Merge branch 'for-3.7' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
[deliverable/linux.git] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 Intel Linux Wireless <ilw@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
28
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <j@w1.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
43
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
106
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
110
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
114
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
118
119 The flow of data on the TX side is as follows:
120
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124 The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169 #include "ipw.h"
170
171 #define IPW2100_VERSION "git-1.2.2"
172
173 #define DRV_NAME "ipw2100"
174 #define DRV_VERSION IPW2100_VERSION
175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
177
178 static struct pm_qos_request ipw2100_pm_qos_req;
179
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG /* Reception debugging */
183 #endif
184
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217 if (ipw2100_debug_level & (level)) { \
218 printk(KERN_DEBUG "ipw2100: %c %s ", \
219 in_interrupt() ? 'I' : 'U', __func__); \
220 printk(message); \
221 } \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif /* CONFIG_IPW2100_DEBUG */
226
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229 "undefined",
230 "unused", /* HOST_ATTENTION */
231 "HOST_COMPLETE",
232 "unused", /* SLEEP */
233 "unused", /* HOST_POWER_DOWN */
234 "unused",
235 "SYSTEM_CONFIG",
236 "unused", /* SET_IMR */
237 "SSID",
238 "MANDATORY_BSSID",
239 "AUTHENTICATION_TYPE",
240 "ADAPTER_ADDRESS",
241 "PORT_TYPE",
242 "INTERNATIONAL_MODE",
243 "CHANNEL",
244 "RTS_THRESHOLD",
245 "FRAG_THRESHOLD",
246 "POWER_MODE",
247 "TX_RATES",
248 "BASIC_TX_RATES",
249 "WEP_KEY_INFO",
250 "unused",
251 "unused",
252 "unused",
253 "unused",
254 "WEP_KEY_INDEX",
255 "WEP_FLAGS",
256 "ADD_MULTICAST",
257 "CLEAR_ALL_MULTICAST",
258 "BEACON_INTERVAL",
259 "ATIM_WINDOW",
260 "CLEAR_STATISTICS",
261 "undefined",
262 "undefined",
263 "undefined",
264 "undefined",
265 "TX_POWER_INDEX",
266 "undefined",
267 "undefined",
268 "undefined",
269 "undefined",
270 "undefined",
271 "undefined",
272 "BROADCAST_SCAN",
273 "CARD_DISABLE",
274 "PREFERRED_BSSID",
275 "SET_SCAN_OPTIONS",
276 "SCAN_DWELL_TIME",
277 "SWEEP_TABLE",
278 "AP_OR_STATION_TABLE",
279 "GROUP_ORDINALS",
280 "SHORT_RETRY_LIMIT",
281 "LONG_RETRY_LIMIT",
282 "unused", /* SAVE_CALIBRATION */
283 "unused", /* RESTORE_CALIBRATION */
284 "undefined",
285 "undefined",
286 "undefined",
287 "HOST_PRE_POWER_DOWN",
288 "unused", /* HOST_INTERRUPT_COALESCING */
289 "undefined",
290 "CARD_DISABLE_PHY_OFF",
291 "MSDU_TX_RATES",
292 "undefined",
293 "SET_STATION_STAT_BITS",
294 "CLEAR_STATIONS_STAT_BITS",
295 "LEAP_ROGUE_MODE",
296 "SET_SECURITY_INFORMATION",
297 "DISASSOCIATION_BSSID",
298 "SET_WPA_ASS_IE"
299 };
300 #endif
301
302 static const long ipw2100_frequencies[] = {
303 2412, 2417, 2422, 2427,
304 2432, 2437, 2442, 2447,
305 2452, 2457, 2462, 2467,
306 2472, 2484
307 };
308
309 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies)
310
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312 { .bitrate = 10 },
313 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330 struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332 struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334 size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336 size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338 struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340 struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static struct iw_handler_def ipw2100_wx_handler_def;
344
345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347 struct ipw2100_priv *priv = libipw_priv(dev);
348
349 *val = ioread32(priv->ioaddr + reg);
350 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352
353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355 struct ipw2100_priv *priv = libipw_priv(dev);
356
357 iowrite32(val, priv->ioaddr + reg);
358 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360
361 static inline void read_register_word(struct net_device *dev, u32 reg,
362 u16 * val)
363 {
364 struct ipw2100_priv *priv = libipw_priv(dev);
365
366 *val = ioread16(priv->ioaddr + reg);
367 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369
370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372 struct ipw2100_priv *priv = libipw_priv(dev);
373
374 *val = ioread8(priv->ioaddr + reg);
375 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380 struct ipw2100_priv *priv = libipw_priv(dev);
381
382 iowrite16(val, priv->ioaddr + reg);
383 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385
386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388 struct ipw2100_priv *priv = libipw_priv(dev);
389
390 iowrite8(val, priv->ioaddr + reg);
391 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393
394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397 addr & IPW_REG_INDIRECT_ADDR_MASK);
398 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400
401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404 addr & IPW_REG_INDIRECT_ADDR_MASK);
405 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407
408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411 addr & IPW_REG_INDIRECT_ADDR_MASK);
412 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414
415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418 addr & IPW_REG_INDIRECT_ADDR_MASK);
419 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421
422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425 addr & IPW_REG_INDIRECT_ADDR_MASK);
426 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428
429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432 addr & IPW_REG_INDIRECT_ADDR_MASK);
433 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435
436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439 addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441
442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446
447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448 const u8 * buf)
449 {
450 u32 aligned_addr;
451 u32 aligned_len;
452 u32 dif_len;
453 u32 i;
454
455 /* read first nibble byte by byte */
456 aligned_addr = addr & (~0x3);
457 dif_len = addr - aligned_addr;
458 if (dif_len) {
459 /* Start reading at aligned_addr + dif_len */
460 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461 aligned_addr);
462 for (i = dif_len; i < 4; i++, buf++)
463 write_register_byte(dev,
464 IPW_REG_INDIRECT_ACCESS_DATA + i,
465 *buf);
466
467 len -= dif_len;
468 aligned_addr += 4;
469 }
470
471 /* read DWs through autoincrement registers */
472 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473 aligned_len = len & (~0x3);
474 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476
477 /* copy the last nibble */
478 dif_len = len - aligned_len;
479 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480 for (i = 0; i < dif_len; i++, buf++)
481 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482 *buf);
483 }
484
485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486 u8 * buf)
487 {
488 u32 aligned_addr;
489 u32 aligned_len;
490 u32 dif_len;
491 u32 i;
492
493 /* read first nibble byte by byte */
494 aligned_addr = addr & (~0x3);
495 dif_len = addr - aligned_addr;
496 if (dif_len) {
497 /* Start reading at aligned_addr + dif_len */
498 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499 aligned_addr);
500 for (i = dif_len; i < 4; i++, buf++)
501 read_register_byte(dev,
502 IPW_REG_INDIRECT_ACCESS_DATA + i,
503 buf);
504
505 len -= dif_len;
506 aligned_addr += 4;
507 }
508
509 /* read DWs through autoincrement registers */
510 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511 aligned_len = len & (~0x3);
512 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514
515 /* copy the last nibble */
516 dif_len = len - aligned_len;
517 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518 for (i = 0; i < dif_len; i++, buf++)
519 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521
522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524 u32 dbg;
525
526 read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527
528 return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530
531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532 void *val, u32 * len)
533 {
534 struct ipw2100_ordinals *ordinals = &priv->ordinals;
535 u32 addr;
536 u32 field_info;
537 u16 field_len;
538 u16 field_count;
539 u32 total_length;
540
541 if (ordinals->table1_addr == 0) {
542 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543 "before they have been loaded.\n");
544 return -EINVAL;
545 }
546
547 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
550
551 printk(KERN_WARNING DRV_NAME
552 ": ordinal buffer length too small, need %zd\n",
553 IPW_ORD_TAB_1_ENTRY_SIZE);
554
555 return -EINVAL;
556 }
557
558 read_nic_dword(priv->net_dev,
559 ordinals->table1_addr + (ord << 2), &addr);
560 read_nic_dword(priv->net_dev, addr, val);
561
562 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
563
564 return 0;
565 }
566
567 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568
569 ord -= IPW_START_ORD_TAB_2;
570
571 /* get the address of statistic */
572 read_nic_dword(priv->net_dev,
573 ordinals->table2_addr + (ord << 3), &addr);
574
575 /* get the second DW of statistics ;
576 * two 16-bit words - first is length, second is count */
577 read_nic_dword(priv->net_dev,
578 ordinals->table2_addr + (ord << 3) + sizeof(u32),
579 &field_info);
580
581 /* get each entry length */
582 field_len = *((u16 *) & field_info);
583
584 /* get number of entries */
585 field_count = *(((u16 *) & field_info) + 1);
586
587 /* abort if no enough memory */
588 total_length = field_len * field_count;
589 if (total_length > *len) {
590 *len = total_length;
591 return -EINVAL;
592 }
593
594 *len = total_length;
595 if (!total_length)
596 return 0;
597
598 /* read the ordinal data from the SRAM */
599 read_nic_memory(priv->net_dev, addr, total_length, val);
600
601 return 0;
602 }
603
604 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605 "in table 2\n", ord);
606
607 return -EINVAL;
608 }
609
610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611 u32 * len)
612 {
613 struct ipw2100_ordinals *ordinals = &priv->ordinals;
614 u32 addr;
615
616 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
619 IPW_DEBUG_INFO("wrong size\n");
620 return -EINVAL;
621 }
622
623 read_nic_dword(priv->net_dev,
624 ordinals->table1_addr + (ord << 2), &addr);
625
626 write_nic_dword(priv->net_dev, addr, *val);
627
628 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
629
630 return 0;
631 }
632
633 IPW_DEBUG_INFO("wrong table\n");
634 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635 return -EINVAL;
636
637 return -EINVAL;
638 }
639
640 static char *snprint_line(char *buf, size_t count,
641 const u8 * data, u32 len, u32 ofs)
642 {
643 int out, i, j, l;
644 char c;
645
646 out = snprintf(buf, count, "%08X", ofs);
647
648 for (l = 0, i = 0; i < 2; i++) {
649 out += snprintf(buf + out, count - out, " ");
650 for (j = 0; j < 8 && l < len; j++, l++)
651 out += snprintf(buf + out, count - out, "%02X ",
652 data[(i * 8 + j)]);
653 for (; j < 8; j++)
654 out += snprintf(buf + out, count - out, " ");
655 }
656
657 out += snprintf(buf + out, count - out, " ");
658 for (l = 0, i = 0; i < 2; i++) {
659 out += snprintf(buf + out, count - out, " ");
660 for (j = 0; j < 8 && l < len; j++, l++) {
661 c = data[(i * 8 + j)];
662 if (!isascii(c) || !isprint(c))
663 c = '.';
664
665 out += snprintf(buf + out, count - out, "%c", c);
666 }
667
668 for (; j < 8; j++)
669 out += snprintf(buf + out, count - out, " ");
670 }
671
672 return buf;
673 }
674
675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677 char line[81];
678 u32 ofs = 0;
679 if (!(ipw2100_debug_level & level))
680 return;
681
682 while (len) {
683 printk(KERN_DEBUG "%s\n",
684 snprint_line(line, sizeof(line), &data[ofs],
685 min(len, 16U), ofs));
686 ofs += 16;
687 len -= min(len, 16U);
688 }
689 }
690
691 #define MAX_RESET_BACKOFF 10
692
693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695 unsigned long now = get_seconds();
696
697 /* If we haven't received a reset request within the backoff period,
698 * then we can reset the backoff interval so this reset occurs
699 * immediately */
700 if (priv->reset_backoff &&
701 (now - priv->last_reset > priv->reset_backoff))
702 priv->reset_backoff = 0;
703
704 priv->last_reset = get_seconds();
705
706 if (!(priv->status & STATUS_RESET_PENDING)) {
707 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
708 priv->net_dev->name, priv->reset_backoff);
709 netif_carrier_off(priv->net_dev);
710 netif_stop_queue(priv->net_dev);
711 priv->status |= STATUS_RESET_PENDING;
712 if (priv->reset_backoff)
713 schedule_delayed_work(&priv->reset_work,
714 priv->reset_backoff * HZ);
715 else
716 schedule_delayed_work(&priv->reset_work, 0);
717
718 if (priv->reset_backoff < MAX_RESET_BACKOFF)
719 priv->reset_backoff++;
720
721 wake_up_interruptible(&priv->wait_command_queue);
722 } else
723 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724 priv->net_dev->name);
725
726 }
727
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730 struct host_command *cmd)
731 {
732 struct list_head *element;
733 struct ipw2100_tx_packet *packet;
734 unsigned long flags;
735 int err = 0;
736
737 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738 command_types[cmd->host_command], cmd->host_command,
739 cmd->host_command_length);
740 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741 cmd->host_command_length);
742
743 spin_lock_irqsave(&priv->low_lock, flags);
744
745 if (priv->fatal_error) {
746 IPW_DEBUG_INFO
747 ("Attempt to send command while hardware in fatal error condition.\n");
748 err = -EIO;
749 goto fail_unlock;
750 }
751
752 if (!(priv->status & STATUS_RUNNING)) {
753 IPW_DEBUG_INFO
754 ("Attempt to send command while hardware is not running.\n");
755 err = -EIO;
756 goto fail_unlock;
757 }
758
759 if (priv->status & STATUS_CMD_ACTIVE) {
760 IPW_DEBUG_INFO
761 ("Attempt to send command while another command is pending.\n");
762 err = -EBUSY;
763 goto fail_unlock;
764 }
765
766 if (list_empty(&priv->msg_free_list)) {
767 IPW_DEBUG_INFO("no available msg buffers\n");
768 goto fail_unlock;
769 }
770
771 priv->status |= STATUS_CMD_ACTIVE;
772 priv->messages_sent++;
773
774 element = priv->msg_free_list.next;
775
776 packet = list_entry(element, struct ipw2100_tx_packet, list);
777 packet->jiffy_start = jiffies;
778
779 /* initialize the firmware command packet */
780 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782 packet->info.c_struct.cmd->host_command_len_reg =
783 cmd->host_command_length;
784 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785
786 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787 cmd->host_command_parameters,
788 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789
790 list_del(element);
791 DEC_STAT(&priv->msg_free_stat);
792
793 list_add_tail(element, &priv->msg_pend_list);
794 INC_STAT(&priv->msg_pend_stat);
795
796 ipw2100_tx_send_commands(priv);
797 ipw2100_tx_send_data(priv);
798
799 spin_unlock_irqrestore(&priv->low_lock, flags);
800
801 /*
802 * We must wait for this command to complete before another
803 * command can be sent... but if we wait more than 3 seconds
804 * then there is a problem.
805 */
806
807 err =
808 wait_event_interruptible_timeout(priv->wait_command_queue,
809 !(priv->
810 status & STATUS_CMD_ACTIVE),
811 HOST_COMPLETE_TIMEOUT);
812
813 if (err == 0) {
814 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817 priv->status &= ~STATUS_CMD_ACTIVE;
818 schedule_reset(priv);
819 return -EIO;
820 }
821
822 if (priv->fatal_error) {
823 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824 priv->net_dev->name);
825 return -EIO;
826 }
827
828 /* !!!!! HACK TEST !!!!!
829 * When lots of debug trace statements are enabled, the driver
830 * doesn't seem to have as many firmware restart cycles...
831 *
832 * As a test, we're sticking in a 1/100s delay here */
833 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834
835 return 0;
836
837 fail_unlock:
838 spin_unlock_irqrestore(&priv->low_lock, flags);
839
840 return err;
841 }
842
843 /*
844 * Verify the values and data access of the hardware
845 * No locks needed or used. No functions called.
