PM QOS update
[deliverable/linux.git] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 Intel Linux Wireless <ilw@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
28
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <j@w1.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
43
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
106
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
110
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
114
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
118
119 The flow of data on the TX side is as follows:
120
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124 The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos_params.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "git-1.2.2"
171
172 #define DRV_NAME "ipw2100"
173 #define DRV_VERSION IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
176
177 struct pm_qos_request_list *ipw2100_pm_qos_req;
178
179 /* Debugging stuff */
180 #ifdef CONFIG_IPW2100_DEBUG
181 #define IPW2100_RX_DEBUG /* Reception debugging */
182 #endif
183
184 MODULE_DESCRIPTION(DRV_DESCRIPTION);
185 MODULE_VERSION(DRV_VERSION);
186 MODULE_AUTHOR(DRV_COPYRIGHT);
187 MODULE_LICENSE("GPL");
188
189 static int debug = 0;
190 static int network_mode = 0;
191 static int channel = 0;
192 static int associate = 0;
193 static int disable = 0;
194 #ifdef CONFIG_PM
195 static struct ipw2100_fw ipw2100_firmware;
196 #endif
197
198 #include <linux/moduleparam.h>
199 module_param(debug, int, 0444);
200 module_param_named(mode, network_mode, int, 0444);
201 module_param(channel, int, 0444);
202 module_param(associate, int, 0444);
203 module_param(disable, int, 0444);
204
205 MODULE_PARM_DESC(debug, "debug level");
206 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
207 MODULE_PARM_DESC(channel, "channel");
208 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
209 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
210
211 static u32 ipw2100_debug_level = IPW_DL_NONE;
212
213 #ifdef CONFIG_IPW2100_DEBUG
214 #define IPW_DEBUG(level, message...) \
215 do { \
216 if (ipw2100_debug_level & (level)) { \
217 printk(KERN_DEBUG "ipw2100: %c %s ", \
218 in_interrupt() ? 'I' : 'U', __func__); \
219 printk(message); \
220 } \
221 } while (0)
222 #else
223 #define IPW_DEBUG(level, message...) do {} while (0)
224 #endif /* CONFIG_IPW2100_DEBUG */
225
226 #ifdef CONFIG_IPW2100_DEBUG
227 static const char *command_types[] = {
228 "undefined",
229 "unused", /* HOST_ATTENTION */
230 "HOST_COMPLETE",
231 "unused", /* SLEEP */
232 "unused", /* HOST_POWER_DOWN */
233 "unused",
234 "SYSTEM_CONFIG",
235 "unused", /* SET_IMR */
236 "SSID",
237 "MANDATORY_BSSID",
238 "AUTHENTICATION_TYPE",
239 "ADAPTER_ADDRESS",
240 "PORT_TYPE",
241 "INTERNATIONAL_MODE",
242 "CHANNEL",
243 "RTS_THRESHOLD",
244 "FRAG_THRESHOLD",
245 "POWER_MODE",
246 "TX_RATES",
247 "BASIC_TX_RATES",
248 "WEP_KEY_INFO",
249 "unused",
250 "unused",
251 "unused",
252 "unused",
253 "WEP_KEY_INDEX",
254 "WEP_FLAGS",
255 "ADD_MULTICAST",
256 "CLEAR_ALL_MULTICAST",
257 "BEACON_INTERVAL",
258 "ATIM_WINDOW",
259 "CLEAR_STATISTICS",
260 "undefined",
261 "undefined",
262 "undefined",
263 "undefined",
264 "TX_POWER_INDEX",
265 "undefined",
266 "undefined",
267 "undefined",
268 "undefined",
269 "undefined",
270 "undefined",
271 "BROADCAST_SCAN",
272 "CARD_DISABLE",
273 "PREFERRED_BSSID",
274 "SET_SCAN_OPTIONS",
275 "SCAN_DWELL_TIME",
276 "SWEEP_TABLE",
277 "AP_OR_STATION_TABLE",
278 "GROUP_ORDINALS",
279 "SHORT_RETRY_LIMIT",
280 "LONG_RETRY_LIMIT",
281 "unused", /* SAVE_CALIBRATION */
282 "unused", /* RESTORE_CALIBRATION */
283 "undefined",
284 "undefined",
285 "undefined",
286 "HOST_PRE_POWER_DOWN",
287 "unused", /* HOST_INTERRUPT_COALESCING */
288 "undefined",
289 "CARD_DISABLE_PHY_OFF",
290 "MSDU_TX_RATES" "undefined",
291 "undefined",
292 "SET_STATION_STAT_BITS",
293 "CLEAR_STATIONS_STAT_BITS",
294 "LEAP_ROGUE_MODE",
295 "SET_SECURITY_INFORMATION",
296 "DISASSOCIATION_BSSID",
297 "SET_WPA_ASS_IE"
298 };
299 #endif
300
301 #define WEXT_USECHANNELS 1
302
303 static const long ipw2100_frequencies[] = {
304 2412, 2417, 2422, 2427,
305 2432, 2437, 2442, 2447,
306 2452, 2457, 2462, 2467,
307 2472, 2484
308 };
309
310 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies)
311
312 static const long ipw2100_rates_11b[] = {
313 1000000,
314 2000000,
315 5500000,
316 11000000
317 };
318
319 static struct ieee80211_rate ipw2100_bg_rates[] = {
320 { .bitrate = 10 },
321 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
322 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
323 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
324 };
325
326 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
327
328 /* Pre-decl until we get the code solid and then we can clean it up */
329 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
330 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
331 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
332
333 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
334 static void ipw2100_queues_free(struct ipw2100_priv *priv);
335 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
336
337 static int ipw2100_fw_download(struct ipw2100_priv *priv,
338 struct ipw2100_fw *fw);
339 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
340 struct ipw2100_fw *fw);
341 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
342 size_t max);
343 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
344 size_t max);
345 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
346 struct ipw2100_fw *fw);
347 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
348 struct ipw2100_fw *fw);
349 static void ipw2100_wx_event_work(struct work_struct *work);
350 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
351 static struct iw_handler_def ipw2100_wx_handler_def;
352
353 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
354 {
355 *val = readl((void __iomem *)(dev->base_addr + reg));
356 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
357 }
358
359 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
360 {
361 writel(val, (void __iomem *)(dev->base_addr + reg));
362 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
363 }
364
365 static inline void read_register_word(struct net_device *dev, u32 reg,
366 u16 * val)
367 {
368 *val = readw((void __iomem *)(dev->base_addr + reg));
369 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
370 }
371
372 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
373 {
374 *val = readb((void __iomem *)(dev->base_addr + reg));
375 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380 writew(val, (void __iomem *)(dev->base_addr + reg));
381 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
382 }
383
384 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
385 {
386 writeb(val, (void __iomem *)(dev->base_addr + reg));
387 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
388 }
389
390 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
391 {
392 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
393 addr & IPW_REG_INDIRECT_ADDR_MASK);
394 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
395 }
396
397 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
398 {
399 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
400 addr & IPW_REG_INDIRECT_ADDR_MASK);
401 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
402 }
403
404 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
405 {
406 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
407 addr & IPW_REG_INDIRECT_ADDR_MASK);
408 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
409 }
410
411 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
412 {
413 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
414 addr & IPW_REG_INDIRECT_ADDR_MASK);
415 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
416 }
417
418 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
419 {
420 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
421 addr & IPW_REG_INDIRECT_ADDR_MASK);
422 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
423 }
424
425 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
426 {
427 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428 addr & IPW_REG_INDIRECT_ADDR_MASK);
429 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
430 }
431
432 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
433 {
434 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
435 addr & IPW_REG_INDIRECT_ADDR_MASK);
436 }
437
438 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
439 {
440 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
441 }
442
443 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
444 const u8 * buf)
445 {
446 u32 aligned_addr;
447 u32 aligned_len;
448 u32 dif_len;
449 u32 i;
450
451 /* read first nibble byte by byte */
452 aligned_addr = addr & (~0x3);
453 dif_len = addr - aligned_addr;
454 if (dif_len) {
455 /* Start reading at aligned_addr + dif_len */
456 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
457 aligned_addr);
458 for (i = dif_len; i < 4; i++, buf++)
459 write_register_byte(dev,
460 IPW_REG_INDIRECT_ACCESS_DATA + i,
461 *buf);
462
463 len -= dif_len;
464 aligned_addr += 4;
465 }
466
467 /* read DWs through autoincrement registers */
468 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
469 aligned_len = len & (~0x3);
470 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
471 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
472
473 /* copy the last nibble */
474 dif_len = len - aligned_len;
475 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
476 for (i = 0; i < dif_len; i++, buf++)
477 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
478 *buf);
479 }
480
481 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
482 u8 * buf)
483 {
484 u32 aligned_addr;
485 u32 aligned_len;
486 u32 dif_len;
487 u32 i;
488
489 /* read first nibble byte by byte */
490 aligned_addr = addr & (~0x3);
491 dif_len = addr - aligned_addr;
492 if (dif_len) {
493 /* Start reading at aligned_addr + dif_len */
494 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
495 aligned_addr);
496 for (i = dif_len; i < 4; i++, buf++)
497 read_register_byte(dev,
498 IPW_REG_INDIRECT_ACCESS_DATA + i,
499 buf);
500
501 len -= dif_len;
502 aligned_addr += 4;
503 }
504
505 /* read DWs through autoincrement registers */
506 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
507 aligned_len = len & (~0x3);
508 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
509 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
510
511 /* copy the last nibble */
512 dif_len = len - aligned_len;
513 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
514 for (i = 0; i < dif_len; i++, buf++)
515 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
516 }
517
518 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
519 {
520 return (dev->base_addr &&
521 (readl
522 ((void __iomem *)(dev->base_addr +
523 IPW_REG_DOA_DEBUG_AREA_START))
524 == IPW_DATA_DOA_DEBUG_VALUE));
525 }
526
527 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
528 void *val, u32 * len)
529 {
530 struct ipw2100_ordinals *ordinals = &priv->ordinals;
531 u32 addr;
532 u32 field_info;
533 u16 field_len;
534 u16 field_count;
535 u32 total_length;
536
537 if (ordinals->table1_addr == 0) {
538 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
539 "before they have been loaded.\n");
540 return -EINVAL;
541 }
542
543 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
544 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
545 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
546
547 printk(KERN_WARNING DRV_NAME
548 ": ordinal buffer length too small, need %zd\n",
549 IPW_ORD_TAB_1_ENTRY_SIZE);
550
551 return -EINVAL;
552 }
553
554 read_nic_dword(priv->net_dev,
555 ordinals->table1_addr + (ord << 2), &addr);
556 read_nic_dword(priv->net_dev, addr, val);
557
558 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
559
560 return 0;
561 }
562
563 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
564
565 ord -= IPW_START_ORD_TAB_2;
566
567 /* get the address of statistic */
568 read_nic_dword(priv->net_dev,
569 ordinals->table2_addr + (ord << 3), &addr);
570
571 /* get the second DW of statistics ;
572 * two 16-bit words - first is length, second is count */
573 read_nic_dword(priv->net_dev,
574 ordinals->table2_addr + (ord << 3) + sizeof(u32),
575 &field_info);
576
577 /* get each entry length */
578 field_len = *((u16 *) & field_info);
579
580 /* get number of entries */
581 field_count = *(((u16 *) & field_info) + 1);
582
583 /* abort if no enough memory */
584 total_length = field_len * field_count;
585 if (total_length > *len) {
586 *len = total_length;
587 return -EINVAL;
588 }
589
590 *len = total_length;
591 if (!total_length)
592 return 0;
593
594 /* read the ordinal data from the SRAM */
595 read_nic_memory(priv->net_dev, addr, total_length, val);
596
597 return 0;
598 }
599
600 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
601 "in table 2\n", ord);
602
603 return -EINVAL;
604 }
605
606 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
607 u32 * len)
608 {
609 struct ipw2100_ordinals *ordinals = &priv->ordinals;
610 u32 addr;
611
612 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
613 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
614 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
615 IPW_DEBUG_INFO("wrong size\n");
616 return -EINVAL;
617 }
618
619 read_nic_dword(priv->net_dev,
620 ordinals->table1_addr + (ord << 2), &addr);
621
622 write_nic_dword(priv->net_dev, addr, *val);
623
624 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
625
626 return 0;
627 }
628
629 IPW_DEBUG_INFO("wrong table\n");
630 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
631 return -EINVAL;
632
633 return -EINVAL;
634 }
635
636 static char *snprint_line(char *buf, size_t count,
637 const u8 * data, u32 len, u32 ofs)
638 {
639 int out, i, j, l;
640 char c;
641
642 out = snprintf(buf, count, "%08X", ofs);
643
644 for (l = 0, i = 0; i < 2; i++) {
645 out += snprintf(buf + out, count - out, " ");
646 for (j = 0; j < 8 && l < len; j++, l++)
647 out += snprintf(buf + out, count - out, "%02X ",
648 data[(i * 8 + j)]);
649 for (; j < 8; j++)
650 out += snprintf(buf + out, count - out, " ");
651 }
652
653 out += snprintf(buf + out, count - out, " ");
654 for (l = 0, i = 0; i < 2; i++) {
655 out += snprintf(buf + out, count - out, " ");
656 for (j = 0; j < 8 && l < len; j++, l++) {
657 c = data[(i * 8 + j)];
658 if (!isascii(c) || !isprint(c))
659 c = '.';
660
661 out += snprintf(buf + out, count - out, "%c", c);
662 }
663
664 for (; j < 8; j++)
665 out += snprintf(buf + out, count - out, " ");
666 }
667
668 return buf;
669 }
670
671 static void printk_buf(int level, const u8 * data, u32 len)
672 {
673 char line[81];
674 u32 ofs = 0;
675 if (!(ipw2100_debug_level & level))
676 return;
677
678 while (len) {
679 printk(KERN_DEBUG "%s\n",
680 snprint_line(line, sizeof(line), &data[ofs],
681 min(len, 16U), ofs));
682 ofs += 16;
683 len -= min(len, 16U);
684 }
685 }
686
687 #define MAX_RESET_BACKOFF 10
688
689 static void schedule_reset(struct ipw2100_priv *priv)
690 {
691 unsigned long now = get_seconds();
692
693 /* If we haven't received a reset request within the backoff period,
694 * then we can reset the backoff interval so this reset occurs
695 * immediately */
696 if (priv->reset_backoff &&
697 (now - priv->last_reset > priv->reset_backoff))
698 priv->reset_backoff = 0;
699
700 priv->last_reset = get_seconds();
701
702 if (!(priv->status & STATUS_RESET_PENDING)) {
703 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
704 priv->net_dev->name, priv->reset_backoff);
705 netif_carrier_off(priv->net_dev);
706 netif_stop_queue(priv->net_dev);
707 priv->status |= STATUS_RESET_PENDING;
708 if (priv->reset_backoff)
709 queue_delayed_work(priv->workqueue, &priv->reset_work,
710 priv->reset_backoff * HZ);
711 else
712 queue_delayed_work(priv->workqueue, &priv->reset_work,
713 0);
714
715 if (priv->reset_backoff < MAX_RESET_BACKOFF)
716 priv->reset_backoff++;
717
718 wake_up_interruptible(&priv->wait_command_queue);
719 } else
720 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
721 priv->net_dev->name);
722
723 }
724
725 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
726 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
727 struct host_command *cmd)
728 {
729 struct list_head *element;
730 struct ipw2100_tx_packet *packet;
731 unsigned long flags;
732 int err = 0;
733
734 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
735 command_types[cmd->host_command], cmd->host_command,
736 cmd->host_command_length);
737 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
738 cmd->host_command_length);
739
740 spin_lock_irqsave(&priv->low_lock, flags);
741
742 if (priv->fatal_error) {
743 IPW_DEBUG_INFO
744 ("Attempt to send command while hardware in fatal error condition.\n");
745 err = -EIO;
746 goto fail_unlock;
747 }
748
749 if (!(priv->status & STATUS_RUNNING)) {
750 IPW_DEBUG_INFO
751 ("Attempt to send command while hardware is not running.\n");
752 err = -EIO;
753 goto fail_unlock;
754 }
755
756 if (priv->status & STATUS_CMD_ACTIVE) {
757 IPW_DEBUG_INFO
758 ("Attempt to send command while another command is pending.\n");
759 err = -EBUSY;
760 goto fail_unlock;
761 }
762
763 if (list_empty(&priv->msg_free_list)) {
764 IPW_DEBUG_INFO("no available msg buffers\n");
765 goto fail_unlock;
766 }
767
768 priv->status |= STATUS_CMD_ACTIVE;
769 priv->messages_sent++;
770
771 element = priv->msg_free_list.next;
772
773 packet = list_entry(element, struct ipw2100_tx_packet, list);
774 packet->jiffy_start = jiffies;
775
776 /* initialize the firmware command packet */
777 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
778 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
779 packet->info.c_struct.cmd->host_command_len_reg =
780 cmd->host_command_length;
781 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
782
783 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
784 cmd->host_command_parameters,
785 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
786
787 list_del(element);
788 DEC_STAT(&priv->msg_free_stat);
789
790 list_add_tail(element, &priv->msg_pend_list);
791 INC_STAT(&priv->msg_pend_stat);
792
793 ipw2100_tx_send_commands(priv);
794 ipw2100_tx_send_data(priv);
795
796 spin_unlock_irqrestore(&priv->low_lock, flags);
797
798 /*
799 * We must wait for this command to complete before another
800 * command can be sent... but if we wait more than 3 seconds
801 * then there is a problem.
802 */
803
804 err =
805 wait_event_interruptible_timeout(priv->wait_command_queue,
806 !(priv->
807 status & STATUS_CMD_ACTIVE),
808 HOST_COMPLETE_TIMEOUT);
809
810 if (err == 0) {
811 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
812 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
813 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
814 priv->status &= ~STATUS_CMD_ACTIVE;
815 schedule_reset(priv);
816 return -EIO;
817 }
818
819 if (priv->fatal_error) {
820 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
821 priv->net_dev->name);
822 return -EIO;
823 }
824
825 /* !!!!! HACK TEST !!!!!
826 * When lots of debug trace statements are enabled, the driver
827 * doesn't seem to have as many firmware restart cycles...
828 *
829 * As a test, we're sticking in a 1/100s delay here */
830 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
831
832 return 0;
833
834 fail_unlock:
835 spin_unlock_irqrestore(&priv->low_lock, flags);
836
837 return err;
838 }
839
840 /*
841 * Verify the values and data access of the hardware
842 * No locks needed or used. No functions called.
843 */
844 static int ipw2100_verify(struct ipw2100_priv *priv)
845 {
846 u32 data1, data2;
847 u32 address;
848
849 u32 val1 = 0x76543210;
850 u32 val2 = 0xFEDCBA98;
851
852 /* Domain 0 check - all values should be DOA_DEBUG */
853 for (address = IPW_REG_DOA_DEBUG_AREA_START;
854 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
855 read_register(priv->net_dev, address, &data1);
856 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
857 return -EIO;
858 }
859
860 /* Domain 1 check - use arbitrary read/write compare */
861 for (address = 0; address < 5; address++) {
862 /* The memory area is not used now */
863 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
864 val1);
865 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
866 val2);
867 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
868 &data1);
869 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
870 &data2);
871 if (val1 == data1 && val2 == data2)
872 return 0;
873 }
874
875 return -EIO;
876 }
877
878 /*
879 *
880 * Loop until the CARD_DISABLED bit is the same value as the
881 * supplied parameter
882 *
883 * TODO: See if it would be more efficient to do a wait/wake
884 * cycle and have the completion event trigger the wakeup
885 *
886 */
887 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
888 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
889 {
890 int i;
891 u32 card_state;
892 u32 len = sizeof(card_state);
893 int err;
894
895 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
896 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
897 &card_state, &len);
898 if (err) {
899 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
900 "failed.\n");
901 return 0;
902 }
903
904 /* We'll break out if either the HW state says it is
905 * in the state we want, or if HOST_COMPLETE command
906 * finishes */
907 if ((card_state == state) ||
908 ((priv->status & STATUS_ENABLED) ?
909 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
910 if (state == IPW_HW_STATE_ENABLED)
911 priv->status |= STATUS_ENABLED;
912 else
913 priv->status &= ~STATUS_ENABLED;
914
915 return 0;
916 }
917
918 udelay(50);
919 }
920
921 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
922 state ? "DISABLED" : "ENABLED");
923 return -EIO;
924 }
925
926 /*********************************************************************
927 Procedure : sw_reset_and_clock
928 Purpose : Asserts s/w reset, asserts clock initialization
929 and waits for clock stabilization
930 ********************************************************************/
931 static int sw_reset_and_clock(struct ipw2100_priv *priv)
932 {
933 int i;
934 u32 r;
935
936 // assert s/w reset
937 write_register(priv->net_dev, IPW_REG_RESET_REG,
938 IPW_AUX_HOST_RESET_REG_SW_RESET);
939
940 // wait for clock stabilization
941 for (i = 0; i < 1000; i++) {
942 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
943
944 // check clock ready bit
945 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
946 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
947 break;
948 }
949
950 if (i == 1000)
951 return -EIO; // TODO: better error value
952
953 /* set "initialization complete" bit to move adapter to
954 * D0 state */
955 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
956 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
957
958 /* wait for clock stabilization */
959 for (i = 0; i < 10000; i++) {
960 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
961
962 /* check clock ready bit */
963 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
964 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
965 break;
966 }
967
968 if (i == 10000)
969 return -EIO; /* TODO: better error value */
970
971 /* set D0 standby bit */
972 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
973 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
974 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
975
976 return 0;
977 }
978
979 /*********************************************************************
980 Procedure : ipw2100_download_firmware
981 Purpose : Initiaze adapter after power on.
982 The sequence is:
983 1. assert s/w reset first!
984 2. awake clocks & wait for clock stabilization
985 3. hold ARC (don't ask me why...)
986 4. load Dino ucode and reset/clock init again
987 5. zero-out shared mem
988 6. download f/w
989 *******************************************************************/
990 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
991 {
992 u32 address;
993 int err;
994
995 #ifndef CONFIG_PM
996 /* Fetch the firmware and microcode */
997 struct ipw2100_fw ipw2100_firmware;
998 #endif
999
1000 if (priv->fatal_error) {
1001 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1002 "fatal error %d. Interface must be brought down.\n",
1003 priv->net_dev->name, priv->fatal_error);
1004 return -EINVAL;
1005 }
1006 #ifdef CONFIG_PM
1007 if (!ipw2100_firmware.version) {
1008 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1009 if (err) {
1010 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1011 priv->net_dev->name, err);
1012 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1013 goto fail;
1014 }
1015 }
1016 #else
1017 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1018 if (err) {
1019 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1020 priv->net_dev->name, err);
1021 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1022 goto fail;
1023 }
1024 #endif
1025 priv->firmware_version = ipw2100_firmware.version;
1026
1027 /* s/w reset and clock stabilization */
1028 err = sw_reset_and_clock(priv);
1029 if (err) {
1030 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1031 priv->net_dev->name, err);
1032 goto fail;
1033 }
1034
1035 err = ipw2100_verify(priv);
1036 if (err) {
1037 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1038 priv->net_dev->name, err);
1039 goto fail;
1040 }
1041
1042 /* Hold ARC */
1043 write_nic_dword(priv->net_dev,
1044 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1045
1046 /* allow ARC to run */
1047 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1048
1049 /* load microcode */
1050 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1051 if (err) {
1052 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1053 priv->net_dev->name, err);
1054 goto fail;
1055 }
1056
1057 /* release ARC */
1058 write_nic_dword(priv->net_dev,
1059 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1060
1061 /* s/w reset and clock stabilization (again!!!) */
1062 err = sw_reset_and_clock(priv);
1063 if (err) {
1064 printk(KERN_ERR DRV_NAME
1065 ": %s: sw_reset_and_clock failed: %d\n",
1066 priv->net_dev->name, err);
1067 goto fail;
1068 }
1069
1070 /* load f/w */
1071 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1072 if (err) {
1073 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1074 priv->net_dev->name, err);
1075 goto fail;
1076 }
1077 #ifndef CONFIG_PM
1078 /*
1079 * When the .resume method of the driver is called, the other
1080 * part of the system, i.e. the ide driver could still stay in
1081 * the suspend stage. This prevents us from loading the firmware
1082 * from the disk. --YZ
1083 */
1084
1085 /* free any storage allocated for firmware image */
1086 ipw2100_release_firmware(priv, &ipw2100_firmware);
1087 #endif
1088
1089 /* zero out Domain 1 area indirectly (Si requirement) */
1090 for (address = IPW_HOST_FW_SHARED_AREA0;
1091 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1092 write_nic_dword(priv->net_dev, address, 0);
1093 for (address = IPW_HOST_FW_SHARED_AREA1;
1094 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1095 write_nic_dword(priv->net_dev, address, 0);
1096 for (address = IPW_HOST_FW_SHARED_AREA2;
1097 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1098 write_nic_dword(priv->net_dev, address, 0);
1099 for (address = IPW_HOST_FW_SHARED_AREA3;
1100 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1101 write_nic_dword(priv->net_dev, address, 0);
1102 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1103 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1104 write_nic_dword(priv->net_dev, address, 0);
1105
1106 return 0;
1107
1108 fail:
1109 ipw2100_release_firmware(priv, &ipw2100_firmware);
1110 return err;
1111 }
1112
1113 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1114 {
1115 if (priv->status & STATUS_INT_ENABLED)
1116 return;
1117 priv->status |= STATUS_INT_ENABLED;
1118 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1119 }
1120
1121 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1122 {
1123 if (!(priv->status & STATUS_INT_ENABLED))
1124 return;
1125 priv->status &= ~STATUS_INT_ENABLED;
1126 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1127 }
1128
1129 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1130 {
1131 struct ipw2100_ordinals *ord = &priv->ordinals;
1132
1133 IPW_DEBUG_INFO("enter\n");
1134
1135 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1136 &ord->table1_addr);
1137
1138 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1139 &ord->table2_addr);
1140
1141 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1142 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1143
1144 ord->table2_size &= 0x0000FFFF;
1145
1146 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1147 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1148 IPW_DEBUG_INFO("exit\n");
1149 }
1150
1151 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1152 {
1153 u32 reg = 0;
1154 /*
1155 * Set GPIO 3 writable by FW; GPIO 1 writable
1156 * by driver and enable clock
1157 */
1158 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1159 IPW_BIT_GPIO_LED_OFF);
1160 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1161 }
1162
1163 static int rf_kill_active(struct ipw2100_priv *priv)
1164 {
1165 #define MAX_RF_KILL_CHECKS 5
1166 #define RF_KILL_CHECK_DELAY 40
1167
1168 unsigned short value = 0;
1169 u32 reg = 0;
1170 int i;
1171
1172 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1173 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1174 priv->status &= ~STATUS_RF_KILL_HW;
1175 return 0;
1176 }
1177
1178 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1179 udelay(RF_KILL_CHECK_DELAY);
1180 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1181 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1182 }
1183
1184 if (value == 0) {
1185 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1186 priv->status |= STATUS_RF_KILL_HW;
1187 } else {
1188 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1189 priv->status &= ~STATUS_RF_KILL_HW;
1190 }
1191
1192 return (value == 0);
1193 }
1194
1195 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1196 {
1197 u32 addr, len;
1198 u32 val;
1199
1200 /*
1201 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1202 */
1203 len = sizeof(addr);
1204 if (ipw2100_get_ordinal
1205 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1206 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1207 __LINE__);
1208 return -EIO;
1209 }
1210
1211 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1212
1213 /*
1214 * EEPROM version is the byte at offset 0xfd in firmware
1215 * We read 4 bytes, then shift out the byte we actually want */
1216 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1217 priv->eeprom_version = (val >> 24) & 0xFF;
1218 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1219
1220 /*
1221 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1222 *
1223 * notice that the EEPROM bit is reverse polarity, i.e.
1224 * bit = 0 signifies HW RF kill switch is supported
1225 * bit = 1 signifies HW RF kill switch is NOT supported
1226 */
1227 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1228 if (!((val >> 24) & 0x01))
1229 priv->hw_features |= HW_FEATURE_RFKILL;
1230
1231 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1232 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1233
1234 return 0;
1235 }
1236
1237 /*
1238 * Start firmware execution after power on and intialization
1239 * The sequence is:
1240 * 1. Release ARC
1241 * 2. Wait for f/w initialization completes;
1242 */
1243 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1244 {
1245 int i;
1246 u32 inta, inta_mask, gpio;
1247
1248 IPW_DEBUG_INFO("enter\n");
1249
1250 if (priv->status & STATUS_RUNNING)
1251 return 0;
1252
1253 /*
1254 * Initialize the hw - drive adapter to DO state by setting
1255 * init_done bit. Wait for clk_ready bit and Download
1256 * fw & dino ucode
1257 */
1258 if (ipw2100_download_firmware(priv)) {
1259 printk(KERN_ERR DRV_NAME
1260 ": %s: Failed to power on the adapter.\n",
1261 priv->net_dev->name);
1262 return -EIO;
1263 }
1264
1265 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1266 * in the firmware RBD and TBD ring queue */
1267 ipw2100_queues_initialize(priv);
1268
1269 ipw2100_hw_set_gpio(priv);
1270
1271 /* TODO -- Look at disabling interrupts here to make sure none
1272 * get fired during FW initialization */
1273
1274 /* Release ARC - clear reset bit */
1275 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1276
1277 /* wait for f/w intialization complete */
1278 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1279 i = 5000;
1280 do {
1281 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1282 /* Todo... wait for sync command ... */
1283
1284 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1285
1286 /* check "init done" bit */
1287 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1288 /* reset "init done" bit */
1289 write_register(priv->net_dev, IPW_REG_INTA,
1290 IPW2100_INTA_FW_INIT_DONE);
1291 break;
1292 }
1293
1294 /* check error conditions : we check these after the firmware
1295 * check so that if there is an error, the interrupt handler
1296 * will see it and the adapter will be reset */
1297 if (inta &
1298 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1299 /* clear error conditions */
1300 write_register(priv->net_dev, IPW_REG_INTA,
1301 IPW2100_INTA_FATAL_ERROR |
1302 IPW2100_INTA_PARITY_ERROR);
1303 }
1304 } while (--i);
1305
1306 /* Clear out any pending INTAs since we aren't supposed to have
1307 * interrupts enabled at this point... */
1308 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1309 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1310 inta &= IPW_INTERRUPT_MASK;
1311 /* Clear out any pending interrupts */
1312 if (inta & inta_mask)
1313 write_register(priv->net_dev, IPW_REG_INTA, inta);
1314
1315 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1316 i ? "SUCCESS" : "FAILED");
1317
1318 if (!i) {
1319 printk(KERN_WARNING DRV_NAME
1320 ": %s: Firmware did not initialize.\n",
1321 priv->net_dev->name);
1322 return -EIO;
1323 }
1324
1325 /* allow firmware to write to GPIO1 & GPIO3 */
1326 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1327
1328 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1329
1330 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1331
1332 /* Ready to receive commands */
1333 priv->status |= STATUS_RUNNING;
1334
1335 /* The adapter has been reset; we are not associated */
1336 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1337
1338 IPW_DEBUG_INFO("exit\n");
1339
1340 return 0;
1341 }
1342
1343 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1344 {
1345 if (!priv->fatal_error)
1346 return;
1347
1348 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1349 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1350 priv->fatal_error = 0;
1351 }
1352
1353 /* NOTE: Our interrupt is disabled when this method is called */
1354 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1355 {
1356 u32 reg;
1357 int i;
1358
1359 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1360
1361 ipw2100_hw_set_gpio(priv);
1362
1363 /* Step 1. Stop Master Assert */
1364 write_register(priv->net_dev, IPW_REG_RESET_REG,
1365 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1366
1367 /* Step 2. Wait for stop Master Assert
1368 * (not more than 50us, otherwise ret error */
1369 i = 5;
1370 do {
1371 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1372 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1373
1374 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1375 break;
1376 } while (--i);
1377
1378 priv->status &= ~STATUS_RESET_PENDING;
1379
1380 if (!i) {
1381 IPW_DEBUG_INFO
1382 ("exit - waited too long for master assert stop\n");
1383 return -EIO;
1384 }
1385
1386 write_register(priv->net_dev, IPW_REG_RESET_REG,
1387 IPW_AUX_HOST_RESET_REG_SW_RESET);
1388
1389 /* Reset any fatal_error conditions */
1390 ipw2100_reset_fatalerror(priv);
1391
1392 /* At this point, the adapter is now stopped and disabled */
1393 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1394 STATUS_ASSOCIATED | STATUS_ENABLED);
1395
1396 return 0;
1397 }
1398
1399 /*
1400 * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1401 *
1402 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1403 *
1404 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1405 * if STATUS_ASSN_LOST is sent.
