Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[deliverable/linux.git] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 Intel Linux Wireless <ilw@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
28
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <j@w1.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
43
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
106
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
110
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
114
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
118
119 The flow of data on the TX side is as follows:
120
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124 The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "git-1.2.2"
171
172 #define DRV_NAME "ipw2100"
173 #define DRV_VERSION IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
176
177 static struct pm_qos_request ipw2100_pm_qos_req;
178
179 /* Debugging stuff */
180 #ifdef CONFIG_IPW2100_DEBUG
181 #define IPW2100_RX_DEBUG /* Reception debugging */
182 #endif
183
184 MODULE_DESCRIPTION(DRV_DESCRIPTION);
185 MODULE_VERSION(DRV_VERSION);
186 MODULE_AUTHOR(DRV_COPYRIGHT);
187 MODULE_LICENSE("GPL");
188
189 static int debug = 0;
190 static int network_mode = 0;
191 static int channel = 0;
192 static int associate = 0;
193 static int disable = 0;
194 #ifdef CONFIG_PM
195 static struct ipw2100_fw ipw2100_firmware;
196 #endif
197
198 #include <linux/moduleparam.h>
199 module_param(debug, int, 0444);
200 module_param_named(mode, network_mode, int, 0444);
201 module_param(channel, int, 0444);
202 module_param(associate, int, 0444);
203 module_param(disable, int, 0444);
204
205 MODULE_PARM_DESC(debug, "debug level");
206 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
207 MODULE_PARM_DESC(channel, "channel");
208 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
209 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
210
211 static u32 ipw2100_debug_level = IPW_DL_NONE;
212
213 #ifdef CONFIG_IPW2100_DEBUG
214 #define IPW_DEBUG(level, message...) \
215 do { \
216 if (ipw2100_debug_level & (level)) { \
217 printk(KERN_DEBUG "ipw2100: %c %s ", \
218 in_interrupt() ? 'I' : 'U', __func__); \
219 printk(message); \
220 } \
221 } while (0)
222 #else
223 #define IPW_DEBUG(level, message...) do {} while (0)
224 #endif /* CONFIG_IPW2100_DEBUG */
225
226 #ifdef CONFIG_IPW2100_DEBUG
227 static const char *command_types[] = {
228 "undefined",
229 "unused", /* HOST_ATTENTION */
230 "HOST_COMPLETE",
231 "unused", /* SLEEP */
232 "unused", /* HOST_POWER_DOWN */
233 "unused",
234 "SYSTEM_CONFIG",
235 "unused", /* SET_IMR */
236 "SSID",
237 "MANDATORY_BSSID",
238 "AUTHENTICATION_TYPE",
239 "ADAPTER_ADDRESS",
240 "PORT_TYPE",
241 "INTERNATIONAL_MODE",
242 "CHANNEL",
243 "RTS_THRESHOLD",
244 "FRAG_THRESHOLD",
245 "POWER_MODE",
246 "TX_RATES",
247 "BASIC_TX_RATES",
248 "WEP_KEY_INFO",
249 "unused",
250 "unused",
251 "unused",
252 "unused",
253 "WEP_KEY_INDEX",
254 "WEP_FLAGS",
255 "ADD_MULTICAST",
256 "CLEAR_ALL_MULTICAST",
257 "BEACON_INTERVAL",
258 "ATIM_WINDOW",
259 "CLEAR_STATISTICS",
260 "undefined",
261 "undefined",
262 "undefined",
263 "undefined",
264 "TX_POWER_INDEX",
265 "undefined",
266 "undefined",
267 "undefined",
268 "undefined",
269 "undefined",
270 "undefined",
271 "BROADCAST_SCAN",
272 "CARD_DISABLE",
273 "PREFERRED_BSSID",
274 "SET_SCAN_OPTIONS",
275 "SCAN_DWELL_TIME",
276 "SWEEP_TABLE",
277 "AP_OR_STATION_TABLE",
278 "GROUP_ORDINALS",
279 "SHORT_RETRY_LIMIT",
280 "LONG_RETRY_LIMIT",
281 "unused", /* SAVE_CALIBRATION */
282 "unused", /* RESTORE_CALIBRATION */
283 "undefined",
284 "undefined",
285 "undefined",
286 "HOST_PRE_POWER_DOWN",
287 "unused", /* HOST_INTERRUPT_COALESCING */
288 "undefined",
289 "CARD_DISABLE_PHY_OFF",
290 "MSDU_TX_RATES",
291 "undefined",
292 "SET_STATION_STAT_BITS",
293 "CLEAR_STATIONS_STAT_BITS",
294 "LEAP_ROGUE_MODE",
295 "SET_SECURITY_INFORMATION",
296 "DISASSOCIATION_BSSID",
297 "SET_WPA_ASS_IE"
298 };
299 #endif
300
301 static const long ipw2100_frequencies[] = {
302 2412, 2417, 2422, 2427,
303 2432, 2437, 2442, 2447,
304 2452, 2457, 2462, 2467,
305 2472, 2484
306 };
307
308 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies)
309
310 static struct ieee80211_rate ipw2100_bg_rates[] = {
311 { .bitrate = 10 },
312 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
313 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315 };
316
317 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
318
319 /* Pre-decl until we get the code solid and then we can clean it up */
320 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
321 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
322 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
323
324 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
325 static void ipw2100_queues_free(struct ipw2100_priv *priv);
326 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
327
328 static int ipw2100_fw_download(struct ipw2100_priv *priv,
329 struct ipw2100_fw *fw);
330 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
331 struct ipw2100_fw *fw);
332 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
333 size_t max);
334 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
335 size_t max);
336 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
337 struct ipw2100_fw *fw);
338 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
339 struct ipw2100_fw *fw);
340 static void ipw2100_wx_event_work(struct work_struct *work);
341 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
342 static struct iw_handler_def ipw2100_wx_handler_def;
343
344 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
345 {
346 struct ipw2100_priv *priv = libipw_priv(dev);
347
348 *val = ioread32(priv->ioaddr + reg);
349 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
350 }
351
352 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
353 {
354 struct ipw2100_priv *priv = libipw_priv(dev);
355
356 iowrite32(val, priv->ioaddr + reg);
357 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
358 }
359
360 static inline void read_register_word(struct net_device *dev, u32 reg,
361 u16 * val)
362 {
363 struct ipw2100_priv *priv = libipw_priv(dev);
364
365 *val = ioread16(priv->ioaddr + reg);
366 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
367 }
368
369 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
370 {
371 struct ipw2100_priv *priv = libipw_priv(dev);
372
373 *val = ioread8(priv->ioaddr + reg);
374 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
375 }
376
377 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
378 {
379 struct ipw2100_priv *priv = libipw_priv(dev);
380
381 iowrite16(val, priv->ioaddr + reg);
382 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
383 }
384
385 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
386 {
387 struct ipw2100_priv *priv = libipw_priv(dev);
388
389 iowrite8(val, priv->ioaddr + reg);
390 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
391 }
392
393 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
394 {
395 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
396 addr & IPW_REG_INDIRECT_ADDR_MASK);
397 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
398 }
399
400 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
401 {
402 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
403 addr & IPW_REG_INDIRECT_ADDR_MASK);
404 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
405 }
406
407 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
408 {
409 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
410 addr & IPW_REG_INDIRECT_ADDR_MASK);
411 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
412 }
413
414 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
415 {
416 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
417 addr & IPW_REG_INDIRECT_ADDR_MASK);
418 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
419 }
420
421 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
422 {
423 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
424 addr & IPW_REG_INDIRECT_ADDR_MASK);
425 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
426 }
427
428 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
429 {
430 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
431 addr & IPW_REG_INDIRECT_ADDR_MASK);
432 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
433 }
434
435 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
436 {
437 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
438 addr & IPW_REG_INDIRECT_ADDR_MASK);
439 }
440
441 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
442 {
443 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
444 }
445
446 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
447 const u8 * buf)
448 {
449 u32 aligned_addr;
450 u32 aligned_len;
451 u32 dif_len;
452 u32 i;
453
454 /* read first nibble byte by byte */
455 aligned_addr = addr & (~0x3);
456 dif_len = addr - aligned_addr;
457 if (dif_len) {
458 /* Start reading at aligned_addr + dif_len */
459 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
460 aligned_addr);
461 for (i = dif_len; i < 4; i++, buf++)
462 write_register_byte(dev,
463 IPW_REG_INDIRECT_ACCESS_DATA + i,
464 *buf);
465
466 len -= dif_len;
467 aligned_addr += 4;
468 }
469
470 /* read DWs through autoincrement registers */
471 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
472 aligned_len = len & (~0x3);
473 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
474 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
475
476 /* copy the last nibble */
477 dif_len = len - aligned_len;
478 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
479 for (i = 0; i < dif_len; i++, buf++)
480 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
481 *buf);
482 }
483
484 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
485 u8 * buf)
486 {
487 u32 aligned_addr;
488 u32 aligned_len;
489 u32 dif_len;
490 u32 i;
491
492 /* read first nibble byte by byte */
493 aligned_addr = addr & (~0x3);
494 dif_len = addr - aligned_addr;
495 if (dif_len) {
496 /* Start reading at aligned_addr + dif_len */
497 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
498 aligned_addr);
499 for (i = dif_len; i < 4; i++, buf++)
500 read_register_byte(dev,
501 IPW_REG_INDIRECT_ACCESS_DATA + i,
502 buf);
503
504 len -= dif_len;
505 aligned_addr += 4;
506 }
507
508 /* read DWs through autoincrement registers */
509 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
510 aligned_len = len & (~0x3);
511 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
512 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
513
514 /* copy the last nibble */
515 dif_len = len - aligned_len;
516 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
517 for (i = 0; i < dif_len; i++, buf++)
518 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
519 }
520
521 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
522 {
523 u32 dbg;
524
525 read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
526
527 return dbg == IPW_DATA_DOA_DEBUG_VALUE;
528 }
529
530 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
531 void *val, u32 * len)
532 {
533 struct ipw2100_ordinals *ordinals = &priv->ordinals;
534 u32 addr;
535 u32 field_info;
536 u16 field_len;
537 u16 field_count;
538 u32 total_length;
539
540 if (ordinals->table1_addr == 0) {
541 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
542 "before they have been loaded.\n");
543 return -EINVAL;
544 }
545
546 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
547 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
548 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
549
550 printk(KERN_WARNING DRV_NAME
551 ": ordinal buffer length too small, need %zd\n",
552 IPW_ORD_TAB_1_ENTRY_SIZE);
553
554 return -EINVAL;
555 }
556
557 read_nic_dword(priv->net_dev,
558 ordinals->table1_addr + (ord << 2), &addr);
559 read_nic_dword(priv->net_dev, addr, val);
560
561 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
562
563 return 0;
564 }
565
566 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
567
568 ord -= IPW_START_ORD_TAB_2;
569
570 /* get the address of statistic */
571 read_nic_dword(priv->net_dev,
572 ordinals->table2_addr + (ord << 3), &addr);
573
574 /* get the second DW of statistics ;
575 * two 16-bit words - first is length, second is count */
576 read_nic_dword(priv->net_dev,
577 ordinals->table2_addr + (ord << 3) + sizeof(u32),
578 &field_info);
579
580 /* get each entry length */
581 field_len = *((u16 *) & field_info);
582
583 /* get number of entries */
584 field_count = *(((u16 *) & field_info) + 1);
585
586 /* abort if no enough memory */
587 total_length = field_len * field_count;
588 if (total_length > *len) {
589 *len = total_length;
590 return -EINVAL;
591 }
592
593 *len = total_length;
594 if (!total_length)
595 return 0;
596
597 /* read the ordinal data from the SRAM */
598 read_nic_memory(priv->net_dev, addr, total_length, val);
599
600 return 0;
601 }
602
603 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
604 "in table 2\n", ord);
605
606 return -EINVAL;
607 }
608
609 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
610 u32 * len)
611 {
612 struct ipw2100_ordinals *ordinals = &priv->ordinals;
613 u32 addr;
614
615 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
616 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
617 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
618 IPW_DEBUG_INFO("wrong size\n");
619 return -EINVAL;
620 }
621
622 read_nic_dword(priv->net_dev,
623 ordinals->table1_addr + (ord << 2), &addr);
624
625 write_nic_dword(priv->net_dev, addr, *val);
626
627 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
628
629 return 0;
630 }
631
632 IPW_DEBUG_INFO("wrong table\n");
633 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
634 return -EINVAL;
635
636 return -EINVAL;
637 }
638
639 static char *snprint_line(char *buf, size_t count,
640 const u8 * data, u32 len, u32 ofs)
641 {
642 int out, i, j, l;
643 char c;
644
645 out = snprintf(buf, count, "%08X", ofs);
646
647 for (l = 0, i = 0; i < 2; i++) {
648 out += snprintf(buf + out, count - out, " ");
649 for (j = 0; j < 8 && l < len; j++, l++)
650 out += snprintf(buf + out, count - out, "%02X ",
651 data[(i * 8 + j)]);
652 for (; j < 8; j++)
653 out += snprintf(buf + out, count - out, " ");
654 }
655
656 out += snprintf(buf + out, count - out, " ");
657 for (l = 0, i = 0; i < 2; i++) {
658 out += snprintf(buf + out, count - out, " ");
659 for (j = 0; j < 8 && l < len; j++, l++) {
660 c = data[(i * 8 + j)];
661 if (!isascii(c) || !isprint(c))
662 c = '.';
663
664 out += snprintf(buf + out, count - out, "%c", c);
665 }
666
667 for (; j < 8; j++)
668 out += snprintf(buf + out, count - out, " ");
669 }
670
671 return buf;
672 }
673
674 static void printk_buf(int level, const u8 * data, u32 len)
675 {
676 char line[81];
677 u32 ofs = 0;
678 if (!(ipw2100_debug_level & level))
679 return;
680
681 while (len) {
682 printk(KERN_DEBUG "%s\n",
683 snprint_line(line, sizeof(line), &data[ofs],
684 min(len, 16U), ofs));
685 ofs += 16;
686 len -= min(len, 16U);
687 }
688 }
689
690 #define MAX_RESET_BACKOFF 10
691
692 static void schedule_reset(struct ipw2100_priv *priv)
693 {
694 unsigned long now = get_seconds();
695
696 /* If we haven't received a reset request within the backoff period,
697 * then we can reset the backoff interval so this reset occurs
698 * immediately */
699 if (priv->reset_backoff &&
700 (now - priv->last_reset > priv->reset_backoff))
701 priv->reset_backoff = 0;
702
703 priv->last_reset = get_seconds();
704
705 if (!(priv->status & STATUS_RESET_PENDING)) {
706 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
707 priv->net_dev->name, priv->reset_backoff);
708 netif_carrier_off(priv->net_dev);
709 netif_stop_queue(priv->net_dev);
710 priv->status |= STATUS_RESET_PENDING;
711 if (priv->reset_backoff)
712 schedule_delayed_work(&priv->reset_work,
713 priv->reset_backoff * HZ);
714 else
715 schedule_delayed_work(&priv->reset_work, 0);
716
717 if (priv->reset_backoff < MAX_RESET_BACKOFF)
718 priv->reset_backoff++;
719
720 wake_up_interruptible(&priv->wait_command_queue);
721 } else
722 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
723 priv->net_dev->name);
724
725 }
726
727 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
728 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
729 struct host_command *cmd)
730 {
731 struct list_head *element;
732 struct ipw2100_tx_packet *packet;
733 unsigned long flags;
734 int err = 0;
735
736 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
737 command_types[cmd->host_command], cmd->host_command,
738 cmd->host_command_length);
739 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
740 cmd->host_command_length);
741
742 spin_lock_irqsave(&priv->low_lock, flags);
743
744 if (priv->fatal_error) {
745 IPW_DEBUG_INFO
746 ("Attempt to send command while hardware in fatal error condition.\n");
747 err = -EIO;
748 goto fail_unlock;
749 }
750
751 if (!(priv->status & STATUS_RUNNING)) {
752 IPW_DEBUG_INFO
753 ("Attempt to send command while hardware is not running.\n");
754 err = -EIO;
755 goto fail_unlock;
756 }
757
758 if (priv->status & STATUS_CMD_ACTIVE) {
759 IPW_DEBUG_INFO
760 ("Attempt to send command while another command is pending.\n");
761 err = -EBUSY;
762 goto fail_unlock;
763 }
764
765 if (list_empty(&priv->msg_free_list)) {
766 IPW_DEBUG_INFO("no available msg buffers\n");
767 goto fail_unlock;
768 }
769
770 priv->status |= STATUS_CMD_ACTIVE;
771 priv->messages_sent++;
772
773 element = priv->msg_free_list.next;
774
775 packet = list_entry(element, struct ipw2100_tx_packet, list);
776 packet->jiffy_start = jiffies;
777
778 /* initialize the firmware command packet */
779 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
780 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
781 packet->info.c_struct.cmd->host_command_len_reg =
782 cmd->host_command_length;
783 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
784
785 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
786 cmd->host_command_parameters,
787 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
788
789 list_del(element);
790 DEC_STAT(&priv->msg_free_stat);
791
792 list_add_tail(element, &priv->msg_pend_list);
793 INC_STAT(&priv->msg_pend_stat);
794
795 ipw2100_tx_send_commands(priv);
796 ipw2100_tx_send_data(priv);
797
798 spin_unlock_irqrestore(&priv->low_lock, flags);
799
800 /*
801 * We must wait for this command to complete before another
802 * command can be sent... but if we wait more than 3 seconds
803 * then there is a problem.
804 */
805
806 err =
807 wait_event_interruptible_timeout(priv->wait_command_queue,
808 !(priv->
809 status & STATUS_CMD_ACTIVE),
810 HOST_COMPLETE_TIMEOUT);
811
812 if (err == 0) {
813 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
814 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
815 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
816 priv->status &= ~STATUS_CMD_ACTIVE;
817 schedule_reset(priv);
818 return -EIO;
819 }
820
821 if (priv->fatal_error) {
822 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
823 priv->net_dev->name);
824 return -EIO;
825 }
826
827 /* !!!!! HACK TEST !!!!!
828 * When lots of debug trace statements are enabled, the driver
829 * doesn't seem to have as many firmware restart cycles...
830 *
831 * As a test, we're sticking in a 1/100s delay here */
832 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
833
834 return 0;
835
836 fail_unlock:
837 spin_unlock_irqrestore(&priv->low_lock, flags);
838
839 return err;
840 }
841
842 /*
843 * Verify the values and data access of the hardware
844 * No locks needed or used. No functions called.
845 */
846 static int ipw2100_verify(struct ipw2100_priv *priv)
847 {
848 u32 data1, data2;
849 u32 address;
850
851 u32 val1 = 0x76543210;
852 u32 val2 = 0xFEDCBA98;
853
854 /* Domain 0 check - all values should be DOA_DEBUG */
855 for (address = IPW_REG_DOA_DEBUG_AREA_START;
856 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
857 read_register(priv->net_dev, address, &data1);
858 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
859 return -EIO;
860 }
861
862 /* Domain 1 check - use arbitrary read/write compare */
863 for (address = 0; address < 5; address++) {
864 /* The memory area is not used now */
865 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
866 val1);
867 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
868 val2);
869 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
870 &data1);
871 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
872 &data2);
873 if (val1 == data1 && val2 == data2)
874 return 0;
875 }
876
877 return -EIO;
878 }
879
880 /*
881 *
882 * Loop until the CARD_DISABLED bit is the same value as the
883 * supplied parameter
884 *
885 * TODO: See if it would be more efficient to do a wait/wake
886 * cycle and have the completion event trigger the wakeup
887 *
888 */
889 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
890 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
891 {
892 int i;
893 u32 card_state;
894 u32 len = sizeof(card_state);
895 int err;
896
897 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
898 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
899 &card_state, &len);
900 if (err) {
901 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
902 "failed.\n");
903 return 0;
904 }
905
906 /* We'll break out if either the HW state says it is
907 * in the state we want, or if HOST_COMPLETE command
908 * finishes */
909 if ((card_state == state) ||
910 ((priv->status & STATUS_ENABLED) ?
911 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
912 if (state == IPW_HW_STATE_ENABLED)
913 priv->status |= STATUS_ENABLED;
914 else
915 priv->status &= ~STATUS_ENABLED;
916
917 return 0;
918 }
919
920 udelay(50);
921 }
922
923 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
924 state ? "DISABLED" : "ENABLED");
925 return -EIO;
926 }
927
928 /*********************************************************************
929 Procedure : sw_reset_and_clock
930 Purpose : Asserts s/w reset, asserts clock initialization
931 and waits for clock stabilization
932 ********************************************************************/
933 static int sw_reset_and_clock(struct ipw2100_priv *priv)
934 {
935 int i;
936 u32 r;
937
938 // assert s/w reset
939 write_register(priv->net_dev, IPW_REG_RESET_REG,
940 IPW_AUX_HOST_RESET_REG_SW_RESET);
941
942 // wait for clock stabilization
943 for (i = 0; i < 1000; i++) {
944 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
945
946 // check clock ready bit
947 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
948 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
949 break;
950 }
951
952 if (i == 1000)
953 return -EIO; // TODO: better error value
954
955 /* set "initialization complete" bit to move adapter to
956 * D0 state */
957 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
958 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
959
960 /* wait for clock stabilization */
961 for (i = 0; i < 10000; i++) {
962 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
963
964 /* check clock ready bit */
965 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
966 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
967 break;
968 }
969
970 if (i == 10000)
971 return -EIO; /* TODO: better error value */
972
973 /* set D0 standby bit */
974 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
975 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
976 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
977
978 return 0;
979 }
980
981 /*********************************************************************
982 Procedure : ipw2100_download_firmware
983 Purpose : Initiaze adapter after power on.
984 The sequence is:
985 1. assert s/w reset first!
986 2. awake clocks & wait for clock stabilization
987 3. hold ARC (don't ask me why...)
988 4. load Dino ucode and reset/clock init again
989 5. zero-out shared mem
990 6. download f/w
991 *******************************************************************/
992 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
993 {
994 u32 address;
995 int err;
996
997 #ifndef CONFIG_PM
998 /* Fetch the firmware and microcode */
999 struct ipw2100_fw ipw2100_firmware;
1000 #endif
1001
1002 if (priv->fatal_error) {
1003 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1004 "fatal error %d. Interface must be brought down.\n",
1005 priv->net_dev->name, priv->fatal_error);
1006 return -EINVAL;
1007 }
1008 #ifdef CONFIG_PM
1009 if (!ipw2100_firmware.version) {
1010 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1011 if (err) {
1012 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1013 priv->net_dev->name, err);
1014 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1015 goto fail;
1016 }
1017 }
1018 #else
1019 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1020 if (err) {
1021 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1022 priv->net_dev->name, err);
1023 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1024 goto fail;
1025 }
1026 #endif
1027 priv->firmware_version = ipw2100_firmware.version;
1028
1029 /* s/w reset and clock stabilization */
1030 err = sw_reset_and_clock(priv);
1031 if (err) {
1032 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1033 priv->net_dev->name, err);
1034 goto fail;
1035 }
1036
1037 err = ipw2100_verify(priv);
1038 if (err) {
1039 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1040 priv->net_dev->name, err);
1041 goto fail;
1042 }
1043
1044 /* Hold ARC */
1045 write_nic_dword(priv->net_dev,
1046 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1047
1048 /* allow ARC to run */
1049 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1050
1051 /* load microcode */
1052 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1053 if (err) {
1054 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1055 priv->net_dev->name, err);
1056 goto fail;
1057 }
1058
1059 /* release ARC */
1060 write_nic_dword(priv->net_dev,
1061 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1062
1063 /* s/w reset and clock stabilization (again!!!) */
1064 err = sw_reset_and_clock(priv);
1065 if (err) {
1066 printk(KERN_ERR DRV_NAME
1067 ": %s: sw_reset_and_clock failed: %d\n",
1068 priv->net_dev->name, err);
1069 goto fail;
1070 }
1071
1072 /* load f/w */
1073 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1074 if (err) {
1075 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1076 priv->net_dev->name, err);
1077 goto fail;
1078 }
1079 #ifndef CONFIG_PM
1080 /*
1081 * When the .resume method of the driver is called, the other
1082 * part of the system, i.e. the ide driver could still stay in
1083 * the suspend stage. This prevents us from loading the firmware
1084 * from the disk. --YZ
1085 */
1086
1087 /* free any storage allocated for firmware image */
1088 ipw2100_release_firmware(priv, &ipw2100_firmware);
1089 #endif
1090
1091 /* zero out Domain 1 area indirectly (Si requirement) */
1092 for (address = IPW_HOST_FW_SHARED_AREA0;
1093 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1094 write_nic_dword(priv->net_dev, address, 0);
1095 for (address = IPW_HOST_FW_SHARED_AREA1;
1096 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1097 write_nic_dword(priv->net_dev, address, 0);
1098 for (address = IPW_HOST_FW_SHARED_AREA2;
1099 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1100 write_nic_dword(priv->net_dev, address, 0);
1101 for (address = IPW_HOST_FW_SHARED_AREA3;
1102 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1103 write_nic_dword(priv->net_dev, address, 0);
1104 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1105 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1106 write_nic_dword(priv->net_dev, address, 0);
1107
1108 return 0;
1109
1110 fail:
1111 ipw2100_release_firmware(priv, &ipw2100_firmware);
1112 return err;
1113 }
1114
1115 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1116 {
1117 if (priv->status & STATUS_INT_ENABLED)
1118 return;
1119 priv->status |= STATUS_INT_ENABLED;
1120 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1121 }
1122
1123 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1124 {
1125 if (!(priv->status & STATUS_INT_ENABLED))
1126 return;
1127 priv->status &= ~STATUS_INT_ENABLED;
1128 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1129 }
1130
1131 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1132 {
1133 struct ipw2100_ordinals *ord = &priv->ordinals;
1134
1135 IPW_DEBUG_INFO("enter\n");
1136
1137 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1138 &ord->table1_addr);
1139
1140 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1141 &ord->table2_addr);
1142
1143 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1144 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1145
1146 ord->table2_size &= 0x0000FFFF;
1147
1148 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1149 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1150 IPW_DEBUG_INFO("exit\n");
1151 }
1152
1153 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1154 {
1155 u32 reg = 0;
1156 /*
1157 * Set GPIO 3 writable by FW; GPIO 1 writable
1158 * by driver and enable clock
1159 */
1160 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1161 IPW_BIT_GPIO_LED_OFF);
1162 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1163 }
1164
1165 static int rf_kill_active(struct ipw2100_priv *priv)
1166 {
1167 #define MAX_RF_KILL_CHECKS 5
1168 #define RF_KILL_CHECK_DELAY 40
1169
1170 unsigned short value = 0;
1171 u32 reg = 0;
1172 int i;
1173
1174 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1175 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1176 priv->status &= ~STATUS_RF_KILL_HW;
1177 return 0;
1178 }
1179
1180 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1181 udelay(RF_KILL_CHECK_DELAY);
1182 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1183 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1184 }
1185
1186 if (value == 0) {
1187 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1188 priv->status |= STATUS_RF_KILL_HW;
1189 } else {
1190 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1191 priv->status &= ~STATUS_RF_KILL_HW;
1192 }
1193
1194 return (value == 0);
1195 }
1196
1197 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1198 {
1199 u32 addr, len;
1200 u32 val;
1201
1202 /*
1203 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1204 */
1205 len = sizeof(addr);
1206 if (ipw2100_get_ordinal
1207 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1208 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1209 __LINE__);
1210 return -EIO;
1211 }
1212
1213 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1214
1215 /*
1216 * EEPROM version is the byte at offset 0xfd in firmware
1217 * We read 4 bytes, then shift out the byte we actually want */
1218 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1219 priv->eeprom_version = (val >> 24) & 0xFF;
1220 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1221
1222 /*
1223 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1224 *
1225 * notice that the EEPROM bit is reverse polarity, i.e.
1226 * bit = 0 signifies HW RF kill switch is supported
1227 * bit = 1 signifies HW RF kill switch is NOT supported
1228 */
1229 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1230 if (!((val >> 24) & 0x01))
1231 priv->hw_features |= HW_FEATURE_RFKILL;
1232
1233 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1234 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1235
1236 return 0;
1237 }
1238
1239 /*
1240 * Start firmware execution after power on and intialization
1241 * The sequence is:
1242 * 1. Release ARC
1243 * 2. Wait for f/w initialization completes;
1244 */
1245 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1246 {
1247 int i;
1248 u32 inta, inta_mask, gpio;
1249
1250 IPW_DEBUG_INFO("enter\n");
1251
1252 if (priv->status & STATUS_RUNNING)
1253 return 0;
1254
1255 /*
1256 * Initialize the hw - drive adapter to DO state by setting
1257 * init_done bit. Wait for clk_ready bit and Download
1258 * fw & dino ucode
1259 */
1260 if (ipw2100_download_firmware(priv)) {
1261 printk(KERN_ERR DRV_NAME
1262 ": %s: Failed to power on the adapter.\n",
1263 priv->net_dev->name);
1264 return -EIO;
1265 }
1266
1267 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1268 * in the firmware RBD and TBD ring queue */
1269 ipw2100_queues_initialize(priv);
1270
1271 ipw2100_hw_set_gpio(priv);
1272
1273 /* TODO -- Look at disabling interrupts here to make sure none
1274 * get fired during FW initialization */
1275
1276 /* Release ARC - clear reset bit */
1277 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1278
1279 /* wait for f/w intialization complete */
1280 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1281 i = 5000;
1282 do {
1283 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1284 /* Todo... wait for sync command ... */
1285
1286 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1287
1288 /* check "init done" bit */
1289 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1290 /* reset "init done" bit */
1291 write_register(priv->net_dev, IPW_REG_INTA,
1292 IPW2100_INTA_FW_INIT_DONE);
1293 break;
1294 }
1295
1296 /* check error conditions : we check these after the firmware
1297 * check so that if there is an error, the interrupt handler
1298 * will see it and the adapter will be reset */
1299 if (inta &
1300 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1301 /* clear error conditions */
1302 write_register(priv->net_dev, IPW_REG_INTA,
1303 IPW2100_INTA_FATAL_ERROR |
1304 IPW2100_INTA_PARITY_ERROR);
1305 }
1306 } while (--i);
1307
1308 /* Clear out any pending INTAs since we aren't supposed to have
1309 * interrupts enabled at this point... */
1310 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1311 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1312 inta &= IPW_INTERRUPT_MASK;
1313 /* Clear out any pending interrupts */
1314 if (inta & inta_mask)
1315 write_register(priv->net_dev, IPW_REG_INTA, inta);
1316
1317 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1318 i ? "SUCCESS" : "FAILED");
1319
1320 if (!i) {
1321 printk(KERN_WARNING DRV_NAME
1322 ": %s: Firmware did not initialize.\n",
1323 priv->net_dev->name);
1324 return -EIO;
1325 }
1326
1327 /* allow firmware to write to GPIO1 & GPIO3 */
1328 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1329
1330 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1331
1332 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1333
1334 /* Ready to receive commands */
1335 priv->status |= STATUS_RUNNING;
1336
1337 /* The adapter has been reset; we are not associated */
1338 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1339
1340 IPW_DEBUG_INFO("exit\n");
1341
1342 return 0;
1343 }
1344
1345 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1346 {
1347 if (!priv->fatal_error)
1348 return;
1349
1350 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1351 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1352 priv->fatal_error = 0;
1353 }
1354
1355 /* NOTE: Our interrupt is disabled when this method is called */
1356 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1357 {
1358 u32 reg;
1359 int i;
1360
1361 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1362
1363 ipw2100_hw_set_gpio(priv);
1364
1365 /* Step 1. Stop Master Assert */
1366 write_register(priv->net_dev, IPW_REG_RESET_REG,
1367 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1368
1369 /* Step 2. Wait for stop Master Assert
1370 * (not more than 50us, otherwise ret error */
1371 i = 5;
1372 do {
1373 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1374 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1375
1376 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1377 break;
1378 } while (--i);
1379
1380 priv->status &= ~STATUS_RESET_PENDING;
1381
1382 if (!i) {
1383 IPW_DEBUG_INFO
1384 ("exit - waited too long for master assert stop\n");
1385 return -EIO;
1386 }
1387
1388 write_register(priv->net_dev, IPW_REG_RESET_REG,
1389 IPW_AUX_HOST_RESET_REG_SW_RESET);
1390
1391 /* Reset any fatal_error conditions */
1392 ipw2100_reset_fatalerror(priv);
1393
1394 /* At this point, the adapter is now stopped and disabled */
1395 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1396 STATUS_ASSOCIATED | STATUS_ENABLED);
1397
1398 return 0;
1399 }
1400
1401 /*
1402 * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1403 *
1404 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1405 *
1406 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1407 * if STATUS_ASSN_LOST is sent.