846 */
847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849 u32 data1, data2;
850 u32 address;
851
852 u32 val1 = 0x76543210;
853 u32 val2 = 0xFEDCBA98;
854
855 /* Domain 0 check - all values should be DOA_DEBUG */
856 for (address = IPW_REG_DOA_DEBUG_AREA_START;
857 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858 read_register(priv->net_dev, address, &data1);
859 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860 return -EIO;
861 }
862
863 /* Domain 1 check - use arbitrary read/write compare */
864 for (address = 0; address < 5; address++) {
865 /* The memory area is not used now */
866 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867 val1);
868 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869 val2);
870 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871 &data1);
872 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873 &data2);
874 if (val1 == data1 && val2 == data2)
875 return 0;
876 }
877
878 return -EIO;
879 }
880
881 /*
882 *
883 * Loop until the CARD_DISABLED bit is the same value as the
884 * supplied parameter
885 *
886 * TODO: See if it would be more efficient to do a wait/wake
887 * cycle and have the completion event trigger the wakeup
888 *
889 */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893 int i;
894 u32 card_state;
895 u32 len = sizeof(card_state);
896 int err;
897
898 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900 &card_state, &len);
901 if (err) {
902 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903 "failed.\n");
904 return 0;
905 }
906
907 /* We'll break out if either the HW state says it is
908 * in the state we want, or if HOST_COMPLETE command
909 * finishes */
910 if ((card_state == state) ||
911 ((priv->status & STATUS_ENABLED) ?
912 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913 if (state == IPW_HW_STATE_ENABLED)
914 priv->status |= STATUS_ENABLED;
915 else
916 priv->status &= ~STATUS_ENABLED;
917
918 return 0;
919 }
920
921 udelay(50);
922 }
923
924 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925 state ? "DISABLED" : "ENABLED");
926 return -EIO;
927 }
928
929 /*********************************************************************
930 Procedure : sw_reset_and_clock
931 Purpose : Asserts s/w reset, asserts clock initialization
932 and waits for clock stabilization
933 ********************************************************************/
934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936 int i;
937 u32 r;
938
939 // assert s/w reset
940 write_register(priv->net_dev, IPW_REG_RESET_REG,
941 IPW_AUX_HOST_RESET_REG_SW_RESET);
942
943 // wait for clock stabilization
944 for (i = 0; i < 1000; i++) {
945 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946
947 // check clock ready bit
948 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950 break;
951 }
952
953 if (i == 1000)
954 return -EIO; // TODO: better error value
955
956 /* set "initialization complete" bit to move adapter to
957 * D0 state */
958 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960
961 /* wait for clock stabilization */
962 for (i = 0; i < 10000; i++) {
963 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964
965 /* check clock ready bit */
966 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968 break;
969 }
970
971 if (i == 10000)
972 return -EIO; /* TODO: better error value */
973
974 /* set D0 standby bit */
975 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978
979 return 0;
980 }
981
982 /*********************************************************************
983 Procedure : ipw2100_download_firmware
984 Purpose : Initiaze adapter after power on.
985 The sequence is:
986 1. assert s/w reset first!
987 2. awake clocks & wait for clock stabilization
988 3. hold ARC (don't ask me why...)
989 4. load Dino ucode and reset/clock init again
990 5. zero-out shared mem
991 6. download f/w
992 *******************************************************************/
993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995 u32 address;
996 int err;
997
998 #ifndef CONFIG_PM
999 /* Fetch the firmware and microcode */
1000 struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002
1003 if (priv->fatal_error) {
1004 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005 "fatal error %d. Interface must be brought down.\n",
1006 priv->net_dev->name, priv->fatal_error);
1007 return -EINVAL;
1008 }
1009 #ifdef CONFIG_PM
1010 if (!ipw2100_firmware.version) {
1011 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012 if (err) {
1013 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014 priv->net_dev->name, err);
1015 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016 goto fail;
1017 }
1018 }
1019 #else
1020 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021 if (err) {
1022 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023 priv->net_dev->name, err);
1024 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025 goto fail;
1026 }
1027 #endif
1028 priv->firmware_version = ipw2100_firmware.version;
1029
1030 /* s/w reset and clock stabilization */
1031 err = sw_reset_and_clock(priv);
1032 if (err) {
1033 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034 priv->net_dev->name, err);
1035 goto fail;
1036 }
1037
1038 err = ipw2100_verify(priv);
1039 if (err) {
1040 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041 priv->net_dev->name, err);
1042 goto fail;
1043 }
1044
1045 /* Hold ARC */
1046 write_nic_dword(priv->net_dev,
1047 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048
1049 /* allow ARC to run */
1050 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051
1052 /* load microcode */
1053 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054 if (err) {
1055 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056 priv->net_dev->name, err);
1057 goto fail;
1058 }
1059
1060 /* release ARC */
1061 write_nic_dword(priv->net_dev,
1062 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063
1064 /* s/w reset and clock stabilization (again!!!) */
1065 err = sw_reset_and_clock(priv);
1066 if (err) {
1067 printk(KERN_ERR DRV_NAME
1068 ": %s: sw_reset_and_clock failed: %d\n",
1069 priv->net_dev->name, err);
1070 goto fail;
1071 }
1072
1073 /* load f/w */
1074 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075 if (err) {
1076 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077 priv->net_dev->name, err);
1078 goto fail;
1079 }
1080 #ifndef CONFIG_PM
1081 /*
1082 * When the .resume method of the driver is called, the other
1083 * part of the system, i.e. the ide driver could still stay in
1084 * the suspend stage. This prevents us from loading the firmware
1085 * from the disk. --YZ
1086 */
1087
1088 /* free any storage allocated for firmware image */
1089 ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091
1092 /* zero out Domain 1 area indirectly (Si requirement) */
1093 for (address = IPW_HOST_FW_SHARED_AREA0;
1094 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095 write_nic_dword(priv->net_dev, address, 0);
1096 for (address = IPW_HOST_FW_SHARED_AREA1;
1097 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098 write_nic_dword(priv->net_dev, address, 0);
1099 for (address = IPW_HOST_FW_SHARED_AREA2;
1100 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101 write_nic_dword(priv->net_dev, address, 0);
1102 for (address = IPW_HOST_FW_SHARED_AREA3;
1103 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104 write_nic_dword(priv->net_dev, address, 0);
1105 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107 write_nic_dword(priv->net_dev, address, 0);
1108
1109 return 0;
1110
1111 fail:
1112 ipw2100_release_firmware(priv, &ipw2100_firmware);
1113 return err;
1114 }
1115
1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118 if (priv->status & STATUS_INT_ENABLED)
1119 return;
1120 priv->status |= STATUS_INT_ENABLED;
1121 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123
1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126 if (!(priv->status & STATUS_INT_ENABLED))
1127 return;
1128 priv->status &= ~STATUS_INT_ENABLED;
1129 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131
1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134 struct ipw2100_ordinals *ord = &priv->ordinals;
1135
1136 IPW_DEBUG_INFO("enter\n");
1137
1138 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139 &ord->table1_addr);
1140
1141 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142 &ord->table2_addr);
1143
1144 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146
1147 ord->table2_size &= 0x0000FFFF;
1148
1149 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151 IPW_DEBUG_INFO("exit\n");
1152 }
1153
1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156 u32 reg = 0;
1157 /*
1158 * Set GPIO 3 writable by FW; GPIO 1 writable
1159 * by driver and enable clock
1160 */
1161 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162 IPW_BIT_GPIO_LED_OFF);
1163 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165
1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170
1171 unsigned short value = 0;
1172 u32 reg = 0;
1173 int i;
1174
1175 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177 priv->status &= ~STATUS_RF_KILL_HW;
1178 return 0;
1179 }
1180
1181 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182 udelay(RF_KILL_CHECK_DELAY);
1183 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185 }
1186
1187 if (value == 0) {
1188 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189 priv->status |= STATUS_RF_KILL_HW;
1190 } else {
1191 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192 priv->status &= ~STATUS_RF_KILL_HW;
1193 }
1194
1195 return (value == 0);
1196 }
1197
1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200 u32 addr, len;
1201 u32 val;
1202
1203 /*
1204 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205 */
1206 len = sizeof(addr);
1207 if (ipw2100_get_ordinal
1208 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210 __LINE__);
1211 return -EIO;
1212 }
1213
1214 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215
1216 /*
1217 * EEPROM version is the byte at offset 0xfd in firmware
1218 * We read 4 bytes, then shift out the byte we actually want */
1219 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220 priv->eeprom_version = (val >> 24) & 0xFF;
1221 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222
1223 /*
1224 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225 *
1226 * notice that the EEPROM bit is reverse polarity, i.e.
1227 * bit = 0 signifies HW RF kill switch is supported
1228 * bit = 1 signifies HW RF kill switch is NOT supported
1229 */
1230 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231 if (!((val >> 24) & 0x01))
1232 priv->hw_features |= HW_FEATURE_RFKILL;
1233
1234 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236
1237 return 0;
1238 }
1239
1240 /*
1241 * Start firmware execution after power on and intialization
1242 * The sequence is:
1243 * 1. Release ARC
1244 * 2. Wait for f/w initialization completes;
1245 */
1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248 int i;
1249 u32 inta, inta_mask, gpio;
1250
1251 IPW_DEBUG_INFO("enter\n");
1252
1253 if (priv->status & STATUS_RUNNING)
1254 return 0;
1255
1256 /*
1257 * Initialize the hw - drive adapter to DO state by setting
1258 * init_done bit. Wait for clk_ready bit and Download
1259 * fw & dino ucode
1260 */
1261 if (ipw2100_download_firmware(priv)) {
1262 printk(KERN_ERR DRV_NAME
1263 ": %s: Failed to power on the adapter.\n",
1264 priv->net_dev->name);
1265 return -EIO;
1266 }
1267
1268 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1269 * in the firmware RBD and TBD ring queue */
1270 ipw2100_queues_initialize(priv);
1271
1272 ipw2100_hw_set_gpio(priv);
1273
1274 /* TODO -- Look at disabling interrupts here to make sure none
1275 * get fired during FW initialization */
1276
1277 /* Release ARC - clear reset bit */
1278 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279
1280 /* wait for f/w intialization complete */
1281 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282 i = 5000;
1283 do {
1284 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285 /* Todo... wait for sync command ... */
1286
1287 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288
1289 /* check "init done" bit */
1290 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291 /* reset "init done" bit */
1292 write_register(priv->net_dev, IPW_REG_INTA,
1293 IPW2100_INTA_FW_INIT_DONE);
1294 break;
1295 }
1296
1297 /* check error conditions : we check these after the firmware
1298 * check so that if there is an error, the interrupt handler
1299 * will see it and the adapter will be reset */
1300 if (inta &
1301 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302 /* clear error conditions */
1303 write_register(priv->net_dev, IPW_REG_INTA,
1304 IPW2100_INTA_FATAL_ERROR |
1305 IPW2100_INTA_PARITY_ERROR);
1306 }
1307 } while (--i);
1308
1309 /* Clear out any pending INTAs since we aren't supposed to have
1310 * interrupts enabled at this point... */
1311 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313 inta &= IPW_INTERRUPT_MASK;
1314 /* Clear out any pending interrupts */
1315 if (inta & inta_mask)
1316 write_register(priv->net_dev, IPW_REG_INTA, inta);
1317
1318 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319 i ? "SUCCESS" : "FAILED");
1320
1321 if (!i) {
1322 printk(KERN_WARNING DRV_NAME
1323 ": %s: Firmware did not initialize.\n",
1324 priv->net_dev->name);
1325 return -EIO;
1326 }
1327
1328 /* allow firmware to write to GPIO1 & GPIO3 */
1329 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330
1331 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332
1333 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334
1335 /* Ready to receive commands */
1336 priv->status |= STATUS_RUNNING;
1337
1338 /* The adapter has been reset; we are not associated */
1339 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340
1341 IPW_DEBUG_INFO("exit\n");
1342
1343 return 0;
1344 }
1345
1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348 if (!priv->fatal_error)
1349 return;
1350
1351 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353 priv->fatal_error = 0;
1354 }
1355
1356 /* NOTE: Our interrupt is disabled when this method is called */
1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359 u32 reg;
1360 int i;
1361
1362 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363
1364 ipw2100_hw_set_gpio(priv);
1365
1366 /* Step 1. Stop Master Assert */
1367 write_register(priv->net_dev, IPW_REG_RESET_REG,
1368 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369
1370 /* Step 2. Wait for stop Master Assert
1371 * (not more than 50us, otherwise ret error */
1372 i = 5;
1373 do {
1374 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1376
1377 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378 break;
1379 } while (--i);
1380
1381 priv->status &= ~STATUS_RESET_PENDING;
1382
1383 if (!i) {
1384 IPW_DEBUG_INFO
1385 ("exit - waited too long for master assert stop\n");
1386 return -EIO;
1387 }
1388
1389 write_register(priv->net_dev, IPW_REG_RESET_REG,
1390 IPW_AUX_HOST_RESET_REG_SW_RESET);
1391
1392 /* Reset any fatal_error conditions */
1393 ipw2100_reset_fatalerror(priv);
1394
1395 /* At this point, the adapter is now stopped and disabled */
1396 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397 STATUS_ASSOCIATED | STATUS_ENABLED);
1398
1399 return 0;
1400 }
1401
1402 /*
1403 * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404 *
1405 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406 *
1407 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408 * if STATUS_ASSN_LOST is sent.
1409 */
1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412
1413 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1414
1415 struct host_command cmd = {
1416 .host_command = CARD_DISABLE_PHY_OFF,
1417 .host_command_sequence = 0,
1418 .host_command_length = 0,
1419 };
1420 int err, i;
1421 u32 val1, val2;
1422
1423 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424
1425 /* Turn off the radio */
1426 err = ipw2100_hw_send_command(priv, &cmd);
1427 if (err)
1428 return err;
1429
1430 for (i = 0; i < 2500; i++) {
1431 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433
1434 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435 (val2 & IPW2100_COMMAND_PHY_OFF))
1436 return 0;
1437
1438 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439 }
1440
1441 return -EIO;
1442 }
1443
1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446 struct host_command cmd = {
1447 .host_command = HOST_COMPLETE,
1448 .host_command_sequence = 0,
1449 .host_command_length = 0
1450 };
1451 int err = 0;
1452
1453 IPW_DEBUG_HC("HOST_COMPLETE\n");
1454
1455 if (priv->status & STATUS_ENABLED)
1456 return 0;
1457
1458 mutex_lock(&priv->adapter_mutex);
1459
1460 if (rf_kill_active(priv)) {
1461 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462 goto fail_up;
1463 }
1464
1465 err = ipw2100_hw_send_command(priv, &cmd);
1466 if (err) {
1467 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468 goto fail_up;
1469 }
1470
1471 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472 if (err) {
1473 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474 priv->net_dev->name);
1475 goto fail_up;
1476 }
1477
1478 if (priv->stop_hang_check) {
1479 priv->stop_hang_check = 0;
1480 schedule_delayed_work(&priv->hang_check, HZ / 2);
1481 }
1482
1483 fail_up:
1484 mutex_unlock(&priv->adapter_mutex);
1485 return err;
1486 }
1487
1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491
1492 struct host_command cmd = {
1493 .host_command = HOST_PRE_POWER_DOWN,
1494 .host_command_sequence = 0,
1495 .host_command_length = 0,
1496 };
1497 int err, i;
1498 u32 reg;
1499
1500 if (!(priv->status & STATUS_RUNNING))
1501 return 0;
1502
1503 priv->status |= STATUS_STOPPING;
1504
1505 /* We can only shut down the card if the firmware is operational. So,
1506 * if we haven't reset since a fatal_error, then we can not send the
1507 * shutdown commands. */
1508 if (!priv->fatal_error) {
1509 /* First, make sure the adapter is enabled so that the PHY_OFF
1510 * command can shut it down */
1511 ipw2100_enable_adapter(priv);
1512
1513 err = ipw2100_hw_phy_off(priv);
1514 if (err)
1515 printk(KERN_WARNING DRV_NAME
1516 ": Error disabling radio %d\n", err);
1517
1518 /*
1519 * If in D0-standby mode going directly to D3 may cause a
1520 * PCI bus violation. Therefore we must change out of the D0
1521 * state.