1406 */
1407 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1408 {
1409
1410 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1411
1412 struct host_command cmd = {
1413 .host_command = CARD_DISABLE_PHY_OFF,
1414 .host_command_sequence = 0,
1415 .host_command_length = 0,
1416 };
1417 int err, i;
1418 u32 val1, val2;
1419
1420 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1421
1422 /* Turn off the radio */
1423 err = ipw2100_hw_send_command(priv, &cmd);
1424 if (err)
1425 return err;
1426
1427 for (i = 0; i < 2500; i++) {
1428 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1429 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1430
1431 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1432 (val2 & IPW2100_COMMAND_PHY_OFF))
1433 return 0;
1434
1435 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1436 }
1437
1438 return -EIO;
1439 }
1440
1441 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1442 {
1443 struct host_command cmd = {
1444 .host_command = HOST_COMPLETE,
1445 .host_command_sequence = 0,
1446 .host_command_length = 0
1447 };
1448 int err = 0;
1449
1450 IPW_DEBUG_HC("HOST_COMPLETE\n");
1451
1452 if (priv->status & STATUS_ENABLED)
1453 return 0;
1454
1455 mutex_lock(&priv->adapter_mutex);
1456
1457 if (rf_kill_active(priv)) {
1458 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1459 goto fail_up;
1460 }
1461
1462 err = ipw2100_hw_send_command(priv, &cmd);
1463 if (err) {
1464 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1465 goto fail_up;
1466 }
1467
1468 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1469 if (err) {
1470 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1471 priv->net_dev->name);
1472 goto fail_up;
1473 }
1474
1475 if (priv->stop_hang_check) {
1476 priv->stop_hang_check = 0;
1477 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1478 }
1479
1480 fail_up:
1481 mutex_unlock(&priv->adapter_mutex);
1482 return err;
1483 }
1484
1485 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1486 {
1487 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1488
1489 struct host_command cmd = {
1490 .host_command = HOST_PRE_POWER_DOWN,
1491 .host_command_sequence = 0,
1492 .host_command_length = 0,
1493 };
1494 int err, i;
1495 u32 reg;
1496
1497 if (!(priv->status & STATUS_RUNNING))
1498 return 0;
1499
1500 priv->status |= STATUS_STOPPING;
1501
1502 /* We can only shut down the card if the firmware is operational. So,
1503 * if we haven't reset since a fatal_error, then we can not send the
1504 * shutdown commands. */
1505 if (!priv->fatal_error) {
1506 /* First, make sure the adapter is enabled so that the PHY_OFF
1507 * command can shut it down */
1508 ipw2100_enable_adapter(priv);
1509
1510 err = ipw2100_hw_phy_off(priv);
1511 if (err)
1512 printk(KERN_WARNING DRV_NAME
1513 ": Error disabling radio %d\n", err);
1514
1515 /*
1516 * If in D0-standby mode going directly to D3 may cause a
1517 * PCI bus violation. Therefore we must change out of the D0
1518 * state.
1519 *
1520 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1521 * hardware from going into standby mode and will transition
1522 * out of D0-standby if it is already in that state.
1523 *
1524 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1525 * driver upon completion. Once received, the driver can
1526 * proceed to the D3 state.
1527 *
1528 * Prepare for power down command to fw. This command would
1529 * take HW out of D0-standby and prepare it for D3 state.
1530 *
1531 * Currently FW does not support event notification for this
1532 * event. Therefore, skip waiting for it. Just wait a fixed
1533 * 100ms
1534 */
1535 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1536
1537 err = ipw2100_hw_send_command(priv, &cmd);
1538 if (err)
1539 printk(KERN_WARNING DRV_NAME ": "
1540 "%s: Power down command failed: Error %d\n",
1541 priv->net_dev->name, err);
1542 else
1543 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1544 }
1545
1546 priv->status &= ~STATUS_ENABLED;
1547
1548 /*
1549 * Set GPIO 3 writable by FW; GPIO 1 writable
1550 * by driver and enable clock
1551 */
1552 ipw2100_hw_set_gpio(priv);
1553
1554 /*
1555 * Power down adapter. Sequence:
1556 * 1. Stop master assert (RESET_REG[9]=1)
1557 * 2. Wait for stop master (RESET_REG[8]==1)
1558 * 3. S/w reset assert (RESET_REG[7] = 1)
1559 */
1560
1561 /* Stop master assert */
1562 write_register(priv->net_dev, IPW_REG_RESET_REG,
1563 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1564
1565 /* wait stop master not more than 50 usec.
1566 * Otherwise return error. */
1567 for (i = 5; i > 0; i--) {
1568 udelay(10);
1569
1570 /* Check master stop bit */
1571 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1572
1573 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1574 break;
1575 }
1576
1577 if (i == 0)
1578 printk(KERN_WARNING DRV_NAME
1579 ": %s: Could now power down adapter.\n",
1580 priv->net_dev->name);
1581
1582 /* assert s/w reset */
1583 write_register(priv->net_dev, IPW_REG_RESET_REG,
1584 IPW_AUX_HOST_RESET_REG_SW_RESET);
1585
1586 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1587
1588 return 0;
1589 }
1590
1591 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1592 {
1593 struct host_command cmd = {
1594 .host_command = CARD_DISABLE,
1595 .host_command_sequence = 0,
1596 .host_command_length = 0
1597 };
1598 int err = 0;
1599
1600 IPW_DEBUG_HC("CARD_DISABLE\n");
1601
1602 if (!(priv->status & STATUS_ENABLED))
1603 return 0;
1604
1605 /* Make sure we clear the associated state */
1606 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1607
1608 if (!priv->stop_hang_check) {
1609 priv->stop_hang_check = 1;
1610 cancel_delayed_work(&priv->hang_check);
1611 }
1612
1613 mutex_lock(&priv->adapter_mutex);
1614
1615 err = ipw2100_hw_send_command(priv, &cmd);
1616 if (err) {
1617 printk(KERN_WARNING DRV_NAME
1618 ": exit - failed to send CARD_DISABLE command\n");
1619 goto fail_up;
1620 }
1621
1622 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1623 if (err) {
1624 printk(KERN_WARNING DRV_NAME
1625 ": exit - card failed to change to DISABLED\n");
1626 goto fail_up;
1627 }
1628
1629 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1630
1631 fail_up:
1632 mutex_unlock(&priv->adapter_mutex);
1633 return err;
1634 }
1635
1636 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1637 {
1638 struct host_command cmd = {
1639 .host_command = SET_SCAN_OPTIONS,
1640 .host_command_sequence = 0,
1641 .host_command_length = 8
1642 };
1643 int err;
1644
1645 IPW_DEBUG_INFO("enter\n");
1646
1647 IPW_DEBUG_SCAN("setting scan options\n");
1648
1649 cmd.host_command_parameters[0] = 0;
1650
1651 if (!(priv->config & CFG_ASSOCIATE))
1652 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1653 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1654 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1655 if (priv->config & CFG_PASSIVE_SCAN)
1656 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1657
1658 cmd.host_command_parameters[1] = priv->channel_mask;
1659
1660 err = ipw2100_hw_send_command(priv, &cmd);
1661
1662 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1663 cmd.host_command_parameters[0]);
1664
1665 return err;
1666 }
1667
1668 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1669 {
1670 struct host_command cmd = {
1671 .host_command = BROADCAST_SCAN,
1672 .host_command_sequence = 0,
1673 .host_command_length = 4
1674 };
1675 int err;
1676
1677 IPW_DEBUG_HC("START_SCAN\n");
1678
1679 cmd.host_command_parameters[0] = 0;
1680
1681 /* No scanning if in monitor mode */
1682 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1683 return 1;
1684
1685 if (priv->status & STATUS_SCANNING) {
1686 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1687 return 0;
1688 }
1689
1690 IPW_DEBUG_INFO("enter\n");
1691
1692 /* Not clearing here; doing so makes iwlist always return nothing...
1693 *
1694 * We should modify the table logic to use aging tables vs. clearing
1695 * the table on each scan start.
1696 */
1697 IPW_DEBUG_SCAN("starting scan\n");
1698
1699 priv->status |= STATUS_SCANNING;
1700 err = ipw2100_hw_send_command(priv, &cmd);
1701 if (err)
1702 priv->status &= ~STATUS_SCANNING;
1703
1704 IPW_DEBUG_INFO("exit\n");
1705
1706 return err;
1707 }
1708
1709 static const struct libipw_geo ipw_geos[] = {
1710 { /* Restricted */
1711 "---",
1712 .bg_channels = 14,
1713 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1714 {2427, 4}, {2432, 5}, {2437, 6},
1715 {2442, 7}, {2447, 8}, {2452, 9},
1716 {2457, 10}, {2462, 11}, {2467, 12},
1717 {2472, 13}, {2484, 14}},
1718 },
1719 };
1720
1721 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1722 {
1723 unsigned long flags;
1724 int rc = 0;
1725 u32 lock;
1726 u32 ord_len = sizeof(lock);
1727
1728 /* Age scan list entries found before suspend */
1729 if (priv->suspend_time) {
1730 libipw_networks_age(priv->ieee, priv->suspend_time);
1731 priv->suspend_time = 0;
1732 }
1733
1734 /* Quiet if manually disabled. */
1735 if (priv->status & STATUS_RF_KILL_SW) {
1736 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1737 "switch\n", priv->net_dev->name);
1738 return 0;
1739 }
1740
1741 /* the ipw2100 hardware really doesn't want power management delays
1742 * longer than 175usec
1743 */
1744 pm_qos_update_request(ipw2100_pm_qos_req, 175);
1745
1746 /* If the interrupt is enabled, turn it off... */
1747 spin_lock_irqsave(&priv->low_lock, flags);
1748 ipw2100_disable_interrupts(priv);
1749
1750 /* Reset any fatal_error conditions */
1751 ipw2100_reset_fatalerror(priv);
1752 spin_unlock_irqrestore(&priv->low_lock, flags);
1753
1754 if (priv->status & STATUS_POWERED ||
1755 (priv->status & STATUS_RESET_PENDING)) {
1756 /* Power cycle the card ... */
1757 if (ipw2100_power_cycle_adapter(priv)) {
1758 printk(KERN_WARNING DRV_NAME
1759 ": %s: Could not cycle adapter.\n",
1760 priv->net_dev->name);
1761 rc = 1;
1762 goto exit;
1763 }
1764 } else
1765 priv->status |= STATUS_POWERED;
1766
1767 /* Load the firmware, start the clocks, etc. */
1768 if (ipw2100_start_adapter(priv)) {
1769 printk(KERN_ERR DRV_NAME
1770 ": %s: Failed to start the firmware.\n",
1771 priv->net_dev->name);
1772 rc = 1;
1773 goto exit;
1774 }
1775
1776 ipw2100_initialize_ordinals(priv);
1777
1778 /* Determine capabilities of this particular HW configuration */
1779 if (ipw2100_get_hw_features(priv)) {
1780 printk(KERN_ERR DRV_NAME
1781 ": %s: Failed to determine HW features.\n",
1782 priv->net_dev->name);
1783 rc = 1;
1784 goto exit;
1785 }
1786
1787 /* Initialize the geo */
1788 if (libipw_set_geo(priv->ieee, &ipw_geos[0])) {
1789 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1790 return 0;
1791 }
1792 priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1793
1794 lock = LOCK_NONE;
1795 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1796 printk(KERN_ERR DRV_NAME
1797 ": %s: Failed to clear ordinal lock.\n",
1798 priv->net_dev->name);
1799 rc = 1;
1800 goto exit;
1801 }
1802
1803 priv->status &= ~STATUS_SCANNING;
1804
1805 if (rf_kill_active(priv)) {
1806 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807 priv->net_dev->name);
1808
1809 if (priv->stop_rf_kill) {
1810 priv->stop_rf_kill = 0;
1811 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1812 round_jiffies_relative(HZ));
1813 }
1814
1815 deferred = 1;
1816 }
1817
1818 /* Turn on the interrupt so that commands can be processed */
1819 ipw2100_enable_interrupts(priv);
1820
1821 /* Send all of the commands that must be sent prior to
1822 * HOST_COMPLETE */
1823 if (ipw2100_adapter_setup(priv)) {
1824 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1825 priv->net_dev->name);
1826 rc = 1;
1827 goto exit;
1828 }
1829
1830 if (!deferred) {
1831 /* Enable the adapter - sends HOST_COMPLETE */
1832 if (ipw2100_enable_adapter(priv)) {
1833 printk(KERN_ERR DRV_NAME ": "
1834 "%s: failed in call to enable adapter.\n",
1835 priv->net_dev->name);
1836 ipw2100_hw_stop_adapter(priv);
1837 rc = 1;
1838 goto exit;
1839 }
1840
1841 /* Start a scan . . . */
1842 ipw2100_set_scan_options(priv);
1843 ipw2100_start_scan(priv);
1844 }
1845
1846 exit:
1847 return rc;
1848 }
1849
1850 static void ipw2100_down(struct ipw2100_priv *priv)
1851 {
1852 unsigned long flags;
1853 union iwreq_data wrqu = {
1854 .ap_addr = {
1855 .sa_family = ARPHRD_ETHER}
1856 };
1857 int associated = priv->status & STATUS_ASSOCIATED;
1858
1859 /* Kill the RF switch timer */
1860 if (!priv->stop_rf_kill) {
1861 priv->stop_rf_kill = 1;
1862 cancel_delayed_work(&priv->rf_kill);
1863 }
1864
1865 /* Kill the firmware hang check timer */
1866 if (!priv->stop_hang_check) {
1867 priv->stop_hang_check = 1;
1868 cancel_delayed_work(&priv->hang_check);
1869 }
1870
1871 /* Kill any pending resets */
1872 if (priv->status & STATUS_RESET_PENDING)
1873 cancel_delayed_work(&priv->reset_work);
1874
1875 /* Make sure the interrupt is on so that FW commands will be
1876 * processed correctly */
1877 spin_lock_irqsave(&priv->low_lock, flags);
1878 ipw2100_enable_interrupts(priv);
1879 spin_unlock_irqrestore(&priv->low_lock, flags);
1880
1881 if (ipw2100_hw_stop_adapter(priv))
1882 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883 priv->net_dev->name);
1884
1885 /* Do not disable the interrupt until _after_ we disable
1886 * the adaptor. Otherwise the CARD_DISABLE command will never
1887 * be ack'd by the firmware */
1888 spin_lock_irqsave(&priv->low_lock, flags);
1889 ipw2100_disable_interrupts(priv);
1890 spin_unlock_irqrestore(&priv->low_lock, flags);
1891
1892 pm_qos_update_request(ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1893
1894 /* We have to signal any supplicant if we are disassociating */
1895 if (associated)
1896 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1897
1898 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899 netif_carrier_off(priv->net_dev);
1900 netif_stop_queue(priv->net_dev);
1901 }
1902
1903 /* Called by register_netdev() */
1904 static int ipw2100_net_init(struct net_device *dev)
1905 {
1906 struct ipw2100_priv *priv = libipw_priv(dev);
1907 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1908 struct wireless_dev *wdev = &priv->ieee->wdev;
1909 int ret;
1910 int i;
1911
1912 ret = ipw2100_up(priv, 1);
1913 if (ret)
1914 return ret;
1915
1916 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1917
1918 /* fill-out priv->ieee->bg_band */
1919 if (geo->bg_channels) {
1920 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1921
1922 bg_band->band = IEEE80211_BAND_2GHZ;
1923 bg_band->n_channels = geo->bg_channels;
1924 bg_band->channels =
1925 kzalloc(geo->bg_channels *
1926 sizeof(struct ieee80211_channel), GFP_KERNEL);
1927 /* translate geo->bg to bg_band.channels */
1928 for (i = 0; i < geo->bg_channels; i++) {
1929 bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1930 bg_band->channels[i].center_freq = geo->bg[i].freq;
1931 bg_band->channels[i].hw_value = geo->bg[i].channel;
1932 bg_band->channels[i].max_power = geo->bg[i].max_power;
1933 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1934 bg_band->channels[i].flags |=
1935 IEEE80211_CHAN_PASSIVE_SCAN;
1936 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1937 bg_band->channels[i].flags |=
1938 IEEE80211_CHAN_NO_IBSS;
1939 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1940 bg_band->channels[i].flags |=
1941 IEEE80211_CHAN_RADAR;
1942 /* No equivalent for LIBIPW_CH_80211H_RULES,
1943 LIBIPW_CH_UNIFORM_SPREADING, or
1944 LIBIPW_CH_B_ONLY... */
1945 }
1946 /* point at bitrate info */
1947 bg_band->bitrates = ipw2100_bg_rates;
1948 bg_band->n_bitrates = RATE_COUNT;
1949
1950 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1951 }
1952
1953 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1954 if (wiphy_register(wdev->wiphy)) {
1955 ipw2100_down(priv);
1956 return -EIO;
1957 }
1958 return 0;
1959 }
1960
1961 static void ipw2100_reset_adapter(struct work_struct *work)
1962 {
1963 struct ipw2100_priv *priv =
1964 container_of(work, struct ipw2100_priv, reset_work.work);
1965 unsigned long flags;
1966 union iwreq_data wrqu = {
1967 .ap_addr = {
1968 .sa_family = ARPHRD_ETHER}
1969 };
1970 int associated = priv->status & STATUS_ASSOCIATED;
1971
1972 spin_lock_irqsave(&priv->low_lock, flags);
1973 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1974 priv->resets++;
1975 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1976 priv->status |= STATUS_SECURITY_UPDATED;
1977
1978 /* Force a power cycle even if interface hasn't been opened
1979 * yet */
1980 cancel_delayed_work(&priv->reset_work);
1981 priv->status |= STATUS_RESET_PENDING;
1982 spin_unlock_irqrestore(&priv->low_lock, flags);
1983
1984 mutex_lock(&priv->action_mutex);
1985 /* stop timed checks so that they don't interfere with reset */
1986 priv->stop_hang_check = 1;
1987 cancel_delayed_work(&priv->hang_check);
1988
1989 /* We have to signal any supplicant if we are disassociating */
1990 if (associated)
1991 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1992
1993 ipw2100_up(priv, 0);
1994 mutex_unlock(&priv->action_mutex);
1995
1996 }
1997
1998 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1999 {
2000
2001 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2002 int ret;
2003 unsigned int len, essid_len;
2004 char essid[IW_ESSID_MAX_SIZE];
2005 u32 txrate;
2006 u32 chan;
2007 char *txratename;
2008 u8 bssid[ETH_ALEN];
2009 DECLARE_SSID_BUF(ssid);
2010
2011 /*
2012 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2013 * an actual MAC of the AP. Seems like FW sets this
2014 * address too late. Read it later and expose through
2015 * /proc or schedule a later task to query and update
2016 */
2017
2018 essid_len = IW_ESSID_MAX_SIZE;
2019 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2020 essid, &essid_len);
2021 if (ret) {
2022 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2023 __LINE__);
2024 return;
2025 }
2026
2027 len = sizeof(u32);
2028 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2029 if (ret) {
2030 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2031 __LINE__);
2032 return;
2033 }
2034
2035 len = sizeof(u32);
2036 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2037 if (ret) {
2038 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2039 __LINE__);
2040 return;
2041 }
2042 len = ETH_ALEN;
2043 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
2044 if (ret) {
2045 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2046 __LINE__);
2047 return;
2048 }
2049 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2050
2051 switch (txrate) {
2052 case TX_RATE_1_MBIT:
2053 txratename = "1Mbps";
2054 break;
2055 case TX_RATE_2_MBIT:
2056 txratename = "2Mbsp";
2057 break;
2058 case TX_RATE_5_5_MBIT:
2059 txratename = "5.5Mbps";
2060 break;
2061 case TX_RATE_11_MBIT:
2062 txratename = "11Mbps";
2063 break;
2064 default:
2065 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2066 txratename = "unknown rate";
2067 break;
2068 }
2069
2070 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2071 priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2072 txratename, chan, bssid);
2073
2074 /* now we copy read ssid into dev */
2075 if (!(priv->config & CFG_STATIC_ESSID)) {
2076 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2077 memcpy(priv->essid, essid, priv->essid_len);
2078 }
2079 priv->channel = chan;
2080 memcpy(priv->bssid, bssid, ETH_ALEN);
2081
2082 priv->status |= STATUS_ASSOCIATING;
2083 priv->connect_start = get_seconds();
2084
2085 queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
2086 }
2087
2088 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2089 int length, int batch_mode)
2090 {
2091 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2092 struct host_command cmd = {
2093 .host_command = SSID,
2094 .host_command_sequence = 0,
2095 .host_command_length = ssid_len
2096 };
2097 int err;
2098 DECLARE_SSID_BUF(ssid);
2099
2100 IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2101
2102 if (ssid_len)
2103 memcpy(cmd.host_command_parameters, essid, ssid_len);
2104
2105 if (!batch_mode) {
2106 err = ipw2100_disable_adapter(priv);
2107 if (err)
2108 return err;
2109 }
2110
2111 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2112 * disable auto association -- so we cheat by setting a bogus SSID */
2113 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2114 int i;
2115 u8 *bogus = (u8 *) cmd.host_command_parameters;
2116 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2117 bogus[i] = 0x18 + i;
2118 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2119 }
2120
2121 /* NOTE: We always send the SSID command even if the provided ESSID is
2122 * the same as what we currently think is set. */
2123
2124 err = ipw2100_hw_send_command(priv, &cmd);
2125 if (!err) {
2126 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2127 memcpy(priv->essid, essid, ssid_len);
2128 priv->essid_len = ssid_len;
2129 }
2130
2131 if (!batch_mode) {
2132 if (ipw2100_enable_adapter(priv))
2133 err = -EIO;
2134 }
2135
2136 return err;
2137 }
2138
2139 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2140 {
2141 DECLARE_SSID_BUF(ssid);
2142
2143 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2144 "disassociated: '%s' %pM \n",
2145 print_ssid(ssid, priv->essid, priv->essid_len),
2146 priv->bssid);
2147
2148 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2149
2150 if (priv->status & STATUS_STOPPING) {
2151 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2152 return;
2153 }
2154
2155 memset(priv->bssid, 0, ETH_ALEN);
2156 memset(priv->ieee->bssid, 0, ETH_ALEN);
2157
2158 netif_carrier_off(priv->net_dev);
2159 netif_stop_queue(priv->net_dev);
2160
2161 if (!(priv->status & STATUS_RUNNING))
2162 return;
2163
2164 if (priv->status & STATUS_SECURITY_UPDATED)
2165 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2166
2167 queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2168 }
2169
2170 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2171 {
2172 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2173 priv->net_dev->name);
2174
2175 /* RF_KILL is now enabled (else we wouldn't be here) */
2176 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2177 priv->status |= STATUS_RF_KILL_HW;
2178
2179 /* Make sure the RF Kill check timer is running */
2180 priv->stop_rf_kill = 0;
2181 cancel_delayed_work(&priv->rf_kill);
2182 queue_delayed_work(priv->workqueue, &priv->rf_kill,
2183 round_jiffies_relative(HZ));
2184 }
2185
2186 static void send_scan_event(void *data)
2187 {
2188 struct ipw2100_priv *priv = data;
2189 union iwreq_data wrqu;
2190
2191 wrqu.data.length = 0;
2192 wrqu.data.flags = 0;
2193 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2194 }
2195
2196 static void ipw2100_scan_event_later(struct work_struct *work)
2197 {
2198 send_scan_event(container_of(work, struct ipw2100_priv,
2199 scan_event_later.work));
2200 }
2201
2202 static void ipw2100_scan_event_now(struct work_struct *work)
2203 {
2204 send_scan_event(container_of(work, struct ipw2100_priv,
2205 scan_event_now));
2206 }
2207
2208 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2209 {
2210 IPW_DEBUG_SCAN("scan complete\n");
2211 /* Age the scan results... */
2212 priv->ieee->scans++;
2213 priv->status &= ~STATUS_SCANNING;
2214
2215 /* Only userspace-requested scan completion events go out immediately */
2216 if (!priv->user_requested_scan) {
2217 if (!delayed_work_pending(&priv->scan_event_later))
2218 queue_delayed_work(priv->workqueue,
2219 &priv->scan_event_later,
2220 round_jiffies_relative(msecs_to_jiffies(4000)));
2221 } else {
2222 priv->user_requested_scan = 0;
2223 cancel_delayed_work(&priv->scan_event_later);
2224 queue_work(priv->workqueue, &priv->scan_event_now);
2225 }
2226 }
2227
2228 #ifdef CONFIG_IPW2100_DEBUG
2229 #define IPW2100_HANDLER(v, f) { v, f, # v }
2230 struct ipw2100_status_indicator {
2231 int status;
2232 void (*cb) (struct ipw2100_priv * priv, u32 status);
2233 char *name;
2234 };
2235 #else
2236 #define IPW2100_HANDLER(v, f) { v, f }
2237 struct ipw2100_status_indicator {
2238 int status;
2239 void (*cb) (struct ipw2100_priv * priv, u32 status);
2240 };
2241 #endif /* CONFIG_IPW2100_DEBUG */
2242
2243 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2244 {
2245 IPW_DEBUG_SCAN("Scanning...\n");
2246 priv->status |= STATUS_SCANNING;
2247 }
2248
2249 static const struct ipw2100_status_indicator status_handlers[] = {
2250 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2251 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2252 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2253 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2254 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2255 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2256 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2257 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2258 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2259 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2260 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2261 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2262 IPW2100_HANDLER(-1, NULL)
2263 };
2264
2265 static void isr_status_change(struct ipw2100_priv *priv, int status)
2266 {
2267 int i;
2268
2269 if (status == IPW_STATE_SCANNING &&
2270 priv->status & STATUS_ASSOCIATED &&
2271 !(priv->status & STATUS_SCANNING)) {
2272 IPW_DEBUG_INFO("Scan detected while associated, with "
2273 "no scan request. Restarting firmware.\n");
2274
2275 /* Wake up any sleeping jobs */
2276 schedule_reset(priv);
2277 }
2278
2279 for (i = 0; status_handlers[i].status != -1; i++) {
2280 if (status == status_handlers[i].status) {
2281 IPW_DEBUG_NOTIF("Status change: %s\n",
2282 status_handlers[i].name);
2283 if (status_handlers[i].cb)
2284 status_handlers[i].cb(priv, status);
2285 priv->wstats.status = status;
2286 return;
2287 }
2288 }
2289
2290 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2291 }
2292
2293 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2294 struct ipw2100_cmd_header *cmd)
2295 {
2296 #ifdef CONFIG_IPW2100_DEBUG
2297 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2298 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2299 command_types[cmd->host_command_reg],
2300 cmd->host_command_reg);
2301 }
2302 #endif
2303 if (cmd->host_command_reg == HOST_COMPLETE)
2304 priv->status |= STATUS_ENABLED;
2305
2306 if (cmd->host_command_reg == CARD_DISABLE)
2307 priv->status &= ~STATUS_ENABLED;
2308
2309 priv->status &= ~STATUS_CMD_ACTIVE;
2310
2311 wake_up_interruptible(&priv->wait_command_queue);
2312 }
2313
2314 #ifdef CONFIG_IPW2100_DEBUG
2315 static const char *frame_types[] = {
2316 "COMMAND_STATUS_VAL",
2317 "STATUS_CHANGE_VAL",
2318 "P80211_DATA_VAL",
2319 "P8023_DATA_VAL",
2320 "HOST_NOTIFICATION_VAL"
2321 };
2322 #endif
2323
2324 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2325 struct ipw2100_rx_packet *packet)
2326 {
2327 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2328 if (!packet->skb)
2329 return -ENOMEM;
2330
2331 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2332 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2333 sizeof(struct ipw2100_rx),
2334 PCI_DMA_FROMDEVICE);
2335 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2336 * dma_addr */
2337
2338 return 0;
2339 }
2340
2341 #define SEARCH_ERROR 0xffffffff
2342 #define SEARCH_FAIL 0xfffffffe
2343 #define SEARCH_SUCCESS 0xfffffff0
2344 #define SEARCH_DISCARD 0
2345 #define SEARCH_SNAPSHOT 1
2346
2347 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2348 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2349 {
2350 int i;
2351 if (!priv->snapshot[0])
2352 return;
2353 for (i = 0; i < 0x30; i++)
2354 kfree(priv->snapshot[i]);
2355 priv->snapshot[0] = NULL;
2356 }
2357
2358 #ifdef IPW2100_DEBUG_C3
2359 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2360 {
2361 int i;
2362 if (priv->snapshot[0])
2363 return 1;
2364 for (i = 0; i < 0x30; i++) {
2365 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2366 if (!priv->snapshot[i]) {
2367 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2368 "buffer %d\n", priv->net_dev->name, i);
2369 while (i > 0)
2370 kfree(priv->snapshot[--i]);
2371 priv->snapshot[0] = NULL;
2372 return 0;
2373 }
2374 }
2375
2376 return 1;
2377 }
2378
2379 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2380 size_t len, int mode)
2381 {
2382 u32 i, j;
2383 u32 tmp;
2384 u8 *s, *d;
2385 u32 ret;
2386
2387 s = in_buf;
2388 if (mode == SEARCH_SNAPSHOT) {
2389 if (!ipw2100_snapshot_alloc(priv))
2390 mode = SEARCH_DISCARD;
2391 }
2392
2393 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2394 read_nic_dword(priv->net_dev, i, &tmp);
2395 if (mode == SEARCH_SNAPSHOT)
2396 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2397 if (ret == SEARCH_FAIL) {
2398 d = (u8 *) & tmp;
2399 for (j = 0; j < 4; j++) {
2400 if (*s != *d) {
2401 s = in_buf;
2402 continue;
2403 }
2404
2405 s++;
2406 d++;
2407
2408 if ((s - in_buf) == len)
2409 ret = (i + j) - len + 1;
2410 }
2411 } else if (mode == SEARCH_DISCARD)
2412 return ret;
2413 }
2414
2415 return ret;
2416 }
2417 #endif
2418
2419 /*
2420 *
2421 * 0) Disconnect the SKB from the firmware (just unmap)
2422 * 1) Pack the ETH header into the SKB
2423 * 2) Pass the SKB to the network stack
2424 *
2425 * When packet is provided by the firmware, it contains the following:
2426 *
2427 * . libipw_hdr
2428 * . libipw_snap_hdr
2429 *
2430 * The size of the constructed ethernet
2431 *
2432 */
2433 #ifdef IPW2100_RX_DEBUG
2434 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2435 #endif
2436
2437 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2438 {
2439 #ifdef IPW2100_DEBUG_C3
2440 struct ipw2100_status *status = &priv->status_queue.drv[i];
2441 u32 match, reg;
2442 int j;
2443 #endif
2444
2445 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2446 i * sizeof(struct ipw2100_status));
2447
2448 #ifdef IPW2100_DEBUG_C3
2449 /* Halt the firmware so we can get a good image */
2450 write_register(priv->net_dev, IPW_REG_RESET_REG,
2451 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2452 j = 5;
2453 do {
2454 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2455 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2456
2457 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2458 break;
2459 } while (j--);
2460
2461 match = ipw2100_match_buf(priv, (u8 *) status,
2462 sizeof(struct ipw2100_status),
2463 SEARCH_SNAPSHOT);
2464 if (match < SEARCH_SUCCESS)
2465 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2466 "offset 0x%06X, length %d:\n",
2467 priv->net_dev->name, match,
2468 sizeof(struct ipw2100_status));
2469 else
2470 IPW_DEBUG_INFO("%s: No DMA status match in "
2471 "Firmware.\n", priv->net_dev->name);
2472
2473 printk_buf((u8 *) priv->status_queue.drv,
2474 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2475 #endif
2476
2477 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2478 priv->net_dev->stats.rx_errors++;
2479 schedule_reset(priv);
2480 }
2481
2482 static void isr_rx(struct ipw2100_priv *priv, int i,
2483 struct libipw_rx_stats *stats)
2484 {
2485 struct net_device *dev = priv->net_dev;
2486 struct ipw2100_status *status = &priv->status_queue.drv[i];
2487 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2488
2489 IPW_DEBUG_RX("Handler...\n");
2490
2491 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2492 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2493 " Dropping.\n",
2494 dev->name,
2495 status->frame_size, skb_tailroom(packet->skb));
2496 dev->stats.rx_errors++;
2497 return;
2498 }
2499
2500 if (unlikely(!netif_running(dev))) {
2501 dev->stats.rx_errors++;
2502 priv->wstats.discard.misc++;
2503 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2504 return;
2505 }
2506
2507 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2508 !(priv->status & STATUS_ASSOCIATED))) {
2509 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2510 priv->wstats.discard.misc++;
2511 return;
2512 }
2513
2514 pci_unmap_single(priv->pci_dev,
2515 packet->dma_addr,
2516 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2517
2518 skb_put(packet->skb, status->frame_size);
2519
2520 #ifdef IPW2100_RX_DEBUG
2521 /* Make a copy of the frame so we can dump it to the logs if
2522 * libipw_rx fails */
2523 skb_copy_from_linear_data(packet->skb, packet_data,
2524 min_t(u32, status->frame_size,
2525 IPW_RX_NIC_BUFFER_LENGTH));
2526 #endif
2527
2528 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2529 #ifdef IPW2100_RX_DEBUG
2530 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2531 dev->name);
2532 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2533 #endif
2534 dev->stats.rx_errors++;
2535
2536 /* libipw_rx failed, so it didn't free the SKB */
2537 dev_kfree_skb_any(packet->skb);
2538 packet->skb = NULL;
2539 }
2540
2541 /* We need to allocate a new SKB and attach it to the RDB. */
2542 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2543 printk(KERN_WARNING DRV_NAME ": "
2544 "%s: Unable to allocate SKB onto RBD ring - disabling "
2545 "adapter.\n", dev->name);
2546 /* TODO: schedule adapter shutdown */
2547 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2548 }
2549
2550 /* Update the RDB entry */
2551 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2552 }
2553
2554 #ifdef CONFIG_IPW2100_MONITOR
2555
2556 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2557 struct libipw_rx_stats *stats)
2558 {
2559 struct net_device *dev = priv->net_dev;
2560 struct ipw2100_status *status = &priv->status_queue.drv[i];
2561 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2562
2563 /* Magic struct that slots into the radiotap header -- no reason
2564 * to build this manually element by element, we can write it much
2565 * more efficiently than we can parse it. ORDER MATTERS HERE */
2566 struct ipw_rt_hdr {
2567 struct ieee80211_radiotap_header rt_hdr;
2568 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2569 } *ipw_rt;
2570
2571 IPW_DEBUG_RX("Handler...\n");
2572
2573 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2574 sizeof(struct ipw_rt_hdr))) {
2575 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2576 " Dropping.\n",
2577 dev->name,
2578 status->frame_size,
2579 skb_tailroom(packet->skb));
2580 dev->stats.rx_errors++;
2581 return;
2582 }
2583
2584 if (unlikely(!netif_running(dev))) {
2585 dev->stats.rx_errors++;
2586 priv->wstats.discard.misc++;
2587 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2588 return;
2589 }
2590
2591 if (unlikely(priv->config & CFG_CRC_CHECK &&
2592 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2593 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2594 dev->stats.rx_errors++;
2595 return;
2596 }
2597
2598 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2599 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2600 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2601 packet->skb->data, status->frame_size);
2602
2603 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2604
2605 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2606 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2607 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2608
2609 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2610
2611 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2612
2613 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2614
2615 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2616 dev->stats.rx_errors++;
2617
2618 /* libipw_rx failed, so it didn't free the SKB */
2619 dev_kfree_skb_any(packet->skb);
2620 packet->skb = NULL;
2621 }
2622
2623 /* We need to allocate a new SKB and attach it to the RDB. */
2624 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2625 IPW_DEBUG_WARNING(
2626 "%s: Unable to allocate SKB onto RBD ring - disabling "
2627 "adapter.\n", dev->name);
2628 /* TODO: schedule adapter shutdown */
2629 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2630 }
2631
2632 /* Update the RDB entry */
2633 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2634 }
2635
2636 #endif
2637
2638 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2639 {
2640 struct ipw2100_status *status = &priv->status_queue.drv[i];
2641 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2642 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2643
2644 switch (frame_type) {
2645 case COMMAND_STATUS_VAL:
2646 return (status->frame_size != sizeof(u->rx_data.command));
2647 case STATUS_CHANGE_VAL:
2648 return (status->frame_size != sizeof(u->rx_data.status));
2649 case HOST_NOTIFICATION_VAL:
2650 return (status->frame_size < sizeof(u->rx_data.notification));
2651 case P80211_DATA_VAL:
2652 case P8023_DATA_VAL:
2653 #ifdef CONFIG_IPW2100_MONITOR
2654 return 0;
2655 #else
2656 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2657 case IEEE80211_FTYPE_MGMT:
2658 case IEEE80211_FTYPE_CTL:
2659 return 0;
2660 case IEEE80211_FTYPE_DATA:
2661 return (status->frame_size >
2662 IPW_MAX_802_11_PAYLOAD_LENGTH);
2663 }
2664 #endif
2665 }
2666
2667 return 1;
2668 }
2669
2670 /*
2671 * ipw2100 interrupts are disabled at this point, and the ISR
2672 * is the only code that calls this method. So, we do not need
2673 * to play with any locks.