1408 */
1409 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1410 {
1411
1412 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1413
1414 struct host_command cmd = {
1415 .host_command = CARD_DISABLE_PHY_OFF,
1416 .host_command_sequence = 0,
1417 .host_command_length = 0,
1418 };
1419 int err, i;
1420 u32 val1, val2;
1421
1422 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1423
1424 /* Turn off the radio */
1425 err = ipw2100_hw_send_command(priv, &cmd);
1426 if (err)
1427 return err;
1428
1429 for (i = 0; i < 2500; i++) {
1430 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1431 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1432
1433 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1434 (val2 & IPW2100_COMMAND_PHY_OFF))
1435 return 0;
1436
1437 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1438 }
1439
1440 return -EIO;
1441 }
1442
1443 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1444 {
1445 struct host_command cmd = {
1446 .host_command = HOST_COMPLETE,
1447 .host_command_sequence = 0,
1448 .host_command_length = 0
1449 };
1450 int err = 0;
1451
1452 IPW_DEBUG_HC("HOST_COMPLETE\n");
1453
1454 if (priv->status & STATUS_ENABLED)
1455 return 0;
1456
1457 mutex_lock(&priv->adapter_mutex);
1458
1459 if (rf_kill_active(priv)) {
1460 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1461 goto fail_up;
1462 }
1463
1464 err = ipw2100_hw_send_command(priv, &cmd);
1465 if (err) {
1466 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1467 goto fail_up;
1468 }
1469
1470 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1471 if (err) {
1472 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1473 priv->net_dev->name);
1474 goto fail_up;
1475 }
1476
1477 if (priv->stop_hang_check) {
1478 priv->stop_hang_check = 0;
1479 schedule_delayed_work(&priv->hang_check, HZ / 2);
1480 }
1481
1482 fail_up:
1483 mutex_unlock(&priv->adapter_mutex);
1484 return err;
1485 }
1486
1487 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1488 {
1489 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1490
1491 struct host_command cmd = {
1492 .host_command = HOST_PRE_POWER_DOWN,
1493 .host_command_sequence = 0,
1494 .host_command_length = 0,
1495 };
1496 int err, i;
1497 u32 reg;
1498
1499 if (!(priv->status & STATUS_RUNNING))
1500 return 0;
1501
1502 priv->status |= STATUS_STOPPING;
1503
1504 /* We can only shut down the card if the firmware is operational. So,
1505 * if we haven't reset since a fatal_error, then we can not send the
1506 * shutdown commands. */
1507 if (!priv->fatal_error) {
1508 /* First, make sure the adapter is enabled so that the PHY_OFF
1509 * command can shut it down */
1510 ipw2100_enable_adapter(priv);
1511
1512 err = ipw2100_hw_phy_off(priv);
1513 if (err)
1514 printk(KERN_WARNING DRV_NAME
1515 ": Error disabling radio %d\n", err);
1516
1517 /*
1518 * If in D0-standby mode going directly to D3 may cause a
1519 * PCI bus violation. Therefore we must change out of the D0
1520 * state.
1521 *
1522 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1523 * hardware from going into standby mode and will transition
1524 * out of D0-standby if it is already in that state.
1525 *
1526 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1527 * driver upon completion. Once received, the driver can
1528 * proceed to the D3 state.
1529 *
1530 * Prepare for power down command to fw. This command would
1531 * take HW out of D0-standby and prepare it for D3 state.
1532 *
1533 * Currently FW does not support event notification for this
1534 * event. Therefore, skip waiting for it. Just wait a fixed
1535 * 100ms
1536 */
1537 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1538
1539 err = ipw2100_hw_send_command(priv, &cmd);
1540 if (err)
1541 printk(KERN_WARNING DRV_NAME ": "
1542 "%s: Power down command failed: Error %d\n",
1543 priv->net_dev->name, err);
1544 else
1545 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1546 }
1547
1548 priv->status &= ~STATUS_ENABLED;
1549
1550 /*
1551 * Set GPIO 3 writable by FW; GPIO 1 writable
1552 * by driver and enable clock
1553 */
1554 ipw2100_hw_set_gpio(priv);
1555
1556 /*
1557 * Power down adapter. Sequence:
1558 * 1. Stop master assert (RESET_REG[9]=1)
1559 * 2. Wait for stop master (RESET_REG[8]==1)
1560 * 3. S/w reset assert (RESET_REG[7] = 1)
1561 */
1562
1563 /* Stop master assert */
1564 write_register(priv->net_dev, IPW_REG_RESET_REG,
1565 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1566
1567 /* wait stop master not more than 50 usec.
1568 * Otherwise return error. */
1569 for (i = 5; i > 0; i--) {
1570 udelay(10);
1571
1572 /* Check master stop bit */
1573 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1574
1575 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1576 break;
1577 }
1578
1579 if (i == 0)
1580 printk(KERN_WARNING DRV_NAME
1581 ": %s: Could now power down adapter.\n",
1582 priv->net_dev->name);
1583
1584 /* assert s/w reset */
1585 write_register(priv->net_dev, IPW_REG_RESET_REG,
1586 IPW_AUX_HOST_RESET_REG_SW_RESET);
1587
1588 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1589
1590 return 0;
1591 }
1592
1593 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1594 {
1595 struct host_command cmd = {
1596 .host_command = CARD_DISABLE,
1597 .host_command_sequence = 0,
1598 .host_command_length = 0
1599 };
1600 int err = 0;
1601
1602 IPW_DEBUG_HC("CARD_DISABLE\n");
1603
1604 if (!(priv->status & STATUS_ENABLED))
1605 return 0;
1606
1607 /* Make sure we clear the associated state */
1608 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1609
1610 if (!priv->stop_hang_check) {
1611 priv->stop_hang_check = 1;
1612 cancel_delayed_work(&priv->hang_check);
1613 }
1614
1615 mutex_lock(&priv->adapter_mutex);
1616
1617 err = ipw2100_hw_send_command(priv, &cmd);
1618 if (err) {
1619 printk(KERN_WARNING DRV_NAME
1620 ": exit - failed to send CARD_DISABLE command\n");
1621 goto fail_up;
1622 }
1623
1624 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1625 if (err) {
1626 printk(KERN_WARNING DRV_NAME
1627 ": exit - card failed to change to DISABLED\n");
1628 goto fail_up;
1629 }
1630
1631 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1632
1633 fail_up:
1634 mutex_unlock(&priv->adapter_mutex);
1635 return err;
1636 }
1637
1638 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1639 {
1640 struct host_command cmd = {
1641 .host_command = SET_SCAN_OPTIONS,
1642 .host_command_sequence = 0,
1643 .host_command_length = 8
1644 };
1645 int err;
1646
1647 IPW_DEBUG_INFO("enter\n");
1648
1649 IPW_DEBUG_SCAN("setting scan options\n");
1650
1651 cmd.host_command_parameters[0] = 0;
1652
1653 if (!(priv->config & CFG_ASSOCIATE))
1654 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1655 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1656 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1657 if (priv->config & CFG_PASSIVE_SCAN)
1658 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1659
1660 cmd.host_command_parameters[1] = priv->channel_mask;
1661
1662 err = ipw2100_hw_send_command(priv, &cmd);
1663
1664 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1665 cmd.host_command_parameters[0]);
1666
1667 return err;
1668 }
1669
1670 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1671 {
1672 struct host_command cmd = {
1673 .host_command = BROADCAST_SCAN,
1674 .host_command_sequence = 0,
1675 .host_command_length = 4
1676 };
1677 int err;
1678
1679 IPW_DEBUG_HC("START_SCAN\n");
1680
1681 cmd.host_command_parameters[0] = 0;
1682
1683 /* No scanning if in monitor mode */
1684 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1685 return 1;
1686
1687 if (priv->status & STATUS_SCANNING) {
1688 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1689 return 0;
1690 }
1691
1692 IPW_DEBUG_INFO("enter\n");
1693
1694 /* Not clearing here; doing so makes iwlist always return nothing...
1695 *
1696 * We should modify the table logic to use aging tables vs. clearing
1697 * the table on each scan start.
1698 */
1699 IPW_DEBUG_SCAN("starting scan\n");
1700
1701 priv->status |= STATUS_SCANNING;
1702 err = ipw2100_hw_send_command(priv, &cmd);
1703 if (err)
1704 priv->status &= ~STATUS_SCANNING;
1705
1706 IPW_DEBUG_INFO("exit\n");
1707
1708 return err;
1709 }
1710
1711 static const struct libipw_geo ipw_geos[] = {
1712 { /* Restricted */
1713 "---",
1714 .bg_channels = 14,
1715 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1716 {2427, 4}, {2432, 5}, {2437, 6},
1717 {2442, 7}, {2447, 8}, {2452, 9},
1718 {2457, 10}, {2462, 11}, {2467, 12},
1719 {2472, 13}, {2484, 14}},
1720 },
1721 };
1722
1723 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1724 {
1725 unsigned long flags;
1726 int rc = 0;
1727 u32 lock;
1728 u32 ord_len = sizeof(lock);
1729
1730 /* Age scan list entries found before suspend */
1731 if (priv->suspend_time) {
1732 libipw_networks_age(priv->ieee, priv->suspend_time);
1733 priv->suspend_time = 0;
1734 }
1735
1736 /* Quiet if manually disabled. */
1737 if (priv->status & STATUS_RF_KILL_SW) {
1738 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1739 "switch\n", priv->net_dev->name);
1740 return 0;
1741 }
1742
1743 /* the ipw2100 hardware really doesn't want power management delays
1744 * longer than 175usec
1745 */
1746 pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1747
1748 /* If the interrupt is enabled, turn it off... */
1749 spin_lock_irqsave(&priv->low_lock, flags);
1750 ipw2100_disable_interrupts(priv);
1751
1752 /* Reset any fatal_error conditions */
1753 ipw2100_reset_fatalerror(priv);
1754 spin_unlock_irqrestore(&priv->low_lock, flags);
1755
1756 if (priv->status & STATUS_POWERED ||
1757 (priv->status & STATUS_RESET_PENDING)) {
1758 /* Power cycle the card ... */
1759 if (ipw2100_power_cycle_adapter(priv)) {
1760 printk(KERN_WARNING DRV_NAME
1761 ": %s: Could not cycle adapter.\n",
1762 priv->net_dev->name);
1763 rc = 1;
1764 goto exit;
1765 }
1766 } else
1767 priv->status |= STATUS_POWERED;
1768
1769 /* Load the firmware, start the clocks, etc. */
1770 if (ipw2100_start_adapter(priv)) {
1771 printk(KERN_ERR DRV_NAME
1772 ": %s: Failed to start the firmware.\n",
1773 priv->net_dev->name);
1774 rc = 1;
1775 goto exit;
1776 }
1777
1778 ipw2100_initialize_ordinals(priv);
1779
1780 /* Determine capabilities of this particular HW configuration */
1781 if (ipw2100_get_hw_features(priv)) {
1782 printk(KERN_ERR DRV_NAME
1783 ": %s: Failed to determine HW features.\n",
1784 priv->net_dev->name);
1785 rc = 1;
1786 goto exit;
1787 }
1788
1789 /* Initialize the geo */
1790 if (libipw_set_geo(priv->ieee, &ipw_geos[0])) {
1791 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1792 return 0;
1793 }
1794 priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1795
1796 lock = LOCK_NONE;
1797 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1798 printk(KERN_ERR DRV_NAME
1799 ": %s: Failed to clear ordinal lock.\n",
1800 priv->net_dev->name);
1801 rc = 1;
1802 goto exit;
1803 }
1804
1805 priv->status &= ~STATUS_SCANNING;
1806
1807 if (rf_kill_active(priv)) {
1808 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1809 priv->net_dev->name);
1810
1811 if (priv->stop_rf_kill) {
1812 priv->stop_rf_kill = 0;
1813 schedule_delayed_work(&priv->rf_kill,
1814 round_jiffies_relative(HZ));
1815 }
1816
1817 deferred = 1;
1818 }
1819
1820 /* Turn on the interrupt so that commands can be processed */
1821 ipw2100_enable_interrupts(priv);
1822
1823 /* Send all of the commands that must be sent prior to
1824 * HOST_COMPLETE */
1825 if (ipw2100_adapter_setup(priv)) {
1826 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1827 priv->net_dev->name);
1828 rc = 1;
1829 goto exit;
1830 }
1831
1832 if (!deferred) {
1833 /* Enable the adapter - sends HOST_COMPLETE */
1834 if (ipw2100_enable_adapter(priv)) {
1835 printk(KERN_ERR DRV_NAME ": "
1836 "%s: failed in call to enable adapter.\n",
1837 priv->net_dev->name);
1838 ipw2100_hw_stop_adapter(priv);
1839 rc = 1;
1840 goto exit;
1841 }
1842
1843 /* Start a scan . . . */
1844 ipw2100_set_scan_options(priv);
1845 ipw2100_start_scan(priv);
1846 }
1847
1848 exit:
1849 return rc;
1850 }
1851
1852 static void ipw2100_down(struct ipw2100_priv *priv)
1853 {
1854 unsigned long flags;
1855 union iwreq_data wrqu = {
1856 .ap_addr = {
1857 .sa_family = ARPHRD_ETHER}
1858 };
1859 int associated = priv->status & STATUS_ASSOCIATED;
1860
1861 /* Kill the RF switch timer */
1862 if (!priv->stop_rf_kill) {
1863 priv->stop_rf_kill = 1;
1864 cancel_delayed_work(&priv->rf_kill);
1865 }
1866
1867 /* Kill the firmware hang check timer */
1868 if (!priv->stop_hang_check) {
1869 priv->stop_hang_check = 1;
1870 cancel_delayed_work(&priv->hang_check);
1871 }
1872
1873 /* Kill any pending resets */
1874 if (priv->status & STATUS_RESET_PENDING)
1875 cancel_delayed_work(&priv->reset_work);
1876
1877 /* Make sure the interrupt is on so that FW commands will be
1878 * processed correctly */
1879 spin_lock_irqsave(&priv->low_lock, flags);
1880 ipw2100_enable_interrupts(priv);
1881 spin_unlock_irqrestore(&priv->low_lock, flags);
1882
1883 if (ipw2100_hw_stop_adapter(priv))
1884 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1885 priv->net_dev->name);
1886
1887 /* Do not disable the interrupt until _after_ we disable
1888 * the adaptor. Otherwise the CARD_DISABLE command will never
1889 * be ack'd by the firmware */
1890 spin_lock_irqsave(&priv->low_lock, flags);
1891 ipw2100_disable_interrupts(priv);
1892 spin_unlock_irqrestore(&priv->low_lock, flags);
1893
1894 pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1895
1896 /* We have to signal any supplicant if we are disassociating */
1897 if (associated)
1898 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1899
1900 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1901 netif_carrier_off(priv->net_dev);
1902 netif_stop_queue(priv->net_dev);
1903 }
1904
1905 /* Called by register_netdev() */
1906 static int ipw2100_net_init(struct net_device *dev)
1907 {
1908 struct ipw2100_priv *priv = libipw_priv(dev);
1909
1910 return ipw2100_up(priv, 1);
1911 }
1912
1913 static int ipw2100_wdev_init(struct net_device *dev)
1914 {
1915 struct ipw2100_priv *priv = libipw_priv(dev);
1916 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1917 struct wireless_dev *wdev = &priv->ieee->wdev;
1918 int i;
1919
1920 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1921
1922 /* fill-out priv->ieee->bg_band */
1923 if (geo->bg_channels) {
1924 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1925
1926 bg_band->band = IEEE80211_BAND_2GHZ;
1927 bg_band->n_channels = geo->bg_channels;
1928 bg_band->channels = kcalloc(geo->bg_channels,
1929 sizeof(struct ieee80211_channel),
1930 GFP_KERNEL);
1931 if (!bg_band->channels) {
1932 ipw2100_down(priv);
1933 return -ENOMEM;
1934 }
1935 /* translate geo->bg to bg_band.channels */
1936 for (i = 0; i < geo->bg_channels; i++) {
1937 bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1938 bg_band->channels[i].center_freq = geo->bg[i].freq;
1939 bg_band->channels[i].hw_value = geo->bg[i].channel;
1940 bg_band->channels[i].max_power = geo->bg[i].max_power;
1941 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1942 bg_band->channels[i].flags |=
1943 IEEE80211_CHAN_PASSIVE_SCAN;
1944 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1945 bg_band->channels[i].flags |=
1946 IEEE80211_CHAN_NO_IBSS;
1947 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1948 bg_band->channels[i].flags |=
1949 IEEE80211_CHAN_RADAR;
1950 /* No equivalent for LIBIPW_CH_80211H_RULES,
1951 LIBIPW_CH_UNIFORM_SPREADING, or
1952 LIBIPW_CH_B_ONLY... */
1953 }
1954 /* point at bitrate info */
1955 bg_band->bitrates = ipw2100_bg_rates;
1956 bg_band->n_bitrates = RATE_COUNT;
1957
1958 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1959 }
1960
1961 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1962 if (wiphy_register(wdev->wiphy)) {
1963 ipw2100_down(priv);
1964 return -EIO;
1965 }
1966 return 0;
1967 }
1968
1969 static void ipw2100_reset_adapter(struct work_struct *work)
1970 {
1971 struct ipw2100_priv *priv =
1972 container_of(work, struct ipw2100_priv, reset_work.work);
1973 unsigned long flags;
1974 union iwreq_data wrqu = {
1975 .ap_addr = {
1976 .sa_family = ARPHRD_ETHER}
1977 };
1978 int associated = priv->status & STATUS_ASSOCIATED;
1979
1980 spin_lock_irqsave(&priv->low_lock, flags);
1981 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1982 priv->resets++;
1983 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1984 priv->status |= STATUS_SECURITY_UPDATED;
1985
1986 /* Force a power cycle even if interface hasn't been opened
1987 * yet */
1988 cancel_delayed_work(&priv->reset_work);
1989 priv->status |= STATUS_RESET_PENDING;
1990 spin_unlock_irqrestore(&priv->low_lock, flags);
1991
1992 mutex_lock(&priv->action_mutex);
1993 /* stop timed checks so that they don't interfere with reset */
1994 priv->stop_hang_check = 1;
1995 cancel_delayed_work(&priv->hang_check);
1996
1997 /* We have to signal any supplicant if we are disassociating */
1998 if (associated)
1999 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
2000
2001 ipw2100_up(priv, 0);
2002 mutex_unlock(&priv->action_mutex);
2003
2004 }
2005
2006 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
2007 {
2008
2009 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2010 int ret;
2011 unsigned int len, essid_len;
2012 char essid[IW_ESSID_MAX_SIZE];
2013 u32 txrate;
2014 u32 chan;
2015 char *txratename;
2016 u8 bssid[ETH_ALEN];
2017 DECLARE_SSID_BUF(ssid);
2018
2019 /*
2020 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2021 * an actual MAC of the AP. Seems like FW sets this
2022 * address too late. Read it later and expose through
2023 * /proc or schedule a later task to query and update
2024 */
2025
2026 essid_len = IW_ESSID_MAX_SIZE;
2027 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2028 essid, &essid_len);
2029 if (ret) {
2030 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2031 __LINE__);
2032 return;
2033 }
2034
2035 len = sizeof(u32);
2036 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2037 if (ret) {
2038 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2039 __LINE__);
2040 return;
2041 }
2042
2043 len = sizeof(u32);
2044 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2045 if (ret) {
2046 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2047 __LINE__);
2048 return;
2049 }
2050 len = ETH_ALEN;
2051 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
2052 if (ret) {
2053 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2054 __LINE__);
2055 return;
2056 }
2057 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2058
2059 switch (txrate) {
2060 case TX_RATE_1_MBIT:
2061 txratename = "1Mbps";
2062 break;
2063 case TX_RATE_2_MBIT:
2064 txratename = "2Mbsp";
2065 break;
2066 case TX_RATE_5_5_MBIT:
2067 txratename = "5.5Mbps";
2068 break;
2069 case TX_RATE_11_MBIT:
2070 txratename = "11Mbps";
2071 break;
2072 default:
2073 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2074 txratename = "unknown rate";
2075 break;
2076 }
2077
2078 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2079 priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2080 txratename, chan, bssid);
2081
2082 /* now we copy read ssid into dev */
2083 if (!(priv->config & CFG_STATIC_ESSID)) {
2084 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2085 memcpy(priv->essid, essid, priv->essid_len);
2086 }
2087 priv->channel = chan;
2088 memcpy(priv->bssid, bssid, ETH_ALEN);
2089
2090 priv->status |= STATUS_ASSOCIATING;
2091 priv->connect_start = get_seconds();
2092
2093 schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2094 }
2095
2096 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2097 int length, int batch_mode)
2098 {
2099 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2100 struct host_command cmd = {
2101 .host_command = SSID,
2102 .host_command_sequence = 0,
2103 .host_command_length = ssid_len
2104 };
2105 int err;
2106 DECLARE_SSID_BUF(ssid);
2107
2108 IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2109
2110 if (ssid_len)
2111 memcpy(cmd.host_command_parameters, essid, ssid_len);
2112
2113 if (!batch_mode) {
2114 err = ipw2100_disable_adapter(priv);
2115 if (err)
2116 return err;
2117 }
2118
2119 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2120 * disable auto association -- so we cheat by setting a bogus SSID */
2121 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2122 int i;
2123 u8 *bogus = (u8 *) cmd.host_command_parameters;
2124 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2125 bogus[i] = 0x18 + i;
2126 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2127 }
2128
2129 /* NOTE: We always send the SSID command even if the provided ESSID is
2130 * the same as what we currently think is set. */
2131
2132 err = ipw2100_hw_send_command(priv, &cmd);
2133 if (!err) {
2134 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2135 memcpy(priv->essid, essid, ssid_len);
2136 priv->essid_len = ssid_len;
2137 }
2138
2139 if (!batch_mode) {
2140 if (ipw2100_enable_adapter(priv))
2141 err = -EIO;
2142 }
2143
2144 return err;
2145 }
2146
2147 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2148 {
2149 DECLARE_SSID_BUF(ssid);
2150
2151 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2152 "disassociated: '%s' %pM\n",
2153 print_ssid(ssid, priv->essid, priv->essid_len),
2154 priv->bssid);
2155
2156 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2157
2158 if (priv->status & STATUS_STOPPING) {
2159 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2160 return;
2161 }
2162
2163 memset(priv->bssid, 0, ETH_ALEN);
2164 memset(priv->ieee->bssid, 0, ETH_ALEN);
2165
2166 netif_carrier_off(priv->net_dev);
2167 netif_stop_queue(priv->net_dev);
2168
2169 if (!(priv->status & STATUS_RUNNING))
2170 return;
2171
2172 if (priv->status & STATUS_SECURITY_UPDATED)
2173 schedule_delayed_work(&priv->security_work, 0);
2174
2175 schedule_delayed_work(&priv->wx_event_work, 0);
2176 }
2177
2178 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2179 {
2180 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2181 priv->net_dev->name);
2182
2183 /* RF_KILL is now enabled (else we wouldn't be here) */
2184 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2185 priv->status |= STATUS_RF_KILL_HW;
2186
2187 /* Make sure the RF Kill check timer is running */
2188 priv->stop_rf_kill = 0;
2189 cancel_delayed_work(&priv->rf_kill);
2190 schedule_delayed_work(&priv->rf_kill, round_jiffies_relative(HZ));
2191 }
2192
2193 static void send_scan_event(void *data)
2194 {
2195 struct ipw2100_priv *priv = data;
2196 union iwreq_data wrqu;
2197
2198 wrqu.data.length = 0;
2199 wrqu.data.flags = 0;
2200 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2201 }
2202
2203 static void ipw2100_scan_event_later(struct work_struct *work)
2204 {
2205 send_scan_event(container_of(work, struct ipw2100_priv,
2206 scan_event_later.work));
2207 }
2208
2209 static void ipw2100_scan_event_now(struct work_struct *work)
2210 {
2211 send_scan_event(container_of(work, struct ipw2100_priv,
2212 scan_event_now));
2213 }
2214
2215 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2216 {
2217 IPW_DEBUG_SCAN("scan complete\n");
2218 /* Age the scan results... */
2219 priv->ieee->scans++;
2220 priv->status &= ~STATUS_SCANNING;
2221
2222 /* Only userspace-requested scan completion events go out immediately */
2223 if (!priv->user_requested_scan) {
2224 if (!delayed_work_pending(&priv->scan_event_later))
2225 schedule_delayed_work(&priv->scan_event_later,
2226 round_jiffies_relative(msecs_to_jiffies(4000)));
2227 } else {
2228 priv->user_requested_scan = 0;
2229 cancel_delayed_work(&priv->scan_event_later);
2230 schedule_work(&priv->scan_event_now);
2231 }
2232 }
2233
2234 #ifdef CONFIG_IPW2100_DEBUG
2235 #define IPW2100_HANDLER(v, f) { v, f, # v }
2236 struct ipw2100_status_indicator {
2237 int status;
2238 void (*cb) (struct ipw2100_priv * priv, u32 status);
2239 char *name;
2240 };
2241 #else
2242 #define IPW2100_HANDLER(v, f) { v, f }
2243 struct ipw2100_status_indicator {
2244 int status;
2245 void (*cb) (struct ipw2100_priv * priv, u32 status);
2246 };
2247 #endif /* CONFIG_IPW2100_DEBUG */
2248
2249 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2250 {
2251 IPW_DEBUG_SCAN("Scanning...\n");
2252 priv->status |= STATUS_SCANNING;
2253 }
2254
2255 static const struct ipw2100_status_indicator status_handlers[] = {
2256 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2257 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2258 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2259 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2260 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2261 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2262 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2263 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2264 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2265 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2266 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2267 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2268 IPW2100_HANDLER(-1, NULL)
2269 };
2270
2271 static void isr_status_change(struct ipw2100_priv *priv, int status)
2272 {
2273 int i;
2274
2275 if (status == IPW_STATE_SCANNING &&
2276 priv->status & STATUS_ASSOCIATED &&
2277 !(priv->status & STATUS_SCANNING)) {
2278 IPW_DEBUG_INFO("Scan detected while associated, with "
2279 "no scan request. Restarting firmware.\n");
2280
2281 /* Wake up any sleeping jobs */
2282 schedule_reset(priv);
2283 }
2284
2285 for (i = 0; status_handlers[i].status != -1; i++) {
2286 if (status == status_handlers[i].status) {
2287 IPW_DEBUG_NOTIF("Status change: %s\n",
2288 status_handlers[i].name);
2289 if (status_handlers[i].cb)
2290 status_handlers[i].cb(priv, status);
2291 priv->wstats.status = status;
2292 return;
2293 }
2294 }
2295
2296 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2297 }
2298
2299 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2300 struct ipw2100_cmd_header *cmd)
2301 {
2302 #ifdef CONFIG_IPW2100_DEBUG
2303 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2304 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2305 command_types[cmd->host_command_reg],
2306 cmd->host_command_reg);
2307 }
2308 #endif
2309 if (cmd->host_command_reg == HOST_COMPLETE)
2310 priv->status |= STATUS_ENABLED;
2311
2312 if (cmd->host_command_reg == CARD_DISABLE)
2313 priv->status &= ~STATUS_ENABLED;
2314
2315 priv->status &= ~STATUS_CMD_ACTIVE;
2316
2317 wake_up_interruptible(&priv->wait_command_queue);
2318 }
2319
2320 #ifdef CONFIG_IPW2100_DEBUG
2321 static const char *frame_types[] = {
2322 "COMMAND_STATUS_VAL",
2323 "STATUS_CHANGE_VAL",
2324 "P80211_DATA_VAL",
2325 "P8023_DATA_VAL",
2326 "HOST_NOTIFICATION_VAL"
2327 };
2328 #endif
2329
2330 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2331 struct ipw2100_rx_packet *packet)
2332 {
2333 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2334 if (!packet->skb)
2335 return -ENOMEM;
2336
2337 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2338 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2339 sizeof(struct ipw2100_rx),
2340 PCI_DMA_FROMDEVICE);
2341 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2342 * dma_addr */
2343
2344 return 0;
2345 }
2346
2347 #define SEARCH_ERROR 0xffffffff
2348 #define SEARCH_FAIL 0xfffffffe
2349 #define SEARCH_SUCCESS 0xfffffff0
2350 #define SEARCH_DISCARD 0
2351 #define SEARCH_SNAPSHOT 1
2352
2353 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2354 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2355 {
2356 int i;
2357 if (!priv->snapshot[0])
2358 return;
2359 for (i = 0; i < 0x30; i++)
2360 kfree(priv->snapshot[i]);
2361 priv->snapshot[0] = NULL;
2362 }
2363
2364 #ifdef IPW2100_DEBUG_C3
2365 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2366 {
2367 int i;
2368 if (priv->snapshot[0])
2369 return 1;
2370 for (i = 0; i < 0x30; i++) {
2371 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2372 if (!priv->snapshot[i]) {
2373 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2374 "buffer %d\n", priv->net_dev->name, i);
2375 while (i > 0)
2376 kfree(priv->snapshot[--i]);
2377 priv->snapshot[0] = NULL;
2378 return 0;
2379 }
2380 }
2381
2382 return 1;
2383 }
2384
2385 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2386 size_t len, int mode)
2387 {
2388 u32 i, j;
2389 u32 tmp;
2390 u8 *s, *d;
2391 u32 ret;
2392
2393 s = in_buf;
2394 if (mode == SEARCH_SNAPSHOT) {
2395 if (!ipw2100_snapshot_alloc(priv))
2396 mode = SEARCH_DISCARD;
2397 }
2398
2399 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2400 read_nic_dword(priv->net_dev, i, &tmp);
2401 if (mode == SEARCH_SNAPSHOT)
2402 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2403 if (ret == SEARCH_FAIL) {
2404 d = (u8 *) & tmp;
2405 for (j = 0; j < 4; j++) {
2406 if (*s != *d) {
2407 s = in_buf;
2408 continue;
2409 }
2410
2411 s++;
2412 d++;
2413
2414 if ((s - in_buf) == len)
2415 ret = (i + j) - len + 1;
2416 }
2417 } else if (mode == SEARCH_DISCARD)
2418 return ret;
2419 }
2420
2421 return ret;
2422 }
2423 #endif
2424
2425 /*
2426 *
2427 * 0) Disconnect the SKB from the firmware (just unmap)
2428 * 1) Pack the ETH header into the SKB
2429 * 2) Pass the SKB to the network stack
2430 *
2431 * When packet is provided by the firmware, it contains the following:
2432 *
2433 * . libipw_hdr
2434 * . libipw_snap_hdr
2435 *
2436 * The size of the constructed ethernet
2437 *
2438 */
2439 #ifdef IPW2100_RX_DEBUG
2440 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2441 #endif
2442
2443 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2444 {
2445 #ifdef IPW2100_DEBUG_C3
2446 struct ipw2100_status *status = &priv->status_queue.drv[i];
2447 u32 match, reg;
2448 int j;
2449 #endif
2450
2451 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2452 i * sizeof(struct ipw2100_status));
2453
2454 #ifdef IPW2100_DEBUG_C3
2455 /* Halt the firmware so we can get a good image */
2456 write_register(priv->net_dev, IPW_REG_RESET_REG,
2457 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2458 j = 5;
2459 do {
2460 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2461 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2462
2463 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2464 break;
2465 } while (j--);
2466
2467 match = ipw2100_match_buf(priv, (u8 *) status,
2468 sizeof(struct ipw2100_status),
2469 SEARCH_SNAPSHOT);
2470 if (match < SEARCH_SUCCESS)
2471 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2472 "offset 0x%06X, length %d:\n",
2473 priv->net_dev->name, match,
2474 sizeof(struct ipw2100_status));
2475 else
2476 IPW_DEBUG_INFO("%s: No DMA status match in "
2477 "Firmware.\n", priv->net_dev->name);
2478
2479 printk_buf((u8 *) priv->status_queue.drv,
2480 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2481 #endif
2482
2483 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2484 priv->net_dev->stats.rx_errors++;
2485 schedule_reset(priv);
2486 }
2487
2488 static void isr_rx(struct ipw2100_priv *priv, int i,
2489 struct libipw_rx_stats *stats)
2490 {
2491 struct net_device *dev = priv->net_dev;
2492 struct ipw2100_status *status = &priv->status_queue.drv[i];
2493 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2494
2495 IPW_DEBUG_RX("Handler...\n");
2496
2497 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2498 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2499 " Dropping.\n",
2500 dev->name,
2501 status->frame_size, skb_tailroom(packet->skb));
2502 dev->stats.rx_errors++;
2503 return;
2504 }
2505
2506 if (unlikely(!netif_running(dev))) {
2507 dev->stats.rx_errors++;
2508 priv->wstats.discard.misc++;
2509 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2510 return;
2511 }
2512
2513 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2514 !(priv->status & STATUS_ASSOCIATED))) {
2515 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2516 priv->wstats.discard.misc++;
2517 return;
2518 }
2519
2520 pci_unmap_single(priv->pci_dev,
2521 packet->dma_addr,
2522 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2523
2524 skb_put(packet->skb, status->frame_size);
2525
2526 #ifdef IPW2100_RX_DEBUG
2527 /* Make a copy of the frame so we can dump it to the logs if
2528 * libipw_rx fails */
2529 skb_copy_from_linear_data(packet->skb, packet_data,
2530 min_t(u32, status->frame_size,
2531 IPW_RX_NIC_BUFFER_LENGTH));
2532 #endif
2533
2534 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2535 #ifdef IPW2100_RX_DEBUG
2536 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2537 dev->name);
2538 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2539 #endif
2540 dev->stats.rx_errors++;
2541
2542 /* libipw_rx failed, so it didn't free the SKB */
2543 dev_kfree_skb_any(packet->skb);
2544 packet->skb = NULL;
2545 }
2546
2547 /* We need to allocate a new SKB and attach it to the RDB. */
2548 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2549 printk(KERN_WARNING DRV_NAME ": "
2550 "%s: Unable to allocate SKB onto RBD ring - disabling "
2551 "adapter.\n", dev->name);
2552 /* TODO: schedule adapter shutdown */
2553 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2554 }
2555
2556 /* Update the RDB entry */
2557 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2558 }
2559
2560 #ifdef CONFIG_IPW2100_MONITOR
2561
2562 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2563 struct libipw_rx_stats *stats)
2564 {
2565 struct net_device *dev = priv->net_dev;
2566 struct ipw2100_status *status = &priv->status_queue.drv[i];
2567 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2568
2569 /* Magic struct that slots into the radiotap header -- no reason
2570 * to build this manually element by element, we can write it much
2571 * more efficiently than we can parse it. ORDER MATTERS HERE */
2572 struct ipw_rt_hdr {
2573 struct ieee80211_radiotap_header rt_hdr;
2574 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2575 } *ipw_rt;
2576
2577 IPW_DEBUG_RX("Handler...\n");
2578
2579 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2580 sizeof(struct ipw_rt_hdr))) {
2581 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2582 " Dropping.\n",
2583 dev->name,
2584 status->frame_size,
2585 skb_tailroom(packet->skb));
2586 dev->stats.rx_errors++;
2587 return;
2588 }
2589
2590 if (unlikely(!netif_running(dev))) {
2591 dev->stats.rx_errors++;
2592 priv->wstats.discard.misc++;
2593 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2594 return;
2595 }
2596
2597 if (unlikely(priv->config & CFG_CRC_CHECK &&
2598 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2599 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2600 dev->stats.rx_errors++;
2601 return;
2602 }
2603
2604 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2605 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2606 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2607 packet->skb->data, status->frame_size);
2608
2609 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2610
2611 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2612 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2613 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2614
2615 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2616
2617 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2618
2619 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2620
2621 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2622 dev->stats.rx_errors++;
2623
2624 /* libipw_rx failed, so it didn't free the SKB */
2625 dev_kfree_skb_any(packet->skb);
2626 packet->skb = NULL;
2627 }
2628
2629 /* We need to allocate a new SKB and attach it to the RDB. */
2630 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2631 IPW_DEBUG_WARNING(
2632 "%s: Unable to allocate SKB onto RBD ring - disabling "
2633 "adapter.\n", dev->name);
2634 /* TODO: schedule adapter shutdown */
2635 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2636 }
2637
2638 /* Update the RDB entry */
2639 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2640 }
2641
2642 #endif
2643
2644 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2645 {
2646 struct ipw2100_status *status = &priv->status_queue.drv[i];
2647 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2648 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2649
2650 switch (frame_type) {
2651 case COMMAND_STATUS_VAL:
2652 return (status->frame_size != sizeof(u->rx_data.command));
2653 case STATUS_CHANGE_VAL:
2654 return (status->frame_size != sizeof(u->rx_data.status));
2655 case HOST_NOTIFICATION_VAL:
2656 return (status->frame_size < sizeof(u->rx_data.notification));
2657 case P80211_DATA_VAL:
2658 case P8023_DATA_VAL:
2659 #ifdef CONFIG_IPW2100_MONITOR
2660 return 0;
2661 #else
2662 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2663 case IEEE80211_FTYPE_MGMT:
2664 case IEEE80211_FTYPE_CTL:
2665 return 0;
2666 case IEEE80211_FTYPE_DATA:
2667 return (status->frame_size >
2668 IPW_MAX_802_11_PAYLOAD_LENGTH);
2669 }
2670 #endif
2671 }
2672
2673 return 1;
2674 }
2675
2676 /*
2677 * ipw2100 interrupts are disabled at this point, and the ISR
2678 * is the only code that calls this method. So, we do not need
2679 * to play with any locks.
