode(priv);
6796
6797 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6798 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6799 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6800 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6801
6802 if (qos_network_data == NULL) {
6803 if (type == IEEE_B) {
6804 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6805 active_one = &def_parameters_CCK;
6806 } else
6807 active_one = &def_parameters_OFDM;
6808
6809 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6810 burst_duration = ipw_qos_get_burst_duration(priv);
6811 for (i = 0; i < QOS_QUEUE_NUM; i++)
6812 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6813 (u16)burst_duration;
6814 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6815 if (type == IEEE_B) {
6816 IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6817 type);
6818 if (priv->qos_data.qos_enable == 0)
6819 active_one = &def_parameters_CCK;
6820 else
6821 active_one = priv->qos_data.def_qos_parm_CCK;
6822 } else {
6823 if (priv->qos_data.qos_enable == 0)
6824 active_one = &def_parameters_OFDM;
6825 else
6826 active_one = priv->qos_data.def_qos_parm_OFDM;
6827 }
6828 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6829 } else {
6830 unsigned long flags;
6831 int active;
6832
6833 spin_lock_irqsave(&priv->ieee->lock, flags);
6834 active_one = &(qos_network_data->parameters);
6835 qos_network_data->old_param_count =
6836 qos_network_data->param_count;
6837 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6838 active = qos_network_data->supported;
6839 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6840
6841 if (active == 0) {
6842 burst_duration = ipw_qos_get_burst_duration(priv);
6843 for (i = 0; i < QOS_QUEUE_NUM; i++)
6844 qos_parameters[QOS_PARAM_SET_ACTIVE].
6845 tx_op_limit[i] = (u16)burst_duration;
6846 }
6847 }
6848
6849 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6850 for (i = 0; i < 3; i++) {
6851 int j;
6852 for (j = 0; j < QOS_QUEUE_NUM; j++) {
6853 qos_parameters[i].cw_min[j] = cpu_to_le16(qos_parameters[i].cw_min[j]);
6854 qos_parameters[i].cw_max[j] = cpu_to_le16(qos_parameters[i].cw_max[j]);
6855 qos_parameters[i].tx_op_limit[j] = cpu_to_le16(qos_parameters[i].tx_op_limit[j]);
6856 }
6857 }
6858
6859 err = ipw_send_qos_params_command(priv,
6860 (struct ieee80211_qos_parameters *)
6861 &(qos_parameters[0]));
6862 if (err)
6863 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6864
6865 return err;
6866 }
6867
6868 /*
6869 * send IPW_CMD_WME_INFO to the firmware
6870 */
6871 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6872 {
6873 int ret = 0;
6874 struct ieee80211_qos_information_element qos_info;
6875
6876 if (priv == NULL)
6877 return -1;
6878
6879 qos_info.elementID = QOS_ELEMENT_ID;
6880 qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6881
6882 qos_info.version = QOS_VERSION_1;
6883 qos_info.ac_info = 0;
6884
6885 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6886 qos_info.qui_type = QOS_OUI_TYPE;
6887 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6888
6889 ret = ipw_send_qos_info_command(priv, &qos_info);
6890 if (ret != 0) {
6891 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6892 }
6893 return ret;
6894 }
6895
6896 /*
6897 * Set the QoS parameter with the association request structure
6898 */
6899 static int ipw_qos_association(struct ipw_priv *priv,
6900 struct ieee80211_network *network)
6901 {
6902 int err = 0;
6903 struct ieee80211_qos_data *qos_data = NULL;
6904 struct ieee80211_qos_data ibss_data = {
6905 .supported = 1,
6906 .active = 1,
6907 };
6908
6909 switch (priv->ieee->iw_mode) {
6910 case IW_MODE_ADHOC:
6911 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
6912
6913 qos_data = &ibss_data;
6914 break;
6915
6916 case IW_MODE_INFRA:
6917 qos_data = &network->qos_data;
6918 break;
6919
6920 default:
6921 BUG();
6922 break;
6923 }
6924
6925 err = ipw_qos_activate(priv, qos_data);
6926 if (err) {
6927 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
6928 return err;
6929 }
6930
6931 if (priv->qos_data.qos_enable && qos_data->supported) {
6932 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
6933 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
6934 return ipw_qos_set_info_element(priv);
6935 }
6936
6937 return 0;
6938 }
6939
6940 /*
6941 * handling the beaconing responses. if we get different QoS setting
6942 * off the network from the associated setting, adjust the QoS
6943 * setting
6944 */
6945 static int ipw_qos_association_resp(struct ipw_priv *priv,
6946 struct ieee80211_network *network)
6947 {
6948 int ret = 0;
6949 unsigned long flags;
6950 u32 size = sizeof(struct ieee80211_qos_parameters);
6951 int set_qos_param = 0;
6952
6953 if ((priv == NULL) || (network == NULL) ||
6954 (priv->assoc_network == NULL))
6955 return ret;
6956
6957 if (!(priv->status & STATUS_ASSOCIATED))
6958 return ret;
6959
6960 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
6961 return ret;
6962
6963 spin_lock_irqsave(&priv->ieee->lock, flags);
6964 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
6965 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
6966 sizeof(struct ieee80211_qos_data));
6967 priv->assoc_network->qos_data.active = 1;
6968 if ((network->qos_data.old_param_count !=
6969 network->qos_data.param_count)) {
6970 set_qos_param = 1;
6971 network->qos_data.old_param_count =
6972 network->qos_data.param_count;
6973 }
6974
6975 } else {
6976 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
6977 memcpy(&priv->assoc_network->qos_data.parameters,
6978 &def_parameters_CCK, size);
6979 else
6980 memcpy(&priv->assoc_network->qos_data.parameters,
6981 &def_parameters_OFDM, size);
6982 priv->assoc_network->qos_data.active = 0;
6983 priv->assoc_network->qos_data.supported = 0;
6984 set_qos_param = 1;
6985 }
6986
6987 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6988
6989 if (set_qos_param == 1)
6990 schedule_work(&priv->qos_activate);
6991
6992 return ret;
6993 }
6994
6995 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
6996 {
6997 u32 ret = 0;
6998
6999 if ((priv == NULL))
7000 return 0;
7001
7002 if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7003 ret = priv->qos_data.burst_duration_CCK;
7004 else
7005 ret = priv->qos_data.burst_duration_OFDM;
7006
7007 return ret;
7008 }
7009
7010 /*
7011 * Initialize the setting of QoS global
7012 */
7013 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7014 int burst_enable, u32 burst_duration_CCK,
7015 u32 burst_duration_OFDM)
7016 {
7017 priv->qos_data.qos_enable = enable;
7018
7019 if (priv->qos_data.qos_enable) {
7020 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7021 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7022 IPW_DEBUG_QOS("QoS is enabled\n");
7023 } else {
7024 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7025 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7026 IPW_DEBUG_QOS("QoS is not enabled\n");
7027 }
7028
7029 priv->qos_data.burst_enable = burst_enable;
7030
7031 if (burst_enable) {
7032 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7033 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7034 } else {
7035 priv->qos_data.burst_duration_CCK = 0;
7036 priv->qos_data.burst_duration_OFDM = 0;
7037 }
7038 }
7039
7040 /*
7041 * map the packet priority to the right TX Queue
7042 */
7043 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7044 {
7045 if (priority > 7 || !priv->qos_data.qos_enable)
7046 priority = 0;
7047
7048 return from_priority_to_tx_queue[priority] - 1;
7049 }
7050
7051 static int ipw_is_qos_active(struct net_device *dev,
7052 struct sk_buff *skb)
7053 {
7054 struct ipw_priv *priv = ieee80211_priv(dev);
7055 struct ieee80211_qos_data *qos_data = NULL;
7056 int active, supported;
7057 u8 *daddr = skb->data + ETH_ALEN;
7058 int unicast = !is_multicast_ether_addr(daddr);
7059
7060 if (!(priv->status & STATUS_ASSOCIATED))
7061 return 0;
7062
7063 qos_data = &priv->assoc_network->qos_data;
7064
7065 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7066 if (unicast == 0)
7067 qos_data->active = 0;
7068 else
7069 qos_data->active = qos_data->supported;
7070 }
7071 active = qos_data->active;
7072 supported = qos_data->supported;
7073 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7074 "unicast %d\n",
7075 priv->qos_data.qos_enable, active, supported, unicast);
7076 if (active && priv->qos_data.qos_enable)
7077 return 1;
7078
7079 return 0;
7080
7081 }
7082 /*
7083 * add QoS parameter to the TX command
7084 */
7085 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7086 u16 priority,
7087 struct tfd_data *tfd)
7088 {
7089 int tx_queue_id = 0;
7090
7091
7092 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7093 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7094
7095 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7096 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7097 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7098 }
7099 return 0;
7100 }
7101
7102 /*
7103 * background support to run QoS activate functionality
7104 */
7105 static void ipw_bg_qos_activate(struct work_struct *work)
7106 {
7107 struct ipw_priv *priv =
7108 container_of(work, struct ipw_priv, qos_activate);
7109
7110 if (priv == NULL)
7111 return;
7112
7113 mutex_lock(&priv->mutex);
7114
7115 if (priv->status & STATUS_ASSOCIATED)
7116 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7117
7118 mutex_unlock(&priv->mutex);
7119 }
7120
7121 static int ipw_handle_probe_response(struct net_device *dev,
7122 struct ieee80211_probe_response *resp,
7123 struct ieee80211_network *network)
7124 {
7125 struct ipw_priv *priv = ieee80211_priv(dev);
7126 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7127 (network == priv->assoc_network));
7128
7129 ipw_qos_handle_probe_response(priv, active_network, network);
7130
7131 return 0;
7132 }
7133
7134 static int ipw_handle_beacon(struct net_device *dev,
7135 struct ieee80211_beacon *resp,
7136 struct ieee80211_network *network)
7137 {
7138 struct ipw_priv *priv = ieee80211_priv(dev);
7139 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7140 (network == priv->assoc_network));
7141
7142 ipw_qos_handle_probe_response(priv, active_network, network);
7143
7144 return 0;
7145 }
7146
7147 static int ipw_handle_assoc_response(struct net_device *dev,
7148 struct ieee80211_assoc_response *resp,
7149 struct ieee80211_network *network)
7150 {
7151 struct ipw_priv *priv = ieee80211_priv(dev);
7152 ipw_qos_association_resp(priv, network);
7153 return 0;
7154 }
7155
7156 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7157 *qos_param)
7158 {
7159 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7160 sizeof(*qos_param) * 3, qos_param);
7161 }
7162
7163 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7164 *qos_param)
7165 {
7166 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7167 qos_param);
7168 }
7169
7170 #endif /* CONFIG_IPW2200_QOS */
7171
7172 static int ipw_associate_network(struct ipw_priv *priv,
7173 struct ieee80211_network *network,
7174 struct ipw_supported_rates *rates, int roaming)
7175 {
7176 int err;
7177
7178 if (priv->config & CFG_FIXED_RATE)
7179 ipw_set_fixed_rate(priv, network->mode);
7180
7181 if (!(priv->config & CFG_STATIC_ESSID)) {
7182 priv->essid_len = min(network->ssid_len,
7183 (u8) IW_ESSID_MAX_SIZE);
7184 memcpy(priv->essid, network->ssid, priv->essid_len);
7185 }
7186
7187 network->last_associate = jiffies;
7188
7189 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7190 priv->assoc_request.channel = network->channel;
7191 priv->assoc_request.auth_key = 0;
7192
7193 if ((priv->capability & CAP_PRIVACY_ON) &&
7194 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7195 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7196 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7197
7198 if (priv->ieee->sec.level == SEC_LEVEL_1)
7199 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7200
7201 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7202 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7203 priv->assoc_request.auth_type = AUTH_LEAP;
7204 else
7205 priv->assoc_request.auth_type = AUTH_OPEN;
7206
7207 if (priv->ieee->wpa_ie_len) {
7208 priv->assoc_request.policy_support = 0x02; /* RSN active */
7209 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7210 priv->ieee->wpa_ie_len);
7211 }
7212
7213 /*
7214 * It is valid for our ieee device to support multiple modes, but
7215 * when it comes to associating to a given network we have to choose
7216 * just one mode.
7217 */
7218 if (network->mode & priv->ieee->mode & IEEE_A)
7219 priv->assoc_request.ieee_mode = IPW_A_MODE;
7220 else if (network->mode & priv->ieee->mode & IEEE_G)
7221 priv->assoc_request.ieee_mode = IPW_G_MODE;
7222 else if (network->mode & priv->ieee->mode & IEEE_B)
7223 priv->assoc_request.ieee_mode = IPW_B_MODE;
7224
7225 priv->assoc_request.capability = network->capability;
7226 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7227 && !(priv->config & CFG_PREAMBLE_LONG)) {
7228 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7229 } else {
7230 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7231
7232 /* Clear the short preamble if we won't be supporting it */
7233 priv->assoc_request.capability &=
7234 ~WLAN_CAPABILITY_SHORT_PREAMBLE;
7235 }
7236
7237 /* Clear capability bits that aren't used in Ad Hoc */
7238 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7239 priv->assoc_request.capability &=
7240 ~WLAN_CAPABILITY_SHORT_SLOT_TIME;
7241
7242 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7243 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7244 roaming ? "Rea" : "A",
7245 escape_essid(priv->essid, priv->essid_len),
7246 network->channel,
7247 ipw_modes[priv->assoc_request.ieee_mode],
7248 rates->num_rates,
7249 (priv->assoc_request.preamble_length ==
7250 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7251 network->capability &
7252 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7253 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7254 priv->capability & CAP_PRIVACY_ON ?
7255 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7256 "(open)") : "",
7257 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7258 priv->capability & CAP_PRIVACY_ON ?
7259 '1' + priv->ieee->sec.active_key : '.',
7260 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7261
7262 priv->assoc_request.beacon_interval = network->beacon_interval;
7263 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7264 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7265 priv->assoc_request.assoc_type = HC_IBSS_START;
7266 priv->assoc_request.assoc_tsf_msw = 0;
7267 priv->assoc_request.assoc_tsf_lsw = 0;
7268 } else {
7269 if (unlikely(roaming))
7270 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7271 else
7272 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7273 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
7274 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
7275 }
7276
7277 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7278
7279 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7280 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7281 priv->assoc_request.atim_window = network->atim_window;
7282 } else {
7283 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7284 priv->assoc_request.atim_window = 0;
7285 }
7286
7287 priv->assoc_request.listen_interval = network->listen_interval;
7288
7289 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7290 if (err) {
7291 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7292 return err;
7293 }
7294
7295 rates->ieee_mode = priv->assoc_request.ieee_mode;
7296 rates->purpose = IPW_RATE_CONNECT;
7297 ipw_send_supported_rates(priv, rates);
7298
7299 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7300 priv->sys_config.dot11g_auto_detection = 1;
7301 else
7302 priv->sys_config.dot11g_auto_detection = 0;
7303
7304 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7305 priv->sys_config.answer_broadcast_ssid_probe = 1;
7306 else
7307 priv->sys_config.answer_broadcast_ssid_probe = 0;
7308
7309 err = ipw_send_system_config(priv);
7310 if (err) {
7311 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7312 return err;
7313 }
7314
7315 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7316 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7317 if (err) {
7318 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7319 return err;
7320 }
7321
7322 /*
7323 * If preemption is enabled, it is possible for the association
7324 * to complete before we return from ipw_send_associate. Therefore
7325 * we have to be sure and update our priviate data first.
7326 */
7327 priv->channel = network->channel;
7328 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7329 priv->status |= STATUS_ASSOCIATING;
7330 priv->status &= ~STATUS_SECURITY_UPDATED;
7331
7332 priv->assoc_network = network;
7333
7334 #ifdef CONFIG_IPW2200_QOS
7335 ipw_qos_association(priv, network);
7336 #endif
7337
7338 err = ipw_send_associate(priv, &priv->assoc_request);
7339 if (err) {
7340 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7341 return err;
7342 }
7343
7344 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n",
7345 escape_essid(priv->essid, priv->essid_len),
7346 MAC_ARG(priv->bssid));
7347
7348 return 0;
7349 }
7350
7351 static void ipw_roam(void *data)
7352 {
7353 struct ipw_priv *priv = data;
7354 struct ieee80211_network *network = NULL;
7355 struct ipw_network_match match = {
7356 .network = priv->assoc_network
7357 };
7358
7359 /* The roaming process is as follows:
7360 *
7361 * 1. Missed beacon threshold triggers the roaming process by
7362 * setting the status ROAM bit and requesting a scan.
7363 * 2. When the scan completes, it schedules the ROAM work
7364 * 3. The ROAM work looks at all of the known networks for one that
7365 * is a better network than the currently associated. If none
7366 * found, the ROAM process is over (ROAM bit cleared)
7367 * 4. If a better network is found, a disassociation request is
7368 * sent.
7369 * 5. When the disassociation completes, the roam work is again
7370 * scheduled. The second time through, the driver is no longer
7371 * associated, and the newly selected network is sent an
7372 * association request.
7373 * 6. At this point ,the roaming process is complete and the ROAM
7374 * status bit is cleared.