2674 *
2675 * RX Queue works as follows:
2676 *
2677 * Read index - firmware places packet in entry identified by the
2678 * Read index and advances Read index. In this manner,
2679 * Read index will always point to the next packet to
2680 * be filled--but not yet valid.
2681 *
2682 * Write index - driver fills this entry with an unused RBD entry.
2683 * This entry has not filled by the firmware yet.
2684 *
2685 * In between the W and R indexes are the RBDs that have been received
2686 * but not yet processed.
2687 *
2688 * The process of handling packets will start at WRITE + 1 and advance
2689 * until it reaches the READ index.
2690 *
2691 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2692 *
2693 */
2694 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2695 {
2696 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2697 struct ipw2100_status_queue *sq = &priv->status_queue;
2698 struct ipw2100_rx_packet *packet;
2699 u16 frame_type;
2700 u32 r, w, i, s;
2701 struct ipw2100_rx *u;
2702 struct libipw_rx_stats stats = {
2703 .mac_time = jiffies,
2704 };
2705
2706 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2707 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2708
2709 if (r >= rxq->entries) {
2710 IPW_DEBUG_RX("exit - bad read index\n");
2711 return;
2712 }
2713
2714 i = (rxq->next + 1) % rxq->entries;
2715 s = i;
2716 while (i != r) {
2717 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2718 r, rxq->next, i); */
2719
2720 packet = &priv->rx_buffers[i];
2721
2722 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2723 * the correct values */
2724 pci_dma_sync_single_for_cpu(priv->pci_dev,
2725 sq->nic +
2726 sizeof(struct ipw2100_status) * i,
2727 sizeof(struct ipw2100_status),
2728 PCI_DMA_FROMDEVICE);
2729
2730 /* Sync the DMA for the RX buffer so CPU is sure to get
2731 * the correct values */
2732 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2733 sizeof(struct ipw2100_rx),
2734 PCI_DMA_FROMDEVICE);
2735
2736 if (unlikely(ipw2100_corruption_check(priv, i))) {
2737 ipw2100_corruption_detected(priv, i);
2738 goto increment;
2739 }
2740
2741 u = packet->rxp;
2742 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2743 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2744 stats.len = sq->drv[i].frame_size;
2745
2746 stats.mask = 0;
2747 if (stats.rssi != 0)
2748 stats.mask |= LIBIPW_STATMASK_RSSI;
2749 stats.freq = LIBIPW_24GHZ_BAND;
2750
2751 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2752 priv->net_dev->name, frame_types[frame_type],
2753 stats.len);
2754
2755 switch (frame_type) {
2756 case COMMAND_STATUS_VAL:
2757 /* Reset Rx watchdog */
2758 isr_rx_complete_command(priv, &u->rx_data.command);
2759 break;
2760
2761 case STATUS_CHANGE_VAL:
2762 isr_status_change(priv, u->rx_data.status);
2763 break;
2764
2765 case P80211_DATA_VAL:
2766 case P8023_DATA_VAL:
2767 #ifdef CONFIG_IPW2100_MONITOR
2768 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2769 isr_rx_monitor(priv, i, &stats);
2770 break;
2771 }
2772 #endif
2773 if (stats.len < sizeof(struct libipw_hdr_3addr))
2774 break;
2775 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2776 case IEEE80211_FTYPE_MGMT:
2777 libipw_rx_mgt(priv->ieee,
2778 &u->rx_data.header, &stats);
2779 break;
2780
2781 case IEEE80211_FTYPE_CTL:
2782 break;
2783
2784 case IEEE80211_FTYPE_DATA:
2785 isr_rx(priv, i, &stats);
2786 break;
2787
2788 }
2789 break;
2790 }
2791
2792 increment:
2793 /* clear status field associated with this RBD */
2794 rxq->drv[i].status.info.field = 0;
2795
2796 i = (i + 1) % rxq->entries;
2797 }
2798
2799 if (i != s) {
2800 /* backtrack one entry, wrapping to end if at 0 */
2801 rxq->next = (i ? i : rxq->entries) - 1;
2802
2803 write_register(priv->net_dev,
2804 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2805 }
2806 }
2807
2808 /*
2809 * __ipw2100_tx_process
2810 *
2811 * This routine will determine whether the next packet on
2812 * the fw_pend_list has been processed by the firmware yet.
2813 *
2814 * If not, then it does nothing and returns.
2815 *
2816 * If so, then it removes the item from the fw_pend_list, frees
2817 * any associated storage, and places the item back on the
2818 * free list of its source (either msg_free_list or tx_free_list)
2819 *
2820 * TX Queue works as follows:
2821 *
2822 * Read index - points to the next TBD that the firmware will
2823 * process. The firmware will read the data, and once
2824 * done processing, it will advance the Read index.
2825 *
2826 * Write index - driver fills this entry with an constructed TBD
2827 * entry. The Write index is not advanced until the
2828 * packet has been configured.
2829 *
2830 * In between the W and R indexes are the TBDs that have NOT been
2831 * processed. Lagging behind the R index are packets that have
2832 * been processed but have not been freed by the driver.
2833 *
2834 * In order to free old storage, an internal index will be maintained
2835 * that points to the next packet to be freed. When all used
2836 * packets have been freed, the oldest index will be the same as the
2837 * firmware's read index.
2838 *
2839 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2840 *
2841 * Because the TBD structure can not contain arbitrary data, the
2842 * driver must keep an internal queue of cached allocations such that
2843 * it can put that data back into the tx_free_list and msg_free_list
2844 * for use by future command and data packets.
2845 *
2846 */
2847 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2848 {
2849 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2850 struct ipw2100_bd *tbd;
2851 struct list_head *element;
2852 struct ipw2100_tx_packet *packet;
2853 int descriptors_used;
2854 int e, i;
2855 u32 r, w, frag_num = 0;
2856
2857 if (list_empty(&priv->fw_pend_list))
2858 return 0;
2859
2860 element = priv->fw_pend_list.next;
2861
2862 packet = list_entry(element, struct ipw2100_tx_packet, list);
2863 tbd = &txq->drv[packet->index];
2864
2865 /* Determine how many TBD entries must be finished... */
2866 switch (packet->type) {
2867 case COMMAND:
2868 /* COMMAND uses only one slot; don't advance */
2869 descriptors_used = 1;
2870 e = txq->oldest;
2871 break;
2872
2873 case DATA:
2874 /* DATA uses two slots; advance and loop position. */
2875 descriptors_used = tbd->num_fragments;
2876 frag_num = tbd->num_fragments - 1;
2877 e = txq->oldest + frag_num;
2878 e %= txq->entries;
2879 break;
2880
2881 default:
2882 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2883 priv->net_dev->name);
2884 return 0;
2885 }
2886
2887 /* if the last TBD is not done by NIC yet, then packet is
2888 * not ready to be released.
2889 *
2890 */
2891 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2892 &r);
2893 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2894 &w);
2895 if (w != txq->next)
2896 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2897 priv->net_dev->name);
2898
2899 /*
2900 * txq->next is the index of the last packet written txq->oldest is
2901 * the index of the r is the index of the next packet to be read by
2902 * firmware
2903 */
2904
2905 /*
2906 * Quick graphic to help you visualize the following
2907 * if / else statement
2908 *
2909 * ===>| s---->|===============
2910 * e>|
2911 * | a | b | c | d | e | f | g | h | i | j | k | l
2912 * r---->|
2913 * w
2914 *
2915 * w - updated by driver
2916 * r - updated by firmware
2917 * s - start of oldest BD entry (txq->oldest)
2918 * e - end of oldest BD entry
2919 *
2920 */
2921 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2922 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2923 return 0;
2924 }
2925
2926 list_del(element);
2927 DEC_STAT(&priv->fw_pend_stat);
2928
2929 #ifdef CONFIG_IPW2100_DEBUG
2930 {
2931 i = txq->oldest;
2932 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2933 &txq->drv[i],
2934 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2935 txq->drv[i].host_addr, txq->drv[i].buf_length);
2936
2937 if (packet->type == DATA) {
2938 i = (i + 1) % txq->entries;
2939
2940 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2941 &txq->drv[i],
2942 (u32) (txq->nic + i *
2943 sizeof(struct ipw2100_bd)),
2944 (u32) txq->drv[i].host_addr,
2945 txq->drv[i].buf_length);
2946 }
2947 }
2948 #endif
2949
2950 switch (packet->type) {
2951 case DATA:
2952 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2953 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2954 "Expecting DATA TBD but pulled "
2955 "something else: ids %d=%d.\n",
2956 priv->net_dev->name, txq->oldest, packet->index);
2957
2958 /* DATA packet; we have to unmap and free the SKB */
2959 for (i = 0; i < frag_num; i++) {
2960 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2961
2962 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2963 (packet->index + 1 + i) % txq->entries,
2964 tbd->host_addr, tbd->buf_length);
2965
2966 pci_unmap_single(priv->pci_dev,
2967 tbd->host_addr,
2968 tbd->buf_length, PCI_DMA_TODEVICE);
2969 }
2970
2971 libipw_txb_free(packet->info.d_struct.txb);
2972 packet->info.d_struct.txb = NULL;
2973
2974 list_add_tail(element, &priv->tx_free_list);
2975 INC_STAT(&priv->tx_free_stat);
2976
2977 /* We have a free slot in the Tx queue, so wake up the
2978 * transmit layer if it is stopped. */
2979 if (priv->status & STATUS_ASSOCIATED)
2980 netif_wake_queue(priv->net_dev);
2981
2982 /* A packet was processed by the hardware, so update the
2983 * watchdog */
2984 priv->net_dev->trans_start = jiffies;
2985
2986 break;
2987
2988 case COMMAND:
2989 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2990 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2991 "Expecting COMMAND TBD but pulled "
2992 "something else: ids %d=%d.\n",
2993 priv->net_dev->name, txq->oldest, packet->index);
2994
2995 #ifdef CONFIG_IPW2100_DEBUG
2996 if (packet->info.c_struct.cmd->host_command_reg <
2997 ARRAY_SIZE(command_types))
2998 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2999 command_types[packet->info.c_struct.cmd->
3000 host_command_reg],
3001 packet->info.c_struct.cmd->
3002 host_command_reg,
3003 packet->info.c_struct.cmd->cmd_status_reg);
3004 #endif
3005
3006 list_add_tail(element, &priv->msg_free_list);
3007 INC_STAT(&priv->msg_free_stat);
3008 break;
3009 }
3010
3011 /* advance oldest used TBD pointer to start of next entry */
3012 txq->oldest = (e + 1) % txq->entries;
3013 /* increase available TBDs number */
3014 txq->available += descriptors_used;
3015 SET_STAT(&priv->txq_stat, txq->available);
3016
3017 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
3018 jiffies - packet->jiffy_start);
3019
3020 return (!list_empty(&priv->fw_pend_list));
3021 }
3022
3023 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3024 {
3025 int i = 0;
3026
3027 while (__ipw2100_tx_process(priv) && i < 200)
3028 i++;
3029
3030 if (i == 200) {
3031 printk(KERN_WARNING DRV_NAME ": "
3032 "%s: Driver is running slow (%d iters).\n",
3033 priv->net_dev->name, i);
3034 }
3035 }
3036
3037 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3038 {
3039 struct list_head *element;
3040 struct ipw2100_tx_packet *packet;
3041 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3042 struct ipw2100_bd *tbd;
3043 int next = txq->next;
3044
3045 while (!list_empty(&priv->msg_pend_list)) {
3046 /* if there isn't enough space in TBD queue, then
3047 * don't stuff a new one in.
3048 * NOTE: 3 are needed as a command will take one,
3049 * and there is a minimum of 2 that must be
3050 * maintained between the r and w indexes
3051 */
3052 if (txq->available <= 3) {
3053 IPW_DEBUG_TX("no room in tx_queue\n");
3054 break;
3055 }
3056
3057 element = priv->msg_pend_list.next;
3058 list_del(element);
3059 DEC_STAT(&priv->msg_pend_stat);
3060
3061 packet = list_entry(element, struct ipw2100_tx_packet, list);
3062
3063 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
3064 &txq->drv[txq->next],
3065 (void *)(txq->nic + txq->next *
3066 sizeof(struct ipw2100_bd)));
3067
3068 packet->index = txq->next;
3069
3070 tbd = &txq->drv[txq->next];
3071
3072 /* initialize TBD */
3073 tbd->host_addr = packet->info.c_struct.cmd_phys;
3074 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3075 /* not marking number of fragments causes problems
3076 * with f/w debug version */
3077 tbd->num_fragments = 1;
3078 tbd->status.info.field =
3079 IPW_BD_STATUS_TX_FRAME_COMMAND |
3080 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3081
3082 /* update TBD queue counters */
3083 txq->next++;
3084 txq->next %= txq->entries;
3085 txq->available--;
3086 DEC_STAT(&priv->txq_stat);
3087
3088 list_add_tail(element, &priv->fw_pend_list);
3089 INC_STAT(&priv->fw_pend_stat);
3090 }
3091
3092 if (txq->next != next) {
3093 /* kick off the DMA by notifying firmware the
3094 * write index has moved; make sure TBD stores are sync'd */
3095 wmb();
3096 write_register(priv->net_dev,
3097 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3098 txq->next);
3099 }
3100 }
3101
3102 /*
3103 * ipw2100_tx_send_data
3104 *
3105 */
3106 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3107 {
3108 struct list_head *element;
3109 struct ipw2100_tx_packet *packet;
3110 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3111 struct ipw2100_bd *tbd;
3112 int next = txq->next;
3113 int i = 0;
3114 struct ipw2100_data_header *ipw_hdr;
3115 struct libipw_hdr_3addr *hdr;
3116
3117 while (!list_empty(&priv->tx_pend_list)) {
3118 /* if there isn't enough space in TBD queue, then
3119 * don't stuff a new one in.
3120 * NOTE: 4 are needed as a data will take two,
3121 * and there is a minimum of 2 that must be
3122 * maintained between the r and w indexes
3123 */
3124 element = priv->tx_pend_list.next;
3125 packet = list_entry(element, struct ipw2100_tx_packet, list);
3126
3127 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3128 IPW_MAX_BDS)) {
3129 /* TODO: Support merging buffers if more than
3130 * IPW_MAX_BDS are used */
3131 IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded. "
3132 "Increase fragmentation level.\n",
3133 priv->net_dev->name);
3134 }
3135
3136 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3137 IPW_DEBUG_TX("no room in tx_queue\n");
3138 break;
3139 }
3140
3141 list_del(element);
3142 DEC_STAT(&priv->tx_pend_stat);
3143
3144 tbd = &txq->drv[txq->next];
3145
3146 packet->index = txq->next;
3147
3148 ipw_hdr = packet->info.d_struct.data;
3149 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3150 fragments[0]->data;
3151
3152 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3153 /* To DS: Addr1 = BSSID, Addr2 = SA,
3154 Addr3 = DA */
3155 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3156 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3157 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3158 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3159 Addr3 = BSSID */
3160 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3161 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3162 }
3163
3164 ipw_hdr->host_command_reg = SEND;
3165 ipw_hdr->host_command_reg1 = 0;
3166
3167 /* For now we only support host based encryption */
3168 ipw_hdr->needs_encryption = 0;
3169 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3170 if (packet->info.d_struct.txb->nr_frags > 1)
3171 ipw_hdr->fragment_size =
3172 packet->info.d_struct.txb->frag_size -
3173 LIBIPW_3ADDR_LEN;
3174 else
3175 ipw_hdr->fragment_size = 0;
3176
3177 tbd->host_addr = packet->info.d_struct.data_phys;
3178 tbd->buf_length = sizeof(struct ipw2100_data_header);
3179 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3180 tbd->status.info.field =
3181 IPW_BD_STATUS_TX_FRAME_802_3 |
3182 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3183 txq->next++;
3184 txq->next %= txq->entries;
3185
3186 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3187 packet->index, tbd->host_addr, tbd->buf_length);
3188 #ifdef CONFIG_IPW2100_DEBUG
3189 if (packet->info.d_struct.txb->nr_frags > 1)
3190 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3191 packet->info.d_struct.txb->nr_frags);
3192 #endif
3193
3194 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3195 tbd = &txq->drv[txq->next];
3196 if (i == packet->info.d_struct.txb->nr_frags - 1)
3197 tbd->status.info.field =
3198 IPW_BD_STATUS_TX_FRAME_802_3 |
3199 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3200 else
3201 tbd->status.info.field =
3202 IPW_BD_STATUS_TX_FRAME_802_3 |
3203 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3204
3205 tbd->buf_length = packet->info.d_struct.txb->
3206 fragments[i]->len - LIBIPW_3ADDR_LEN;
3207
3208 tbd->host_addr = pci_map_single(priv->pci_dev,
3209 packet->info.d_struct.
3210 txb->fragments[i]->
3211 data +
3212 LIBIPW_3ADDR_LEN,
3213 tbd->buf_length,
3214 PCI_DMA_TODEVICE);
3215
3216 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3217 txq->next, tbd->host_addr,
3218 tbd->buf_length);
3219
3220 pci_dma_sync_single_for_device(priv->pci_dev,
3221 tbd->host_addr,
3222 tbd->buf_length,
3223 PCI_DMA_TODEVICE);
3224
3225 txq->next++;
3226 txq->next %= txq->entries;
3227 }
3228
3229 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3230 SET_STAT(&priv->txq_stat, txq->available);
3231
3232 list_add_tail(element, &priv->fw_pend_list);
3233 INC_STAT(&priv->fw_pend_stat);
3234 }
3235
3236 if (txq->next != next) {
3237 /* kick off the DMA by notifying firmware the
3238 * write index has moved; make sure TBD stores are sync'd */
3239 write_register(priv->net_dev,
3240 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3241 txq->next);
3242 }
3243 return;
3244 }
3245
3246 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3247 {
3248 struct net_device *dev = priv->net_dev;
3249 unsigned long flags;
3250 u32 inta, tmp;
3251
3252 spin_lock_irqsave(&priv->low_lock, flags);
3253 ipw2100_disable_interrupts(priv);
3254
3255 read_register(dev, IPW_REG_INTA, &inta);
3256
3257 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3258 (unsigned long)inta & IPW_INTERRUPT_MASK);
3259
3260 priv->in_isr++;
3261 priv->interrupts++;
3262
3263 /* We do not loop and keep polling for more interrupts as this
3264 * is frowned upon and doesn't play nicely with other potentially
3265 * chained IRQs */
3266 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3267 (unsigned long)inta & IPW_INTERRUPT_MASK);
3268
3269 if (inta & IPW2100_INTA_FATAL_ERROR) {
3270 printk(KERN_WARNING DRV_NAME
3271 ": Fatal interrupt. Scheduling firmware restart.\n");
3272 priv->inta_other++;
3273 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3274
3275 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3276 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3277 priv->net_dev->name, priv->fatal_error);
3278
3279 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3280 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3281 priv->net_dev->name, tmp);
3282
3283 /* Wake up any sleeping jobs */
3284 schedule_reset(priv);
3285 }
3286
3287 if (inta & IPW2100_INTA_PARITY_ERROR) {
3288 printk(KERN_ERR DRV_NAME
3289 ": ***** PARITY ERROR INTERRUPT !!!! \n");
3290 priv->inta_other++;
3291 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3292 }
3293
3294 if (inta & IPW2100_INTA_RX_TRANSFER) {
3295 IPW_DEBUG_ISR("RX interrupt\n");
3296
3297 priv->rx_interrupts++;
3298
3299 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3300
3301 __ipw2100_rx_process(priv);
3302 __ipw2100_tx_complete(priv);
3303 }
3304
3305 if (inta & IPW2100_INTA_TX_TRANSFER) {
3306 IPW_DEBUG_ISR("TX interrupt\n");
3307
3308 priv->tx_interrupts++;
3309
3310 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3311
3312 __ipw2100_tx_complete(priv);
3313 ipw2100_tx_send_commands(priv);
3314 ipw2100_tx_send_data(priv);
3315 }
3316
3317 if (inta & IPW2100_INTA_TX_COMPLETE) {
3318 IPW_DEBUG_ISR("TX complete\n");
3319 priv->inta_other++;
3320 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3321
3322 __ipw2100_tx_complete(priv);
3323 }
3324
3325 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3326 /* ipw2100_handle_event(dev); */
3327 priv->inta_other++;
3328 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3329 }
3330
3331 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3332 IPW_DEBUG_ISR("FW init done interrupt\n");
3333 priv->inta_other++;
3334
3335 read_register(dev, IPW_REG_INTA, &tmp);
3336 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3337 IPW2100_INTA_PARITY_ERROR)) {
3338 write_register(dev, IPW_REG_INTA,
3339 IPW2100_INTA_FATAL_ERROR |
3340 IPW2100_INTA_PARITY_ERROR);
3341 }
3342
3343 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3344 }
3345
3346 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3347 IPW_DEBUG_ISR("Status change interrupt\n");
3348 priv->inta_other++;
3349 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3350 }
3351
3352 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3353 IPW_DEBUG_ISR("slave host mode interrupt\n");
3354 priv->inta_other++;
3355 write_register(dev, IPW_REG_INTA,
3356 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3357 }
3358
3359 priv->in_isr--;
3360 ipw2100_enable_interrupts(priv);
3361
3362 spin_unlock_irqrestore(&priv->low_lock, flags);
3363
3364 IPW_DEBUG_ISR("exit\n");
3365 }
3366
3367 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3368 {
3369 struct ipw2100_priv *priv = data;
3370 u32 inta, inta_mask;
3371
3372 if (!data)
3373 return IRQ_NONE;
3374
3375 spin_lock(&priv->low_lock);
3376
3377 /* We check to see if we should be ignoring interrupts before
3378 * we touch the hardware. During ucode load if we try and handle
3379 * an interrupt we can cause keyboard problems as well as cause
3380 * the ucode to fail to initialize */
3381 if (!(priv->status & STATUS_INT_ENABLED)) {
3382 /* Shared IRQ */
3383 goto none;
3384 }
3385
3386 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3387 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3388
3389 if (inta == 0xFFFFFFFF) {
3390 /* Hardware disappeared */
3391 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3392 goto none;
3393 }
3394
3395 inta &= IPW_INTERRUPT_MASK;
3396
3397 if (!(inta & inta_mask)) {
3398 /* Shared interrupt */
3399 goto none;
3400 }
3401
3402 /* We disable the hardware interrupt here just to prevent unneeded
3403 * calls to be made. We disable this again within the actual
3404 * work tasklet, so if another part of the code re-enables the
3405 * interrupt, that is fine */
3406 ipw2100_disable_interrupts(priv);
3407
3408 tasklet_schedule(&priv->irq_tasklet);
3409 spin_unlock(&priv->low_lock);
3410
3411 return IRQ_HANDLED;
3412 none:
3413 spin_unlock(&priv->low_lock);
3414 return IRQ_NONE;
3415 }
3416
3417 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3418 struct net_device *dev, int pri)
3419 {
3420 struct ipw2100_priv *priv = libipw_priv(dev);
3421 struct list_head *element;
3422 struct ipw2100_tx_packet *packet;
3423 unsigned long flags;
3424
3425 spin_lock_irqsave(&priv->low_lock, flags);
3426
3427 if (!(priv->status & STATUS_ASSOCIATED)) {
3428 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3429 priv->net_dev->stats.tx_carrier_errors++;
3430 netif_stop_queue(dev);
3431 goto fail_unlock;
3432 }
3433
3434 if (list_empty(&priv->tx_free_list))
3435 goto fail_unlock;
3436
3437 element = priv->tx_free_list.next;
3438 packet = list_entry(element, struct ipw2100_tx_packet, list);
3439
3440 packet->info.d_struct.txb = txb;
3441
3442 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3443 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3444
3445 packet->jiffy_start = jiffies;
3446
3447 list_del(element);
3448 DEC_STAT(&priv->tx_free_stat);
3449
3450 list_add_tail(element, &priv->tx_pend_list);
3451 INC_STAT(&priv->tx_pend_stat);
3452
3453 ipw2100_tx_send_data(priv);
3454
3455 spin_unlock_irqrestore(&priv->low_lock, flags);
3456 return NETDEV_TX_OK;
3457
3458 fail_unlock:
3459 netif_stop_queue(dev);
3460 spin_unlock_irqrestore(&priv->low_lock, flags);
3461 return NETDEV_TX_BUSY;
3462 }
3463
3464 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3465 {
3466 int i, j, err = -EINVAL;
3467 void *v;
3468 dma_addr_t p;
3469
3470 priv->msg_buffers =
3471 (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3472 sizeof(struct
3473 ipw2100_tx_packet),
3474 GFP_KERNEL);
3475 if (!priv->msg_buffers) {
3476 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3477 "buffers.\n", priv->net_dev->name);
3478 return -ENOMEM;
3479 }
3480
3481 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3482 v = pci_alloc_consistent(priv->pci_dev,
3483 sizeof(struct ipw2100_cmd_header), &p);
3484 if (!v) {
3485 printk(KERN_ERR DRV_NAME ": "
3486 "%s: PCI alloc failed for msg "
3487 "buffers.\n", priv->net_dev->name);
3488 err = -ENOMEM;
3489 break;
3490 }
3491
3492 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3493
3494 priv->msg_buffers[i].type = COMMAND;
3495 priv->msg_buffers[i].info.c_struct.cmd =
3496 (struct ipw2100_cmd_header *)v;
3497 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3498 }
3499
3500 if (i == IPW_COMMAND_POOL_SIZE)
3501 return 0;
3502
3503 for (j = 0; j < i; j++) {
3504 pci_free_consistent(priv->pci_dev,
3505 sizeof(struct ipw2100_cmd_header),
3506 priv->msg_buffers[j].info.c_struct.cmd,
3507 priv->msg_buffers[j].info.c_struct.