2680 *
2681 * RX Queue works as follows:
2682 *
2683 * Read index - firmware places packet in entry identified by the
2684 * Read index and advances Read index. In this manner,
2685 * Read index will always point to the next packet to
2686 * be filled--but not yet valid.
2687 *
2688 * Write index - driver fills this entry with an unused RBD entry.
2689 * This entry has not filled by the firmware yet.
2690 *
2691 * In between the W and R indexes are the RBDs that have been received
2692 * but not yet processed.
2693 *
2694 * The process of handling packets will start at WRITE + 1 and advance
2695 * until it reaches the READ index.
2696 *
2697 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2698 *
2699 */
2700 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2701 {
2702 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2703 struct ipw2100_status_queue *sq = &priv->status_queue;
2704 struct ipw2100_rx_packet *packet;
2705 u16 frame_type;
2706 u32 r, w, i, s;
2707 struct ipw2100_rx *u;
2708 struct libipw_rx_stats stats = {
2709 .mac_time = jiffies,
2710 };
2711
2712 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2713 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2714
2715 if (r >= rxq->entries) {
2716 IPW_DEBUG_RX("exit - bad read index\n");
2717 return;
2718 }
2719
2720 i = (rxq->next + 1) % rxq->entries;
2721 s = i;
2722 while (i != r) {
2723 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2724 r, rxq->next, i); */
2725
2726 packet = &priv->rx_buffers[i];
2727
2728 /* Sync the DMA for the RX buffer so CPU is sure to get
2729 * the correct values */
2730 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2731 sizeof(struct ipw2100_rx),
2732 PCI_DMA_FROMDEVICE);
2733
2734 if (unlikely(ipw2100_corruption_check(priv, i))) {
2735 ipw2100_corruption_detected(priv, i);
2736 goto increment;
2737 }
2738
2739 u = packet->rxp;
2740 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2741 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2742 stats.len = sq->drv[i].frame_size;
2743
2744 stats.mask = 0;
2745 if (stats.rssi != 0)
2746 stats.mask |= LIBIPW_STATMASK_RSSI;
2747 stats.freq = LIBIPW_24GHZ_BAND;
2748
2749 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2750 priv->net_dev->name, frame_types[frame_type],
2751 stats.len);
2752
2753 switch (frame_type) {
2754 case COMMAND_STATUS_VAL:
2755 /* Reset Rx watchdog */
2756 isr_rx_complete_command(priv, &u->rx_data.command);
2757 break;
2758
2759 case STATUS_CHANGE_VAL:
2760 isr_status_change(priv, u->rx_data.status);
2761 break;
2762
2763 case P80211_DATA_VAL:
2764 case P8023_DATA_VAL:
2765 #ifdef CONFIG_IPW2100_MONITOR
2766 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2767 isr_rx_monitor(priv, i, &stats);
2768 break;
2769 }
2770 #endif
2771 if (stats.len < sizeof(struct libipw_hdr_3addr))
2772 break;
2773 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2774 case IEEE80211_FTYPE_MGMT:
2775 libipw_rx_mgt(priv->ieee,
2776 &u->rx_data.header, &stats);
2777 break;
2778
2779 case IEEE80211_FTYPE_CTL:
2780 break;
2781
2782 case IEEE80211_FTYPE_DATA:
2783 isr_rx(priv, i, &stats);
2784 break;
2785
2786 }
2787 break;
2788 }
2789
2790 increment:
2791 /* clear status field associated with this RBD */
2792 rxq->drv[i].status.info.field = 0;
2793
2794 i = (i + 1) % rxq->entries;
2795 }
2796
2797 if (i != s) {
2798 /* backtrack one entry, wrapping to end if at 0 */
2799 rxq->next = (i ? i : rxq->entries) - 1;
2800
2801 write_register(priv->net_dev,
2802 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2803 }
2804 }
2805
2806 /*
2807 * __ipw2100_tx_process
2808 *
2809 * This routine will determine whether the next packet on
2810 * the fw_pend_list has been processed by the firmware yet.
2811 *
2812 * If not, then it does nothing and returns.
2813 *
2814 * If so, then it removes the item from the fw_pend_list, frees
2815 * any associated storage, and places the item back on the
2816 * free list of its source (either msg_free_list or tx_free_list)
2817 *
2818 * TX Queue works as follows:
2819 *
2820 * Read index - points to the next TBD that the firmware will
2821 * process. The firmware will read the data, and once
2822 * done processing, it will advance the Read index.
2823 *
2824 * Write index - driver fills this entry with an constructed TBD
2825 * entry. The Write index is not advanced until the
2826 * packet has been configured.
2827 *
2828 * In between the W and R indexes are the TBDs that have NOT been
2829 * processed. Lagging behind the R index are packets that have
2830 * been processed but have not been freed by the driver.
2831 *
2832 * In order to free old storage, an internal index will be maintained
2833 * that points to the next packet to be freed. When all used
2834 * packets have been freed, the oldest index will be the same as the
2835 * firmware's read index.
2836 *
2837 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2838 *
2839 * Because the TBD structure can not contain arbitrary data, the
2840 * driver must keep an internal queue of cached allocations such that
2841 * it can put that data back into the tx_free_list and msg_free_list
2842 * for use by future command and data packets.
2843 *
2844 */
2845 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2846 {
2847 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2848 struct ipw2100_bd *tbd;
2849 struct list_head *element;
2850 struct ipw2100_tx_packet *packet;
2851 int descriptors_used;
2852 int e, i;
2853 u32 r, w, frag_num = 0;
2854
2855 if (list_empty(&priv->fw_pend_list))
2856 return 0;
2857
2858 element = priv->fw_pend_list.next;
2859
2860 packet = list_entry(element, struct ipw2100_tx_packet, list);
2861 tbd = &txq->drv[packet->index];
2862
2863 /* Determine how many TBD entries must be finished... */
2864 switch (packet->type) {
2865 case COMMAND:
2866 /* COMMAND uses only one slot; don't advance */
2867 descriptors_used = 1;
2868 e = txq->oldest;
2869 break;
2870
2871 case DATA:
2872 /* DATA uses two slots; advance and loop position. */
2873 descriptors_used = tbd->num_fragments;
2874 frag_num = tbd->num_fragments - 1;
2875 e = txq->oldest + frag_num;
2876 e %= txq->entries;
2877 break;
2878
2879 default:
2880 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2881 priv->net_dev->name);
2882 return 0;
2883 }
2884
2885 /* if the last TBD is not done by NIC yet, then packet is
2886 * not ready to be released.
2887 *
2888 */
2889 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2890 &r);
2891 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2892 &w);
2893 if (w != txq->next)
2894 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2895 priv->net_dev->name);
2896
2897 /*
2898 * txq->next is the index of the last packet written txq->oldest is
2899 * the index of the r is the index of the next packet to be read by
2900 * firmware
2901 */
2902
2903 /*
2904 * Quick graphic to help you visualize the following
2905 * if / else statement
2906 *
2907 * ===>| s---->|===============
2908 * e>|
2909 * | a | b | c | d | e | f | g | h | i | j | k | l
2910 * r---->|
2911 * w
2912 *
2913 * w - updated by driver
2914 * r - updated by firmware
2915 * s - start of oldest BD entry (txq->oldest)
2916 * e - end of oldest BD entry
2917 *
2918 */
2919 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2920 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2921 return 0;
2922 }
2923
2924 list_del(element);
2925 DEC_STAT(&priv->fw_pend_stat);
2926
2927 #ifdef CONFIG_IPW2100_DEBUG
2928 {
2929 i = txq->oldest;
2930 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2931 &txq->drv[i],
2932 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2933 txq->drv[i].host_addr, txq->drv[i].buf_length);
2934
2935 if (packet->type == DATA) {
2936 i = (i + 1) % txq->entries;
2937
2938 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2939 &txq->drv[i],
2940 (u32) (txq->nic + i *
2941 sizeof(struct ipw2100_bd)),
2942 (u32) txq->drv[i].host_addr,
2943 txq->drv[i].buf_length);
2944 }
2945 }
2946 #endif
2947
2948 switch (packet->type) {
2949 case DATA:
2950 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2951 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2952 "Expecting DATA TBD but pulled "
2953 "something else: ids %d=%d.\n",
2954 priv->net_dev->name, txq->oldest, packet->index);
2955
2956 /* DATA packet; we have to unmap and free the SKB */
2957 for (i = 0; i < frag_num; i++) {
2958 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2959
2960 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2961 (packet->index + 1 + i) % txq->entries,
2962 tbd->host_addr, tbd->buf_length);
2963
2964 pci_unmap_single(priv->pci_dev,
2965 tbd->host_addr,
2966 tbd->buf_length, PCI_DMA_TODEVICE);
2967 }
2968
2969 libipw_txb_free(packet->info.d_struct.txb);
2970 packet->info.d_struct.txb = NULL;
2971
2972 list_add_tail(element, &priv->tx_free_list);
2973 INC_STAT(&priv->tx_free_stat);
2974
2975 /* We have a free slot in the Tx queue, so wake up the
2976 * transmit layer if it is stopped. */
2977 if (priv->status & STATUS_ASSOCIATED)
2978 netif_wake_queue(priv->net_dev);
2979
2980 /* A packet was processed by the hardware, so update the
2981 * watchdog */
2982 priv->net_dev->trans_start = jiffies;
2983
2984 break;
2985
2986 case COMMAND:
2987 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2988 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2989 "Expecting COMMAND TBD but pulled "
2990 "something else: ids %d=%d.\n",
2991 priv->net_dev->name, txq->oldest, packet->index);
2992
2993 #ifdef CONFIG_IPW2100_DEBUG
2994 if (packet->info.c_struct.cmd->host_command_reg <
2995 ARRAY_SIZE(command_types))
2996 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2997 command_types[packet->info.c_struct.cmd->
2998 host_command_reg],
2999 packet->info.c_struct.cmd->
3000 host_command_reg,
3001 packet->info.c_struct.cmd->cmd_status_reg);
3002 #endif
3003
3004 list_add_tail(element, &priv->msg_free_list);
3005 INC_STAT(&priv->msg_free_stat);
3006 break;
3007 }
3008
3009 /* advance oldest used TBD pointer to start of next entry */
3010 txq->oldest = (e + 1) % txq->entries;
3011 /* increase available TBDs number */
3012 txq->available += descriptors_used;
3013 SET_STAT(&priv->txq_stat, txq->available);
3014
3015 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
3016 jiffies - packet->jiffy_start);
3017
3018 return (!list_empty(&priv->fw_pend_list));
3019 }
3020
3021 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3022 {
3023 int i = 0;
3024
3025 while (__ipw2100_tx_process(priv) && i < 200)
3026 i++;
3027
3028 if (i == 200) {
3029 printk(KERN_WARNING DRV_NAME ": "
3030 "%s: Driver is running slow (%d iters).\n",
3031 priv->net_dev->name, i);
3032 }
3033 }
3034
3035 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3036 {
3037 struct list_head *element;
3038 struct ipw2100_tx_packet *packet;
3039 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3040 struct ipw2100_bd *tbd;
3041 int next = txq->next;
3042
3043 while (!list_empty(&priv->msg_pend_list)) {
3044 /* if there isn't enough space in TBD queue, then
3045 * don't stuff a new one in.
3046 * NOTE: 3 are needed as a command will take one,
3047 * and there is a minimum of 2 that must be
3048 * maintained between the r and w indexes
3049 */
3050 if (txq->available <= 3) {
3051 IPW_DEBUG_TX("no room in tx_queue\n");
3052 break;
3053 }
3054
3055 element = priv->msg_pend_list.next;
3056 list_del(element);
3057 DEC_STAT(&priv->msg_pend_stat);
3058
3059 packet = list_entry(element, struct ipw2100_tx_packet, list);
3060
3061 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3062 &txq->drv[txq->next],
3063 (u32) (txq->nic + txq->next *
3064 sizeof(struct ipw2100_bd)));
3065
3066 packet->index = txq->next;
3067
3068 tbd = &txq->drv[txq->next];
3069
3070 /* initialize TBD */
3071 tbd->host_addr = packet->info.c_struct.cmd_phys;
3072 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3073 /* not marking number of fragments causes problems
3074 * with f/w debug version */
3075 tbd->num_fragments = 1;
3076 tbd->status.info.field =
3077 IPW_BD_STATUS_TX_FRAME_COMMAND |
3078 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3079
3080 /* update TBD queue counters */
3081 txq->next++;
3082 txq->next %= txq->entries;
3083 txq->available--;
3084 DEC_STAT(&priv->txq_stat);
3085
3086 list_add_tail(element, &priv->fw_pend_list);
3087 INC_STAT(&priv->fw_pend_stat);
3088 }
3089
3090 if (txq->next != next) {
3091 /* kick off the DMA by notifying firmware the
3092 * write index has moved; make sure TBD stores are sync'd */
3093 wmb();
3094 write_register(priv->net_dev,
3095 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3096 txq->next);
3097 }
3098 }
3099
3100 /*
3101 * ipw2100_tx_send_data
3102 *
3103 */
3104 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3105 {
3106 struct list_head *element;
3107 struct ipw2100_tx_packet *packet;
3108 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3109 struct ipw2100_bd *tbd;
3110 int next = txq->next;
3111 int i = 0;
3112 struct ipw2100_data_header *ipw_hdr;
3113 struct libipw_hdr_3addr *hdr;
3114
3115 while (!list_empty(&priv->tx_pend_list)) {
3116 /* if there isn't enough space in TBD queue, then
3117 * don't stuff a new one in.
3118 * NOTE: 4 are needed as a data will take two,
3119 * and there is a minimum of 2 that must be
3120 * maintained between the r and w indexes
3121 */
3122 element = priv->tx_pend_list.next;
3123 packet = list_entry(element, struct ipw2100_tx_packet, list);
3124
3125 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3126 IPW_MAX_BDS)) {
3127 /* TODO: Support merging buffers if more than
3128 * IPW_MAX_BDS are used */
3129 IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded. "
3130 "Increase fragmentation level.\n",
3131 priv->net_dev->name);
3132 }
3133
3134 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3135 IPW_DEBUG_TX("no room in tx_queue\n");
3136 break;
3137 }
3138
3139 list_del(element);
3140 DEC_STAT(&priv->tx_pend_stat);
3141
3142 tbd = &txq->drv[txq->next];
3143
3144 packet->index = txq->next;
3145
3146 ipw_hdr = packet->info.d_struct.data;
3147 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3148 fragments[0]->data;
3149
3150 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3151 /* To DS: Addr1 = BSSID, Addr2 = SA,
3152 Addr3 = DA */
3153 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3154 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3155 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3156 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3157 Addr3 = BSSID */
3158 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3159 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3160 }
3161
3162 ipw_hdr->host_command_reg = SEND;
3163 ipw_hdr->host_command_reg1 = 0;
3164
3165 /* For now we only support host based encryption */
3166 ipw_hdr->needs_encryption = 0;
3167 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3168 if (packet->info.d_struct.txb->nr_frags > 1)
3169 ipw_hdr->fragment_size =
3170 packet->info.d_struct.txb->frag_size -
3171 LIBIPW_3ADDR_LEN;
3172 else
3173 ipw_hdr->fragment_size = 0;
3174
3175 tbd->host_addr = packet->info.d_struct.data_phys;
3176 tbd->buf_length = sizeof(struct ipw2100_data_header);
3177 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3178 tbd->status.info.field =
3179 IPW_BD_STATUS_TX_FRAME_802_3 |
3180 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3181 txq->next++;
3182 txq->next %= txq->entries;
3183
3184 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3185 packet->index, tbd->host_addr, tbd->buf_length);
3186 #ifdef CONFIG_IPW2100_DEBUG
3187 if (packet->info.d_struct.txb->nr_frags > 1)
3188 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3189 packet->info.d_struct.txb->nr_frags);
3190 #endif
3191
3192 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3193 tbd = &txq->drv[txq->next];
3194 if (i == packet->info.d_struct.txb->nr_frags - 1)
3195 tbd->status.info.field =
3196 IPW_BD_STATUS_TX_FRAME_802_3 |
3197 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3198 else
3199 tbd->status.info.field =
3200 IPW_BD_STATUS_TX_FRAME_802_3 |
3201 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3202
3203 tbd->buf_length = packet->info.d_struct.txb->
3204 fragments[i]->len - LIBIPW_3ADDR_LEN;
3205
3206 tbd->host_addr = pci_map_single(priv->pci_dev,
3207 packet->info.d_struct.
3208 txb->fragments[i]->
3209 data +
3210 LIBIPW_3ADDR_LEN,
3211 tbd->buf_length,
3212 PCI_DMA_TODEVICE);
3213
3214 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3215 txq->next, tbd->host_addr,
3216 tbd->buf_length);
3217
3218 pci_dma_sync_single_for_device(priv->pci_dev,
3219 tbd->host_addr,
3220 tbd->buf_length,
3221 PCI_DMA_TODEVICE);
3222
3223 txq->next++;
3224 txq->next %= txq->entries;
3225 }
3226
3227 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3228 SET_STAT(&priv->txq_stat, txq->available);
3229
3230 list_add_tail(element, &priv->fw_pend_list);
3231 INC_STAT(&priv->fw_pend_stat);
3232 }
3233
3234 if (txq->next != next) {
3235 /* kick off the DMA by notifying firmware the
3236 * write index has moved; make sure TBD stores are sync'd */
3237 write_register(priv->net_dev,
3238 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3239 txq->next);
3240 }
3241 }
3242
3243 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3244 {
3245 struct net_device *dev = priv->net_dev;
3246 unsigned long flags;
3247 u32 inta, tmp;
3248
3249 spin_lock_irqsave(&priv->low_lock, flags);
3250 ipw2100_disable_interrupts(priv);
3251
3252 read_register(dev, IPW_REG_INTA, &inta);
3253
3254 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3255 (unsigned long)inta & IPW_INTERRUPT_MASK);
3256
3257 priv->in_isr++;
3258 priv->interrupts++;
3259
3260 /* We do not loop and keep polling for more interrupts as this
3261 * is frowned upon and doesn't play nicely with other potentially
3262 * chained IRQs */
3263 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3264 (unsigned long)inta & IPW_INTERRUPT_MASK);
3265
3266 if (inta & IPW2100_INTA_FATAL_ERROR) {
3267 printk(KERN_WARNING DRV_NAME
3268 ": Fatal interrupt. Scheduling firmware restart.\n");
3269 priv->inta_other++;
3270 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3271
3272 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3273 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3274 priv->net_dev->name, priv->fatal_error);
3275
3276 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3277 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3278 priv->net_dev->name, tmp);
3279
3280 /* Wake up any sleeping jobs */
3281 schedule_reset(priv);
3282 }
3283
3284 if (inta & IPW2100_INTA_PARITY_ERROR) {
3285 printk(KERN_ERR DRV_NAME
3286 ": ***** PARITY ERROR INTERRUPT !!!!\n");
3287 priv->inta_other++;
3288 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3289 }
3290
3291 if (inta & IPW2100_INTA_RX_TRANSFER) {
3292 IPW_DEBUG_ISR("RX interrupt\n");
3293
3294 priv->rx_interrupts++;
3295
3296 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3297
3298 __ipw2100_rx_process(priv);
3299 __ipw2100_tx_complete(priv);
3300 }
3301
3302 if (inta & IPW2100_INTA_TX_TRANSFER) {
3303 IPW_DEBUG_ISR("TX interrupt\n");
3304
3305 priv->tx_interrupts++;
3306
3307 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3308
3309 __ipw2100_tx_complete(priv);
3310 ipw2100_tx_send_commands(priv);
3311 ipw2100_tx_send_data(priv);
3312 }
3313
3314 if (inta & IPW2100_INTA_TX_COMPLETE) {
3315 IPW_DEBUG_ISR("TX complete\n");
3316 priv->inta_other++;
3317 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3318
3319 __ipw2100_tx_complete(priv);
3320 }
3321
3322 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3323 /* ipw2100_handle_event(dev); */
3324 priv->inta_other++;
3325 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3326 }
3327
3328 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3329 IPW_DEBUG_ISR("FW init done interrupt\n");
3330 priv->inta_other++;
3331
3332 read_register(dev, IPW_REG_INTA, &tmp);
3333 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3334 IPW2100_INTA_PARITY_ERROR)) {
3335 write_register(dev, IPW_REG_INTA,
3336 IPW2100_INTA_FATAL_ERROR |
3337 IPW2100_INTA_PARITY_ERROR);
3338 }
3339
3340 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3341 }
3342
3343 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3344 IPW_DEBUG_ISR("Status change interrupt\n");
3345 priv->inta_other++;
3346 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3347 }
3348
3349 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3350 IPW_DEBUG_ISR("slave host mode interrupt\n");
3351 priv->inta_other++;
3352 write_register(dev, IPW_REG_INTA,
3353 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3354 }
3355
3356 priv->in_isr--;
3357 ipw2100_enable_interrupts(priv);
3358
3359 spin_unlock_irqrestore(&priv->low_lock, flags);
3360
3361 IPW_DEBUG_ISR("exit\n");
3362 }
3363
3364 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3365 {
3366 struct ipw2100_priv *priv = data;
3367 u32 inta, inta_mask;
3368
3369 if (!data)
3370 return IRQ_NONE;
3371
3372 spin_lock(&priv->low_lock);
3373
3374 /* We check to see if we should be ignoring interrupts before
3375 * we touch the hardware. During ucode load if we try and handle
3376 * an interrupt we can cause keyboard problems as well as cause
3377 * the ucode to fail to initialize */
3378 if (!(priv->status & STATUS_INT_ENABLED)) {
3379 /* Shared IRQ */
3380 goto none;
3381 }
3382
3383 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3384 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3385
3386 if (inta == 0xFFFFFFFF) {
3387 /* Hardware disappeared */
3388 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3389 goto none;
3390 }
3391
3392 inta &= IPW_INTERRUPT_MASK;
3393
3394 if (!(inta & inta_mask)) {
3395 /* Shared interrupt */
3396 goto none;
3397 }
3398
3399 /* We disable the hardware interrupt here just to prevent unneeded
3400 * calls to be made. We disable this again within the actual
3401 * work tasklet, so if another part of the code re-enables the
3402 * interrupt, that is fine */
3403 ipw2100_disable_interrupts(priv);
3404
3405 tasklet_schedule(&priv->irq_tasklet);
3406 spin_unlock(&priv->low_lock);
3407
3408 return IRQ_HANDLED;
3409 none:
3410 spin_unlock(&priv->low_lock);
3411 return IRQ_NONE;
3412 }
3413
3414 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3415 struct net_device *dev, int pri)
3416 {
3417 struct ipw2100_priv *priv = libipw_priv(dev);
3418 struct list_head *element;
3419 struct ipw2100_tx_packet *packet;
3420 unsigned long flags;
3421
3422 spin_lock_irqsave(&priv->low_lock, flags);
3423
3424 if (!(priv->status & STATUS_ASSOCIATED)) {
3425 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3426 priv->net_dev->stats.tx_carrier_errors++;
3427 netif_stop_queue(dev);
3428 goto fail_unlock;
3429 }
3430
3431 if (list_empty(&priv->tx_free_list))
3432 goto fail_unlock;
3433
3434 element = priv->tx_free_list.next;
3435 packet = list_entry(element, struct ipw2100_tx_packet, list);
3436
3437 packet->info.d_struct.txb = txb;
3438
3439 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3440 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3441
3442 packet->jiffy_start = jiffies;
3443
3444 list_del(element);
3445 DEC_STAT(&priv->tx_free_stat);
3446
3447 list_add_tail(element, &priv->tx_pend_list);
3448 INC_STAT(&priv->tx_pend_stat);
3449
3450 ipw2100_tx_send_data(priv);
3451
3452 spin_unlock_irqrestore(&priv->low_lock, flags);
3453 return NETDEV_TX_OK;
3454
3455 fail_unlock:
3456 netif_stop_queue(dev);
3457 spin_unlock_irqrestore(&priv->low_lock, flags);
3458 return NETDEV_TX_BUSY;
3459 }
3460
3461 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3462 {
3463 int i, j, err = -EINVAL;
3464 void *v;
3465 dma_addr_t p;
3466
3467 priv->msg_buffers =
3468 kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3469 GFP_KERNEL);
3470 if (!priv->msg_buffers)
3471 return -ENOMEM;
3472
3473 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3474 v = pci_alloc_consistent(priv->pci_dev,
3475 sizeof(struct ipw2100_cmd_header), &p);
3476 if (!v) {
3477 printk(KERN_ERR DRV_NAME ": "
3478 "%s: PCI alloc failed for msg "
3479 "buffers.\n", priv->net_dev->name);
3480 err = -ENOMEM;
3481 break;
3482 }
3483
3484 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3485
3486 priv->msg_buffers[i].type = COMMAND;
3487 priv->msg_buffers[i].info.c_struct.cmd =
3488 (struct ipw2100_cmd_header *)v;
3489 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3490 }
3491
3492 if (i == IPW_COMMAND_POOL_SIZE)
3493 return 0;
3494
3495 for (j = 0; j < i; j++) {
3496 pci_free_consistent(priv->pci_dev,
3497 sizeof(struct ipw2100_cmd_header),
3498 priv->msg_buffers[j].info.c_struct.cmd,
3499 priv->msg_buffers[j].info.c_struct.