7375 */
7376
7377 /* If we are no longer associated, and the roaming bit is no longer
7378 * set, then we are not actively roaming, so just return */
7379 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7380 return;
7381
7382 if (priv->status & STATUS_ASSOCIATED) {
7383 /* First pass through ROAM process -- look for a better
7384 * network */
7385 unsigned long flags;
7386 u8 rssi = priv->assoc_network->stats.rssi;
7387 priv->assoc_network->stats.rssi = -128;
7388 spin_lock_irqsave(&priv->ieee->lock, flags);
7389 list_for_each_entry(network, &priv->ieee->network_list, list) {
7390 if (network != priv->assoc_network)
7391 ipw_best_network(priv, &match, network, 1);
7392 }
7393 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7394 priv->assoc_network->stats.rssi = rssi;
7395
7396 if (match.network == priv->assoc_network) {
7397 IPW_DEBUG_ASSOC("No better APs in this network to "
7398 "roam to.\n");
7399 priv->status &= ~STATUS_ROAMING;
7400 ipw_debug_config(priv);
7401 return;
7402 }
7403
7404 ipw_send_disassociate(priv, 1);
7405 priv->assoc_network = match.network;
7406
7407 return;
7408 }
7409
7410 /* Second pass through ROAM process -- request association */
7411 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7412 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7413 priv->status &= ~STATUS_ROAMING;
7414 }
7415
7416 static void ipw_bg_roam(struct work_struct *work)
7417 {
7418 struct ipw_priv *priv =
7419 container_of(work, struct ipw_priv, roam);
7420 mutex_lock(&priv->mutex);
7421 ipw_roam(priv);
7422 mutex_unlock(&priv->mutex);
7423 }
7424
7425 static int ipw_associate(void *data)
7426 {
7427 struct ipw_priv *priv = data;
7428
7429 struct ieee80211_network *network = NULL;
7430 struct ipw_network_match match = {
7431 .network = NULL
7432 };
7433 struct ipw_supported_rates *rates;
7434 struct list_head *element;
7435 unsigned long flags;
7436
7437 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7438 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7439 return 0;
7440 }
7441
7442 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7443 IPW_DEBUG_ASSOC("Not attempting association (already in "
7444 "progress)\n");
7445 return 0;
7446 }
7447
7448 if (priv->status & STATUS_DISASSOCIATING) {
7449 IPW_DEBUG_ASSOC("Not attempting association (in "
7450 "disassociating)\n ");
7451 queue_work(priv->workqueue, &priv->associate);
7452 return 0;
7453 }
7454
7455 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7456 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7457 "initialized)\n");
7458 return 0;
7459 }
7460
7461 if (!(priv->config & CFG_ASSOCIATE) &&
7462 !(priv->config & (CFG_STATIC_ESSID |
7463 CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7464 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7465 return 0;
7466 }
7467
7468 /* Protect our use of the network_list */
7469 spin_lock_irqsave(&priv->ieee->lock, flags);
7470 list_for_each_entry(network, &priv->ieee->network_list, list)
7471 ipw_best_network(priv, &match, network, 0);
7472
7473 network = match.network;
7474 rates = &match.rates;
7475
7476 if (network == NULL &&
7477 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7478 priv->config & CFG_ADHOC_CREATE &&
7479 priv->config & CFG_STATIC_ESSID &&
7480 priv->config & CFG_STATIC_CHANNEL &&
7481 !list_empty(&priv->ieee->network_free_list)) {
7482 element = priv->ieee->network_free_list.next;
7483 network = list_entry(element, struct ieee80211_network, list);
7484 ipw_adhoc_create(priv, network);
7485 rates = &priv->rates;
7486 list_del(element);
7487 list_add_tail(&network->list, &priv->ieee->network_list);
7488 }
7489 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7490
7491 /* If we reached the end of the list, then we don't have any valid
7492 * matching APs */
7493 if (!network) {
7494 ipw_debug_config(priv);
7495
7496 if (!(priv->status & STATUS_SCANNING)) {
7497 if (!(priv->config & CFG_SPEED_SCAN))
7498 queue_delayed_work(priv->workqueue,
7499 &priv->request_scan,
7500 SCAN_INTERVAL);
7501 else
7502 queue_delayed_work(priv->workqueue,
7503 &priv->request_scan, 0);
7504 }
7505
7506 return 0;
7507 }
7508
7509 ipw_associate_network(priv, network, rates, 0);
7510
7511 return 1;
7512 }
7513
7514 static void ipw_bg_associate(struct work_struct *work)
7515 {
7516 struct ipw_priv *priv =
7517 container_of(work, struct ipw_priv, associate);
7518 mutex_lock(&priv->mutex);
7519 ipw_associate(priv);
7520 mutex_unlock(&priv->mutex);
7521 }
7522
7523 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7524 struct sk_buff *skb)
7525 {
7526 struct ieee80211_hdr *hdr;
7527 u16 fc;
7528
7529 hdr = (struct ieee80211_hdr *)skb->data;
7530 fc = le16_to_cpu(hdr->frame_ctl);
7531 if (!(fc & IEEE80211_FCTL_PROTECTED))
7532 return;
7533
7534 fc &= ~IEEE80211_FCTL_PROTECTED;
7535 hdr->frame_ctl = cpu_to_le16(fc);
7536 switch (priv->ieee->sec.level) {
7537 case SEC_LEVEL_3:
7538 /* Remove CCMP HDR */
7539 memmove(skb->data + IEEE80211_3ADDR_LEN,
7540 skb->data + IEEE80211_3ADDR_LEN + 8,
7541 skb->len - IEEE80211_3ADDR_LEN - 8);
7542 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7543 break;
7544 case SEC_LEVEL_2:
7545 break;
7546 case SEC_LEVEL_1:
7547 /* Remove IV */
7548 memmove(skb->data + IEEE80211_3ADDR_LEN,
7549 skb->data + IEEE80211_3ADDR_LEN + 4,
7550 skb->len - IEEE80211_3ADDR_LEN - 4);
7551 skb_trim(skb, skb->len - 8); /* IV + ICV */
7552 break;
7553 case SEC_LEVEL_0:
7554 break;
7555 default:
7556 printk(KERN_ERR "Unknow security level %d\n",
7557 priv->ieee->sec.level);
7558 break;
7559 }
7560 }
7561
7562 static void ipw_handle_data_packet(struct ipw_priv *priv,
7563 struct ipw_rx_mem_buffer *rxb,
7564 struct ieee80211_rx_stats *stats)
7565 {
7566 struct ieee80211_hdr_4addr *hdr;
7567 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7568
7569 /* We received data from the HW, so stop the watchdog */
7570 priv->net_dev->trans_start = jiffies;
7571
7572 /* We only process data packets if the
7573 * interface is open */
7574 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7575 skb_tailroom(rxb->skb))) {
7576 priv->ieee->stats.rx_errors++;
7577 priv->wstats.discard.misc++;
7578 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7579 return;
7580 } else if (unlikely(!netif_running(priv->net_dev))) {
7581 priv->ieee->stats.rx_dropped++;
7582 priv->wstats.discard.misc++;
7583 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7584 return;
7585 }
7586
7587 /* Advance skb->data to the start of the actual payload */
7588 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7589
7590 /* Set the size of the skb to the size of the frame */
7591 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7592
7593 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7594
7595 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7596 hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7597 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7598 (is_multicast_ether_addr(hdr->addr1) ?
7599 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7600 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7601
7602 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7603 priv->ieee->stats.rx_errors++;
7604 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7605 rxb->skb = NULL;
7606 __ipw_led_activity_on(priv);
7607 }
7608 }
7609
7610 #ifdef CONFIG_IPW2200_RADIOTAP
7611 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7612 struct ipw_rx_mem_buffer *rxb,
7613 struct ieee80211_rx_stats *stats)
7614 {
7615 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7616 struct ipw_rx_frame *frame = &pkt->u.frame;
7617
7618 /* initial pull of some data */
7619 u16 received_channel = frame->received_channel;
7620 u8 antennaAndPhy = frame->antennaAndPhy;
7621 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7622 u16 pktrate = frame->rate;
7623
7624 /* Magic struct that slots into the radiotap header -- no reason
7625 * to build this manually element by element, we can write it much
7626 * more efficiently than we can parse it. ORDER MATTERS HERE */
7627 struct ipw_rt_hdr *ipw_rt;
7628
7629 short len = le16_to_cpu(pkt->u.frame.length);
7630
7631 /* We received data from the HW, so stop the watchdog */
7632 priv->net_dev->trans_start = jiffies;
7633
7634 /* We only process data packets if the
7635 * interface is open */
7636 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7637 skb_tailroom(rxb->skb))) {
7638 priv->ieee->stats.rx_errors++;
7639 priv->wstats.discard.misc++;
7640 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7641 return;
7642 } else if (unlikely(!netif_running(priv->net_dev))) {
7643 priv->ieee->stats.rx_dropped++;
7644 priv->wstats.discard.misc++;
7645 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7646 return;
7647 }
7648
7649 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7650 * that now */
7651 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7652 /* FIXME: Should alloc bigger skb instead */
7653 priv->ieee->stats.rx_dropped++;
7654 priv->wstats.discard.misc++;
7655 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7656 return;
7657 }
7658
7659 /* copy the frame itself */
7660 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7661 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7662
7663 /* Zero the radiotap static buffer ... We only need to zero the bytes NOT
7664 * part of our real header, saves a little time.
7665 *
7666 * No longer necessary since we fill in all our data. Purge before merging
7667 * patch officially.
7668 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7669 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7670 */
7671
7672 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7673
7674 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7675 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7676 ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total header+data */
7677
7678 /* Big bitfield of all the fields we provide in radiotap */
7679 ipw_rt->rt_hdr.it_present =
7680 ((1 << IEEE80211_RADIOTAP_FLAGS) |
7681 (1 << IEEE80211_RADIOTAP_RATE) |
7682 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7683 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7684 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7685 (1 << IEEE80211_RADIOTAP_ANTENNA));
7686
7687 /* Zero the flags, we'll add to them as we go */
7688 ipw_rt->rt_flags = 0;
7689 ipw_rt->rt_tsf = 0ULL;
7690
7691 /* Convert signal to DBM */
7692 ipw_rt->rt_dbmsignal = antsignal;
7693
7694 /* Convert the channel data and set the flags */
7695 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7696 if (received_channel > 14) { /* 802.11a */
7697 ipw_rt->rt_chbitmask =
7698 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7699 } else if (antennaAndPhy & 32) { /* 802.11b */
7700 ipw_rt->rt_chbitmask =
7701 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7702 } else { /* 802.11g */
7703 ipw_rt->rt_chbitmask =
7704 (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7705 }
7706
7707 /* set the rate in multiples of 500k/s */
7708 switch (pktrate) {
7709 case IPW_TX_RATE_1MB:
7710 ipw_rt->rt_rate = 2;
7711 break;
7712 case IPW_TX_RATE_2MB:
7713 ipw_rt->rt_rate = 4;
7714 break;
7715 case IPW_TX_RATE_5MB:
7716 ipw_rt->rt_rate = 10;
7717 break;
7718 case IPW_TX_RATE_6MB:
7719 ipw_rt->rt_rate = 12;
7720 break;
7721 case IPW_TX_RATE_9MB:
7722 ipw_rt->rt_rate = 18;
7723 break;
7724 case IPW_TX_RATE_11MB:
7725 ipw_rt->rt_rate = 22;
7726 break;
7727 case IPW_TX_RATE_12MB:
7728 ipw_rt->rt_rate = 24;
7729 break;
7730 case IPW_TX_RATE_18MB:
7731 ipw_rt->rt_rate = 36;
7732 break;
7733 case IPW_TX_RATE_24MB:
7734 ipw_rt->rt_rate = 48;
7735 break;
7736 case IPW_TX_RATE_36MB:
7737 ipw_rt->rt_rate = 72;
7738 break;
7739 case IPW_TX_RATE_48MB:
7740 ipw_rt->rt_rate = 96;
7741 break;
7742 case IPW_TX_RATE_54MB:
7743 ipw_rt->rt_rate = 108;
7744 break;
7745 default:
7746 ipw_rt->rt_rate = 0;
7747 break;
7748 }
7749
7750 /* antenna number */
7751 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7752
7753 /* set the preamble flag if we have it */
7754 if ((antennaAndPhy & 64))
7755 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7756
7757 /* Set the size of the skb to the size of the frame */
7758 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7759
7760 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7761
7762 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7763 priv->ieee->stats.rx_errors++;
7764 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7765 rxb->skb = NULL;
7766 /* no LED during capture */
7767 }
7768 }
7769 #endif
7770
7771 #ifdef CONFIG_IPW2200_PROMISCUOUS
7772 #define ieee80211_is_probe_response(fc) \
7773 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7774 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7775
7776 #define ieee80211_is_management(fc) \
7777 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7778
7779 #define ieee80211_is_control(fc) \
7780 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7781
7782 #define ieee80211_is_data(fc) \
7783 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7784
7785 #define ieee80211_is_assoc_request(fc) \
7786 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7787
7788 #define ieee80211_is_reassoc_request(fc) \
7789 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7790
7791 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7792 struct ipw_rx_mem_buffer *rxb,
7793 struct ieee80211_rx_stats *stats)
7794 {
7795 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7796 struct ipw_rx_frame *frame = &pkt->u.frame;
7797 struct ipw_rt_hdr *ipw_rt;
7798
7799 /* First cache any information we need before we overwrite
7800 * the information provided in the skb from the hardware */
7801 struct ieee80211_hdr *hdr;
7802 u16 channel = frame->received_channel;
7803 u8 phy_flags = frame->antennaAndPhy;
7804 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7805 s8 noise = frame->noise;
7806 u8 rate = frame->rate;
7807 short len = le16_to_cpu(pkt->u.frame.length);
7808 struct sk_buff *skb;
7809 int hdr_only = 0;
7810 u16 filter = priv->prom_priv->filter;
7811
7812 /* If the filter is set to not include Rx frames then return */
7813 if (filter & IPW_PROM_NO_RX)
7814 return;
7815
7816 /* We received data from the HW, so stop the watchdog */
7817 priv->prom_net_dev->trans_start = jiffies;
7818
7819 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7820 priv->prom_priv->ieee->stats.rx_errors++;
7821 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7822 return;
7823 }
7824
7825 /* We only process data packets if the interface is open */
7826 if (unlikely(!netif_running(priv->prom_net_dev))) {
7827 priv->prom_priv->ieee->stats.rx_dropped++;
7828 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7829 return;
7830 }
7831
7832 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7833 * that now */
7834 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7835 /* FIXME: Should alloc bigger skb instead */
7836 priv->prom_priv->ieee->stats.rx_dropped++;
7837 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7838 return;
7839 }
7840
7841 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7842 if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
7843 if (filter & IPW_PROM_NO_MGMT)
7844 return;
7845 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7846 hdr_only = 1;
7847 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
7848 if (filter & IPW_PROM_NO_CTL)
7849 return;
7850 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7851 hdr_only = 1;
7852 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
7853 if (filter & IPW_PROM_NO_DATA)
7854 return;
7855 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7856 hdr_only = 1;
7857 }
7858
7859 /* Copy the SKB since this is for the promiscuous side */
7860 skb = skb_copy(rxb->skb, GFP_ATOMIC);
7861 if (skb == NULL) {
7862 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7863 return;
7864 }
7865
7866 /* copy the frame data to write after where the radiotap header goes */
7867 ipw_rt = (void *)skb->data;
7868
7869 if (hdr_only)
7870 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
7871
7872 memcpy(ipw_rt->payload, hdr, len);
7873
7874 /* Zero the radiotap static buffer ... We only need to zero the bytes
7875 * NOT part of our real header, saves a little time.
7876 *
7877 * No longer necessary since we fill in all our data. Purge before
7878 * merging patch officially.
7879 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7880 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7881 */
7882
7883 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7884 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7885 ipw_rt->rt_hdr.it_len = sizeof(*ipw_rt); /* total header+data */
7886
7887 /* Set the size of the skb to the size of the frame */
7888 skb_put(skb, ipw_rt->rt_hdr.it_len + len);
7889
7890 /* Big bitfield of all the fields we provide in radiotap */
7891 ipw_rt->rt_hdr.it_present =
7892 ((1 << IEEE80211_RADIOTAP_FLAGS) |
7893 (1 << IEEE80211_RADIOTAP_RATE) |
7894 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7895 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7896 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7897 (1 << IEEE80211_RADIOTAP_ANTENNA));
7898
7899 /* Zero the flags, we'll add to them as we go */
7900 ipw_rt->rt_flags = 0;
7901 ipw_rt->rt_tsf = 0ULL;
7902
7903 /* Convert to DBM */
7904 ipw_rt->rt_dbmsignal = signal;
7905 ipw_rt->rt_dbmnoise = noise;
7906
7907 /* Convert the channel data and set the flags */
7908 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
7909 if (channel > 14) { /* 802.11a */
7910 ipw_rt->rt_chbitmask =
7911 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7912 } else if (phy_flags & (1 << 5)) { /* 802.11b */
7913 ipw_rt->rt_chbitmask =
7914 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7915 } else { /* 802.11g */
7916 ipw_rt->rt_chbitmask =
7917 (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7918 }
7919
7920 /* set the rate in multiples of 500k/s */
7921 switch (rate) {
7922 case IPW_TX_RATE_1MB:
7923 ipw_rt->rt_rate = 2;
7924 break;
7925 case IPW_TX_RATE_2MB:
7926 ipw_rt->rt_rate = 4;
7927 break;
7928 case IPW_TX_RATE_5MB:
7929 ipw_rt->rt_rate = 10;
7930 break;
7931 case IPW_TX_RATE_6MB:
7932 ipw_rt->rt_rate = 12;
7933 break;
7934 case IPW_TX_RATE_9MB:
7935 ipw_rt->rt_rate = 18;
7936 break;
7937 case IPW_TX_RATE_11MB:
7938 ipw_rt->rt_rate = 22;
7939 break;
7940 case IPW_TX_RATE_12MB:
7941 ipw_rt->rt_rate = 24;
7942 break;
7943 case IPW_TX_RATE_18MB:
7944 ipw_rt->rt_rate = 36;
7945 break;
7946 case IPW_TX_RATE_24MB:
7947 ipw_rt->rt_rate = 48;
7948 break;
7949 case IPW_TX_RATE_36MB:
7950 ipw_rt->rt_rate = 72;
7951 break;
7952 case IPW_TX_RATE_48MB:
7953 ipw_rt->rt_rate = 96;
7954 break;
7955 case IPW_TX_RATE_54MB:
7956 ipw_rt->rt_rate = 108;
7957 break;
7958 default:
7959 ipw_rt->rt_rate = 0;
7960 break;
7961 }
7962
7963 /* antenna number */
7964 ipw_rt->rt_antenna = (phy_flags & 3);
7965
7966 /* set the preamble flag if we have it */
7967 if (phy_flags & (1 << 6))
7968 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7969
7970 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
7971
7972 if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
7973 priv->prom_priv->ieee->stats.rx_errors++;
7974 dev_kfree_skb_any(skb);
7975 }
7976 }
7977 #endif
7978
7979 static int is_network_packet(struct ipw_priv *priv,
7980 struct ieee80211_hdr_4addr *header)
7981 {
7982 /* Filter incoming packets to determine if they are targetted toward
7983 * this network, discarding packets coming from ourselves */
7984 switch (priv->ieee->iw_mode) {
7985 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
7986 /* packets from our adapter are dropped (echo) */
7987 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
7988 return 0;
7989
7990 /* {broad,multi}cast packets to our BSSID go through */
7991 if (is_multicast_ether_addr(header->addr1))
7992 return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
7993
7994 /* packets to our adapter go through */
7995 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7996 ETH_ALEN);
7997
7998 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
7999 /* packets from our adapter are dropped (echo) */
8000 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8001 return 0;
8002
8003 /* {broad,multi}cast packets to our BSS go through */
8004 if (is_multicast_ether_addr(header->addr1))
8005 return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8006
8007 /* packets to our adapter go through */
8008 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8009 ETH_ALEN);
8010 }
8011
8012 return 1;
8013 }
8014
8015 #define IPW_PACKET_RETRY_TIME HZ
8016
8017 static int is_duplicate_packet(struct ipw_priv *priv,
8018 struct ieee80211_hdr_4addr *header)
8019 {
8020 u16 sc = le16_to_cpu(header->seq_ctl);
8021 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8022 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8023 u16 *last_seq, *last_frag;
8024 unsigned long *last_time;
8025
8026 switch (priv->ieee->iw_mode) {
8027 case IW_MODE_ADHOC:
8028 {
8029 struct list_head *p;
8030 struct ipw_ibss_seq *entry = NULL;
8031 u8 *mac = header->addr2;
8032 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8033
8034 __list_for_each(p, &priv->ibss_mac_hash[index]) {
8035 entry =
8036 list_entry(p, struct ipw_ibss_seq, list);
8037 if (!memcmp(entry->mac, mac, ETH_ALEN))
8038 break;
8039 }
8040 if (p == &priv->ibss_mac_hash[index]) {
8041 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8042 if (!entry) {
8043 IPW_ERROR
8044 ("Cannot malloc new mac entry\n");
8045 return 0;
8046 }
8047 memcpy(entry->mac, mac, ETH_ALEN);
8048 entry->seq_num = seq;
8049 entry->frag_num = frag;
8050 entry->packet_time = jiffies;
8051 list_add(&entry->list,
8052 &priv->ibss_mac_hash[index]);
8053 return 0;
8054 }
8055 last_seq = &entry->seq_num;
8056 last_frag = &entry->frag_num;
8057 last_time = &entry->packet_time;
8058 break;
8059 }
8060 case IW_MODE_INFRA:
8061 last_seq = &priv->last_seq_num;
8062 last_frag = &priv->last_frag_num;
8063 last_time = &priv->last_packet_time;
8064 break;
8065 default:
8066 return 0;
8067 }
8068 if ((*last_seq == seq) &&
8069 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8070 if (*last_frag == frag)
8071 goto drop;
8072 if (*last_frag + 1 != frag)
8073 /* out-of-order fragment */
8074 goto drop;
8075 } else
8076 *last_seq = seq;
8077
8078 *last_frag = frag;
8079 *last_time = jiffies;
8080 return 0;
8081
8082 drop:
8083 /* Comment this line now since we observed the card receives
8084 * duplicate packets but the FCTL_RETRY bit is not set in the
8085 * IBSS mode with fragmentation enabled.