3508 cmd_phys);
3509 }
3510
3511 kfree(priv->msg_buffers);
3512 priv->msg_buffers = NULL;
3513
3514 return err;
3515 }
3516
3517 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3518 {
3519 int i;
3520
3521 INIT_LIST_HEAD(&priv->msg_free_list);
3522 INIT_LIST_HEAD(&priv->msg_pend_list);
3523
3524 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3525 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3526 SET_STAT(&priv->msg_free_stat, i);
3527
3528 return 0;
3529 }
3530
3531 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3532 {
3533 int i;
3534
3535 if (!priv->msg_buffers)
3536 return;
3537
3538 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3539 pci_free_consistent(priv->pci_dev,
3540 sizeof(struct ipw2100_cmd_header),
3541 priv->msg_buffers[i].info.c_struct.cmd,
3542 priv->msg_buffers[i].info.c_struct.
3543 cmd_phys);
3544 }
3545
3546 kfree(priv->msg_buffers);
3547 priv->msg_buffers = NULL;
3548 }
3549
3550 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3551 char *buf)
3552 {
3553 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3554 char *out = buf;
3555 int i, j;
3556 u32 val;
3557
3558 for (i = 0; i < 16; i++) {
3559 out += sprintf(out, "[%08X] ", i * 16);
3560 for (j = 0; j < 16; j += 4) {
3561 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3562 out += sprintf(out, "%08X ", val);
3563 }
3564 out += sprintf(out, "\n");
3565 }
3566
3567 return out - buf;
3568 }
3569
3570 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3571
3572 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3573 char *buf)
3574 {
3575 struct ipw2100_priv *p = dev_get_drvdata(d);
3576 return sprintf(buf, "0x%08x\n", (int)p->config);
3577 }
3578
3579 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3580
3581 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3582 char *buf)
3583 {
3584 struct ipw2100_priv *p = dev_get_drvdata(d);
3585 return sprintf(buf, "0x%08x\n", (int)p->status);
3586 }
3587
3588 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3589
3590 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3591 char *buf)
3592 {
3593 struct ipw2100_priv *p = dev_get_drvdata(d);
3594 return sprintf(buf, "0x%08x\n", (int)p->capability);
3595 }
3596
3597 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3598
3599 #define IPW2100_REG(x) { IPW_ ##x, #x }
3600 static const struct {
3601 u32 addr;
3602 const char *name;
3603 } hw_data[] = {
3604 IPW2100_REG(REG_GP_CNTRL),
3605 IPW2100_REG(REG_GPIO),
3606 IPW2100_REG(REG_INTA),
3607 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3608 #define IPW2100_NIC(x, s) { x, #x, s }
3609 static const struct {
3610 u32 addr;
3611 const char *name;
3612 size_t size;
3613 } nic_data[] = {
3614 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3615 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3616 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3617 static const struct {
3618 u8 index;
3619 const char *name;
3620 const char *desc;
3621 } ord_data[] = {
3622 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3623 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3624 "successful Host Tx's (MSDU)"),
3625 IPW2100_ORD(STAT_TX_DIR_DATA,
3626 "successful Directed Tx's (MSDU)"),
3627 IPW2100_ORD(STAT_TX_DIR_DATA1,
3628 "successful Directed Tx's (MSDU) @ 1MB"),
3629 IPW2100_ORD(STAT_TX_DIR_DATA2,
3630 "successful Directed Tx's (MSDU) @ 2MB"),
3631 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3632 "successful Directed Tx's (MSDU) @ 5_5MB"),
3633 IPW2100_ORD(STAT_TX_DIR_DATA11,
3634 "successful Directed Tx's (MSDU) @ 11MB"),
3635 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3636 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3637 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3638 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3639 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3640 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3641 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3642 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3643 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3644 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3645 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3646 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3647 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3648 IPW2100_ORD(STAT_TX_ASSN_RESP,
3649 "successful Association response Tx's"),
3650 IPW2100_ORD(STAT_TX_REASSN,
3651 "successful Reassociation Tx's"),
3652 IPW2100_ORD(STAT_TX_REASSN_RESP,
3653 "successful Reassociation response Tx's"),
3654 IPW2100_ORD(STAT_TX_PROBE,
3655 "probes successfully transmitted"),
3656 IPW2100_ORD(STAT_TX_PROBE_RESP,
3657 "probe responses successfully transmitted"),
3658 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3659 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3660 IPW2100_ORD(STAT_TX_DISASSN,
3661 "successful Disassociation TX"),
3662 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3663 IPW2100_ORD(STAT_TX_DEAUTH,
3664 "successful Deauthentication TX"),
3665 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3666 "Total successful Tx data bytes"),
3667 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3668 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3669 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3670 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3671 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3672 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3673 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3674 "times max tries in a hop failed"),
3675 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3676 "times disassociation failed"),
3677 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3678 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3679 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3680 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3681 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3682 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3683 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3684 "directed packets at 5.5MB"),
3685 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3686 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3687 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3688 "nondirected packets at 1MB"),
3689 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3690 "nondirected packets at 2MB"),
3691 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3692 "nondirected packets at 5.5MB"),
3693 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3694 "nondirected packets at 11MB"),
3695 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3696 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3697 "Rx CTS"),
3698 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3699 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3700 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3701 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3702 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3703 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3704 IPW2100_ORD(STAT_RX_REASSN_RESP,
3705 "Reassociation response Rx's"),
3706 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3707 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3708 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3709 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3710 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3711 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3712 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3713 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3714 "Total rx data bytes received"),
3715 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3716 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3717 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3718 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3719 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3720 IPW2100_ORD(STAT_RX_DUPLICATE1,
3721 "duplicate rx packets at 1MB"),
3722 IPW2100_ORD(STAT_RX_DUPLICATE2,
3723 "duplicate rx packets at 2MB"),
3724 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3725 "duplicate rx packets at 5.5MB"),
3726 IPW2100_ORD(STAT_RX_DUPLICATE11,
3727 "duplicate rx packets at 11MB"),
3728 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3729 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3730 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3731 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3732 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3733 "rx frames with invalid protocol"),
3734 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3735 IPW2100_ORD(STAT_RX_NO_BUFFER,
3736 "rx frames rejected due to no buffer"),
3737 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3738 "rx frames dropped due to missing fragment"),
3739 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3740 "rx frames dropped due to non-sequential fragment"),
3741 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3742 "rx frames dropped due to unmatched 1st frame"),
3743 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3744 "rx frames dropped due to uncompleted frame"),
3745 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3746 "ICV errors during decryption"),
3747 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3748 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3749 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3750 "poll response timeouts"),
3751 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3752 "timeouts waiting for last {broad,multi}cast pkt"),
3753 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3754 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3755 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3756 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3757 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3758 "current calculation of % missed beacons"),
3759 IPW2100_ORD(STAT_PERCENT_RETRIES,
3760 "current calculation of % missed tx retries"),
3761 IPW2100_ORD(ASSOCIATED_AP_PTR,
3762 "0 if not associated, else pointer to AP table entry"),
3763 IPW2100_ORD(AVAILABLE_AP_CNT,
3764 "AP's decsribed in the AP table"),
3765 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3766 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3767 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3768 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3769 "failures due to response fail"),
3770 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3771 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3772 IPW2100_ORD(STAT_ROAM_INHIBIT,
3773 "times roaming was inhibited due to activity"),
3774 IPW2100_ORD(RSSI_AT_ASSN,
3775 "RSSI of associated AP at time of association"),
3776 IPW2100_ORD(STAT_ASSN_CAUSE1,
3777 "reassociation: no probe response or TX on hop"),
3778 IPW2100_ORD(STAT_ASSN_CAUSE2,
3779 "reassociation: poor tx/rx quality"),
3780 IPW2100_ORD(STAT_ASSN_CAUSE3,
3781 "reassociation: tx/rx quality (excessive AP load"),
3782 IPW2100_ORD(STAT_ASSN_CAUSE4,
3783 "reassociation: AP RSSI level"),
3784 IPW2100_ORD(STAT_ASSN_CAUSE5,
3785 "reassociations due to load leveling"),
3786 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3787 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3788 "times authentication response failed"),
3789 IPW2100_ORD(STATION_TABLE_CNT,
3790 "entries in association table"),
3791 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3792 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3793 IPW2100_ORD(COUNTRY_CODE,
3794 "IEEE country code as recv'd from beacon"),
3795 IPW2100_ORD(COUNTRY_CHANNELS,
3796 "channels suported by country"),
3797 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3798 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3799 IPW2100_ORD(ANTENNA_DIVERSITY,
3800 "TRUE if antenna diversity is disabled"),
3801 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3802 IPW2100_ORD(OUR_FREQ,
3803 "current radio freq lower digits - channel ID"),
3804 IPW2100_ORD(RTC_TIME, "current RTC time"),
3805 IPW2100_ORD(PORT_TYPE, "operating mode"),
3806 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3807 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3808 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3809 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3810 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3811 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3812 IPW2100_ORD(CAPABILITIES,
3813 "Management frame capability field"),
3814 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3815 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3816 IPW2100_ORD(RTS_THRESHOLD,
3817 "Min packet length for RTS handshaking"),
3818 IPW2100_ORD(INT_MODE, "International mode"),
3819 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3820 "protocol frag threshold"),
3821 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3822 "EEPROM offset in SRAM"),
3823 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3824 "EEPROM size in SRAM"),
3825 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3826 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3827 "EEPROM IBSS 11b channel set"),
3828 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3829 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3830 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3831 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3832 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3833
3834 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3835 char *buf)
3836 {
3837 int i;
3838 struct ipw2100_priv *priv = dev_get_drvdata(d);
3839 struct net_device *dev = priv->net_dev;
3840 char *out = buf;
3841 u32 val = 0;
3842
3843 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3844
3845 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3846 read_register(dev, hw_data[i].addr, &val);
3847 out += sprintf(out, "%30s [%08X] : %08X\n",
3848 hw_data[i].name, hw_data[i].addr, val);
3849 }
3850
3851 return out - buf;
3852 }
3853
3854 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3855
3856 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3857 char *buf)
3858 {
3859 struct ipw2100_priv *priv = dev_get_drvdata(d);
3860 struct net_device *dev = priv->net_dev;
3861 char *out = buf;
3862 int i;
3863
3864 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3865
3866 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3867 u8 tmp8;
3868 u16 tmp16;
3869 u32 tmp32;
3870
3871 switch (nic_data[i].size) {
3872 case 1:
3873 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3874 out += sprintf(out, "%30s [%08X] : %02X\n",
3875 nic_data[i].name, nic_data[i].addr,
3876 tmp8);
3877 break;
3878 case 2:
3879 read_nic_word(dev, nic_data[i].addr, &tmp16);
3880 out += sprintf(out, "%30s [%08X] : %04X\n",
3881 nic_data[i].name, nic_data[i].addr,
3882 tmp16);
3883 break;
3884 case 4:
3885 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3886 out += sprintf(out, "%30s [%08X] : %08X\n",
3887 nic_data[i].name, nic_data[i].addr,
3888 tmp32);
3889 break;
3890 }
3891 }
3892 return out - buf;
3893 }
3894
3895 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3896
3897 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3898 char *buf)
3899 {
3900 struct ipw2100_priv *priv = dev_get_drvdata(d);
3901 struct net_device *dev = priv->net_dev;
3902 static unsigned long loop = 0;
3903 int len = 0;
3904 u32 buffer[4];
3905 int i;
3906 char line[81];
3907
3908 if (loop >= 0x30000)
3909 loop = 0;
3910
3911 /* sysfs provides us PAGE_SIZE buffer */
3912 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3913
3914 if (priv->snapshot[0])
3915 for (i = 0; i < 4; i++)
3916 buffer[i] =
3917 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3918 else
3919 for (i = 0; i < 4; i++)
3920 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3921
3922 if (priv->dump_raw)
3923 len += sprintf(buf + len,
3924 "%c%c%c%c"
3925 "%c%c%c%c"
3926 "%c%c%c%c"
3927 "%c%c%c%c",
3928 ((u8 *) buffer)[0x0],
3929 ((u8 *) buffer)[0x1],
3930 ((u8 *) buffer)[0x2],
3931 ((u8 *) buffer)[0x3],
3932 ((u8 *) buffer)[0x4],
3933 ((u8 *) buffer)[0x5],
3934 ((u8 *) buffer)[0x6],
3935 ((u8 *) buffer)[0x7],
3936 ((u8 *) buffer)[0x8],
3937 ((u8 *) buffer)[0x9],
3938 ((u8 *) buffer)[0xa],
3939 ((u8 *) buffer)[0xb],
3940 ((u8 *) buffer)[0xc],
3941 ((u8 *) buffer)[0xd],
3942 ((u8 *) buffer)[0xe],
3943 ((u8 *) buffer)[0xf]);
3944 else
3945 len += sprintf(buf + len, "%s\n",
3946 snprint_line(line, sizeof(line),
3947 (u8 *) buffer, 16, loop));
3948 loop += 16;
3949 }
3950
3951 return len;
3952 }
3953
3954 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3955 const char *buf, size_t count)
3956 {
3957 struct ipw2100_priv *priv = dev_get_drvdata(d);
3958 struct net_device *dev = priv->net_dev;
3959 const char *p = buf;
3960
3961 (void)dev; /* kill unused-var warning for debug-only code */
3962
3963 if (count < 1)
3964 return count;
3965
3966 if (p[0] == '1' ||
3967 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3968 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3969 dev->name);
3970 priv->dump_raw = 1;
3971
3972 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3973 tolower(p[1]) == 'f')) {
3974 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3975 dev->name);
3976 priv->dump_raw = 0;
3977
3978 } else if (tolower(p[0]) == 'r') {
3979 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3980 ipw2100_snapshot_free(priv);
3981
3982 } else
3983 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3984 "reset = clear memory snapshot\n", dev->name);
3985
3986 return count;
3987 }
3988
3989 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3990
3991 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3992 char *buf)
3993 {
3994 struct ipw2100_priv *priv = dev_get_drvdata(d);
3995 u32 val = 0;
3996 int len = 0;
3997 u32 val_len;
3998 static int loop = 0;
3999
4000 if (priv->status & STATUS_RF_KILL_MASK)
4001 return 0;
4002
4003 if (loop >= ARRAY_SIZE(ord_data))
4004 loop = 0;
4005
4006 /* sysfs provides us PAGE_SIZE buffer */
4007 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
4008 val_len = sizeof(u32);
4009
4010 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
4011 &val_len))
4012 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
4013 ord_data[loop].index,
4014 ord_data[loop].desc);
4015 else
4016 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
4017 ord_data[loop].index, val,
4018 ord_data[loop].desc);
4019 loop++;
4020 }
4021
4022 return len;
4023 }
4024
4025 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
4026
4027 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
4028 char *buf)
4029 {
4030 struct ipw2100_priv *priv = dev_get_drvdata(d);
4031 char *out = buf;
4032
4033 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4034 priv->interrupts, priv->tx_interrupts,
4035 priv->rx_interrupts, priv->inta_other);
4036 out += sprintf(out, "firmware resets: %d\n", priv->resets);
4037 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4038 #ifdef CONFIG_IPW2100_DEBUG
4039 out += sprintf(out, "packet mismatch image: %s\n",
4040 priv->snapshot[0] ? "YES" : "NO");
4041 #endif
4042
4043 return out - buf;
4044 }
4045
4046 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4047
4048 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4049 {
4050 int err;
4051
4052 if (mode == priv->ieee->iw_mode)
4053 return 0;
4054
4055 err = ipw2100_disable_adapter(priv);
4056 if (err) {
4057 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4058 priv->net_dev->name, err);
4059 return err;
4060 }
4061
4062 switch (mode) {
4063 case IW_MODE_INFRA:
4064 priv->net_dev->type = ARPHRD_ETHER;
4065 break;
4066 case IW_MODE_ADHOC:
4067 priv->net_dev->type = ARPHRD_ETHER;
4068 break;
4069 #ifdef CONFIG_IPW2100_MONITOR
4070 case IW_MODE_MONITOR:
4071 priv->last_mode = priv->ieee->iw_mode;
4072 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4073 break;
4074 #endif /* CONFIG_IPW2100_MONITOR */
4075 }
4076
4077 priv->ieee->iw_mode = mode;
4078
4079 #ifdef CONFIG_PM
4080 /* Indicate ipw2100_download_firmware download firmware
4081 * from disk instead of memory. */
4082 ipw2100_firmware.version = 0;
4083 #endif
4084
4085 printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
4086 priv->reset_backoff = 0;
4087 schedule_reset(priv);
4088
4089 return 0;
4090 }
4091
4092 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4093 char *buf)
4094 {
4095 struct ipw2100_priv *priv = dev_get_drvdata(d);
4096 int len = 0;
4097
4098 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4099
4100 if (priv->status & STATUS_ASSOCIATED)
4101 len += sprintf(buf + len, "connected: %lu\n",
4102 get_seconds() - priv->connect_start);
4103 else
4104 len += sprintf(buf + len, "not connected\n");
4105
4106 DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4107 DUMP_VAR(status, "08lx");
4108 DUMP_VAR(config, "08lx");
4109 DUMP_VAR(capability, "08lx");
4110
4111 len +=
4112 sprintf(buf + len, "last_rtc: %lu\n",
4113 (unsigned long)priv->last_rtc);
4114
4115 DUMP_VAR(fatal_error, "d");
4116 DUMP_VAR(stop_hang_check, "d");
4117 DUMP_VAR(stop_rf_kill, "d");
4118 DUMP_VAR(messages_sent, "d");
4119
4120 DUMP_VAR(tx_pend_stat.value, "d");
4121 DUMP_VAR(tx_pend_stat.hi, "d");
4122
4123 DUMP_VAR(tx_free_stat.value, "d");
4124 DUMP_VAR(tx_free_stat.lo, "d");
4125
4126 DUMP_VAR(msg_free_stat.value, "d");
4127 DUMP_VAR(msg_free_stat.lo, "d");
4128
4129 DUMP_VAR(msg_pend_stat.value, "d");
4130 DUMP_VAR(msg_pend_stat.hi, "d");
4131
4132 DUMP_VAR(fw_pend_stat.value, "d");
4133 DUMP_VAR(fw_pend_stat.hi, "d");
4134
4135 DUMP_VAR(txq_stat.value, "d");
4136 DUMP_VAR(txq_stat.lo, "d");
4137
4138 DUMP_VAR(ieee->scans, "d");
4139 DUMP_VAR(reset_backoff, "d");
4140
4141 return len;
4142 }
4143
4144 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4145
4146 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4147 char *buf)
4148 {
4149 struct ipw2100_priv *priv = dev_get_drvdata(d);
4150 char essid[IW_ESSID_MAX_SIZE + 1];
4151 u8 bssid[ETH_ALEN];
4152 u32 chan = 0;
4153 char *out = buf;
4154 unsigned int length;
4155 int ret;
4156
4157 if (priv->status & STATUS_RF_KILL_MASK)
4158 return 0;
4159
4160 memset(essid, 0, sizeof(essid));
4161 memset(bssid, 0, sizeof(bssid));
4162
4163 length = IW_ESSID_MAX_SIZE;
4164 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4165 if (ret)
4166 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4167 __LINE__);
4168
4169 length = sizeof(bssid);
4170 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4171 bssid, &length);
4172 if (ret)
4173 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4174 __LINE__);
4175
4176 length = sizeof(u32);
4177 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4178 if (ret)
4179 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4180 __LINE__);
4181
4182 out += sprintf(out, "ESSID: %s\n", essid);
4183 out += sprintf(out, "BSSID: %pM\n", bssid);
4184 out += sprintf(out, "Channel: %d\n", chan);
4185
4186 return out - buf;
4187 }
4188
4189 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4190
4191 #ifdef CONFIG_IPW2100_DEBUG
4192 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4193 {
4194 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4195 }
4196
4197 static ssize_t store_debug_level(struct device_driver *d,
4198 const char *buf, size_t count)
4199 {
4200 char *p = (char *)buf;
4201 u32 val;
4202
4203 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4204 p++;
4205 if (p[0] == 'x' || p[0] == 'X')
4206 p++;
4207 val = simple_strtoul(p, &p, 16);
4208 } else
4209 val = simple_strtoul(p, &p, 10);
4210 if (p == buf)
4211 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4212 else
4213 ipw2100_debug_level = val;
4214
4215 return strnlen(buf, count);
4216 }
4217
4218 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4219 store_debug_level);
4220 #endif /* CONFIG_IPW2100_DEBUG */
4221
4222 static ssize_t show_fatal_error(struct device *d,
4223 struct device_attribute *attr, char *buf)
4224 {
4225 struct ipw2100_priv *priv = dev_get_drvdata(d);
4226 char *out = buf;
4227 int i;
4228
4229 if (priv->fatal_error)
4230 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4231 else
4232 out += sprintf(out, "0\n");
4233
4234 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4235 if (!priv->fatal_errors[(priv->fatal_index - i) %
4236 IPW2100_ERROR_QUEUE])
4237 continue;
4238
4239 out += sprintf(out, "%d. 0x%08X\n", i,
4240 priv->fatal_errors[(priv->fatal_index - i) %
4241 IPW2100_ERROR_QUEUE]);
4242 }
4243
4244 return out - buf;
4245 }
4246
4247 static ssize_t store_fatal_error(struct device *d,
4248 struct device_attribute *attr, const char *buf,
4249 size_t count)
4250 {
4251 struct ipw2100_priv *priv = dev_get_drvdata(d);
4252 schedule_reset(priv);
4253 return count;
4254 }
4255
4256 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4257 store_fatal_error);
4258
4259 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4260 char *buf)
4261 {
4262 struct ipw2100_priv *priv = dev_get_drvdata(d);
4263 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4264 }
4265
4266 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4267 const char *buf, size_t count)
4268 {
4269 struct ipw2100_priv *priv = dev_get_drvdata(d);
4270 struct net_device *dev = priv->net_dev;
4271 char buffer[] = "00000000";
4272 unsigned long len =
4273 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4274 unsigned long val;
4275 char *p = buffer;
4276
4277 (void)dev; /* kill unused-var warning for debug-only code */
4278
4279 IPW_DEBUG_INFO("enter\n");
4280
4281 strncpy(buffer, buf, len);
4282 buffer[len] = 0;
4283
4284 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4285 p++;
4286 if (p[0] == 'x' || p[0] == 'X')
4287 p++;
4288 val = simple_strtoul(p, &p, 16);
4289 } else
4290 val = simple_strtoul(p, &p, 10);
4291 if (p == buffer) {
4292 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4293 } else {
4294 priv->ieee->scan_age = val;
4295 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4296 }
4297
4298 IPW_DEBUG_INFO("exit\n");
4299 return len;
4300 }
4301
4302 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4303
4304 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4305 char *buf)
4306 {
4307 /* 0 - RF kill not enabled
4308 1 - SW based RF kill active (sysfs)
4309 2 - HW based RF kill active
4310 3 - Both HW and SW baed RF kill active */
4311 struct ipw2100_priv *priv = dev_get_drvdata(d);
4312 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4313 (rf_kill_active(priv) ? 0x2 : 0x0);
4314 return sprintf(buf, "%i\n", val);
4315 }
4316
4317 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4318 {
4319 if ((disable_radio ? 1 : 0) ==
4320 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4321 return 0;
4322
4323 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4324 disable_radio ? "OFF" : "ON");
4325
4326 mutex_lock(&priv->action_mutex);
4327
4328 if (disable_radio) {
4329 priv->status |= STATUS_RF_KILL_SW;
4330 ipw2100_down(priv);
4331 } else {
4332 priv->status &= ~STATUS_RF_KILL_SW;
4333 if (rf_kill_active(priv)) {
4334 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4335 "disabled by HW switch\n");
4336 /* Make sure the RF_KILL check timer is running */
4337 priv->stop_rf_kill = 0;
4338 cancel_delayed_work(&priv->rf_kill);
4339 queue_delayed_work(priv->workqueue, &priv->rf_kill,
4340 round_jiffies_relative(HZ));
4341 } else
4342 schedule_reset(priv);
4343 }
4344
4345 mutex_unlock(&priv->action_mutex);
4346 return 1;
4347 }
4348
4349 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4350 const char *buf, size_t count)
4351 {
4352 struct ipw2100_priv *priv = dev_get_drvdata(d);
4353 ipw_radio_kill_sw(priv, buf[0] == '1');
4354 return count;
4355 }
4356
4357 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4358
4359 static struct attribute *ipw2100_sysfs_entries[] = {
4360 &dev_attr_hardware.attr,
4361 &dev_attr_registers.attr,
4362 &dev_attr_ordinals.attr,
4363 &dev_attr_pci.attr,
4364 &dev_attr_stats.attr,
4365 &dev_attr_internals.attr,
4366 &dev_attr_bssinfo.attr,
4367 &dev_attr_memory.attr,
4368 &dev_attr_scan_age.attr,
4369 &dev_attr_fatal_error.attr,
4370 &dev_attr_rf_kill.attr,
4371 &dev_attr_cfg.attr,
4372 &dev_attr_status.attr,
4373 &dev_attr_capability.attr,
4374 NULL,
4375 };
4376
4377 static struct attribute_group ipw2100_attribute_group = {
4378 .attrs = ipw2100_sysfs_entries,
4379 };
4380
4381 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4382 {
4383 struct ipw2100_status_queue *q = &priv->status_queue;
4384
4385 IPW_DEBUG_INFO("enter\n");
4386
4387 q->size = entries * sizeof(struct ipw2100_status);
4388 q->drv =
4389 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4390 q->size, &q->nic);
4391 if (!q->drv) {
4392 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4393 return -ENOMEM;
4394 }
4395
4396 memset(q->drv, 0, q->size);
4397
4398 IPW_DEBUG_INFO("exit\n");
4399
4400 return 0;
4401 }
4402
4403 static void status_queue_free(struct ipw2100_priv *priv)
4404 {
4405 IPW_DEBUG_INFO("enter\n");
4406
4407 if (priv->status_queue.drv) {
4408 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4409 priv->status_queue.drv,
4410 priv->status_queue.nic);
4411 priv->status_queue.drv = NULL;
4412 }
4413
4414 IPW_DEBUG_INFO("exit\n");
4415 }
4416
4417 static int bd_queue_allocate(struct ipw2100_priv *priv,
4418 struct ipw2100_bd_queue *q, int entries)
4419 {
4420 IPW_DEBUG_INFO("enter\n");
4421
4422 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4423
4424 q->entries = entries;
4425 q->size = entries * sizeof(struct ipw2100_bd);
4426 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4427 if (!q->drv) {
4428 IPW_DEBUG_INFO
4429 ("can't allocate shared memory for buffer descriptors\n");
4430 return -ENOMEM;
4431 }
4432 memset(q->drv, 0, q->size);
4433
4434 IPW_DEBUG_INFO("exit\n");
4435
4436 return 0;
4437 }
4438
4439 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4440 {
4441 IPW_DEBUG_INFO("enter\n");
4442
4443 if (!q)
4444 return;
4445
4446 if (q->drv) {
4447 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4448 q->drv = NULL;
4449 }
4450
4451 IPW_DEBUG_INFO("exit\n");
4452 }
4453
4454 static void bd_queue_initialize(struct ipw2100_priv *priv,
4455 struct ipw2100_bd_queue *q, u32 base, u32 size,
4456 u32 r, u32 w)
4457 {
4458 IPW_DEBUG_INFO("enter\n");
4459
4460 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4461 (u32) q->nic);
4462
4463 write_register(priv->net_dev, base, q->nic);
4464 write_register(priv->net_dev, size, q->entries);
4465 write_register(priv->net_dev, r, q->oldest);
4466 write_register(priv->net_dev, w, q->next);
4467
4468 IPW_DEBUG_INFO("exit\n");
4469 }
4470
4471 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4472 {
4473 if (priv->workqueue) {
4474 priv->stop_rf_kill = 1;
4475 priv->stop_hang_check = 1;
4476 cancel_delayed_work(&priv->reset_work);
4477 cancel_delayed_work(&priv->security_work);
4478 cancel_delayed_work(&priv->wx_event_work);
4479 cancel_delayed_work(&priv->hang_check);
4480 cancel_delayed_work(&priv->rf_kill);
4481 cancel_delayed_work(&priv->scan_event_later);
4482 destroy_workqueue(priv->workqueue);
4483 priv->workqueue = NULL;
4484 }
4485 }
4486
4487 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4488 {
4489 int i, j, err = -EINVAL;
4490 void *v;
4491 dma_addr_t p;
4492
4493 IPW_DEBUG_INFO("enter\n");
4494
4495 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4496 if (err) {
4497 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4498 priv->net_dev->name);
4499 return err;
4500 }
4501
4502 priv->tx_buffers =
4503 (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4504 sizeof(struct
4505 ipw2100_tx_packet),
4506 GFP_ATOMIC);
4507 if (!priv->tx_buffers) {
4508 printk(KERN_ERR DRV_NAME
4509 ": %s: alloc failed form tx buffers.\n",
4510 priv->net_dev->name);
4511 bd_queue_free(priv, &priv->tx_queue);
4512 return -ENOMEM;
4513 }
4514
4515 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4516 v = pci_alloc_consistent(priv->pci_dev,
4517 sizeof(struct ipw2100_data_header),
4518 &p);
4519 if (!v) {
4520 printk(KERN_ERR DRV_NAME
4521 ": %s: PCI alloc failed for tx " "buffers.\n",
4522 priv->net_dev->name);
4523 err = -ENOMEM;
4524 break;
4525 }
4526
4527 priv->tx_buffers[i].type = DATA;
4528 priv->tx_buffers[i].info.d_struct.data =
4529 (struct ipw2100_data_header *)v;
4530 priv->tx_buffers[i].info.d_struct.data_phys = p;
4531 priv->tx_buffers[i].info.d_struct.txb = NULL;
4532 }
4533
4534 if (i == TX_PENDED_QUEUE_LENGTH)
4535 return 0;
4536
4537 for (j = 0; j < i; j++) {
4538 pci_free_consistent(priv->pci_dev,
4539 sizeof(struct ipw2100_data_header),
4540 priv->tx_buffers[j].info.d_struct.data,
4541 priv->tx_buffers[j].info.d_struct.