3500 cmd_phys);
3501 }
3502
3503 kfree(priv->msg_buffers);
3504 priv->msg_buffers = NULL;
3505
3506 return err;
3507 }
3508
3509 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3510 {
3511 int i;
3512
3513 INIT_LIST_HEAD(&priv->msg_free_list);
3514 INIT_LIST_HEAD(&priv->msg_pend_list);
3515
3516 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3517 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3518 SET_STAT(&priv->msg_free_stat, i);
3519
3520 return 0;
3521 }
3522
3523 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3524 {
3525 int i;
3526
3527 if (!priv->msg_buffers)
3528 return;
3529
3530 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3531 pci_free_consistent(priv->pci_dev,
3532 sizeof(struct ipw2100_cmd_header),
3533 priv->msg_buffers[i].info.c_struct.cmd,
3534 priv->msg_buffers[i].info.c_struct.
3535 cmd_phys);
3536 }
3537
3538 kfree(priv->msg_buffers);
3539 priv->msg_buffers = NULL;
3540 }
3541
3542 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3543 char *buf)
3544 {
3545 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3546 char *out = buf;
3547 int i, j;
3548 u32 val;
3549
3550 for (i = 0; i < 16; i++) {
3551 out += sprintf(out, "[%08X] ", i * 16);
3552 for (j = 0; j < 16; j += 4) {
3553 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3554 out += sprintf(out, "%08X ", val);
3555 }
3556 out += sprintf(out, "\n");
3557 }
3558
3559 return out - buf;
3560 }
3561
3562 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3563
3564 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3565 char *buf)
3566 {
3567 struct ipw2100_priv *p = dev_get_drvdata(d);
3568 return sprintf(buf, "0x%08x\n", (int)p->config);
3569 }
3570
3571 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3572
3573 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3574 char *buf)
3575 {
3576 struct ipw2100_priv *p = dev_get_drvdata(d);
3577 return sprintf(buf, "0x%08x\n", (int)p->status);
3578 }
3579
3580 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3581
3582 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3583 char *buf)
3584 {
3585 struct ipw2100_priv *p = dev_get_drvdata(d);
3586 return sprintf(buf, "0x%08x\n", (int)p->capability);
3587 }
3588
3589 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3590
3591 #define IPW2100_REG(x) { IPW_ ##x, #x }
3592 static const struct {
3593 u32 addr;
3594 const char *name;
3595 } hw_data[] = {
3596 IPW2100_REG(REG_GP_CNTRL),
3597 IPW2100_REG(REG_GPIO),
3598 IPW2100_REG(REG_INTA),
3599 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3600 #define IPW2100_NIC(x, s) { x, #x, s }
3601 static const struct {
3602 u32 addr;
3603 const char *name;
3604 size_t size;
3605 } nic_data[] = {
3606 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3607 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3608 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3609 static const struct {
3610 u8 index;
3611 const char *name;
3612 const char *desc;
3613 } ord_data[] = {
3614 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3615 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3616 "successful Host Tx's (MSDU)"),
3617 IPW2100_ORD(STAT_TX_DIR_DATA,
3618 "successful Directed Tx's (MSDU)"),
3619 IPW2100_ORD(STAT_TX_DIR_DATA1,
3620 "successful Directed Tx's (MSDU) @ 1MB"),
3621 IPW2100_ORD(STAT_TX_DIR_DATA2,
3622 "successful Directed Tx's (MSDU) @ 2MB"),
3623 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3624 "successful Directed Tx's (MSDU) @ 5_5MB"),
3625 IPW2100_ORD(STAT_TX_DIR_DATA11,
3626 "successful Directed Tx's (MSDU) @ 11MB"),
3627 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3628 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3629 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3630 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3631 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3632 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3633 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3634 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3635 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3636 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3637 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3638 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3639 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3640 IPW2100_ORD(STAT_TX_ASSN_RESP,
3641 "successful Association response Tx's"),
3642 IPW2100_ORD(STAT_TX_REASSN,
3643 "successful Reassociation Tx's"),
3644 IPW2100_ORD(STAT_TX_REASSN_RESP,
3645 "successful Reassociation response Tx's"),
3646 IPW2100_ORD(STAT_TX_PROBE,
3647 "probes successfully transmitted"),
3648 IPW2100_ORD(STAT_TX_PROBE_RESP,
3649 "probe responses successfully transmitted"),
3650 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3651 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3652 IPW2100_ORD(STAT_TX_DISASSN,
3653 "successful Disassociation TX"),
3654 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3655 IPW2100_ORD(STAT_TX_DEAUTH,
3656 "successful Deauthentication TX"),
3657 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3658 "Total successful Tx data bytes"),
3659 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3660 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3661 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3662 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3663 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3664 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3665 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3666 "times max tries in a hop failed"),
3667 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3668 "times disassociation failed"),
3669 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3670 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3671 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3672 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3673 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3674 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3675 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3676 "directed packets at 5.5MB"),
3677 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3678 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3679 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3680 "nondirected packets at 1MB"),
3681 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3682 "nondirected packets at 2MB"),
3683 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3684 "nondirected packets at 5.5MB"),
3685 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3686 "nondirected packets at 11MB"),
3687 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3688 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3689 "Rx CTS"),
3690 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3691 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3692 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3693 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3694 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3695 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3696 IPW2100_ORD(STAT_RX_REASSN_RESP,
3697 "Reassociation response Rx's"),
3698 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3699 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3700 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3701 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3702 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3703 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3704 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3705 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3706 "Total rx data bytes received"),
3707 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3708 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3709 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3710 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3711 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3712 IPW2100_ORD(STAT_RX_DUPLICATE1,
3713 "duplicate rx packets at 1MB"),
3714 IPW2100_ORD(STAT_RX_DUPLICATE2,
3715 "duplicate rx packets at 2MB"),
3716 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3717 "duplicate rx packets at 5.5MB"),
3718 IPW2100_ORD(STAT_RX_DUPLICATE11,
3719 "duplicate rx packets at 11MB"),
3720 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3721 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3722 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3723 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3724 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3725 "rx frames with invalid protocol"),
3726 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3727 IPW2100_ORD(STAT_RX_NO_BUFFER,
3728 "rx frames rejected due to no buffer"),
3729 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3730 "rx frames dropped due to missing fragment"),
3731 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3732 "rx frames dropped due to non-sequential fragment"),
3733 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3734 "rx frames dropped due to unmatched 1st frame"),
3735 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3736 "rx frames dropped due to uncompleted frame"),
3737 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3738 "ICV errors during decryption"),
3739 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3740 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3741 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3742 "poll response timeouts"),
3743 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3744 "timeouts waiting for last {broad,multi}cast pkt"),
3745 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3746 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3747 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3748 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3749 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3750 "current calculation of % missed beacons"),
3751 IPW2100_ORD(STAT_PERCENT_RETRIES,
3752 "current calculation of % missed tx retries"),
3753 IPW2100_ORD(ASSOCIATED_AP_PTR,
3754 "0 if not associated, else pointer to AP table entry"),
3755 IPW2100_ORD(AVAILABLE_AP_CNT,
3756 "AP's decsribed in the AP table"),
3757 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3758 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3759 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3760 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3761 "failures due to response fail"),
3762 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3763 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3764 IPW2100_ORD(STAT_ROAM_INHIBIT,
3765 "times roaming was inhibited due to activity"),
3766 IPW2100_ORD(RSSI_AT_ASSN,
3767 "RSSI of associated AP at time of association"),
3768 IPW2100_ORD(STAT_ASSN_CAUSE1,
3769 "reassociation: no probe response or TX on hop"),
3770 IPW2100_ORD(STAT_ASSN_CAUSE2,
3771 "reassociation: poor tx/rx quality"),
3772 IPW2100_ORD(STAT_ASSN_CAUSE3,
3773 "reassociation: tx/rx quality (excessive AP load"),
3774 IPW2100_ORD(STAT_ASSN_CAUSE4,
3775 "reassociation: AP RSSI level"),
3776 IPW2100_ORD(STAT_ASSN_CAUSE5,
3777 "reassociations due to load leveling"),
3778 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3779 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3780 "times authentication response failed"),
3781 IPW2100_ORD(STATION_TABLE_CNT,
3782 "entries in association table"),
3783 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3784 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3785 IPW2100_ORD(COUNTRY_CODE,
3786 "IEEE country code as recv'd from beacon"),
3787 IPW2100_ORD(COUNTRY_CHANNELS,
3788 "channels suported by country"),
3789 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3790 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3791 IPW2100_ORD(ANTENNA_DIVERSITY,
3792 "TRUE if antenna diversity is disabled"),
3793 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3794 IPW2100_ORD(OUR_FREQ,
3795 "current radio freq lower digits - channel ID"),
3796 IPW2100_ORD(RTC_TIME, "current RTC time"),
3797 IPW2100_ORD(PORT_TYPE, "operating mode"),
3798 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3799 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3800 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3801 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3802 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3803 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3804 IPW2100_ORD(CAPABILITIES,
3805 "Management frame capability field"),
3806 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3807 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3808 IPW2100_ORD(RTS_THRESHOLD,
3809 "Min packet length for RTS handshaking"),
3810 IPW2100_ORD(INT_MODE, "International mode"),
3811 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3812 "protocol frag threshold"),
3813 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3814 "EEPROM offset in SRAM"),
3815 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3816 "EEPROM size in SRAM"),
3817 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3818 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3819 "EEPROM IBSS 11b channel set"),
3820 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3821 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3822 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3823 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3824 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3825
3826 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3827 char *buf)
3828 {
3829 int i;
3830 struct ipw2100_priv *priv = dev_get_drvdata(d);
3831 struct net_device *dev = priv->net_dev;
3832 char *out = buf;
3833 u32 val = 0;
3834
3835 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3836
3837 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3838 read_register(dev, hw_data[i].addr, &val);
3839 out += sprintf(out, "%30s [%08X] : %08X\n",
3840 hw_data[i].name, hw_data[i].addr, val);
3841 }
3842
3843 return out - buf;
3844 }
3845
3846 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3847
3848 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3849 char *buf)
3850 {
3851 struct ipw2100_priv *priv = dev_get_drvdata(d);
3852 struct net_device *dev = priv->net_dev;
3853 char *out = buf;
3854 int i;
3855
3856 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3857
3858 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3859 u8 tmp8;
3860 u16 tmp16;
3861 u32 tmp32;
3862
3863 switch (nic_data[i].size) {
3864 case 1:
3865 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3866 out += sprintf(out, "%30s [%08X] : %02X\n",
3867 nic_data[i].name, nic_data[i].addr,
3868 tmp8);
3869 break;
3870 case 2:
3871 read_nic_word(dev, nic_data[i].addr, &tmp16);
3872 out += sprintf(out, "%30s [%08X] : %04X\n",
3873 nic_data[i].name, nic_data[i].addr,
3874 tmp16);
3875 break;
3876 case 4:
3877 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3878 out += sprintf(out, "%30s [%08X] : %08X\n",
3879 nic_data[i].name, nic_data[i].addr,
3880 tmp32);
3881 break;
3882 }
3883 }
3884 return out - buf;
3885 }
3886
3887 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3888
3889 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3890 char *buf)
3891 {
3892 struct ipw2100_priv *priv = dev_get_drvdata(d);
3893 struct net_device *dev = priv->net_dev;
3894 static unsigned long loop = 0;
3895 int len = 0;
3896 u32 buffer[4];
3897 int i;
3898 char line[81];
3899
3900 if (loop >= 0x30000)
3901 loop = 0;
3902
3903 /* sysfs provides us PAGE_SIZE buffer */
3904 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3905
3906 if (priv->snapshot[0])
3907 for (i = 0; i < 4; i++)
3908 buffer[i] =
3909 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3910 else
3911 for (i = 0; i < 4; i++)
3912 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3913
3914 if (priv->dump_raw)
3915 len += sprintf(buf + len,
3916 "%c%c%c%c"
3917 "%c%c%c%c"
3918 "%c%c%c%c"
3919 "%c%c%c%c",
3920 ((u8 *) buffer)[0x0],
3921 ((u8 *) buffer)[0x1],
3922 ((u8 *) buffer)[0x2],
3923 ((u8 *) buffer)[0x3],
3924 ((u8 *) buffer)[0x4],
3925 ((u8 *) buffer)[0x5],
3926 ((u8 *) buffer)[0x6],
3927 ((u8 *) buffer)[0x7],
3928 ((u8 *) buffer)[0x8],
3929 ((u8 *) buffer)[0x9],
3930 ((u8 *) buffer)[0xa],
3931 ((u8 *) buffer)[0xb],
3932 ((u8 *) buffer)[0xc],
3933 ((u8 *) buffer)[0xd],
3934 ((u8 *) buffer)[0xe],
3935 ((u8 *) buffer)[0xf]);
3936 else
3937 len += sprintf(buf + len, "%s\n",
3938 snprint_line(line, sizeof(line),
3939 (u8 *) buffer, 16, loop));
3940 loop += 16;
3941 }
3942
3943 return len;
3944 }
3945
3946 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3947 const char *buf, size_t count)
3948 {
3949 struct ipw2100_priv *priv = dev_get_drvdata(d);
3950 struct net_device *dev = priv->net_dev;
3951 const char *p = buf;
3952
3953 (void)dev; /* kill unused-var warning for debug-only code */
3954
3955 if (count < 1)
3956 return count;
3957
3958 if (p[0] == '1' ||
3959 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3960 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3961 dev->name);
3962 priv->dump_raw = 1;
3963
3964 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3965 tolower(p[1]) == 'f')) {
3966 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3967 dev->name);
3968 priv->dump_raw = 0;
3969
3970 } else if (tolower(p[0]) == 'r') {
3971 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3972 ipw2100_snapshot_free(priv);
3973
3974 } else
3975 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3976 "reset = clear memory snapshot\n", dev->name);
3977
3978 return count;
3979 }
3980
3981 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3982
3983 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3984 char *buf)
3985 {
3986 struct ipw2100_priv *priv = dev_get_drvdata(d);
3987 u32 val = 0;
3988 int len = 0;
3989 u32 val_len;
3990 static int loop = 0;
3991
3992 if (priv->status & STATUS_RF_KILL_MASK)
3993 return 0;
3994
3995 if (loop >= ARRAY_SIZE(ord_data))
3996 loop = 0;
3997
3998 /* sysfs provides us PAGE_SIZE buffer */
3999 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
4000 val_len = sizeof(u32);
4001
4002 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
4003 &val_len))
4004 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
4005 ord_data[loop].index,
4006 ord_data[loop].desc);
4007 else
4008 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
4009 ord_data[loop].index, val,
4010 ord_data[loop].desc);
4011 loop++;
4012 }
4013
4014 return len;
4015 }
4016
4017 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
4018
4019 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
4020 char *buf)
4021 {
4022 struct ipw2100_priv *priv = dev_get_drvdata(d);
4023 char *out = buf;
4024
4025 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4026 priv->interrupts, priv->tx_interrupts,
4027 priv->rx_interrupts, priv->inta_other);
4028 out += sprintf(out, "firmware resets: %d\n", priv->resets);
4029 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4030 #ifdef CONFIG_IPW2100_DEBUG
4031 out += sprintf(out, "packet mismatch image: %s\n",
4032 priv->snapshot[0] ? "YES" : "NO");
4033 #endif
4034
4035 return out - buf;
4036 }
4037
4038 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4039
4040 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4041 {
4042 int err;
4043
4044 if (mode == priv->ieee->iw_mode)
4045 return 0;
4046
4047 err = ipw2100_disable_adapter(priv);
4048 if (err) {
4049 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4050 priv->net_dev->name, err);
4051 return err;
4052 }
4053
4054 switch (mode) {
4055 case IW_MODE_INFRA:
4056 priv->net_dev->type = ARPHRD_ETHER;
4057 break;
4058 case IW_MODE_ADHOC:
4059 priv->net_dev->type = ARPHRD_ETHER;
4060 break;
4061 #ifdef CONFIG_IPW2100_MONITOR
4062 case IW_MODE_MONITOR:
4063 priv->last_mode = priv->ieee->iw_mode;
4064 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4065 break;
4066 #endif /* CONFIG_IPW2100_MONITOR */
4067 }
4068
4069 priv->ieee->iw_mode = mode;
4070
4071 #ifdef CONFIG_PM
4072 /* Indicate ipw2100_download_firmware download firmware
4073 * from disk instead of memory. */
4074 ipw2100_firmware.version = 0;
4075 #endif
4076
4077 printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
4078 priv->reset_backoff = 0;
4079 schedule_reset(priv);
4080
4081 return 0;
4082 }
4083
4084 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4085 char *buf)
4086 {
4087 struct ipw2100_priv *priv = dev_get_drvdata(d);
4088 int len = 0;
4089
4090 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4091
4092 if (priv->status & STATUS_ASSOCIATED)
4093 len += sprintf(buf + len, "connected: %lu\n",
4094 get_seconds() - priv->connect_start);
4095 else
4096 len += sprintf(buf + len, "not connected\n");
4097
4098 DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4099 DUMP_VAR(status, "08lx");
4100 DUMP_VAR(config, "08lx");
4101 DUMP_VAR(capability, "08lx");
4102
4103 len +=
4104 sprintf(buf + len, "last_rtc: %lu\n",
4105 (unsigned long)priv->last_rtc);
4106
4107 DUMP_VAR(fatal_error, "d");
4108 DUMP_VAR(stop_hang_check, "d");
4109 DUMP_VAR(stop_rf_kill, "d");
4110 DUMP_VAR(messages_sent, "d");
4111
4112 DUMP_VAR(tx_pend_stat.value, "d");
4113 DUMP_VAR(tx_pend_stat.hi, "d");
4114
4115 DUMP_VAR(tx_free_stat.value, "d");
4116 DUMP_VAR(tx_free_stat.lo, "d");
4117
4118 DUMP_VAR(msg_free_stat.value, "d");
4119 DUMP_VAR(msg_free_stat.lo, "d");
4120
4121 DUMP_VAR(msg_pend_stat.value, "d");
4122 DUMP_VAR(msg_pend_stat.hi, "d");
4123
4124 DUMP_VAR(fw_pend_stat.value, "d");
4125 DUMP_VAR(fw_pend_stat.hi, "d");
4126
4127 DUMP_VAR(txq_stat.value, "d");
4128 DUMP_VAR(txq_stat.lo, "d");
4129
4130 DUMP_VAR(ieee->scans, "d");
4131 DUMP_VAR(reset_backoff, "d");
4132
4133 return len;
4134 }
4135
4136 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4137
4138 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4139 char *buf)
4140 {
4141 struct ipw2100_priv *priv = dev_get_drvdata(d);
4142 char essid[IW_ESSID_MAX_SIZE + 1];
4143 u8 bssid[ETH_ALEN];
4144 u32 chan = 0;
4145 char *out = buf;
4146 unsigned int length;
4147 int ret;
4148
4149 if (priv->status & STATUS_RF_KILL_MASK)
4150 return 0;
4151
4152 memset(essid, 0, sizeof(essid));
4153 memset(bssid, 0, sizeof(bssid));
4154
4155 length = IW_ESSID_MAX_SIZE;
4156 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4157 if (ret)
4158 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4159 __LINE__);
4160
4161 length = sizeof(bssid);
4162 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4163 bssid, &length);
4164 if (ret)
4165 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4166 __LINE__);
4167
4168 length = sizeof(u32);
4169 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4170 if (ret)
4171 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4172 __LINE__);
4173
4174 out += sprintf(out, "ESSID: %s\n", essid);
4175 out += sprintf(out, "BSSID: %pM\n", bssid);
4176 out += sprintf(out, "Channel: %d\n", chan);
4177
4178 return out - buf;
4179 }
4180
4181 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4182
4183 #ifdef CONFIG_IPW2100_DEBUG
4184 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4185 {
4186 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4187 }
4188
4189 static ssize_t store_debug_level(struct device_driver *d,
4190 const char *buf, size_t count)
4191 {
4192 char *p = (char *)buf;
4193 u32 val;
4194
4195 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4196 p++;
4197 if (p[0] == 'x' || p[0] == 'X')
4198 p++;
4199 val = simple_strtoul(p, &p, 16);
4200 } else
4201 val = simple_strtoul(p, &p, 10);
4202 if (p == buf)
4203 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4204 else
4205 ipw2100_debug_level = val;
4206
4207 return strnlen(buf, count);
4208 }
4209
4210 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4211 store_debug_level);
4212 #endif /* CONFIG_IPW2100_DEBUG */
4213
4214 static ssize_t show_fatal_error(struct device *d,
4215 struct device_attribute *attr, char *buf)
4216 {
4217 struct ipw2100_priv *priv = dev_get_drvdata(d);
4218 char *out = buf;
4219 int i;
4220
4221 if (priv->fatal_error)
4222 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4223 else
4224 out += sprintf(out, "0\n");
4225
4226 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4227 if (!priv->fatal_errors[(priv->fatal_index - i) %
4228 IPW2100_ERROR_QUEUE])
4229 continue;
4230
4231 out += sprintf(out, "%d. 0x%08X\n", i,
4232 priv->fatal_errors[(priv->fatal_index - i) %
4233 IPW2100_ERROR_QUEUE]);
4234 }
4235
4236 return out - buf;
4237 }
4238
4239 static ssize_t store_fatal_error(struct device *d,
4240 struct device_attribute *attr, const char *buf,
4241 size_t count)
4242 {
4243 struct ipw2100_priv *priv = dev_get_drvdata(d);
4244 schedule_reset(priv);
4245 return count;
4246 }
4247
4248 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4249 store_fatal_error);
4250
4251 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4252 char *buf)
4253 {
4254 struct ipw2100_priv *priv = dev_get_drvdata(d);
4255 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4256 }
4257
4258 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4259 const char *buf, size_t count)
4260 {
4261 struct ipw2100_priv *priv = dev_get_drvdata(d);
4262 struct net_device *dev = priv->net_dev;
4263 char buffer[] = "00000000";
4264 unsigned long len =
4265 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4266 unsigned long val;
4267 char *p = buffer;
4268
4269 (void)dev; /* kill unused-var warning for debug-only code */
4270
4271 IPW_DEBUG_INFO("enter\n");
4272
4273 strncpy(buffer, buf, len);
4274 buffer[len] = 0;
4275
4276 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4277 p++;
4278 if (p[0] == 'x' || p[0] == 'X')
4279 p++;
4280 val = simple_strtoul(p, &p, 16);
4281 } else
4282 val = simple_strtoul(p, &p, 10);
4283 if (p == buffer) {
4284 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4285 } else {
4286 priv->ieee->scan_age = val;
4287 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4288 }
4289
4290 IPW_DEBUG_INFO("exit\n");
4291 return len;
4292 }
4293
4294 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4295
4296 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4297 char *buf)
4298 {
4299 /* 0 - RF kill not enabled
4300 1 - SW based RF kill active (sysfs)
4301 2 - HW based RF kill active
4302 3 - Both HW and SW baed RF kill active */
4303 struct ipw2100_priv *priv = dev_get_drvdata(d);
4304 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4305 (rf_kill_active(priv) ? 0x2 : 0x0);
4306 return sprintf(buf, "%i\n", val);
4307 }
4308
4309 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4310 {
4311 if ((disable_radio ? 1 : 0) ==
4312 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4313 return 0;
4314
4315 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4316 disable_radio ? "OFF" : "ON");
4317
4318 mutex_lock(&priv->action_mutex);
4319
4320 if (disable_radio) {
4321 priv->status |= STATUS_RF_KILL_SW;
4322 ipw2100_down(priv);
4323 } else {
4324 priv->status &= ~STATUS_RF_KILL_SW;
4325 if (rf_kill_active(priv)) {
4326 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4327 "disabled by HW switch\n");
4328 /* Make sure the RF_KILL check timer is running */
4329 priv->stop_rf_kill = 0;
4330 cancel_delayed_work(&priv->rf_kill);
4331 schedule_delayed_work(&priv->rf_kill,
4332 round_jiffies_relative(HZ));
4333 } else
4334 schedule_reset(priv);
4335 }
4336
4337 mutex_unlock(&priv->action_mutex);
4338 return 1;
4339 }
4340
4341 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4342 const char *buf, size_t count)
4343 {
4344 struct ipw2100_priv *priv = dev_get_drvdata(d);
4345 ipw_radio_kill_sw(priv, buf[0] == '1');
4346 return count;
4347 }
4348
4349 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4350
4351 static struct attribute *ipw2100_sysfs_entries[] = {
4352 &dev_attr_hardware.attr,
4353 &dev_attr_registers.attr,
4354 &dev_attr_ordinals.attr,
4355 &dev_attr_pci.attr,
4356 &dev_attr_stats.attr,
4357 &dev_attr_internals.attr,
4358 &dev_attr_bssinfo.attr,
4359 &dev_attr_memory.attr,
4360 &dev_attr_scan_age.attr,
4361 &dev_attr_fatal_error.attr,
4362 &dev_attr_rf_kill.attr,
4363 &dev_attr_cfg.attr,
4364 &dev_attr_status.attr,
4365 &dev_attr_capability.attr,
4366 NULL,
4367 };
4368
4369 static struct attribute_group ipw2100_attribute_group = {
4370 .attrs = ipw2100_sysfs_entries,
4371 };
4372
4373 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4374 {
4375 struct ipw2100_status_queue *q = &priv->status_queue;
4376
4377 IPW_DEBUG_INFO("enter\n");
4378
4379 q->size = entries * sizeof(struct ipw2100_status);
4380 q->drv =
4381 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4382 q->size, &q->nic);
4383 if (!q->drv) {
4384 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4385 return -ENOMEM;
4386 }
4387
4388 memset(q->drv, 0, q->size);
4389
4390 IPW_DEBUG_INFO("exit\n");
4391
4392 return 0;
4393 }
4394
4395 static void status_queue_free(struct ipw2100_priv *priv)
4396 {
4397 IPW_DEBUG_INFO("enter\n");
4398
4399 if (priv->status_queue.drv) {
4400 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4401 priv->status_queue.drv,
4402 priv->status_queue.nic);
4403 priv->status_queue.drv = NULL;
4404 }
4405
4406 IPW_DEBUG_INFO("exit\n");
4407 }
4408
4409 static int bd_queue_allocate(struct ipw2100_priv *priv,
4410 struct ipw2100_bd_queue *q, int entries)
4411 {
4412 IPW_DEBUG_INFO("enter\n");
4413
4414 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4415
4416 q->entries = entries;
4417 q->size = entries * sizeof(struct ipw2100_bd);
4418 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4419 if (!q->drv) {
4420 IPW_DEBUG_INFO
4421 ("can't allocate shared memory for buffer descriptors\n");
4422 return -ENOMEM;
4423 }
4424 memset(q->drv, 0, q->size);
4425
4426 IPW_DEBUG_INFO("exit\n");
4427
4428 return 0;
4429 }
4430
4431 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4432 {
4433 IPW_DEBUG_INFO("enter\n");
4434
4435 if (!q)
4436 return;
4437
4438 if (q->drv) {
4439 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4440 q->drv = NULL;
4441 }
4442
4443 IPW_DEBUG_INFO("exit\n");
4444 }
4445
4446 static void bd_queue_initialize(struct ipw2100_priv *priv,
4447 struct ipw2100_bd_queue *q, u32 base, u32 size,
4448 u32 r, u32 w)
4449 {
4450 IPW_DEBUG_INFO("enter\n");
4451
4452 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4453 (u32) q->nic);
4454
4455 write_register(priv->net_dev, base, q->nic);
4456 write_register(priv->net_dev, size, q->entries);
4457 write_register(priv->net_dev, r, q->oldest);
4458 write_register(priv->net_dev, w, q->next);
4459
4460 IPW_DEBUG_INFO("exit\n");
4461 }
4462
4463 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4464 {
4465 priv->stop_rf_kill = 1;
4466 priv->stop_hang_check = 1;
4467 cancel_delayed_work_sync(&priv->reset_work);
4468 cancel_delayed_work_sync(&priv->security_work);
4469 cancel_delayed_work_sync(&priv->wx_event_work);
4470 cancel_delayed_work_sync(&priv->hang_check);
4471 cancel_delayed_work_sync(&priv->rf_kill);
4472 cancel_work_sync(&priv->scan_event_now);
4473 cancel_delayed_work_sync(&priv->scan_event_later);
4474 }
4475
4476 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4477 {
4478 int i, j, err = -EINVAL;
4479 void *v;
4480 dma_addr_t p;
4481
4482 IPW_DEBUG_INFO("enter\n");
4483
4484 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4485 if (err) {
4486 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4487 priv->net_dev->name);
4488 return err;
4489 }
4490
4491 priv->tx_buffers =
4492 kmalloc(TX_PENDED_QUEUE_LENGTH * sizeof(struct ipw2100_tx_packet),
4493 GFP_ATOMIC);
4494 if (!priv->tx_buffers) {
4495 printk(KERN_ERR DRV_NAME
4496 ": %s: alloc failed form tx buffers.\n",
4497 priv->net_dev->name);
4498 bd_queue_free(priv, &priv->tx_queue);
4499 return -ENOMEM;
4500 }
4501
4502 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4503 v = pci_alloc_consistent(priv->pci_dev,
4504 sizeof(struct ipw2100_data_header),
4505 &p);
4506 if (!v) {
4507 printk(KERN_ERR DRV_NAME
4508 ": %s: PCI alloc failed for tx " "buffers.\n",
4509 priv->net_dev->name);
4510 err = -ENOMEM;
4511 break;
4512 }
4513
4514 priv->tx_buffers[i].type = DATA;
4515 priv->tx_buffers[i].info.d_struct.data =
4516 (struct ipw2100_data_header *)v;
4517 priv->tx_buffers[i].info.d_struct.data_phys = p;
4518 priv->tx_buffers[i].info.d_struct.txb = NULL;
4519 }
4520
4521 if (i == TX_PENDED_QUEUE_LENGTH)
4522 return 0;
4523
4524 for (j = 0; j < i; j++) {
4525 pci_free_consistent(priv->pci_dev,
4526 sizeof(struct ipw2100_data_header),
4527 priv->tx_buffers[j].info.d_struct.data,
4528 priv->tx_buffers[j].info.d_struct.