8086 BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
8087 return 1;
8088 }
8089
8090 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8091 struct ipw_rx_mem_buffer *rxb,
8092 struct ieee80211_rx_stats *stats)
8093 {
8094 struct sk_buff *skb = rxb->skb;
8095 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8096 struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8097 (skb->data + IPW_RX_FRAME_SIZE);
8098
8099 ieee80211_rx_mgt(priv->ieee, header, stats);
8100
8101 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8102 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8103 IEEE80211_STYPE_PROBE_RESP) ||
8104 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8105 IEEE80211_STYPE_BEACON))) {
8106 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8107 ipw_add_station(priv, header->addr2);
8108 }
8109
8110 if (priv->config & CFG_NET_STATS) {
8111 IPW_DEBUG_HC("sending stat packet\n");
8112
8113 /* Set the size of the skb to the size of the full
8114 * ipw header and 802.11 frame */
8115 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8116 IPW_RX_FRAME_SIZE);
8117
8118 /* Advance past the ipw packet header to the 802.11 frame */
8119 skb_pull(skb, IPW_RX_FRAME_SIZE);
8120
8121 /* Push the ieee80211_rx_stats before the 802.11 frame */
8122 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8123
8124 skb->dev = priv->ieee->dev;
8125
8126 /* Point raw at the ieee80211_stats */
8127 skb->mac.raw = skb->data;
8128
8129 skb->pkt_type = PACKET_OTHERHOST;
8130 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8131 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8132 netif_rx(skb);
8133 rxb->skb = NULL;
8134 }
8135 }
8136
8137 /*
8138 * Main entry function for recieving a packet with 80211 headers. This
8139 * should be called when ever the FW has notified us that there is a new
8140 * skb in the recieve queue.
8141 */
8142 static void ipw_rx(struct ipw_priv *priv)
8143 {
8144 struct ipw_rx_mem_buffer *rxb;
8145 struct ipw_rx_packet *pkt;
8146 struct ieee80211_hdr_4addr *header;
8147 u32 r, w, i;
8148 u8 network_packet;
8149
8150 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8151 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8152 i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
8153
8154 while (i != r) {
8155 rxb = priv->rxq->queue[i];
8156 if (unlikely(rxb == NULL)) {
8157 printk(KERN_CRIT "Queue not allocated!\n");
8158 break;
8159 }
8160 priv->rxq->queue[i] = NULL;
8161
8162 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8163 IPW_RX_BUF_SIZE,
8164 PCI_DMA_FROMDEVICE);
8165
8166 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8167 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8168 pkt->header.message_type,
8169 pkt->header.rx_seq_num, pkt->header.control_bits);
8170
8171 switch (pkt->header.message_type) {
8172 case RX_FRAME_TYPE: /* 802.11 frame */ {
8173 struct ieee80211_rx_stats stats = {
8174 .rssi = pkt->u.frame.rssi_dbm -
8175 IPW_RSSI_TO_DBM,
8176 .signal =
8177 le16_to_cpu(pkt->u.frame.rssi_dbm) -
8178 IPW_RSSI_TO_DBM + 0x100,
8179 .noise =
8180 le16_to_cpu(pkt->u.frame.noise),
8181 .rate = pkt->u.frame.rate,
8182 .mac_time = jiffies,
8183 .received_channel =
8184 pkt->u.frame.received_channel,
8185 .freq =
8186 (pkt->u.frame.
8187 control & (1 << 0)) ?
8188 IEEE80211_24GHZ_BAND :
8189 IEEE80211_52GHZ_BAND,
8190 .len = le16_to_cpu(pkt->u.frame.length),
8191 };
8192
8193 if (stats.rssi != 0)
8194 stats.mask |= IEEE80211_STATMASK_RSSI;
8195 if (stats.signal != 0)
8196 stats.mask |= IEEE80211_STATMASK_SIGNAL;
8197 if (stats.noise != 0)
8198 stats.mask |= IEEE80211_STATMASK_NOISE;
8199 if (stats.rate != 0)
8200 stats.mask |= IEEE80211_STATMASK_RATE;
8201
8202 priv->rx_packets++;
8203
8204 #ifdef CONFIG_IPW2200_PROMISCUOUS
8205 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8206 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8207 #endif
8208
8209 #ifdef CONFIG_IPW2200_MONITOR
8210 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8211 #ifdef CONFIG_IPW2200_RADIOTAP
8212
8213 ipw_handle_data_packet_monitor(priv,
8214 rxb,
8215 &stats);
8216 #else
8217 ipw_handle_data_packet(priv, rxb,
8218 &stats);
8219 #endif
8220 break;
8221 }
8222 #endif
8223
8224 header =
8225 (struct ieee80211_hdr_4addr *)(rxb->skb->
8226 data +
8227 IPW_RX_FRAME_SIZE);
8228 /* TODO: Check Ad-Hoc dest/source and make sure
8229 * that we are actually parsing these packets
8230 * correctly -- we should probably use the
8231 * frame control of the packet and disregard
8232 * the current iw_mode */
8233
8234 network_packet =
8235 is_network_packet(priv, header);
8236 if (network_packet && priv->assoc_network) {
8237 priv->assoc_network->stats.rssi =
8238 stats.rssi;
8239 priv->exp_avg_rssi =
8240 exponential_average(priv->exp_avg_rssi,
8241 stats.rssi, DEPTH_RSSI);
8242 }
8243
8244 IPW_DEBUG_RX("Frame: len=%u\n",
8245 le16_to_cpu(pkt->u.frame.length));
8246
8247 if (le16_to_cpu(pkt->u.frame.length) <
8248 ieee80211_get_hdrlen(le16_to_cpu(
8249 header->frame_ctl))) {
8250 IPW_DEBUG_DROP
8251 ("Received packet is too small. "
8252 "Dropping.\n");
8253 priv->ieee->stats.rx_errors++;
8254 priv->wstats.discard.misc++;
8255 break;
8256 }
8257
8258 switch (WLAN_FC_GET_TYPE
8259 (le16_to_cpu(header->frame_ctl))) {
8260
8261 case IEEE80211_FTYPE_MGMT:
8262 ipw_handle_mgmt_packet(priv, rxb,
8263 &stats);
8264 break;
8265
8266 case IEEE80211_FTYPE_CTL:
8267 break;
8268
8269 case IEEE80211_FTYPE_DATA:
8270 if (unlikely(!network_packet ||
8271 is_duplicate_packet(priv,
8272 header)))
8273 {
8274 IPW_DEBUG_DROP("Dropping: "
8275 MAC_FMT ", "
8276 MAC_FMT ", "
8277 MAC_FMT "\n",
8278 MAC_ARG(header->
8279 addr1),
8280 MAC_ARG(header->
8281 addr2),
8282 MAC_ARG(header->
8283 addr3));
8284 break;
8285 }
8286
8287 ipw_handle_data_packet(priv, rxb,
8288 &stats);
8289
8290 break;
8291 }
8292 break;
8293 }
8294
8295 case RX_HOST_NOTIFICATION_TYPE:{
8296 IPW_DEBUG_RX
8297 ("Notification: subtype=%02X flags=%02X size=%d\n",
8298 pkt->u.notification.subtype,
8299 pkt->u.notification.flags,
8300 pkt->u.notification.size);
8301 ipw_rx_notification(priv, &pkt->u.notification);
8302 break;
8303 }
8304
8305 default:
8306 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8307 pkt->header.message_type);
8308 break;
8309 }
8310
8311 /* For now we just don't re-use anything. We can tweak this
8312 * later to try and re-use notification packets and SKBs that
8313 * fail to Rx correctly */
8314 if (rxb->skb != NULL) {
8315 dev_kfree_skb_any(rxb->skb);
8316 rxb->skb = NULL;
8317 }
8318
8319 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8320 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8321 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8322
8323 i = (i + 1) % RX_QUEUE_SIZE;
8324 }
8325
8326 /* Backtrack one entry */
8327 priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
8328
8329 ipw_rx_queue_restock(priv);
8330 }
8331
8332 #define DEFAULT_RTS_THRESHOLD 2304U
8333 #define MIN_RTS_THRESHOLD 1U
8334 #define MAX_RTS_THRESHOLD 2304U
8335 #define DEFAULT_BEACON_INTERVAL 100U
8336 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8337 #define DEFAULT_LONG_RETRY_LIMIT 4U
8338
8339 /**
8340 * ipw_sw_reset
8341 * @option: options to control different reset behaviour
8342 * 0 = reset everything except the 'disable' module_param
8343 * 1 = reset everything and print out driver info (for probe only)
8344 * 2 = reset everything
8345 */
8346 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8347 {
8348 int band, modulation;
8349 int old_mode = priv->ieee->iw_mode;
8350
8351 /* Initialize module parameter values here */
8352 priv->config = 0;
8353
8354 /* We default to disabling the LED code as right now it causes
8355 * too many systems to lock up... */
8356 if (!led)
8357 priv->config |= CFG_NO_LED;
8358
8359 if (associate)
8360 priv->config |= CFG_ASSOCIATE;
8361 else
8362 IPW_DEBUG_INFO("Auto associate disabled.\n");
8363
8364 if (auto_create)
8365 priv->config |= CFG_ADHOC_CREATE;
8366 else
8367 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8368
8369 priv->config &= ~CFG_STATIC_ESSID;
8370 priv->essid_len = 0;
8371 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8372
8373 if (disable && option) {
8374 priv->status |= STATUS_RF_KILL_SW;
8375 IPW_DEBUG_INFO("Radio disabled.\n");
8376 }
8377
8378 if (channel != 0) {
8379 priv->config |= CFG_STATIC_CHANNEL;
8380 priv->channel = channel;
8381 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8382 /* TODO: Validate that provided channel is in range */
8383 }
8384 #ifdef CONFIG_IPW2200_QOS
8385 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8386 burst_duration_CCK, burst_duration_OFDM);
8387 #endif /* CONFIG_IPW2200_QOS */
8388
8389 switch (mode) {
8390 case 1:
8391 priv->ieee->iw_mode = IW_MODE_ADHOC;
8392 priv->net_dev->type = ARPHRD_ETHER;
8393
8394 break;
8395 #ifdef CONFIG_IPW2200_MONITOR
8396 case 2:
8397 priv->ieee->iw_mode = IW_MODE_MONITOR;
8398 #ifdef CONFIG_IPW2200_RADIOTAP
8399 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8400 #else
8401 priv->net_dev->type = ARPHRD_IEEE80211;
8402 #endif
8403 break;
8404 #endif
8405 default:
8406 case 0:
8407 priv->net_dev->type = ARPHRD_ETHER;
8408 priv->ieee->iw_mode = IW_MODE_INFRA;
8409 break;
8410 }
8411
8412 if (hwcrypto) {
8413 priv->ieee->host_encrypt = 0;
8414 priv->ieee->host_encrypt_msdu = 0;
8415 priv->ieee->host_decrypt = 0;
8416 priv->ieee->host_mc_decrypt = 0;
8417 }
8418 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8419
8420 /* IPW2200/2915 is abled to do hardware fragmentation. */
8421 priv->ieee->host_open_frag = 0;
8422
8423 if ((priv->pci_dev->device == 0x4223) ||
8424 (priv->pci_dev->device == 0x4224)) {
8425 if (option == 1)
8426 printk(KERN_INFO DRV_NAME
8427 ": Detected Intel PRO/Wireless 2915ABG Network "
8428 "Connection\n");
8429 priv->ieee->abg_true = 1;
8430 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8431 modulation = IEEE80211_OFDM_MODULATION |
8432 IEEE80211_CCK_MODULATION;
8433 priv->adapter = IPW_2915ABG;
8434 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8435 } else {
8436 if (option == 1)
8437 printk(KERN_INFO DRV_NAME
8438 ": Detected Intel PRO/Wireless 2200BG Network "
8439 "Connection\n");
8440
8441 priv->ieee->abg_true = 0;
8442 band = IEEE80211_24GHZ_BAND;
8443 modulation = IEEE80211_OFDM_MODULATION |
8444 IEEE80211_CCK_MODULATION;
8445 priv->adapter = IPW_2200BG;
8446 priv->ieee->mode = IEEE_G | IEEE_B;
8447 }
8448
8449 priv->ieee->freq_band = band;
8450 priv->ieee->modulation = modulation;
8451
8452 priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8453
8454 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8455 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8456
8457 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8458 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8459 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8460
8461 /* If power management is turned on, default to AC mode */
8462 priv->power_mode = IPW_POWER_AC;
8463 priv->tx_power = IPW_TX_POWER_DEFAULT;
8464
8465 return old_mode == priv->ieee->iw_mode;
8466 }
8467
8468 /*
8469 * This file defines the Wireless Extension handlers. It does not
8470 * define any methods of hardware manipulation and relies on the
8471 * functions defined in ipw_main to provide the HW interaction.
8472 *
8473 * The exception to this is the use of the ipw_get_ordinal()
8474 * function used to poll the hardware vs. making unecessary calls.
8475 *
8476 */
8477
8478 static int ipw_wx_get_name(struct net_device *dev,
8479 struct iw_request_info *info,
8480 union iwreq_data *wrqu, char *extra)
8481 {
8482 struct ipw_priv *priv = ieee80211_priv(dev);
8483 mutex_lock(&priv->mutex);
8484 if (priv->status & STATUS_RF_KILL_MASK)
8485 strcpy(wrqu->name, "radio off");
8486 else if (!(priv->status & STATUS_ASSOCIATED))
8487 strcpy(wrqu->name, "unassociated");
8488 else
8489 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8490 ipw_modes[priv->assoc_request.ieee_mode]);
8491 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8492 mutex_unlock(&priv->mutex);
8493 return 0;
8494 }
8495
8496 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8497 {
8498 if (channel == 0) {
8499 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8500 priv->config &= ~CFG_STATIC_CHANNEL;
8501 IPW_DEBUG_ASSOC("Attempting to associate with new "
8502 "parameters.\n");
8503 ipw_associate(priv);
8504 return 0;
8505 }
8506
8507 priv->config |= CFG_STATIC_CHANNEL;
8508
8509 if (priv->channel == channel) {
8510 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8511 channel);
8512 return 0;
8513 }
8514
8515 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8516 priv->channel = channel;
8517
8518 #ifdef CONFIG_IPW2200_MONITOR
8519 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8520 int i;
8521 if (priv->status & STATUS_SCANNING) {
8522 IPW_DEBUG_SCAN("Scan abort triggered due to "
8523 "channel change.\n");
8524 ipw_abort_scan(priv);
8525 }
8526
8527 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8528 udelay(10);
8529
8530 if (priv->status & STATUS_SCANNING)
8531 IPW_DEBUG_SCAN("Still scanning...\n");
8532 else
8533 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8534 1000 - i);
8535
8536 return 0;
8537 }
8538 #endif /* CONFIG_IPW2200_MONITOR */
8539
8540 /* Network configuration changed -- force [re]association */
8541 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8542 if (!ipw_disassociate(priv))
8543 ipw_associate(priv);
8544
8545 return 0;
8546 }
8547
8548 static int ipw_wx_set_freq(struct net_device *dev,
8549 struct iw_request_info *info,
8550 union iwreq_data *wrqu, char *extra)
8551 {
8552 struct ipw_priv *priv = ieee80211_priv(dev);
8553 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8554 struct iw_freq *fwrq = &wrqu->freq;
8555 int ret = 0, i;
8556 u8 channel, flags;
8557 int band;
8558
8559 if (fwrq->m == 0) {
8560 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8561 mutex_lock(&priv->mutex);
8562 ret = ipw_set_channel(priv, 0);
8563 mutex_unlock(&priv->mutex);
8564 return ret;
8565 }
8566 /* if setting by freq convert to channel */
8567 if (fwrq->e == 1) {
8568 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8569 if (channel == 0)
8570 return -EINVAL;
8571 } else
8572 channel = fwrq->m;
8573
8574 if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8575 return -EINVAL;
8576
8577 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8578 i = ieee80211_channel_to_index(priv->ieee, channel);
8579 if (i == -1)
8580 return -EINVAL;
8581
8582 flags = (band == IEEE80211_24GHZ_BAND) ?