4542 data_phys);
4543 }
4544
4545 kfree(priv->tx_buffers);
4546 priv->tx_buffers = NULL;
4547
4548 return err;
4549 }
4550
4551 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4552 {
4553 int i;
4554
4555 IPW_DEBUG_INFO("enter\n");
4556
4557 /*
4558 * reinitialize packet info lists
4559 */
4560 INIT_LIST_HEAD(&priv->fw_pend_list);
4561 INIT_STAT(&priv->fw_pend_stat);
4562
4563 /*
4564 * reinitialize lists
4565 */
4566 INIT_LIST_HEAD(&priv->tx_pend_list);
4567 INIT_LIST_HEAD(&priv->tx_free_list);
4568 INIT_STAT(&priv->tx_pend_stat);
4569 INIT_STAT(&priv->tx_free_stat);
4570
4571 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4572 /* We simply drop any SKBs that have been queued for
4573 * transmit */
4574 if (priv->tx_buffers[i].info.d_struct.txb) {
4575 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4576 txb);
4577 priv->tx_buffers[i].info.d_struct.txb = NULL;
4578 }
4579
4580 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4581 }
4582
4583 SET_STAT(&priv->tx_free_stat, i);
4584
4585 priv->tx_queue.oldest = 0;
4586 priv->tx_queue.available = priv->tx_queue.entries;
4587 priv->tx_queue.next = 0;
4588 INIT_STAT(&priv->txq_stat);
4589 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4590
4591 bd_queue_initialize(priv, &priv->tx_queue,
4592 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4593 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4594 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4595 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4596
4597 IPW_DEBUG_INFO("exit\n");
4598
4599 }
4600
4601 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4602 {
4603 int i;
4604
4605 IPW_DEBUG_INFO("enter\n");
4606
4607 bd_queue_free(priv, &priv->tx_queue);
4608
4609 if (!priv->tx_buffers)
4610 return;
4611
4612 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4613 if (priv->tx_buffers[i].info.d_struct.txb) {
4614 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4615 txb);
4616 priv->tx_buffers[i].info.d_struct.txb = NULL;
4617 }
4618 if (priv->tx_buffers[i].info.d_struct.data)
4619 pci_free_consistent(priv->pci_dev,
4620 sizeof(struct ipw2100_data_header),
4621 priv->tx_buffers[i].info.d_struct.
4622 data,
4623 priv->tx_buffers[i].info.d_struct.
4624 data_phys);
4625 }
4626
4627 kfree(priv->tx_buffers);
4628 priv->tx_buffers = NULL;
4629
4630 IPW_DEBUG_INFO("exit\n");
4631 }
4632
4633 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4634 {
4635 int i, j, err = -EINVAL;
4636
4637 IPW_DEBUG_INFO("enter\n");
4638
4639 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4640 if (err) {
4641 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4642 return err;
4643 }
4644
4645 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4646 if (err) {
4647 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4648 bd_queue_free(priv, &priv->rx_queue);
4649 return err;
4650 }
4651
4652 /*
4653 * allocate packets
4654 */
4655 priv->rx_buffers = (struct ipw2100_rx_packet *)
4656 kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4657 GFP_KERNEL);
4658 if (!priv->rx_buffers) {
4659 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4660
4661 bd_queue_free(priv, &priv->rx_queue);
4662
4663 status_queue_free(priv);
4664
4665 return -ENOMEM;
4666 }
4667
4668 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4669 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4670
4671 err = ipw2100_alloc_skb(priv, packet);
4672 if (unlikely(err)) {
4673 err = -ENOMEM;
4674 break;
4675 }
4676
4677 /* The BD holds the cache aligned address */
4678 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4679 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4680 priv->status_queue.drv[i].status_fields = 0;
4681 }
4682
4683 if (i == RX_QUEUE_LENGTH)
4684 return 0;
4685
4686 for (j = 0; j < i; j++) {
4687 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4688 sizeof(struct ipw2100_rx_packet),
4689 PCI_DMA_FROMDEVICE);
4690 dev_kfree_skb(priv->rx_buffers[j].skb);
4691 }
4692
4693 kfree(priv->rx_buffers);
4694 priv->rx_buffers = NULL;
4695
4696 bd_queue_free(priv, &priv->rx_queue);
4697
4698 status_queue_free(priv);
4699
4700 return err;
4701 }
4702
4703 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4704 {
4705 IPW_DEBUG_INFO("enter\n");
4706
4707 priv->rx_queue.oldest = 0;
4708 priv->rx_queue.available = priv->rx_queue.entries - 1;
4709 priv->rx_queue.next = priv->rx_queue.entries - 1;
4710
4711 INIT_STAT(&priv->rxq_stat);
4712 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4713
4714 bd_queue_initialize(priv, &priv->rx_queue,
4715 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4716 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4717 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4718 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4719
4720 /* set up the status queue */
4721 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4722 priv->status_queue.nic);
4723
4724 IPW_DEBUG_INFO("exit\n");
4725 }
4726
4727 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4728 {
4729 int i;
4730
4731 IPW_DEBUG_INFO("enter\n");
4732
4733 bd_queue_free(priv, &priv->rx_queue);
4734 status_queue_free(priv);
4735
4736 if (!priv->rx_buffers)
4737 return;
4738
4739 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4740 if (priv->rx_buffers[i].rxp) {
4741 pci_unmap_single(priv->pci_dev,
4742 priv->rx_buffers[i].dma_addr,
4743 sizeof(struct ipw2100_rx),
4744 PCI_DMA_FROMDEVICE);
4745 dev_kfree_skb(priv->rx_buffers[i].skb);
4746 }
4747 }
4748
4749 kfree(priv->rx_buffers);
4750 priv->rx_buffers = NULL;
4751
4752 IPW_DEBUG_INFO("exit\n");
4753 }
4754
4755 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4756 {
4757 u32 length = ETH_ALEN;
4758 u8 addr[ETH_ALEN];
4759
4760 int err;
4761
4762 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4763 if (err) {
4764 IPW_DEBUG_INFO("MAC address read failed\n");
4765 return -EIO;
4766 }
4767
4768 memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4769 IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4770
4771 return 0;
4772 }
4773
4774 /********************************************************************
4775 *
4776 * Firmware Commands
4777 *
4778 ********************************************************************/
4779
4780 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4781 {
4782 struct host_command cmd = {
4783 .host_command = ADAPTER_ADDRESS,
4784 .host_command_sequence = 0,
4785 .host_command_length = ETH_ALEN
4786 };
4787 int err;
4788
4789 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4790
4791 IPW_DEBUG_INFO("enter\n");
4792
4793 if (priv->config & CFG_CUSTOM_MAC) {
4794 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4795 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4796 } else
4797 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4798 ETH_ALEN);
4799
4800 err = ipw2100_hw_send_command(priv, &cmd);
4801
4802 IPW_DEBUG_INFO("exit\n");
4803 return err;
4804 }
4805
4806 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4807 int batch_mode)
4808 {
4809 struct host_command cmd = {
4810 .host_command = PORT_TYPE,
4811 .host_command_sequence = 0,
4812 .host_command_length = sizeof(u32)
4813 };
4814 int err;
4815
4816 switch (port_type) {
4817 case IW_MODE_INFRA:
4818 cmd.host_command_parameters[0] = IPW_BSS;
4819 break;
4820 case IW_MODE_ADHOC:
4821 cmd.host_command_parameters[0] = IPW_IBSS;
4822 break;
4823 }
4824
4825 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4826 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4827
4828 if (!batch_mode) {
4829 err = ipw2100_disable_adapter(priv);
4830 if (err) {
4831 printk(KERN_ERR DRV_NAME
4832 ": %s: Could not disable adapter %d\n",
4833 priv->net_dev->name, err);
4834 return err;
4835 }
4836 }
4837
4838 /* send cmd to firmware */
4839 err = ipw2100_hw_send_command(priv, &cmd);
4840
4841 if (!batch_mode)
4842 ipw2100_enable_adapter(priv);
4843
4844 return err;
4845 }
4846
4847 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4848 int batch_mode)
4849 {
4850 struct host_command cmd = {
4851 .host_command = CHANNEL,
4852 .host_command_sequence = 0,
4853 .host_command_length = sizeof(u32)
4854 };
4855 int err;
4856
4857 cmd.host_command_parameters[0] = channel;
4858
4859 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4860
4861 /* If BSS then we don't support channel selection */
4862 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4863 return 0;
4864
4865 if ((channel != 0) &&
4866 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4867 return -EINVAL;
4868
4869 if (!batch_mode) {
4870 err = ipw2100_disable_adapter(priv);
4871 if (err)
4872 return err;
4873 }
4874
4875 err = ipw2100_hw_send_command(priv, &cmd);
4876 if (err) {
4877 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4878 return err;
4879 }
4880
4881 if (channel)
4882 priv->config |= CFG_STATIC_CHANNEL;
4883 else
4884 priv->config &= ~CFG_STATIC_CHANNEL;
4885
4886 priv->channel = channel;
4887
4888 if (!batch_mode) {
4889 err = ipw2100_enable_adapter(priv);
4890 if (err)
4891 return err;
4892 }
4893
4894 return 0;
4895 }
4896
4897 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4898 {
4899 struct host_command cmd = {
4900 .host_command = SYSTEM_CONFIG,
4901 .host_command_sequence = 0,
4902 .host_command_length = 12,
4903 };
4904 u32 ibss_mask, len = sizeof(u32);
4905 int err;
4906
4907 /* Set system configuration */
4908
4909 if (!batch_mode) {
4910 err = ipw2100_disable_adapter(priv);
4911 if (err)
4912 return err;
4913 }
4914
4915 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4916 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4917
4918 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4919 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4920
4921 if (!(priv->config & CFG_LONG_PREAMBLE))
4922 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4923
4924 err = ipw2100_get_ordinal(priv,
4925 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4926 &ibss_mask, &len);
4927 if (err)
4928 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4929
4930 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4931 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4932
4933 /* 11b only */
4934 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4935
4936 err = ipw2100_hw_send_command(priv, &cmd);
4937 if (err)
4938 return err;
4939
4940 /* If IPv6 is configured in the kernel then we don't want to filter out all
4941 * of the multicast packets as IPv6 needs some. */
4942 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4943 cmd.host_command = ADD_MULTICAST;
4944 cmd.host_command_sequence = 0;
4945 cmd.host_command_length = 0;
4946
4947 ipw2100_hw_send_command(priv, &cmd);
4948 #endif
4949 if (!batch_mode) {
4950 err = ipw2100_enable_adapter(priv);
4951 if (err)
4952 return err;
4953 }
4954
4955 return 0;
4956 }
4957
4958 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4959 int batch_mode)
4960 {
4961 struct host_command cmd = {
4962 .host_command = BASIC_TX_RATES,
4963 .host_command_sequence = 0,
4964 .host_command_length = 4
4965 };
4966 int err;
4967
4968 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4969
4970 if (!batch_mode) {
4971 err = ipw2100_disable_adapter(priv);
4972 if (err)
4973 return err;
4974 }
4975
4976 /* Set BASIC TX Rate first */
4977 ipw2100_hw_send_command(priv, &cmd);
4978
4979 /* Set TX Rate */
4980 cmd.host_command = TX_RATES;
4981 ipw2100_hw_send_command(priv, &cmd);
4982
4983 /* Set MSDU TX Rate */
4984 cmd.host_command = MSDU_TX_RATES;
4985 ipw2100_hw_send_command(priv, &cmd);
4986
4987 if (!batch_mode) {
4988 err = ipw2100_enable_adapter(priv);
4989 if (err)
4990 return err;
4991 }
4992
4993 priv->tx_rates = rate;
4994
4995 return 0;
4996 }
4997
4998 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4999 {
5000 struct host_command cmd = {
5001 .host_command = POWER_MODE,
5002 .host_command_sequence = 0,
5003 .host_command_length = 4
5004 };
5005 int err;
5006
5007 cmd.host_command_parameters[0] = power_level;
5008
5009 err = ipw2100_hw_send_command(priv, &cmd);
5010 if (err)
5011 return err;
5012
5013 if (power_level == IPW_POWER_MODE_CAM)
5014 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
5015 else
5016 priv->power_mode = IPW_POWER_ENABLED | power_level;
5017
5018 #ifdef IPW2100_TX_POWER
5019 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
5020 /* Set beacon interval */
5021 cmd.host_command = TX_POWER_INDEX;
5022 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
5023
5024 err = ipw2100_hw_send_command(priv, &cmd);
5025 if (err)
5026 return err;
5027 }
5028 #endif
5029
5030 return 0;
5031 }
5032
5033 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
5034 {
5035 struct host_command cmd = {
5036 .host_command = RTS_THRESHOLD,
5037 .host_command_sequence = 0,
5038 .host_command_length = 4
5039 };
5040 int err;
5041
5042 if (threshold & RTS_DISABLED)
5043 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
5044 else
5045 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
5046
5047 err = ipw2100_hw_send_command(priv, &cmd);
5048 if (err)
5049 return err;
5050
5051 priv->rts_threshold = threshold;
5052
5053 return 0;
5054 }
5055
5056 #if 0
5057 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
5058 u32 threshold, int batch_mode)
5059 {
5060 struct host_command cmd = {
5061 .host_command = FRAG_THRESHOLD,
5062 .host_command_sequence = 0,
5063 .host_command_length = 4,
5064 .host_command_parameters[0] = 0,
5065 };
5066 int err;
5067
5068 if (!batch_mode) {
5069 err = ipw2100_disable_adapter(priv);
5070 if (err)
5071 return err;
5072 }
5073
5074 if (threshold == 0)
5075 threshold = DEFAULT_FRAG_THRESHOLD;
5076 else {
5077 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5078 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5079 }
5080
5081 cmd.host_command_parameters[0] = threshold;
5082
5083 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5084
5085 err = ipw2100_hw_send_command(priv, &cmd);
5086
5087 if (!batch_mode)
5088 ipw2100_enable_adapter(priv);
5089
5090 if (!err)
5091 priv->frag_threshold = threshold;
5092
5093 return err;
5094 }
5095 #endif
5096
5097 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5098 {
5099 struct host_command cmd = {
5100 .host_command = SHORT_RETRY_LIMIT,
5101 .host_command_sequence = 0,
5102 .host_command_length = 4
5103 };
5104 int err;
5105
5106 cmd.host_command_parameters[0] = retry;
5107
5108 err = ipw2100_hw_send_command(priv, &cmd);
5109 if (err)
5110 return err;
5111
5112 priv->short_retry_limit = retry;
5113
5114 return 0;
5115 }
5116
5117 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5118 {
5119 struct host_command cmd = {
5120 .host_command = LONG_RETRY_LIMIT,
5121 .host_command_sequence = 0,
5122 .host_command_length = 4
5123 };
5124 int err;
5125
5126 cmd.host_command_parameters[0] = retry;
5127
5128 err = ipw2100_hw_send_command(priv, &cmd);
5129 if (err)
5130 return err;
5131
5132 priv->long_retry_limit = retry;
5133
5134 return 0;
5135 }
5136
5137 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5138 int batch_mode)
5139 {
5140 struct host_command cmd = {
5141 .host_command = MANDATORY_BSSID,
5142 .host_command_sequence = 0,
5143 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5144 };
5145 int err;
5146
5147 #ifdef CONFIG_IPW2100_DEBUG
5148 if (bssid != NULL)
5149 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5150 else
5151 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5152 #endif
5153 /* if BSSID is empty then we disable mandatory bssid mode */
5154 if (bssid != NULL)
5155 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5156
5157 if (!batch_mode) {
5158 err = ipw2100_disable_adapter(priv);
5159 if (err)
5160 return err;
5161 }
5162
5163 err = ipw2100_hw_send_command(priv, &cmd);
5164
5165 if (!batch_mode)
5166 ipw2100_enable_adapter(priv);
5167
5168 return err;
5169 }
5170
5171 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5172 {
5173 struct host_command cmd = {
5174 .host_command = DISASSOCIATION_BSSID,
5175 .host_command_sequence = 0,
5176 .host_command_length = ETH_ALEN
5177 };
5178 int err;
5179 int len;
5180
5181 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5182
5183 len = ETH_ALEN;
5184 /* The Firmware currently ignores the BSSID and just disassociates from
5185 * the currently associated AP -- but in the off chance that a future
5186 * firmware does use the BSSID provided here, we go ahead and try and
5187 * set it to the currently associated AP's BSSID */
5188 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5189
5190 err = ipw2100_hw_send_command(priv, &cmd);
5191
5192 return err;
5193 }
5194
5195 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5196 struct ipw2100_wpa_assoc_frame *, int)
5197 __attribute__ ((unused));
5198
5199 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5200 struct ipw2100_wpa_assoc_frame *wpa_frame,
5201 int batch_mode)
5202 {
5203 struct host_command cmd = {
5204 .host_command = SET_WPA_IE,
5205 .host_command_sequence = 0,
5206 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5207 };
5208 int err;
5209
5210 IPW_DEBUG_HC("SET_WPA_IE\n");
5211
5212 if (!batch_mode) {
5213 err = ipw2100_disable_adapter(priv);
5214 if (err)
5215 return err;
5216 }
5217
5218 memcpy(cmd.host_command_parameters, wpa_frame,
5219 sizeof(struct ipw2100_wpa_assoc_frame));
5220
5221 err = ipw2100_hw_send_command(priv, &cmd);
5222
5223 if (!batch_mode) {
5224 if (ipw2100_enable_adapter(priv))
5225 err = -EIO;
5226 }
5227
5228 return err;
5229 }
5230
5231 struct security_info_params {
5232 u32 allowed_ciphers;
5233 u16 version;
5234 u8 auth_mode;
5235 u8 replay_counters_number;
5236 u8 unicast_using_group;
5237 } __attribute__ ((packed));
5238
5239 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5240 int auth_mode,
5241 int security_level,
5242 int unicast_using_group,
5243 int batch_mode)
5244 {
5245 struct host_command cmd = {
5246 .host_command = SET_SECURITY_INFORMATION,
5247 .host_command_sequence = 0,
5248 .host_command_length = sizeof(struct security_info_params)
5249 };
5250 struct security_info_params *security =
5251 (struct security_info_params *)&cmd.host_command_parameters;
5252 int err;
5253 memset(security, 0, sizeof(*security));
5254
5255 /* If shared key AP authentication is turned on, then we need to
5256 * configure the firmware to try and use it.
5257 *
5258 * Actual data encryption/decryption is handled by the host. */
5259 security->auth_mode = auth_mode;
5260 security->unicast_using_group = unicast_using_group;
5261
5262 switch (security_level) {
5263 default:
5264 case SEC_LEVEL_0:
5265 security->allowed_ciphers = IPW_NONE_CIPHER;
5266 break;
5267 case SEC_LEVEL_1:
5268 security->allowed_ciphers = IPW_WEP40_CIPHER |
5269 IPW_WEP104_CIPHER;
5270 break;
5271 case SEC_LEVEL_2:
5272 security->allowed_ciphers = IPW_WEP40_CIPHER |
5273 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5274 break;
5275 case SEC_LEVEL_2_CKIP:
5276 security->allowed_ciphers = IPW_WEP40_CIPHER |
5277 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5278 break;
5279 case SEC_LEVEL_3:
5280 security->allowed_ciphers = IPW_WEP40_CIPHER |
5281 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5282 break;
5283 }
5284
5285 IPW_DEBUG_HC
5286 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5287 security->auth_mode, security->allowed_ciphers, security_level);
5288
5289 security->replay_counters_number = 0;
5290
5291 if (!batch_mode) {
5292 err = ipw2100_disable_adapter(priv);
5293 if (err)
5294 return err;
5295 }
5296
5297 err = ipw2100_hw_send_command(priv, &cmd);
5298
5299 if (!batch_mode)
5300 ipw2100_enable_adapter(priv);
5301
5302 return err;
5303 }
5304
5305 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5306 {
5307 struct host_command cmd = {
5308 .host_command = TX_POWER_INDEX,
5309 .host_command_sequence = 0,
5310 .host_command_length = 4
5311 };
5312 int err = 0;
5313 u32 tmp = tx_power;
5314
5315 if (tx_power != IPW_TX_POWER_DEFAULT)
5316 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5317 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5318
5319 cmd.host_command_parameters[0] = tmp;
5320
5321 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5322 err = ipw2100_hw_send_command(priv, &cmd);
5323 if (!err)
5324 priv->tx_power = tx_power;
5325
5326 return 0;
5327 }
5328
5329 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5330 u32 interval, int batch_mode)
5331 {
5332 struct host_command cmd = {
5333 .host_command = BEACON_INTERVAL,
5334 .host_command_sequence = 0,
5335 .host_command_length = 4
5336 };
5337 int err;
5338
5339 cmd.host_command_parameters[0] = interval;
5340
5341 IPW_DEBUG_INFO("enter\n");
5342
5343 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5344 if (!batch_mode) {
5345 err = ipw2100_disable_adapter(priv);
5346 if (err)
5347 return err;
5348 }
5349
5350 ipw2100_hw_send_command(priv, &cmd);
5351
5352 if (!batch_mode) {
5353 err = ipw2100_enable_adapter(priv);
5354 if (err)
5355 return err;
5356 }
5357 }
5358
5359 IPW_DEBUG_INFO("exit\n");
5360
5361 return 0;
5362 }
5363
5364 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5365 {
5366 ipw2100_tx_initialize(priv);
5367 ipw2100_rx_initialize(priv);
5368 ipw2100_msg_initialize(priv);
5369 }
5370
5371 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5372 {
5373 ipw2100_tx_free(priv);
5374 ipw2100_rx_free(priv);
5375 ipw2100_msg_free(priv);
5376 }
5377
5378 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5379 {
5380 if (ipw2100_tx_allocate(priv) ||
5381 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5382 goto fail;
5383
5384 return 0;
5385
5386 fail:
5387 ipw2100_tx_free(priv);
5388 ipw2100_rx_free(priv);
5389 ipw2100_msg_free(priv);
5390 return -ENOMEM;
5391 }
5392
5393 #define IPW_PRIVACY_CAPABLE 0x0008
5394
5395 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5396 int batch_mode)
5397 {
5398 struct host_command cmd = {
5399 .host_command = WEP_FLAGS,
5400 .host_command_sequence = 0,
5401 .host_command_length = 4
5402 };
5403 int err;
5404
5405 cmd.host_command_parameters[0] = flags;
5406
5407 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5408
5409 if (!batch_mode) {
5410 err = ipw2100_disable_adapter(priv);
5411 if (err) {
5412 printk(KERN_ERR DRV_NAME
5413 ": %s: Could not disable adapter %d\n",
5414 priv->net_dev->name, err);
5415 return err;
5416 }
5417 }
5418
5419 /* send cmd to firmware */
5420 err = ipw2100_hw_send_command(priv, &cmd);
5421
5422 if (!batch_mode)
5423 ipw2100_enable_adapter(priv);
5424
5425 return err;
5426 }
5427
5428 struct ipw2100_wep_key {
5429 u8 idx;
5430 u8 len;
5431 u8 key[13];
5432 };
5433
5434 /* Macros to ease up priting WEP keys */
5435 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5436 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5437 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5438 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5439
5440 /**
5441 * Set a the wep key
5442 *
5443 * @priv: struct to work on
5444 * @idx: index of the key we want to set
5445 * @key: ptr to the key data to set
5446 * @len: length of the buffer at @key
5447 * @batch_mode: FIXME perform the operation in batch mode, not
5448 * disabling the device.
5449 *
5450 * @returns 0 if OK, < 0 errno code on error.
5451 *
5452 * Fill out a command structure with the new wep key, length an
5453 * index and send it down the wire.
5454 */
5455 static int ipw2100_set_key(struct ipw2100_priv *priv,
5456 int idx, char *key, int len, int batch_mode)
5457 {
5458 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5459 struct host_command cmd = {
5460 .host_command = WEP_KEY_INFO,
5461 .host_command_sequence = 0,
5462 .host_command_length = sizeof(struct ipw2100_wep_key),
5463 };
5464 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5465 int err;
5466
5467 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5468 idx, keylen, len);
5469
5470 /* NOTE: We don't check cached values in case the firmware was reset
5471 * or some other problem is occurring. If the user is setting the key,
5472 * then we push the change */
5473
5474 wep_key->idx = idx;
5475 wep_key->len = keylen;
5476
5477 if (keylen) {
5478 memcpy(wep_key->key, key, len);
5479 memset(wep_key->key + len, 0, keylen - len);
5480 }
5481
5482 /* Will be optimized out on debug not being configured in */
5483 if (keylen == 0)
5484 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5485 priv->net_dev->name, wep_key->idx);
5486 else if (keylen == 5)
5487 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5488 priv->net_dev->name, wep_key->idx, wep_key->len,
5489 WEP_STR_64(wep_key->key));
5490 else
5491 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5492 "\n",
5493 priv->net_dev->name, wep_key->idx, wep_key->len,
5494 WEP_STR_128(wep_key->key));
5495
5496 if (!batch_mode) {
5497 err = ipw2100_disable_adapter(priv);
5498 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5499 if (err) {
5500 printk(KERN_ERR DRV_NAME
5501 ": %s: Could not disable adapter %d\n",
5502 priv->net_dev->name, err);
5503 return err;
5504 }
5505 }
5506
5507 /* send cmd to firmware */
5508 err = ipw2100_hw_send_command(priv, &cmd);
5509
5510 if (!batch_mode) {
5511 int err2 = ipw2100_enable_adapter(priv);
5512 if (err == 0)
5513 err = err2;
5514 }
5515 return err;
5516 }
5517
5518 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5519 int idx, int batch_mode)
5520 {
5521 struct host_command cmd = {
5522 .host_command = WEP_KEY_INDEX,
5523 .host_command_sequence = 0,
5524 .host_command_length = 4,
5525 .host_command_parameters = {idx},
5526 };
5527 int err;
5528
5529 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5530
5531 if (idx < 0 || idx > 3)
5532 return -EINVAL;
5533
5534 if (!batch_mode) {
5535 err = ipw2100_disable_adapter(priv);
5536 if (err) {
5537 printk(KERN_ERR DRV_NAME
5538 ": %s: Could not disable adapter %d\n",
5539 priv->net_dev->name, err);
5540 return err;
5541 }
5542 }
5543
5544 /* send cmd to firmware */
5545 err = ipw2100_hw_send_command(priv, &cmd);
5546
5547 if (!batch_mode)
5548 ipw2100_enable_adapter(priv);
5549
5550 return err;
5551 }
5552
5553 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5554 {
5555 int i, err, auth_mode, sec_level, use_group;
5556
5557 if (!(priv->status & STATUS_RUNNING))
5558 return 0;
5559
5560 if (!batch_mode) {
5561 err = ipw2100_disable_adapter(priv);
5562 if (err)
5563 return err;
5564 }
5565
5566 if (!priv->ieee->sec.enabled) {
5567 err =
5568 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5569 SEC_LEVEL_0, 0, 1);
5570 } else {
5571 auth_mode = IPW_AUTH_OPEN;
5572 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5573 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5574 auth_mode = IPW_AUTH_SHARED;
5575 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5576 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5577 }
5578
5579 sec_level = SEC_LEVEL_0;
5580 if (priv->ieee->sec.flags & SEC_LEVEL)
5581 sec_level = priv->ieee->sec.level;
5582
5583 use_group = 0;
5584 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5585 use_group = priv->ieee->sec.unicast_uses_group;
5586
5587 err =
5588 ipw2100_set_security_information(priv, auth_mode, sec_level,
5589 use_group, 1);
5590 }
5591
5592 if (err)
5593 goto exit;
5594
5595 if (priv->ieee->sec.enabled) {
5596 for (i = 0; i < 4; i++) {
5597 if (!(priv->ieee->sec.flags & (1 << i))) {
5598 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5599 priv->ieee->sec.key_sizes[i] = 0;
5600 } else {
5601 err = ipw2100_set_key(priv, i,
5602 priv->ieee->sec.keys[i],
5603 priv->ieee->sec.
5604 key_sizes[i], 1);
5605 if (err)
5606 goto exit;
5607 }
5608 }
5609
5610 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5611 }
5612
5613 /* Always enable privacy so the Host can filter WEP packets if
5614 * encrypted data is sent up */
5615 err =
5616 ipw2100_set_wep_flags(priv,
5617 priv->ieee->sec.
5618 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5619 if (err)
5620 goto exit;
5621
5622 priv->status &= ~STATUS_SECURITY_UPDATED;
5623
5624 exit:
5625 if (!batch_mode)
5626 ipw2100_enable_adapter(priv);
5627
5628 return err;
5629 }
5630
5631 static void ipw2100_security_work(struct work_struct *work)
5632 {
5633 struct ipw2100_priv *priv =
5634 container_of(work, struct ipw2100_priv, security_work.work);
5635
5636 /* If we happen to have reconnected before we get a chance to
5637 * process this, then update the security settings--which causes
5638 * a disassociation to occur */
5639 if (!(priv->status & STATUS_ASSOCIATED) &&
5640 priv->status & STATUS_SECURITY_UPDATED)
5641 ipw2100_configure_security(priv, 0);
5642 }
5643
5644 static void shim__set_security(struct net_device *dev,
5645 struct libipw_security *sec)
5646 {
5647 struct ipw2100_priv *priv = libipw_priv(dev);
5648 int i, force_update = 0;
5649
5650 mutex_lock(&priv->action_mutex);
5651 if (!(priv->status & STATUS_INITIALIZED))
5652 goto done;
5653
5654 for (i = 0; i < 4; i++) {
5655 if (sec->flags & (1 << i)) {
5656 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5657 if (sec->key_sizes[i] == 0)
5658 priv->ieee->sec.flags &= ~(1 << i);
5659 else
5660 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5661 sec->key_sizes[i]);
5662 if (sec->level == SEC_LEVEL_1) {
5663 priv->ieee->sec.flags |= (1 << i);
5664 priv->status |= STATUS_SECURITY_UPDATED;
5665 } else
5666 priv->ieee->sec.flags &= ~(1 << i);
5667 }
5668 }
5669
5670 if ((sec->flags & SEC_ACTIVE_KEY) &&
5671 priv->ieee->sec.active_key != sec->active_key) {
5672 if (sec->active_key <= 3) {
5673 priv->ieee->sec.active_key = sec->active_key;
5674 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5675 } else
5676 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5677
5678 priv->status |= STATUS_SECURITY_UPDATED;
5679 }
5680
5681 if ((sec->flags & SEC_AUTH_MODE) &&
5682 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5683 priv->ieee->sec.auth_mode = sec->auth_mode;
5684 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5685 priv->status |= STATUS_SECURITY_UPDATED;
5686 }
5687
5688 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5689 priv->ieee->sec.flags |= SEC_ENABLED;
5690 priv->ieee->sec.enabled = sec->enabled;
5691 priv->status |= STATUS_SECURITY_UPDATED;
5692 force_update = 1;
5693 }
5694
5695 if (sec->flags & SEC_ENCRYPT)
5696 priv->ieee->sec.encrypt = sec->encrypt;
5697
5698 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5699 priv->ieee->sec.level = sec->level;
5700 priv->ieee->sec.flags |= SEC_LEVEL;
5701 priv->status |= STATUS_SECURITY_UPDATED;
5702 }
5703
5704 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5705 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5706 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5707 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5708 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5709 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5710 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5711 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5712 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5713 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5714
5715 /* As a temporary work around to enable WPA until we figure out why
5716 * wpa_supplicant toggles the security capability of the driver, which
5717 * forces a disassocation with force_update...