4529 data_phys);
4530 }
4531
4532 kfree(priv->tx_buffers);
4533 priv->tx_buffers = NULL;
4534
4535 return err;
4536 }
4537
4538 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4539 {
4540 int i;
4541
4542 IPW_DEBUG_INFO("enter\n");
4543
4544 /*
4545 * reinitialize packet info lists
4546 */
4547 INIT_LIST_HEAD(&priv->fw_pend_list);
4548 INIT_STAT(&priv->fw_pend_stat);
4549
4550 /*
4551 * reinitialize lists
4552 */
4553 INIT_LIST_HEAD(&priv->tx_pend_list);
4554 INIT_LIST_HEAD(&priv->tx_free_list);
4555 INIT_STAT(&priv->tx_pend_stat);
4556 INIT_STAT(&priv->tx_free_stat);
4557
4558 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4559 /* We simply drop any SKBs that have been queued for
4560 * transmit */
4561 if (priv->tx_buffers[i].info.d_struct.txb) {
4562 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4563 txb);
4564 priv->tx_buffers[i].info.d_struct.txb = NULL;
4565 }
4566
4567 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4568 }
4569
4570 SET_STAT(&priv->tx_free_stat, i);
4571
4572 priv->tx_queue.oldest = 0;
4573 priv->tx_queue.available = priv->tx_queue.entries;
4574 priv->tx_queue.next = 0;
4575 INIT_STAT(&priv->txq_stat);
4576 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4577
4578 bd_queue_initialize(priv, &priv->tx_queue,
4579 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4580 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4581 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4582 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4583
4584 IPW_DEBUG_INFO("exit\n");
4585
4586 }
4587
4588 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4589 {
4590 int i;
4591
4592 IPW_DEBUG_INFO("enter\n");
4593
4594 bd_queue_free(priv, &priv->tx_queue);
4595
4596 if (!priv->tx_buffers)
4597 return;
4598
4599 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4600 if (priv->tx_buffers[i].info.d_struct.txb) {
4601 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4602 txb);
4603 priv->tx_buffers[i].info.d_struct.txb = NULL;
4604 }
4605 if (priv->tx_buffers[i].info.d_struct.data)
4606 pci_free_consistent(priv->pci_dev,
4607 sizeof(struct ipw2100_data_header),
4608 priv->tx_buffers[i].info.d_struct.
4609 data,
4610 priv->tx_buffers[i].info.d_struct.
4611 data_phys);
4612 }
4613
4614 kfree(priv->tx_buffers);
4615 priv->tx_buffers = NULL;
4616
4617 IPW_DEBUG_INFO("exit\n");
4618 }
4619
4620 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4621 {
4622 int i, j, err = -EINVAL;
4623
4624 IPW_DEBUG_INFO("enter\n");
4625
4626 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4627 if (err) {
4628 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4629 return err;
4630 }
4631
4632 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4633 if (err) {
4634 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4635 bd_queue_free(priv, &priv->rx_queue);
4636 return err;
4637 }
4638
4639 /*
4640 * allocate packets
4641 */
4642 priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4643 sizeof(struct ipw2100_rx_packet),
4644 GFP_KERNEL);
4645 if (!priv->rx_buffers) {
4646 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4647
4648 bd_queue_free(priv, &priv->rx_queue);
4649
4650 status_queue_free(priv);
4651
4652 return -ENOMEM;
4653 }
4654
4655 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4656 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4657
4658 err = ipw2100_alloc_skb(priv, packet);
4659 if (unlikely(err)) {
4660 err = -ENOMEM;
4661 break;
4662 }
4663
4664 /* The BD holds the cache aligned address */
4665 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4666 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4667 priv->status_queue.drv[i].status_fields = 0;
4668 }
4669
4670 if (i == RX_QUEUE_LENGTH)
4671 return 0;
4672
4673 for (j = 0; j < i; j++) {
4674 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4675 sizeof(struct ipw2100_rx_packet),
4676 PCI_DMA_FROMDEVICE);
4677 dev_kfree_skb(priv->rx_buffers[j].skb);
4678 }
4679
4680 kfree(priv->rx_buffers);
4681 priv->rx_buffers = NULL;
4682
4683 bd_queue_free(priv, &priv->rx_queue);
4684
4685 status_queue_free(priv);
4686
4687 return err;
4688 }
4689
4690 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4691 {
4692 IPW_DEBUG_INFO("enter\n");
4693
4694 priv->rx_queue.oldest = 0;
4695 priv->rx_queue.available = priv->rx_queue.entries - 1;
4696 priv->rx_queue.next = priv->rx_queue.entries - 1;
4697
4698 INIT_STAT(&priv->rxq_stat);
4699 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4700
4701 bd_queue_initialize(priv, &priv->rx_queue,
4702 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4703 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4704 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4705 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4706
4707 /* set up the status queue */
4708 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4709 priv->status_queue.nic);
4710
4711 IPW_DEBUG_INFO("exit\n");
4712 }
4713
4714 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4715 {
4716 int i;
4717
4718 IPW_DEBUG_INFO("enter\n");
4719
4720 bd_queue_free(priv, &priv->rx_queue);
4721 status_queue_free(priv);
4722
4723 if (!priv->rx_buffers)
4724 return;
4725
4726 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4727 if (priv->rx_buffers[i].rxp) {
4728 pci_unmap_single(priv->pci_dev,
4729 priv->rx_buffers[i].dma_addr,
4730 sizeof(struct ipw2100_rx),
4731 PCI_DMA_FROMDEVICE);
4732 dev_kfree_skb(priv->rx_buffers[i].skb);
4733 }
4734 }
4735
4736 kfree(priv->rx_buffers);
4737 priv->rx_buffers = NULL;
4738
4739 IPW_DEBUG_INFO("exit\n");
4740 }
4741
4742 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4743 {
4744 u32 length = ETH_ALEN;
4745 u8 addr[ETH_ALEN];
4746
4747 int err;
4748
4749 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4750 if (err) {
4751 IPW_DEBUG_INFO("MAC address read failed\n");
4752 return -EIO;
4753 }
4754
4755 memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4756 IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4757
4758 return 0;
4759 }
4760
4761 /********************************************************************
4762 *
4763 * Firmware Commands
4764 *
4765 ********************************************************************/
4766
4767 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4768 {
4769 struct host_command cmd = {
4770 .host_command = ADAPTER_ADDRESS,
4771 .host_command_sequence = 0,
4772 .host_command_length = ETH_ALEN
4773 };
4774 int err;
4775
4776 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4777
4778 IPW_DEBUG_INFO("enter\n");
4779
4780 if (priv->config & CFG_CUSTOM_MAC) {
4781 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4782 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4783 } else
4784 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4785 ETH_ALEN);
4786
4787 err = ipw2100_hw_send_command(priv, &cmd);
4788
4789 IPW_DEBUG_INFO("exit\n");
4790 return err;
4791 }
4792
4793 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4794 int batch_mode)
4795 {
4796 struct host_command cmd = {
4797 .host_command = PORT_TYPE,
4798 .host_command_sequence = 0,
4799 .host_command_length = sizeof(u32)
4800 };
4801 int err;
4802
4803 switch (port_type) {
4804 case IW_MODE_INFRA:
4805 cmd.host_command_parameters[0] = IPW_BSS;
4806 break;
4807 case IW_MODE_ADHOC:
4808 cmd.host_command_parameters[0] = IPW_IBSS;
4809 break;
4810 }
4811
4812 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4813 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4814
4815 if (!batch_mode) {
4816 err = ipw2100_disable_adapter(priv);
4817 if (err) {
4818 printk(KERN_ERR DRV_NAME
4819 ": %s: Could not disable adapter %d\n",
4820 priv->net_dev->name, err);
4821 return err;
4822 }
4823 }
4824
4825 /* send cmd to firmware */
4826 err = ipw2100_hw_send_command(priv, &cmd);
4827
4828 if (!batch_mode)
4829 ipw2100_enable_adapter(priv);
4830
4831 return err;
4832 }
4833
4834 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4835 int batch_mode)
4836 {
4837 struct host_command cmd = {
4838 .host_command = CHANNEL,
4839 .host_command_sequence = 0,
4840 .host_command_length = sizeof(u32)
4841 };
4842 int err;
4843
4844 cmd.host_command_parameters[0] = channel;
4845
4846 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4847
4848 /* If BSS then we don't support channel selection */
4849 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4850 return 0;
4851
4852 if ((channel != 0) &&
4853 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4854 return -EINVAL;
4855
4856 if (!batch_mode) {
4857 err = ipw2100_disable_adapter(priv);
4858 if (err)
4859 return err;
4860 }
4861
4862 err = ipw2100_hw_send_command(priv, &cmd);
4863 if (err) {
4864 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4865 return err;
4866 }
4867
4868 if (channel)
4869 priv->config |= CFG_STATIC_CHANNEL;
4870 else
4871 priv->config &= ~CFG_STATIC_CHANNEL;
4872
4873 priv->channel = channel;
4874
4875 if (!batch_mode) {
4876 err = ipw2100_enable_adapter(priv);
4877 if (err)
4878 return err;
4879 }
4880
4881 return 0;
4882 }
4883
4884 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4885 {
4886 struct host_command cmd = {
4887 .host_command = SYSTEM_CONFIG,
4888 .host_command_sequence = 0,
4889 .host_command_length = 12,
4890 };
4891 u32 ibss_mask, len = sizeof(u32);
4892 int err;
4893
4894 /* Set system configuration */
4895
4896 if (!batch_mode) {
4897 err = ipw2100_disable_adapter(priv);
4898 if (err)
4899 return err;
4900 }
4901
4902 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4903 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4904
4905 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4906 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4907
4908 if (!(priv->config & CFG_LONG_PREAMBLE))
4909 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4910
4911 err = ipw2100_get_ordinal(priv,
4912 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4913 &ibss_mask, &len);
4914 if (err)
4915 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4916
4917 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4918 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4919
4920 /* 11b only */
4921 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4922
4923 err = ipw2100_hw_send_command(priv, &cmd);
4924 if (err)
4925 return err;
4926
4927 /* If IPv6 is configured in the kernel then we don't want to filter out all
4928 * of the multicast packets as IPv6 needs some. */
4929 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4930 cmd.host_command = ADD_MULTICAST;
4931 cmd.host_command_sequence = 0;
4932 cmd.host_command_length = 0;
4933
4934 ipw2100_hw_send_command(priv, &cmd);
4935 #endif
4936 if (!batch_mode) {
4937 err = ipw2100_enable_adapter(priv);
4938 if (err)
4939 return err;
4940 }
4941
4942 return 0;
4943 }
4944
4945 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4946 int batch_mode)
4947 {
4948 struct host_command cmd = {
4949 .host_command = BASIC_TX_RATES,
4950 .host_command_sequence = 0,
4951 .host_command_length = 4
4952 };
4953 int err;
4954
4955 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4956
4957 if (!batch_mode) {
4958 err = ipw2100_disable_adapter(priv);
4959 if (err)
4960 return err;
4961 }
4962
4963 /* Set BASIC TX Rate first */
4964 ipw2100_hw_send_command(priv, &cmd);
4965
4966 /* Set TX Rate */
4967 cmd.host_command = TX_RATES;
4968 ipw2100_hw_send_command(priv, &cmd);
4969
4970 /* Set MSDU TX Rate */
4971 cmd.host_command = MSDU_TX_RATES;
4972 ipw2100_hw_send_command(priv, &cmd);
4973
4974 if (!batch_mode) {
4975 err = ipw2100_enable_adapter(priv);
4976 if (err)
4977 return err;
4978 }
4979
4980 priv->tx_rates = rate;
4981
4982 return 0;
4983 }
4984
4985 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4986 {
4987 struct host_command cmd = {
4988 .host_command = POWER_MODE,
4989 .host_command_sequence = 0,
4990 .host_command_length = 4
4991 };
4992 int err;
4993
4994 cmd.host_command_parameters[0] = power_level;
4995
4996 err = ipw2100_hw_send_command(priv, &cmd);
4997 if (err)
4998 return err;
4999
5000 if (power_level == IPW_POWER_MODE_CAM)
5001 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
5002 else
5003 priv->power_mode = IPW_POWER_ENABLED | power_level;
5004
5005 #ifdef IPW2100_TX_POWER
5006 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
5007 /* Set beacon interval */
5008 cmd.host_command = TX_POWER_INDEX;
5009 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
5010
5011 err = ipw2100_hw_send_command(priv, &cmd);
5012 if (err)
5013 return err;
5014 }
5015 #endif
5016
5017 return 0;
5018 }
5019
5020 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
5021 {
5022 struct host_command cmd = {
5023 .host_command = RTS_THRESHOLD,
5024 .host_command_sequence = 0,
5025 .host_command_length = 4
5026 };
5027 int err;
5028
5029 if (threshold & RTS_DISABLED)
5030 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
5031 else
5032 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
5033
5034 err = ipw2100_hw_send_command(priv, &cmd);
5035 if (err)
5036 return err;
5037
5038 priv->rts_threshold = threshold;
5039
5040 return 0;
5041 }
5042
5043 #if 0
5044 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
5045 u32 threshold, int batch_mode)
5046 {
5047 struct host_command cmd = {
5048 .host_command = FRAG_THRESHOLD,
5049 .host_command_sequence = 0,
5050 .host_command_length = 4,
5051 .host_command_parameters[0] = 0,
5052 };
5053 int err;
5054
5055 if (!batch_mode) {
5056 err = ipw2100_disable_adapter(priv);
5057 if (err)
5058 return err;
5059 }
5060
5061 if (threshold == 0)
5062 threshold = DEFAULT_FRAG_THRESHOLD;
5063 else {
5064 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5065 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5066 }
5067
5068 cmd.host_command_parameters[0] = threshold;
5069
5070 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5071
5072 err = ipw2100_hw_send_command(priv, &cmd);
5073
5074 if (!batch_mode)
5075 ipw2100_enable_adapter(priv);
5076
5077 if (!err)
5078 priv->frag_threshold = threshold;
5079
5080 return err;
5081 }
5082 #endif
5083
5084 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5085 {
5086 struct host_command cmd = {
5087 .host_command = SHORT_RETRY_LIMIT,
5088 .host_command_sequence = 0,
5089 .host_command_length = 4
5090 };
5091 int err;
5092
5093 cmd.host_command_parameters[0] = retry;
5094
5095 err = ipw2100_hw_send_command(priv, &cmd);
5096 if (err)
5097 return err;
5098
5099 priv->short_retry_limit = retry;
5100
5101 return 0;
5102 }
5103
5104 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5105 {
5106 struct host_command cmd = {
5107 .host_command = LONG_RETRY_LIMIT,
5108 .host_command_sequence = 0,
5109 .host_command_length = 4
5110 };
5111 int err;
5112
5113 cmd.host_command_parameters[0] = retry;
5114
5115 err = ipw2100_hw_send_command(priv, &cmd);
5116 if (err)
5117 return err;
5118
5119 priv->long_retry_limit = retry;
5120
5121 return 0;
5122 }
5123
5124 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5125 int batch_mode)
5126 {
5127 struct host_command cmd = {
5128 .host_command = MANDATORY_BSSID,
5129 .host_command_sequence = 0,
5130 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5131 };
5132 int err;
5133
5134 #ifdef CONFIG_IPW2100_DEBUG
5135 if (bssid != NULL)
5136 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5137 else
5138 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5139 #endif
5140 /* if BSSID is empty then we disable mandatory bssid mode */
5141 if (bssid != NULL)
5142 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5143
5144 if (!batch_mode) {
5145 err = ipw2100_disable_adapter(priv);
5146 if (err)
5147 return err;
5148 }
5149
5150 err = ipw2100_hw_send_command(priv, &cmd);
5151
5152 if (!batch_mode)
5153 ipw2100_enable_adapter(priv);
5154
5155 return err;
5156 }
5157
5158 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5159 {
5160 struct host_command cmd = {
5161 .host_command = DISASSOCIATION_BSSID,
5162 .host_command_sequence = 0,
5163 .host_command_length = ETH_ALEN
5164 };
5165 int err;
5166 int len;
5167
5168 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5169
5170 len = ETH_ALEN;
5171 /* The Firmware currently ignores the BSSID and just disassociates from
5172 * the currently associated AP -- but in the off chance that a future
5173 * firmware does use the BSSID provided here, we go ahead and try and
5174 * set it to the currently associated AP's BSSID */
5175 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5176
5177 err = ipw2100_hw_send_command(priv, &cmd);
5178
5179 return err;
5180 }
5181
5182 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5183 struct ipw2100_wpa_assoc_frame *, int)
5184 __attribute__ ((unused));
5185
5186 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5187 struct ipw2100_wpa_assoc_frame *wpa_frame,
5188 int batch_mode)
5189 {
5190 struct host_command cmd = {
5191 .host_command = SET_WPA_IE,
5192 .host_command_sequence = 0,
5193 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5194 };
5195 int err;
5196
5197 IPW_DEBUG_HC("SET_WPA_IE\n");
5198
5199 if (!batch_mode) {
5200 err = ipw2100_disable_adapter(priv);
5201 if (err)
5202 return err;
5203 }
5204
5205 memcpy(cmd.host_command_parameters, wpa_frame,
5206 sizeof(struct ipw2100_wpa_assoc_frame));
5207
5208 err = ipw2100_hw_send_command(priv, &cmd);
5209
5210 if (!batch_mode) {
5211 if (ipw2100_enable_adapter(priv))
5212 err = -EIO;
5213 }
5214
5215 return err;
5216 }
5217
5218 struct security_info_params {
5219 u32 allowed_ciphers;
5220 u16 version;
5221 u8 auth_mode;
5222 u8 replay_counters_number;
5223 u8 unicast_using_group;
5224 } __packed;
5225
5226 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5227 int auth_mode,
5228 int security_level,
5229 int unicast_using_group,
5230 int batch_mode)
5231 {
5232 struct host_command cmd = {
5233 .host_command = SET_SECURITY_INFORMATION,
5234 .host_command_sequence = 0,
5235 .host_command_length = sizeof(struct security_info_params)
5236 };
5237 struct security_info_params *security =
5238 (struct security_info_params *)&cmd.host_command_parameters;
5239 int err;
5240 memset(security, 0, sizeof(*security));
5241
5242 /* If shared key AP authentication is turned on, then we need to
5243 * configure the firmware to try and use it.
5244 *
5245 * Actual data encryption/decryption is handled by the host. */
5246 security->auth_mode = auth_mode;
5247 security->unicast_using_group = unicast_using_group;
5248
5249 switch (security_level) {
5250 default:
5251 case SEC_LEVEL_0:
5252 security->allowed_ciphers = IPW_NONE_CIPHER;
5253 break;
5254 case SEC_LEVEL_1:
5255 security->allowed_ciphers = IPW_WEP40_CIPHER |
5256 IPW_WEP104_CIPHER;
5257 break;
5258 case SEC_LEVEL_2:
5259 security->allowed_ciphers = IPW_WEP40_CIPHER |
5260 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5261 break;
5262 case SEC_LEVEL_2_CKIP:
5263 security->allowed_ciphers = IPW_WEP40_CIPHER |
5264 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5265 break;
5266 case SEC_LEVEL_3:
5267 security->allowed_ciphers = IPW_WEP40_CIPHER |
5268 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5269 break;
5270 }
5271
5272 IPW_DEBUG_HC
5273 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5274 security->auth_mode, security->allowed_ciphers, security_level);
5275
5276 security->replay_counters_number = 0;
5277
5278 if (!batch_mode) {
5279 err = ipw2100_disable_adapter(priv);
5280 if (err)
5281 return err;
5282 }
5283
5284 err = ipw2100_hw_send_command(priv, &cmd);
5285
5286 if (!batch_mode)
5287 ipw2100_enable_adapter(priv);
5288
5289 return err;
5290 }
5291
5292 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5293 {
5294 struct host_command cmd = {
5295 .host_command = TX_POWER_INDEX,
5296 .host_command_sequence = 0,
5297 .host_command_length = 4
5298 };
5299 int err = 0;
5300 u32 tmp = tx_power;
5301
5302 if (tx_power != IPW_TX_POWER_DEFAULT)
5303 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5304 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5305
5306 cmd.host_command_parameters[0] = tmp;
5307
5308 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5309 err = ipw2100_hw_send_command(priv, &cmd);
5310 if (!err)
5311 priv->tx_power = tx_power;
5312
5313 return 0;
5314 }
5315
5316 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5317 u32 interval, int batch_mode)
5318 {
5319 struct host_command cmd = {
5320 .host_command = BEACON_INTERVAL,
5321 .host_command_sequence = 0,
5322 .host_command_length = 4
5323 };
5324 int err;
5325
5326 cmd.host_command_parameters[0] = interval;
5327
5328 IPW_DEBUG_INFO("enter\n");
5329
5330 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5331 if (!batch_mode) {
5332 err = ipw2100_disable_adapter(priv);
5333 if (err)
5334 return err;
5335 }
5336
5337 ipw2100_hw_send_command(priv, &cmd);
5338
5339 if (!batch_mode) {
5340 err = ipw2100_enable_adapter(priv);
5341 if (err)
5342 return err;
5343 }
5344 }
5345
5346 IPW_DEBUG_INFO("exit\n");
5347
5348 return 0;
5349 }
5350
5351 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5352 {
5353 ipw2100_tx_initialize(priv);
5354 ipw2100_rx_initialize(priv);
5355 ipw2100_msg_initialize(priv);
5356 }
5357
5358 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5359 {
5360 ipw2100_tx_free(priv);
5361 ipw2100_rx_free(priv);
5362 ipw2100_msg_free(priv);
5363 }
5364
5365 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5366 {
5367 if (ipw2100_tx_allocate(priv) ||
5368 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5369 goto fail;
5370
5371 return 0;
5372
5373 fail:
5374 ipw2100_tx_free(priv);
5375 ipw2100_rx_free(priv);
5376 ipw2100_msg_free(priv);
5377 return -ENOMEM;
5378 }
5379
5380 #define IPW_PRIVACY_CAPABLE 0x0008
5381
5382 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5383 int batch_mode)
5384 {
5385 struct host_command cmd = {
5386 .host_command = WEP_FLAGS,
5387 .host_command_sequence = 0,
5388 .host_command_length = 4
5389 };
5390 int err;
5391
5392 cmd.host_command_parameters[0] = flags;
5393
5394 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5395
5396 if (!batch_mode) {
5397 err = ipw2100_disable_adapter(priv);
5398 if (err) {
5399 printk(KERN_ERR DRV_NAME
5400 ": %s: Could not disable adapter %d\n",
5401 priv->net_dev->name, err);
5402 return err;
5403 }
5404 }
5405
5406 /* send cmd to firmware */
5407 err = ipw2100_hw_send_command(priv, &cmd);
5408
5409 if (!batch_mode)
5410 ipw2100_enable_adapter(priv);
5411
5412 return err;
5413 }
5414
5415 struct ipw2100_wep_key {
5416 u8 idx;
5417 u8 len;
5418 u8 key[13];
5419 };
5420
5421 /* Macros to ease up priting WEP keys */
5422 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5423 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5424 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5425 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5426
5427 /**
5428 * Set a the wep key
5429 *
5430 * @priv: struct to work on
5431 * @idx: index of the key we want to set
5432 * @key: ptr to the key data to set
5433 * @len: length of the buffer at @key
5434 * @batch_mode: FIXME perform the operation in batch mode, not
5435 * disabling the device.
5436 *
5437 * @returns 0 if OK, < 0 errno code on error.
5438 *
5439 * Fill out a command structure with the new wep key, length an
5440 * index and send it down the wire.
5441 */
5442 static int ipw2100_set_key(struct ipw2100_priv *priv,
5443 int idx, char *key, int len, int batch_mode)
5444 {
5445 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5446 struct host_command cmd = {
5447 .host_command = WEP_KEY_INFO,
5448 .host_command_sequence = 0,
5449 .host_command_length = sizeof(struct ipw2100_wep_key),
5450 };
5451 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5452 int err;
5453
5454 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5455 idx, keylen, len);
5456
5457 /* NOTE: We don't check cached values in case the firmware was reset
5458 * or some other problem is occurring. If the user is setting the key,
5459 * then we push the change */
5460
5461 wep_key->idx = idx;
5462 wep_key->len = keylen;
5463
5464 if (keylen) {
5465 memcpy(wep_key->key, key, len);
5466 memset(wep_key->key + len, 0, keylen - len);
5467 }
5468
5469 /* Will be optimized out on debug not being configured in */
5470 if (keylen == 0)
5471 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5472 priv->net_dev->name, wep_key->idx);
5473 else if (keylen == 5)
5474 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5475 priv->net_dev->name, wep_key->idx, wep_key->len,
5476 WEP_STR_64(wep_key->key));
5477 else
5478 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5479 "\n",
5480 priv->net_dev->name, wep_key->idx, wep_key->len,
5481 WEP_STR_128(wep_key->key));
5482
5483 if (!batch_mode) {
5484 err = ipw2100_disable_adapter(priv);
5485 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5486 if (err) {
5487 printk(KERN_ERR DRV_NAME
5488 ": %s: Could not disable adapter %d\n",
5489 priv->net_dev->name, err);
5490 return err;
5491 }
5492 }
5493
5494 /* send cmd to firmware */
5495 err = ipw2100_hw_send_command(priv, &cmd);
5496
5497 if (!batch_mode) {
5498 int err2 = ipw2100_enable_adapter(priv);
5499 if (err == 0)
5500 err = err2;
5501 }
5502 return err;
5503 }
5504
5505 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5506 int idx, int batch_mode)
5507 {
5508 struct host_command cmd = {
5509 .host_command = WEP_KEY_INDEX,
5510 .host_command_sequence = 0,
5511 .host_command_length = 4,
5512 .host_command_parameters = {idx},
5513 };
5514 int err;
5515
5516 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5517
5518 if (idx < 0 || idx > 3)
5519 return -EINVAL;
5520
5521 if (!batch_mode) {
5522 err = ipw2100_disable_adapter(priv);
5523 if (err) {
5524 printk(KERN_ERR DRV_NAME
5525 ": %s: Could not disable adapter %d\n",
5526 priv->net_dev->name, err);
5527 return err;
5528 }
5529 }
5530
5531 /* send cmd to firmware */
5532 err = ipw2100_hw_send_command(priv, &cmd);
5533
5534 if (!batch_mode)
5535 ipw2100_enable_adapter(priv);
5536
5537 return err;
5538 }
5539
5540 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5541 {
5542 int i, err, auth_mode, sec_level, use_group;
5543
5544 if (!(priv->status & STATUS_RUNNING))
5545 return 0;
5546
5547 if (!batch_mode) {
5548 err = ipw2100_disable_adapter(priv);
5549 if (err)
5550 return err;
5551 }
5552
5553 if (!priv->ieee->sec.enabled) {
5554 err =
5555 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5556 SEC_LEVEL_0, 0, 1);
5557 } else {
5558 auth_mode = IPW_AUTH_OPEN;
5559 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5560 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5561 auth_mode = IPW_AUTH_SHARED;
5562 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5563 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5564 }
5565
5566 sec_level = SEC_LEVEL_0;
5567 if (priv->ieee->sec.flags & SEC_LEVEL)
5568 sec_level = priv->ieee->sec.level;
5569
5570 use_group = 0;
5571 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5572 use_group = priv->ieee->sec.unicast_uses_group;
5573
5574 err =
5575 ipw2100_set_security_information(priv, auth_mode, sec_level,
5576 use_group, 1);
5577 }
5578
5579 if (err)
5580 goto exit;
5581
5582 if (priv->ieee->sec.enabled) {
5583 for (i = 0; i < 4; i++) {
5584 if (!(priv->ieee->sec.flags & (1 << i))) {
5585 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5586 priv->ieee->sec.key_sizes[i] = 0;
5587 } else {
5588 err = ipw2100_set_key(priv, i,
5589 priv->ieee->sec.keys[i],
5590 priv->ieee->sec.