1522 *
1523 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524 * hardware from going into standby mode and will transition
1525 * out of D0-standby if it is already in that state.
1526 *
1527 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528 * driver upon completion. Once received, the driver can
1529 * proceed to the D3 state.
1530 *
1531 * Prepare for power down command to fw. This command would
1532 * take HW out of D0-standby and prepare it for D3 state.
1533 *
1534 * Currently FW does not support event notification for this
1535 * event. Therefore, skip waiting for it. Just wait a fixed
1536 * 100ms
1537 */
1538 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539
1540 err = ipw2100_hw_send_command(priv, &cmd);
1541 if (err)
1542 printk(KERN_WARNING DRV_NAME ": "
1543 "%s: Power down command failed: Error %d\n",
1544 priv->net_dev->name, err);
1545 else
1546 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547 }
1548
1549 priv->status &= ~STATUS_ENABLED;
1550
1551 /*
1552 * Set GPIO 3 writable by FW; GPIO 1 writable
1553 * by driver and enable clock
1554 */
1555 ipw2100_hw_set_gpio(priv);
1556
1557 /*
1558 * Power down adapter. Sequence:
1559 * 1. Stop master assert (RESET_REG[9]=1)
1560 * 2. Wait for stop master (RESET_REG[8]==1)
1561 * 3. S/w reset assert (RESET_REG[7] = 1)
1562 */
1563
1564 /* Stop master assert */
1565 write_register(priv->net_dev, IPW_REG_RESET_REG,
1566 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567
1568 /* wait stop master not more than 50 usec.
1569 * Otherwise return error. */
1570 for (i = 5; i > 0; i--) {
1571 udelay(10);
1572
1573 /* Check master stop bit */
1574 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1575
1576 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577 break;
1578 }
1579
1580 if (i == 0)
1581 printk(KERN_WARNING DRV_NAME
1582 ": %s: Could now power down adapter.\n",
1583 priv->net_dev->name);
1584
1585 /* assert s/w reset */
1586 write_register(priv->net_dev, IPW_REG_RESET_REG,
1587 IPW_AUX_HOST_RESET_REG_SW_RESET);
1588
1589 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590
1591 return 0;
1592 }
1593
1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596 struct host_command cmd = {
1597 .host_command = CARD_DISABLE,
1598 .host_command_sequence = 0,
1599 .host_command_length = 0
1600 };
1601 int err = 0;
1602
1603 IPW_DEBUG_HC("CARD_DISABLE\n");
1604
1605 if (!(priv->status & STATUS_ENABLED))
1606 return 0;
1607
1608 /* Make sure we clear the associated state */
1609 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610
1611 if (!priv->stop_hang_check) {
1612 priv->stop_hang_check = 1;
1613 cancel_delayed_work(&priv->hang_check);
1614 }
1615
1616 mutex_lock(&priv->adapter_mutex);
1617
1618 err = ipw2100_hw_send_command(priv, &cmd);
1619 if (err) {
1620 printk(KERN_WARNING DRV_NAME
1621 ": exit - failed to send CARD_DISABLE command\n");
1622 goto fail_up;
1623 }
1624
1625 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626 if (err) {
1627 printk(KERN_WARNING DRV_NAME
1628 ": exit - card failed to change to DISABLED\n");
1629 goto fail_up;
1630 }
1631
1632 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633
1634 fail_up:
1635 mutex_unlock(&priv->adapter_mutex);
1636 return err;
1637 }
1638
1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641 struct host_command cmd = {
1642 .host_command = SET_SCAN_OPTIONS,
1643 .host_command_sequence = 0,
1644 .host_command_length = 8
1645 };
1646 int err;
1647
1648 IPW_DEBUG_INFO("enter\n");
1649
1650 IPW_DEBUG_SCAN("setting scan options\n");
1651
1652 cmd.host_command_parameters[0] = 0;
1653
1654 if (!(priv->config & CFG_ASSOCIATE))
1655 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658 if (priv->config & CFG_PASSIVE_SCAN)
1659 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660
1661 cmd.host_command_parameters[1] = priv->channel_mask;
1662
1663 err = ipw2100_hw_send_command(priv, &cmd);
1664
1665 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666 cmd.host_command_parameters[0]);
1667
1668 return err;
1669 }
1670
1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673 struct host_command cmd = {
1674 .host_command = BROADCAST_SCAN,
1675 .host_command_sequence = 0,
1676 .host_command_length = 4
1677 };
1678 int err;
1679
1680 IPW_DEBUG_HC("START_SCAN\n");
1681
1682 cmd.host_command_parameters[0] = 0;
1683
1684 /* No scanning if in monitor mode */
1685 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686 return 1;
1687
1688 if (priv->status & STATUS_SCANNING) {
1689 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690 return 0;
1691 }
1692
1693 IPW_DEBUG_INFO("enter\n");
1694
1695 /* Not clearing here; doing so makes iwlist always return nothing...
1696 *
1697 * We should modify the table logic to use aging tables vs. clearing
1698 * the table on each scan start.
1699 */
1700 IPW_DEBUG_SCAN("starting scan\n");
1701
1702 priv->status |= STATUS_SCANNING;
1703 err = ipw2100_hw_send_command(priv, &cmd);
1704 if (err)
1705 priv->status &= ~STATUS_SCANNING;
1706
1707 IPW_DEBUG_INFO("exit\n");
1708
1709 return err;
1710 }
1711
1712 static const struct libipw_geo ipw_geos[] = {
1713 { /* Restricted */
1714 "---",
1715 .bg_channels = 14,
1716 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717 {2427, 4}, {2432, 5}, {2437, 6},
1718 {2442, 7}, {2447, 8}, {2452, 9},
1719 {2457, 10}, {2462, 11}, {2467, 12},
1720 {2472, 13}, {2484, 14}},
1721 },
1722 };
1723
1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726 unsigned long flags;
1727 int rc = 0;
1728 u32 lock;
1729 u32 ord_len = sizeof(lock);
1730
1731 /* Age scan list entries found before suspend */
1732 if (priv->suspend_time) {
1733 libipw_networks_age(priv->ieee, priv->suspend_time);
1734 priv->suspend_time = 0;
1735 }
1736
1737 /* Quiet if manually disabled. */
1738 if (priv->status & STATUS_RF_KILL_SW) {
1739 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740 "switch\n", priv->net_dev->name);
1741 return 0;
1742 }
1743
1744 /* the ipw2100 hardware really doesn't want power management delays
1745 * longer than 175usec
1746 */
1747 pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748
1749 /* If the interrupt is enabled, turn it off... */
1750 spin_lock_irqsave(&priv->low_lock, flags);
1751 ipw2100_disable_interrupts(priv);
1752
1753 /* Reset any fatal_error conditions */
1754 ipw2100_reset_fatalerror(priv);
1755 spin_unlock_irqrestore(&priv->low_lock, flags);
1756
1757 if (priv->status & STATUS_POWERED ||
1758 (priv->status & STATUS_RESET_PENDING)) {
1759 /* Power cycle the card ... */
1760 if (ipw2100_power_cycle_adapter(priv)) {
1761 printk(KERN_WARNING DRV_NAME
1762 ": %s: Could not cycle adapter.\n",
1763 priv->net_dev->name);
1764 rc = 1;
1765 goto exit;
1766 }
1767 } else
1768 priv->status |= STATUS_POWERED;
1769
1770 /* Load the firmware, start the clocks, etc. */
1771 if (ipw2100_start_adapter(priv)) {
1772 printk(KERN_ERR DRV_NAME
1773 ": %s: Failed to start the firmware.\n",
1774 priv->net_dev->name);
1775 rc = 1;
1776 goto exit;
1777 }
1778
1779 ipw2100_initialize_ordinals(priv);
1780
1781 /* Determine capabilities of this particular HW configuration */
1782 if (ipw2100_get_hw_features(priv)) {
1783 printk(KERN_ERR DRV_NAME
1784 ": %s: Failed to determine HW features.\n",
1785 priv->net_dev->name);
1786 rc = 1;
1787 goto exit;
1788 }
1789
1790 /* Initialize the geo */
1791 if (libipw_set_geo(priv->ieee, &ipw_geos[0])) {
1792 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1793 return 0;
1794 }
1795 priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1796
1797 lock = LOCK_NONE;
1798 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1799 printk(KERN_ERR DRV_NAME
1800 ": %s: Failed to clear ordinal lock.\n",
1801 priv->net_dev->name);
1802 rc = 1;
1803 goto exit;
1804 }
1805
1806 priv->status &= ~STATUS_SCANNING;
1807
1808 if (rf_kill_active(priv)) {
1809 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1810 priv->net_dev->name);
1811
1812 if (priv->stop_rf_kill) {
1813 priv->stop_rf_kill = 0;
1814 schedule_delayed_work(&priv->rf_kill,
1815 round_jiffies_relative(HZ));
1816 }
1817
1818 deferred = 1;
1819 }
1820
1821 /* Turn on the interrupt so that commands can be processed */
1822 ipw2100_enable_interrupts(priv);
1823
1824 /* Send all of the commands that must be sent prior to
1825 * HOST_COMPLETE */
1826 if (ipw2100_adapter_setup(priv)) {
1827 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1828 priv->net_dev->name);
1829 rc = 1;
1830 goto exit;
1831 }
1832
1833 if (!deferred) {
1834 /* Enable the adapter - sends HOST_COMPLETE */
1835 if (ipw2100_enable_adapter(priv)) {
1836 printk(KERN_ERR DRV_NAME ": "
1837 "%s: failed in call to enable adapter.\n",
1838 priv->net_dev->name);
1839 ipw2100_hw_stop_adapter(priv);
1840 rc = 1;
1841 goto exit;
1842 }
1843
1844 /* Start a scan . . . */
1845 ipw2100_set_scan_options(priv);
1846 ipw2100_start_scan(priv);
1847 }
1848
1849 exit:
1850 return rc;
1851 }
1852
1853 static void ipw2100_down(struct ipw2100_priv *priv)
1854 {
1855 unsigned long flags;
1856 union iwreq_data wrqu = {
1857 .ap_addr = {
1858 .sa_family = ARPHRD_ETHER}
1859 };
1860 int associated = priv->status & STATUS_ASSOCIATED;
1861
1862 /* Kill the RF switch timer */
1863 if (!priv->stop_rf_kill) {
1864 priv->stop_rf_kill = 1;
1865 cancel_delayed_work(&priv->rf_kill);
1866 }
1867
1868 /* Kill the firmware hang check timer */
1869 if (!priv->stop_hang_check) {
1870 priv->stop_hang_check = 1;
1871 cancel_delayed_work(&priv->hang_check);
1872 }
1873
1874 /* Kill any pending resets */
1875 if (priv->status & STATUS_RESET_PENDING)
1876 cancel_delayed_work(&priv->reset_work);
1877
1878 /* Make sure the interrupt is on so that FW commands will be
1879 * processed correctly */
1880 spin_lock_irqsave(&priv->low_lock, flags);
1881 ipw2100_enable_interrupts(priv);
1882 spin_unlock_irqrestore(&priv->low_lock, flags);
1883
1884 if (ipw2100_hw_stop_adapter(priv))
1885 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1886 priv->net_dev->name);
1887
1888 /* Do not disable the interrupt until _after_ we disable
1889 * the adaptor. Otherwise the CARD_DISABLE command will never
1890 * be ack'd by the firmware */
1891 spin_lock_irqsave(&priv->low_lock, flags);
1892 ipw2100_disable_interrupts(priv);
1893 spin_unlock_irqrestore(&priv->low_lock, flags);
1894
1895 pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1896
1897 /* We have to signal any supplicant if we are disassociating */
1898 if (associated)
1899 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1900
1901 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1902 netif_carrier_off(priv->net_dev);
1903 netif_stop_queue(priv->net_dev);
1904 }
1905
1906 static int ipw2100_wdev_init(struct net_device *dev)
1907 {
1908 struct ipw2100_priv *priv = libipw_priv(dev);
1909 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1910 struct wireless_dev *wdev = &priv->ieee->wdev;
1911 int i;
1912
1913 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1914
1915 /* fill-out priv->ieee->bg_band */
1916 if (geo->bg_channels) {
1917 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1918
1919 bg_band->band = IEEE80211_BAND_2GHZ;
1920 bg_band->n_channels = geo->bg_channels;
1921 bg_band->channels = kcalloc(geo->bg_channels,
1922 sizeof(struct ieee80211_channel),
1923 GFP_KERNEL);
1924 if (!bg_band->channels) {
1925 ipw2100_down(priv);
1926 return -ENOMEM;
1927 }
1928 /* translate geo->bg to bg_band.channels */
1929 for (i = 0; i < geo->bg_channels; i++) {
1930 bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1931 bg_band->channels[i].center_freq = geo->bg[i].freq;
1932 bg_band->channels[i].hw_value = geo->bg[i].channel;
1933 bg_band->channels[i].max_power = geo->bg[i].max_power;
1934 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1935 bg_band->channels[i].flags |=
1936 IEEE80211_CHAN_PASSIVE_SCAN;
1937 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1938 bg_band->channels[i].flags |=
1939 IEEE80211_CHAN_NO_IBSS;
1940 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1941 bg_band->channels[i].flags |=
1942 IEEE80211_CHAN_RADAR;
1943 /* No equivalent for LIBIPW_CH_80211H_RULES,
1944 LIBIPW_CH_UNIFORM_SPREADING, or
1945 LIBIPW_CH_B_ONLY... */
1946 }
1947 /* point at bitrate info */
1948 bg_band->bitrates = ipw2100_bg_rates;
1949 bg_band->n_bitrates = RATE_COUNT;
1950
1951 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1952 }
1953
1954 wdev->wiphy->cipher_suites = ipw_cipher_suites;
1955 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1956
1957 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1958 if (wiphy_register(wdev->wiphy))
1959 return -EIO;
1960 return 0;
1961 }
1962
1963 static void ipw2100_reset_adapter(struct work_struct *work)
1964 {
1965 struct ipw2100_priv *priv =
1966 container_of(work, struct ipw2100_priv, reset_work.work);
1967 unsigned long flags;
1968 union iwreq_data wrqu = {
1969 .ap_addr = {
1970 .sa_family = ARPHRD_ETHER}
1971 };
1972 int associated = priv->status & STATUS_ASSOCIATED;
1973
1974 spin_lock_irqsave(&priv->low_lock, flags);
1975 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1976 priv->resets++;
1977 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1978 priv->status |= STATUS_SECURITY_UPDATED;
1979
1980 /* Force a power cycle even if interface hasn't been opened
1981 * yet */
1982 cancel_delayed_work(&priv->reset_work);
1983 priv->status |= STATUS_RESET_PENDING;
1984 spin_unlock_irqrestore(&priv->low_lock, flags);
1985
1986 mutex_lock(&priv->action_mutex);
1987 /* stop timed checks so that they don't interfere with reset */
1988 priv->stop_hang_check = 1;
1989 cancel_delayed_work(&priv->hang_check);
1990
1991 /* We have to signal any supplicant if we are disassociating */
1992 if (associated)
1993 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1994
1995 ipw2100_up(priv, 0);
1996 mutex_unlock(&priv->action_mutex);
1997
1998 }
1999
2000 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
2001 {
2002
2003 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2004 int ret;
2005 unsigned int len, essid_len;
2006 char essid[IW_ESSID_MAX_SIZE];
2007 u32 txrate;
2008 u32 chan;
2009 char *txratename;
2010 u8 bssid[ETH_ALEN];
2011 DECLARE_SSID_BUF(ssid);
2012
2013 /*
2014 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2015 * an actual MAC of the AP. Seems like FW sets this
2016 * address too late. Read it later and expose through
2017 * /proc or schedule a later task to query and update
2018 */
2019
2020 essid_len = IW_ESSID_MAX_SIZE;
2021 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2022 essid, &essid_len);
2023 if (ret) {
2024 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2025 __LINE__);
2026 return;
2027 }
2028
2029 len = sizeof(u32);
2030 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2031 if (ret) {
2032 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2033 __LINE__);
2034 return;
2035 }
2036
2037 len = sizeof(u32);
2038 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2039 if (ret) {
2040 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2041 __LINE__);
2042 return;
2043 }
2044 len = ETH_ALEN;
2045 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2046 &len);
2047 if (ret) {
2048 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2049 __LINE__);
2050 return;
2051 }
2052 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2053
2054 switch (txrate) {
2055 case TX_RATE_1_MBIT:
2056 txratename = "1Mbps";
2057 break;
2058 case TX_RATE_2_MBIT:
2059 txratename = "2Mbsp";
2060 break;
2061 case TX_RATE_5_5_MBIT:
2062 txratename = "5.5Mbps";
2063 break;
2064 case TX_RATE_11_MBIT:
2065 txratename = "11Mbps";
2066 break;
2067 default:
2068 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2069 txratename = "unknown rate";
2070 break;
2071 }
2072
2073 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2074 priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2075 txratename, chan, bssid);
2076
2077 /* now we copy read ssid into dev */
2078 if (!(priv->config & CFG_STATIC_ESSID)) {
2079 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2080 memcpy(priv->essid, essid, priv->essid_len);
2081 }
2082 priv->channel = chan;
2083 memcpy(priv->bssid, bssid, ETH_ALEN);
2084
2085 priv->status |= STATUS_ASSOCIATING;
2086 priv->connect_start = get_seconds();
2087
2088 schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2089 }
2090
2091 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2092 int length, int batch_mode)
2093 {
2094 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2095 struct host_command cmd = {
2096 .host_command = SSID,
2097 .host_command_sequence = 0,
2098 .host_command_length = ssid_len
2099 };
2100 int err;
2101 DECLARE_SSID_BUF(ssid);
2102
2103 IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2104
2105 if (ssid_len)
2106 memcpy(cmd.host_command_parameters, essid, ssid_len);
2107
2108 if (!batch_mode) {
2109 err = ipw2100_disable_adapter(priv);
2110 if (err)
2111 return err;