5718 *
5719 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5720 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5721 ipw2100_configure_security(priv, 0);
5722 done:
5723 mutex_unlock(&priv->action_mutex);
5724 }
5725
5726 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5727 {
5728 int err;
5729 int batch_mode = 1;
5730 u8 *bssid;
5731
5732 IPW_DEBUG_INFO("enter\n");
5733
5734 err = ipw2100_disable_adapter(priv);
5735 if (err)
5736 return err;
5737 #ifdef CONFIG_IPW2100_MONITOR
5738 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5739 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5740 if (err)
5741 return err;
5742
5743 IPW_DEBUG_INFO("exit\n");
5744
5745 return 0;
5746 }
5747 #endif /* CONFIG_IPW2100_MONITOR */
5748
5749 err = ipw2100_read_mac_address(priv);
5750 if (err)
5751 return -EIO;
5752
5753 err = ipw2100_set_mac_address(priv, batch_mode);
5754 if (err)
5755 return err;
5756
5757 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5758 if (err)
5759 return err;
5760
5761 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5762 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5763 if (err)
5764 return err;
5765 }
5766
5767 err = ipw2100_system_config(priv, batch_mode);
5768 if (err)
5769 return err;
5770
5771 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5772 if (err)
5773 return err;
5774
5775 /* Default to power mode OFF */
5776 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5777 if (err)
5778 return err;
5779
5780 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5781 if (err)
5782 return err;
5783
5784 if (priv->config & CFG_STATIC_BSSID)
5785 bssid = priv->bssid;
5786 else
5787 bssid = NULL;
5788 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5789 if (err)
5790 return err;
5791
5792 if (priv->config & CFG_STATIC_ESSID)
5793 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5794 batch_mode);
5795 else
5796 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5797 if (err)
5798 return err;
5799
5800 err = ipw2100_configure_security(priv, batch_mode);
5801 if (err)
5802 return err;
5803
5804 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5805 err =
5806 ipw2100_set_ibss_beacon_interval(priv,
5807 priv->beacon_interval,
5808 batch_mode);
5809 if (err)
5810 return err;
5811
5812 err = ipw2100_set_tx_power(priv, priv->tx_power);
5813 if (err)
5814 return err;
5815 }
5816
5817 /*
5818 err = ipw2100_set_fragmentation_threshold(
5819 priv, priv->frag_threshold, batch_mode);
5820 if (err)
5821 return err;
5822 */
5823
5824 IPW_DEBUG_INFO("exit\n");
5825
5826 return 0;
5827 }
5828
5829 /*************************************************************************
5830 *
5831 * EXTERNALLY CALLED METHODS
5832 *
5833 *************************************************************************/
5834
5835 /* This method is called by the network layer -- not to be confused with
5836 * ipw2100_set_mac_address() declared above called by this driver (and this
5837 * method as well) to talk to the firmware */
5838 static int ipw2100_set_address(struct net_device *dev, void *p)
5839 {
5840 struct ipw2100_priv *priv = libipw_priv(dev);
5841 struct sockaddr *addr = p;
5842 int err = 0;
5843
5844 if (!is_valid_ether_addr(addr->sa_data))
5845 return -EADDRNOTAVAIL;
5846
5847 mutex_lock(&priv->action_mutex);
5848
5849 priv->config |= CFG_CUSTOM_MAC;
5850 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5851
5852 err = ipw2100_set_mac_address(priv, 0);
5853 if (err)
5854 goto done;
5855
5856 priv->reset_backoff = 0;
5857 mutex_unlock(&priv->action_mutex);
5858 ipw2100_reset_adapter(&priv->reset_work.work);
5859 return 0;
5860
5861 done:
5862 mutex_unlock(&priv->action_mutex);
5863 return err;
5864 }
5865
5866 static int ipw2100_open(struct net_device *dev)
5867 {
5868 struct ipw2100_priv *priv = libipw_priv(dev);
5869 unsigned long flags;
5870 IPW_DEBUG_INFO("dev->open\n");
5871
5872 spin_lock_irqsave(&priv->low_lock, flags);
5873 if (priv->status & STATUS_ASSOCIATED) {
5874 netif_carrier_on(dev);
5875 netif_start_queue(dev);
5876 }
5877 spin_unlock_irqrestore(&priv->low_lock, flags);
5878
5879 return 0;
5880 }
5881
5882 static int ipw2100_close(struct net_device *dev)
5883 {
5884 struct ipw2100_priv *priv = libipw_priv(dev);
5885 unsigned long flags;
5886 struct list_head *element;
5887 struct ipw2100_tx_packet *packet;
5888
5889 IPW_DEBUG_INFO("enter\n");
5890
5891 spin_lock_irqsave(&priv->low_lock, flags);
5892
5893 if (priv->status & STATUS_ASSOCIATED)
5894 netif_carrier_off(dev);
5895 netif_stop_queue(dev);
5896
5897 /* Flush the TX queue ... */
5898 while (!list_empty(&priv->tx_pend_list)) {
5899 element = priv->tx_pend_list.next;
5900 packet = list_entry(element, struct ipw2100_tx_packet, list);
5901
5902 list_del(element);
5903 DEC_STAT(&priv->tx_pend_stat);
5904
5905 libipw_txb_free(packet->info.d_struct.txb);
5906 packet->info.d_struct.txb = NULL;
5907
5908 list_add_tail(element, &priv->tx_free_list);
5909 INC_STAT(&priv->tx_free_stat);
5910 }
5911 spin_unlock_irqrestore(&priv->low_lock, flags);
5912
5913 IPW_DEBUG_INFO("exit\n");
5914
5915 return 0;
5916 }
5917
5918 /*
5919 * TODO: Fix this function... its just wrong
5920 */
5921 static void ipw2100_tx_timeout(struct net_device *dev)
5922 {
5923 struct ipw2100_priv *priv = libipw_priv(dev);
5924
5925 dev->stats.tx_errors++;
5926
5927 #ifdef CONFIG_IPW2100_MONITOR
5928 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5929 return;
5930 #endif
5931
5932 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5933 dev->name);
5934 schedule_reset(priv);
5935 }
5936
5937 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5938 {
5939 /* This is called when wpa_supplicant loads and closes the driver
5940 * interface. */
5941 priv->ieee->wpa_enabled = value;
5942 return 0;
5943 }
5944
5945 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5946 {
5947
5948 struct libipw_device *ieee = priv->ieee;
5949 struct libipw_security sec = {
5950 .flags = SEC_AUTH_MODE,
5951 };
5952 int ret = 0;
5953
5954 if (value & IW_AUTH_ALG_SHARED_KEY) {
5955 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5956 ieee->open_wep = 0;
5957 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5958 sec.auth_mode = WLAN_AUTH_OPEN;
5959 ieee->open_wep = 1;
5960 } else if (value & IW_AUTH_ALG_LEAP) {
5961 sec.auth_mode = WLAN_AUTH_LEAP;
5962 ieee->open_wep = 1;
5963 } else
5964 return -EINVAL;
5965
5966 if (ieee->set_security)
5967 ieee->set_security(ieee->dev, &sec);
5968 else
5969 ret = -EOPNOTSUPP;
5970
5971 return ret;
5972 }
5973
5974 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5975 char *wpa_ie, int wpa_ie_len)
5976 {
5977
5978 struct ipw2100_wpa_assoc_frame frame;
5979
5980 frame.fixed_ie_mask = 0;
5981
5982 /* copy WPA IE */
5983 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5984 frame.var_ie_len = wpa_ie_len;
5985
5986 /* make sure WPA is enabled */
5987 ipw2100_wpa_enable(priv, 1);
5988 ipw2100_set_wpa_ie(priv, &frame, 0);
5989 }
5990
5991 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5992 struct ethtool_drvinfo *info)
5993 {
5994 struct ipw2100_priv *priv = libipw_priv(dev);
5995 char fw_ver[64], ucode_ver[64];
5996
5997 strcpy(info->driver, DRV_NAME);
5998 strcpy(info->version, DRV_VERSION);
5999
6000 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
6001 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
6002
6003 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
6004 fw_ver, priv->eeprom_version, ucode_ver);
6005
6006 strcpy(info->bus_info, pci_name(priv->pci_dev));
6007 }
6008
6009 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
6010 {
6011 struct ipw2100_priv *priv = libipw_priv(dev);
6012 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
6013 }
6014
6015 static const struct ethtool_ops ipw2100_ethtool_ops = {
6016 .get_link = ipw2100_ethtool_get_link,
6017 .get_drvinfo = ipw_ethtool_get_drvinfo,
6018 };
6019
6020 static void ipw2100_hang_check(struct work_struct *work)
6021 {
6022 struct ipw2100_priv *priv =
6023 container_of(work, struct ipw2100_priv, hang_check.work);
6024 unsigned long flags;
6025 u32 rtc = 0xa5a5a5a5;
6026 u32 len = sizeof(rtc);
6027 int restart = 0;
6028
6029 spin_lock_irqsave(&priv->low_lock, flags);
6030
6031 if (priv->fatal_error != 0) {
6032 /* If fatal_error is set then we need to restart */
6033 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
6034 priv->net_dev->name);
6035
6036 restart = 1;
6037 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
6038 (rtc == priv->last_rtc)) {
6039 /* Check if firmware is hung */
6040 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
6041 priv->net_dev->name);
6042
6043 restart = 1;
6044 }
6045
6046 if (restart) {
6047 /* Kill timer */
6048 priv->stop_hang_check = 1;
6049 priv->hangs++;
6050
6051 /* Restart the NIC */
6052 schedule_reset(priv);
6053 }
6054
6055 priv->last_rtc = rtc;
6056
6057 if (!priv->stop_hang_check)
6058 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
6059
6060 spin_unlock_irqrestore(&priv->low_lock, flags);
6061 }
6062
6063 static void ipw2100_rf_kill(struct work_struct *work)
6064 {
6065 struct ipw2100_priv *priv =
6066 container_of(work, struct ipw2100_priv, rf_kill.work);
6067 unsigned long flags;
6068
6069 spin_lock_irqsave(&priv->low_lock, flags);
6070
6071 if (rf_kill_active(priv)) {
6072 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6073 if (!priv->stop_rf_kill)
6074 queue_delayed_work(priv->workqueue, &priv->rf_kill,
6075 round_jiffies_relative(HZ));
6076 goto exit_unlock;
6077 }
6078
6079 /* RF Kill is now disabled, so bring the device back up */
6080
6081 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6082 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6083 "device\n");
6084 schedule_reset(priv);
6085 } else
6086 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
6087 "enabled\n");
6088
6089 exit_unlock:
6090 spin_unlock_irqrestore(&priv->low_lock, flags);
6091 }
6092
6093 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6094
6095 static const struct net_device_ops ipw2100_netdev_ops = {
6096 .ndo_open = ipw2100_open,
6097 .ndo_stop = ipw2100_close,
6098 .ndo_start_xmit = libipw_xmit,
6099 .ndo_change_mtu = libipw_change_mtu,
6100 .ndo_init = ipw2100_net_init,
6101 .ndo_tx_timeout = ipw2100_tx_timeout,
6102 .ndo_set_mac_address = ipw2100_set_address,
6103 .ndo_validate_addr = eth_validate_addr,
6104 };
6105
6106 /* Look into using netdev destructor to shutdown ieee80211? */
6107
6108 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6109 void __iomem * base_addr,
6110 unsigned long mem_start,
6111 unsigned long mem_len)
6112 {
6113 struct ipw2100_priv *priv;
6114 struct net_device *dev;
6115
6116 dev = alloc_ieee80211(sizeof(struct ipw2100_priv), 0);
6117 if (!dev)
6118 return NULL;
6119 priv = libipw_priv(dev);
6120 priv->ieee = netdev_priv(dev);
6121 priv->pci_dev = pci_dev;
6122 priv->net_dev = dev;
6123
6124 priv->ieee->hard_start_xmit = ipw2100_tx;
6125 priv->ieee->set_security = shim__set_security;
6126
6127 priv->ieee->perfect_rssi = -20;
6128 priv->ieee->worst_rssi = -85;
6129
6130 dev->netdev_ops = &ipw2100_netdev_ops;
6131 dev->ethtool_ops = &ipw2100_ethtool_ops;
6132 dev->wireless_handlers = &ipw2100_wx_handler_def;
6133 priv->wireless_data.libipw = priv->ieee;
6134 dev->wireless_data = &priv->wireless_data;
6135 dev->watchdog_timeo = 3 * HZ;
6136 dev->irq = 0;
6137
6138 dev->base_addr = (unsigned long)base_addr;
6139 dev->mem_start = mem_start;
6140 dev->mem_end = dev->mem_start + mem_len - 1;
6141
6142 /* NOTE: We don't use the wireless_handlers hook
6143 * in dev as the system will start throwing WX requests
6144 * to us before we're actually initialized and it just
6145 * ends up causing problems. So, we just handle
6146 * the WX extensions through the ipw2100_ioctl interface */
6147
6148 /* memset() puts everything to 0, so we only have explicitly set
6149 * those values that need to be something else */
6150
6151 /* If power management is turned on, default to AUTO mode */
6152 priv->power_mode = IPW_POWER_AUTO;
6153
6154 #ifdef CONFIG_IPW2100_MONITOR
6155 priv->config |= CFG_CRC_CHECK;
6156 #endif
6157 priv->ieee->wpa_enabled = 0;
6158 priv->ieee->drop_unencrypted = 0;
6159 priv->ieee->privacy_invoked = 0;
6160 priv->ieee->ieee802_1x = 1;
6161
6162 /* Set module parameters */
6163 switch (network_mode) {
6164 case 1:
6165 priv->ieee->iw_mode = IW_MODE_ADHOC;
6166 break;
6167 #ifdef CONFIG_IPW2100_MONITOR
6168 case 2:
6169 priv->ieee->iw_mode = IW_MODE_MONITOR;
6170 break;
6171 #endif
6172 default:
6173 case 0:
6174 priv->ieee->iw_mode = IW_MODE_INFRA;
6175 break;
6176 }
6177
6178 if (disable == 1)
6179 priv->status |= STATUS_RF_KILL_SW;
6180
6181 if (channel != 0 &&
6182 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6183 priv->config |= CFG_STATIC_CHANNEL;
6184 priv->channel = channel;
6185 }
6186
6187 if (associate)
6188 priv->config |= CFG_ASSOCIATE;
6189
6190 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6191 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6192 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6193 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6194 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6195 priv->tx_power = IPW_TX_POWER_DEFAULT;
6196 priv->tx_rates = DEFAULT_TX_RATES;
6197
6198 strcpy(priv->nick, "ipw2100");
6199
6200 spin_lock_init(&priv->low_lock);
6201 mutex_init(&priv->action_mutex);
6202 mutex_init(&priv->adapter_mutex);
6203
6204 init_waitqueue_head(&priv->wait_command_queue);
6205
6206 netif_carrier_off(dev);
6207
6208 INIT_LIST_HEAD(&priv->msg_free_list);
6209 INIT_LIST_HEAD(&priv->msg_pend_list);
6210 INIT_STAT(&priv->msg_free_stat);
6211 INIT_STAT(&priv->msg_pend_stat);
6212
6213 INIT_LIST_HEAD(&priv->tx_free_list);
6214 INIT_LIST_HEAD(&priv->tx_pend_list);
6215 INIT_STAT(&priv->tx_free_stat);
6216 INIT_STAT(&priv->tx_pend_stat);
6217
6218 INIT_LIST_HEAD(&priv->fw_pend_list);
6219 INIT_STAT(&priv->fw_pend_stat);
6220
6221 priv->workqueue = create_workqueue(DRV_NAME);
6222
6223 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6224 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6225 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6226 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6227 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6228 INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6229 INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6230
6231 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6232 ipw2100_irq_tasklet, (unsigned long)priv);
6233
6234 /* NOTE: We do not start the deferred work for status checks yet */
6235 priv->stop_rf_kill = 1;
6236 priv->stop_hang_check = 1;
6237
6238 return dev;
6239 }
6240
6241 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6242 const struct pci_device_id *ent)
6243 {
6244 unsigned long mem_start, mem_len, mem_flags;
6245 void __iomem *base_addr = NULL;
6246 struct net_device *dev = NULL;
6247 struct ipw2100_priv *priv = NULL;
6248 int err = 0;
6249 int registered = 0;
6250 u32 val;
6251
6252 IPW_DEBUG_INFO("enter\n");
6253
6254 mem_start = pci_resource_start(pci_dev, 0);
6255 mem_len = pci_resource_len(pci_dev, 0);
6256 mem_flags = pci_resource_flags(pci_dev, 0);
6257
6258 if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6259 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6260 err = -ENODEV;
6261 goto fail;
6262 }
6263
6264 base_addr = ioremap_nocache(mem_start, mem_len);
6265 if (!base_addr) {
6266 printk(KERN_WARNING DRV_NAME
6267 "Error calling ioremap_nocache.\n");
6268 err = -EIO;
6269 goto fail;
6270 }
6271
6272 /* allocate and initialize our net_device */
6273 dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6274 if (!dev) {
6275 printk(KERN_WARNING DRV_NAME
6276 "Error calling ipw2100_alloc_device.\n");
6277 err = -ENOMEM;
6278 goto fail;
6279 }
6280
6281 /* set up PCI mappings for device */
6282 err = pci_enable_device(pci_dev);
6283 if (err) {
6284 printk(KERN_WARNING DRV_NAME
6285 "Error calling pci_enable_device.\n");
6286 return err;
6287 }
6288
6289 priv = libipw_priv(dev);
6290
6291 pci_set_master(pci_dev);
6292 pci_set_drvdata(pci_dev, priv);
6293
6294 err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6295 if (err) {
6296 printk(KERN_WARNING DRV_NAME
6297 "Error calling pci_set_dma_mask.\n");
6298 pci_disable_device(pci_dev);
6299 return err;
6300 }
6301
6302 err = pci_request_regions(pci_dev, DRV_NAME);
6303 if (err) {
6304 printk(KERN_WARNING DRV_NAME
6305 "Error calling pci_request_regions.\n");
6306 pci_disable_device(pci_dev);
6307 return err;
6308 }
6309
6310 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6311 * PCI Tx retries from interfering with C3 CPU state */
6312 pci_read_config_dword(pci_dev, 0x40, &val);
6313 if ((val & 0x0000ff00) != 0)
6314 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6315
6316 pci_set_power_state(pci_dev, PCI_D0);
6317
6318 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6319 printk(KERN_WARNING DRV_NAME
6320 "Device not found via register read.\n");
6321 err = -ENODEV;
6322 goto fail;
6323 }
6324
6325 SET_NETDEV_DEV(dev, &pci_dev->dev);
6326
6327 /* Force interrupts to be shut off on the device */
6328 priv->status |= STATUS_INT_ENABLED;
6329 ipw2100_disable_interrupts(priv);
6330
6331 /* Allocate and initialize the Tx/Rx queues and lists */
6332 if (ipw2100_queues_allocate(priv)) {
6333 printk(KERN_WARNING DRV_NAME
6334 "Error calling ipw2100_queues_allocate.\n");
6335 err = -ENOMEM;
6336 goto fail;
6337 }
6338 ipw2100_queues_initialize(priv);
6339
6340 err = request_irq(pci_dev->irq,
6341 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6342 if (err) {
6343 printk(KERN_WARNING DRV_NAME
6344 "Error calling request_irq: %d.\n", pci_dev->irq);
6345 goto fail;
6346 }
6347 dev->irq = pci_dev->irq;
6348
6349 IPW_DEBUG_INFO("Attempting to register device...\n");
6350
6351 printk(KERN_INFO DRV_NAME
6352 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6353
6354 /* Bring up the interface. Pre 0.46, after we registered the
6355 * network device we would call ipw2100_up. This introduced a race
6356 * condition with newer hotplug configurations (network was coming
6357 * up and making calls before the device was initialized).
6358 *
6359 * If we called ipw2100_up before we registered the device, then the
6360 * device name wasn't registered. So, we instead use the net_dev->init
6361 * member to call a function that then just turns and calls ipw2100_up.
6362 * net_dev->init is called after name allocation but before the
6363 * notifier chain is called */
6364 err = register_netdev(dev);
6365 if (err) {
6366 printk(KERN_WARNING DRV_NAME
6367 "Error calling register_netdev.\n");
6368 goto fail;
6369 }
6370
6371 mutex_lock(&priv->action_mutex);
6372 registered = 1;
6373
6374 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6375
6376 /* perform this after register_netdev so that dev->name is set */
6377 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6378 if (err)
6379 goto fail_unlock;
6380
6381 /* If the RF Kill switch is disabled, go ahead and complete the
6382 * startup sequence */
6383 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6384 /* Enable the adapter - sends HOST_COMPLETE */
6385 if (ipw2100_enable_adapter(priv)) {
6386 printk(KERN_WARNING DRV_NAME
6387 ": %s: failed in call to enable adapter.\n",
6388 priv->net_dev->name);
6389 ipw2100_hw_stop_adapter(priv);
6390 err = -EIO;
6391 goto fail_unlock;
6392 }
6393
6394 /* Start a scan . . . */
6395 ipw2100_set_scan_options(priv);
6396 ipw2100_start_scan(priv);
6397 }
6398
6399 IPW_DEBUG_INFO("exit\n");
6400
6401 priv->status |= STATUS_INITIALIZED;
6402
6403 mutex_unlock(&priv->action_mutex);
6404
6405 return 0;
6406
6407 fail_unlock:
6408 mutex_unlock(&priv->action_mutex);
6409
6410 fail:
6411 if (dev) {
6412 if (registered)
6413 unregister_netdev(dev);
6414
6415 ipw2100_hw_stop_adapter(priv);
6416
6417 ipw2100_disable_interrupts(priv);
6418
6419 if (dev->irq)
6420 free_irq(dev->irq, priv);
6421
6422 ipw2100_kill_workqueue(priv);
6423
6424 /* These are safe to call even if they weren't allocated */
6425 ipw2100_queues_free(priv);
6426 sysfs_remove_group(&pci_dev->dev.kobj,
6427 &ipw2100_attribute_group);
6428
6429 free_ieee80211(dev, 0);
6430 pci_set_drvdata(pci_dev, NULL);
6431 }
6432
6433 if (base_addr)
6434 iounmap(base_addr);
6435
6436 pci_release_regions(pci_dev);
6437 pci_disable_device(pci_dev);
6438
6439 return err;
6440 }
6441
6442 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6443 {
6444 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6445 struct net_device *dev;
6446
6447 if (priv) {
6448 mutex_lock(&priv->action_mutex);
6449
6450 priv->status &= ~STATUS_INITIALIZED;
6451
6452 dev = priv->net_dev;
6453 sysfs_remove_group(&pci_dev->dev.kobj,
6454 &ipw2100_attribute_group);
6455
6456 #ifdef CONFIG_PM
6457 if (ipw2100_firmware.version)
6458 ipw2100_release_firmware(priv, &ipw2100_firmware);
6459 #endif
6460 /* Take down the hardware */
6461 ipw2100_down(priv);
6462
6463 /* Release the mutex so that the network subsystem can
6464 * complete any needed calls into the driver... */
6465 mutex_unlock(&priv->action_mutex);
6466
6467 /* Unregister the device first - this results in close()
6468 * being called if the device is open. If we free storage
6469 * first, then close() will crash. */
6470 unregister_netdev(dev);
6471
6472 /* ipw2100_down will ensure that there is no more pending work
6473 * in the workqueue's, so we can safely remove them now. */
6474 ipw2100_kill_workqueue(priv);
6475
6476 ipw2100_queues_free(priv);
6477
6478 /* Free potential debugging firmware snapshot */
6479 ipw2100_snapshot_free(priv);
6480
6481 if (dev->irq)
6482 free_irq(dev->irq, priv);
6483
6484 if (dev->base_addr)
6485 iounmap((void __iomem *)dev->base_addr);
6486
6487 /* wiphy_unregister needs to be here, before free_ieee80211 */
6488 wiphy_unregister(priv->ieee->wdev.wiphy);
6489 kfree(priv->ieee->bg_band.channels);
6490 free_ieee80211(dev, 0);
6491 }
6492
6493 pci_release_regions(pci_dev);
6494 pci_disable_device(pci_dev);
6495
6496 IPW_DEBUG_INFO("exit\n");
6497 }
6498
6499 #ifdef CONFIG_PM
6500 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6501 {
6502 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6503 struct net_device *dev = priv->net_dev;
6504
6505 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6506
6507 mutex_lock(&priv->action_mutex);
6508 if (priv->status & STATUS_INITIALIZED) {
6509 /* Take down the device; powers it off, etc. */
6510 ipw2100_down(priv);
6511 }
6512
6513 /* Remove the PRESENT state of the device */
6514 netif_device_detach(dev);
6515
6516 pci_save_state(pci_dev);
6517 pci_disable_device(pci_dev);
6518 pci_set_power_state(pci_dev, PCI_D3hot);
6519
6520 priv->suspend_at = get_seconds();
6521
6522 mutex_unlock(&priv->action_mutex);
6523
6524 return 0;
6525 }
6526
6527 static int ipw2100_resume(struct pci_dev *pci_dev)
6528 {
6529 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6530 struct net_device *dev = priv->net_dev;
6531 int err;
6532 u32 val;
6533
6534 if (IPW2100_PM_DISABLED)
6535 return 0;
6536
6537 mutex_lock(&priv->action_mutex);
6538
6539 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6540
6541 pci_set_power_state(pci_dev, PCI_D0);
6542 err = pci_enable_device(pci_dev);
6543 if (err) {
6544 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6545 dev->name);
6546 mutex_unlock(&priv->action_mutex);
6547 return err;
6548 }
6549 pci_restore_state(pci_dev);
6550
6551 /*
6552 * Suspend/Resume resets the PCI configuration space, so we have to
6553 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6554 * from interfering with C3 CPU state. pci_restore_state won't help
6555 * here since it only restores the first 64 bytes pci config header.
6556 */
6557 pci_read_config_dword(pci_dev, 0x40, &val);
6558 if ((val & 0x0000ff00) != 0)
6559 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6560
6561 /* Set the device back into the PRESENT state; this will also wake
6562 * the queue of needed */
6563 netif_device_attach(dev);
6564
6565 priv->suspend_time = get_seconds() - priv->suspend_at;
6566
6567 /* Bring the device back up */
6568 if (!(priv->status & STATUS_RF_KILL_SW))
6569 ipw2100_up(priv, 0);
6570
6571 mutex_unlock(&priv->action_mutex);
6572
6573 return 0;
6574 }
6575 #endif
6576
6577 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6578 {
6579 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6580
6581 /* Take down the device; powers it off, etc. */
6582 ipw2100_down(priv);
6583
6584 pci_disable_device(pci_dev);
6585 }
6586
6587 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6588
6589 static DEFINE_PCI_DEVICE_TABLE(ipw2100_pci_id_table) = {
6590 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6591 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6592 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6593 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6594 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6595 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6596 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6597 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6598 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6599 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6600 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6601 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6602 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6603
6604 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6605 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6606 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6607 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6608 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6609
6610 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6611 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6612 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6613 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6614 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6615 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6616 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6617
6618 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6619
6620 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6621 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6622 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6623 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6624 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6625 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6626 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6627
6628 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6629 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6630 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6631 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6632 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6633 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6634
6635 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6636 {0,},
6637 };
6638
6639 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6640
6641 static struct pci_driver ipw2100_pci_driver = {
6642 .name = DRV_NAME,
6643 .id_table = ipw2100_pci_id_table,
6644 .probe = ipw2100_pci_init_one,
6645 .remove = __devexit_p(ipw2100_pci_remove_one),
6646 #ifdef CONFIG_PM
6647 .suspend = ipw2100_suspend,
6648 .resume = ipw2100_resume,
6649 #endif
6650 .shutdown = ipw2100_shutdown,
6651 };
6652
6653 /**
6654 * Initialize the ipw2100 driver/module
6655 *
6656 * @returns 0 if ok, < 0 errno node con error.
6657 *
6658 * Note: we cannot init the /proc stuff until the PCI driver is there,
6659 * or we risk an unlikely race condition on someone accessing
6660 * uninitialized data in the PCI dev struct through /proc.