8583 geo->bg[i].flags : geo->a[i].flags;
8584 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8585 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8586 return -EINVAL;
8587 }
8588 }
8589
8590 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8591 mutex_lock(&priv->mutex);
8592 ret = ipw_set_channel(priv, channel);
8593 mutex_unlock(&priv->mutex);
8594 return ret;
8595 }
8596
8597 static int ipw_wx_get_freq(struct net_device *dev,
8598 struct iw_request_info *info,
8599 union iwreq_data *wrqu, char *extra)
8600 {
8601 struct ipw_priv *priv = ieee80211_priv(dev);
8602
8603 wrqu->freq.e = 0;
8604
8605 /* If we are associated, trying to associate, or have a statically
8606 * configured CHANNEL then return that; otherwise return ANY */
8607 mutex_lock(&priv->mutex);
8608 if (priv->config & CFG_STATIC_CHANNEL ||
8609 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8610 int i;
8611
8612 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8613 BUG_ON(i == -1);
8614 wrqu->freq.e = 1;
8615
8616 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8617 case IEEE80211_52GHZ_BAND:
8618 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8619 break;
8620
8621 case IEEE80211_24GHZ_BAND:
8622 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8623 break;
8624
8625 default:
8626 BUG();
8627 }
8628 } else
8629 wrqu->freq.m = 0;
8630
8631 mutex_unlock(&priv->mutex);
8632 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8633 return 0;
8634 }
8635
8636 static int ipw_wx_set_mode(struct net_device *dev,
8637 struct iw_request_info *info,
8638 union iwreq_data *wrqu, char *extra)
8639 {
8640 struct ipw_priv *priv = ieee80211_priv(dev);
8641 int err = 0;
8642
8643 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8644
8645 switch (wrqu->mode) {
8646 #ifdef CONFIG_IPW2200_MONITOR
8647 case IW_MODE_MONITOR:
8648 #endif
8649 case IW_MODE_ADHOC:
8650 case IW_MODE_INFRA:
8651 break;
8652 case IW_MODE_AUTO:
8653 wrqu->mode = IW_MODE_INFRA;
8654 break;
8655 default:
8656 return -EINVAL;
8657 }
8658 if (wrqu->mode == priv->ieee->iw_mode)
8659 return 0;
8660
8661 mutex_lock(&priv->mutex);
8662
8663 ipw_sw_reset(priv, 0);
8664
8665 #ifdef CONFIG_IPW2200_MONITOR
8666 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8667 priv->net_dev->type = ARPHRD_ETHER;
8668
8669 if (wrqu->mode == IW_MODE_MONITOR)
8670 #ifdef CONFIG_IPW2200_RADIOTAP
8671 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8672 #else
8673 priv->net_dev->type = ARPHRD_IEEE80211;
8674 #endif
8675 #endif /* CONFIG_IPW2200_MONITOR */
8676
8677 /* Free the existing firmware and reset the fw_loaded
8678 * flag so ipw_load() will bring in the new firmawre */
8679 free_firmware();
8680
8681 priv->ieee->iw_mode = wrqu->mode;
8682
8683 queue_work(priv->workqueue, &priv->adapter_restart);
8684 mutex_unlock(&priv->mutex);
8685 return err;
8686 }
8687
8688 static int ipw_wx_get_mode(struct net_device *dev,
8689 struct iw_request_info *info,
8690 union iwreq_data *wrqu, char *extra)
8691 {
8692 struct ipw_priv *priv = ieee80211_priv(dev);
8693 mutex_lock(&priv->mutex);
8694 wrqu->mode = priv->ieee->iw_mode;
8695 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8696 mutex_unlock(&priv->mutex);
8697 return 0;
8698 }
8699
8700 /* Values are in microsecond */
8701 static const s32 timeout_duration[] = {
8702 350000,
8703 250000,
8704 75000,
8705 37000,
8706 25000,
8707 };
8708
8709 static const s32 period_duration[] = {
8710 400000,
8711 700000,
8712 1000000,
8713 1000000,
8714 1000000
8715 };
8716
8717 static int ipw_wx_get_range(struct net_device *dev,
8718 struct iw_request_info *info,
8719 union iwreq_data *wrqu, char *extra)
8720 {
8721 struct ipw_priv *priv = ieee80211_priv(dev);
8722 struct iw_range *range = (struct iw_range *)extra;
8723 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8724 int i = 0, j;
8725
8726 wrqu->data.length = sizeof(*range);
8727 memset(range, 0, sizeof(*range));
8728
8729 /* 54Mbs == ~27 Mb/s real (802.11g) */
8730 range->throughput = 27 * 1000 * 1000;
8731
8732 range->max_qual.qual = 100;
8733 /* TODO: Find real max RSSI and stick here */
8734 range->max_qual.level = 0;
8735 range->max_qual.noise = 0;
8736 range->max_qual.updated = 7; /* Updated all three */
8737
8738 range->avg_qual.qual = 70;
8739 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8740 range->avg_qual.level = 0; /* FIXME to real average level */
8741 range->avg_qual.noise = 0;
8742 range->avg_qual.updated = 7; /* Updated all three */
8743 mutex_lock(&priv->mutex);
8744 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8745
8746 for (i = 0; i < range->num_bitrates; i++)
8747 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8748 500000;
8749
8750 range->max_rts = DEFAULT_RTS_THRESHOLD;
8751 range->min_frag = MIN_FRAG_THRESHOLD;
8752 range->max_frag = MAX_FRAG_THRESHOLD;
8753
8754 range->encoding_size[0] = 5;
8755 range->encoding_size[1] = 13;
8756 range->num_encoding_sizes = 2;
8757 range->max_encoding_tokens = WEP_KEYS;
8758
8759 /* Set the Wireless Extension versions */
8760 range->we_version_compiled = WIRELESS_EXT;
8761 range->we_version_source = 18;
8762
8763 i = 0;
8764 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8765 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8766 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8767 (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8768 continue;
8769
8770 range->freq[i].i = geo->bg[j].channel;
8771 range->freq[i].m = geo->bg[j].freq * 100000;
8772 range->freq[i].e = 1;
8773 i++;
8774 }
8775 }
8776
8777 if (priv->ieee->mode & IEEE_A) {
8778 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8779 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8780 (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8781 continue;
8782
8783 range->freq[i].i = geo->a[j].channel;
8784 range->freq[i].m = geo->a[j].freq * 100000;
8785 range->freq[i].e = 1;
8786 i++;
8787 }
8788 }
8789
8790 range->num_channels = i;
8791 range->num_frequency = i;
8792
8793 mutex_unlock(&priv->mutex);
8794
8795 /* Event capability (kernel + driver) */
8796 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8797 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8798 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8799 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8800 range->event_capa[1] = IW_EVENT_CAPA_K_1;
8801
8802 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8803 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8804
8805 IPW_DEBUG_WX("GET Range\n");
8806 return 0;
8807 }
8808
8809 static int ipw_wx_set_wap(struct net_device *dev,
8810 struct iw_request_info *info,
8811 union iwreq_data *wrqu, char *extra)
8812 {
8813 struct ipw_priv *priv = ieee80211_priv(dev);
8814
8815 static const unsigned char any[] = {
8816 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8817 };
8818 static const unsigned char off[] = {
8819 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8820 };
8821
8822 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8823 return -EINVAL;
8824 mutex_lock(&priv->mutex);
8825 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8826 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8827 /* we disable mandatory BSSID association */
8828 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8829 priv->config &= ~CFG_STATIC_BSSID;
8830 IPW_DEBUG_ASSOC("Attempting to associate with new "
8831 "parameters.\n");
8832 ipw_associate(priv);
8833 mutex_unlock(&priv->mutex);
8834 return 0;
8835 }
8836
8837 priv->config |= CFG_STATIC_BSSID;
8838 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8839 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8840 mutex_unlock(&priv->mutex);
8841 return 0;
8842 }
8843
8844 IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n",
8845 MAC_ARG(wrqu->ap_addr.sa_data));
8846
8847 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8848
8849 /* Network configuration changed -- force [re]association */
8850 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8851 if (!ipw_disassociate(priv))
8852 ipw_associate(priv);
8853
8854 mutex_unlock(&priv->mutex);
8855 return 0;
8856 }
8857
8858 static int ipw_wx_get_wap(struct net_device *dev,
8859 struct iw_request_info *info,
8860 union iwreq_data *wrqu, char *extra)
8861 {
8862 struct ipw_priv *priv = ieee80211_priv(dev);
8863 /* If we are associated, trying to associate, or have a statically
8864 * configured BSSID then return that; otherwise return ANY */
8865 mutex_lock(&priv->mutex);
8866 if (priv->config & CFG_STATIC_BSSID ||
8867 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8868 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8869 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8870 } else
8871 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8872
8873 IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
8874 MAC_ARG(wrqu->ap_addr.sa_data));
8875 mutex_unlock(&priv->mutex);
8876 return 0;
8877 }
8878
8879 static int ipw_wx_set_essid(struct net_device *dev,
8880 struct iw_request_info *info,
8881 union iwreq_data *wrqu, char *extra)
8882 {
8883 struct ipw_priv *priv = ieee80211_priv(dev);
8884 int length;
8885
8886 mutex_lock(&priv->mutex);
8887
8888 if (!wrqu->essid.flags)
8889 {
8890 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8891 ipw_disassociate(priv);
8892 priv->config &= ~CFG_STATIC_ESSID;
8893 ipw_associate(priv);
8894 mutex_unlock(&priv->mutex);
8895 return 0;
8896 }
8897
8898 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
8899
8900 priv->config |= CFG_STATIC_ESSID;
8901
8902 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
8903 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
8904 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8905 mutex_unlock(&priv->mutex);
8906 return 0;
8907 }
8908
8909 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(extra, length),
8910 length);
8911
8912 priv->essid_len = length;
8913 memcpy(priv->essid, extra, priv->essid_len);
8914
8915 /* Network configuration changed -- force [re]association */
8916 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
8917 if (!ipw_disassociate(priv))
8918 ipw_associate(priv);
8919
8920 mutex_unlock(&priv->mutex);
8921 return 0;
8922 }
8923
8924 static int ipw_wx_get_essid(struct net_device *dev,
8925 struct iw_request_info *info,
8926 union iwreq_data *wrqu, char *extra)
8927 {
8928 struct ipw_priv *priv = ieee80211_priv(dev);
8929
8930 /* If we are associated, trying to associate, or have a statically
8931 * configured ESSID then return that; otherwise return ANY */
8932 mutex_lock(&priv->mutex);
8933 if (priv->config & CFG_STATIC_ESSID ||
8934 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8935 IPW_DEBUG_WX("Getting essid: '%s'\n",
8936 escape_essid(priv->essid, priv->essid_len));
8937 memcpy(extra, priv->essid, priv->essid_len);
8938 wrqu->essid.length = priv->essid_len;
8939 wrqu->essid.flags = 1; /* active */
8940 } else {
8941 IPW_DEBUG_WX("Getting essid: ANY\n");
8942 wrqu->essid.length = 0;
8943 wrqu->essid.flags = 0; /* active */
8944 }
8945 mutex_unlock(&priv->mutex);
8946 return 0;
8947 }
8948
8949 static int ipw_wx_set_nick(struct net_device *dev,
8950 struct iw_request_info *info,
8951 union iwreq_data *wrqu, char *extra)
8952 {
8953 struct ipw_priv *priv = ieee80211_priv(dev);
8954
8955 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
8956 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
8957 return -E2BIG;
8958 mutex_lock(&priv->mutex);
8959 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
8960 memset(priv->nick, 0, sizeof(priv->nick));
8961 memcpy(priv->nick, extra, wrqu->data.length);
8962 IPW_DEBUG_TRACE("<<\n");
8963 mutex_unlock(&priv->mutex);
8964 return 0;
8965
8966 }
8967
8968 static int ipw_wx_get_nick(struct net_device *dev,
8969 struct iw_request_info *info,
8970 union iwreq_data *wrqu, char *extra)
8971 {
8972 struct ipw_priv *priv = ieee80211_priv(dev);
8973 IPW_DEBUG_WX("Getting nick\n");
8974 mutex_lock(&priv->mutex);
8975 wrqu->data.length = strlen(priv->nick);
8976 memcpy(extra, priv->nick, wrqu->data.length);
8977 wrqu->data.flags = 1; /* active */
8978 mutex_unlock(&priv->mutex);
8979 return 0;
8980 }
8981
8982 static int ipw_wx_set_sens(struct net_device *dev,
8983 struct iw_request_info *info,
8984 union iwreq_data *wrqu, char *extra)
8985 {
8986 struct ipw_priv *priv = ieee80211_priv(dev);
8987 int err = 0;
8988
8989 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
8990 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
8991 mutex_lock(&priv->mutex);
8992
8993 if (wrqu->sens.fixed == 0)
8994 {
8995 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8996 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8997 goto out;
8998 }
8999 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9000 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9001 err = -EINVAL;
9002 goto out;
9003 }
9004
9005 priv->roaming_threshold = wrqu->sens.value;
9006 priv->disassociate_threshold = 3*wrqu->sens.value;
9007 out:
9008 mutex_unlock(&priv->mutex);
9009 return err;
9010 }
9011
9012 static int ipw_wx_get_sens(struct net_device *dev,
9013 struct iw_request_info *info,
9014 union iwreq_data *wrqu, char *extra)
9015 {
9016 struct ipw_priv *priv = ieee80211_priv(dev);
9017 mutex_lock(&priv->mutex);
9018 wrqu->sens.fixed = 1;
9019 wrqu->sens.value = priv->roaming_threshold;
9020 mutex_unlock(&priv->mutex);
9021
9022 IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9023 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9024
9025 return 0;
9026 }
9027
9028 static int ipw_wx_set_rate(struct net_device *dev,
9029 struct iw_request_info *info,
9030 union iwreq_data *wrqu, char *extra)
9031 {
9032 /* TODO: We should use semaphores or locks for access to priv */
9033 struct ipw_priv *priv = ieee80211_priv(dev);
9034 u32 target_rate = wrqu->bitrate.value;
9035 u32 fixed, mask;
9036
9037 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9038 /* value = X, fixed = 1 means only rate X */
9039 /* value = X, fixed = 0 means all rates lower equal X */
9040
9041 if (target_rate == -1) {
9042 fixed = 0;
9043 mask = IEEE80211_DEFAULT_RATES_MASK;
9044 /* Now we should reassociate */
9045 goto apply;
9046 }
9047
9048 mask = 0;
9049 fixed = wrqu->bitrate.fixed;
9050
9051 if (target_rate == 1000000 || !fixed)
9052 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9053 if (target_rate == 1000000)
9054 goto apply;
9055
9056 if (target_rate == 2000000 || !fixed)
9057 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9058 if (target_rate == 2000000)
9059 goto apply;
9060
9061 if (target_rate == 5500000 || !fixed)
9062 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9063 if (target_rate == 5500000)
9064 goto apply;
9065
9066 if (target_rate == 6000000 || !fixed)
9067 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9068 if (target_rate == 6000000)
9069 goto apply;
9070
9071 if (target_rate == 9000000 || !fixed)
9072 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9073 if (target_rate == 9000000)
9074 goto apply;
9075
9076 if (target_rate == 11000000 || !fixed)
9077 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9078 if (target_rate == 11000000)
9079 goto apply;
9080
9081 if (target_rate == 12000000 || !fixed)
9082 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9083 if (target_rate == 12000000)
9084 goto apply;
9085
9086 if (target_rate == 18000000 || !fixed)
9087 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9088 if (target_rate == 18000000)
9089 goto apply;
9090
9091 if (target_rate == 24000000 || !fixed)
9092 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9093 if (target_rate == 24000000)
9094 goto apply;
9095
9096 if (target_rate == 36000000 || !fixed)
9097 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9098 if (target_rate == 36000000)
9099 goto apply;
9100
9101 if (target_rate == 48000000 || !fixed)
9102 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9103 if (target_rate == 48000000)
9104 goto apply;
9105
9106 if (target_rate == 54000000 || !fixed)
9107 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9108 if (target_rate == 54000000)
9109 goto apply;
9110
9111 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9112 return -EINVAL;
9113
9114 apply:
9115 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9116 mask, fixed ? "fixed" : "sub-rates");
9117 mutex_lock(&priv->mutex);
9118 if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9119 priv->config &= ~CFG_FIXED_RATE;
9120 ipw_set_fixed_rate(priv, priv->ieee->mode);
9121 } else
9122 priv->config |= CFG_FIXED_RATE;
9123
9124 if (priv->rates_mask == mask) {
9125 IPW_DEBUG_WX("Mask set to current mask.\n");
9126 mutex_unlock(&priv->mutex);
9127 return 0;
9128 }
9129
9130 priv->rates_mask = mask;
9131
9132 /* Network configuration changed -- force [re]association */
9133 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9134 if (!ipw_disassociate(priv))
9135 ipw_associate(priv);
9136
9137 mutex_unlock(&priv->mutex);
9138 return 0;
9139 }
9140
9141 static int ipw_wx_get_rate(struct net_device *dev,
9142 struct iw_request_info *info,
9143 union iwreq_data *wrqu, char *extra)
9144 {
9145 struct ipw_priv *priv = ieee80211_priv(dev);
9146 mutex_lock(&priv->mutex);
9147 wrqu->bitrate.value = priv->last_rate;
9148 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9149 mutex_unlock(&priv->mutex);
9150 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9151 return 0;
9152 }
9153
9154 static int ipw_wx_set_rts(struct net_device *dev,
9155 struct iw_request_info *info,
9156 union iwreq_data *wrqu, char *extra)
9157 {
9158 struct ipw_priv *priv = ieee80211_priv(dev);
9159 mutex_lock(&priv->mutex);
9160 if (wrqu->rts.disabled)
9161 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9162 else {
9163 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9164 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9165 mutex_unlock(&priv->mutex);
9166 return -EINVAL;
9167 }
9168 priv->rts_threshold = wrqu->rts.value;
9169 }
9170
9171 ipw_send_rts_threshold(priv, priv->rts_threshold);
9172 mutex_unlock(&priv->mutex);
9173 IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9174 return 0;
9175 }
9176
9177 static int ipw_wx_get_rts(struct net_device *dev,
9178 struct iw_request_info *info,
9179 union iwreq_data *wrqu, char *extra)
9180 {
9181 struct ipw_priv *priv = ieee80211_priv(dev);
9182 mutex_lock(&priv->mutex);
9183 wrqu->rts.value = priv->rts_threshold;
9184 wrqu->rts.fixed = 0; /* no auto select */
9185 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9186 mutex_unlock(&priv->mutex);
9187 IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9188 return 0;
9189 }
9190
9191 static int ipw_wx_set_txpow(struct net_device *dev,
9192 struct iw_request_info *info,
9193 union iwreq_data *wrqu, char *extra)
9194 {
9195 struct ipw_priv *priv = ieee80211_priv(dev);
9196 int err = 0;
9197
9198 mutex_lock(&priv->mutex);
9199 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9200 err = -EINPROGRESS;
9201 goto out;
9202 }
9203
9204 if (!wrqu->power.fixed)
9205 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9206
9207 if (wrqu->power.flags != IW_TXPOW_DBM) {
9208 err = -EINVAL;
9209 goto out;
9210 }
9211
9212 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9213 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9214 err = -EINVAL;
9215 goto out;
9216 }
9217
9218 priv->tx_power = wrqu->power.value;
9219 err = ipw_set_tx_power(priv);
9220 out:
9221 mutex_unlock(&priv->mutex);
9222 return err;
9223 }
9224
9225 static int ipw_wx_get_txpow(struct net_device *dev,
9226 struct iw_request_info *info,
9227 union iwreq_data *wrqu, char *extra)
9228 {
9229 struct ipw_priv *priv = ieee80211_priv(dev);
9230 mutex_lock(&priv->mutex);
9231 wrqu->power.value = priv->tx_power;
9232 wrqu->power.fixed = 1;
9233 wrqu->power.flags = IW_TXPOW_DBM;
9234 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9235 mutex_unlock(&priv->mutex);
9236
9237 IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9238 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9239
9240 return 0;
9241 }
9242
9243 static int ipw_wx_set_frag(struct net_device *dev,
9244 struct iw_request_info *info,
9245 union iwreq_data *wrqu, char *extra)
9246 {
9247 struct ipw_priv *priv = ieee80211_priv(dev);
9248 mutex_lock(&priv->mutex);
9249 if (wrqu->frag.disabled)
9250 priv->ieee->fts = DEFAULT_FTS;
9251 else {
9252 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9253 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9254 mutex_unlock(&priv->mutex);
9255 return -EINVAL;
9256 }
9257
9258 priv->ieee->fts = wrqu->frag.value & ~0x1;
9259 }
9260
9261 ipw_send_frag_threshold(priv, wrqu->frag.value);
9262 mutex_unlock(&priv->mutex);
9263 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9264 return 0;
9265 }
9266
9267 static int ipw_wx_get_frag(struct net_device *dev,
9268 struct iw_request_info *info,
9269 union iwreq_data *wrqu, char *extra)
9270 {
9271 struct ipw_priv *priv = ieee80211_priv(dev);
9272 mutex_lock(&priv->mutex);
9273 wrqu->frag.value = priv->ieee->fts;
9274 wrqu->frag.fixed = 0; /* no auto select */
9275 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9276 mutex_unlock(&priv->mutex);
9277 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9278
9279 return 0;
9280 }
9281
9282 static int ipw_wx_set_retry(struct net_device *dev,
9283 struct iw_request_info *info,
9284 union iwreq_data *wrqu, char *extra)
9285 {
9286 struct ipw_priv *priv = ieee80211_priv(dev);
9287
9288 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9289 return -EINVAL;
9290
9291 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9292 return 0;
9293
9294 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9295 return -EINVAL;
9296
9297 mutex_lock(&priv->mutex);
9298 if (wrqu->retry.flags & IW_RETRY_SHORT)
9299 priv->short_retry_limit = (u8) wrqu->retry.value;
9300 else if (wrqu->retry.flags & IW_RETRY_LONG)
9301 priv->long_retry_limit = (u8) wrqu->retry.value;
9302 else {
9303 priv->short_retry_limit = (u8) wrqu->retry.value;
9304 priv->long_retry_limit = (u8) wrqu->retry.value;
9305 }
9306
9307 ipw_send_retry_limit(priv, priv->short_retry_limit,
9308 priv->long_retry_limit);
9309 mutex_unlock(&priv->mutex);
9310 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9311 priv->short_retry_limit, priv->long_retry_limit);
9312 return 0;
9313 }
9314
9315 static int ipw_wx_get_retry(struct net_device *dev,
9316 struct iw_request_info *info,
9317 union iwreq_data *wrqu, char *extra)
9318 {
9319 struct ipw_priv *priv = ieee80211_priv(dev);
9320
9321 mutex_lock(&priv->mutex);
9322 wrqu->retry.disabled = 0;
9323
9324 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9325 mutex_unlock(&priv->mutex);
9326 return -EINVAL;
9327 }
9328
9329 if (wrqu->retry.flags & IW_RETRY_LONG) {
9330 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9331 wrqu->retry.value = priv->long_retry_limit;
9332 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9333 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9334 wrqu->retry.value = priv->short_retry_limit;
9335 } else {
9336 wrqu->retry.flags = IW_RETRY_LIMIT;
9337 wrqu->retry.value = priv->short_retry_limit;
9338 }
9339 mutex_unlock(&priv->mutex);
9340
9341 IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9342
9343 return 0;
9344 }
9345
9346 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
9347 int essid_len)
9348 {
9349 struct ipw_scan_request_ext scan;
9350 int err = 0, scan_type;
9351
9352 if (!(priv->status & STATUS_INIT) ||
9353 (priv->status & STATUS_EXIT_PENDING))
9354 return 0;
9355
9356 mutex_lock(&priv->mutex);
9357
9358 if (priv->status & STATUS_RF_KILL_MASK) {
9359 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
9360 priv->status |= STATUS_SCAN_PENDING;
9361 goto done;
9362 }
9363
9364 IPW_DEBUG_HC("starting request direct scan!\n");
9365
9366 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
9367 /* We should not sleep here; otherwise we will block most
9368 * of the system (for instance, we hold rtnl_lock when we
9369 * get here).