2112 }
2113
2114 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2115 * disable auto association -- so we cheat by setting a bogus SSID */
2116 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2117 int i;
2118 u8 *bogus = (u8 *) cmd.host_command_parameters;
2119 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2120 bogus[i] = 0x18 + i;
2121 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2122 }
2123
2124 /* NOTE: We always send the SSID command even if the provided ESSID is
2125 * the same as what we currently think is set. */
2126
2127 err = ipw2100_hw_send_command(priv, &cmd);
2128 if (!err) {
2129 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2130 memcpy(priv->essid, essid, ssid_len);
2131 priv->essid_len = ssid_len;
2132 }
2133
2134 if (!batch_mode) {
2135 if (ipw2100_enable_adapter(priv))
2136 err = -EIO;
2137 }
2138
2139 return err;
2140 }
2141
2142 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2143 {
2144 DECLARE_SSID_BUF(ssid);
2145
2146 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2147 "disassociated: '%s' %pM\n",
2148 print_ssid(ssid, priv->essid, priv->essid_len),
2149 priv->bssid);
2150
2151 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2152
2153 if (priv->status & STATUS_STOPPING) {
2154 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2155 return;
2156 }
2157
2158 memset(priv->bssid, 0, ETH_ALEN);
2159 memset(priv->ieee->bssid, 0, ETH_ALEN);
2160
2161 netif_carrier_off(priv->net_dev);
2162 netif_stop_queue(priv->net_dev);
2163
2164 if (!(priv->status & STATUS_RUNNING))
2165 return;
2166
2167 if (priv->status & STATUS_SECURITY_UPDATED)
2168 schedule_delayed_work(&priv->security_work, 0);
2169
2170 schedule_delayed_work(&priv->wx_event_work, 0);
2171 }
2172
2173 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2174 {
2175 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2176 priv->net_dev->name);
2177
2178 /* RF_KILL is now enabled (else we wouldn't be here) */
2179 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2180 priv->status |= STATUS_RF_KILL_HW;
2181
2182 /* Make sure the RF Kill check timer is running */
2183 priv->stop_rf_kill = 0;
2184 mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2185 }
2186
2187 static void send_scan_event(void *data)
2188 {
2189 struct ipw2100_priv *priv = data;
2190 union iwreq_data wrqu;
2191
2192 wrqu.data.length = 0;
2193 wrqu.data.flags = 0;
2194 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2195 }
2196
2197 static void ipw2100_scan_event_later(struct work_struct *work)
2198 {
2199 send_scan_event(container_of(work, struct ipw2100_priv,
2200 scan_event_later.work));
2201 }
2202
2203 static void ipw2100_scan_event_now(struct work_struct *work)
2204 {
2205 send_scan_event(container_of(work, struct ipw2100_priv,
2206 scan_event_now));
2207 }
2208
2209 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2210 {
2211 IPW_DEBUG_SCAN("scan complete\n");
2212 /* Age the scan results... */
2213 priv->ieee->scans++;
2214 priv->status &= ~STATUS_SCANNING;
2215
2216 /* Only userspace-requested scan completion events go out immediately */
2217 if (!priv->user_requested_scan) {
2218 if (!delayed_work_pending(&priv->scan_event_later))
2219 schedule_delayed_work(&priv->scan_event_later,
2220 round_jiffies_relative(msecs_to_jiffies(4000)));
2221 } else {
2222 priv->user_requested_scan = 0;
2223 cancel_delayed_work(&priv->scan_event_later);
2224 schedule_work(&priv->scan_event_now);
2225 }
2226 }
2227
2228 #ifdef CONFIG_IPW2100_DEBUG
2229 #define IPW2100_HANDLER(v, f) { v, f, # v }
2230 struct ipw2100_status_indicator {
2231 int status;
2232 void (*cb) (struct ipw2100_priv * priv, u32 status);
2233 char *name;
2234 };
2235 #else
2236 #define IPW2100_HANDLER(v, f) { v, f }
2237 struct ipw2100_status_indicator {
2238 int status;
2239 void (*cb) (struct ipw2100_priv * priv, u32 status);
2240 };
2241 #endif /* CONFIG_IPW2100_DEBUG */
2242
2243 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2244 {
2245 IPW_DEBUG_SCAN("Scanning...\n");
2246 priv->status |= STATUS_SCANNING;
2247 }
2248
2249 static const struct ipw2100_status_indicator status_handlers[] = {
2250 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2251 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2252 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2253 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2254 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2255 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2256 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2257 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2258 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2259 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2260 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2261 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2262 IPW2100_HANDLER(-1, NULL)
2263 };
2264
2265 static void isr_status_change(struct ipw2100_priv *priv, int status)
2266 {
2267 int i;
2268
2269 if (status == IPW_STATE_SCANNING &&
2270 priv->status & STATUS_ASSOCIATED &&
2271 !(priv->status & STATUS_SCANNING)) {
2272 IPW_DEBUG_INFO("Scan detected while associated, with "
2273 "no scan request. Restarting firmware.\n");
2274
2275 /* Wake up any sleeping jobs */
2276 schedule_reset(priv);
2277 }
2278
2279 for (i = 0; status_handlers[i].status != -1; i++) {
2280 if (status == status_handlers[i].status) {
2281 IPW_DEBUG_NOTIF("Status change: %s\n",
2282 status_handlers[i].name);
2283 if (status_handlers[i].cb)
2284 status_handlers[i].cb(priv, status);
2285 priv->wstats.status = status;
2286 return;
2287 }
2288 }
2289
2290 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2291 }
2292
2293 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2294 struct ipw2100_cmd_header *cmd)
2295 {
2296 #ifdef CONFIG_IPW2100_DEBUG
2297 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2298 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2299 command_types[cmd->host_command_reg],
2300 cmd->host_command_reg);
2301 }
2302 #endif
2303 if (cmd->host_command_reg == HOST_COMPLETE)
2304 priv->status |= STATUS_ENABLED;
2305
2306 if (cmd->host_command_reg == CARD_DISABLE)
2307 priv->status &= ~STATUS_ENABLED;
2308
2309 priv->status &= ~STATUS_CMD_ACTIVE;
2310
2311 wake_up_interruptible(&priv->wait_command_queue);
2312 }
2313
2314 #ifdef CONFIG_IPW2100_DEBUG
2315 static const char *frame_types[] = {
2316 "COMMAND_STATUS_VAL",
2317 "STATUS_CHANGE_VAL",
2318 "P80211_DATA_VAL",
2319 "P8023_DATA_VAL",
2320 "HOST_NOTIFICATION_VAL"
2321 };
2322 #endif
2323
2324 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2325 struct ipw2100_rx_packet *packet)
2326 {
2327 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2328 if (!packet->skb)
2329 return -ENOMEM;
2330
2331 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2332 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2333 sizeof(struct ipw2100_rx),
2334 PCI_DMA_FROMDEVICE);
2335 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2336 * dma_addr */
2337
2338 return 0;
2339 }
2340
2341 #define SEARCH_ERROR 0xffffffff
2342 #define SEARCH_FAIL 0xfffffffe
2343 #define SEARCH_SUCCESS 0xfffffff0
2344 #define SEARCH_DISCARD 0
2345 #define SEARCH_SNAPSHOT 1
2346
2347 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2348 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2349 {
2350 int i;
2351 if (!priv->snapshot[0])
2352 return;
2353 for (i = 0; i < 0x30; i++)
2354 kfree(priv->snapshot[i]);
2355 priv->snapshot[0] = NULL;
2356 }
2357
2358 #ifdef IPW2100_DEBUG_C3
2359 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2360 {
2361 int i;
2362 if (priv->snapshot[0])
2363 return 1;
2364 for (i = 0; i < 0x30; i++) {
2365 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2366 if (!priv->snapshot[i]) {
2367 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2368 "buffer %d\n", priv->net_dev->name, i);
2369 while (i > 0)
2370 kfree(priv->snapshot[--i]);
2371 priv->snapshot[0] = NULL;
2372 return 0;
2373 }
2374 }
2375
2376 return 1;
2377 }
2378
2379 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2380 size_t len, int mode)
2381 {
2382 u32 i, j;
2383 u32 tmp;
2384 u8 *s, *d;
2385 u32 ret;
2386
2387 s = in_buf;
2388 if (mode == SEARCH_SNAPSHOT) {
2389 if (!ipw2100_snapshot_alloc(priv))
2390 mode = SEARCH_DISCARD;
2391 }
2392
2393 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2394 read_nic_dword(priv->net_dev, i, &tmp);
2395 if (mode == SEARCH_SNAPSHOT)
2396 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2397 if (ret == SEARCH_FAIL) {
2398 d = (u8 *) & tmp;
2399 for (j = 0; j < 4; j++) {
2400 if (*s != *d) {
2401 s = in_buf;
2402 continue;
2403 }
2404
2405 s++;
2406 d++;
2407
2408 if ((s - in_buf) == len)
2409 ret = (i + j) - len + 1;
2410 }
2411 } else if (mode == SEARCH_DISCARD)
2412 return ret;
2413 }
2414
2415 return ret;
2416 }
2417 #endif
2418
2419 /*
2420 *
2421 * 0) Disconnect the SKB from the firmware (just unmap)
2422 * 1) Pack the ETH header into the SKB
2423 * 2) Pass the SKB to the network stack
2424 *
2425 * When packet is provided by the firmware, it contains the following:
2426 *
2427 * . libipw_hdr
2428 * . libipw_snap_hdr
2429 *
2430 * The size of the constructed ethernet
2431 *
2432 */
2433 #ifdef IPW2100_RX_DEBUG
2434 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2435 #endif
2436
2437 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2438 {
2439 #ifdef IPW2100_DEBUG_C3
2440 struct ipw2100_status *status = &priv->status_queue.drv[i];
2441 u32 match, reg;
2442 int j;
2443 #endif
2444
2445 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2446 i * sizeof(struct ipw2100_status));
2447
2448 #ifdef IPW2100_DEBUG_C3
2449 /* Halt the firmware so we can get a good image */
2450 write_register(priv->net_dev, IPW_REG_RESET_REG,
2451 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2452 j = 5;
2453 do {
2454 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2455 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2456
2457 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2458 break;
2459 } while (j--);
2460
2461 match = ipw2100_match_buf(priv, (u8 *) status,
2462 sizeof(struct ipw2100_status),
2463 SEARCH_SNAPSHOT);
2464 if (match < SEARCH_SUCCESS)
2465 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2466 "offset 0x%06X, length %d:\n",
2467 priv->net_dev->name, match,
2468 sizeof(struct ipw2100_status));
2469 else
2470 IPW_DEBUG_INFO("%s: No DMA status match in "
2471 "Firmware.\n", priv->net_dev->name);
2472
2473 printk_buf((u8 *) priv->status_queue.drv,
2474 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2475 #endif
2476
2477 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2478 priv->net_dev->stats.rx_errors++;
2479 schedule_reset(priv);
2480 }
2481
2482 static void isr_rx(struct ipw2100_priv *priv, int i,
2483 struct libipw_rx_stats *stats)
2484 {
2485 struct net_device *dev = priv->net_dev;
2486 struct ipw2100_status *status = &priv->status_queue.drv[i];
2487 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2488
2489 IPW_DEBUG_RX("Handler...\n");
2490
2491 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2492 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2493 " Dropping.\n",
2494 dev->name,
2495 status->frame_size, skb_tailroom(packet->skb));
2496 dev->stats.rx_errors++;
2497 return;
2498 }
2499
2500 if (unlikely(!netif_running(dev))) {
2501 dev->stats.rx_errors++;
2502 priv->wstats.discard.misc++;
2503 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2504 return;
2505 }
2506
2507 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2508 !(priv->status & STATUS_ASSOCIATED))) {
2509 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2510 priv->wstats.discard.misc++;
2511 return;
2512 }
2513
2514 pci_unmap_single(priv->pci_dev,
2515 packet->dma_addr,
2516 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2517
2518 skb_put(packet->skb, status->frame_size);
2519
2520 #ifdef IPW2100_RX_DEBUG
2521 /* Make a copy of the frame so we can dump it to the logs if
2522 * libipw_rx fails */
2523 skb_copy_from_linear_data(packet->skb, packet_data,
2524 min_t(u32, status->frame_size,
2525 IPW_RX_NIC_BUFFER_LENGTH));
2526 #endif
2527
2528 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2529 #ifdef IPW2100_RX_DEBUG
2530 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2531 dev->name);
2532 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2533 #endif
2534 dev->stats.rx_errors++;
2535
2536 /* libipw_rx failed, so it didn't free the SKB */
2537 dev_kfree_skb_any(packet->skb);
2538 packet->skb = NULL;
2539 }
2540
2541 /* We need to allocate a new SKB and attach it to the RDB. */
2542 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2543 printk(KERN_WARNING DRV_NAME ": "
2544 "%s: Unable to allocate SKB onto RBD ring - disabling "
2545 "adapter.\n", dev->name);
2546 /* TODO: schedule adapter shutdown */
2547 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2548 }
2549
2550 /* Update the RDB entry */
2551 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2552 }
2553
2554 #ifdef CONFIG_IPW2100_MONITOR
2555
2556 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2557 struct libipw_rx_stats *stats)
2558 {
2559 struct net_device *dev = priv->net_dev;
2560 struct ipw2100_status *status = &priv->status_queue.drv[i];
2561 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2562
2563 /* Magic struct that slots into the radiotap header -- no reason
2564 * to build this manually element by element, we can write it much
2565 * more efficiently than we can parse it. ORDER MATTERS HERE */
2566 struct ipw_rt_hdr {
2567 struct ieee80211_radiotap_header rt_hdr;
2568 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2569 } *ipw_rt;
2570
2571 IPW_DEBUG_RX("Handler...\n");
2572
2573 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2574 sizeof(struct ipw_rt_hdr))) {
2575 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2576 " Dropping.\n",
2577 dev->name,
2578 status->frame_size,
2579 skb_tailroom(packet->skb));
2580 dev->stats.rx_errors++;
2581 return;
2582 }
2583
2584 if (unlikely(!netif_running(dev))) {
2585 dev->stats.rx_errors++;
2586 priv->wstats.discard.misc++;
2587 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2588 return;
2589 }
2590
2591 if (unlikely(priv->config & CFG_CRC_CHECK &&
2592 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2593 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2594 dev->stats.rx_errors++;
2595 return;
2596 }
2597
2598 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2599 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2600 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2601 packet->skb->data, status->frame_size);
2602
2603 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2604
2605 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2606 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2607 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2608
2609 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2610
2611 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2612
2613 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2614
2615 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2616 dev->stats.rx_errors++;
2617
2618 /* libipw_rx failed, so it didn't free the SKB */
2619 dev_kfree_skb_any(packet->skb);
2620 packet->skb = NULL;
2621 }
2622
2623 /* We need to allocate a new SKB and attach it to the RDB. */
2624 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2625 IPW_DEBUG_WARNING(
2626 "%s: Unable to allocate SKB onto RBD ring - disabling "
2627 "adapter.\n", dev->name);
2628 /* TODO: schedule adapter shutdown */
2629 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2630 }
2631
2632 /* Update the RDB entry */
2633 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2634 }
2635
2636 #endif
2637
2638 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2639 {
2640 struct ipw2100_status *status = &priv->status_queue.drv[i];
2641 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2642 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2643
2644 switch (frame_type) {
2645 case COMMAND_STATUS_VAL:
2646 return (status->frame_size != sizeof(u->rx_data.command));
2647 case STATUS_CHANGE_VAL:
2648 return (status->frame_size != sizeof(u->rx_data.status));
2649 case HOST_NOTIFICATION_VAL:
2650 return (status->frame_size < sizeof(u->rx_data.notification));
2651 case P80211_DATA_VAL:
2652 case P8023_DATA_VAL:
2653 #ifdef CONFIG_IPW2100_MONITOR
2654 return 0;
2655 #else
2656 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2657 case IEEE80211_FTYPE_MGMT:
2658 case IEEE80211_FTYPE_CTL:
2659 return 0;
2660 case IEEE80211_FTYPE_DATA:
2661 return (status->frame_size >
2662 IPW_MAX_802_11_PAYLOAD_LENGTH);
2663 }
2664 #endif
2665 }
2666
2667 return 1;
2668 }
2669
2670 /*
2671 * ipw2100 interrupts are disabled at this point, and the ISR
2672 * is the only code that calls this method. So, we do not need
2673 * to play with any locks.