6661 */
6662 static int __init ipw2100_init(void)
6663 {
6664 int ret;
6665
6666 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6667 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6668
6669 ret = pci_register_driver(&ipw2100_pci_driver);
6670 if (ret)
6671 goto out;
6672
6673 ipw2100_pm_qos_req = pm_qos_add_request(PM_QOS_CPU_DMA_LATENCY,
6674 PM_QOS_DEFAULT_VALUE);
6675 #ifdef CONFIG_IPW2100_DEBUG
6676 ipw2100_debug_level = debug;
6677 ret = driver_create_file(&ipw2100_pci_driver.driver,
6678 &driver_attr_debug_level);
6679 #endif
6680
6681 out:
6682 return ret;
6683 }
6684
6685 /**
6686 * Cleanup ipw2100 driver registration
6687 */
6688 static void __exit ipw2100_exit(void)
6689 {
6690 /* FIXME: IPG: check that we have no instances of the devices open */
6691 #ifdef CONFIG_IPW2100_DEBUG
6692 driver_remove_file(&ipw2100_pci_driver.driver,
6693 &driver_attr_debug_level);
6694 #endif
6695 pci_unregister_driver(&ipw2100_pci_driver);
6696 pm_qos_remove_request(ipw2100_pm_qos_req);
6697 }
6698
6699 module_init(ipw2100_init);
6700 module_exit(ipw2100_exit);
6701
6702 static int ipw2100_wx_get_name(struct net_device *dev,
6703 struct iw_request_info *info,
6704 union iwreq_data *wrqu, char *extra)
6705 {
6706 /*
6707 * This can be called at any time. No action lock required
6708 */
6709
6710 struct ipw2100_priv *priv = libipw_priv(dev);
6711 if (!(priv->status & STATUS_ASSOCIATED))
6712 strcpy(wrqu->name, "unassociated");
6713 else
6714 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6715
6716 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6717 return 0;
6718 }
6719
6720 static int ipw2100_wx_set_freq(struct net_device *dev,
6721 struct iw_request_info *info,
6722 union iwreq_data *wrqu, char *extra)
6723 {
6724 struct ipw2100_priv *priv = libipw_priv(dev);
6725 struct iw_freq *fwrq = &wrqu->freq;
6726 int err = 0;
6727
6728 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6729 return -EOPNOTSUPP;
6730
6731 mutex_lock(&priv->action_mutex);
6732 if (!(priv->status & STATUS_INITIALIZED)) {
6733 err = -EIO;
6734 goto done;
6735 }
6736
6737 /* if setting by freq convert to channel */
6738 if (fwrq->e == 1) {
6739 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6740 int f = fwrq->m / 100000;
6741 int c = 0;
6742
6743 while ((c < REG_MAX_CHANNEL) &&
6744 (f != ipw2100_frequencies[c]))
6745 c++;
6746
6747 /* hack to fall through */
6748 fwrq->e = 0;
6749 fwrq->m = c + 1;
6750 }
6751 }
6752
6753 if (fwrq->e > 0 || fwrq->m > 1000) {
6754 err = -EOPNOTSUPP;
6755 goto done;
6756 } else { /* Set the channel */
6757 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6758 err = ipw2100_set_channel(priv, fwrq->m, 0);
6759 }
6760
6761 done:
6762 mutex_unlock(&priv->action_mutex);
6763 return err;
6764 }
6765
6766 static int ipw2100_wx_get_freq(struct net_device *dev,
6767 struct iw_request_info *info,
6768 union iwreq_data *wrqu, char *extra)
6769 {
6770 /*
6771 * This can be called at any time. No action lock required
6772 */
6773
6774 struct ipw2100_priv *priv = libipw_priv(dev);
6775
6776 wrqu->freq.e = 0;
6777
6778 /* If we are associated, trying to associate, or have a statically
6779 * configured CHANNEL then return that; otherwise return ANY */
6780 if (priv->config & CFG_STATIC_CHANNEL ||
6781 priv->status & STATUS_ASSOCIATED)
6782 wrqu->freq.m = priv->channel;
6783 else
6784 wrqu->freq.m = 0;
6785
6786 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6787 return 0;
6788
6789 }
6790
6791 static int ipw2100_wx_set_mode(struct net_device *dev,
6792 struct iw_request_info *info,
6793 union iwreq_data *wrqu, char *extra)
6794 {
6795 struct ipw2100_priv *priv = libipw_priv(dev);
6796 int err = 0;
6797
6798 IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6799
6800 if (wrqu->mode == priv->ieee->iw_mode)
6801 return 0;
6802
6803 mutex_lock(&priv->action_mutex);
6804 if (!(priv->status & STATUS_INITIALIZED)) {
6805 err = -EIO;
6806 goto done;
6807 }
6808
6809 switch (wrqu->mode) {
6810 #ifdef CONFIG_IPW2100_MONITOR
6811 case IW_MODE_MONITOR:
6812 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6813 break;
6814 #endif /* CONFIG_IPW2100_MONITOR */
6815 case IW_MODE_ADHOC:
6816 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6817 break;
6818 case IW_MODE_INFRA:
6819 case IW_MODE_AUTO:
6820 default:
6821 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6822 break;
6823 }
6824
6825 done:
6826 mutex_unlock(&priv->action_mutex);
6827 return err;
6828 }
6829
6830 static int ipw2100_wx_get_mode(struct net_device *dev,
6831 struct iw_request_info *info,
6832 union iwreq_data *wrqu, char *extra)
6833 {
6834 /*
6835 * This can be called at any time. No action lock required
6836 */
6837
6838 struct ipw2100_priv *priv = libipw_priv(dev);
6839
6840 wrqu->mode = priv->ieee->iw_mode;
6841 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6842
6843 return 0;
6844 }
6845
6846 #define POWER_MODES 5
6847
6848 /* Values are in microsecond */
6849 static const s32 timeout_duration[POWER_MODES] = {
6850 350000,
6851 250000,
6852 75000,
6853 37000,
6854 25000,
6855 };
6856
6857 static const s32 period_duration[POWER_MODES] = {
6858 400000,
6859 700000,
6860 1000000,
6861 1000000,
6862 1000000
6863 };
6864
6865 static int ipw2100_wx_get_range(struct net_device *dev,
6866 struct iw_request_info *info,
6867 union iwreq_data *wrqu, char *extra)
6868 {
6869 /*
6870 * This can be called at any time. No action lock required
6871 */
6872
6873 struct ipw2100_priv *priv = libipw_priv(dev);
6874 struct iw_range *range = (struct iw_range *)extra;
6875 u16 val;
6876 int i, level;
6877
6878 wrqu->data.length = sizeof(*range);
6879 memset(range, 0, sizeof(*range));
6880
6881 /* Let's try to keep this struct in the same order as in
6882 * linux/include/wireless.h
6883 */
6884
6885 /* TODO: See what values we can set, and remove the ones we can't
6886 * set, or fill them with some default data.
6887 */
6888
6889 /* ~5 Mb/s real (802.11b) */
6890 range->throughput = 5 * 1000 * 1000;
6891
6892 // range->sensitivity; /* signal level threshold range */
6893
6894 range->max_qual.qual = 100;
6895 /* TODO: Find real max RSSI and stick here */
6896 range->max_qual.level = 0;
6897 range->max_qual.noise = 0;
6898 range->max_qual.updated = 7; /* Updated all three */
6899
6900 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6901 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6902 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6903 range->avg_qual.noise = 0;
6904 range->avg_qual.updated = 7; /* Updated all three */
6905
6906 range->num_bitrates = RATE_COUNT;
6907
6908 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6909 range->bitrate[i] = ipw2100_rates_11b[i];
6910 }
6911
6912 range->min_rts = MIN_RTS_THRESHOLD;
6913 range->max_rts = MAX_RTS_THRESHOLD;
6914 range->min_frag = MIN_FRAG_THRESHOLD;
6915 range->max_frag = MAX_FRAG_THRESHOLD;
6916
6917 range->min_pmp = period_duration[0]; /* Minimal PM period */
6918 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6919 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6920 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6921
6922 /* How to decode max/min PM period */
6923 range->pmp_flags = IW_POWER_PERIOD;
6924 /* How to decode max/min PM period */
6925 range->pmt_flags = IW_POWER_TIMEOUT;
6926 /* What PM options are supported */
6927 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6928
6929 range->encoding_size[0] = 5;
6930 range->encoding_size[1] = 13; /* Different token sizes */
6931 range->num_encoding_sizes = 2; /* Number of entry in the list */
6932 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6933 // range->encoding_login_index; /* token index for login token */
6934
6935 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6936 range->txpower_capa = IW_TXPOW_DBM;
6937 range->num_txpower = IW_MAX_TXPOWER;
6938 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6939 i < IW_MAX_TXPOWER;
6940 i++, level -=
6941 ((IPW_TX_POWER_MAX_DBM -
6942 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6943 range->txpower[i] = level / 16;
6944 } else {
6945 range->txpower_capa = 0;
6946 range->num_txpower = 0;
6947 }
6948
6949 /* Set the Wireless Extension versions */
6950 range->we_version_compiled = WIRELESS_EXT;
6951 range->we_version_source = 18;
6952
6953 // range->retry_capa; /* What retry options are supported */
6954 // range->retry_flags; /* How to decode max/min retry limit */
6955 // range->r_time_flags; /* How to decode max/min retry life */
6956 // range->min_retry; /* Minimal number of retries */
6957 // range->max_retry; /* Maximal number of retries */
6958 // range->min_r_time; /* Minimal retry lifetime */
6959 // range->max_r_time; /* Maximal retry lifetime */
6960
6961 range->num_channels = FREQ_COUNT;
6962
6963 val = 0;
6964 for (i = 0; i < FREQ_COUNT; i++) {
6965 // TODO: Include only legal frequencies for some countries
6966 // if (local->channel_mask & (1 << i)) {
6967 range->freq[val].i = i + 1;
6968 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6969 range->freq[val].e = 1;
6970 val++;
6971 // }
6972 if (val == IW_MAX_FREQUENCIES)
6973 break;
6974 }
6975 range->num_frequency = val;
6976
6977 /* Event capability (kernel + driver) */
6978 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6979 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6980 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6981
6982 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6983 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6984
6985 IPW_DEBUG_WX("GET Range\n");
6986
6987 return 0;
6988 }
6989
6990 static int ipw2100_wx_set_wap(struct net_device *dev,
6991 struct iw_request_info *info,
6992 union iwreq_data *wrqu, char *extra)
6993 {
6994 struct ipw2100_priv *priv = libipw_priv(dev);
6995 int err = 0;
6996
6997 static const unsigned char any[] = {
6998 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6999 };
7000 static const unsigned char off[] = {
7001 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
7002 };
7003
7004 // sanity checks
7005 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
7006 return -EINVAL;
7007
7008 mutex_lock(&priv->action_mutex);
7009 if (!(priv->status & STATUS_INITIALIZED)) {
7010 err = -EIO;
7011 goto done;
7012 }
7013
7014 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
7015 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
7016 /* we disable mandatory BSSID association */
7017 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
7018 priv->config &= ~CFG_STATIC_BSSID;
7019 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
7020 goto done;
7021 }
7022
7023 priv->config |= CFG_STATIC_BSSID;
7024 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
7025
7026 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
7027
7028 IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
7029
7030 done:
7031 mutex_unlock(&priv->action_mutex);
7032 return err;
7033 }
7034
7035 static int ipw2100_wx_get_wap(struct net_device *dev,
7036 struct iw_request_info *info,
7037 union iwreq_data *wrqu, char *extra)
7038 {
7039 /*
7040 * This can be called at any time. No action lock required
7041 */
7042
7043 struct ipw2100_priv *priv = libipw_priv(dev);
7044
7045 /* If we are associated, trying to associate, or have a statically
7046 * configured BSSID then return that; otherwise return ANY */
7047 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
7048 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
7049 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
7050 } else
7051 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
7052
7053 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
7054 return 0;
7055 }
7056
7057 static int ipw2100_wx_set_essid(struct net_device *dev,
7058 struct iw_request_info *info,
7059 union iwreq_data *wrqu, char *extra)
7060 {
7061 struct ipw2100_priv *priv = libipw_priv(dev);
7062 char *essid = ""; /* ANY */
7063 int length = 0;
7064 int err = 0;
7065 DECLARE_SSID_BUF(ssid);
7066
7067 mutex_lock(&priv->action_mutex);
7068 if (!(priv->status & STATUS_INITIALIZED)) {
7069 err = -EIO;
7070 goto done;
7071 }
7072
7073 if (wrqu->essid.flags && wrqu->essid.length) {
7074 length = wrqu->essid.length;
7075 essid = extra;
7076 }
7077
7078 if (length == 0) {
7079 IPW_DEBUG_WX("Setting ESSID to ANY\n");
7080 priv->config &= ~CFG_STATIC_ESSID;
7081 err = ipw2100_set_essid(priv, NULL, 0, 0);
7082 goto done;
7083 }
7084
7085 length = min(length, IW_ESSID_MAX_SIZE);
7086
7087 priv->config |= CFG_STATIC_ESSID;
7088
7089 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7090 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7091 err = 0;
7092 goto done;
7093 }
7094
7095 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
7096 print_ssid(ssid, essid, length), length);
7097
7098 priv->essid_len = length;
7099 memcpy(priv->essid, essid, priv->essid_len);
7100
7101 err = ipw2100_set_essid(priv, essid, length, 0);
7102
7103 done:
7104 mutex_unlock(&priv->action_mutex);
7105 return err;
7106 }
7107
7108 static int ipw2100_wx_get_essid(struct net_device *dev,
7109 struct iw_request_info *info,
7110 union iwreq_data *wrqu, char *extra)
7111 {
7112 /*
7113 * This can be called at any time. No action lock required
7114 */
7115
7116 struct ipw2100_priv *priv = libipw_priv(dev);
7117 DECLARE_SSID_BUF(ssid);
7118
7119 /* If we are associated, trying to associate, or have a statically
7120 * configured ESSID then return that; otherwise return ANY */
7121 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7122 IPW_DEBUG_WX("Getting essid: '%s'\n",
7123 print_ssid(ssid, priv->essid, priv->essid_len));
7124 memcpy(extra, priv->essid, priv->essid_len);
7125 wrqu->essid.length = priv->essid_len;
7126 wrqu->essid.flags = 1; /* active */
7127 } else {
7128 IPW_DEBUG_WX("Getting essid: ANY\n");
7129 wrqu->essid.length = 0;
7130 wrqu->essid.flags = 0; /* active */
7131 }
7132
7133 return 0;
7134 }
7135
7136 static int ipw2100_wx_set_nick(struct net_device *dev,
7137 struct iw_request_info *info,
7138 union iwreq_data *wrqu, char *extra)
7139 {
7140 /*
7141 * This can be called at any time. No action lock required
7142 */
7143
7144 struct ipw2100_priv *priv = libipw_priv(dev);
7145
7146 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7147 return -E2BIG;
7148
7149 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7150 memset(priv->nick, 0, sizeof(priv->nick));
7151 memcpy(priv->nick, extra, wrqu->data.length);
7152
7153 IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7154
7155 return 0;
7156 }
7157
7158 static int ipw2100_wx_get_nick(struct net_device *dev,
7159 struct iw_request_info *info,
7160 union iwreq_data *wrqu, char *extra)
7161 {
7162 /*
7163 * This can be called at any time. No action lock required
7164 */
7165
7166 struct ipw2100_priv *priv = libipw_priv(dev);
7167
7168 wrqu->data.length = strlen(priv->nick);
7169 memcpy(extra, priv->nick, wrqu->data.length);
7170 wrqu->data.flags = 1; /* active */
7171
7172 IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7173
7174 return 0;
7175 }
7176
7177 static int ipw2100_wx_set_rate(struct net_device *dev,
7178 struct iw_request_info *info,
7179 union iwreq_data *wrqu, char *extra)
7180 {
7181 struct ipw2100_priv *priv = libipw_priv(dev);
7182 u32 target_rate = wrqu->bitrate.value;
7183 u32 rate;
7184 int err = 0;
7185
7186 mutex_lock(&priv->action_mutex);
7187 if (!(priv->status & STATUS_INITIALIZED)) {
7188 err = -EIO;
7189 goto done;
7190 }
7191
7192 rate = 0;
7193
7194 if (target_rate == 1000000 ||
7195 (!wrqu->bitrate.fixed && target_rate > 1000000))
7196 rate |= TX_RATE_1_MBIT;
7197 if (target_rate == 2000000 ||
7198 (!wrqu->bitrate.fixed && target_rate > 2000000))
7199 rate |= TX_RATE_2_MBIT;
7200 if (target_rate == 5500000 ||
7201 (!wrqu->bitrate.fixed && target_rate > 5500000))
7202 rate |= TX_RATE_5_5_MBIT;
7203 if (target_rate == 11000000 ||
7204 (!wrqu->bitrate.fixed && target_rate > 11000000))
7205 rate |= TX_RATE_11_MBIT;
7206 if (rate == 0)
7207 rate = DEFAULT_TX_RATES;
7208
7209 err = ipw2100_set_tx_rates(priv, rate, 0);
7210
7211 IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7212 done:
7213 mutex_unlock(&priv->action_mutex);
7214 return err;
7215 }
7216
7217 static int ipw2100_wx_get_rate(struct net_device *dev,
7218 struct iw_request_info *info,
7219 union iwreq_data *wrqu, char *extra)
7220 {
7221 struct ipw2100_priv *priv = libipw_priv(dev);
7222 int val;
7223 unsigned int len = sizeof(val);
7224 int err = 0;
7225
7226 if (!(priv->status & STATUS_ENABLED) ||
7227 priv->status & STATUS_RF_KILL_MASK ||
7228 !(priv->status & STATUS_ASSOCIATED)) {
7229 wrqu->bitrate.value = 0;
7230 return 0;
7231 }
7232
7233 mutex_lock(&priv->action_mutex);
7234 if (!(priv->status & STATUS_INITIALIZED)) {
7235 err = -EIO;
7236 goto done;
7237 }
7238
7239 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7240 if (err) {
7241 IPW_DEBUG_WX("failed querying ordinals.\n");
7242 goto done;
7243 }
7244
7245 switch (val & TX_RATE_MASK) {
7246 case TX_RATE_1_MBIT:
7247 wrqu->bitrate.value = 1000000;
7248 break;
7249 case TX_RATE_2_MBIT:
7250 wrqu->bitrate.value = 2000000;
7251 break;
7252 case TX_RATE_5_5_MBIT:
7253 wrqu->bitrate.value = 5500000;
7254 break;
7255 case TX_RATE_11_MBIT:
7256 wrqu->bitrate.value = 11000000;
7257 break;
7258 default:
7259 wrqu->bitrate.value = 0;
7260 }
7261
7262 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7263
7264 done:
7265 mutex_unlock(&priv->action_mutex);
7266 return err;
7267 }
7268
7269 static int ipw2100_wx_set_rts(struct net_device *dev,
7270 struct iw_request_info *info,
7271 union iwreq_data *wrqu, char *extra)
7272 {
7273 struct ipw2100_priv *priv = libipw_priv(dev);
7274 int value, err;
7275
7276 /* Auto RTS not yet supported */
7277 if (wrqu->rts.fixed == 0)
7278 return -EINVAL;
7279
7280 mutex_lock(&priv->action_mutex);
7281 if (!(priv->status & STATUS_INITIALIZED)) {
7282 err = -EIO;
7283 goto done;
7284 }
7285
7286 if (wrqu->rts.disabled)
7287 value = priv->rts_threshold | RTS_DISABLED;
7288 else {
7289 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7290 err = -EINVAL;
7291 goto done;
7292 }
7293 value = wrqu->rts.value;
7294 }
7295
7296 err = ipw2100_set_rts_threshold(priv, value);
7297
7298 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7299 done:
7300 mutex_unlock(&priv->action_mutex);
7301 return err;
7302 }
7303
7304 static int ipw2100_wx_get_rts(struct net_device *dev,
7305 struct iw_request_info *info,
7306 union iwreq_data *wrqu, char *extra)
7307 {
7308 /*
7309 * This can be called at any time. No action lock required
7310 */
7311
7312 struct ipw2100_priv *priv = libipw_priv(dev);
7313
7314 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7315 wrqu->rts.fixed = 1; /* no auto select */
7316
7317 /* If RTS is set to the default value, then it is disabled */
7318 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7319
7320 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7321
7322 return 0;
7323 }
7324
7325 static int ipw2100_wx_set_txpow(struct net_device *dev,
7326 struct iw_request_info *info,
7327 union iwreq_data *wrqu, char *extra)
7328 {
7329 struct ipw2100_priv *priv = libipw_priv(dev);
7330 int err = 0, value;
7331
7332 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7333 return -EINPROGRESS;
7334
7335 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7336 return 0;
7337
7338 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7339 return -EINVAL;
7340
7341 if (wrqu->txpower.fixed == 0)
7342 value = IPW_TX_POWER_DEFAULT;
7343 else {
7344 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7345 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7346 return -EINVAL;
7347
7348 value = wrqu->txpower.value;
7349 }
7350
7351 mutex_lock(&priv->action_mutex);
7352 if (!(priv->status & STATUS_INITIALIZED)) {
7353 err = -EIO;
7354 goto done;
7355 }
7356
7357 err = ipw2100_set_tx_power(priv, value);
7358
7359 IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7360
7361 done:
7362 mutex_unlock(&priv->action_mutex);
7363 return err;
7364 }
7365
7366 static int ipw2100_wx_get_txpow(struct net_device *dev,
7367 struct iw_request_info *info,
7368 union iwreq_data *wrqu, char *extra)
7369 {
7370 /*
7371 * This can be called at any time. No action lock required
7372 */
7373
7374 struct ipw2100_priv *priv = libipw_priv(dev);
7375
7376 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7377
7378 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7379 wrqu->txpower.fixed = 0;
7380 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7381 } else {
7382 wrqu->txpower.fixed = 1;
7383 wrqu->txpower.value = priv->tx_power;
7384 }
7385
7386 wrqu->txpower.flags = IW_TXPOW_DBM;
7387
7388 IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7389
7390 return 0;
7391 }
7392
7393 static int ipw2100_wx_set_frag(struct net_device *dev,
7394 struct iw_request_info *info,
7395 union iwreq_data *wrqu, char *extra)
7396 {
7397 /*
7398 * This can be called at any time. No action lock required
7399 */
7400
7401 struct ipw2100_priv *priv = libipw_priv(dev);
7402
7403 if (!wrqu->frag.fixed)
7404 return -EINVAL;
7405
7406 if (wrqu->frag.disabled) {
7407 priv->frag_threshold |= FRAG_DISABLED;
7408 priv->ieee->fts = DEFAULT_FTS;
7409 } else {
7410 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7411 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7412 return -EINVAL;
7413
7414 priv->ieee->fts = wrqu->frag.value & ~0x1;
7415 priv->frag_threshold = priv->ieee->fts;
7416 }
7417
7418 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7419
7420 return 0;
7421 }
7422
7423 static int ipw2100_wx_get_frag(struct net_device *dev,
7424 struct iw_request_info *info,
7425 union iwreq_data *wrqu, char *extra)
7426 {
7427 /*
7428 * This can be called at any time. No action lock required
7429 */
7430
7431 struct ipw2100_priv *priv = libipw_priv(dev);
7432 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7433 wrqu->frag.fixed = 0; /* no auto select */
7434 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7435
7436 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7437
7438 return 0;
7439 }
7440
7441 static int ipw2100_wx_set_retry(struct net_device *dev,
7442 struct iw_request_info *info,
7443 union iwreq_data *wrqu, char *extra)
7444 {
7445 struct ipw2100_priv *priv = libipw_priv(dev);
7446 int err = 0;
7447
7448 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7449 return -EINVAL;
7450
7451 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7452 return 0;
7453
7454 mutex_lock(&priv->action_mutex);
7455 if (!(priv->status & STATUS_INITIALIZED)) {
7456 err = -EIO;
7457 goto done;
7458 }
7459
7460 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7461 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7462 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7463 wrqu->retry.value);
7464 goto done;
7465 }
7466
7467 if (wrqu->retry.flags & IW_RETRY_LONG) {
7468 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7469 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7470 wrqu->retry.value);
7471 goto done;
7472 }
7473
7474 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7475 if (!err)
7476 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7477
7478 IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7479
7480 done:
7481 mutex_unlock(&priv->action_mutex);
7482 return err;
7483 }
7484
7485 static int ipw2100_wx_get_retry(struct net_device *dev,
7486 struct iw_request_info *info,
7487 union iwreq_data *wrqu, char *extra)
7488 {
7489 /*
7490 * This can be called at any time. No action lock required
7491 */
7492
7493 struct ipw2100_priv *priv = libipw_priv(dev);
7494
7495 wrqu->retry.disabled = 0; /* can't be disabled */
7496
7497 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7498 return -EINVAL;
7499
7500 if (wrqu->retry.flags & IW_RETRY_LONG) {
7501 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7502 wrqu->retry.value = priv->long_retry_limit;
7503 } else {
7504 wrqu->retry.flags =
7505 (priv->short_retry_limit !=
7506 priv->long_retry_limit) ?
7507 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7508
7509 wrqu->retry.value = priv->short_retry_limit;
7510 }
7511
7512 IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7513
7514 return 0;
7515 }
7516
7517 static int ipw2100_wx_set_scan(struct net_device *dev,
7518 struct iw_request_info *info,
7519 union iwreq_data *wrqu, char *extra)
7520 {
7521 struct ipw2100_priv *priv = libipw_priv(dev);
7522 int err = 0;
7523
7524 mutex_lock(&priv->action_mutex);
7525 if (!(priv->status & STATUS_INITIALIZED)) {
7526 err = -EIO;
7527 goto done;
7528 }
7529
7530 IPW_DEBUG_WX("Initiating scan...\n");
7531
7532 priv->user_requested_scan = 1;
7533 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7534 IPW_DEBUG_WX("Start scan failed.\n");
7535
7536 /* TODO: Mark a scan as pending so when hardware initialized
7537 * a scan starts */
7538 }
7539
7540 done:
7541 mutex_unlock(&priv->action_mutex);
7542 return err;
7543 }
7544
7545 static int ipw2100_wx_get_scan(struct net_device *dev,
7546 struct iw_request_info *info,
7547 union iwreq_data *wrqu, char *extra)
7548 {
7549 /*
7550 * This can be called at any time. No action lock required
7551 */
7552
7553 struct ipw2100_priv *priv = libipw_priv(dev);
7554 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7555 }
7556
7557 /*
7558 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7559 */
7560 static int ipw2100_wx_set_encode(struct net_device *dev,
7561 struct iw_request_info *info,
7562 union iwreq_data *wrqu, char *key)
7563 {
7564 /*
7565 * No check of STATUS_INITIALIZED required
7566 */
7567
7568 struct ipw2100_priv *priv = libipw_priv(dev);
7569 return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7570 }
7571
7572 static int ipw2100_wx_get_encode(struct net_device *dev,
7573 struct iw_request_info *info,
7574 union iwreq_data *wrqu, char *key)
7575 {
7576 /*
7577 * This can be called at any time. No action lock required
7578 */
7579
7580 struct ipw2100_priv *priv = libipw_priv(dev);
7581 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7582 }
7583
7584 static int ipw2100_wx_set_power(struct net_device *dev,
7585 struct iw_request_info *info,
7586 union iwreq_data *wrqu, char *extra)
7587 {
7588 struct ipw2100_priv *priv = libipw_priv(dev);
7589 int err = 0;
7590
7591 mutex_lock(&priv->action_mutex);
7592 if (!(priv->status & STATUS_INITIALIZED)) {
7593 err = -EIO;
7594 goto done;
7595 }
7596
7597 if (wrqu->power.disabled) {
7598 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7599 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7600 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7601 goto done;
7602 }
7603
7604 switch (wrqu->power.flags & IW_POWER_MODE) {
7605 case IW_POWER_ON: /* If not specified */
7606 case IW_POWER_MODE: /* If set all mask */
7607 case IW_POWER_ALL_R: /* If explicitly state all */
7608 break;
7609 default: /* Otherwise we don't support it */
7610 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7611 wrqu->power.flags);
7612 err = -EOPNOTSUPP;
7613 goto done;
7614 }
7615
7616 /* If the user hasn't specified a power management mode yet, default
7617 * to BATTERY */
7618 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7619 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7620
7621 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7622
7623 done:
7624 mutex_unlock(&priv->action_mutex);
7625 return err;
7626
7627 }
7628
7629 static int ipw2100_wx_get_power(struct net_device *dev,
7630 struct iw_request_info *info,
7631 union iwreq_data *wrqu, char *extra)
7632 {
7633 /*
7634 * This can be called at any time. No action lock required
7635 */
7636
7637 struct ipw2100_priv *priv = libipw_priv(dev);
7638
7639 if (!(priv->power_mode & IPW_POWER_ENABLED))
7640 wrqu->power.disabled = 1;
7641 else {
7642 wrqu->power.disabled = 0;
7643 wrqu->power.flags = 0;
7644 }
7645
7646 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7647
7648 return 0;
7649 }
7650
7651 /*
7652 * WE-18 WPA support
7653 */
7654
7655 /* SIOCSIWGENIE */
7656 static int ipw2100_wx_set_genie(struct net_device *dev,
7657 struct iw_request_info *info,
7658 union iwreq_data *wrqu, char *extra)
7659 {
7660
7661 struct ipw2100_priv *priv = libipw_priv(dev);
7662 struct libipw_device *ieee = priv->ieee;
7663 u8 *buf;
7664
7665 if (!ieee->wpa_enabled)
7666 return -EOPNOTSUPP;
7667
7668 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7669 (wrqu->data.length && extra == NULL))
7670 return -EINVAL;
7671
7672 if (wrqu->data.length) {
7673 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7674 if (buf == NULL)
7675 return -ENOMEM;
7676
7677 kfree(ieee->wpa_ie);
7678 ieee->wpa_ie = buf;
7679 ieee->wpa_ie_len = wrqu->data.length;
7680 } else {
7681 kfree(ieee->wpa_ie);
7682 ieee->wpa_ie = NULL;
7683 ieee->wpa_ie_len = 0;
7684 }
7685
7686 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7687
7688 return 0;
7689 }
7690
7691 /* SIOCGIWGENIE */
7692 static int ipw2100_wx_get_genie(struct net_device *dev,
7693 struct iw_request_info *info,
7694 union iwreq_data *wrqu, char *extra)
7695 {
7696 struct ipw2100_priv *priv = libipw_priv(dev);
7697 struct libipw_device *ieee = priv->ieee;
7698
7699 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7700 wrqu->data.length = 0;
7701 return 0;
7702 }
7703
7704 if (wrqu->data.length < ieee->wpa_ie_len)
7705 return -E2BIG;
7706
7707 wrqu->data.length = ieee->wpa_ie_len;
7708 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7709
7710 return 0;
7711 }
7712
7713 /* SIOCSIWAUTH */
7714 static int ipw2100_wx_set_auth(struct net_device *dev,
7715 struct iw_request_info *info,
7716 union iwreq_data *wrqu, char *extra)
7717 {
7718 struct ipw2100_priv *priv = libipw_priv(dev);
7719 struct libipw_device *ieee = priv->ieee;
7720 struct iw_param *param = &wrqu->param;
7721 struct lib80211_crypt_data *crypt;
7722 unsigned long flags;
7723 int ret = 0;
7724
7725 switch (param->flags & IW_AUTH_INDEX) {
7726 case IW_AUTH_WPA_VERSION:
7727 case IW_AUTH_CIPHER_PAIRWISE:
7728 case IW_AUTH_CIPHER_GROUP:
7729 case IW_AUTH_KEY_MGMT:
7730 /*
7731 * ipw2200 does not use these parameters
7732 */
7733 break;
7734
7735 case IW_AUTH_TKIP_COUNTERMEASURES:
7736 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7737 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7738 break;
7739
7740 flags = crypt->ops->get_flags(crypt->priv);
7741
7742 if (param->value)
7743 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7744 else
7745 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7746
7747 crypt->ops->set_flags(flags, crypt->priv);
7748
7749 break;
7750
7751 case IW_AUTH_DROP_UNENCRYPTED:{
7752 /* HACK:
7753 *
7754 * wpa_supplicant calls set_wpa_enabled when the driver
7755 * is loaded and unloaded, regardless of if WPA is being
7756 * used. No other calls are made which can be used to
7757 * determine if encryption will be used or not prior to
7758 * association being expected. If encryption is not being
7759 * used, drop_unencrypted is set to false, else true -- we
7760 * can use this to determine if the CAP_PRIVACY_ON bit should
7761 * be set.
7762 */
7763 struct libipw_security sec = {
7764 .flags = SEC_ENABLED,
7765 .enabled = param->value,
7766 };
7767 priv->ieee->drop_unencrypted = param->value;
7768 /* We only change SEC_LEVEL for open mode. Others
7769 * are set by ipw_wpa_set_encryption.