9370 */
9371 err = -EAGAIN;
9372 goto done;
9373 }
9374 memset(&scan, 0, sizeof(scan));
9375
9376 if (priv->config & CFG_SPEED_SCAN)
9377 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9378 cpu_to_le16(30);
9379 else
9380 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9381 cpu_to_le16(20);
9382
9383 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
9384 cpu_to_le16(20);
9385 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
9386 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
9387
9388 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
9389
9390 err = ipw_send_ssid(priv, essid, essid_len);
9391 if (err) {
9392 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
9393 goto done;
9394 }
9395 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
9396
9397 ipw_add_scan_channels(priv, &scan, scan_type);
9398
9399 err = ipw_send_scan_request_ext(priv, &scan);
9400 if (err) {
9401 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
9402 goto done;
9403 }
9404
9405 priv->status |= STATUS_SCANNING;
9406
9407 done:
9408 mutex_unlock(&priv->mutex);
9409 return err;
9410 }
9411
9412 static int ipw_wx_set_scan(struct net_device *dev,
9413 struct iw_request_info *info,
9414 union iwreq_data *wrqu, char *extra)
9415 {
9416 struct ipw_priv *priv = ieee80211_priv(dev);
9417 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9418
9419 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9420 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9421 ipw_request_direct_scan(priv, req->essid,
9422 req->essid_len);
9423 return 0;
9424 }
9425 if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9426 queue_work(priv->workqueue,
9427 &priv->request_passive_scan);
9428 return 0;
9429 }
9430 }
9431
9432 IPW_DEBUG_WX("Start scan\n");
9433
9434 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
9435
9436 return 0;
9437 }
9438
9439 static int ipw_wx_get_scan(struct net_device *dev,
9440 struct iw_request_info *info,
9441 union iwreq_data *wrqu, char *extra)
9442 {
9443 struct ipw_priv *priv = ieee80211_priv(dev);
9444 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9445 }
9446
9447 static int ipw_wx_set_encode(struct net_device *dev,
9448 struct iw_request_info *info,
9449 union iwreq_data *wrqu, char *key)
9450 {
9451 struct ipw_priv *priv = ieee80211_priv(dev);
9452 int ret;
9453 u32 cap = priv->capability;
9454
9455 mutex_lock(&priv->mutex);
9456 ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9457
9458 /* In IBSS mode, we need to notify the firmware to update
9459 * the beacon info after we changed the capability. */
9460 if (cap != priv->capability &&
9461 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9462 priv->status & STATUS_ASSOCIATED)
9463 ipw_disassociate(priv);
9464
9465 mutex_unlock(&priv->mutex);
9466 return ret;
9467 }
9468
9469 static int ipw_wx_get_encode(struct net_device *dev,
9470 struct iw_request_info *info,
9471 union iwreq_data *wrqu, char *key)
9472 {
9473 struct ipw_priv *priv = ieee80211_priv(dev);
9474 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9475 }
9476
9477 static int ipw_wx_set_power(struct net_device *dev,
9478 struct iw_request_info *info,
9479 union iwreq_data *wrqu, char *extra)
9480 {
9481 struct ipw_priv *priv = ieee80211_priv(dev);
9482 int err;
9483 mutex_lock(&priv->mutex);
9484 if (wrqu->power.disabled) {
9485 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9486 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9487 if (err) {
9488 IPW_DEBUG_WX("failed setting power mode.\n");
9489 mutex_unlock(&priv->mutex);
9490 return err;
9491 }
9492 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9493 mutex_unlock(&priv->mutex);
9494 return 0;
9495 }
9496
9497 switch (wrqu->power.flags & IW_POWER_MODE) {
9498 case IW_POWER_ON: /* If not specified */
9499 case IW_POWER_MODE: /* If set all mask */
9500 case IW_POWER_ALL_R: /* If explicitely state all */
9501 break;
9502 default: /* Otherwise we don't support it */
9503 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9504 wrqu->power.flags);
9505 mutex_unlock(&priv->mutex);
9506 return -EOPNOTSUPP;
9507 }
9508
9509 /* If the user hasn't specified a power management mode yet, default
9510 * to BATTERY */
9511 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9512 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9513 else
9514 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9515 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9516 if (err) {
9517 IPW_DEBUG_WX("failed setting power mode.\n");
9518 mutex_unlock(&priv->mutex);
9519 return err;
9520 }
9521
9522 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9523 mutex_unlock(&priv->mutex);
9524 return 0;
9525 }
9526
9527 static int ipw_wx_get_power(struct net_device *dev,
9528 struct iw_request_info *info,
9529 union iwreq_data *wrqu, char *extra)
9530 {
9531 struct ipw_priv *priv = ieee80211_priv(dev);
9532 mutex_lock(&priv->mutex);
9533 if (!(priv->power_mode & IPW_POWER_ENABLED))
9534 wrqu->power.disabled = 1;
9535 else
9536 wrqu->power.disabled = 0;
9537
9538 mutex_unlock(&priv->mutex);
9539 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9540
9541 return 0;
9542 }
9543
9544 static int ipw_wx_set_powermode(struct net_device *dev,
9545 struct iw_request_info *info,
9546 union iwreq_data *wrqu, char *extra)
9547 {
9548 struct ipw_priv *priv = ieee80211_priv(dev);
9549 int mode = *(int *)extra;
9550 int err;
9551 mutex_lock(&priv->mutex);
9552 if ((mode < 1) || (mode > IPW_POWER_LIMIT)) {
9553 mode = IPW_POWER_AC;
9554 priv->power_mode = mode;
9555 } else {
9556 priv->power_mode = IPW_POWER_ENABLED | mode;
9557 }
9558
9559 if (priv->power_mode != mode) {
9560 err = ipw_send_power_mode(priv, mode);
9561
9562 if (err) {
9563 IPW_DEBUG_WX("failed setting power mode.\n");
9564 mutex_unlock(&priv->mutex);
9565 return err;
9566 }
9567 }
9568 mutex_unlock(&priv->mutex);
9569 return 0;
9570 }
9571
9572 #define MAX_WX_STRING 80
9573 static int ipw_wx_get_powermode(struct net_device *dev,
9574 struct iw_request_info *info,
9575 union iwreq_data *wrqu, char *extra)
9576 {
9577 struct ipw_priv *priv = ieee80211_priv(dev);
9578 int level = IPW_POWER_LEVEL(priv->power_mode);
9579 char *p = extra;
9580
9581 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9582
9583 switch (level) {
9584 case IPW_POWER_AC:
9585 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9586 break;
9587 case IPW_POWER_BATTERY:
9588 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9589 break;
9590 default:
9591 p += snprintf(p, MAX_WX_STRING - (p - extra),
9592 "(Timeout %dms, Period %dms)",
9593 timeout_duration[level - 1] / 1000,
9594 period_duration[level - 1] / 1000);
9595 }
9596
9597 if (!(priv->power_mode & IPW_POWER_ENABLED))
9598 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9599
9600 wrqu->data.length = p - extra + 1;
9601
9602 return 0;
9603 }
9604
9605 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9606 struct iw_request_info *info,
9607 union iwreq_data *wrqu, char *extra)
9608 {
9609 struct ipw_priv *priv = ieee80211_priv(dev);
9610 int mode = *(int *)extra;
9611 u8 band = 0, modulation = 0;
9612
9613 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9614 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9615 return -EINVAL;
9616 }
9617 mutex_lock(&priv->mutex);
9618 if (priv->adapter == IPW_2915ABG) {
9619 priv->ieee->abg_true = 1;
9620 if (mode & IEEE_A) {
9621 band |= IEEE80211_52GHZ_BAND;
9622 modulation |= IEEE80211_OFDM_MODULATION;
9623 } else
9624 priv->ieee->abg_true = 0;
9625 } else {
9626 if (mode & IEEE_A) {
9627 IPW_WARNING("Attempt to set 2200BG into "
9628 "802.11a mode\n");
9629 mutex_unlock(&priv->mutex);
9630 return -EINVAL;
9631 }
9632
9633 priv->ieee->abg_true = 0;
9634 }
9635
9636 if (mode & IEEE_B) {
9637 band |= IEEE80211_24GHZ_BAND;
9638 modulation |= IEEE80211_CCK_MODULATION;
9639 } else
9640 priv->ieee->abg_true = 0;
9641
9642 if (mode & IEEE_G) {
9643 band |= IEEE80211_24GHZ_BAND;
9644 modulation |= IEEE80211_OFDM_MODULATION;
9645 } else
9646 priv->ieee->abg_true = 0;
9647
9648 priv->ieee->mode = mode;
9649 priv->ieee->freq_band = band;
9650 priv->ieee->modulation = modulation;
9651 init_supported_rates(priv, &priv->rates);
9652
9653 /* Network configuration changed -- force [re]association */
9654 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9655 if (!ipw_disassociate(priv)) {
9656 ipw_send_supported_rates(priv, &priv->rates);
9657 ipw_associate(priv);
9658 }
9659
9660 /* Update the band LEDs */
9661 ipw_led_band_on(priv);
9662
9663 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9664 mode & IEEE_A ? 'a' : '.',
9665 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9666 mutex_unlock(&priv->mutex);
9667 return 0;
9668 }
9669
9670 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9671 struct iw_request_info *info,
9672 union iwreq_data *wrqu, char *extra)
9673 {
9674 struct ipw_priv *priv = ieee80211_priv(dev);
9675 mutex_lock(&priv->mutex);
9676 switch (priv->ieee->mode) {
9677 case IEEE_A:
9678 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9679 break;
9680 case IEEE_B:
9681 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9682 break;
9683 case IEEE_A | IEEE_B:
9684 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9685 break;
9686 case IEEE_G:
9687 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9688 break;
9689 case IEEE_A | IEEE_G:
9690 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9691 break;
9692 case IEEE_B | IEEE_G:
9693 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9694 break;
9695 case IEEE_A | IEEE_B | IEEE_G:
9696 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9697 break;
9698 default:
9699 strncpy(extra, "unknown", MAX_WX_STRING);
9700 break;
9701 }
9702
9703 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9704
9705 wrqu->data.length = strlen(extra) + 1;
9706 mutex_unlock(&priv->mutex);
9707
9708 return 0;
9709 }
9710
9711 static int ipw_wx_set_preamble(struct net_device *dev,
9712 struct iw_request_info *info,
9713 union iwreq_data *wrqu, char *extra)
9714 {
9715 struct ipw_priv *priv = ieee80211_priv(dev);
9716 int mode = *(int *)extra;
9717 mutex_lock(&priv->mutex);
9718 /* Switching from SHORT -> LONG requires a disassociation */
9719 if (mode == 1) {
9720 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9721 priv->config |= CFG_PREAMBLE_LONG;
9722
9723 /* Network configuration changed -- force [re]association */
9724 IPW_DEBUG_ASSOC
9725 ("[re]association triggered due to preamble change.\n");
9726 if (!ipw_disassociate(priv))
9727 ipw_associate(priv);
9728 }
9729 goto done;
9730 }
9731
9732 if (mode == 0) {
9733 priv->config &= ~CFG_PREAMBLE_LONG;
9734 goto done;
9735 }
9736 mutex_unlock(&priv->mutex);
9737 return -EINVAL;
9738
9739 done:
9740 mutex_unlock(&priv->mutex);
9741 return 0;
9742 }
9743
9744 static int ipw_wx_get_preamble(struct net_device *dev,
9745 struct iw_request_info *info,
9746 union iwreq_data *wrqu, char *extra)
9747 {
9748 struct ipw_priv *priv = ieee80211_priv(dev);
9749 mutex_lock(&priv->mutex);
9750 if (priv->config & CFG_PREAMBLE_LONG)
9751 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9752 else
9753 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9754 mutex_unlock(&priv->mutex);
9755 return 0;
9756 }
9757
9758 #ifdef CONFIG_IPW2200_MONITOR
9759 static int ipw_wx_set_monitor(struct net_device *dev,
9760 struct iw_request_info *info,
9761 union iwreq_data *wrqu, char *extra)
9762 {
9763 struct ipw_priv *priv = ieee80211_priv(dev);
9764 int *parms = (int *)extra;
9765 int enable = (parms[0] > 0);
9766 mutex_lock(&priv->mutex);
9767 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9768 if (enable) {
9769 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9770 #ifdef CONFIG_IPW2200_RADIOTAP
9771 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9772 #else
9773 priv->net_dev->type = ARPHRD_IEEE80211;
9774 #endif
9775 queue_work(priv->workqueue, &priv->adapter_restart);
9776 }
9777
9778 ipw_set_channel(priv, parms[1]);
9779 } else {
9780 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9781 mutex_unlock(&priv->mutex);
9782 return 0;
9783 }
9784 priv->net_dev->type = ARPHRD_ETHER;
9785 queue_work(priv->workqueue, &priv->adapter_restart);
9786 }
9787 mutex_unlock(&priv->mutex);
9788 return 0;
9789 }
9790
9791 #endif /* CONFIG_IPW2200_MONITOR */
9792
9793 static int ipw_wx_reset(struct net_device *dev,
9794 struct iw_request_info *info,
9795 union iwreq_data *wrqu, char *extra)
9796 {
9797 struct ipw_priv *priv = ieee80211_priv(dev);
9798 IPW_DEBUG_WX("RESET\n");
9799 queue_work(priv->workqueue, &priv->adapter_restart);
9800 return 0;
9801 }
9802
9803 static int ipw_wx_sw_reset(struct net_device *dev,
9804 struct iw_request_info *info,
9805 union iwreq_data *wrqu, char *extra)
9806 {
9807 struct ipw_priv *priv = ieee80211_priv(dev);
9808 union iwreq_data wrqu_sec = {
9809 .encoding = {
9810 .flags = IW_ENCODE_DISABLED,
9811 },
9812 };
9813 int ret;
9814
9815 IPW_DEBUG_WX("SW_RESET\n");
9816
9817 mutex_lock(&priv->mutex);
9818
9819 ret = ipw_sw_reset(priv, 2);
9820 if (!ret) {
9821 free_firmware();
9822 ipw_adapter_restart(priv);
9823 }
9824
9825 /* The SW reset bit might have been toggled on by the 'disable'
9826 * module parameter, so take appropriate action */
9827 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9828
9829 mutex_unlock(&priv->mutex);
9830 ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9831 mutex_lock(&priv->mutex);
9832
9833 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9834 /* Configuration likely changed -- force [re]association */
9835 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9836 "reset.\n");
9837 if (!ipw_disassociate(priv))
9838 ipw_associate(priv);
9839 }
9840
9841 mutex_unlock(&priv->mutex);
9842
9843 return 0;
9844 }
9845
9846 /* Rebase the WE IOCTLs to zero for the handler array */
9847 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9848 static iw_handler ipw_wx_handlers[] = {
9849 IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9850 IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9851 IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9852 IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9853 IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9854 IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9855 IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9856 IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9857 IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9858 IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9859 IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9860 IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9861 IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9862 IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9863 IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9864 IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9865 IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9866 IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9867 IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9868 IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9869 IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9870 IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9871 IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9872 IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9873 IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9874 IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9875 IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9876 IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9877 IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9878 IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9879 IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9880 IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9881 IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9882 IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9883 IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9884 IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9885 IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9886 IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9887 IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9888 IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9889 IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
9890 };
9891
9892 enum {
9893 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9894 IPW_PRIV_GET_POWER,
9895 IPW_PRIV_SET_MODE,
9896 IPW_PRIV_GET_MODE,
9897 IPW_PRIV_SET_PREAMBLE,
9898 IPW_PRIV_GET_PREAMBLE,
9899 IPW_PRIV_RESET,
9900 IPW_PRIV_SW_RESET,
9901 #ifdef CONFIG_IPW2200_MONITOR
9902 IPW_PRIV_SET_MONITOR,
9903 #endif
9904 };
9905
9906 static struct iw_priv_args ipw_priv_args[] = {
9907 {
9908 .cmd = IPW_PRIV_SET_POWER,
9909 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9910 .name = "set_power"},
9911 {
9912 .cmd = IPW_PRIV_GET_POWER,
9913 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9914 .name = "get_power"},
9915 {
9916 .cmd = IPW_PRIV_SET_MODE,
9917 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9918 .name = "set_mode"},
9919 {
9920 .cmd = IPW_PRIV_GET_MODE,
9921 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9922 .name = "get_mode"},
9923 {
9924 .cmd = IPW_PRIV_SET_PREAMBLE,
9925 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9926 .name = "set_preamble"},
9927 {
9928 .cmd = IPW_PRIV_GET_PREAMBLE,
9929 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9930 .name = "get_preamble"},
9931 {
9932 IPW_PRIV_RESET,
9933 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9934 {
9935 IPW_PRIV_SW_RESET,
9936 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9937 #ifdef CONFIG_IPW2200_MONITOR
9938 {
9939 IPW_PRIV_SET_MONITOR,
9940 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9941 #endif /* CONFIG_IPW2200_MONITOR */
9942 };
9943
9944 static iw_handler ipw_priv_handler[] = {
9945 ipw_wx_set_powermode,
9946 ipw_wx_get_powermode,
9947 ipw_wx_set_wireless_mode,
9948 ipw_wx_get_wireless_mode,
9949 ipw_wx_set_preamble,
9950 ipw_wx_get_preamble,
9951 ipw_wx_reset,
9952 ipw_wx_sw_reset,
9953 #ifdef CONFIG_IPW2200_MONITOR
9954 ipw_wx_set_monitor,
9955 #endif
9956 };
9957
9958 static struct iw_handler_def ipw_wx_handler_def = {
9959 .standard = ipw_wx_handlers,
9960 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
9961 .num_private = ARRAY_SIZE(ipw_priv_handler),
9962 .num_private_args = ARRAY_SIZE(ipw_priv_args),
9963 .private = ipw_priv_handler,
9964 .private_args = ipw_priv_args,
9965 .get_wireless_stats = ipw_get_wireless_stats,
9966 };
9967
9968 /*
9969 * Get wireless statistics.