2674 *
2675 * RX Queue works as follows:
2676 *
2677 * Read index - firmware places packet in entry identified by the
2678 * Read index and advances Read index. In this manner,
2679 * Read index will always point to the next packet to
2680 * be filled--but not yet valid.
2681 *
2682 * Write index - driver fills this entry with an unused RBD entry.
2683 * This entry has not filled by the firmware yet.
2684 *
2685 * In between the W and R indexes are the RBDs that have been received
2686 * but not yet processed.
2687 *
2688 * The process of handling packets will start at WRITE + 1 and advance
2689 * until it reaches the READ index.
2690 *
2691 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2692 *
2693 */
2694 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2695 {
2696 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2697 struct ipw2100_status_queue *sq = &priv->status_queue;
2698 struct ipw2100_rx_packet *packet;
2699 u16 frame_type;
2700 u32 r, w, i, s;
2701 struct ipw2100_rx *u;
2702 struct libipw_rx_stats stats = {
2703 .mac_time = jiffies,
2704 };
2705
2706 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2707 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2708
2709 if (r >= rxq->entries) {
2710 IPW_DEBUG_RX("exit - bad read index\n");
2711 return;
2712 }
2713
2714 i = (rxq->next + 1) % rxq->entries;
2715 s = i;
2716 while (i != r) {
2717 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2718 r, rxq->next, i); */
2719
2720 packet = &priv->rx_buffers[i];
2721
2722 /* Sync the DMA for the RX buffer so CPU is sure to get
2723 * the correct values */
2724 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2725 sizeof(struct ipw2100_rx),
2726 PCI_DMA_FROMDEVICE);
2727
2728 if (unlikely(ipw2100_corruption_check(priv, i))) {
2729 ipw2100_corruption_detected(priv, i);
2730 goto increment;
2731 }
2732
2733 u = packet->rxp;
2734 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2735 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2736 stats.len = sq->drv[i].frame_size;
2737
2738 stats.mask = 0;
2739 if (stats.rssi != 0)
2740 stats.mask |= LIBIPW_STATMASK_RSSI;
2741 stats.freq = LIBIPW_24GHZ_BAND;
2742
2743 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2744 priv->net_dev->name, frame_types[frame_type],
2745 stats.len);
2746
2747 switch (frame_type) {
2748 case COMMAND_STATUS_VAL:
2749 /* Reset Rx watchdog */
2750 isr_rx_complete_command(priv, &u->rx_data.command);
2751 break;
2752
2753 case STATUS_CHANGE_VAL:
2754 isr_status_change(priv, u->rx_data.status);
2755 break;
2756
2757 case P80211_DATA_VAL:
2758 case P8023_DATA_VAL:
2759 #ifdef CONFIG_IPW2100_MONITOR
2760 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2761 isr_rx_monitor(priv, i, &stats);
2762 break;
2763 }
2764 #endif
2765 if (stats.len < sizeof(struct libipw_hdr_3addr))
2766 break;
2767 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2768 case IEEE80211_FTYPE_MGMT:
2769 libipw_rx_mgt(priv->ieee,
2770 &u->rx_data.header, &stats);
2771 break;
2772
2773 case IEEE80211_FTYPE_CTL:
2774 break;
2775
2776 case IEEE80211_FTYPE_DATA:
2777 isr_rx(priv, i, &stats);
2778 break;
2779
2780 }
2781 break;
2782 }
2783
2784 increment:
2785 /* clear status field associated with this RBD */
2786 rxq->drv[i].status.info.field = 0;
2787
2788 i = (i + 1) % rxq->entries;
2789 }
2790
2791 if (i != s) {
2792 /* backtrack one entry, wrapping to end if at 0 */
2793 rxq->next = (i ? i : rxq->entries) - 1;
2794
2795 write_register(priv->net_dev,
2796 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2797 }
2798 }
2799
2800 /*
2801 * __ipw2100_tx_process
2802 *
2803 * This routine will determine whether the next packet on
2804 * the fw_pend_list has been processed by the firmware yet.
2805 *
2806 * If not, then it does nothing and returns.
2807 *
2808 * If so, then it removes the item from the fw_pend_list, frees
2809 * any associated storage, and places the item back on the
2810 * free list of its source (either msg_free_list or tx_free_list)
2811 *
2812 * TX Queue works as follows:
2813 *
2814 * Read index - points to the next TBD that the firmware will
2815 * process. The firmware will read the data, and once
2816 * done processing, it will advance the Read index.
2817 *
2818 * Write index - driver fills this entry with an constructed TBD
2819 * entry. The Write index is not advanced until the
2820 * packet has been configured.
2821 *
2822 * In between the W and R indexes are the TBDs that have NOT been
2823 * processed. Lagging behind the R index are packets that have
2824 * been processed but have not been freed by the driver.
2825 *
2826 * In order to free old storage, an internal index will be maintained
2827 * that points to the next packet to be freed. When all used
2828 * packets have been freed, the oldest index will be the same as the
2829 * firmware's read index.
2830 *
2831 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2832 *
2833 * Because the TBD structure can not contain arbitrary data, the
2834 * driver must keep an internal queue of cached allocations such that
2835 * it can put that data back into the tx_free_list and msg_free_list
2836 * for use by future command and data packets.
2837 *
2838 */
2839 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2840 {
2841 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2842 struct ipw2100_bd *tbd;
2843 struct list_head *element;
2844 struct ipw2100_tx_packet *packet;
2845 int descriptors_used;
2846 int e, i;
2847 u32 r, w, frag_num = 0;
2848
2849 if (list_empty(&priv->fw_pend_list))
2850 return 0;
2851
2852 element = priv->fw_pend_list.next;
2853
2854 packet = list_entry(element, struct ipw2100_tx_packet, list);
2855 tbd = &txq->drv[packet->index];
2856
2857 /* Determine how many TBD entries must be finished... */
2858 switch (packet->type) {
2859 case COMMAND:
2860 /* COMMAND uses only one slot; don't advance */
2861 descriptors_used = 1;
2862 e = txq->oldest;
2863 break;
2864
2865 case DATA:
2866 /* DATA uses two slots; advance and loop position. */
2867 descriptors_used = tbd->num_fragments;
2868 frag_num = tbd->num_fragments - 1;
2869 e = txq->oldest + frag_num;
2870 e %= txq->entries;
2871 break;
2872
2873 default:
2874 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2875 priv->net_dev->name);
2876 return 0;
2877 }
2878
2879 /* if the last TBD is not done by NIC yet, then packet is
2880 * not ready to be released.
2881 *
2882 */
2883 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2884 &r);
2885 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2886 &w);
2887 if (w != txq->next)
2888 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2889 priv->net_dev->name);
2890
2891 /*
2892 * txq->next is the index of the last packet written txq->oldest is
2893 * the index of the r is the index of the next packet to be read by
2894 * firmware
2895 */
2896
2897 /*
2898 * Quick graphic to help you visualize the following
2899 * if / else statement
2900 *
2901 * ===>| s---->|===============
2902 * e>|
2903 * | a | b | c | d | e | f | g | h | i | j | k | l
2904 * r---->|
2905 * w
2906 *
2907 * w - updated by driver
2908 * r - updated by firmware
2909 * s - start of oldest BD entry (txq->oldest)
2910 * e - end of oldest BD entry
2911 *
2912 */
2913 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2914 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2915 return 0;
2916 }
2917
2918 list_del(element);
2919 DEC_STAT(&priv->fw_pend_stat);
2920
2921 #ifdef CONFIG_IPW2100_DEBUG
2922 {
2923 i = txq->oldest;
2924 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2925 &txq->drv[i],
2926 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2927 txq->drv[i].host_addr, txq->drv[i].buf_length);
2928
2929 if (packet->type == DATA) {
2930 i = (i + 1) % txq->entries;
2931
2932 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2933 &txq->drv[i],
2934 (u32) (txq->nic + i *
2935 sizeof(struct ipw2100_bd)),
2936 (u32) txq->drv[i].host_addr,
2937 txq->drv[i].buf_length);
2938 }
2939 }
2940 #endif
2941
2942 switch (packet->type) {
2943 case DATA:
2944 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2945 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2946 "Expecting DATA TBD but pulled "
2947 "something else: ids %d=%d.\n",
2948 priv->net_dev->name, txq->oldest, packet->index);
2949
2950 /* DATA packet; we have to unmap and free the SKB */
2951 for (i = 0; i < frag_num; i++) {
2952 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2953
2954 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2955 (packet->index + 1 + i) % txq->entries,
2956 tbd->host_addr, tbd->buf_length);
2957
2958 pci_unmap_single(priv->pci_dev,
2959 tbd->host_addr,
2960 tbd->buf_length, PCI_DMA_TODEVICE);
2961 }
2962
2963 libipw_txb_free(packet->info.d_struct.txb);
2964 packet->info.d_struct.txb = NULL;
2965
2966 list_add_tail(element, &priv->tx_free_list);
2967 INC_STAT(&priv->tx_free_stat);
2968
2969 /* We have a free slot in the Tx queue, so wake up the
2970 * transmit layer if it is stopped. */
2971 if (priv->status & STATUS_ASSOCIATED)
2972 netif_wake_queue(priv->net_dev);
2973
2974 /* A packet was processed by the hardware, so update the
2975 * watchdog */
2976 priv->net_dev->trans_start = jiffies;
2977
2978 break;
2979
2980 case COMMAND:
2981 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2982 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2983 "Expecting COMMAND TBD but pulled "
2984 "something else: ids %d=%d.\n",
2985 priv->net_dev->name, txq->oldest, packet->index);
2986
2987 #ifdef CONFIG_IPW2100_DEBUG
2988 if (packet->info.c_struct.cmd->host_command_reg <
2989 ARRAY_SIZE(command_types))
2990 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2991 command_types[packet->info.c_struct.cmd->
2992 host_command_reg],
2993 packet->info.c_struct.cmd->
2994 host_command_reg,
2995 packet->info.c_struct.cmd->cmd_status_reg);
2996 #endif
2997
2998 list_add_tail(element, &priv->msg_free_list);
2999 INC_STAT(&priv->msg_free_stat);
3000 break;
3001 }
3002
3003 /* advance oldest used TBD pointer to start of next entry */
3004 txq->oldest = (e + 1) % txq->entries;
3005 /* increase available TBDs number */
3006 txq->available += descriptors_used;
3007 SET_STAT(&priv->txq_stat, txq->available);
3008
3009 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
3010 jiffies - packet->jiffy_start);
3011
3012 return (!list_empty(&priv->fw_pend_list));
3013 }
3014
3015 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3016 {
3017 int i = 0;
3018
3019 while (__ipw2100_tx_process(priv) && i < 200)
3020 i++;
3021
3022 if (i == 200) {
3023 printk(KERN_WARNING DRV_NAME ": "
3024 "%s: Driver is running slow (%d iters).\n",
3025 priv->net_dev->name, i);
3026 }
3027 }
3028
3029 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3030 {
3031 struct list_head *element;
3032 struct ipw2100_tx_packet *packet;
3033 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3034 struct ipw2100_bd *tbd;
3035 int next = txq->next;
3036
3037 while (!list_empty(&priv->msg_pend_list)) {
3038 /* if there isn't enough space in TBD queue, then
3039 * don't stuff a new one in.