5591 key_sizes[i], 1);
5592 if (err)
5593 goto exit;
5594 }
5595 }
5596
5597 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5598 }
5599
5600 /* Always enable privacy so the Host can filter WEP packets if
5601 * encrypted data is sent up */
5602 err =
5603 ipw2100_set_wep_flags(priv,
5604 priv->ieee->sec.
5605 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5606 if (err)
5607 goto exit;
5608
5609 priv->status &= ~STATUS_SECURITY_UPDATED;
5610
5611 exit:
5612 if (!batch_mode)
5613 ipw2100_enable_adapter(priv);
5614
5615 return err;
5616 }
5617
5618 static void ipw2100_security_work(struct work_struct *work)
5619 {
5620 struct ipw2100_priv *priv =
5621 container_of(work, struct ipw2100_priv, security_work.work);
5622
5623 /* If we happen to have reconnected before we get a chance to
5624 * process this, then update the security settings--which causes
5625 * a disassociation to occur */
5626 if (!(priv->status & STATUS_ASSOCIATED) &&
5627 priv->status & STATUS_SECURITY_UPDATED)
5628 ipw2100_configure_security(priv, 0);
5629 }
5630
5631 static void shim__set_security(struct net_device *dev,
5632 struct libipw_security *sec)
5633 {
5634 struct ipw2100_priv *priv = libipw_priv(dev);
5635 int i, force_update = 0;
5636
5637 mutex_lock(&priv->action_mutex);
5638 if (!(priv->status & STATUS_INITIALIZED))
5639 goto done;
5640
5641 for (i = 0; i < 4; i++) {
5642 if (sec->flags & (1 << i)) {
5643 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5644 if (sec->key_sizes[i] == 0)
5645 priv->ieee->sec.flags &= ~(1 << i);
5646 else
5647 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5648 sec->key_sizes[i]);
5649 if (sec->level == SEC_LEVEL_1) {
5650 priv->ieee->sec.flags |= (1 << i);
5651 priv->status |= STATUS_SECURITY_UPDATED;
5652 } else
5653 priv->ieee->sec.flags &= ~(1 << i);
5654 }
5655 }
5656
5657 if ((sec->flags & SEC_ACTIVE_KEY) &&
5658 priv->ieee->sec.active_key != sec->active_key) {
5659 if (sec->active_key <= 3) {
5660 priv->ieee->sec.active_key = sec->active_key;
5661 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5662 } else
5663 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5664
5665 priv->status |= STATUS_SECURITY_UPDATED;
5666 }
5667
5668 if ((sec->flags & SEC_AUTH_MODE) &&
5669 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5670 priv->ieee->sec.auth_mode = sec->auth_mode;
5671 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5672 priv->status |= STATUS_SECURITY_UPDATED;
5673 }
5674
5675 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5676 priv->ieee->sec.flags |= SEC_ENABLED;
5677 priv->ieee->sec.enabled = sec->enabled;
5678 priv->status |= STATUS_SECURITY_UPDATED;
5679 force_update = 1;
5680 }
5681
5682 if (sec->flags & SEC_ENCRYPT)
5683 priv->ieee->sec.encrypt = sec->encrypt;
5684
5685 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5686 priv->ieee->sec.level = sec->level;
5687 priv->ieee->sec.flags |= SEC_LEVEL;
5688 priv->status |= STATUS_SECURITY_UPDATED;
5689 }
5690
5691 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5692 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5693 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5694 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5695 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5696 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5697 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5698 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5699 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5700 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5701
5702 /* As a temporary work around to enable WPA until we figure out why
5703 * wpa_supplicant toggles the security capability of the driver, which
5704 * forces a disassocation with force_update...
5705 *
5706 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5707 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5708 ipw2100_configure_security(priv, 0);
5709 done:
5710 mutex_unlock(&priv->action_mutex);
5711 }
5712
5713 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5714 {
5715 int err;
5716 int batch_mode = 1;
5717 u8 *bssid;
5718
5719 IPW_DEBUG_INFO("enter\n");
5720
5721 err = ipw2100_disable_adapter(priv);
5722 if (err)
5723 return err;
5724 #ifdef CONFIG_IPW2100_MONITOR
5725 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5726 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5727 if (err)
5728 return err;
5729
5730 IPW_DEBUG_INFO("exit\n");
5731
5732 return 0;
5733 }
5734 #endif /* CONFIG_IPW2100_MONITOR */
5735
5736 err = ipw2100_read_mac_address(priv);
5737 if (err)
5738 return -EIO;
5739
5740 err = ipw2100_set_mac_address(priv, batch_mode);
5741 if (err)
5742 return err;
5743
5744 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5745 if (err)
5746 return err;
5747
5748 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5749 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5750 if (err)
5751 return err;
5752 }
5753
5754 err = ipw2100_system_config(priv, batch_mode);
5755 if (err)
5756 return err;
5757
5758 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5759 if (err)
5760 return err;
5761
5762 /* Default to power mode OFF */
5763 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5764 if (err)
5765 return err;
5766
5767 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5768 if (err)
5769 return err;
5770
5771 if (priv->config & CFG_STATIC_BSSID)
5772 bssid = priv->bssid;
5773 else
5774 bssid = NULL;
5775 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5776 if (err)
5777 return err;
5778
5779 if (priv->config & CFG_STATIC_ESSID)
5780 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5781 batch_mode);
5782 else
5783 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5784 if (err)
5785 return err;
5786
5787 err = ipw2100_configure_security(priv, batch_mode);
5788 if (err)
5789 return err;
5790
5791 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5792 err =
5793 ipw2100_set_ibss_beacon_interval(priv,
5794 priv->beacon_interval,
5795 batch_mode);
5796 if (err)
5797 return err;
5798
5799 err = ipw2100_set_tx_power(priv, priv->tx_power);
5800 if (err)
5801 return err;
5802 }
5803
5804 /*
5805 err = ipw2100_set_fragmentation_threshold(
5806 priv, priv->frag_threshold, batch_mode);
5807 if (err)
5808 return err;
5809 */
5810
5811 IPW_DEBUG_INFO("exit\n");
5812
5813 return 0;
5814 }
5815
5816 /*************************************************************************
5817 *
5818 * EXTERNALLY CALLED METHODS
5819 *
5820 *************************************************************************/
5821
5822 /* This method is called by the network layer -- not to be confused with
5823 * ipw2100_set_mac_address() declared above called by this driver (and this
5824 * method as well) to talk to the firmware */
5825 static int ipw2100_set_address(struct net_device *dev, void *p)
5826 {
5827 struct ipw2100_priv *priv = libipw_priv(dev);
5828 struct sockaddr *addr = p;
5829 int err = 0;
5830
5831 if (!is_valid_ether_addr(addr->sa_data))
5832 return -EADDRNOTAVAIL;
5833
5834 mutex_lock(&priv->action_mutex);
5835
5836 priv->config |= CFG_CUSTOM_MAC;
5837 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5838
5839 err = ipw2100_set_mac_address(priv, 0);
5840 if (err)
5841 goto done;
5842
5843 priv->reset_backoff = 0;
5844 mutex_unlock(&priv->action_mutex);
5845 ipw2100_reset_adapter(&priv->reset_work.work);
5846 return 0;
5847
5848 done:
5849 mutex_unlock(&priv->action_mutex);
5850 return err;
5851 }
5852
5853 static int ipw2100_open(struct net_device *dev)
5854 {
5855 struct ipw2100_priv *priv = libipw_priv(dev);
5856 unsigned long flags;
5857 IPW_DEBUG_INFO("dev->open\n");
5858
5859 spin_lock_irqsave(&priv->low_lock, flags);
5860 if (priv->status & STATUS_ASSOCIATED) {
5861 netif_carrier_on(dev);
5862 netif_start_queue(dev);
5863 }
5864 spin_unlock_irqrestore(&priv->low_lock, flags);
5865
5866 return 0;
5867 }
5868
5869 static int ipw2100_close(struct net_device *dev)
5870 {
5871 struct ipw2100_priv *priv = libipw_priv(dev);
5872 unsigned long flags;
5873 struct list_head *element;
5874 struct ipw2100_tx_packet *packet;
5875
5876 IPW_DEBUG_INFO("enter\n");
5877
5878 spin_lock_irqsave(&priv->low_lock, flags);
5879
5880 if (priv->status & STATUS_ASSOCIATED)
5881 netif_carrier_off(dev);
5882 netif_stop_queue(dev);
5883
5884 /* Flush the TX queue ... */
5885 while (!list_empty(&priv->tx_pend_list)) {
5886 element = priv->tx_pend_list.next;
5887 packet = list_entry(element, struct ipw2100_tx_packet, list);
5888
5889 list_del(element);
5890 DEC_STAT(&priv->tx_pend_stat);
5891
5892 libipw_txb_free(packet->info.d_struct.txb);
5893 packet->info.d_struct.txb = NULL;
5894
5895 list_add_tail(element, &priv->tx_free_list);
5896 INC_STAT(&priv->tx_free_stat);
5897 }
5898 spin_unlock_irqrestore(&priv->low_lock, flags);
5899
5900 IPW_DEBUG_INFO("exit\n");
5901
5902 return 0;
5903 }
5904
5905 /*
5906 * TODO: Fix this function... its just wrong
5907 */
5908 static void ipw2100_tx_timeout(struct net_device *dev)
5909 {
5910 struct ipw2100_priv *priv = libipw_priv(dev);
5911
5912 dev->stats.tx_errors++;
5913
5914 #ifdef CONFIG_IPW2100_MONITOR
5915 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5916 return;
5917 #endif
5918
5919 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5920 dev->name);
5921 schedule_reset(priv);
5922 }
5923
5924 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5925 {
5926 /* This is called when wpa_supplicant loads and closes the driver
5927 * interface. */
5928 priv->ieee->wpa_enabled = value;
5929 return 0;
5930 }
5931
5932 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5933 {
5934
5935 struct libipw_device *ieee = priv->ieee;
5936 struct libipw_security sec = {
5937 .flags = SEC_AUTH_MODE,
5938 };
5939 int ret = 0;
5940
5941 if (value & IW_AUTH_ALG_SHARED_KEY) {
5942 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5943 ieee->open_wep = 0;
5944 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5945 sec.auth_mode = WLAN_AUTH_OPEN;
5946 ieee->open_wep = 1;
5947 } else if (value & IW_AUTH_ALG_LEAP) {
5948 sec.auth_mode = WLAN_AUTH_LEAP;
5949 ieee->open_wep = 1;
5950 } else
5951 return -EINVAL;
5952
5953 if (ieee->set_security)
5954 ieee->set_security(ieee->dev, &sec);
5955 else
5956 ret = -EOPNOTSUPP;
5957
5958 return ret;
5959 }
5960
5961 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5962 char *wpa_ie, int wpa_ie_len)
5963 {
5964
5965 struct ipw2100_wpa_assoc_frame frame;
5966
5967 frame.fixed_ie_mask = 0;
5968
5969 /* copy WPA IE */
5970 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5971 frame.var_ie_len = wpa_ie_len;
5972
5973 /* make sure WPA is enabled */
5974 ipw2100_wpa_enable(priv, 1);
5975 ipw2100_set_wpa_ie(priv, &frame, 0);
5976 }
5977
5978 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5979 struct ethtool_drvinfo *info)
5980 {
5981 struct ipw2100_priv *priv = libipw_priv(dev);
5982 char fw_ver[64], ucode_ver[64];
5983
5984 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5985 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5986
5987 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5988 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5989
5990 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5991 fw_ver, priv->eeprom_version, ucode_ver);
5992
5993 strlcpy(info->bus_info, pci_name(priv->pci_dev),
5994 sizeof(info->bus_info));
5995 }
5996
5997 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5998 {
5999 struct ipw2100_priv *priv = libipw_priv(dev);
6000 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
6001 }
6002
6003 static const struct ethtool_ops ipw2100_ethtool_ops = {
6004 .get_link = ipw2100_ethtool_get_link,
6005 .get_drvinfo = ipw_ethtool_get_drvinfo,
6006 };
6007
6008 static void ipw2100_hang_check(struct work_struct *work)
6009 {
6010 struct ipw2100_priv *priv =
6011 container_of(work, struct ipw2100_priv, hang_check.work);
6012 unsigned long flags;
6013 u32 rtc = 0xa5a5a5a5;
6014 u32 len = sizeof(rtc);
6015 int restart = 0;
6016
6017 spin_lock_irqsave(&priv->low_lock, flags);
6018
6019 if (priv->fatal_error != 0) {
6020 /* If fatal_error is set then we need to restart */
6021 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
6022 priv->net_dev->name);
6023
6024 restart = 1;
6025 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
6026 (rtc == priv->last_rtc)) {
6027 /* Check if firmware is hung */
6028 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
6029 priv->net_dev->name);
6030
6031 restart = 1;
6032 }
6033
6034 if (restart) {
6035 /* Kill timer */
6036 priv->stop_hang_check = 1;
6037 priv->hangs++;
6038
6039 /* Restart the NIC */
6040 schedule_reset(priv);
6041 }
6042
6043 priv->last_rtc = rtc;
6044
6045 if (!priv->stop_hang_check)
6046 schedule_delayed_work(&priv->hang_check, HZ / 2);
6047
6048 spin_unlock_irqrestore(&priv->low_lock, flags);
6049 }
6050
6051 static void ipw2100_rf_kill(struct work_struct *work)
6052 {
6053 struct ipw2100_priv *priv =
6054 container_of(work, struct ipw2100_priv, rf_kill.work);
6055 unsigned long flags;
6056
6057 spin_lock_irqsave(&priv->low_lock, flags);
6058
6059 if (rf_kill_active(priv)) {
6060 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6061 if (!priv->stop_rf_kill)
6062 schedule_delayed_work(&priv->rf_kill,
6063 round_jiffies_relative(HZ));
6064 goto exit_unlock;
6065 }
6066
6067 /* RF Kill is now disabled, so bring the device back up */
6068
6069 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6070 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6071 "device\n");
6072 schedule_reset(priv);
6073 } else
6074 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
6075 "enabled\n");
6076
6077 exit_unlock:
6078 spin_unlock_irqrestore(&priv->low_lock, flags);
6079 }
6080
6081 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6082
6083 static const struct net_device_ops ipw2100_netdev_ops = {
6084 .ndo_open = ipw2100_open,
6085 .ndo_stop = ipw2100_close,
6086 .ndo_start_xmit = libipw_xmit,
6087 .ndo_change_mtu = libipw_change_mtu,
6088 .ndo_init = ipw2100_net_init,
6089 .ndo_tx_timeout = ipw2100_tx_timeout,
6090 .ndo_set_mac_address = ipw2100_set_address,
6091 .ndo_validate_addr = eth_validate_addr,
6092 };
6093
6094 /* Look into using netdev destructor to shutdown libipw? */
6095
6096 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6097 void __iomem * ioaddr)
6098 {
6099 struct ipw2100_priv *priv;
6100 struct net_device *dev;
6101
6102 dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6103 if (!dev)
6104 return NULL;
6105 priv = libipw_priv(dev);
6106 priv->ieee = netdev_priv(dev);
6107 priv->pci_dev = pci_dev;
6108 priv->net_dev = dev;
6109 priv->ioaddr = ioaddr;
6110
6111 priv->ieee->hard_start_xmit = ipw2100_tx;
6112 priv->ieee->set_security = shim__set_security;
6113
6114 priv->ieee->perfect_rssi = -20;
6115 priv->ieee->worst_rssi = -85;
6116
6117 dev->netdev_ops = &ipw2100_netdev_ops;
6118 dev->ethtool_ops = &ipw2100_ethtool_ops;
6119 dev->wireless_handlers = &ipw2100_wx_handler_def;
6120 priv->wireless_data.libipw = priv->ieee;
6121 dev->wireless_data = &priv->wireless_data;
6122 dev->watchdog_timeo = 3 * HZ;
6123 dev->irq = 0;
6124
6125 /* NOTE: We don't use the wireless_handlers hook
6126 * in dev as the system will start throwing WX requests
6127 * to us before we're actually initialized and it just
6128 * ends up causing problems. So, we just handle
6129 * the WX extensions through the ipw2100_ioctl interface */
6130
6131 /* memset() puts everything to 0, so we only have explicitly set
6132 * those values that need to be something else */
6133
6134 /* If power management is turned on, default to AUTO mode */
6135 priv->power_mode = IPW_POWER_AUTO;
6136
6137 #ifdef CONFIG_IPW2100_MONITOR
6138 priv->config |= CFG_CRC_CHECK;
6139 #endif
6140 priv->ieee->wpa_enabled = 0;
6141 priv->ieee->drop_unencrypted = 0;
6142 priv->ieee->privacy_invoked = 0;
6143 priv->ieee->ieee802_1x = 1;
6144
6145 /* Set module parameters */
6146 switch (network_mode) {
6147 case 1:
6148 priv->ieee->iw_mode = IW_MODE_ADHOC;
6149 break;
6150 #ifdef CONFIG_IPW2100_MONITOR
6151 case 2:
6152 priv->ieee->iw_mode = IW_MODE_MONITOR;
6153 break;
6154 #endif
6155 default:
6156 case 0:
6157 priv->ieee->iw_mode = IW_MODE_INFRA;
6158 break;
6159 }
6160
6161 if (disable == 1)
6162 priv->status |= STATUS_RF_KILL_SW;
6163
6164 if (channel != 0 &&
6165 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6166 priv->config |= CFG_STATIC_CHANNEL;
6167 priv->channel = channel;
6168 }
6169
6170 if (associate)
6171 priv->config |= CFG_ASSOCIATE;
6172
6173 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6174 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6175 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6176 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6177 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6178 priv->tx_power = IPW_TX_POWER_DEFAULT;
6179 priv->tx_rates = DEFAULT_TX_RATES;
6180
6181 strcpy(priv->nick, "ipw2100");
6182
6183 spin_lock_init(&priv->low_lock);
6184 mutex_init(&priv->action_mutex);
6185 mutex_init(&priv->adapter_mutex);
6186
6187 init_waitqueue_head(&priv->wait_command_queue);
6188
6189 netif_carrier_off(dev);
6190
6191 INIT_LIST_HEAD(&priv->msg_free_list);
6192 INIT_LIST_HEAD(&priv->msg_pend_list);
6193 INIT_STAT(&priv->msg_free_stat);
6194 INIT_STAT(&priv->msg_pend_stat);
6195
6196 INIT_LIST_HEAD(&priv->tx_free_list);
6197 INIT_LIST_HEAD(&priv->tx_pend_list);
6198 INIT_STAT(&priv->tx_free_stat);
6199 INIT_STAT(&priv->tx_pend_stat);
6200
6201 INIT_LIST_HEAD(&priv->fw_pend_list);
6202 INIT_STAT(&priv->fw_pend_stat);
6203
6204 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6205 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6206 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6207 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6208 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6209 INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6210 INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6211
6212 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6213 ipw2100_irq_tasklet, (unsigned long)priv);
6214
6215 /* NOTE: We do not start the deferred work for status checks yet */
6216 priv->stop_rf_kill = 1;
6217 priv->stop_hang_check = 1;
6218
6219 return dev;
6220 }
6221
6222 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6223 const struct pci_device_id *ent)
6224 {
6225 void __iomem *ioaddr;
6226 struct net_device *dev = NULL;
6227 struct ipw2100_priv *priv = NULL;
6228 int err = 0;
6229 int registered = 0;
6230 u32 val;
6231
6232 IPW_DEBUG_INFO("enter\n");
6233
6234 if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6235 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6236 err = -ENODEV;
6237 goto out;
6238 }
6239
6240 ioaddr = pci_iomap(pci_dev, 0, 0);
6241 if (!ioaddr) {
6242 printk(KERN_WARNING DRV_NAME
6243 "Error calling ioremap_nocache.\n");
6244 err = -EIO;
6245 goto fail;
6246 }
6247
6248 /* allocate and initialize our net_device */
6249 dev = ipw2100_alloc_device(pci_dev, ioaddr);
6250 if (!dev) {
6251 printk(KERN_WARNING DRV_NAME
6252 "Error calling ipw2100_alloc_device.\n");
6253 err = -ENOMEM;
6254 goto fail;
6255 }
6256
6257 /* set up PCI mappings for device */
6258 err = pci_enable_device(pci_dev);
6259 if (err) {
6260 printk(KERN_WARNING DRV_NAME
6261 "Error calling pci_enable_device.\n");
6262 return err;
6263 }
6264
6265 priv = libipw_priv(dev);
6266
6267 pci_set_master(pci_dev);
6268 pci_set_drvdata(pci_dev, priv);
6269
6270 err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6271 if (err) {
6272 printk(KERN_WARNING DRV_NAME
6273 "Error calling pci_set_dma_mask.\n");
6274 pci_disable_device(pci_dev);
6275 return err;
6276 }
6277
6278 err = pci_request_regions(pci_dev, DRV_NAME);
6279 if (err) {
6280 printk(KERN_WARNING DRV_NAME
6281 "Error calling pci_request_regions.\n");
6282 pci_disable_device(pci_dev);
6283 return err;
6284 }
6285
6286 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6287 * PCI Tx retries from interfering with C3 CPU state */
6288 pci_read_config_dword(pci_dev, 0x40, &val);
6289 if ((val & 0x0000ff00) != 0)
6290 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6291
6292 pci_set_power_state(pci_dev, PCI_D0);
6293
6294 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6295 printk(KERN_WARNING DRV_NAME
6296 "Device not found via register read.\n");
6297 err = -ENODEV;
6298 goto fail;
6299 }
6300
6301 SET_NETDEV_DEV(dev, &pci_dev->dev);
6302
6303 /* Force interrupts to be shut off on the device */
6304 priv->status |= STATUS_INT_ENABLED;
6305 ipw2100_disable_interrupts(priv);
6306
6307 /* Allocate and initialize the Tx/Rx queues and lists */
6308 if (ipw2100_queues_allocate(priv)) {
6309 printk(KERN_WARNING DRV_NAME
6310 "Error calling ipw2100_queues_allocate.\n");
6311 err = -ENOMEM;
6312 goto fail;
6313 }
6314 ipw2100_queues_initialize(priv);
6315
6316 err = request_irq(pci_dev->irq,
6317 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6318 if (err) {
6319 printk(KERN_WARNING DRV_NAME
6320 "Error calling request_irq: %d.\n", pci_dev->irq);
6321 goto fail;
6322 }
6323 dev->irq = pci_dev->irq;
6324
6325 IPW_DEBUG_INFO("Attempting to register device...\n");
6326
6327 printk(KERN_INFO DRV_NAME
6328 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6329
6330 /* Bring up the interface. Pre 0.46, after we registered the
6331 * network device we would call ipw2100_up. This introduced a race
6332 * condition with newer hotplug configurations (network was coming
6333 * up and making calls before the device was initialized).
6334 *
6335 * If we called ipw2100_up before we registered the device, then the
6336 * device name wasn't registered. So, we instead use the net_dev->init
6337 * member to call a function that then just turns and calls ipw2100_up.
6338 * net_dev->init is called after name allocation but before the
6339 * notifier chain is called */
6340 err = register_netdev(dev);
6341 if (err) {
6342 printk(KERN_WARNING DRV_NAME
6343 "Error calling register_netdev.\n");
6344 goto fail;
6345 }
6346 registered = 1;
6347
6348 err = ipw2100_wdev_init(dev);
6349 if (err)
6350 goto fail;
6351
6352 mutex_lock(&priv->action_mutex);
6353
6354 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6355
6356 /* perform this after register_netdev so that dev->name is set */
6357 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6358 if (err)
6359 goto fail_unlock;
6360
6361 /* If the RF Kill switch is disabled, go ahead and complete the
6362 * startup sequence */
6363 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6364 /* Enable the adapter - sends HOST_COMPLETE */
6365 if (ipw2100_enable_adapter(priv)) {
6366 printk(KERN_WARNING DRV_NAME
6367 ": %s: failed in call to enable adapter.\n",
6368 priv->net_dev->name);
6369 ipw2100_hw_stop_adapter(priv);
6370 err = -EIO;
6371 goto fail_unlock;
6372 }
6373
6374 /* Start a scan . . . */
6375 ipw2100_set_scan_options(priv);
6376 ipw2100_start_scan(priv);
6377 }
6378
6379 IPW_DEBUG_INFO("exit\n");
6380
6381 priv->status |= STATUS_INITIALIZED;
6382
6383 mutex_unlock(&priv->action_mutex);
6384 out:
6385 return err;
6386
6387 fail_unlock:
6388 mutex_unlock(&priv->action_mutex);
6389 wiphy_unregister(priv->ieee->wdev.wiphy);
6390 kfree(priv->ieee->bg_band.channels);
6391 fail:
6392 if (dev) {
6393 if (registered)
6394 unregister_netdev(dev);
6395
6396 ipw2100_hw_stop_adapter(priv);
6397
6398 ipw2100_disable_interrupts(priv);
6399
6400 if (dev->irq)
6401 free_irq(dev->irq, priv);
6402
6403 ipw2100_kill_works(priv);
6404
6405 /* These are safe to call even if they weren't allocated */
6406 ipw2100_queues_free(priv);
6407 sysfs_remove_group(&pci_dev->dev.kobj,
6408 &ipw2100_attribute_group);
6409
6410 free_libipw(dev, 0);
6411 pci_set_drvdata(pci_dev, NULL);
6412 }
6413
6414 pci_iounmap(pci_dev, ioaddr);
6415
6416 pci_release_regions(pci_dev);
6417 pci_disable_device(pci_dev);
6418 goto out;
6419 }
6420
6421 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6422 {
6423 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6424 struct net_device *dev = priv->net_dev;
6425
6426 mutex_lock(&priv->action_mutex);
6427
6428 priv->status &= ~STATUS_INITIALIZED;
6429
6430 sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6431
6432 #ifdef CONFIG_PM
6433 if (ipw2100_firmware.version)
6434 ipw2100_release_firmware(priv, &ipw2100_firmware);
6435 #endif
6436 /* Take down the hardware */
6437 ipw2100_down(priv);
6438
6439 /* Release the mutex so that the network subsystem can
6440 * complete any needed calls into the driver... */
6441 mutex_unlock(&priv->action_mutex);
6442
6443 /* Unregister the device first - this results in close()
6444 * being called if the device is open. If we free storage
6445 * first, then close() will crash.
6446 * FIXME: remove the comment above. */
6447 unregister_netdev(dev);
6448
6449 ipw2100_kill_works(priv);
6450
6451 ipw2100_queues_free(priv);
6452
6453 /* Free potential debugging firmware snapshot */
6454 ipw2100_snapshot_free(priv);
6455
6456 free_irq(dev->irq, priv);
6457
6458 pci_iounmap(pci_dev, priv->ioaddr);
6459
6460 /* wiphy_unregister needs to be here, before free_libipw */
6461 wiphy_unregister(priv->ieee->wdev.wiphy);
6462 kfree(priv->ieee->bg_band.channels);
6463 free_libipw(dev, 0);
6464
6465 pci_release_regions(pci_dev);
6466 pci_disable_device(pci_dev);
6467
6468 IPW_DEBUG_INFO("exit\n");
6469 }
6470
6471 #ifdef CONFIG_PM
6472 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6473 {
6474 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6475 struct net_device *dev = priv->net_dev;
6476
6477 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6478
6479 mutex_lock(&priv->action_mutex);
6480 if (priv->status & STATUS_INITIALIZED) {
6481 /* Take down the device; powers it off, etc. */
6482 ipw2100_down(priv);
6483 }
6484
6485 /* Remove the PRESENT state of the device */
6486 netif_device_detach(dev);
6487
6488 pci_save_state(pci_dev);
6489 pci_disable_device(pci_dev);
6490 pci_set_power_state(pci_dev, PCI_D3hot);
6491
6492 priv->suspend_at = get_seconds();
6493
6494 mutex_unlock(&priv->action_mutex);
6495
6496 return 0;
6497 }
6498
6499 static int ipw2100_resume(struct pci_dev *pci_dev)
6500 {
6501 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6502 struct net_device *dev = priv->net_dev;
6503 int err;
6504 u32 val;
6505
6506 if (IPW2100_PM_DISABLED)
6507 return 0;
6508
6509 mutex_lock(&priv->action_mutex);
6510
6511 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6512
6513 pci_set_power_state(pci_dev, PCI_D0);
6514 err = pci_enable_device(pci_dev);
6515 if (err) {
6516 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6517 dev->name);
6518 mutex_unlock(&priv->action_mutex);
6519 return err;
6520 }
6521 pci_restore_state(pci_dev);
6522
6523 /*
6524 * Suspend/Resume resets the PCI configuration space, so we have to
6525 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6526 * from interfering with C3 CPU state. pci_restore_state won't help
6527 * here since it only restores the first 64 bytes pci config header.
6528 */
6529 pci_read_config_dword(pci_dev, 0x40, &val);
6530 if ((val & 0x0000ff00) != 0)
6531 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6532
6533 /* Set the device back into the PRESENT state; this will also wake
6534 * the queue of needed */
6535 netif_device_attach(dev);
6536
6537 priv->suspend_time = get_seconds() - priv->suspend_at;
6538
6539 /* Bring the device back up */
6540 if (!(priv->status & STATUS_RF_KILL_SW))
6541 ipw2100_up(priv, 0);
6542
6543 mutex_unlock(&priv->action_mutex);
6544
6545 return 0;
6546 }
6547 #endif
6548
6549 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6550 {
6551 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6552
6553 /* Take down the device; powers it off, etc. */
6554 ipw2100_down(priv);
6555
6556 pci_disable_device(pci_dev);
6557 }
6558
6559 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6560
6561 static DEFINE_PCI_DEVICE_TABLE(ipw2100_pci_id_table) = {
6562 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6563 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6564 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6565 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6566 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6567 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6568 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6569 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6570 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6571 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6572 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6573 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6574 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6575
6576 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6577 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6578 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6579 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6580 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6581
6582 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6583 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6584 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6585 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6586 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6587 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6588 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6589
6590 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6591
6592 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6593 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6594 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6595 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6596 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6597 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6598 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6599
6600 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6601 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6602 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6603 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6604 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6605 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6606
6607 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6608 {0,},
6609 };
6610
6611 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6612
6613 static struct pci_driver ipw2100_pci_driver = {
6614 .name = DRV_NAME,
6615 .id_table = ipw2100_pci_id_table,
6616 .probe = ipw2100_pci_init_one,
6617 .remove = __devexit_p(ipw2100_pci_remove_one),
6618 #ifdef CONFIG_PM
6619 .suspend = ipw2100_suspend,
6620 .resume = ipw2100_resume,
6621 #endif
6622 .shutdown = ipw2100_shutdown,
6623 };
6624
6625 /**
6626 * Initialize the ipw2100 driver/module
6627 *
6628 * @returns 0 if ok, < 0 errno node con error.