9970 * Called by /proc/net/wireless
9971 * Also called by SIOCGIWSTATS
9972 */
9973 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
9974 {
9975 struct ipw_priv *priv = ieee80211_priv(dev);
9976 struct iw_statistics *wstats;
9977
9978 wstats = &priv->wstats;
9979
9980 /* if hw is disabled, then ipw_get_ordinal() can't be called.
9981 * netdev->get_wireless_stats seems to be called before fw is
9982 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
9983 * and associated; if not associcated, the values are all meaningless
9984 * anyway, so set them all to NULL and INVALID */
9985 if (!(priv->status & STATUS_ASSOCIATED)) {
9986 wstats->miss.beacon = 0;
9987 wstats->discard.retries = 0;
9988 wstats->qual.qual = 0;
9989 wstats->qual.level = 0;
9990 wstats->qual.noise = 0;
9991 wstats->qual.updated = 7;
9992 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
9993 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
9994 return wstats;
9995 }
9996
9997 wstats->qual.qual = priv->quality;
9998 wstats->qual.level = priv->exp_avg_rssi;
9999 wstats->qual.noise = priv->exp_avg_noise;
10000 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10001 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10002
10003 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10004 wstats->discard.retries = priv->last_tx_failures;
10005 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10006
10007 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10008 goto fail_get_ordinal;
10009 wstats->discard.retries += tx_retry; */
10010
10011 return wstats;
10012 }
10013
10014 /* net device stuff */
10015
10016 static void init_sys_config(struct ipw_sys_config *sys_config)
10017 {
10018 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10019 sys_config->bt_coexistence = 0;
10020 sys_config->answer_broadcast_ssid_probe = 0;
10021 sys_config->accept_all_data_frames = 0;
10022 sys_config->accept_non_directed_frames = 1;
10023 sys_config->exclude_unicast_unencrypted = 0;
10024 sys_config->disable_unicast_decryption = 1;
10025 sys_config->exclude_multicast_unencrypted = 0;
10026 sys_config->disable_multicast_decryption = 1;
10027 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10028 antenna = CFG_SYS_ANTENNA_BOTH;
10029 sys_config->antenna_diversity = antenna;
10030 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10031 sys_config->dot11g_auto_detection = 0;
10032 sys_config->enable_cts_to_self = 0;
10033 sys_config->bt_coexist_collision_thr = 0;
10034 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10035 sys_config->silence_threshold = 0x1e;
10036 }
10037
10038 static int ipw_net_open(struct net_device *dev)
10039 {
10040 struct ipw_priv *priv = ieee80211_priv(dev);
10041 IPW_DEBUG_INFO("dev->open\n");
10042 /* we should be verifying the device is ready to be opened */
10043 mutex_lock(&priv->mutex);
10044 if (!(priv->status & STATUS_RF_KILL_MASK) &&
10045 (priv->status & STATUS_ASSOCIATED))
10046 netif_start_queue(dev);
10047 mutex_unlock(&priv->mutex);
10048 return 0;
10049 }
10050
10051 static int ipw_net_stop(struct net_device *dev)
10052 {
10053 IPW_DEBUG_INFO("dev->close\n");
10054 netif_stop_queue(dev);
10055 return 0;
10056 }
10057
10058 /*
10059 todo:
10060
10061 modify to send one tfd per fragment instead of using chunking. otherwise
10062 we need to heavily modify the ieee80211_skb_to_txb.
10063 */
10064
10065 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10066 int pri)
10067 {
10068 struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10069 txb->fragments[0]->data;
10070 int i = 0;
10071 struct tfd_frame *tfd;
10072 #ifdef CONFIG_IPW2200_QOS
10073 int tx_id = ipw_get_tx_queue_number(priv, pri);
10074 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10075 #else
10076 struct clx2_tx_queue *txq = &priv->txq[0];
10077 #endif
10078 struct clx2_queue *q = &txq->q;
10079 u8 id, hdr_len, unicast;
10080 u16 remaining_bytes;
10081 int fc;
10082
10083 hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10084 switch (priv->ieee->iw_mode) {
10085 case IW_MODE_ADHOC:
10086 unicast = !is_multicast_ether_addr(hdr->addr1);
10087 id = ipw_find_station(priv, hdr->addr1);
10088 if (id == IPW_INVALID_STATION) {
10089 id = ipw_add_station(priv, hdr->addr1);
10090 if (id == IPW_INVALID_STATION) {
10091 IPW_WARNING("Attempt to send data to "
10092 "invalid cell: " MAC_FMT "\n",
10093 MAC_ARG(hdr->addr1));
10094 goto drop;
10095 }
10096 }
10097 break;
10098
10099 case IW_MODE_INFRA:
10100 default:
10101 unicast = !is_multicast_ether_addr(hdr->addr3);
10102 id = 0;
10103 break;
10104 }
10105
10106 tfd = &txq->bd[q->first_empty];
10107 txq->txb[q->first_empty] = txb;
10108 memset(tfd, 0, sizeof(*tfd));
10109 tfd->u.data.station_number = id;
10110
10111 tfd->control_flags.message_type = TX_FRAME_TYPE;
10112 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10113
10114 tfd->u.data.cmd_id = DINO_CMD_TX;
10115 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10116 remaining_bytes = txb->payload_size;
10117
10118 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10119 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10120 else
10121 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10122
10123 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10124 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10125
10126 fc = le16_to_cpu(hdr->frame_ctl);
10127 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10128
10129 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10130
10131 if (likely(unicast))
10132 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10133
10134 if (txb->encrypted && !priv->ieee->host_encrypt) {
10135 switch (priv->ieee->sec.level) {
10136 case SEC_LEVEL_3:
10137 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10138 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10139 /* XXX: ACK flag must be set for CCMP even if it
10140 * is a multicast/broadcast packet, because CCMP
10141 * group communication encrypted by GTK is
10142 * actually done by the AP. */
10143 if (!unicast)
10144 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10145
10146 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10147 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10148 tfd->u.data.key_index = 0;
10149 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10150 break;
10151 case SEC_LEVEL_2:
10152 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10153 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10154 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10155 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10156 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10157 break;
10158 case SEC_LEVEL_1:
10159 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10160 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10161 tfd->u.data.key_index = priv->ieee->tx_keyidx;
10162 if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
10163 40)
10164 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10165 else
10166 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10167 break;
10168 case SEC_LEVEL_0:
10169 break;
10170 default:
10171 printk(KERN_ERR "Unknow security level %d\n",
10172 priv->ieee->sec.level);
10173 break;
10174 }
10175 } else
10176 /* No hardware encryption */
10177 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10178
10179 #ifdef CONFIG_IPW2200_QOS
10180 if (fc & IEEE80211_STYPE_QOS_DATA)
10181 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10182 #endif /* CONFIG_IPW2200_QOS */
10183
10184 /* payload */
10185 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10186 txb->nr_frags));
10187 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10188 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10189 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10190 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10191 i, le32_to_cpu(tfd->u.data.num_chunks),
10192 txb->fragments[i]->len - hdr_len);
10193 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10194 i, tfd->u.data.num_chunks,
10195 txb->fragments[i]->len - hdr_len);
10196 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10197 txb->fragments[i]->len - hdr_len);
10198
10199 tfd->u.data.chunk_ptr[i] =
10200 cpu_to_le32(pci_map_single
10201 (priv->pci_dev,
10202 txb->fragments[i]->data + hdr_len,
10203 txb->fragments[i]->len - hdr_len,
10204 PCI_DMA_TODEVICE));
10205 tfd->u.data.chunk_len[i] =
10206 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10207 }
10208
10209 if (i != txb->nr_frags) {
10210 struct sk_buff *skb;
10211 u16 remaining_bytes = 0;
10212 int j;
10213
10214 for (j = i; j < txb->nr_frags; j++)
10215 remaining_bytes += txb->fragments[j]->len - hdr_len;
10216
10217 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10218 remaining_bytes);
10219 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10220 if (skb != NULL) {
10221 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10222 for (j = i; j < txb->nr_frags; j++) {
10223 int size = txb->fragments[j]->len - hdr_len;
10224
10225 printk(KERN_INFO "Adding frag %d %d...\n",
10226 j, size);
10227 memcpy(skb_put(skb, size),
10228 txb->fragments[j]->data + hdr_len, size);
10229 }
10230 dev_kfree_skb_any(txb->fragments[i]);
10231 txb->fragments[i] = skb;
10232 tfd->u.data.chunk_ptr[i] =
10233 cpu_to_le32(pci_map_single
10234 (priv->pci_dev, skb->data,
10235 tfd->u.data.chunk_len[i],
10236 PCI_DMA_TODEVICE));
10237
10238 tfd->u.data.num_chunks =
10239 cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
10240 1);
10241 }
10242 }
10243
10244 /* kick DMA */
10245 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10246 ipw_write32(priv, q->reg_w, q->first_empty);
10247
10248 if (ipw_queue_space(q) < q->high_mark)
10249 netif_stop_queue(priv->net_dev);
10250
10251 return NETDEV_TX_OK;
10252
10253 drop:
10254 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10255 ieee80211_txb_free(txb);
10256 return NETDEV_TX_OK;
10257 }
10258
10259 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10260 {
10261 struct ipw_priv *priv = ieee80211_priv(dev);
10262 #ifdef CONFIG_IPW2200_QOS
10263 int tx_id = ipw_get_tx_queue_number(priv, pri);
10264 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10265 #else
10266 struct clx2_tx_queue *txq = &priv->txq[0];
10267 #endif /* CONFIG_IPW2200_QOS */
10268
10269 if (ipw_queue_space(&txq->q) < txq->q.high_mark)
10270 return 1;
10271
10272 return 0;
10273 }
10274
10275 #ifdef CONFIG_IPW2200_PROMISCUOUS
10276 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10277 struct ieee80211_txb *txb)
10278 {
10279 struct ieee80211_rx_stats dummystats;
10280 struct ieee80211_hdr *hdr;
10281 u8 n;
10282 u16 filter = priv->prom_priv->filter;
10283 int hdr_only = 0;
10284
10285 if (filter & IPW_PROM_NO_TX)
10286 return;
10287
10288 memset(&dummystats, 0, sizeof(dummystats));
10289
10290 /* Filtering of fragment chains is done agains the first fragment */
10291 hdr = (void *)txb->fragments[0]->data;
10292 if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
10293 if (filter & IPW_PROM_NO_MGMT)
10294 return;
10295 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10296 hdr_only = 1;
10297 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
10298 if (filter & IPW_PROM_NO_CTL)
10299 return;
10300 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10301 hdr_only = 1;
10302 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
10303 if (filter & IPW_PROM_NO_DATA)
10304 return;
10305 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10306 hdr_only = 1;
10307 }
10308
10309 for(n=0; n<txb->nr_frags; ++n) {
10310 struct sk_buff *src = txb->fragments[n];
10311 struct sk_buff *dst;
10312 struct ieee80211_radiotap_header *rt_hdr;
10313 int len;
10314
10315 if (hdr_only) {
10316 hdr = (void *)src->data;
10317 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10318 } else
10319 len = src->len;
10320
10321 dst = alloc_skb(
10322 len + IEEE80211_RADIOTAP_HDRLEN, GFP_ATOMIC);
10323 if (!dst) continue;
10324
10325 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10326
10327 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10328 rt_hdr->it_pad = 0;
10329 rt_hdr->it_present = 0; /* after all, it's just an idea */
10330 rt_hdr->it_present |= (1 << IEEE80211_RADIOTAP_CHANNEL);
10331
10332 *(u16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10333 ieee80211chan2mhz(priv->channel));
10334 if (priv->channel > 14) /* 802.11a */
10335 *(u16*)skb_put(dst, sizeof(u16)) =
10336 cpu_to_le16(IEEE80211_CHAN_OFDM |
10337 IEEE80211_CHAN_5GHZ);
10338 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10339 *(u16*)skb_put(dst, sizeof(u16)) =
10340 cpu_to_le16(IEEE80211_CHAN_CCK |
10341 IEEE80211_CHAN_2GHZ);
10342 else /* 802.11g */
10343 *(u16*)skb_put(dst, sizeof(u16)) =
10344 cpu_to_le16(IEEE80211_CHAN_OFDM |
10345 IEEE80211_CHAN_2GHZ);
10346
10347 rt_hdr->it_len = dst->len;
10348
10349 memcpy(skb_put(dst, len), src->data, len);
10350
10351 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10352 dev_kfree_skb_any(dst);
10353 }
10354 }
10355 #endif
10356
10357 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10358 struct net_device *dev, int pri)
10359 {
10360 struct ipw_priv *priv = ieee80211_priv(dev);
10361 unsigned long flags;
10362 int ret;
10363
10364 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10365 spin_lock_irqsave(&priv->lock, flags);
10366
10367 if (!(priv->status & STATUS_ASSOCIATED)) {
10368 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
10369 priv->ieee->stats.tx_carrier_errors++;
10370 netif_stop_queue(dev);
10371 goto fail_unlock;
10372 }
10373
10374 #ifdef CONFIG_IPW2200_PROMISCUOUS
10375 if (rtap_iface && netif_running(priv->prom_net_dev))
10376 ipw_handle_promiscuous_tx(priv, txb);
10377 #endif
10378
10379 ret = ipw_tx_skb(priv, txb, pri);
10380 if (ret == NETDEV_TX_OK)
10381 __ipw_led_activity_on(priv);
10382 spin_unlock_irqrestore(&priv->lock, flags);
10383
10384 return ret;
10385
10386 fail_unlock:
10387 spin_unlock_irqrestore(&priv->lock, flags);
10388 return 1;
10389 }
10390
10391 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10392 {
10393 struct ipw_priv *priv = ieee80211_priv(dev);
10394
10395 priv->ieee->stats.tx_packets = priv->tx_packets;
10396 priv->ieee->stats.rx_packets = priv->rx_packets;
10397 return &priv->ieee->stats;
10398 }
10399
10400 static void ipw_net_set_multicast_list(struct net_device *dev)
10401 {
10402
10403 }
10404
10405 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10406 {
10407 struct ipw_priv *priv = ieee80211_priv(dev);
10408 struct sockaddr *addr = p;
10409 if (!is_valid_ether_addr(addr->sa_data))
10410 return -EADDRNOTAVAIL;
10411 mutex_lock(&priv->mutex);
10412 priv->config |= CFG_CUSTOM_MAC;
10413 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10414 printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n",
10415 priv->net_dev->name, MAC_ARG(priv->mac_addr));
10416 queue_work(priv->workqueue, &priv->adapter_restart);
10417 mutex_unlock(&priv->mutex);
10418 return 0;
10419 }
10420
10421 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10422 struct ethtool_drvinfo *info)
10423 {
10424 struct ipw_priv *p = ieee80211_priv(dev);
10425 char vers[64];
10426 char date[32];
10427 u32 len;
10428
10429 strcpy(info->driver, DRV_NAME);
10430 strcpy(info->version, DRV_VERSION);
10431
10432 len = sizeof(vers);
10433 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10434 len = sizeof(date);
10435 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10436
10437 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10438 vers, date);
10439 strcpy(info->bus_info, pci_name(p->pci_dev));
10440 info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10441 }
10442
10443 static u32 ipw_ethtool_get_link(struct net_device *dev)
10444 {
10445 struct ipw_priv *priv = ieee80211_priv(dev);
10446 return (priv->status & STATUS_ASSOCIATED) != 0;
10447 }
10448
10449 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10450 {
10451 return IPW_EEPROM_IMAGE_SIZE;
10452 }
10453
10454 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10455 struct ethtool_eeprom *eeprom, u8 * bytes)
10456 {
10457 struct ipw_priv *p = ieee80211_priv(dev);
10458
10459 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10460 return -EINVAL;
10461 mutex_lock(&p->mutex);
10462 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10463 mutex_unlock(&p->mutex);
10464 return 0;
10465 }
10466
10467 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10468 struct ethtool_eeprom *eeprom, u8 * bytes)
10469 {
10470 struct ipw_priv *p = ieee80211_priv(dev);
10471 int i;
10472
10473 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10474 return -EINVAL;
10475 mutex_lock(&p->mutex);
10476 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10477 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10478 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10479 mutex_unlock(&p->mutex);
10480 return 0;
10481 }
10482
10483 static const struct ethtool_ops ipw_ethtool_ops = {
10484 .get_link = ipw_ethtool_get_link,
10485 .get_drvinfo = ipw_ethtool_get_drvinfo,
10486 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10487 .get_eeprom = ipw_ethtool_get_eeprom,
10488 .set_eeprom = ipw_ethtool_set_eeprom,
10489 };
10490
10491 static irqreturn_t ipw_isr(int irq, void *data)
10492 {
10493 struct ipw_priv *priv = data;
10494 u32 inta, inta_mask;
10495
10496 if (!priv)
10497 return IRQ_NONE;
10498
10499 spin_lock(&priv->irq_lock);
10500
10501 if (!(priv->status & STATUS_INT_ENABLED)) {
10502 /* Shared IRQ */
10503 goto none;
10504 }
10505
10506 inta = ipw_read32(priv, IPW_INTA_RW);
10507 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10508
10509 if (inta == 0xFFFFFFFF) {
10510 /* Hardware disappeared */
10511 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10512 goto none;
10513 }
10514
10515 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10516 /* Shared interrupt */
10517 goto none;
10518 }
10519
10520 /* tell the device to stop sending interrupts */
10521 __ipw_disable_interrupts(priv);
10522
10523 /* ack current interrupts */
10524 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10525 ipw_write32(priv, IPW_INTA_RW, inta);
10526
10527 /* Cache INTA value for our tasklet */
10528 priv->isr_inta = inta;
10529
10530 tasklet_schedule(&priv->irq_tasklet);
10531
10532 spin_unlock(&priv->irq_lock);
10533
10534 return IRQ_HANDLED;
10535 none:
10536 spin_unlock(&priv->irq_lock);
10537 return IRQ_NONE;
10538 }
10539
10540 static void ipw_rf_kill(void *adapter)
10541 {
10542 struct ipw_priv *priv = adapter;
10543 unsigned long flags;
10544
10545 spin_lock_irqsave(&priv->lock, flags);
10546
10547 if (rf_kill_active(priv)) {
10548 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10549 if (priv->workqueue)
10550 queue_delayed_work(priv->workqueue,
10551 &priv->rf_kill, 2 * HZ);
10552 goto exit_unlock;
10553 }
10554
10555 /* RF Kill is now disabled, so bring the device back up */
10556
10557 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10558 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10559 "device\n");
10560
10561 /* we can not do an adapter restart while inside an irq lock */
10562 queue_work(priv->workqueue, &priv->adapter_restart);
10563 } else
10564 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10565 "enabled\n");
10566
10567 exit_unlock:
10568 spin_unlock_irqrestore(&priv->lock, flags);
10569 }
10570
10571 static void ipw_bg_rf_kill(struct work_struct *work)
10572 {
10573 struct ipw_priv *priv =
10574 container_of(work, struct ipw_priv, rf_kill.work);
10575 mutex_lock(&priv->mutex);
10576 ipw_rf_kill(priv);
10577 mutex_unlock(&priv->mutex);
10578 }
10579
10580 static void ipw_link_up(struct ipw_priv *priv)
10581 {
10582 priv->last_seq_num = -1;
10583 priv->last_frag_num = -1;
10584 priv->last_packet_time = 0;
10585
10586 netif_carrier_on(priv->net_dev);
10587 if (netif_queue_stopped(priv->net_dev)) {
10588 IPW_DEBUG_NOTIF("waking queue\n");
10589 netif_wake_queue(priv->net_dev);
10590 } else {
10591 IPW_DEBUG_NOTIF("starting queue\n");