3040 * NOTE: 3 are needed as a command will take one,
3041 * and there is a minimum of 2 that must be
3042 * maintained between the r and w indexes
3043 */
3044 if (txq->available <= 3) {
3045 IPW_DEBUG_TX("no room in tx_queue\n");
3046 break;
3047 }
3048
3049 element = priv->msg_pend_list.next;
3050 list_del(element);
3051 DEC_STAT(&priv->msg_pend_stat);
3052
3053 packet = list_entry(element, struct ipw2100_tx_packet, list);
3054
3055 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3056 &txq->drv[txq->next],
3057 (u32) (txq->nic + txq->next *
3058 sizeof(struct ipw2100_bd)));
3059
3060 packet->index = txq->next;
3061
3062 tbd = &txq->drv[txq->next];
3063
3064 /* initialize TBD */
3065 tbd->host_addr = packet->info.c_struct.cmd_phys;
3066 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3067 /* not marking number of fragments causes problems
3068 * with f/w debug version */
3069 tbd->num_fragments = 1;
3070 tbd->status.info.field =
3071 IPW_BD_STATUS_TX_FRAME_COMMAND |
3072 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3073
3074 /* update TBD queue counters */
3075 txq->next++;
3076 txq->next %= txq->entries;
3077 txq->available--;
3078 DEC_STAT(&priv->txq_stat);
3079
3080 list_add_tail(element, &priv->fw_pend_list);
3081 INC_STAT(&priv->fw_pend_stat);
3082 }
3083
3084 if (txq->next != next) {
3085 /* kick off the DMA by notifying firmware the
3086 * write index has moved; make sure TBD stores are sync'd */
3087 wmb();
3088 write_register(priv->net_dev,
3089 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3090 txq->next);
3091 }
3092 }
3093
3094 /*
3095 * ipw2100_tx_send_data
3096 *
3097 */
3098 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3099 {
3100 struct list_head *element;
3101 struct ipw2100_tx_packet *packet;
3102 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3103 struct ipw2100_bd *tbd;
3104 int next = txq->next;
3105 int i = 0;
3106 struct ipw2100_data_header *ipw_hdr;
3107 struct libipw_hdr_3addr *hdr;
3108
3109 while (!list_empty(&priv->tx_pend_list)) {
3110 /* if there isn't enough space in TBD queue, then
3111 * don't stuff a new one in.
3112 * NOTE: 4 are needed as a data will take two,
3113 * and there is a minimum of 2 that must be
3114 * maintained between the r and w indexes
3115 */
3116 element = priv->tx_pend_list.next;
3117 packet = list_entry(element, struct ipw2100_tx_packet, list);
3118
3119 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3120 IPW_MAX_BDS)) {
3121 /* TODO: Support merging buffers if more than
3122 * IPW_MAX_BDS are used */
3123 IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded. "
3124 "Increase fragmentation level.\n",
3125 priv->net_dev->name);
3126 }
3127
3128 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3129 IPW_DEBUG_TX("no room in tx_queue\n");
3130 break;
3131 }
3132
3133 list_del(element);
3134 DEC_STAT(&priv->tx_pend_stat);
3135
3136 tbd = &txq->drv[txq->next];
3137
3138 packet->index = txq->next;
3139
3140 ipw_hdr = packet->info.d_struct.data;
3141 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3142 fragments[0]->data;
3143
3144 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3145 /* To DS: Addr1 = BSSID, Addr2 = SA,
3146 Addr3 = DA */
3147 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3148 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3149 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3150 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3151 Addr3 = BSSID */
3152 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3153 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3154 }
3155
3156 ipw_hdr->host_command_reg = SEND;
3157 ipw_hdr->host_command_reg1 = 0;
3158
3159 /* For now we only support host based encryption */
3160 ipw_hdr->needs_encryption = 0;
3161 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3162 if (packet->info.d_struct.txb->nr_frags > 1)
3163 ipw_hdr->fragment_size =
3164 packet->info.d_struct.txb->frag_size -
3165 LIBIPW_3ADDR_LEN;
3166 else
3167 ipw_hdr->fragment_size = 0;
3168
3169 tbd->host_addr = packet->info.d_struct.data_phys;
3170 tbd->buf_length = sizeof(struct ipw2100_data_header);
3171 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3172 tbd->status.info.field =
3173 IPW_BD_STATUS_TX_FRAME_802_3 |
3174 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3175 txq->next++;
3176 txq->next %= txq->entries;
3177
3178 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3179 packet->index, tbd->host_addr, tbd->buf_length);
3180 #ifdef CONFIG_IPW2100_DEBUG
3181 if (packet->info.d_struct.txb->nr_frags > 1)
3182 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3183 packet->info.d_struct.txb->nr_frags);
3184 #endif
3185
3186 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3187 tbd = &txq->drv[txq->next];
3188 if (i == packet->info.d_struct.txb->nr_frags - 1)
3189 tbd->status.info.field =
3190 IPW_BD_STATUS_TX_FRAME_802_3 |
3191 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3192 else
3193 tbd->status.info.field =
3194 IPW_BD_STATUS_TX_FRAME_802_3 |
3195 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3196
3197 tbd->buf_length = packet->info.d_struct.txb->
3198 fragments[i]->len - LIBIPW_3ADDR_LEN;
3199
3200 tbd->host_addr = pci_map_single(priv->pci_dev,
3201 packet->info.d_struct.
3202 txb->fragments[i]->
3203 data +
3204 LIBIPW_3ADDR_LEN,
3205 tbd->buf_length,
3206 PCI_DMA_TODEVICE);
3207
3208 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3209 txq->next, tbd->host_addr,
3210 tbd->buf_length);
3211
3212 pci_dma_sync_single_for_device(priv->pci_dev,
3213 tbd->host_addr,
3214 tbd->buf_length,
3215 PCI_DMA_TODEVICE);
3216
3217 txq->next++;
3218 txq->next %= txq->entries;
3219 }
3220
3221 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3222 SET_STAT(&priv->txq_stat, txq->available);
3223
3224 list_add_tail(element, &priv->fw_pend_list);
3225 INC_STAT(&priv->fw_pend_stat);
3226 }
3227
3228 if (txq->next != next) {
3229 /* kick off the DMA by notifying firmware the
3230 * write index has moved; make sure TBD stores are sync'd */
3231 write_register(priv->net_dev,
3232 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3233 txq->next);
3234 }
3235 }
3236
3237 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3238 {
3239 struct net_device *dev = priv->net_dev;
3240 unsigned long flags;
3241 u32 inta, tmp;
3242
3243 spin_lock_irqsave(&priv->low_lock, flags);
3244 ipw2100_disable_interrupts(priv);
3245
3246 read_register(dev, IPW_REG_INTA, &inta);
3247
3248 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3249 (unsigned long)inta & IPW_INTERRUPT_MASK);
3250
3251 priv->in_isr++;
3252 priv->interrupts++;
3253
3254 /* We do not loop and keep polling for more interrupts as this
3255 * is frowned upon and doesn't play nicely with other potentially
3256 * chained IRQs */
3257 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3258 (unsigned long)inta & IPW_INTERRUPT_MASK);
3259
3260 if (inta & IPW2100_INTA_FATAL_ERROR) {
3261 printk(KERN_WARNING DRV_NAME
3262 ": Fatal interrupt. Scheduling firmware restart.\n");
3263 priv->inta_other++;
3264 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3265
3266 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3267 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3268 priv->net_dev->name, priv->fatal_error);
3269
3270 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3271 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3272 priv->net_dev->name, tmp);
3273
3274 /* Wake up any sleeping jobs */
3275 schedule_reset(priv);
3276 }
3277
3278 if (inta & IPW2100_INTA_PARITY_ERROR) {
3279 printk(KERN_ERR DRV_NAME
3280 ": ***** PARITY ERROR INTERRUPT !!!!\n");
3281 priv->inta_other++;
3282 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3283 }
3284
3285 if (inta & IPW2100_INTA_RX_TRANSFER) {
3286 IPW_DEBUG_ISR("RX interrupt\n");
3287
3288 priv->rx_interrupts++;
3289
3290 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3291
3292 __ipw2100_rx_process(priv);
3293 __ipw2100_tx_complete(priv);
3294 }
3295
3296 if (inta & IPW2100_INTA_TX_TRANSFER) {
3297 IPW_DEBUG_ISR("TX interrupt\n");
3298
3299 priv->tx_interrupts++;
3300
3301 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3302
3303 __ipw2100_tx_complete(priv);
3304 ipw2100_tx_send_commands(priv);
3305 ipw2100_tx_send_data(priv);
3306 }
3307
3308 if (inta & IPW2100_INTA_TX_COMPLETE) {
3309 IPW_DEBUG_ISR("TX complete\n");
3310 priv->inta_other++;
3311 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3312
3313 __ipw2100_tx_complete(priv);
3314 }
3315
3316 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3317 /* ipw2100_handle_event(dev); */
3318 priv->inta_other++;
3319 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3320 }
3321
3322 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3323 IPW_DEBUG_ISR("FW init done interrupt\n");
3324 priv->inta_other++;
3325
3326 read_register(dev, IPW_REG_INTA, &tmp);
3327 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3328 IPW2100_INTA_PARITY_ERROR)) {
3329 write_register(dev, IPW_REG_INTA,
3330 IPW2100_INTA_FATAL_ERROR |
3331 IPW2100_INTA_PARITY_ERROR);
3332 }
3333
3334 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3335 }
3336
3337 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3338 IPW_DEBUG_ISR("Status change interrupt\n");
3339 priv->inta_other++;
3340 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3341 }
3342
3343 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3344 IPW_DEBUG_ISR("slave host mode interrupt\n");
3345 priv->inta_other++;
3346 write_register(dev, IPW_REG_INTA,
3347 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3348 }
3349
3350 priv->in_isr--;
3351 ipw2100_enable_interrupts(priv);
3352
3353 spin_unlock_irqrestore(&priv->low_lock, flags);
3354
3355 IPW_DEBUG_ISR("exit\n");
3356 }
3357
3358 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3359 {
3360 struct ipw2100_priv *priv = data;
3361 u32 inta, inta_mask;
3362
3363 if (!data)
3364 return IRQ_NONE;
3365
3366 spin_lock(&priv->low_lock);
3367
3368 /* We check to see if we should be ignoring interrupts before
3369 * we touch the hardware. During ucode load if we try and handle
3370 * an interrupt we can cause keyboard problems as well as cause
3371 * the ucode to fail to initialize */
3372 if (!(priv->status & STATUS_INT_ENABLED)) {
3373 /* Shared IRQ */
3374 goto none;
3375 }
3376
3377 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3378 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3379
3380 if (inta == 0xFFFFFFFF) {
3381 /* Hardware disappeared */
3382 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3383 goto none;
3384 }
3385
3386 inta &= IPW_INTERRUPT_MASK;
3387
3388 if (!(inta & inta_mask)) {
3389 /* Shared interrupt */
3390 goto none;
3391 }
3392
3393 /* We disable the hardware interrupt here just to prevent unneeded
3394 * calls to be made. We disable this again within the actual
3395 * work tasklet, so if another part of the code re-enables the
3396 * interrupt, that is fine */
3397 ipw2100_disable_interrupts(priv);
3398
3399 tasklet_schedule(&priv->irq_tasklet);
3400 spin_unlock(&priv->low_lock);
3401
3402 return IRQ_HANDLED;
3403 none:
3404 spin_unlock(&priv->low_lock);
3405 return IRQ_NONE;
3406 }
3407
3408 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3409 struct net_device *dev, int pri)
3410 {
3411 struct ipw2100_priv *priv = libipw_priv(dev);
3412 struct list_head *element;
3413 struct ipw2100_tx_packet *packet;
3414 unsigned long flags;
3415
3416 spin_lock_irqsave(&priv->low_lock, flags);
3417
3418 if (!(priv->status & STATUS_ASSOCIATED)) {
3419 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3420 priv->net_dev->stats.tx_carrier_errors++;
3421 netif_stop_queue(dev);
3422 goto fail_unlock;
3423 }
3424
3425 if (list_empty(&priv->tx_free_list))
3426 goto fail_unlock;
3427
3428 element = priv->tx_free_list.next;
3429 packet = list_entry(element, struct ipw2100_tx_packet, list);
3430
3431 packet->info.d_struct.txb = txb;
3432
3433 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3434 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3435
3436 packet->jiffy_start = jiffies;
3437
3438 list_del(element);
3439 DEC_STAT(&priv->tx_free_stat);
3440
3441 list_add_tail(element, &priv->tx_pend_list);
3442 INC_STAT(&priv->tx_pend_stat);
3443
3444 ipw2100_tx_send_data(priv);
3445
3446 spin_unlock_irqrestore(&priv->low_lock, flags);
3447 return NETDEV_TX_OK;
3448
3449 fail_unlock:
3450 netif_stop_queue(dev);
3451 spin_unlock_irqrestore(&priv->low_lock, flags);
3452 return NETDEV_TX_BUSY;
3453 }
3454
3455 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3456 {
3457 int i, j, err = -EINVAL;
3458 void *v;
3459 dma_addr_t p;
3460
3461 priv->msg_buffers =
3462 kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3463 GFP_KERNEL);
3464 if (!priv->msg_buffers)
3465 return -ENOMEM;
3466
3467 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3468 v = pci_alloc_consistent(priv->pci_dev,
3469 sizeof(struct ipw2100_cmd_header), &p);
3470 if (!v) {
3471 printk(KERN_ERR DRV_NAME ": "
3472 "%s: PCI alloc failed for msg "
3473 "buffers.\n", priv->net_dev->name);
3474 err = -ENOMEM;
3475 break;
3476 }
3477
3478 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3479
3480 priv->msg_buffers[i].type = COMMAND;
3481 priv->msg_buffers[i].info.c_struct.cmd =
3482 (struct ipw2100_cmd_header *)v;
3483 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3484 }
3485
3486 if (i == IPW_COMMAND_POOL_SIZE)
3487 return 0;
3488
3489 for (j = 0; j < i; j++) {
3490 pci_free_consistent(priv->pci_dev,
3491 sizeof(struct ipw2100_cmd_header),
3492 priv->msg_buffers[j].info.c_struct.cmd,
3493 priv->msg_buffers[j].info.c_struct.
3494 cmd_phys);
3495 }
3496
3497 kfree(priv->msg_buffers);
3498 priv->msg_buffers = NULL;
3499
3500 return err;
3501 }
3502
3503 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3504 {
3505 int i;
3506
3507 INIT_LIST_HEAD(&priv->msg_free_list);
3508 INIT_LIST_HEAD(&priv->msg_pend_list);
3509
3510 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3511 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3512 SET_STAT(&priv->msg_free_stat, i);
3513
3514 return 0;
3515 }
3516
3517 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3518 {
3519 int i;
3520
3521 if (!priv->msg_buffers)
3522 return;
3523
3524 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3525 pci_free_consistent(priv->pci_dev,
3526 sizeof(struct ipw2100_cmd_header),
3527 priv->msg_buffers[i].info.c_struct.cmd,
3528 priv->msg_buffers[i].info.c_struct.