6629 *
6630 * Note: we cannot init the /proc stuff until the PCI driver is there,
6631 * or we risk an unlikely race condition on someone accessing
6632 * uninitialized data in the PCI dev struct through /proc.
6633 */
6634 static int __init ipw2100_init(void)
6635 {
6636 int ret;
6637
6638 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6639 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6640
6641 pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6642 PM_QOS_DEFAULT_VALUE);
6643
6644 ret = pci_register_driver(&ipw2100_pci_driver);
6645 if (ret)
6646 goto out;
6647
6648 #ifdef CONFIG_IPW2100_DEBUG
6649 ipw2100_debug_level = debug;
6650 ret = driver_create_file(&ipw2100_pci_driver.driver,
6651 &driver_attr_debug_level);
6652 #endif
6653
6654 out:
6655 return ret;
6656 }
6657
6658 /**
6659 * Cleanup ipw2100 driver registration
6660 */
6661 static void __exit ipw2100_exit(void)
6662 {
6663 /* FIXME: IPG: check that we have no instances of the devices open */
6664 #ifdef CONFIG_IPW2100_DEBUG
6665 driver_remove_file(&ipw2100_pci_driver.driver,
6666 &driver_attr_debug_level);
6667 #endif
6668 pci_unregister_driver(&ipw2100_pci_driver);
6669 pm_qos_remove_request(&ipw2100_pm_qos_req);
6670 }
6671
6672 module_init(ipw2100_init);
6673 module_exit(ipw2100_exit);
6674
6675 static int ipw2100_wx_get_name(struct net_device *dev,
6676 struct iw_request_info *info,
6677 union iwreq_data *wrqu, char *extra)
6678 {
6679 /*
6680 * This can be called at any time. No action lock required
6681 */
6682
6683 struct ipw2100_priv *priv = libipw_priv(dev);
6684 if (!(priv->status & STATUS_ASSOCIATED))
6685 strcpy(wrqu->name, "unassociated");
6686 else
6687 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6688
6689 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6690 return 0;
6691 }
6692
6693 static int ipw2100_wx_set_freq(struct net_device *dev,
6694 struct iw_request_info *info,
6695 union iwreq_data *wrqu, char *extra)
6696 {
6697 struct ipw2100_priv *priv = libipw_priv(dev);
6698 struct iw_freq *fwrq = &wrqu->freq;
6699 int err = 0;
6700
6701 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6702 return -EOPNOTSUPP;
6703
6704 mutex_lock(&priv->action_mutex);
6705 if (!(priv->status & STATUS_INITIALIZED)) {
6706 err = -EIO;
6707 goto done;
6708 }
6709
6710 /* if setting by freq convert to channel */
6711 if (fwrq->e == 1) {
6712 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6713 int f = fwrq->m / 100000;
6714 int c = 0;
6715
6716 while ((c < REG_MAX_CHANNEL) &&
6717 (f != ipw2100_frequencies[c]))
6718 c++;
6719
6720 /* hack to fall through */
6721 fwrq->e = 0;
6722 fwrq->m = c + 1;
6723 }
6724 }
6725
6726 if (fwrq->e > 0 || fwrq->m > 1000) {
6727 err = -EOPNOTSUPP;
6728 goto done;
6729 } else { /* Set the channel */
6730 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6731 err = ipw2100_set_channel(priv, fwrq->m, 0);
6732 }
6733
6734 done:
6735 mutex_unlock(&priv->action_mutex);
6736 return err;
6737 }
6738
6739 static int ipw2100_wx_get_freq(struct net_device *dev,
6740 struct iw_request_info *info,
6741 union iwreq_data *wrqu, char *extra)
6742 {
6743 /*
6744 * This can be called at any time. No action lock required
6745 */
6746
6747 struct ipw2100_priv *priv = libipw_priv(dev);
6748
6749 wrqu->freq.e = 0;
6750
6751 /* If we are associated, trying to associate, or have a statically
6752 * configured CHANNEL then return that; otherwise return ANY */
6753 if (priv->config & CFG_STATIC_CHANNEL ||
6754 priv->status & STATUS_ASSOCIATED)
6755 wrqu->freq.m = priv->channel;
6756 else
6757 wrqu->freq.m = 0;
6758
6759 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6760 return 0;
6761
6762 }
6763
6764 static int ipw2100_wx_set_mode(struct net_device *dev,
6765 struct iw_request_info *info,
6766 union iwreq_data *wrqu, char *extra)
6767 {
6768 struct ipw2100_priv *priv = libipw_priv(dev);
6769 int err = 0;
6770
6771 IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6772
6773 if (wrqu->mode == priv->ieee->iw_mode)
6774 return 0;
6775
6776 mutex_lock(&priv->action_mutex);
6777 if (!(priv->status & STATUS_INITIALIZED)) {
6778 err = -EIO;
6779 goto done;
6780 }
6781
6782 switch (wrqu->mode) {
6783 #ifdef CONFIG_IPW2100_MONITOR
6784 case IW_MODE_MONITOR:
6785 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6786 break;
6787 #endif /* CONFIG_IPW2100_MONITOR */
6788 case IW_MODE_ADHOC:
6789 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6790 break;
6791 case IW_MODE_INFRA:
6792 case IW_MODE_AUTO:
6793 default:
6794 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6795 break;
6796 }
6797
6798 done:
6799 mutex_unlock(&priv->action_mutex);
6800 return err;
6801 }
6802
6803 static int ipw2100_wx_get_mode(struct net_device *dev,
6804 struct iw_request_info *info,
6805 union iwreq_data *wrqu, char *extra)
6806 {
6807 /*
6808 * This can be called at any time. No action lock required
6809 */
6810
6811 struct ipw2100_priv *priv = libipw_priv(dev);
6812
6813 wrqu->mode = priv->ieee->iw_mode;
6814 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6815
6816 return 0;
6817 }
6818
6819 #define POWER_MODES 5
6820
6821 /* Values are in microsecond */
6822 static const s32 timeout_duration[POWER_MODES] = {
6823 350000,
6824 250000,
6825 75000,
6826 37000,
6827 25000,
6828 };
6829
6830 static const s32 period_duration[POWER_MODES] = {
6831 400000,
6832 700000,
6833 1000000,
6834 1000000,
6835 1000000
6836 };
6837
6838 static int ipw2100_wx_get_range(struct net_device *dev,
6839 struct iw_request_info *info,
6840 union iwreq_data *wrqu, char *extra)
6841 {
6842 /*
6843 * This can be called at any time. No action lock required
6844 */
6845
6846 struct ipw2100_priv *priv = libipw_priv(dev);
6847 struct iw_range *range = (struct iw_range *)extra;
6848 u16 val;
6849 int i, level;
6850
6851 wrqu->data.length = sizeof(*range);
6852 memset(range, 0, sizeof(*range));
6853
6854 /* Let's try to keep this struct in the same order as in
6855 * linux/include/wireless.h
6856 */
6857
6858 /* TODO: See what values we can set, and remove the ones we can't
6859 * set, or fill them with some default data.
6860 */
6861
6862 /* ~5 Mb/s real (802.11b) */
6863 range->throughput = 5 * 1000 * 1000;
6864
6865 // range->sensitivity; /* signal level threshold range */
6866
6867 range->max_qual.qual = 100;
6868 /* TODO: Find real max RSSI and stick here */
6869 range->max_qual.level = 0;
6870 range->max_qual.noise = 0;
6871 range->max_qual.updated = 7; /* Updated all three */
6872
6873 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6874 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6875 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6876 range->avg_qual.noise = 0;
6877 range->avg_qual.updated = 7; /* Updated all three */
6878
6879 range->num_bitrates = RATE_COUNT;
6880
6881 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6882 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6883 }
6884
6885 range->min_rts = MIN_RTS_THRESHOLD;
6886 range->max_rts = MAX_RTS_THRESHOLD;
6887 range->min_frag = MIN_FRAG_THRESHOLD;
6888 range->max_frag = MAX_FRAG_THRESHOLD;
6889
6890 range->min_pmp = period_duration[0]; /* Minimal PM period */
6891 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6892 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6893 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6894
6895 /* How to decode max/min PM period */
6896 range->pmp_flags = IW_POWER_PERIOD;
6897 /* How to decode max/min PM period */
6898 range->pmt_flags = IW_POWER_TIMEOUT;
6899 /* What PM options are supported */
6900 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6901
6902 range->encoding_size[0] = 5;
6903 range->encoding_size[1] = 13; /* Different token sizes */
6904 range->num_encoding_sizes = 2; /* Number of entry in the list */
6905 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6906 // range->encoding_login_index; /* token index for login token */
6907
6908 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6909 range->txpower_capa = IW_TXPOW_DBM;
6910 range->num_txpower = IW_MAX_TXPOWER;
6911 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6912 i < IW_MAX_TXPOWER;
6913 i++, level -=
6914 ((IPW_TX_POWER_MAX_DBM -
6915 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6916 range->txpower[i] = level / 16;
6917 } else {
6918 range->txpower_capa = 0;
6919 range->num_txpower = 0;
6920 }
6921
6922 /* Set the Wireless Extension versions */
6923 range->we_version_compiled = WIRELESS_EXT;
6924 range->we_version_source = 18;
6925
6926 // range->retry_capa; /* What retry options are supported */
6927 // range->retry_flags; /* How to decode max/min retry limit */
6928 // range->r_time_flags; /* How to decode max/min retry life */
6929 // range->min_retry; /* Minimal number of retries */
6930 // range->max_retry; /* Maximal number of retries */
6931 // range->min_r_time; /* Minimal retry lifetime */
6932 // range->max_r_time; /* Maximal retry lifetime */
6933
6934 range->num_channels = FREQ_COUNT;
6935
6936 val = 0;
6937 for (i = 0; i < FREQ_COUNT; i++) {
6938 // TODO: Include only legal frequencies for some countries
6939 // if (local->channel_mask & (1 << i)) {
6940 range->freq[val].i = i + 1;
6941 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6942 range->freq[val].e = 1;
6943 val++;
6944 // }
6945 if (val == IW_MAX_FREQUENCIES)
6946 break;
6947 }
6948 range->num_frequency = val;
6949
6950 /* Event capability (kernel + driver) */
6951 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6952 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6953 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6954
6955 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6956 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6957
6958 IPW_DEBUG_WX("GET Range\n");
6959
6960 return 0;
6961 }
6962
6963 static int ipw2100_wx_set_wap(struct net_device *dev,
6964 struct iw_request_info *info,
6965 union iwreq_data *wrqu, char *extra)
6966 {
6967 struct ipw2100_priv *priv = libipw_priv(dev);
6968 int err = 0;
6969
6970 static const unsigned char any[] = {
6971 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6972 };
6973 static const unsigned char off[] = {
6974 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6975 };
6976
6977 // sanity checks
6978 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6979 return -EINVAL;
6980
6981 mutex_lock(&priv->action_mutex);
6982 if (!(priv->status & STATUS_INITIALIZED)) {
6983 err = -EIO;
6984 goto done;
6985 }
6986
6987 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6988 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6989 /* we disable mandatory BSSID association */
6990 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6991 priv->config &= ~CFG_STATIC_BSSID;
6992 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6993 goto done;
6994 }
6995
6996 priv->config |= CFG_STATIC_BSSID;
6997 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6998
6999 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
7000
7001 IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
7002
7003 done:
7004 mutex_unlock(&priv->action_mutex);
7005 return err;
7006 }
7007
7008 static int ipw2100_wx_get_wap(struct net_device *dev,
7009 struct iw_request_info *info,
7010 union iwreq_data *wrqu, char *extra)
7011 {
7012 /*
7013 * This can be called at any time. No action lock required
7014 */
7015
7016 struct ipw2100_priv *priv = libipw_priv(dev);
7017
7018 /* If we are associated, trying to associate, or have a statically
7019 * configured BSSID then return that; otherwise return ANY */
7020 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
7021 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
7022 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
7023 } else
7024 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
7025
7026 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
7027 return 0;
7028 }
7029
7030 static int ipw2100_wx_set_essid(struct net_device *dev,
7031 struct iw_request_info *info,
7032 union iwreq_data *wrqu, char *extra)
7033 {
7034 struct ipw2100_priv *priv = libipw_priv(dev);
7035 char *essid = ""; /* ANY */
7036 int length = 0;
7037 int err = 0;
7038 DECLARE_SSID_BUF(ssid);
7039
7040 mutex_lock(&priv->action_mutex);
7041 if (!(priv->status & STATUS_INITIALIZED)) {
7042 err = -EIO;
7043 goto done;
7044 }
7045
7046 if (wrqu->essid.flags && wrqu->essid.length) {
7047 length = wrqu->essid.length;
7048 essid = extra;
7049 }
7050
7051 if (length == 0) {
7052 IPW_DEBUG_WX("Setting ESSID to ANY\n");
7053 priv->config &= ~CFG_STATIC_ESSID;
7054 err = ipw2100_set_essid(priv, NULL, 0, 0);
7055 goto done;
7056 }
7057
7058 length = min(length, IW_ESSID_MAX_SIZE);
7059
7060 priv->config |= CFG_STATIC_ESSID;
7061
7062 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7063 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7064 err = 0;
7065 goto done;
7066 }
7067
7068 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
7069 print_ssid(ssid, essid, length), length);
7070
7071 priv->essid_len = length;
7072 memcpy(priv->essid, essid, priv->essid_len);
7073
7074 err = ipw2100_set_essid(priv, essid, length, 0);
7075
7076 done:
7077 mutex_unlock(&priv->action_mutex);
7078 return err;
7079 }
7080
7081 static int ipw2100_wx_get_essid(struct net_device *dev,
7082 struct iw_request_info *info,
7083 union iwreq_data *wrqu, char *extra)
7084 {
7085 /*
7086 * This can be called at any time. No action lock required
7087 */
7088
7089 struct ipw2100_priv *priv = libipw_priv(dev);
7090 DECLARE_SSID_BUF(ssid);
7091
7092 /* If we are associated, trying to associate, or have a statically
7093 * configured ESSID then return that; otherwise return ANY */
7094 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7095 IPW_DEBUG_WX("Getting essid: '%s'\n",
7096 print_ssid(ssid, priv->essid, priv->essid_len));
7097 memcpy(extra, priv->essid, priv->essid_len);
7098 wrqu->essid.length = priv->essid_len;
7099 wrqu->essid.flags = 1; /* active */
7100 } else {
7101 IPW_DEBUG_WX("Getting essid: ANY\n");
7102 wrqu->essid.length = 0;
7103 wrqu->essid.flags = 0; /* active */
7104 }
7105
7106 return 0;
7107 }
7108
7109 static int ipw2100_wx_set_nick(struct net_device *dev,
7110 struct iw_request_info *info,
7111 union iwreq_data *wrqu, char *extra)
7112 {
7113 /*
7114 * This can be called at any time. No action lock required
7115 */
7116
7117 struct ipw2100_priv *priv = libipw_priv(dev);
7118
7119 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7120 return -E2BIG;
7121
7122 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7123 memset(priv->nick, 0, sizeof(priv->nick));
7124 memcpy(priv->nick, extra, wrqu->data.length);
7125
7126 IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7127
7128 return 0;
7129 }
7130
7131 static int ipw2100_wx_get_nick(struct net_device *dev,
7132 struct iw_request_info *info,
7133 union iwreq_data *wrqu, char *extra)
7134 {
7135 /*
7136 * This can be called at any time. No action lock required
7137 */
7138
7139 struct ipw2100_priv *priv = libipw_priv(dev);
7140
7141 wrqu->data.length = strlen(priv->nick);
7142 memcpy(extra, priv->nick, wrqu->data.length);
7143 wrqu->data.flags = 1; /* active */
7144
7145 IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7146
7147 return 0;
7148 }
7149
7150 static int ipw2100_wx_set_rate(struct net_device *dev,
7151 struct iw_request_info *info,
7152 union iwreq_data *wrqu, char *extra)
7153 {
7154 struct ipw2100_priv *priv = libipw_priv(dev);
7155 u32 target_rate = wrqu->bitrate.value;
7156 u32 rate;
7157 int err = 0;
7158
7159 mutex_lock(&priv->action_mutex);
7160 if (!(priv->status & STATUS_INITIALIZED)) {
7161 err = -EIO;
7162 goto done;
7163 }
7164
7165 rate = 0;
7166
7167 if (target_rate == 1000000 ||
7168 (!wrqu->bitrate.fixed && target_rate > 1000000))
7169 rate |= TX_RATE_1_MBIT;
7170 if (target_rate == 2000000 ||
7171 (!wrqu->bitrate.fixed && target_rate > 2000000))
7172 rate |= TX_RATE_2_MBIT;
7173 if (target_rate == 5500000 ||
7174 (!wrqu->bitrate.fixed && target_rate > 5500000))
7175 rate |= TX_RATE_5_5_MBIT;
7176 if (target_rate == 11000000 ||
7177 (!wrqu->bitrate.fixed && target_rate > 11000000))
7178 rate |= TX_RATE_11_MBIT;
7179 if (rate == 0)
7180 rate = DEFAULT_TX_RATES;
7181
7182 err = ipw2100_set_tx_rates(priv, rate, 0);
7183
7184 IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7185 done:
7186 mutex_unlock(&priv->action_mutex);
7187 return err;
7188 }
7189
7190 static int ipw2100_wx_get_rate(struct net_device *dev,
7191 struct iw_request_info *info,
7192 union iwreq_data *wrqu, char *extra)
7193 {
7194 struct ipw2100_priv *priv = libipw_priv(dev);
7195 int val;
7196 unsigned int len = sizeof(val);
7197 int err = 0;
7198
7199 if (!(priv->status & STATUS_ENABLED) ||
7200 priv->status & STATUS_RF_KILL_MASK ||
7201 !(priv->status & STATUS_ASSOCIATED)) {
7202 wrqu->bitrate.value = 0;
7203 return 0;
7204 }
7205
7206 mutex_lock(&priv->action_mutex);
7207 if (!(priv->status & STATUS_INITIALIZED)) {
7208 err = -EIO;
7209 goto done;
7210 }
7211
7212 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7213 if (err) {
7214 IPW_DEBUG_WX("failed querying ordinals.\n");
7215 goto done;
7216 }
7217
7218 switch (val & TX_RATE_MASK) {
7219 case TX_RATE_1_MBIT:
7220 wrqu->bitrate.value = 1000000;
7221 break;
7222 case TX_RATE_2_MBIT:
7223 wrqu->bitrate.value = 2000000;
7224 break;
7225 case TX_RATE_5_5_MBIT:
7226 wrqu->bitrate.value = 5500000;
7227 break;
7228 case TX_RATE_11_MBIT:
7229 wrqu->bitrate.value = 11000000;
7230 break;
7231 default:
7232 wrqu->bitrate.value = 0;
7233 }
7234
7235 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7236
7237 done:
7238 mutex_unlock(&priv->action_mutex);
7239 return err;
7240 }
7241
7242 static int ipw2100_wx_set_rts(struct net_device *dev,
7243 struct iw_request_info *info,
7244 union iwreq_data *wrqu, char *extra)
7245 {
7246 struct ipw2100_priv *priv = libipw_priv(dev);
7247 int value, err;
7248
7249 /* Auto RTS not yet supported */
7250 if (wrqu->rts.fixed == 0)
7251 return -EINVAL;
7252
7253 mutex_lock(&priv->action_mutex);
7254 if (!(priv->status & STATUS_INITIALIZED)) {
7255 err = -EIO;
7256 goto done;
7257 }
7258
7259 if (wrqu->rts.disabled)
7260 value = priv->rts_threshold | RTS_DISABLED;
7261 else {
7262 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7263 err = -EINVAL;
7264 goto done;
7265 }
7266 value = wrqu->rts.value;
7267 }
7268
7269 err = ipw2100_set_rts_threshold(priv, value);
7270
7271 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7272 done:
7273 mutex_unlock(&priv->action_mutex);
7274 return err;
7275 }
7276
7277 static int ipw2100_wx_get_rts(struct net_device *dev,
7278 struct iw_request_info *info,
7279 union iwreq_data *wrqu, char *extra)
7280 {
7281 /*
7282 * This can be called at any time. No action lock required
7283 */
7284
7285 struct ipw2100_priv *priv = libipw_priv(dev);
7286
7287 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7288 wrqu->rts.fixed = 1; /* no auto select */
7289
7290 /* If RTS is set to the default value, then it is disabled */
7291 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7292
7293 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7294
7295 return 0;
7296 }
7297
7298 static int ipw2100_wx_set_txpow(struct net_device *dev,
7299 struct iw_request_info *info,
7300 union iwreq_data *wrqu, char *extra)
7301 {
7302 struct ipw2100_priv *priv = libipw_priv(dev);
7303 int err = 0, value;
7304
7305 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7306 return -EINPROGRESS;
7307
7308 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7309 return 0;
7310
7311 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7312 return -EINVAL;
7313
7314 if (wrqu->txpower.fixed == 0)
7315 value = IPW_TX_POWER_DEFAULT;
7316 else {
7317 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7318 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7319 return -EINVAL;
7320
7321 value = wrqu->txpower.value;
7322 }
7323
7324 mutex_lock(&priv->action_mutex);
7325 if (!(priv->status & STATUS_INITIALIZED)) {
7326 err = -EIO;
7327 goto done;
7328 }
7329
7330 err = ipw2100_set_tx_power(priv, value);
7331
7332 IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7333
7334 done:
7335 mutex_unlock(&priv->action_mutex);
7336 return err;
7337 }
7338
7339 static int ipw2100_wx_get_txpow(struct net_device *dev,
7340 struct iw_request_info *info,
7341 union iwreq_data *wrqu, char *extra)
7342 {
7343 /*
7344 * This can be called at any time. No action lock required
7345 */
7346
7347 struct ipw2100_priv *priv = libipw_priv(dev);
7348
7349 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7350
7351 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7352 wrqu->txpower.fixed = 0;
7353 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7354 } else {
7355 wrqu->txpower.fixed = 1;
7356 wrqu->txpower.value = priv->tx_power;
7357 }
7358
7359 wrqu->txpower.flags = IW_TXPOW_DBM;
7360
7361 IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7362
7363 return 0;
7364 }
7365
7366 static int ipw2100_wx_set_frag(struct net_device *dev,
7367 struct iw_request_info *info,
7368 union iwreq_data *wrqu, char *extra)
7369 {
7370 /*
7371 * This can be called at any time. No action lock required
7372 */
7373
7374 struct ipw2100_priv *priv = libipw_priv(dev);
7375
7376 if (!wrqu->frag.fixed)
7377 return -EINVAL;
7378
7379 if (wrqu->frag.disabled) {
7380 priv->frag_threshold |= FRAG_DISABLED;
7381 priv->ieee->fts = DEFAULT_FTS;
7382 } else {
7383 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7384 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7385 return -EINVAL;
7386
7387 priv->ieee->fts = wrqu->frag.value & ~0x1;
7388 priv->frag_threshold = priv->ieee->fts;
7389 }
7390
7391 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7392
7393 return 0;
7394 }
7395
7396 static int ipw2100_wx_get_frag(struct net_device *dev,
7397 struct iw_request_info *info,
7398 union iwreq_data *wrqu, char *extra)
7399 {
7400 /*
7401 * This can be called at any time. No action lock required
7402 */
7403
7404 struct ipw2100_priv *priv = libipw_priv(dev);
7405 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7406 wrqu->frag.fixed = 0; /* no auto select */
7407 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7408
7409 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7410
7411 return 0;
7412 }
7413
7414 static int ipw2100_wx_set_retry(struct net_device *dev,
7415 struct iw_request_info *info,
7416 union iwreq_data *wrqu, char *extra)
7417 {
7418 struct ipw2100_priv *priv = libipw_priv(dev);
7419 int err = 0;
7420
7421 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7422 return -EINVAL;
7423
7424 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7425 return 0;
7426
7427 mutex_lock(&priv->action_mutex);
7428 if (!(priv->status & STATUS_INITIALIZED)) {
7429 err = -EIO;
7430 goto done;
7431 }
7432
7433 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7434 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7435 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7436 wrqu->retry.value);
7437 goto done;
7438 }
7439
7440 if (wrqu->retry.flags & IW_RETRY_LONG) {
7441 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7442 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7443 wrqu->retry.value);
7444 goto done;
7445 }
7446
7447 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7448 if (!err)
7449 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7450
7451 IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7452
7453 done:
7454 mutex_unlock(&priv->action_mutex);
7455 return err;
7456 }
7457
7458 static int ipw2100_wx_get_retry(struct net_device *dev,
7459 struct iw_request_info *info,
7460 union iwreq_data *wrqu, char *extra)
7461 {
7462 /*
7463 * This can be called at any time. No action lock required
7464 */
7465
7466 struct ipw2100_priv *priv = libipw_priv(dev);
7467
7468 wrqu->retry.disabled = 0; /* can't be disabled */
7469
7470 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7471 return -EINVAL;
7472
7473 if (wrqu->retry.flags & IW_RETRY_LONG) {
7474 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7475 wrqu->retry.value = priv->long_retry_limit;
7476 } else {
7477 wrqu->retry.flags =
7478 (priv->short_retry_limit !=
7479 priv->long_retry_limit) ?
7480 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7481
7482 wrqu->retry.value = priv->short_retry_limit;
7483 }
7484
7485 IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7486
7487 return 0;
7488 }
7489
7490 static int ipw2100_wx_set_scan(struct net_device *dev,
7491 struct iw_request_info *info,
7492 union iwreq_data *wrqu, char *extra)
7493 {
7494 struct ipw2100_priv *priv = libipw_priv(dev);
7495 int err = 0;
7496
7497 mutex_lock(&priv->action_mutex);
7498 if (!(priv->status & STATUS_INITIALIZED)) {
7499 err = -EIO;
7500 goto done;
7501 }
7502
7503 IPW_DEBUG_WX("Initiating scan...\n");
7504
7505 priv->user_requested_scan = 1;
7506 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7507 IPW_DEBUG_WX("Start scan failed.\n");
7508
7509 /* TODO: Mark a scan as pending so when hardware initialized
7510 * a scan starts */
7511 }
7512
7513 done:
7514 mutex_unlock(&priv->action_mutex);
7515 return err;
7516 }
7517
7518 static int ipw2100_wx_get_scan(struct net_device *dev,
7519 struct iw_request_info *info,
7520 union iwreq_data *wrqu, char *extra)
7521 {
7522 /*
7523 * This can be called at any time. No action lock required
7524 */
7525
7526 struct ipw2100_priv *priv = libipw_priv(dev);
7527 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7528 }
7529
7530 /*
7531 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7532 */
7533 static int ipw2100_wx_set_encode(struct net_device *dev,
7534 struct iw_request_info *info,
7535 union iwreq_data *wrqu, char *key)
7536 {
7537 /*
7538 * No check of STATUS_INITIALIZED required
7539 */
7540
7541 struct ipw2100_priv *priv = libipw_priv(dev);
7542 return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7543 }
7544
7545 static int ipw2100_wx_get_encode(struct net_device *dev,
7546 struct iw_request_info *info,
7547 union iwreq_data *wrqu, char *key)
7548 {
7549 /*
7550 * This can be called at any time. No action lock required
7551 */
7552
7553 struct ipw2100_priv *priv = libipw_priv(dev);
7554 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7555 }
7556
7557 static int ipw2100_wx_set_power(struct net_device *dev,
7558 struct iw_request_info *info,
7559 union iwreq_data *wrqu, char *extra)
7560 {
7561 struct ipw2100_priv *priv = libipw_priv(dev);
7562 int err = 0;
7563
7564 mutex_lock(&priv->action_mutex);
7565 if (!(priv->status & STATUS_INITIALIZED)) {
7566 err = -EIO;
7567 goto done;
7568 }
7569
7570 if (wrqu->power.disabled) {
7571 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7572 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7573 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7574 goto done;
7575 }
7576
7577 switch (wrqu->power.flags & IW_POWER_MODE) {
7578 case IW_POWER_ON: /* If not specified */
7579 case IW_POWER_MODE: /* If set all mask */
7580 case IW_POWER_ALL_R: /* If explicitly state all */
7581 break;
7582 default: /* Otherwise we don't support it */
7583 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7584 wrqu->power.flags);
7585 err = -EOPNOTSUPP;
7586 goto done;
7587 }
7588
7589 /* If the user hasn't specified a power management mode yet, default
7590 * to BATTERY */
7591 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7592 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7593
7594 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7595
7596 done:
7597 mutex_unlock(&priv->action_mutex);
7598 return err;
7599
7600 }
7601
7602 static int ipw2100_wx_get_power(struct net_device *dev,
7603 struct iw_request_info *info,
7604 union iwreq_data *wrqu, char *extra)
7605 {
7606 /*
7607 * This can be called at any time. No action lock required
7608 */
7609
7610 struct ipw2100_priv *priv = libipw_priv(dev);
7611
7612 if (!(priv->power_mode & IPW_POWER_ENABLED))
7613 wrqu->power.disabled = 1;
7614 else {
7615 wrqu->power.disabled = 0;
7616 wrqu->power.flags = 0;
7617 }
7618
7619 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7620
7621 return 0;
7622 }
7623
7624 /*
7625 * WE-18 WPA support
7626 */
7627
7628 /* SIOCSIWGENIE */
7629 static int ipw2100_wx_set_genie(struct net_device *dev,
7630 struct iw_request_info *info,
7631 union iwreq_data *wrqu, char *extra)
7632 {
7633
7634 struct ipw2100_priv *priv = libipw_priv(dev);
7635 struct libipw_device *ieee = priv->ieee;
7636 u8 *buf;
7637
7638 if (!ieee->wpa_enabled)
7639 return -EOPNOTSUPP;
7640
7641 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7642 (wrqu->data.length && extra == NULL))
7643 return -EINVAL;
7644
7645 if (wrqu->data.length) {
7646 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7647 if (buf == NULL)
7648 return -ENOMEM;
7649
7650 kfree(ieee->wpa_ie);
7651 ieee->wpa_ie = buf;
7652 ieee->wpa_ie_len = wrqu->data.length;
7653 } else {
7654 kfree(ieee->wpa_ie);
7655 ieee->wpa_ie = NULL;
7656 ieee->wpa_ie_len = 0;
7657 }
7658
7659 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7660
7661 return 0;
7662 }
7663
7664 /* SIOCGIWGENIE */
7665 static int ipw2100_wx_get_genie(struct net_device *dev,
7666 struct iw_request_info *info,
7667 union iwreq_data *wrqu, char *extra)
7668 {
7669 struct ipw2100_priv *priv = libipw_priv(dev);
7670 struct libipw_device *ieee = priv->ieee;
7671
7672 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7673 wrqu->data.length = 0;
7674 return 0;
7675 }
7676
7677 if (wrqu->data.length < ieee->wpa_ie_len)
7678 return -E2BIG;
7679
7680 wrqu->data.length = ieee->wpa_ie_len;
7681 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7682
7683 return 0;
7684 }
7685
7686 /* SIOCSIWAUTH */
7687 static int ipw2100_wx_set_auth(struct net_device *dev,
7688 struct iw_request_info *info,
7689 union iwreq_data *wrqu, char *extra)
7690 {
7691 struct ipw2100_priv *priv = libipw_priv(dev);
7692 struct libipw_device *ieee = priv->ieee;
7693 struct iw_param *param = &wrqu->param;
7694 struct lib80211_crypt_data *crypt;
7695 unsigned long flags;
7696 int ret = 0;
7697
7698 switch (param->flags & IW_AUTH_INDEX) {
7699 case IW_AUTH_WPA_VERSION:
7700 case IW_AUTH_CIPHER_PAIRWISE:
7701 case IW_AUTH_CIPHER_GROUP:
7702 case IW_AUTH_KEY_MGMT:
7703 /*
7704 * ipw2200 does not use these parameters
7705 */
7706 break;
7707
7708 case IW_AUTH_TKIP_COUNTERMEASURES:
7709 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7710 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7711 break;
7712
7713 flags = crypt->ops->get_flags(crypt->priv);
7714
7715 if (param->value)
7716 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7717 else
7718 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7719
7720 crypt->ops->set_flags(flags, crypt->priv);
7721
7722 break;
7723
7724 case IW_AUTH_DROP_UNENCRYPTED:{
7725 /* HACK:
7726 *
7727 * wpa_supplicant calls set_wpa_enabled when the driver
7728 * is loaded and unloaded, regardless of if WPA is being
7729 * used. No other calls are made which can be used to
7730 * determine if encryption will be used or not prior to
7731 * association being expected. If encryption is not being
7732 * used, drop_unencrypted is set to false, else true -- we
7733 * can use this to determine if the CAP_PRIVACY_ON bit should
7734 * be set.