7770 */
7771 if (!param->value) {
7772 sec.flags |= SEC_LEVEL;
7773 sec.level = SEC_LEVEL_0;
7774 } else {
7775 sec.flags |= SEC_LEVEL;
7776 sec.level = SEC_LEVEL_1;
7777 }
7778 if (priv->ieee->set_security)
7779 priv->ieee->set_security(priv->ieee->dev, &sec);
7780 break;
7781 }
7782
7783 case IW_AUTH_80211_AUTH_ALG:
7784 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7785 break;
7786
7787 case IW_AUTH_WPA_ENABLED:
7788 ret = ipw2100_wpa_enable(priv, param->value);
7789 break;
7790
7791 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7792 ieee->ieee802_1x = param->value;
7793 break;
7794
7795 //case IW_AUTH_ROAMING_CONTROL:
7796 case IW_AUTH_PRIVACY_INVOKED:
7797 ieee->privacy_invoked = param->value;
7798 break;
7799
7800 default:
7801 return -EOPNOTSUPP;
7802 }
7803 return ret;
7804 }
7805
7806 /* SIOCGIWAUTH */
7807 static int ipw2100_wx_get_auth(struct net_device *dev,
7808 struct iw_request_info *info,
7809 union iwreq_data *wrqu, char *extra)
7810 {
7811 struct ipw2100_priv *priv = libipw_priv(dev);
7812 struct libipw_device *ieee = priv->ieee;
7813 struct lib80211_crypt_data *crypt;
7814 struct iw_param *param = &wrqu->param;
7815 int ret = 0;
7816
7817 switch (param->flags & IW_AUTH_INDEX) {
7818 case IW_AUTH_WPA_VERSION:
7819 case IW_AUTH_CIPHER_PAIRWISE:
7820 case IW_AUTH_CIPHER_GROUP:
7821 case IW_AUTH_KEY_MGMT:
7822 /*
7823 * wpa_supplicant will control these internally
7824 */
7825 ret = -EOPNOTSUPP;
7826 break;
7827
7828 case IW_AUTH_TKIP_COUNTERMEASURES:
7829 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7830 if (!crypt || !crypt->ops->get_flags) {
7831 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7832 "crypt not set!\n");
7833 break;
7834 }
7835
7836 param->value = (crypt->ops->get_flags(crypt->priv) &
7837 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7838
7839 break;
7840
7841 case IW_AUTH_DROP_UNENCRYPTED:
7842 param->value = ieee->drop_unencrypted;
7843 break;
7844
7845 case IW_AUTH_80211_AUTH_ALG:
7846 param->value = priv->ieee->sec.auth_mode;
7847 break;
7848
7849 case IW_AUTH_WPA_ENABLED:
7850 param->value = ieee->wpa_enabled;
7851 break;
7852
7853 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7854 param->value = ieee->ieee802_1x;
7855 break;
7856
7857 case IW_AUTH_ROAMING_CONTROL:
7858 case IW_AUTH_PRIVACY_INVOKED:
7859 param->value = ieee->privacy_invoked;
7860 break;
7861
7862 default:
7863 return -EOPNOTSUPP;
7864 }
7865 return 0;
7866 }
7867
7868 /* SIOCSIWENCODEEXT */
7869 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7870 struct iw_request_info *info,
7871 union iwreq_data *wrqu, char *extra)
7872 {
7873 struct ipw2100_priv *priv = libipw_priv(dev);
7874 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7875 }
7876
7877 /* SIOCGIWENCODEEXT */
7878 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7879 struct iw_request_info *info,
7880 union iwreq_data *wrqu, char *extra)
7881 {
7882 struct ipw2100_priv *priv = libipw_priv(dev);
7883 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7884 }
7885
7886 /* SIOCSIWMLME */
7887 static int ipw2100_wx_set_mlme(struct net_device *dev,
7888 struct iw_request_info *info,
7889 union iwreq_data *wrqu, char *extra)
7890 {
7891 struct ipw2100_priv *priv = libipw_priv(dev);
7892 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7893 __le16 reason;
7894
7895 reason = cpu_to_le16(mlme->reason_code);
7896
7897 switch (mlme->cmd) {
7898 case IW_MLME_DEAUTH:
7899 // silently ignore
7900 break;
7901
7902 case IW_MLME_DISASSOC:
7903 ipw2100_disassociate_bssid(priv);
7904 break;
7905
7906 default:
7907 return -EOPNOTSUPP;
7908 }
7909 return 0;
7910 }
7911
7912 /*
7913 *
7914 * IWPRIV handlers
7915 *
7916 */
7917 #ifdef CONFIG_IPW2100_MONITOR
7918 static int ipw2100_wx_set_promisc(struct net_device *dev,
7919 struct iw_request_info *info,
7920 union iwreq_data *wrqu, char *extra)
7921 {
7922 struct ipw2100_priv *priv = libipw_priv(dev);
7923 int *parms = (int *)extra;
7924 int enable = (parms[0] > 0);
7925 int err = 0;
7926
7927 mutex_lock(&priv->action_mutex);
7928 if (!(priv->status & STATUS_INITIALIZED)) {
7929 err = -EIO;
7930 goto done;
7931 }
7932
7933 if (enable) {
7934 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7935 err = ipw2100_set_channel(priv, parms[1], 0);
7936 goto done;
7937 }
7938 priv->channel = parms[1];
7939 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7940 } else {
7941 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7942 err = ipw2100_switch_mode(priv, priv->last_mode);
7943 }
7944 done:
7945 mutex_unlock(&priv->action_mutex);
7946 return err;
7947 }
7948
7949 static int ipw2100_wx_reset(struct net_device *dev,
7950 struct iw_request_info *info,
7951 union iwreq_data *wrqu, char *extra)
7952 {
7953 struct ipw2100_priv *priv = libipw_priv(dev);
7954 if (priv->status & STATUS_INITIALIZED)
7955 schedule_reset(priv);
7956 return 0;
7957 }
7958
7959 #endif
7960
7961 static int ipw2100_wx_set_powermode(struct net_device *dev,
7962 struct iw_request_info *info,
7963 union iwreq_data *wrqu, char *extra)
7964 {
7965 struct ipw2100_priv *priv = libipw_priv(dev);
7966 int err = 0, mode = *(int *)extra;
7967
7968 mutex_lock(&priv->action_mutex);
7969 if (!(priv->status & STATUS_INITIALIZED)) {
7970 err = -EIO;
7971 goto done;
7972 }
7973
7974 if ((mode < 0) || (mode > POWER_MODES))
7975 mode = IPW_POWER_AUTO;
7976
7977 if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7978 err = ipw2100_set_power_mode(priv, mode);
7979 done:
7980 mutex_unlock(&priv->action_mutex);
7981 return err;
7982 }
7983
7984 #define MAX_POWER_STRING 80
7985 static int ipw2100_wx_get_powermode(struct net_device *dev,
7986 struct iw_request_info *info,
7987 union iwreq_data *wrqu, char *extra)
7988 {
7989 /*
7990 * This can be called at any time. No action lock required
7991 */
7992
7993 struct ipw2100_priv *priv = libipw_priv(dev);
7994 int level = IPW_POWER_LEVEL(priv->power_mode);
7995 s32 timeout, period;
7996
7997 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7998 snprintf(extra, MAX_POWER_STRING,
7999 "Power save level: %d (Off)", level);
8000 } else {
8001 switch (level) {
8002 case IPW_POWER_MODE_CAM:
8003 snprintf(extra, MAX_POWER_STRING,
8004 "Power save level: %d (None)", level);
8005 break;
8006 case IPW_POWER_AUTO:
8007 snprintf(extra, MAX_POWER_STRING,
8008 "Power save level: %d (Auto)", level);
8009 break;
8010 default:
8011 timeout = timeout_duration[level - 1] / 1000;
8012 period = period_duration[level - 1] / 1000;
8013 snprintf(extra, MAX_POWER_STRING,
8014 "Power save level: %d "
8015 "(Timeout %dms, Period %dms)",
8016 level, timeout, period);
8017 }
8018 }
8019
8020 wrqu->data.length = strlen(extra) + 1;
8021
8022 return 0;
8023 }
8024
8025 static int ipw2100_wx_set_preamble(struct net_device *dev,
8026 struct iw_request_info *info,
8027 union iwreq_data *wrqu, char *extra)
8028 {
8029 struct ipw2100_priv *priv = libipw_priv(dev);
8030 int err, mode = *(int *)extra;
8031
8032 mutex_lock(&priv->action_mutex);
8033 if (!(priv->status & STATUS_INITIALIZED)) {
8034 err = -EIO;
8035 goto done;
8036 }
8037
8038 if (mode == 1)
8039 priv->config |= CFG_LONG_PREAMBLE;
8040 else if (mode == 0)
8041 priv->config &= ~CFG_LONG_PREAMBLE;
8042 else {
8043 err = -EINVAL;
8044 goto done;
8045 }
8046
8047 err = ipw2100_system_config(priv, 0);
8048
8049 done:
8050 mutex_unlock(&priv->action_mutex);
8051 return err;
8052 }
8053
8054 static int ipw2100_wx_get_preamble(struct net_device *dev,
8055 struct iw_request_info *info,
8056 union iwreq_data *wrqu, char *extra)
8057 {
8058 /*
8059 * This can be called at any time. No action lock required
8060 */
8061
8062 struct ipw2100_priv *priv = libipw_priv(dev);
8063
8064 if (priv->config & CFG_LONG_PREAMBLE)
8065 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
8066 else
8067 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
8068
8069 return 0;
8070 }
8071
8072 #ifdef CONFIG_IPW2100_MONITOR
8073 static int ipw2100_wx_set_crc_check(struct net_device *dev,
8074 struct iw_request_info *info,
8075 union iwreq_data *wrqu, char *extra)
8076 {
8077 struct ipw2100_priv *priv = libipw_priv(dev);
8078 int err, mode = *(int *)extra;
8079
8080 mutex_lock(&priv->action_mutex);
8081 if (!(priv->status & STATUS_INITIALIZED)) {
8082 err = -EIO;
8083 goto done;
8084 }
8085
8086 if (mode == 1)
8087 priv->config |= CFG_CRC_CHECK;
8088 else if (mode == 0)
8089 priv->config &= ~CFG_CRC_CHECK;
8090 else {
8091 err = -EINVAL;
8092 goto done;
8093 }
8094 err = 0;
8095
8096 done:
8097 mutex_unlock(&priv->action_mutex);
8098 return err;
8099 }
8100
8101 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8102 struct iw_request_info *info,
8103 union iwreq_data *wrqu, char *extra)
8104 {
8105 /*
8106 * This can be called at any time. No action lock required
8107 */
8108
8109 struct ipw2100_priv *priv = libipw_priv(dev);
8110
8111 if (priv->config & CFG_CRC_CHECK)
8112 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8113 else
8114 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8115
8116 return 0;
8117 }
8118 #endif /* CONFIG_IPW2100_MONITOR */
8119
8120 static iw_handler ipw2100_wx_handlers[] = {
8121 NULL, /* SIOCSIWCOMMIT */
8122 ipw2100_wx_get_name, /* SIOCGIWNAME */
8123 NULL, /* SIOCSIWNWID */
8124 NULL, /* SIOCGIWNWID */
8125 ipw2100_wx_set_freq, /* SIOCSIWFREQ */
8126 ipw2100_wx_get_freq, /* SIOCGIWFREQ */
8127 ipw2100_wx_set_mode, /* SIOCSIWMODE */
8128 ipw2100_wx_get_mode, /* SIOCGIWMODE */
8129 NULL, /* SIOCSIWSENS */
8130 NULL, /* SIOCGIWSENS */
8131 NULL, /* SIOCSIWRANGE */
8132 ipw2100_wx_get_range, /* SIOCGIWRANGE */
8133 NULL, /* SIOCSIWPRIV */
8134 NULL, /* SIOCGIWPRIV */
8135 NULL, /* SIOCSIWSTATS */
8136 NULL, /* SIOCGIWSTATS */
8137 NULL, /* SIOCSIWSPY */
8138 NULL, /* SIOCGIWSPY */
8139 NULL, /* SIOCGIWTHRSPY */
8140 NULL, /* SIOCWIWTHRSPY */
8141 ipw2100_wx_set_wap, /* SIOCSIWAP */
8142 ipw2100_wx_get_wap, /* SIOCGIWAP */
8143 ipw2100_wx_set_mlme, /* SIOCSIWMLME */
8144 NULL, /* SIOCGIWAPLIST -- deprecated */
8145 ipw2100_wx_set_scan, /* SIOCSIWSCAN */
8146 ipw2100_wx_get_scan, /* SIOCGIWSCAN */
8147 ipw2100_wx_set_essid, /* SIOCSIWESSID */
8148 ipw2100_wx_get_essid, /* SIOCGIWESSID */
8149 ipw2100_wx_set_nick, /* SIOCSIWNICKN */
8150 ipw2100_wx_get_nick, /* SIOCGIWNICKN */
8151 NULL, /* -- hole -- */
8152 NULL, /* -- hole -- */
8153 ipw2100_wx_set_rate, /* SIOCSIWRATE */
8154 ipw2100_wx_get_rate, /* SIOCGIWRATE */
8155 ipw2100_wx_set_rts, /* SIOCSIWRTS */
8156 ipw2100_wx_get_rts, /* SIOCGIWRTS */
8157 ipw2100_wx_set_frag, /* SIOCSIWFRAG */
8158 ipw2100_wx_get_frag, /* SIOCGIWFRAG */
8159 ipw2100_wx_set_txpow, /* SIOCSIWTXPOW */
8160 ipw2100_wx_get_txpow, /* SIOCGIWTXPOW */
8161 ipw2100_wx_set_retry, /* SIOCSIWRETRY */
8162 ipw2100_wx_get_retry, /* SIOCGIWRETRY */
8163 ipw2100_wx_set_encode, /* SIOCSIWENCODE */
8164 ipw2100_wx_get_encode, /* SIOCGIWENCODE */
8165 ipw2100_wx_set_power, /* SIOCSIWPOWER */
8166 ipw2100_wx_get_power, /* SIOCGIWPOWER */
8167 NULL, /* -- hole -- */
8168 NULL, /* -- hole -- */
8169 ipw2100_wx_set_genie, /* SIOCSIWGENIE */
8170 ipw2100_wx_get_genie, /* SIOCGIWGENIE */
8171 ipw2100_wx_set_auth, /* SIOCSIWAUTH */
8172 ipw2100_wx_get_auth, /* SIOCGIWAUTH */
8173 ipw2100_wx_set_encodeext, /* SIOCSIWENCODEEXT */
8174 ipw2100_wx_get_encodeext, /* SIOCGIWENCODEEXT */
8175 NULL, /* SIOCSIWPMKSA */
8176 };
8177
8178 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8179 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8180 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8181 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8182 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8183 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8184 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8185 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8186
8187 static const struct iw_priv_args ipw2100_private_args[] = {
8188
8189 #ifdef CONFIG_IPW2100_MONITOR
8190 {
8191 IPW2100_PRIV_SET_MONITOR,
8192 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8193 {
8194 IPW2100_PRIV_RESET,
8195 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8196 #endif /* CONFIG_IPW2100_MONITOR */
8197
8198 {
8199 IPW2100_PRIV_SET_POWER,
8200 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8201 {
8202 IPW2100_PRIV_GET_POWER,
8203 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8204 "get_power"},
8205 {
8206 IPW2100_PRIV_SET_LONGPREAMBLE,
8207 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8208 {
8209 IPW2100_PRIV_GET_LONGPREAMBLE,
8210 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8211 #ifdef CONFIG_IPW2100_MONITOR
8212 {
8213 IPW2100_PRIV_SET_CRC_CHECK,
8214 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8215 {
8216 IPW2100_PRIV_GET_CRC_CHECK,
8217 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8218 #endif /* CONFIG_IPW2100_MONITOR */
8219 };
8220
8221 static iw_handler ipw2100_private_handler[] = {
8222 #ifdef CONFIG_IPW2100_MONITOR
8223 ipw2100_wx_set_promisc,
8224 ipw2100_wx_reset,
8225 #else /* CONFIG_IPW2100_MONITOR */
8226 NULL,
8227 NULL,
8228 #endif /* CONFIG_IPW2100_MONITOR */
8229 ipw2100_wx_set_powermode,
8230 ipw2100_wx_get_powermode,
8231 ipw2100_wx_set_preamble,
8232 ipw2100_wx_get_preamble,
8233 #ifdef CONFIG_IPW2100_MONITOR
8234 ipw2100_wx_set_crc_check,
8235 ipw2100_wx_get_crc_check,
8236 #else /* CONFIG_IPW2100_MONITOR */
8237 NULL,
8238 NULL,
8239 #endif /* CONFIG_IPW2100_MONITOR */
8240 };
8241
8242 /*
8243 * Get wireless statistics.
8244 * Called by /proc/net/wireless
8245 * Also called by SIOCGIWSTATS
8246 */
8247 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8248 {
8249 enum {
8250 POOR = 30,
8251 FAIR = 60,
8252 GOOD = 80,
8253 VERY_GOOD = 90,
8254 EXCELLENT = 95,
8255 PERFECT = 100
8256 };
8257 int rssi_qual;
8258 int tx_qual;
8259 int beacon_qual;
8260 int quality;
8261
8262 struct ipw2100_priv *priv = libipw_priv(dev);
8263 struct iw_statistics *wstats;
8264 u32 rssi, tx_retries, missed_beacons, tx_failures;
8265 u32 ord_len = sizeof(u32);
8266
8267 if (!priv)
8268 return (struct iw_statistics *)NULL;
8269
8270 wstats = &priv->wstats;
8271
8272 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8273 * ipw2100_wx_wireless_stats seems to be called before fw is
8274 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8275 * and associated; if not associcated, the values are all meaningless
8276 * anyway, so set them all to NULL and INVALID */
8277 if (!(priv->status & STATUS_ASSOCIATED)) {
8278 wstats->miss.beacon = 0;
8279 wstats->discard.retries = 0;
8280 wstats->qual.qual = 0;
8281 wstats->qual.level = 0;
8282 wstats->qual.noise = 0;
8283 wstats->qual.updated = 7;
8284 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8285 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8286 return wstats;
8287 }
8288
8289 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8290 &missed_beacons, &ord_len))
8291 goto fail_get_ordinal;
8292
8293 /* If we don't have a connection the quality and level is 0 */
8294 if (!(priv->status & STATUS_ASSOCIATED)) {
8295 wstats->qual.qual = 0;
8296 wstats->qual.level = 0;
8297 } else {
8298 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8299 &rssi, &ord_len))
8300 goto fail_get_ordinal;
8301 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8302 if (rssi < 10)
8303 rssi_qual = rssi * POOR / 10;
8304 else if (rssi < 15)
8305 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8306 else if (rssi < 20)
8307 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8308 else if (rssi < 30)
8309 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8310 10 + GOOD;
8311 else
8312 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8313 10 + VERY_GOOD;
8314
8315 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8316 &tx_retries, &ord_len))
8317 goto fail_get_ordinal;
8318
8319 if (tx_retries > 75)
8320 tx_qual = (90 - tx_retries) * POOR / 15;
8321 else if (tx_retries > 70)
8322 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8323 else if (tx_retries > 65)
8324 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8325 else if (tx_retries > 50)
8326 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8327 15 + GOOD;
8328 else
8329 tx_qual = (50 - tx_retries) *
8330 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8331
8332 if (missed_beacons > 50)
8333 beacon_qual = (60 - missed_beacons) * POOR / 10;
8334 else if (missed_beacons > 40)
8335 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8336 10 + POOR;
8337 else if (missed_beacons > 32)
8338 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8339 18 + FAIR;
8340 else if (missed_beacons > 20)
8341 beacon_qual = (32 - missed_beacons) *
8342 (VERY_GOOD - GOOD) / 20 + GOOD;
8343 else
8344 beacon_qual = (20 - missed_beacons) *
8345 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8346
8347 quality = min(tx_qual, rssi_qual);
8348 quality = min(beacon_qual, quality);
8349
8350 #ifdef CONFIG_IPW2100_DEBUG
8351 if (beacon_qual == quality)
8352 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8353 else if (tx_qual == quality)
8354 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8355 else if (quality != 100)
8356 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8357 else
8358 IPW_DEBUG_WX("Quality not clamped.\n");
8359 #endif
8360
8361 wstats->qual.qual = quality;
8362 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8363 }
8364
8365 wstats->qual.noise = 0;
8366 wstats->qual.updated = 7;
8367 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8368
8369 /* FIXME: this is percent and not a # */
8370 wstats->miss.beacon = missed_beacons;
8371
8372 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8373 &tx_failures, &ord_len))
8374 goto fail_get_ordinal;
8375 wstats->discard.retries = tx_failures;
8376
8377 return wstats;
8378
8379 fail_get_ordinal:
8380 IPW_DEBUG_WX("failed querying ordinals.\n");
8381
8382 return (struct iw_statistics *)NULL;
8383 }
8384
8385 static struct iw_handler_def ipw2100_wx_handler_def = {
8386 .standard = ipw2100_wx_handlers,
8387 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8388 .num_private = ARRAY_SIZE(ipw2100_private_handler),
8389 .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8390 .private = (iw_handler *) ipw2100_private_handler,
8391 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8392 .get_wireless_stats = ipw2100_wx_wireless_stats,
8393 };
8394
8395 static void ipw2100_wx_event_work(struct work_struct *work)
8396 {
8397 struct ipw2100_priv *priv =
8398 container_of(work, struct ipw2100_priv, wx_event_work.work);
8399 union iwreq_data wrqu;
8400 unsigned int len = ETH_ALEN;
8401
8402 if (priv->status & STATUS_STOPPING)
8403 return;
8404
8405 mutex_lock(&priv->action_mutex);
8406
8407 IPW_DEBUG_WX("enter\n");
8408
8409 mutex_unlock(&priv->action_mutex);
8410
8411 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8412
8413 /* Fetch BSSID from the hardware */
8414 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8415 priv->status & STATUS_RF_KILL_MASK ||
8416 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8417 &priv->bssid, &len)) {
8418 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8419 } else {
8420 /* We now have the BSSID, so can finish setting to the full
8421 * associated state */
8422 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8423 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8424 priv->status &= ~STATUS_ASSOCIATING;
8425 priv->status |= STATUS_ASSOCIATED;
8426 netif_carrier_on(priv->net_dev);
8427 netif_wake_queue(priv->net_dev);
8428 }
8429
8430 if (!(priv->status & STATUS_ASSOCIATED)) {
8431 IPW_DEBUG_WX("Configuring ESSID\n");
8432 mutex_lock(&priv->action_mutex);
8433 /* This is a disassociation event, so kick the firmware to
8434 * look for another AP */
8435 if (priv->config & CFG_STATIC_ESSID)
8436 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8437 0);
8438 else
8439 ipw2100_set_essid(priv, NULL, 0, 0);
8440 mutex_unlock(&priv->action_mutex);
8441 }
8442
8443 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8444 }
8445
8446 #define IPW2100_FW_MAJOR_VERSION 1
8447 #define IPW2100_FW_MINOR_VERSION 3
8448
8449 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8450 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8451
8452 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8453 IPW2100_FW_MAJOR_VERSION)
8454
8455 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8456 "." __stringify(IPW2100_FW_MINOR_VERSION)
8457
8458 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8459
8460 /*
8461
8462 BINARY FIRMWARE HEADER FORMAT
8463
8464 offset length desc
8465 0 2 version
8466 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8467 4 4 fw_len
8468 8 4 uc_len
8469 C fw_len firmware data
8470 12 + fw_len uc_len microcode data
8471
8472 */
8473
8474 struct ipw2100_fw_header {
8475 short version;
8476 short mode;
8477 unsigned int fw_size;
8478 unsigned int uc_size;
8479 } __attribute__ ((packed));
8480
8481 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8482 {
8483 struct ipw2100_fw_header *h =
8484 (struct ipw2100_fw_header *)fw->fw_entry->data;
8485
8486 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8487 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8488 "(detected version id of %u). "
8489 "See Documentation/networking/README.ipw2100\n",
8490 h->version);
8491 return 1;
8492 }
8493
8494 fw->version = h->version;
8495 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8496 fw->fw.size = h->fw_size;
8497 fw->uc.data = fw->fw.data + h->fw_size;
8498 fw->uc.size = h->uc_size;
8499
8500 return 0;
8501 }
8502
8503 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8504 struct ipw2100_fw *fw)
8505 {
8506 char *fw_name;
8507 int rc;
8508
8509 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8510 priv->net_dev->name);
8511
8512 switch (priv->ieee->iw_mode) {
8513 case IW_MODE_ADHOC:
8514 fw_name = IPW2100_FW_NAME("-i");
8515 break;
8516 #ifdef CONFIG_IPW2100_MONITOR
8517 case IW_MODE_MONITOR:
8518 fw_name = IPW2100_FW_NAME("-p");
8519 break;
8520 #endif
8521 case IW_MODE_INFRA:
8522 default:
8523 fw_name = IPW2100_FW_NAME("");
8524 break;
8525 }
8526
8527 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8528
8529 if (rc < 0) {
8530 printk(KERN_ERR DRV_NAME ": "
8531 "%s: Firmware '%s' not available or load failed.\n",
8532 priv->net_dev->name, fw_name);
8533 return rc;
8534 }
8535 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8536 fw->fw_entry->size);
8537
8538 ipw2100_mod_firmware_load(fw);
8539
8540 return 0;
8541 }
8542
8543 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8544 #ifdef CONFIG_IPW2100_MONITOR
8545 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8546 #endif
8547 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8548
8549 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8550 struct ipw2100_fw *fw)
8551 {
8552 fw->version = 0;
8553 if (fw->fw_entry)
8554 release_firmware(fw->fw_entry);
8555 fw->fw_entry = NULL;
8556 }
8557
8558 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8559 size_t max)
8560 {
8561 char ver[MAX_FW_VERSION_LEN];
8562 u32 len = MAX_FW_VERSION_LEN;
8563 u32 tmp;
8564 int i;
8565 /* firmware version is an ascii string (max len of 14) */
8566 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8567 return -EIO;
8568 tmp = max;
8569 if (len >= max)
8570 len = max - 1;
8571 for (i = 0; i < len; i++)
8572 buf[i] = ver[i];
8573 buf[i] = '\0';
8574 return tmp;
8575 }
8576
8577 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8578 size_t max)
8579 {
8580 u32 ver;
8581 u32 len = sizeof(ver);
8582 /* microcode version is a 32 bit integer */
8583 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8584 return -EIO;
8585 return snprintf(buf, max, "%08X", ver);
8586 }
8587
8588 /*
8589 * On exit, the firmware will have been freed from the fw list
8590 */
8591 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8592 {
8593 /* firmware is constructed of N contiguous entries, each entry is
8594 * structured as:
8595 *
8596 * offset sie desc
8597 * 0 4 address to write to
8598 * 4 2 length of data run
8599 * 6 length data
8600 */
8601 unsigned int addr;
8602 unsigned short len;
8603
8604 const unsigned char *firmware_data = fw->fw.data;
8605 unsigned int firmware_data_left = fw->fw.size;
8606
8607 while (firmware_data_left > 0) {
8608 addr = *(u32 *) (firmware_data);
8609 firmware_data += 4;
8610 firmware_data_left -= 4;
8611
8612 len = *(u16 *) (firmware_data);
8613 firmware_data += 2;
8614 firmware_data_left -= 2;
8615
8616 if (len > 32) {
8617 printk(KERN_ERR DRV_NAME ": "
8618 "Invalid firmware run-length of %d bytes\n",
8619 len);
8620 return -EINVAL;
8621 }
8622
8623 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8624 firmware_data += len;
8625 firmware_data_left -= len;
8626 }
8627
8628 return 0;
8629 }
8630
8631 struct symbol_alive_response {
8632 u8 cmd_id;
8633 u8 seq_num;
8634 u8 ucode_rev;
8635 u8 eeprom_valid;
8636 u16 valid_flags;
8637 u8 IEEE_addr[6];
8638 u16 flags;
8639 u16 pcb_rev;
8640 u16 clock_settle_time; // 1us LSB
8641 u16 powerup_settle_time; // 1us LSB
8642 u16 hop_settle_time; // 1us LSB
8643 u8 date[3]; // month, day, year
8644 u8 time[2]; // hours, minutes
8645 u8 ucode_valid;
8646 };
8647
8648 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8649 struct ipw2100_fw *fw)
8650 {
8651 struct net_device *dev = priv->net_dev;
8652 const unsigned char *microcode_data = fw->uc.data;
8653 unsigned int microcode_data_left = fw->uc.size;
8654 void __iomem *reg = (void __iomem *)dev->base_addr;
8655
8656 struct symbol_alive_response response;
8657 int i, j;
8658 u8 data;
8659
8660 /* Symbol control */
8661 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8662 readl(reg);
8663 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8664 readl(reg);
8665
8666 /* HW config */
8667 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8668 readl(reg);
8669 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8670 readl(reg);
8671
8672 /* EN_CS_ACCESS bit to reset control store pointer */
8673 write_nic_byte(dev, 0x210000, 0x40);
8674 readl(reg);
8675 write_nic_byte(dev, 0x210000, 0x0);
8676 readl(reg);
8677 write_nic_byte(dev, 0x210000, 0x40);
8678 readl(reg);
8679
8680 /* copy microcode from buffer into Symbol */
8681
8682 while (microcode_data_left > 0) {
8683 write_nic_byte(dev, 0x210010, *microcode_data++);
8684 write_nic_byte(dev, 0x210010, *microcode_data++);
8685 microcode_data_left -= 2;
8686 }
8687
8688 /* EN_CS_ACCESS bit to reset the control store pointer */
8689 write_nic_byte(dev, 0x210000, 0x0);
8690 readl(reg);
8691
8692 /* Enable System (Reg 0)
8693 * first enable causes garbage in RX FIFO */
8694 write_nic_byte(dev, 0x210000, 0x0);
8695 readl(reg);
8696 write_nic_byte(dev, 0x210000, 0x80);
8697 readl(reg);
8698
8699 /* Reset External Baseband Reg */
8700 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8701 readl(reg);
8702 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8703 readl(reg);
8704
8705 /* HW Config (Reg 5) */
8706 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8707 readl(reg);
8708 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8709 readl(reg);
8710
8711 /* Enable System (Reg 0)
8712 * second enable should be OK */
8713 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8714 readl(reg);
8715 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8716
8717 /* check Symbol is enabled - upped this from 5 as it wasn't always
8718 * catching the update */
8719 for (i = 0; i < 10; i++) {
8720 udelay(10);
8721
8722 /* check Dino is enabled bit */
8723 read_nic_byte(dev, 0x210000, &data);
8724 if (data & 0x1)
8725 break;
8726 }
8727
8728 if (i == 10) {
8729 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8730 dev->name);
8731 return -EIO;
8732 }
8733
8734 /* Get Symbol alive response */
8735 for (i = 0; i < 30; i++) {
8736 /* Read alive response structure */
8737 for (j = 0;
8738 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8739 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8740
8741 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8742 break;
8743 udelay(10);
8744 }
8745
8746 if (i == 30) {
8747 printk(KERN_ERR DRV_NAME
8748 ": %s: No response from Symbol - hw not alive\n",
8749 dev->name);
8750 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8751 return -EIO;
8752 }
8753
8754 return 0;
8755 }
This page took 0.250795 seconds and 5 git commands to generate.