3529 cmd_phys);
3530 }
3531
3532 kfree(priv->msg_buffers);
3533 priv->msg_buffers = NULL;
3534 }
3535
3536 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3537 char *buf)
3538 {
3539 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3540 char *out = buf;
3541 int i, j;
3542 u32 val;
3543
3544 for (i = 0; i < 16; i++) {
3545 out += sprintf(out, "[%08X] ", i * 16);
3546 for (j = 0; j < 16; j += 4) {
3547 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3548 out += sprintf(out, "%08X ", val);
3549 }
3550 out += sprintf(out, "\n");
3551 }
3552
3553 return out - buf;
3554 }
3555
3556 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3557
3558 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3559 char *buf)
3560 {
3561 struct ipw2100_priv *p = dev_get_drvdata(d);
3562 return sprintf(buf, "0x%08x\n", (int)p->config);
3563 }
3564
3565 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3566
3567 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3568 char *buf)
3569 {
3570 struct ipw2100_priv *p = dev_get_drvdata(d);
3571 return sprintf(buf, "0x%08x\n", (int)p->status);
3572 }
3573
3574 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3575
3576 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3577 char *buf)
3578 {
3579 struct ipw2100_priv *p = dev_get_drvdata(d);
3580 return sprintf(buf, "0x%08x\n", (int)p->capability);
3581 }
3582
3583 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3584
3585 #define IPW2100_REG(x) { IPW_ ##x, #x }
3586 static const struct {
3587 u32 addr;
3588 const char *name;
3589 } hw_data[] = {
3590 IPW2100_REG(REG_GP_CNTRL),
3591 IPW2100_REG(REG_GPIO),
3592 IPW2100_REG(REG_INTA),
3593 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3594 #define IPW2100_NIC(x, s) { x, #x, s }
3595 static const struct {
3596 u32 addr;
3597 const char *name;
3598 size_t size;
3599 } nic_data[] = {
3600 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3601 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3602 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3603 static const struct {
3604 u8 index;
3605 const char *name;
3606 const char *desc;
3607 } ord_data[] = {
3608 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3609 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3610 "successful Host Tx's (MSDU)"),
3611 IPW2100_ORD(STAT_TX_DIR_DATA,
3612 "successful Directed Tx's (MSDU)"),
3613 IPW2100_ORD(STAT_TX_DIR_DATA1,
3614 "successful Directed Tx's (MSDU) @ 1MB"),
3615 IPW2100_ORD(STAT_TX_DIR_DATA2,
3616 "successful Directed Tx's (MSDU) @ 2MB"),
3617 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3618 "successful Directed Tx's (MSDU) @ 5_5MB"),
3619 IPW2100_ORD(STAT_TX_DIR_DATA11,
3620 "successful Directed Tx's (MSDU) @ 11MB"),
3621 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3622 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3623 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3624 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3625 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3626 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3627 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3628 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3629 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3630 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3631 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3632 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3633 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3634 IPW2100_ORD(STAT_TX_ASSN_RESP,
3635 "successful Association response Tx's"),
3636 IPW2100_ORD(STAT_TX_REASSN,
3637 "successful Reassociation Tx's"),
3638 IPW2100_ORD(STAT_TX_REASSN_RESP,
3639 "successful Reassociation response Tx's"),
3640 IPW2100_ORD(STAT_TX_PROBE,
3641 "probes successfully transmitted"),
3642 IPW2100_ORD(STAT_TX_PROBE_RESP,
3643 "probe responses successfully transmitted"),
3644 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3645 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3646 IPW2100_ORD(STAT_TX_DISASSN,
3647 "successful Disassociation TX"),
3648 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3649 IPW2100_ORD(STAT_TX_DEAUTH,
3650 "successful Deauthentication TX"),
3651 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3652 "Total successful Tx data bytes"),
3653 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3654 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3655 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3656 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3657 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3658 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3659 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3660 "times max tries in a hop failed"),
3661 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3662 "times disassociation failed"),
3663 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3664 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3665 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3666 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3667 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3668 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3669 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3670 "directed packets at 5.5MB"),
3671 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3672 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3673 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3674 "nondirected packets at 1MB"),
3675 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3676 "nondirected packets at 2MB"),
3677 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3678 "nondirected packets at 5.5MB"),
3679 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3680 "nondirected packets at 11MB"),
3681 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3682 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3683 "Rx CTS"),
3684 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3685 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3686 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3687 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3688 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3689 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3690 IPW2100_ORD(STAT_RX_REASSN_RESP,
3691 "Reassociation response Rx's"),
3692 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3693 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3694 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3695 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3696 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3697 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3698 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3699 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3700 "Total rx data bytes received"),
3701 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3702 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3703 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3704 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3705 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3706 IPW2100_ORD(STAT_RX_DUPLICATE1,
3707 "duplicate rx packets at 1MB"),
3708 IPW2100_ORD(STAT_RX_DUPLICATE2,
3709 "duplicate rx packets at 2MB"),
3710 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3711 "duplicate rx packets at 5.5MB"),
3712 IPW2100_ORD(STAT_RX_DUPLICATE11,
3713 "duplicate rx packets at 11MB"),
3714 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3715 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3716 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3717 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3718 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3719 "rx frames with invalid protocol"),
3720 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3721 IPW2100_ORD(STAT_RX_NO_BUFFER,
3722 "rx frames rejected due to no buffer"),
3723 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3724 "rx frames dropped due to missing fragment"),
3725 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3726 "rx frames dropped due to non-sequential fragment"),
3727 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3728 "rx frames dropped due to unmatched 1st frame"),
3729 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3730 "rx frames dropped due to uncompleted frame"),
3731 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3732 "ICV errors during decryption"),
3733 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3734 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3735 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3736 "poll response timeouts"),
3737 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3738 "timeouts waiting for last {broad,multi}cast pkt"),
3739 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3740 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3741 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3742 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3743 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3744 "current calculation of % missed beacons"),
3745 IPW2100_ORD(STAT_PERCENT_RETRIES,
3746 "current calculation of % missed tx retries"),
3747 IPW2100_ORD(ASSOCIATED_AP_PTR,
3748 "0 if not associated, else pointer to AP table entry"),
3749 IPW2100_ORD(AVAILABLE_AP_CNT,
3750 "AP's decsribed in the AP table"),
3751 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3752 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3753 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3754 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3755 "failures due to response fail"),
3756 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3757 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3758 IPW2100_ORD(STAT_ROAM_INHIBIT,
3759 "times roaming was inhibited due to activity"),
3760 IPW2100_ORD(RSSI_AT_ASSN,
3761 "RSSI of associated AP at time of association"),
3762 IPW2100_ORD(STAT_ASSN_CAUSE1,
3763 "reassociation: no probe response or TX on hop"),
3764 IPW2100_ORD(STAT_ASSN_CAUSE2,
3765 "reassociation: poor tx/rx quality"),
3766 IPW2100_ORD(STAT_ASSN_CAUSE3,
3767 "reassociation: tx/rx quality (excessive AP load"),
3768 IPW2100_ORD(STAT_ASSN_CAUSE4,
3769 "reassociation: AP RSSI level"),
3770 IPW2100_ORD(STAT_ASSN_CAUSE5,
3771 "reassociations due to load leveling"),
3772 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3773 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3774 "times authentication response failed"),
3775 IPW2100_ORD(STATION_TABLE_CNT,
3776 "entries in association table"),
3777 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3778 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3779 IPW2100_ORD(COUNTRY_CODE,
3780 "IEEE country code as recv'd from beacon"),
3781 IPW2100_ORD(COUNTRY_CHANNELS,
3782 "channels supported by country"),
3783 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3784 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3785 IPW2100_ORD(ANTENNA_DIVERSITY,
3786 "TRUE if antenna diversity is disabled"),
3787 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3788 IPW2100_ORD(OUR_FREQ,
3789 "current radio freq lower digits - channel ID"),
3790 IPW2100_ORD(RTC_TIME, "current RTC time"),
3791 IPW2100_ORD(PORT_TYPE, "operating mode"),
3792 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3793 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3794 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3795 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3796 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3797 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3798 IPW2100_ORD(CAPABILITIES,
3799 "Management frame capability field"),
3800 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3801 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3802 IPW2100_ORD(RTS_THRESHOLD,
3803 "Min packet length for RTS handshaking"),
3804 IPW2100_ORD(INT_MODE, "International mode"),
3805 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3806 "protocol frag threshold"),
3807 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3808 "EEPROM offset in SRAM"),
3809 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3810 "EEPROM size in SRAM"),
3811 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3812 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3813 "EEPROM IBSS 11b channel set"),
3814 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3815 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3816 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3817 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3818 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3819
3820 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3821 char *buf)
3822 {
3823 int i;
3824 struct ipw2100_priv *priv = dev_get_drvdata(d);
3825 struct net_device *dev = priv->net_dev;
3826 char *out = buf;
3827 u32 val = 0;
3828
3829 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3830
3831 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3832 read_register(dev, hw_data[i].addr, &val);
3833 out += sprintf(out, "%30s [%08X] : %08X\n",
3834 hw_data[i].name, hw_data[i].addr, val);
3835 }
3836
3837 return out - buf;
3838 }
3839
3840 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3841
3842 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3843 char *buf)
3844 {
3845 struct ipw2100_priv *priv = dev_get_drvdata(d);
3846 struct net_device *dev = priv->net_dev;
3847 char *out = buf;
3848 int i;
3849
3850 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3851
3852 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3853 u8 tmp8;
3854 u16 tmp16;
3855 u32 tmp32;
3856
3857 switch (nic_data[i].size) {
3858 case 1:
3859 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3860 out += sprintf(out, "%30s [%08X] : %02X\n",
3861 nic_data[i].name, nic_data[i].addr,
3862 tmp8);
3863 break;
3864 case 2:
3865 read_nic_word(dev, nic_data[i].addr, &tmp16);
3866 out += sprintf(out, "%30s [%08X] : %04X\n",
3867 nic_data[i].name, nic_data[i].addr,
3868 tmp16);
3869 break;
3870 case 4:
3871 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3872 out += sprintf(out, "%30s [%08X] : %08X\n",
3873 nic_data[i].name, nic_data[i].addr,
3874 tmp32);
3875 break;
3876 }
3877 }
3878 return out - buf;
3879 }
3880
3881 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3882
3883 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3884 char *buf)
3885 {
3886 struct ipw2100_priv *priv = dev_get_drvdata(d);
3887 struct net_device *dev = priv->net_dev;
3888 static unsigned long loop = 0;
3889 int len = 0;
3890 u32 buffer[4];
3891 int i;
3892 char line[81];
3893
3894 if (loop >= 0x30000)
3895 loop = 0;
3896
3897 /* sysfs provides us PAGE_SIZE buffer */
3898 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3899
3900 if (priv->snapshot[0])
3901 for (i = 0; i < 4; i++)
3902 buffer[i] =
3903 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3904 else
3905 for (i = 0; i < 4; i++)
3906 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3907
3908 if (priv->dump_raw)
3909 len += sprintf(buf + len,
3910 "%c%c%c%c"
3911 "%c%c%c%c"
3912 "%c%c%c%c"
3913 "%c%c%c%c",
3914 ((u8 *) buffer)[0x0],
3915 ((u8 *) buffer)[0x1],
3916 ((u8 *) buffer)[0x2],
3917 ((u8 *) buffer)[0x3],
3918 ((u8 *) buffer)[0x4],
3919 ((u8 *) buffer)[0x5],
3920 ((u8 *) buffer)[0x6],
3921 ((u8 *) buffer)[0x7],
3922 ((u8 *) buffer)[0x8],
3923 ((u8 *) buffer)[0x9],
3924 ((u8 *) buffer)[0xa],
3925 ((u8 *) buffer)[0xb],
3926 ((u8 *) buffer)[0xc],
3927 ((u8 *) buffer)[0xd],
3928 ((u8 *) buffer)[0xe],
3929 ((u8 *) buffer)[0xf]);
3930 else
3931 len += sprintf(buf + len, "%s\n",
3932 snprint_line(line, sizeof(line),
3933 (u8 *) buffer, 16, loop));
3934 loop += 16;
3935 }
3936
3937 return len;
3938 }
3939
3940 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3941 const char *buf, size_t count)
3942 {
3943 struct ipw2100_priv *priv = dev_get_drvdata(d);
3944 struct net_device *dev = priv->net_dev;
3945 const char *p = buf;
3946
3947 (void)dev; /* kill unused-var warning for debug-only code */
3948
3949 if (count < 1)
3950 return count;
3951
3952 if (p[0] == '1' ||
3953 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3954 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3955 dev->name);
3956 priv->dump_raw = 1;
3957
3958 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3959 tolower(p[1]) == 'f')) {
3960 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3961 dev->name);
3962 priv->dump_raw = 0;
3963
3964 } else if (tolower(p[0]) == 'r') {
3965 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3966 ipw2100_snapshot_free(priv);
3967
3968 } else
3969 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3970 "reset = clear memory snapshot\n", dev->name);
3971
3972 return count;
3973 }
3974
3975 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3976
3977 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3978 char *buf)
3979 {
3980 struct ipw2100_priv *priv = dev_get_drvdata(d);
3981 u32 val = 0;
3982 int len = 0;
3983 u32 val_len;
3984 static int loop = 0;
3985
3986 if (priv->status & STATUS_RF_KILL_MASK)