10592 netif_start_queue(priv->net_dev);
10593 }
10594
10595 cancel_delayed_work(&priv->request_scan);
10596 ipw_reset_stats(priv);
10597 /* Ensure the rate is updated immediately */
10598 priv->last_rate = ipw_get_current_rate(priv);
10599 ipw_gather_stats(priv);
10600 ipw_led_link_up(priv);
10601 notify_wx_assoc_event(priv);
10602
10603 if (priv->config & CFG_BACKGROUND_SCAN)
10604 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10605 }
10606
10607 static void ipw_bg_link_up(struct work_struct *work)
10608 {
10609 struct ipw_priv *priv =
10610 container_of(work, struct ipw_priv, link_up);
10611 mutex_lock(&priv->mutex);
10612 ipw_link_up(priv);
10613 mutex_unlock(&priv->mutex);
10614 }
10615
10616 static void ipw_link_down(struct ipw_priv *priv)
10617 {
10618 ipw_led_link_down(priv);
10619 netif_carrier_off(priv->net_dev);
10620 netif_stop_queue(priv->net_dev);
10621 notify_wx_assoc_event(priv);
10622
10623 /* Cancel any queued work ... */
10624 cancel_delayed_work(&priv->request_scan);
10625 cancel_delayed_work(&priv->adhoc_check);
10626 cancel_delayed_work(&priv->gather_stats);
10627
10628 ipw_reset_stats(priv);
10629
10630 if (!(priv->status & STATUS_EXIT_PENDING)) {
10631 /* Queue up another scan... */
10632 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10633 }
10634 }
10635
10636 static void ipw_bg_link_down(struct work_struct *work)
10637 {
10638 struct ipw_priv *priv =
10639 container_of(work, struct ipw_priv, link_down);
10640 mutex_lock(&priv->mutex);
10641 ipw_link_down(priv);
10642 mutex_unlock(&priv->mutex);
10643 }
10644
10645 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10646 {
10647 int ret = 0;
10648
10649 priv->workqueue = create_workqueue(DRV_NAME);
10650 init_waitqueue_head(&priv->wait_command_queue);
10651 init_waitqueue_head(&priv->wait_state);
10652
10653 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10654 INIT_WORK(&priv->associate, ipw_bg_associate);
10655 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10656 INIT_WORK(&priv->system_config, ipw_system_config);
10657 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10658 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10659 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10660 INIT_WORK(&priv->up, ipw_bg_up);
10661 INIT_WORK(&priv->down, ipw_bg_down);
10662 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10663 INIT_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10664 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10665 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10666 INIT_WORK(&priv->roam, ipw_bg_roam);
10667 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10668 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10669 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10670 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10671 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10672 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10673 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10674
10675 #ifdef CONFIG_IPW2200_QOS
10676 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10677 #endif /* CONFIG_IPW2200_QOS */
10678
10679 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10680 ipw_irq_tasklet, (unsigned long)priv);
10681
10682 return ret;
10683 }
10684
10685 static void shim__set_security(struct net_device *dev,
10686 struct ieee80211_security *sec)
10687 {
10688 struct ipw_priv *priv = ieee80211_priv(dev);
10689 int i;
10690 for (i = 0; i < 4; i++) {
10691 if (sec->flags & (1 << i)) {
10692 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10693 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10694 if (sec->key_sizes[i] == 0)
10695 priv->ieee->sec.flags &= ~(1 << i);
10696 else {
10697 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10698 sec->key_sizes[i]);
10699 priv->ieee->sec.flags |= (1 << i);
10700 }
10701 priv->status |= STATUS_SECURITY_UPDATED;
10702 } else if (sec->level != SEC_LEVEL_1)
10703 priv->ieee->sec.flags &= ~(1 << i);
10704 }
10705
10706 if (sec->flags & SEC_ACTIVE_KEY) {
10707 if (sec->active_key <= 3) {
10708 priv->ieee->sec.active_key = sec->active_key;
10709 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10710 } else
10711 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10712 priv->status |= STATUS_SECURITY_UPDATED;
10713 } else
10714 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10715
10716 if ((sec->flags & SEC_AUTH_MODE) &&
10717 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10718 priv->ieee->sec.auth_mode = sec->auth_mode;
10719 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10720 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10721 priv->capability |= CAP_SHARED_KEY;
10722 else
10723 priv->capability &= ~CAP_SHARED_KEY;
10724 priv->status |= STATUS_SECURITY_UPDATED;
10725 }
10726
10727 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10728 priv->ieee->sec.flags |= SEC_ENABLED;
10729 priv->ieee->sec.enabled = sec->enabled;
10730 priv->status |= STATUS_SECURITY_UPDATED;
10731 if (sec->enabled)
10732 priv->capability |= CAP_PRIVACY_ON;
10733 else
10734 priv->capability &= ~CAP_PRIVACY_ON;
10735 }
10736
10737 if (sec->flags & SEC_ENCRYPT)
10738 priv->ieee->sec.encrypt = sec->encrypt;
10739
10740 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10741 priv->ieee->sec.level = sec->level;
10742 priv->ieee->sec.flags |= SEC_LEVEL;
10743 priv->status |= STATUS_SECURITY_UPDATED;
10744 }
10745
10746 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10747 ipw_set_hwcrypto_keys(priv);
10748
10749 /* To match current functionality of ipw2100 (which works well w/
10750 * various supplicants, we don't force a disassociate if the
10751 * privacy capability changes ... */
10752 #if 0
10753 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10754 (((priv->assoc_request.capability &
10755 WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
10756 (!(priv->assoc_request.capability &
10757 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
10758 IPW_DEBUG_ASSOC("Disassociating due to capability "
10759 "change.\n");
10760 ipw_disassociate(priv);
10761 }
10762 #endif
10763 }
10764
10765 static int init_supported_rates(struct ipw_priv *priv,
10766 struct ipw_supported_rates *rates)
10767 {
10768 /* TODO: Mask out rates based on priv->rates_mask */
10769
10770 memset(rates, 0, sizeof(*rates));
10771 /* configure supported rates */
10772 switch (priv->ieee->freq_band) {
10773 case IEEE80211_52GHZ_BAND:
10774 rates->ieee_mode = IPW_A_MODE;
10775 rates->purpose = IPW_RATE_CAPABILITIES;
10776 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10777 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10778 break;
10779
10780 default: /* Mixed or 2.4Ghz */
10781 rates->ieee_mode = IPW_G_MODE;
10782 rates->purpose = IPW_RATE_CAPABILITIES;
10783 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10784 IEEE80211_CCK_DEFAULT_RATES_MASK);
10785 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10786 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10787 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10788 }
10789 break;
10790 }
10791
10792 return 0;
10793 }
10794
10795 static int ipw_config(struct ipw_priv *priv)
10796 {
10797 /* This is only called from ipw_up, which resets/reloads the firmware
10798 so, we don't need to first disable the card before we configure
10799 it */
10800 if (ipw_set_tx_power(priv))
10801 goto error;
10802
10803 /* initialize adapter address */
10804 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10805 goto error;
10806
10807 /* set basic system config settings */
10808 init_sys_config(&priv->sys_config);
10809
10810 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10811 * Does not support BT priority yet (don't abort or defer our Tx) */
10812 if (bt_coexist) {
10813 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10814
10815 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10816 priv->sys_config.bt_coexistence
10817 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10818 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10819 priv->sys_config.bt_coexistence
10820 |= CFG_BT_COEXISTENCE_OOB;
10821 }
10822
10823 #ifdef CONFIG_IPW2200_PROMISCUOUS
10824 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10825 priv->sys_config.accept_all_data_frames = 1;
10826 priv->sys_config.accept_non_directed_frames = 1;
10827 priv->sys_config.accept_all_mgmt_bcpr = 1;
10828 priv->sys_config.accept_all_mgmt_frames = 1;
10829 }
10830 #endif
10831
10832 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10833 priv->sys_config.answer_broadcast_ssid_probe = 1;
10834 else
10835 priv->sys_config.answer_broadcast_ssid_probe = 0;
10836
10837 if (ipw_send_system_config(priv))
10838 goto error;
10839
10840 init_supported_rates(priv, &priv->rates);
10841 if (ipw_send_supported_rates(priv, &priv->rates))
10842 goto error;
10843
10844 /* Set request-to-send threshold */
10845 if (priv->rts_threshold) {
10846 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10847 goto error;
10848 }
10849 #ifdef CONFIG_IPW2200_QOS
10850 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10851 ipw_qos_activate(priv, NULL);
10852 #endif /* CONFIG_IPW2200_QOS */
10853
10854 if (ipw_set_random_seed(priv))
10855 goto error;
10856
10857 /* final state transition to the RUN state */
10858 if (ipw_send_host_complete(priv))
10859 goto error;
10860
10861 priv->status |= STATUS_INIT;
10862
10863 ipw_led_init(priv);
10864 ipw_led_radio_on(priv);
10865 priv->notif_missed_beacons = 0;
10866
10867 /* Set hardware WEP key if it is configured. */
10868 if ((priv->capability & CAP_PRIVACY_ON) &&
10869 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10870 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10871 ipw_set_hwcrypto_keys(priv);
10872
10873 return 0;
10874
10875 error:
10876 return -EIO;
10877 }
10878
10879 /*
10880 * NOTE:
10881 *
10882 * These tables have been tested in conjunction with the
10883 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10884 *
10885 * Altering this values, using it on other hardware, or in geographies
10886 * not intended for resale of the above mentioned Intel adapters has
10887 * not been tested.
10888 *
10889 * Remember to update the table in README.ipw2200 when changing this
10890 * table.
10891 *
10892 */
10893 static const struct ieee80211_geo ipw_geos[] = {
10894 { /* Restricted */
10895 "---",
10896 .bg_channels = 11,
10897 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10898 {2427, 4}, {2432, 5}, {2437, 6},
10899 {2442, 7}, {2447, 8}, {2452, 9},
10900 {2457, 10}, {2462, 11}},
10901 },
10902
10903 { /* Custom US/Canada */
10904 "ZZF",
10905 .bg_channels = 11,
10906 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10907 {2427, 4}, {2432, 5}, {2437, 6},
10908 {2442, 7}, {2447, 8}, {2452, 9},
10909 {2457, 10}, {2462, 11}},
10910 .a_channels = 8,
10911 .a = {{5180, 36},
10912 {5200, 40},
10913 {5220, 44},
10914 {5240, 48},
10915 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10916 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10917 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10918 {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
10919 },
10920
10921 { /* Rest of World */
10922 "ZZD",
10923 .bg_channels = 13,
10924 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10925 {2427, 4}, {2432, 5}, {2437, 6},
10926 {2442, 7}, {2447, 8}, {2452, 9},
10927 {2457, 10}, {2462, 11}, {2467, 12},
10928 {2472, 13}},
10929 },
10930
10931 { /* Custom USA & Europe & High */
10932 "ZZA",
10933 .bg_channels = 11,
10934 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10935 {2427, 4}, {2432, 5}, {2437, 6},
10936 {2442, 7}, {2447, 8}, {2452, 9},
10937 {2457, 10}, {2462, 11}},
10938 .a_channels = 13,
10939 .a = {{5180, 36},
10940 {5200, 40},
10941 {5220, 44},
10942 {5240, 48},
10943 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10944 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10945 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10946 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10947 {5745, 149},
10948 {5765, 153},
10949 {5785, 157},
10950 {5805, 161},
10951 {5825, 165}},
10952 },
10953
10954 { /* Custom NA & Europe */
10955 "ZZB",
10956 .bg_channels = 11,
10957 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10958 {2427, 4}, {2432, 5}, {2437, 6},
10959 {2442, 7}, {2447, 8}, {2452, 9},
10960 {2457, 10}, {2462, 11}},
10961 .a_channels = 13,
10962 .a = {{5180, 36},
10963 {5200, 40},
10964 {5220, 44},
10965 {5240, 48},
10966 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10967 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10968 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10969 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10970 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10971 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10972 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10973 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10974 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10975 },
10976
10977 { /* Custom Japan */
10978 "ZZC",
10979 .bg_channels = 11,
10980 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10981 {2427, 4}, {2432, 5}, {2437, 6},
10982 {2442, 7}, {2447, 8}, {2452, 9},
10983 {2457, 10}, {2462, 11}},
10984 .a_channels = 4,
10985 .a = {{5170, 34}, {5190, 38},
10986 {5210, 42}, {5230, 46}},
10987 },
10988
10989 { /* Custom */
10990 "ZZM",
10991 .bg_channels = 11,
10992 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10993 {2427, 4}, {2432, 5}, {2437, 6},
10994 {2442, 7}, {2447, 8}, {2452, 9},
10995 {2457, 10}, {2462, 11}},
10996 },
10997
10998 { /* Europe */
10999 "ZZE",
11000 .bg_channels = 13,
11001 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11002 {2427, 4}, {2432, 5}, {2437, 6},
11003 {2442, 7}, {2447, 8}, {2452, 9},
11004 {2457, 10}, {2462, 11}, {2467, 12},
11005 {2472, 13}},
11006 .a_channels = 19,
11007 .a = {{5180, 36},
11008 {5200, 40},
11009 {5220, 44},
11010 {5240, 48},
11011 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11012 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11013 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11014 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11015 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11016 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11017 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11018 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11019 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11020 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11021 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11022 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11023 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11024 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11025 {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11026 },
11027
11028 { /* Custom Japan */
11029 "ZZJ",
11030 .bg_channels = 14,
11031 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11032 {2427, 4}, {2432, 5}, {2437, 6},
11033 {2442, 7}, {2447, 8}, {2452, 9},
11034 {2457, 10}, {2462, 11}, {2467, 12},
11035 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11036 .a_channels = 4,
11037 .a = {{5170, 34}, {5190, 38},
11038 {5210, 42}, {5230, 46}},
11039 },
11040
11041 { /* Rest of World */
11042 "ZZR",
11043 .bg_channels = 14,
11044 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11045 {2427, 4}, {2432, 5}, {2437, 6},
11046 {2442, 7}, {2447, 8}, {2452, 9},
11047 {2457, 10}, {2462, 11}, {2467, 12},
11048 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11049 IEEE80211_CH_PASSIVE_ONLY}},
11050 },
11051
11052 { /* High Band */
11053 "ZZH",
11054 .bg_channels = 13,
11055 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11056 {2427, 4}, {2432, 5}, {2437, 6},
11057 {2442, 7}, {2447, 8}, {2452, 9},
11058 {2457, 10}, {2462, 11},
11059 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11060 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11061 .a_channels = 4,
11062 .a = {{5745, 149}, {5765, 153},
11063 {5785, 157}, {5805, 161}},
11064 },
11065
11066 { /* Custom Europe */
11067 "ZZG",
11068 .bg_channels = 13,
11069 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11070 {2427, 4}, {2432, 5}, {2437, 6},
11071 {2442, 7}, {2447, 8}, {2452, 9},
11072 {2457, 10}, {2462, 11},
11073 {2467, 12}, {2472, 13}},
11074 .a_channels = 4,
11075 .a = {{5180, 36}, {5200, 40},
11076 {5220, 44}, {5240, 48}},
11077 },
11078
11079 { /* Europe */
11080 "ZZK",
11081 .bg_channels = 13,
11082 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11083 {2427, 4}, {2432, 5}, {2437, 6},
11084 {2442, 7}, {2447, 8}, {2452, 9},
11085 {2457, 10}, {2462, 11},
11086 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11087 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11088 .a_channels = 24,
11089 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11090 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11091 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11092 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11093 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11094 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11095 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11096 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11097 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11098 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11099 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11100 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11101 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11102 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11103 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11104 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11105 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11106 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11107 {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11108 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11109 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11110 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11111 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11112 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11113 },
11114
11115 { /* Europe */
11116 "ZZL",
11117 .bg_channels = 11,
11118 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11119 {2427, 4}, {2432, 5}, {2437, 6},
11120 {2442, 7}, {2447, 8}, {2452, 9},
11121 {2457, 10}, {2462, 11}},
11122 .a_channels = 13,
11123 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11124 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11125 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11126 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11127 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11128 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11129 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11130 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11131 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11132 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11133 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11134 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11135 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11136 }
11137 };
11138
11139 #define MAX_HW_RESTARTS 5
11140 static int ipw_up(struct ipw_priv *priv)
11141 {
11142 int rc, i, j;
11143
11144 if (priv->status & STATUS_EXIT_PENDING)
11145 return -EIO;
11146
11147 if (cmdlog && !priv->cmdlog) {
11148 priv->cmdlog = kmalloc(sizeof(*priv->cmdlog) * cmdlog,
11149 GFP_KERNEL);
11150 if (priv->cmdlog == NULL) {
11151 IPW_ERROR("Error allocating %d command log entries.\n",
11152 cmdlog);
11153 return -ENOMEM;
11154 } else {
11155 memset(priv->cmdlog, 0, sizeof(*priv->cmdlog) * cmdlog);
11156 priv->cmdlog_len = cmdlog;
11157 }
11158 }
11159
11160 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11161 /* Load the microcode, firmware, and eeprom.