7735 */
7736 struct libipw_security sec = {
7737 .flags = SEC_ENABLED,
7738 .enabled = param->value,
7739 };
7740 priv->ieee->drop_unencrypted = param->value;
7741 /* We only change SEC_LEVEL for open mode. Others
7742 * are set by ipw_wpa_set_encryption.
7743 */
7744 if (!param->value) {
7745 sec.flags |= SEC_LEVEL;
7746 sec.level = SEC_LEVEL_0;
7747 } else {
7748 sec.flags |= SEC_LEVEL;
7749 sec.level = SEC_LEVEL_1;
7750 }
7751 if (priv->ieee->set_security)
7752 priv->ieee->set_security(priv->ieee->dev, &sec);
7753 break;
7754 }
7755
7756 case IW_AUTH_80211_AUTH_ALG:
7757 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7758 break;
7759
7760 case IW_AUTH_WPA_ENABLED:
7761 ret = ipw2100_wpa_enable(priv, param->value);
7762 break;
7763
7764 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7765 ieee->ieee802_1x = param->value;
7766 break;
7767
7768 //case IW_AUTH_ROAMING_CONTROL:
7769 case IW_AUTH_PRIVACY_INVOKED:
7770 ieee->privacy_invoked = param->value;
7771 break;
7772
7773 default:
7774 return -EOPNOTSUPP;
7775 }
7776 return ret;
7777 }
7778
7779 /* SIOCGIWAUTH */
7780 static int ipw2100_wx_get_auth(struct net_device *dev,
7781 struct iw_request_info *info,
7782 union iwreq_data *wrqu, char *extra)
7783 {
7784 struct ipw2100_priv *priv = libipw_priv(dev);
7785 struct libipw_device *ieee = priv->ieee;
7786 struct lib80211_crypt_data *crypt;
7787 struct iw_param *param = &wrqu->param;
7788 int ret = 0;
7789
7790 switch (param->flags & IW_AUTH_INDEX) {
7791 case IW_AUTH_WPA_VERSION:
7792 case IW_AUTH_CIPHER_PAIRWISE:
7793 case IW_AUTH_CIPHER_GROUP:
7794 case IW_AUTH_KEY_MGMT:
7795 /*
7796 * wpa_supplicant will control these internally
7797 */
7798 ret = -EOPNOTSUPP;
7799 break;
7800
7801 case IW_AUTH_TKIP_COUNTERMEASURES:
7802 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7803 if (!crypt || !crypt->ops->get_flags) {
7804 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7805 "crypt not set!\n");
7806 break;
7807 }
7808
7809 param->value = (crypt->ops->get_flags(crypt->priv) &
7810 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7811
7812 break;
7813
7814 case IW_AUTH_DROP_UNENCRYPTED:
7815 param->value = ieee->drop_unencrypted;
7816 break;
7817
7818 case IW_AUTH_80211_AUTH_ALG:
7819 param->value = priv->ieee->sec.auth_mode;
7820 break;
7821
7822 case IW_AUTH_WPA_ENABLED:
7823 param->value = ieee->wpa_enabled;
7824 break;
7825
7826 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7827 param->value = ieee->ieee802_1x;
7828 break;
7829
7830 case IW_AUTH_ROAMING_CONTROL:
7831 case IW_AUTH_PRIVACY_INVOKED:
7832 param->value = ieee->privacy_invoked;
7833 break;
7834
7835 default:
7836 return -EOPNOTSUPP;
7837 }
7838 return 0;
7839 }
7840
7841 /* SIOCSIWENCODEEXT */
7842 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7843 struct iw_request_info *info,
7844 union iwreq_data *wrqu, char *extra)
7845 {
7846 struct ipw2100_priv *priv = libipw_priv(dev);
7847 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7848 }
7849
7850 /* SIOCGIWENCODEEXT */
7851 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7852 struct iw_request_info *info,
7853 union iwreq_data *wrqu, char *extra)
7854 {
7855 struct ipw2100_priv *priv = libipw_priv(dev);
7856 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7857 }
7858
7859 /* SIOCSIWMLME */
7860 static int ipw2100_wx_set_mlme(struct net_device *dev,
7861 struct iw_request_info *info,
7862 union iwreq_data *wrqu, char *extra)
7863 {
7864 struct ipw2100_priv *priv = libipw_priv(dev);
7865 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7866 __le16 reason;
7867
7868 reason = cpu_to_le16(mlme->reason_code);
7869
7870 switch (mlme->cmd) {
7871 case IW_MLME_DEAUTH:
7872 // silently ignore
7873 break;
7874
7875 case IW_MLME_DISASSOC:
7876 ipw2100_disassociate_bssid(priv);
7877 break;
7878
7879 default:
7880 return -EOPNOTSUPP;
7881 }
7882 return 0;
7883 }
7884
7885 /*
7886 *
7887 * IWPRIV handlers
7888 *
7889 */
7890 #ifdef CONFIG_IPW2100_MONITOR
7891 static int ipw2100_wx_set_promisc(struct net_device *dev,
7892 struct iw_request_info *info,
7893 union iwreq_data *wrqu, char *extra)
7894 {
7895 struct ipw2100_priv *priv = libipw_priv(dev);
7896 int *parms = (int *)extra;
7897 int enable = (parms[0] > 0);
7898 int err = 0;
7899
7900 mutex_lock(&priv->action_mutex);
7901 if (!(priv->status & STATUS_INITIALIZED)) {
7902 err = -EIO;
7903 goto done;
7904 }
7905
7906 if (enable) {
7907 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7908 err = ipw2100_set_channel(priv, parms[1], 0);
7909 goto done;
7910 }
7911 priv->channel = parms[1];
7912 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7913 } else {
7914 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7915 err = ipw2100_switch_mode(priv, priv->last_mode);
7916 }
7917 done:
7918 mutex_unlock(&priv->action_mutex);
7919 return err;
7920 }
7921
7922 static int ipw2100_wx_reset(struct net_device *dev,
7923 struct iw_request_info *info,
7924 union iwreq_data *wrqu, char *extra)
7925 {
7926 struct ipw2100_priv *priv = libipw_priv(dev);
7927 if (priv->status & STATUS_INITIALIZED)
7928 schedule_reset(priv);
7929 return 0;
7930 }
7931
7932 #endif
7933
7934 static int ipw2100_wx_set_powermode(struct net_device *dev,
7935 struct iw_request_info *info,
7936 union iwreq_data *wrqu, char *extra)
7937 {
7938 struct ipw2100_priv *priv = libipw_priv(dev);
7939 int err = 0, mode = *(int *)extra;
7940
7941 mutex_lock(&priv->action_mutex);
7942 if (!(priv->status & STATUS_INITIALIZED)) {
7943 err = -EIO;
7944 goto done;
7945 }
7946
7947 if ((mode < 0) || (mode > POWER_MODES))
7948 mode = IPW_POWER_AUTO;
7949
7950 if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7951 err = ipw2100_set_power_mode(priv, mode);
7952 done:
7953 mutex_unlock(&priv->action_mutex);
7954 return err;
7955 }
7956
7957 #define MAX_POWER_STRING 80
7958 static int ipw2100_wx_get_powermode(struct net_device *dev,
7959 struct iw_request_info *info,
7960 union iwreq_data *wrqu, char *extra)
7961 {
7962 /*
7963 * This can be called at any time. No action lock required
7964 */
7965
7966 struct ipw2100_priv *priv = libipw_priv(dev);
7967 int level = IPW_POWER_LEVEL(priv->power_mode);
7968 s32 timeout, period;
7969
7970 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7971 snprintf(extra, MAX_POWER_STRING,
7972 "Power save level: %d (Off)", level);
7973 } else {
7974 switch (level) {
7975 case IPW_POWER_MODE_CAM:
7976 snprintf(extra, MAX_POWER_STRING,
7977 "Power save level: %d (None)", level);
7978 break;
7979 case IPW_POWER_AUTO:
7980 snprintf(extra, MAX_POWER_STRING,
7981 "Power save level: %d (Auto)", level);
7982 break;
7983 default:
7984 timeout = timeout_duration[level - 1] / 1000;
7985 period = period_duration[level - 1] / 1000;
7986 snprintf(extra, MAX_POWER_STRING,
7987 "Power save level: %d "
7988 "(Timeout %dms, Period %dms)",
7989 level, timeout, period);
7990 }
7991 }
7992
7993 wrqu->data.length = strlen(extra) + 1;
7994
7995 return 0;
7996 }
7997
7998 static int ipw2100_wx_set_preamble(struct net_device *dev,
7999 struct iw_request_info *info,
8000 union iwreq_data *wrqu, char *extra)
8001 {
8002 struct ipw2100_priv *priv = libipw_priv(dev);
8003 int err, mode = *(int *)extra;
8004
8005 mutex_lock(&priv->action_mutex);
8006 if (!(priv->status & STATUS_INITIALIZED)) {
8007 err = -EIO;
8008 goto done;
8009 }
8010
8011 if (mode == 1)
8012 priv->config |= CFG_LONG_PREAMBLE;
8013 else if (mode == 0)
8014 priv->config &= ~CFG_LONG_PREAMBLE;
8015 else {
8016 err = -EINVAL;
8017 goto done;
8018 }
8019
8020 err = ipw2100_system_config(priv, 0);
8021
8022 done:
8023 mutex_unlock(&priv->action_mutex);
8024 return err;
8025 }
8026
8027 static int ipw2100_wx_get_preamble(struct net_device *dev,
8028 struct iw_request_info *info,
8029 union iwreq_data *wrqu, char *extra)
8030 {
8031 /*
8032 * This can be called at any time. No action lock required
8033 */
8034
8035 struct ipw2100_priv *priv = libipw_priv(dev);
8036
8037 if (priv->config & CFG_LONG_PREAMBLE)
8038 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
8039 else
8040 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
8041
8042 return 0;
8043 }
8044
8045 #ifdef CONFIG_IPW2100_MONITOR
8046 static int ipw2100_wx_set_crc_check(struct net_device *dev,
8047 struct iw_request_info *info,
8048 union iwreq_data *wrqu, char *extra)
8049 {
8050 struct ipw2100_priv *priv = libipw_priv(dev);
8051 int err, mode = *(int *)extra;
8052
8053 mutex_lock(&priv->action_mutex);
8054 if (!(priv->status & STATUS_INITIALIZED)) {
8055 err = -EIO;
8056 goto done;
8057 }
8058
8059 if (mode == 1)
8060 priv->config |= CFG_CRC_CHECK;
8061 else if (mode == 0)
8062 priv->config &= ~CFG_CRC_CHECK;
8063 else {
8064 err = -EINVAL;
8065 goto done;
8066 }
8067 err = 0;
8068
8069 done:
8070 mutex_unlock(&priv->action_mutex);
8071 return err;
8072 }
8073
8074 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8075 struct iw_request_info *info,
8076 union iwreq_data *wrqu, char *extra)
8077 {
8078 /*
8079 * This can be called at any time. No action lock required
8080 */
8081
8082 struct ipw2100_priv *priv = libipw_priv(dev);
8083
8084 if (priv->config & CFG_CRC_CHECK)
8085 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8086 else
8087 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8088
8089 return 0;
8090 }
8091 #endif /* CONFIG_IPW2100_MONITOR */
8092
8093 static iw_handler ipw2100_wx_handlers[] = {
8094 IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8095 IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8096 IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8097 IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8098 IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8099 IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8100 IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8101 IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8102 IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8103 IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8104 IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8105 IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8106 IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8107 IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8108 IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8109 IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8110 IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8111 IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8112 IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8113 IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8114 IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8115 IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8116 IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8117 IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8118 IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8119 IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8120 IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8121 IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8122 IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8123 IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8124 IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8125 IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8126 IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8127 IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8128 IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8129 };
8130
8131 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8132 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8133 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8134 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8135 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8136 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8137 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8138 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8139
8140 static const struct iw_priv_args ipw2100_private_args[] = {
8141
8142 #ifdef CONFIG_IPW2100_MONITOR
8143 {
8144 IPW2100_PRIV_SET_MONITOR,
8145 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8146 {
8147 IPW2100_PRIV_RESET,
8148 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8149 #endif /* CONFIG_IPW2100_MONITOR */
8150
8151 {
8152 IPW2100_PRIV_SET_POWER,
8153 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8154 {
8155 IPW2100_PRIV_GET_POWER,
8156 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8157 "get_power"},
8158 {
8159 IPW2100_PRIV_SET_LONGPREAMBLE,
8160 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8161 {
8162 IPW2100_PRIV_GET_LONGPREAMBLE,
8163 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8164 #ifdef CONFIG_IPW2100_MONITOR
8165 {
8166 IPW2100_PRIV_SET_CRC_CHECK,
8167 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8168 {
8169 IPW2100_PRIV_GET_CRC_CHECK,
8170 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8171 #endif /* CONFIG_IPW2100_MONITOR */
8172 };
8173
8174 static iw_handler ipw2100_private_handler[] = {
8175 #ifdef CONFIG_IPW2100_MONITOR
8176 ipw2100_wx_set_promisc,
8177 ipw2100_wx_reset,
8178 #else /* CONFIG_IPW2100_MONITOR */
8179 NULL,
8180 NULL,
8181 #endif /* CONFIG_IPW2100_MONITOR */
8182 ipw2100_wx_set_powermode,
8183 ipw2100_wx_get_powermode,
8184 ipw2100_wx_set_preamble,
8185 ipw2100_wx_get_preamble,
8186 #ifdef CONFIG_IPW2100_MONITOR
8187 ipw2100_wx_set_crc_check,
8188 ipw2100_wx_get_crc_check,
8189 #else /* CONFIG_IPW2100_MONITOR */
8190 NULL,
8191 NULL,
8192 #endif /* CONFIG_IPW2100_MONITOR */
8193 };
8194
8195 /*
8196 * Get wireless statistics.
8197 * Called by /proc/net/wireless
8198 * Also called by SIOCGIWSTATS
8199 */
8200 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8201 {
8202 enum {
8203 POOR = 30,
8204 FAIR = 60,
8205 GOOD = 80,
8206 VERY_GOOD = 90,
8207 EXCELLENT = 95,
8208 PERFECT = 100
8209 };
8210 int rssi_qual;
8211 int tx_qual;
8212 int beacon_qual;
8213 int quality;
8214
8215 struct ipw2100_priv *priv = libipw_priv(dev);
8216 struct iw_statistics *wstats;
8217 u32 rssi, tx_retries, missed_beacons, tx_failures;
8218 u32 ord_len = sizeof(u32);
8219
8220 if (!priv)
8221 return (struct iw_statistics *)NULL;
8222
8223 wstats = &priv->wstats;
8224
8225 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8226 * ipw2100_wx_wireless_stats seems to be called before fw is
8227 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8228 * and associated; if not associcated, the values are all meaningless
8229 * anyway, so set them all to NULL and INVALID */
8230 if (!(priv->status & STATUS_ASSOCIATED)) {
8231 wstats->miss.beacon = 0;
8232 wstats->discard.retries = 0;
8233 wstats->qual.qual = 0;
8234 wstats->qual.level = 0;
8235 wstats->qual.noise = 0;
8236 wstats->qual.updated = 7;
8237 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8238 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8239 return wstats;
8240 }
8241
8242 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8243 &missed_beacons, &ord_len))
8244 goto fail_get_ordinal;
8245
8246 /* If we don't have a connection the quality and level is 0 */
8247 if (!(priv->status & STATUS_ASSOCIATED)) {
8248 wstats->qual.qual = 0;
8249 wstats->qual.level = 0;
8250 } else {
8251 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8252 &rssi, &ord_len))
8253 goto fail_get_ordinal;
8254 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8255 if (rssi < 10)
8256 rssi_qual = rssi * POOR / 10;
8257 else if (rssi < 15)
8258 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8259 else if (rssi < 20)
8260 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8261 else if (rssi < 30)
8262 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8263 10 + GOOD;
8264 else
8265 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8266 10 + VERY_GOOD;
8267
8268 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8269 &tx_retries, &ord_len))
8270 goto fail_get_ordinal;
8271
8272 if (tx_retries > 75)
8273 tx_qual = (90 - tx_retries) * POOR / 15;
8274 else if (tx_retries > 70)
8275 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8276 else if (tx_retries > 65)
8277 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8278 else if (tx_retries > 50)
8279 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8280 15 + GOOD;
8281 else
8282 tx_qual = (50 - tx_retries) *
8283 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8284
8285 if (missed_beacons > 50)
8286 beacon_qual = (60 - missed_beacons) * POOR / 10;
8287 else if (missed_beacons > 40)
8288 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8289 10 + POOR;
8290 else if (missed_beacons > 32)
8291 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8292 18 + FAIR;
8293 else if (missed_beacons > 20)
8294 beacon_qual = (32 - missed_beacons) *
8295 (VERY_GOOD - GOOD) / 20 + GOOD;
8296 else
8297 beacon_qual = (20 - missed_beacons) *
8298 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8299
8300 quality = min(tx_qual, rssi_qual);
8301 quality = min(beacon_qual, quality);
8302
8303 #ifdef CONFIG_IPW2100_DEBUG
8304 if (beacon_qual == quality)
8305 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8306 else if (tx_qual == quality)
8307 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8308 else if (quality != 100)
8309 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8310 else
8311 IPW_DEBUG_WX("Quality not clamped.\n");
8312 #endif
8313
8314 wstats->qual.qual = quality;
8315 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8316 }
8317
8318 wstats->qual.noise = 0;
8319 wstats->qual.updated = 7;
8320 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8321
8322 /* FIXME: this is percent and not a # */
8323 wstats->miss.beacon = missed_beacons;
8324
8325 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8326 &tx_failures, &ord_len))
8327 goto fail_get_ordinal;
8328 wstats->discard.retries = tx_failures;
8329
8330 return wstats;
8331
8332 fail_get_ordinal:
8333 IPW_DEBUG_WX("failed querying ordinals.\n");
8334
8335 return (struct iw_statistics *)NULL;
8336 }
8337
8338 static struct iw_handler_def ipw2100_wx_handler_def = {
8339 .standard = ipw2100_wx_handlers,
8340 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8341 .num_private = ARRAY_SIZE(ipw2100_private_handler),
8342 .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8343 .private = (iw_handler *) ipw2100_private_handler,
8344 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8345 .get_wireless_stats = ipw2100_wx_wireless_stats,
8346 };
8347
8348 static void ipw2100_wx_event_work(struct work_struct *work)
8349 {
8350 struct ipw2100_priv *priv =
8351 container_of(work, struct ipw2100_priv, wx_event_work.work);
8352 union iwreq_data wrqu;
8353 unsigned int len = ETH_ALEN;
8354
8355 if (priv->status & STATUS_STOPPING)
8356 return;
8357
8358 mutex_lock(&priv->action_mutex);
8359
8360 IPW_DEBUG_WX("enter\n");
8361
8362 mutex_unlock(&priv->action_mutex);
8363
8364 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8365
8366 /* Fetch BSSID from the hardware */
8367 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8368 priv->status & STATUS_RF_KILL_MASK ||
8369 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8370 &priv->bssid, &len)) {
8371 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8372 } else {
8373 /* We now have the BSSID, so can finish setting to the full
8374 * associated state */
8375 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8376 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8377 priv->status &= ~STATUS_ASSOCIATING;
8378 priv->status |= STATUS_ASSOCIATED;
8379 netif_carrier_on(priv->net_dev);
8380 netif_wake_queue(priv->net_dev);
8381 }
8382
8383 if (!(priv->status & STATUS_ASSOCIATED)) {
8384 IPW_DEBUG_WX("Configuring ESSID\n");
8385 mutex_lock(&priv->action_mutex);
8386 /* This is a disassociation event, so kick the firmware to
8387 * look for another AP */
8388 if (priv->config & CFG_STATIC_ESSID)
8389 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8390 0);
8391 else
8392 ipw2100_set_essid(priv, NULL, 0, 0);
8393 mutex_unlock(&priv->action_mutex);
8394 }
8395
8396 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8397 }
8398
8399 #define IPW2100_FW_MAJOR_VERSION 1
8400 #define IPW2100_FW_MINOR_VERSION 3
8401
8402 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8403 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8404
8405 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8406 IPW2100_FW_MAJOR_VERSION)
8407
8408 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8409 "." __stringify(IPW2100_FW_MINOR_VERSION)
8410
8411 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8412
8413 /*
8414
8415 BINARY FIRMWARE HEADER FORMAT
8416
8417 offset length desc
8418 0 2 version
8419 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8420 4 4 fw_len
8421 8 4 uc_len
8422 C fw_len firmware data
8423 12 + fw_len uc_len microcode data
8424
8425 */
8426
8427 struct ipw2100_fw_header {
8428 short version;
8429 short mode;
8430 unsigned int fw_size;
8431 unsigned int uc_size;
8432 } __packed;
8433
8434 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8435 {
8436 struct ipw2100_fw_header *h =
8437 (struct ipw2100_fw_header *)fw->fw_entry->data;
8438
8439 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8440 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8441 "(detected version id of %u). "
8442 "See Documentation/networking/README.ipw2100\n",
8443 h->version);
8444 return 1;
8445 }
8446
8447 fw->version = h->version;
8448 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8449 fw->fw.size = h->fw_size;
8450 fw->uc.data = fw->fw.data + h->fw_size;
8451 fw->uc.size = h->uc_size;
8452
8453 return 0;
8454 }
8455
8456 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8457 struct ipw2100_fw *fw)
8458 {
8459 char *fw_name;
8460 int rc;
8461
8462 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8463 priv->net_dev->name);
8464
8465 switch (priv->ieee->iw_mode) {
8466 case IW_MODE_ADHOC:
8467 fw_name = IPW2100_FW_NAME("-i");
8468 break;
8469 #ifdef CONFIG_IPW2100_MONITOR
8470 case IW_MODE_MONITOR:
8471 fw_name = IPW2100_FW_NAME("-p");
8472 break;
8473 #endif
8474 case IW_MODE_INFRA:
8475 default:
8476 fw_name = IPW2100_FW_NAME("");
8477 break;
8478 }
8479
8480 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8481
8482 if (rc < 0) {
8483 printk(KERN_ERR DRV_NAME ": "
8484 "%s: Firmware '%s' not available or load failed.\n",
8485 priv->net_dev->name, fw_name);
8486 return rc;
8487 }
8488 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8489 fw->fw_entry->size);
8490
8491 ipw2100_mod_firmware_load(fw);
8492
8493 return 0;
8494 }
8495
8496 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8497 #ifdef CONFIG_IPW2100_MONITOR
8498 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8499 #endif
8500 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8501
8502 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8503 struct ipw2100_fw *fw)
8504 {
8505 fw->version = 0;
8506 if (fw->fw_entry)
8507 release_firmware(fw->fw_entry);
8508 fw->fw_entry = NULL;
8509 }
8510
8511 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8512 size_t max)
8513 {
8514 char ver[MAX_FW_VERSION_LEN];
8515 u32 len = MAX_FW_VERSION_LEN;
8516 u32 tmp;
8517 int i;
8518 /* firmware version is an ascii string (max len of 14) */
8519 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8520 return -EIO;
8521 tmp = max;
8522 if (len >= max)
8523 len = max - 1;
8524 for (i = 0; i < len; i++)
8525 buf[i] = ver[i];
8526 buf[i] = '\0';
8527 return tmp;
8528 }
8529
8530 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8531 size_t max)
8532 {
8533 u32 ver;
8534 u32 len = sizeof(ver);
8535 /* microcode version is a 32 bit integer */
8536 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8537 return -EIO;
8538 return snprintf(buf, max, "%08X", ver);
8539 }
8540
8541 /*
8542 * On exit, the firmware will have been freed from the fw list
8543 */
8544 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8545 {
8546 /* firmware is constructed of N contiguous entries, each entry is
8547 * structured as:
8548 *
8549 * offset sie desc
8550 * 0 4 address to write to
8551 * 4 2 length of data run
8552 * 6 length data
8553 */
8554 unsigned int addr;
8555 unsigned short len;
8556
8557 const unsigned char *firmware_data = fw->fw.data;
8558 unsigned int firmware_data_left = fw->fw.size;
8559
8560 while (firmware_data_left > 0) {
8561 addr = *(u32 *) (firmware_data);
8562 firmware_data += 4;
8563 firmware_data_left -= 4;
8564
8565 len = *(u16 *) (firmware_data);
8566 firmware_data += 2;
8567 firmware_data_left -= 2;
8568
8569 if (len > 32) {
8570 printk(KERN_ERR DRV_NAME ": "
8571 "Invalid firmware run-length of %d bytes\n",
8572 len);
8573 return -EINVAL;
8574 }
8575
8576 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8577 firmware_data += len;
8578 firmware_data_left -= len;
8579 }
8580
8581 return 0;
8582 }
8583
8584 struct symbol_alive_response {
8585 u8 cmd_id;
8586 u8 seq_num;
8587 u8 ucode_rev;
8588 u8 eeprom_valid;
8589 u16 valid_flags;
8590 u8 IEEE_addr[6];
8591 u16 flags;
8592 u16 pcb_rev;
8593 u16 clock_settle_time; // 1us LSB
8594 u16 powerup_settle_time; // 1us LSB
8595 u16 hop_settle_time; // 1us LSB
8596 u8 date[3]; // month, day, year
8597 u8 time[2]; // hours, minutes
8598 u8 ucode_valid;
8599 };
8600
8601 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8602 struct ipw2100_fw *fw)
8603 {
8604 struct net_device *dev = priv->net_dev;
8605 const unsigned char *microcode_data = fw->uc.data;
8606 unsigned int microcode_data_left = fw->uc.size;
8607 void __iomem *reg = priv->ioaddr;
8608
8609 struct symbol_alive_response response;
8610 int i, j;
8611 u8 data;
8612
8613 /* Symbol control */
8614 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8615 readl(reg);
8616 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8617 readl(reg);
8618
8619 /* HW config */
8620 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8621 readl(reg);
8622 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8623 readl(reg);
8624
8625 /* EN_CS_ACCESS bit to reset control store pointer */
8626 write_nic_byte(dev, 0x210000, 0x40);
8627 readl(reg);
8628 write_nic_byte(dev, 0x210000, 0x0);
8629 readl(reg);
8630 write_nic_byte(dev, 0x210000, 0x40);
8631 readl(reg);
8632
8633 /* copy microcode from buffer into Symbol */
8634
8635 while (microcode_data_left > 0) {
8636 write_nic_byte(dev, 0x210010, *microcode_data++);
8637 write_nic_byte(dev, 0x210010, *microcode_data++);
8638 microcode_data_left -= 2;
8639 }
8640
8641 /* EN_CS_ACCESS bit to reset the control store pointer */
8642 write_nic_byte(dev, 0x210000, 0x0);
8643 readl(reg);
8644
8645 /* Enable System (Reg 0)
8646 * first enable causes garbage in RX FIFO */
8647 write_nic_byte(dev, 0x210000, 0x0);
8648 readl(reg);
8649 write_nic_byte(dev, 0x210000, 0x80);
8650 readl(reg);
8651
8652 /* Reset External Baseband Reg */
8653 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8654 readl(reg);
8655 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8656 readl(reg);
8657
8658 /* HW Config (Reg 5) */
8659 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8660 readl(reg);
8661 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8662 readl(reg);
8663
8664 /* Enable System (Reg 0)
8665 * second enable should be OK */
8666 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8667 readl(reg);
8668 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8669
8670 /* check Symbol is enabled - upped this from 5 as it wasn't always
8671 * catching the update */
8672 for (i = 0; i < 10; i++) {
8673 udelay(10);
8674
8675 /* check Dino is enabled bit */
8676 read_nic_byte(dev, 0x210000, &data);
8677 if (data & 0x1)
8678 break;
8679 }
8680
8681 if (i == 10) {
8682 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8683 dev->name);
8684 return -EIO;
8685 }
8686
8687 /* Get Symbol alive response */
8688 for (i = 0; i < 30; i++) {
8689 /* Read alive response structure */
8690 for (j = 0;
8691 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8692 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8693
8694 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8695 break;
8696 udelay(10);
8697 }
8698
8699 if (i == 30) {
8700 printk(KERN_ERR DRV_NAME
8701 ": %s: No response from Symbol - hw not alive\n",
8702 dev->name);
8703 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8704 return -EIO;
8705 }
8706
8707 return 0;
8708 }
This page took 0.27903 seconds and 5 git commands to generate.