11162 * Also start the clocks. */
11163 rc = ipw_load(priv);
11164 if (rc) {
11165 IPW_ERROR("Unable to load firmware: %d\n", rc);
11166 return rc;
11167 }
11168
11169 ipw_init_ordinals(priv);
11170 if (!(priv->config & CFG_CUSTOM_MAC))
11171 eeprom_parse_mac(priv, priv->mac_addr);
11172 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11173
11174 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11175 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11176 ipw_geos[j].name, 3))
11177 break;
11178 }
11179 if (j == ARRAY_SIZE(ipw_geos)) {
11180 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11181 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11182 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11183 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11184 j = 0;
11185 }
11186 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11187 IPW_WARNING("Could not set geography.");
11188 return 0;
11189 }
11190
11191 if (priv->status & STATUS_RF_KILL_SW) {
11192 IPW_WARNING("Radio disabled by module parameter.\n");
11193 return 0;
11194 } else if (rf_kill_active(priv)) {
11195 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11196 "Kill switch must be turned off for "
11197 "wireless networking to work.\n");
11198 queue_delayed_work(priv->workqueue, &priv->rf_kill,
11199 2 * HZ);
11200 return 0;
11201 }
11202
11203 rc = ipw_config(priv);
11204 if (!rc) {
11205 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11206
11207 /* If configure to try and auto-associate, kick
11208 * off a scan. */
11209 queue_delayed_work(priv->workqueue,
11210 &priv->request_scan, 0);
11211
11212 return 0;
11213 }
11214
11215 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11216 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11217 i, MAX_HW_RESTARTS);
11218
11219 /* We had an error bringing up the hardware, so take it
11220 * all the way back down so we can try again */
11221 ipw_down(priv);
11222 }
11223
11224 /* tried to restart and config the device for as long as our
11225 * patience could withstand */
11226 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11227
11228 return -EIO;
11229 }
11230
11231 static void ipw_bg_up(struct work_struct *work)
11232 {
11233 struct ipw_priv *priv =
11234 container_of(work, struct ipw_priv, up);
11235 mutex_lock(&priv->mutex);
11236 ipw_up(priv);
11237 mutex_unlock(&priv->mutex);
11238 }
11239
11240 static void ipw_deinit(struct ipw_priv *priv)
11241 {
11242 int i;
11243
11244 if (priv->status & STATUS_SCANNING) {
11245 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11246 ipw_abort_scan(priv);
11247 }
11248
11249 if (priv->status & STATUS_ASSOCIATED) {
11250 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11251 ipw_disassociate(priv);
11252 }
11253
11254 ipw_led_shutdown(priv);
11255
11256 /* Wait up to 1s for status to change to not scanning and not
11257 * associated (disassociation can take a while for a ful 802.11
11258 * exchange */
11259 for (i = 1000; i && (priv->status &
11260 (STATUS_DISASSOCIATING |
11261 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11262 udelay(10);
11263
11264 if (priv->status & (STATUS_DISASSOCIATING |
11265 STATUS_ASSOCIATED | STATUS_SCANNING))
11266 IPW_DEBUG_INFO("Still associated or scanning...\n");
11267 else
11268 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11269
11270 /* Attempt to disable the card */
11271 ipw_send_card_disable(priv, 0);
11272
11273 priv->status &= ~STATUS_INIT;
11274 }
11275
11276 static void ipw_down(struct ipw_priv *priv)
11277 {
11278 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11279
11280 priv->status |= STATUS_EXIT_PENDING;
11281
11282 if (ipw_is_init(priv))
11283 ipw_deinit(priv);
11284
11285 /* Wipe out the EXIT_PENDING status bit if we are not actually
11286 * exiting the module */
11287 if (!exit_pending)
11288 priv->status &= ~STATUS_EXIT_PENDING;
11289
11290 /* tell the device to stop sending interrupts */
11291 ipw_disable_interrupts(priv);
11292
11293 /* Clear all bits but the RF Kill */
11294 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11295 netif_carrier_off(priv->net_dev);
11296 netif_stop_queue(priv->net_dev);
11297
11298 ipw_stop_nic(priv);
11299
11300 ipw_led_radio_off(priv);
11301 }
11302
11303 static void ipw_bg_down(struct work_struct *work)
11304 {
11305 struct ipw_priv *priv =
11306 container_of(work, struct ipw_priv, down);
11307 mutex_lock(&priv->mutex);
11308 ipw_down(priv);
11309 mutex_unlock(&priv->mutex);
11310 }
11311
11312 /* Called by register_netdev() */
11313 static int ipw_net_init(struct net_device *dev)
11314 {
11315 struct ipw_priv *priv = ieee80211_priv(dev);
11316 mutex_lock(&priv->mutex);
11317
11318 if (ipw_up(priv)) {
11319 mutex_unlock(&priv->mutex);
11320 return -EIO;
11321 }
11322
11323 mutex_unlock(&priv->mutex);
11324 return 0;
11325 }
11326
11327 /* PCI driver stuff */
11328 static struct pci_device_id card_ids[] = {
11329 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11330 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11331 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11332 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11333 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11334 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11335 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11336 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11337 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11338 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11339 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11340 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11341 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11342 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11343 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11344 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11345 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11346 {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11347 {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11348 {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11349 {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11350 {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11351
11352 /* required last entry */
11353 {0,}
11354 };
11355
11356 MODULE_DEVICE_TABLE(pci, card_ids);
11357
11358 static struct attribute *ipw_sysfs_entries[] = {
11359 &dev_attr_rf_kill.attr,
11360 &dev_attr_direct_dword.attr,
11361 &dev_attr_indirect_byte.attr,
11362 &dev_attr_indirect_dword.attr,
11363 &dev_attr_mem_gpio_reg.attr,
11364 &dev_attr_command_event_reg.attr,
11365 &dev_attr_nic_type.attr,
11366 &dev_attr_status.attr,
11367 &dev_attr_cfg.attr,
11368 &dev_attr_error.attr,
11369 &dev_attr_event_log.attr,
11370 &dev_attr_cmd_log.attr,
11371 &dev_attr_eeprom_delay.attr,
11372 &dev_attr_ucode_version.attr,
11373 &dev_attr_rtc.attr,
11374 &dev_attr_scan_age.attr,
11375 &dev_attr_led.attr,
11376 &dev_attr_speed_scan.attr,
11377 &dev_attr_net_stats.attr,
11378 #ifdef CONFIG_IPW2200_PROMISCUOUS
11379 &dev_attr_rtap_iface.attr,
11380 &dev_attr_rtap_filter.attr,
11381 #endif
11382 NULL
11383 };
11384
11385 static struct attribute_group ipw_attribute_group = {
11386 .name = NULL, /* put in device directory */
11387 .attrs = ipw_sysfs_entries,
11388 };
11389
11390 #ifdef CONFIG_IPW2200_PROMISCUOUS
11391 static int ipw_prom_open(struct net_device *dev)
11392 {
11393 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11394 struct ipw_priv *priv = prom_priv->priv;
11395
11396 IPW_DEBUG_INFO("prom dev->open\n");
11397 netif_carrier_off(dev);
11398 netif_stop_queue(dev);
11399
11400 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11401 priv->sys_config.accept_all_data_frames = 1;
11402 priv->sys_config.accept_non_directed_frames = 1;
11403 priv->sys_config.accept_all_mgmt_bcpr = 1;
11404 priv->sys_config.accept_all_mgmt_frames = 1;
11405
11406 ipw_send_system_config(priv);
11407 }
11408
11409 return 0;
11410 }
11411
11412 static int ipw_prom_stop(struct net_device *dev)
11413 {
11414 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11415 struct ipw_priv *priv = prom_priv->priv;
11416
11417 IPW_DEBUG_INFO("prom dev->stop\n");
11418
11419 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11420 priv->sys_config.accept_all_data_frames = 0;
11421 priv->sys_config.accept_non_directed_frames = 0;
11422 priv->sys_config.accept_all_mgmt_bcpr = 0;
11423 priv->sys_config.accept_all_mgmt_frames = 0;
11424
11425 ipw_send_system_config(priv);
11426 }
11427
11428 return 0;
11429 }
11430
11431 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11432 {
11433 IPW_DEBUG_INFO("prom dev->xmit\n");
11434 netif_stop_queue(dev);
11435 return -EOPNOTSUPP;
11436 }
11437
11438 static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
11439 {
11440 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11441 return &prom_priv->ieee->stats;
11442 }
11443
11444 static int ipw_prom_alloc(struct ipw_priv *priv)
11445 {
11446 int rc = 0;
11447
11448 if (priv->prom_net_dev)
11449 return -EPERM;
11450
11451 priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11452 if (priv->prom_net_dev == NULL)
11453 return -ENOMEM;
11454
11455 priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11456 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11457 priv->prom_priv->priv = priv;
11458
11459 strcpy(priv->prom_net_dev->name, "rtap%d");
11460
11461 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11462 priv->prom_net_dev->open = ipw_prom_open;
11463 priv->prom_net_dev->stop = ipw_prom_stop;
11464 priv->prom_net_dev->get_stats = ipw_prom_get_stats;
11465 priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;
11466
11467 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11468
11469 rc = register_netdev(priv->prom_net_dev);
11470 if (rc) {
11471 free_ieee80211(priv->prom_net_dev);
11472 priv->prom_net_dev = NULL;
11473 return rc;
11474 }
11475
11476 return 0;
11477 }
11478
11479 static void ipw_prom_free(struct ipw_priv *priv)
11480 {
11481 if (!priv->prom_net_dev)
11482 return;
11483
11484 unregister_netdev(priv->prom_net_dev);
11485 free_ieee80211(priv->prom_net_dev);
11486
11487 priv->prom_net_dev = NULL;
11488 }
11489
11490 #endif
11491
11492
11493 static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
11494 {
11495 int err = 0;
11496 struct net_device *net_dev;
11497 void __iomem *base;
11498 u32 length, val;
11499 struct ipw_priv *priv;
11500 int i;
11501
11502 net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11503 if (net_dev == NULL) {
11504 err = -ENOMEM;
11505 goto out;
11506 }
11507
11508 priv = ieee80211_priv(net_dev);
11509 priv->ieee = netdev_priv(net_dev);
11510
11511 priv->net_dev = net_dev;
11512 priv->pci_dev = pdev;
11513 ipw_debug_level = debug;
11514 spin_lock_init(&priv->irq_lock);
11515 spin_lock_init(&priv->lock);
11516 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11517 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11518
11519 mutex_init(&priv->mutex);
11520 if (pci_enable_device(pdev)) {
11521 err = -ENODEV;
11522 goto out_free_ieee80211;
11523 }
11524
11525 pci_set_master(pdev);
11526
11527 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11528 if (!err)
11529 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11530 if (err) {
11531 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11532 goto out_pci_disable_device;
11533 }
11534
11535 pci_set_drvdata(pdev, priv);
11536
11537 err = pci_request_regions(pdev, DRV_NAME);
11538 if (err)
11539 goto out_pci_disable_device;
11540
11541 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11542 * PCI Tx retries from interfering with C3 CPU state */
11543 pci_read_config_dword(pdev, 0x40, &val);
11544 if ((val & 0x0000ff00) != 0)
11545 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11546
11547 length = pci_resource_len(pdev, 0);
11548 priv->hw_len = length;
11549
11550 base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11551 if (!base) {
11552 err = -ENODEV;
11553 goto out_pci_release_regions;
11554 }
11555
11556 priv->hw_base = base;
11557 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11558 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11559
11560 err = ipw_setup_deferred_work(priv);
11561 if (err) {
11562 IPW_ERROR("Unable to setup deferred work\n");
11563 goto out_iounmap;
11564 }
11565
11566 ipw_sw_reset(priv, 1);
11567
11568 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11569 if (err) {
11570 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11571 goto out_destroy_workqueue;
11572 }
11573
11574 SET_MODULE_OWNER(net_dev);
11575 SET_NETDEV_DEV(net_dev, &pdev->dev);
11576
11577 mutex_lock(&priv->mutex);
11578
11579 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11580 priv->ieee->set_security = shim__set_security;
11581 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11582
11583 #ifdef CONFIG_IPW2200_QOS
11584 priv->ieee->is_qos_active = ipw_is_qos_active;
11585 priv->ieee->handle_probe_response = ipw_handle_beacon;
11586 priv->ieee->handle_beacon = ipw_handle_probe_response;
11587 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11588 #endif /* CONFIG_IPW2200_QOS */
11589
11590 priv->ieee->perfect_rssi = -20;
11591 priv->ieee->worst_rssi = -85;
11592
11593 net_dev->open = ipw_net_open;
11594 net_dev->stop = ipw_net_stop;
11595 net_dev->init = ipw_net_init;
11596 net_dev->get_stats = ipw_net_get_stats;
11597 net_dev->set_multicast_list = ipw_net_set_multicast_list;
11598 net_dev->set_mac_address = ipw_net_set_mac_address;
11599 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11600 net_dev->wireless_data = &priv->wireless_data;
11601 net_dev->wireless_handlers = &ipw_wx_handler_def;
11602 net_dev->ethtool_ops = &ipw_ethtool_ops;
11603 net_dev->irq = pdev->irq;
11604 net_dev->base_addr = (unsigned long)priv->hw_base;
11605 net_dev->mem_start = pci_resource_start(pdev, 0);
11606 net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11607
11608 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11609 if (err) {
11610 IPW_ERROR("failed to create sysfs device attributes\n");
11611 mutex_unlock(&priv->mutex);
11612 goto out_release_irq;
11613 }
11614
11615 mutex_unlock(&priv->mutex);
11616 err = register_netdev(net_dev);
11617 if (err) {
11618 IPW_ERROR("failed to register network device\n");
11619 goto out_remove_sysfs;
11620 }
11621
11622 #ifdef CONFIG_IPW2200_PROMISCUOUS
11623 if (rtap_iface) {
11624 err = ipw_prom_alloc(priv);
11625 if (err) {
11626 IPW_ERROR("Failed to register promiscuous network "
11627 "device (error %d).\n", err);
11628 unregister_netdev(priv->net_dev);
11629 goto out_remove_sysfs;
11630 }
11631 }
11632 #endif
11633
11634 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11635 "channels, %d 802.11a channels)\n",
11636 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11637 priv->ieee->geo.a_channels);
11638
11639 return 0;
11640
11641 out_remove_sysfs:
11642 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11643 out_release_irq:
11644 free_irq(pdev->irq, priv);
11645 out_destroy_workqueue:
11646 destroy_workqueue(priv->workqueue);
11647 priv->workqueue = NULL;
11648 out_iounmap:
11649 iounmap(priv->hw_base);
11650 out_pci_release_regions:
11651 pci_release_regions(pdev);
11652 out_pci_disable_device:
11653 pci_disable_device(pdev);
11654 pci_set_drvdata(pdev, NULL);
11655 out_free_ieee80211:
11656 free_ieee80211(priv->net_dev);
11657 out:
11658 return err;
11659 }
11660
11661 static void ipw_pci_remove(struct pci_dev *pdev)
11662 {
11663 struct ipw_priv *priv = pci_get_drvdata(pdev);
11664 struct list_head *p, *q;
11665 int i;
11666
11667 if (!priv)
11668 return;
11669
11670 mutex_lock(&priv->mutex);
11671
11672 priv->status |= STATUS_EXIT_PENDING;
11673 ipw_down(priv);
11674 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11675
11676 mutex_unlock(&priv->mutex);
11677
11678 unregister_netdev(priv->net_dev);
11679
11680 if (priv->rxq) {
11681 ipw_rx_queue_free(priv, priv->rxq);
11682 priv->rxq = NULL;
11683 }
11684 ipw_tx_queue_free(priv);
11685
11686 if (priv->cmdlog) {
11687 kfree(priv->cmdlog);
11688 priv->cmdlog = NULL;
11689 }
11690 /* ipw_down will ensure that there is no more pending work
11691 * in the workqueue's, so we can safely remove them now. */
11692 cancel_delayed_work(&priv->adhoc_check);
11693 cancel_delayed_work(&priv->gather_stats);
11694 cancel_delayed_work(&priv->request_scan);
11695 cancel_delayed_work(&priv->rf_kill);
11696 cancel_delayed_work(&priv->scan_check);
11697 destroy_workqueue(priv->workqueue);
11698 priv->workqueue = NULL;
11699
11700 /* Free MAC hash list for ADHOC */
11701 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11702 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11703 list_del(p);
11704 kfree(list_entry(p, struct ipw_ibss_seq, list));
11705 }
11706 }
11707
11708 kfree(priv->error);
11709 priv->error = NULL;
11710
11711 #ifdef CONFIG_IPW2200_PROMISCUOUS
11712 ipw_prom_free(priv);
11713 #endif
11714
11715 free_irq(pdev->irq, priv);
11716 iounmap(priv->hw_base);
11717 pci_release_regions(pdev);
11718 pci_disable_device(pdev);
11719 pci_set_drvdata(pdev, NULL);
11720 free_ieee80211(priv->net_dev);
11721 free_firmware();
11722 }
11723
11724 #ifdef CONFIG_PM
11725 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11726 {
11727 struct ipw_priv *priv = pci_get_drvdata(pdev);
11728 struct net_device *dev = priv->net_dev;
11729
11730 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11731
11732 /* Take down the device; powers it off, etc. */
11733 ipw_down(priv);
11734
11735 /* Remove the PRESENT state of the device */
11736 netif_device_detach(dev);
11737
11738 pci_save_state(pdev);
11739 pci_disable_device(pdev);
11740 pci_set_power_state(pdev, pci_choose_state(pdev, state));
11741
11742 return 0;
11743 }
11744
11745 static int ipw_pci_resume(struct pci_dev *pdev)
11746 {
11747 struct ipw_priv *priv = pci_get_drvdata(pdev);
11748 struct net_device *dev = priv->net_dev;
11749 int err;
11750 u32 val;
11751
11752 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11753
11754 pci_set_power_state(pdev, PCI_D0);
11755 err = pci_enable_device(pdev);
11756 if (err) {
11757 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11758 dev->name);
11759 return err;
11760 }
11761 pci_restore_state(pdev);
11762
11763 /*
11764 * Suspend/Resume resets the PCI configuration space, so we have to
11765 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11766 * from interfering with C3 CPU state. pci_restore_state won't help
11767 * here since it only restores the first 64 bytes pci config header.
11768 */
11769 pci_read_config_dword(pdev, 0x40, &val);
11770 if ((val & 0x0000ff00) != 0)
11771 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11772
11773 /* Set the device back into the PRESENT state; this will also wake
11774 * the queue of needed */
11775 netif_device_attach(dev);
11776
11777 /* Bring the device back up */
11778 queue_work(priv->workqueue, &priv->up);
11779
11780 return 0;
11781 }
11782 #endif
11783
11784 static void ipw_pci_shutdown(struct pci_dev *pdev)
11785 {
11786 struct ipw_priv *priv = pci_get_drvdata(pdev);
11787
11788 /* Take down the device; powers it off, etc. */
11789 ipw_down(priv);
11790
11791 pci_disable_device(pdev);
11792 }
11793
11794 /* driver initialization stuff */
11795 static struct pci_driver ipw_driver = {
11796 .name = DRV_NAME,
11797 .id_table = card_ids,
11798 .probe = ipw_pci_probe,
11799 .remove = __devexit_p(ipw_pci_remove),
11800 #ifdef CONFIG_PM
11801 .suspend = ipw_pci_suspend,
11802 .resume = ipw_pci_resume,
11803 #endif
11804 .shutdown = ipw_pci_shutdown,
11805 };
11806
11807 static int __init ipw_init(void)
11808 {
11809 int ret;
11810
11811 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11812 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11813
11814 ret = pci_register_driver(&ipw_driver);
11815 if (ret) {
11816 IPW_ERROR("Unable to initialize PCI module\n");
11817 return ret;
11818 }
11819
11820 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11821 if (ret) {
11822 IPW_ERROR("Unable to create driver sysfs file\n");
11823 pci_unregister_driver(&ipw_driver);
11824 return ret;
11825 }
11826
11827 return ret;
11828 }
11829
11830 static void __exit ipw_exit(void)
11831 {
11832 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11833 pci_unregister_driver(&ipw_driver);
11834 }
11835
11836 module_param(disable, int, 0444);
11837 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11838
11839 module_param(associate, int, 0444);
11840 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11841
11842 module_param(auto_create, int, 0444);
11843 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11844
11845 module_param(led, int, 0444);
11846 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11847
11848 module_param(debug, int, 0444);
11849 MODULE_PARM_DESC(debug, "debug output mask");
11850
11851 module_param(channel, int, 0444);
11852 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11853
11854 #ifdef CONFIG_IPW2200_PROMISCUOUS
11855 module_param(rtap_iface, int, 0444);
11856 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11857 #endif
11858
11859 #ifdef CONFIG_IPW2200_QOS
11860 module_param(qos_enable, int, 0444);
11861 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11862
11863 module_param(qos_burst_enable, int, 0444);
11864 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11865
11866 module_param(qos_no_ack_mask, int, 0444);
11867 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11868
11869 module_param(burst_duration_CCK, int, 0444);
11870 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11871
11872 module_param(burst_duration_OFDM, int, 0444);
11873 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11874 #endif /* CONFIG_IPW2200_QOS */
11875
11876 #ifdef CONFIG_IPW2200_MONITOR
11877 module_param(mode, int, 0444);
11878 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11879 #else
11880 module_param(mode, int, 0444);
11881 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11882 #endif
11883
11884 module_param(bt_coexist, int, 0444);
11885 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11886
11887 module_param(hwcrypto, int, 0444);
11888 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11889
11890 module_param(cmdlog, int, 0444);
11891 MODULE_PARM_DESC(cmdlog,
11892 "allocate a ring buffer for logging firmware commands");
11893
11894 module_param(roaming, int, 0444);
11895 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
11896
11897 module_param(antenna, int, 0444);
11898 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
11899
11900 module_exit(ipw_exit);
11901 module_init(ipw_init);
This page took 0.371025 seconds and 5 git commands to generate.