3987 return 0;
3988
3989 if (loop >= ARRAY_SIZE(ord_data))
3990 loop = 0;
3991
3992 /* sysfs provides us PAGE_SIZE buffer */
3993 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3994 val_len = sizeof(u32);
3995
3996 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3997 &val_len))
3998 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3999 ord_data[loop].index,
4000 ord_data[loop].desc);
4001 else
4002 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
4003 ord_data[loop].index, val,
4004 ord_data[loop].desc);
4005 loop++;
4006 }
4007
4008 return len;
4009 }
4010
4011 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
4012
4013 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
4014 char *buf)
4015 {
4016 struct ipw2100_priv *priv = dev_get_drvdata(d);
4017 char *out = buf;
4018
4019 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4020 priv->interrupts, priv->tx_interrupts,
4021 priv->rx_interrupts, priv->inta_other);
4022 out += sprintf(out, "firmware resets: %d\n", priv->resets);
4023 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4024 #ifdef CONFIG_IPW2100_DEBUG
4025 out += sprintf(out, "packet mismatch image: %s\n",
4026 priv->snapshot[0] ? "YES" : "NO");
4027 #endif
4028
4029 return out - buf;
4030 }
4031
4032 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4033
4034 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4035 {
4036 int err;
4037
4038 if (mode == priv->ieee->iw_mode)
4039 return 0;
4040
4041 err = ipw2100_disable_adapter(priv);
4042 if (err) {
4043 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4044 priv->net_dev->name, err);
4045 return err;
4046 }
4047
4048 switch (mode) {
4049 case IW_MODE_INFRA:
4050 priv->net_dev->type = ARPHRD_ETHER;
4051 break;
4052 case IW_MODE_ADHOC:
4053 priv->net_dev->type = ARPHRD_ETHER;
4054 break;
4055 #ifdef CONFIG_IPW2100_MONITOR
4056 case IW_MODE_MONITOR:
4057 priv->last_mode = priv->ieee->iw_mode;
4058 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4059 break;
4060 #endif /* CONFIG_IPW2100_MONITOR */
4061 }
4062
4063 priv->ieee->iw_mode = mode;
4064
4065 #ifdef CONFIG_PM
4066 /* Indicate ipw2100_download_firmware download firmware
4067 * from disk instead of memory. */
4068 ipw2100_firmware.version = 0;
4069 #endif
4070
4071 printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4072 priv->reset_backoff = 0;
4073 schedule_reset(priv);
4074
4075 return 0;
4076 }
4077
4078 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4079 char *buf)
4080 {
4081 struct ipw2100_priv *priv = dev_get_drvdata(d);
4082 int len = 0;
4083
4084 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4085
4086 if (priv->status & STATUS_ASSOCIATED)
4087 len += sprintf(buf + len, "connected: %lu\n",
4088 get_seconds() - priv->connect_start);
4089 else
4090 len += sprintf(buf + len, "not connected\n");
4091
4092 DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4093 DUMP_VAR(status, "08lx");
4094 DUMP_VAR(config, "08lx");
4095 DUMP_VAR(capability, "08lx");
4096
4097 len +=
4098 sprintf(buf + len, "last_rtc: %lu\n",
4099 (unsigned long)priv->last_rtc);
4100
4101 DUMP_VAR(fatal_error, "d");
4102 DUMP_VAR(stop_hang_check, "d");
4103 DUMP_VAR(stop_rf_kill, "d");
4104 DUMP_VAR(messages_sent, "d");
4105
4106 DUMP_VAR(tx_pend_stat.value, "d");
4107 DUMP_VAR(tx_pend_stat.hi, "d");
4108
4109 DUMP_VAR(tx_free_stat.value, "d");
4110 DUMP_VAR(tx_free_stat.lo, "d");
4111
4112 DUMP_VAR(msg_free_stat.value, "d");
4113 DUMP_VAR(msg_free_stat.lo, "d");
4114
4115 DUMP_VAR(msg_pend_stat.value, "d");
4116 DUMP_VAR(msg_pend_stat.hi, "d");
4117
4118 DUMP_VAR(fw_pend_stat.value, "d");
4119 DUMP_VAR(fw_pend_stat.hi, "d");
4120
4121 DUMP_VAR(txq_stat.value, "d");
4122 DUMP_VAR(txq_stat.lo, "d");
4123
4124 DUMP_VAR(ieee->scans, "d");
4125 DUMP_VAR(reset_backoff, "d");
4126
4127 return len;
4128 }
4129
4130 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4131
4132 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4133 char *buf)
4134 {
4135 struct ipw2100_priv *priv = dev_get_drvdata(d);
4136 char essid[IW_ESSID_MAX_SIZE + 1];
4137 u8 bssid[ETH_ALEN];
4138 u32 chan = 0;
4139 char *out = buf;
4140 unsigned int length;
4141 int ret;
4142
4143 if (priv->status & STATUS_RF_KILL_MASK)
4144 return 0;
4145
4146 memset(essid, 0, sizeof(essid));
4147 memset(bssid, 0, sizeof(bssid));
4148
4149 length = IW_ESSID_MAX_SIZE;
4150 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4151 if (ret)
4152 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4153 __LINE__);
4154
4155 length = sizeof(bssid);
4156 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4157 bssid, &length);
4158 if (ret)
4159 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4160 __LINE__);
4161
4162 length = sizeof(u32);
4163 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4164 if (ret)
4165 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4166 __LINE__);
4167
4168 out += sprintf(out, "ESSID: %s\n", essid);
4169 out += sprintf(out, "BSSID: %pM\n", bssid);
4170 out += sprintf(out, "Channel: %d\n", chan);
4171
4172 return out - buf;
4173 }
4174
4175 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4176
4177 #ifdef CONFIG_IPW2100_DEBUG
4178 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4179 {
4180 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4181 }
4182
4183 static ssize_t store_debug_level(struct device_driver *d,
4184 const char *buf, size_t count)
4185 {
4186 char *p = (char *)buf;
4187 u32 val;
4188
4189 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4190 p++;
4191 if (p[0] == 'x' || p[0] == 'X')
4192 p++;
4193 val = simple_strtoul(p, &p, 16);
4194 } else
4195 val = simple_strtoul(p, &p, 10);
4196 if (p == buf)
4197 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4198 else
4199 ipw2100_debug_level = val;
4200
4201 return strnlen(buf, count);
4202 }
4203
4204 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4205 store_debug_level);
4206 #endif /* CONFIG_IPW2100_DEBUG */
4207
4208 static ssize_t show_fatal_error(struct device *d,
4209 struct device_attribute *attr, char *buf)
4210 {
4211 struct ipw2100_priv *priv = dev_get_drvdata(d);
4212 char *out = buf;
4213 int i;
4214
4215 if (priv->fatal_error)
4216 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4217 else
4218 out += sprintf(out, "0\n");
4219
4220 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4221 if (!priv->fatal_errors[(priv->fatal_index - i) %
4222 IPW2100_ERROR_QUEUE])
4223 continue;
4224
4225 out += sprintf(out, "%d. 0x%08X\n", i,
4226 priv->fatal_errors[(priv->fatal_index - i) %
4227 IPW2100_ERROR_QUEUE]);
4228 }
4229
4230 return out - buf;
4231 }
4232
4233 static ssize_t store_fatal_error(struct device *d,
4234 struct device_attribute *attr, const char *buf,
4235 size_t count)
4236 {
4237 struct ipw2100_priv *priv = dev_get_drvdata(d);
4238 schedule_reset(priv);
4239 return count;
4240 }
4241
4242 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4243 store_fatal_error);
4244
4245 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4246 char *buf)
4247 {
4248 struct ipw2100_priv *priv = dev_get_drvdata(d);
4249 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4250 }
4251
4252 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4253 const char *buf, size_t count)
4254 {
4255 struct ipw2100_priv *priv = dev_get_drvdata(d);
4256 struct net_device *dev = priv->net_dev;
4257 char buffer[] = "00000000";
4258 unsigned long len =
4259 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4260 unsigned long val;
4261 char *p = buffer;
4262
4263 (void)dev; /* kill unused-var warning for debug-only code */
4264
4265 IPW_DEBUG_INFO("enter\n");
4266
4267 strncpy(buffer, buf, len);
4268 buffer[len] = 0;
4269
4270 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4271 p++;
4272 if (p[0] == 'x' || p[0] == 'X')
4273 p++;
4274 val = simple_strtoul(p, &p, 16);
4275 } else
4276 val = simple_strtoul(p, &p, 10);
4277 if (p == buffer) {
4278 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4279 } else {
4280 priv->ieee->scan_age = val;
4281 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4282 }
4283
4284 IPW_DEBUG_INFO("exit\n");
4285 return len;
4286 }
4287
4288 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4289
4290 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4291 char *buf)
4292 {
4293 /* 0 - RF kill not enabled
4294 1 - SW based RF kill active (sysfs)
4295 2 - HW based RF kill active
4296 3 - Both HW and SW baed RF kill active */
4297 struct ipw2100_priv *priv = dev_get_drvdata(d);
4298 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4299 (rf_kill_active(priv) ? 0x2 : 0x0);
4300 return sprintf(buf, "%i\n", val);
4301 }
4302
4303 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4304 {
4305 if ((disable_radio ? 1 : 0) ==
4306 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4307 return 0;
4308
4309 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4310 disable_radio ? "OFF" : "ON");
4311
4312 mutex_lock(&priv->action_mutex);
4313
4314 if (disable_radio) {
4315 priv->status |= STATUS_RF_KILL_SW;
4316 ipw2100_down(priv);
4317 } else {
4318 priv->status &= ~STATUS_RF_KILL_SW;
4319 if (rf_kill_active(priv)) {
4320 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4321 "disabled by HW switch\n");
4322 /* Make sure the RF_KILL check timer is running */
4323 priv->stop_rf_kill = 0;
4324 mod_delayed_work(system_wq, &priv->rf_kill,
4325 round_jiffies_relative(HZ));
4326 } else
4327 schedule_reset(priv);
4328 }
4329
4330 mutex_unlock(&priv->action_mutex);
4331 return 1;
4332 }
4333
4334 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4335 const char *buf, size_t count)
4336 {
4337 struct ipw2100_priv *priv = dev_get_drvdata(d);
4338 ipw_radio_kill_sw(priv, buf[0] == '1');
4339 return count;
4340 }
4341
4342 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4343
4344 static struct attribute *ipw2100_sysfs_entries[] = {
4345 &dev_attr_hardware.attr,
4346 &dev_attr_registers.attr,
4347 &dev_attr_ordinals.attr,
4348 &dev_attr_pci.attr,
4349 &dev_attr_stats.attr,
4350 &dev_attr_internals.attr,
4351 &dev_attr_bssinfo.attr,
4352 &dev_attr_memory.attr,
4353 &dev_attr_scan_age.attr,
4354 &dev_attr_fatal_error.attr,
4355 &dev_attr_rf_kill.attr,
4356 &dev_attr_cfg.attr,
4357 &dev_attr_status.attr,
4358 &dev_attr_capability.attr,
4359 NULL,
4360 };
4361
4362 static struct attribute_group ipw2100_attribute_group = {
4363 .attrs = ipw2100_sysfs_entries,
4364 };
4365
4366 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4367 {
4368 struct ipw2100_status_queue *q = &priv->status_queue;
4369
4370 IPW_DEBUG_INFO("enter\n");
4371
4372 q->size = entries * sizeof(struct ipw2100_status);
4373 q->drv =
4374 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4375 q->size, &q->nic);
4376 if (!q->drv) {
4377 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4378 return -ENOMEM;
4379 }
4380
4381 memset(q->drv, 0, q->size);
4382
4383 IPW_DEBUG_INFO("exit\n");
4384
4385 return 0;
4386 }
4387
4388 static void status_queue_free(struct ipw2100_priv *priv)
4389 {
4390 IPW_DEBUG_INFO("enter\n");
4391
4392 if (priv->status_queue.drv) {
4393 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4394 priv->status_queue.drv,
4395 priv->status_queue.nic);
4396 priv->status_queue.drv = NULL;
4397 }
4398
4399 IPW_DEBUG_INFO("exit\n");
4400 }
4401
4402 static int bd_queue_allocate(struct ipw2100_priv *priv,
4403 struct ipw2100_bd_queue *q, int entries)
4404 {
4405 IPW_DEBUG_INFO("enter\n");
4406
4407 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4408
4409 q->entries = entries;
4410 q->size = entries * sizeof(struct ipw2100_bd);
4411 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4412 if (!q->drv) {
4413 IPW_DEBUG_INFO
4414 ("can't allocate shared memory for buffer descriptors\n");
4415 return -ENOMEM;
4416 }
4417 memset(q->drv, 0, q->size);
4418
4419 IPW_DEBUG_INFO("exit\n");
4420
4421 return 0;
4422 }
4423
4424 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4425 {
4426 IPW_DEBUG_INFO("enter\n");
4427
4428 if (!q)
4429 return;
4430
4431 if (q->drv) {
4432 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4433 q->drv = NULL;
4434 }
4435
4436 IPW_DEBUG_INFO("exit\n");
4437 }
4438
4439 static void bd_queue_initialize(struct ipw2100_priv *priv,
4440 struct ipw2100_bd_queue *q, u32 base, u32 size,
4441 u32 r, u32 w)
4442 {
4443 IPW_DEBUG_INFO("enter\n");
4444
4445 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4446 (u32) q->nic);
4447
4448 write_register(priv->net_dev, base, q->nic);
4449 write_register(priv->net_dev, size, q->entries);
4450 write_register(priv->net_dev, r, q->oldest);
4451 write_register(priv->net_dev, w, q->next);
4452
4453 IPW_DEBUG_INFO("exit\n");
4454 }
4455
4456 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4457 {
4458 priv->stop_rf_kill = 1;
4459 priv->stop_hang_check = 1;
4460 cancel_delayed_work_sync(&priv->reset_work);
4461 cancel_delayed_work_sync(&priv->security_work);
4462 cancel_delayed_work_sync(&priv->wx_event_work);
4463 cancel_delayed_work_sync(&priv->hang_check);
4464 cancel_delayed_work_sync(&priv->rf_kill);
4465 cancel_work_sync(&priv->scan_event_now);
4466 cancel_delayed_work_sync(&priv->scan_event_later);
4467 }
4468
4469 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4470 {
4471 int i, j, err = -EINVAL;
4472 void *v;
4473 dma_addr_t p;
4474
4475 IPW_DEBUG_INFO("enter\n");
4476
4477 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4478 if (err) {
4479 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4480 priv->net_dev->name);
4481 return err;
4482 }
4483
4484 priv->tx_buffers =
4485 kmalloc(TX_PENDED_QUEUE_LENGTH * sizeof(struct ipw2100_tx_packet),
4486 GFP_ATOMIC);
4487 if (!priv->tx_buffers) {
4488 printk(KERN_ERR DRV_NAME
4489 ": %s: alloc failed form tx buffers.\n",
4490 priv->net_dev->name);
4491 bd_queue_free(priv, &priv->tx_queue);
4492 return -ENOMEM;
4493 }
4494
4495 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4496 v = pci_alloc_consistent(priv->pci_dev,
4497 sizeof(struct ipw2100_data_header),
4498 &p);
4499 if (!v) {
4500 printk(KERN_ERR DRV_NAME
4501 ": %s: PCI alloc failed for tx " "buffers.\n",
4502 priv->net_dev->name);
4503 err = -ENOMEM;
4504 break;
4505 }
4506
4507 priv->tx_buffers[i].type = DATA;
4508 priv->tx_buffers[i].info.d_struct.data =
4509 (struct ipw2100_data_header *)v;
4510 priv->tx_buffers[i].info.d_struct.data_phys = p;
4511 priv->tx_buffers[i].info.d_struct.txb = NULL;
4512 }
4513
4514 if (i == TX_PENDED_QUEUE_LENGTH)
4515 return 0;
4516
4517 for (j = 0; j < i; j++) {
4518 pci_free_consistent(priv->pci_dev,
4519 sizeof(struct ipw2100_data_header),
4520 priv->tx_buffers[j].info.d_struct.data,
4521 priv->tx_buffers[j].info.d_struct.
4522 data_phys);
4523 }
4524
4525 kfree(priv->tx_buffers);
4526 priv->tx_buffers = NULL;
4527
4528 return err;
4529 }
4530
4531 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4532 {
4533 int i;
4534
4535 IPW_DEBUG_INFO("enter\n");
4536
4537 /*
4538 * reinitialize packet info lists
4539 */
4540 INIT_LIST_HEAD(&priv->fw_pend_list);
4541 INIT_STAT(&priv->fw_pend_stat);
4542
4543 /*
4544 * reinitialize lists
4545 */
4546 INIT_LIST_HEAD(&priv->tx_pend_list);
4547 INIT_LIST_HEAD(&priv->tx_free_list);
4548 INIT_STAT(&priv->tx_pend_stat);
4549 INIT_STAT(&priv->tx_free_stat);
4550
4551 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4552 /* We simply drop any SKBs that have been queued for
4553 * transmit */
4554 if (priv->tx_buffers[i].info.d_struct.txb) {
4555 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4556 txb);
4557 priv->tx_buffers[i].info.d_struct.txb = NULL;
4558 }
4559
4560 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4561 }
4562
4563 SET_STAT(&priv->tx_free_stat, i);
4564
4565 priv->tx_queue.oldest = 0;
4566 priv->tx_queue.available = priv->tx_queue.entries;
4567 priv->tx_queue.next = 0;
4568 INIT_STAT(&priv->txq_stat);
4569 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4570
4571 bd_queue_initialize(priv, &priv->tx_queue,
4572 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4573 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4574 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4575 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4576
4577 IPW_DEBUG_INFO("exit\n");
4578
4579 }
4580
4581 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4582 {
4583 int i;
4584
4585 IPW_DEBUG_INFO("enter\n");
4586
4587 bd_queue_free(priv, &priv->tx_queue);
4588
4589 if (!priv->tx_buffers)
4590 return;
4591
4592 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4593 if (priv->tx_buffers[i].info.d_struct.txb) {
4594 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4595 txb);
4596 priv->tx_buffers[i].info.d_struct.txb = NULL;
4597 }
4598 if (priv->tx_buffers[i].info.d_struct.data)
4599 pci_free_consistent(priv->pci_dev,
4600 sizeof(struct ipw2100_data_header),
4601 priv->tx_buffers[i].info.d_struct.
4602 data,
4603 priv->tx_buffers[i].info.d_struct.
4604 data_phys);
4605 }
4606
4607 kfree(priv->tx_buffers);
4608 priv->tx_buffers = NULL;
4609
4610 IPW_DEBUG_INFO("exit\n");
4611 }
4612
4613 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4614 {
4615 int i, j, err = -EINVAL;
4616
4617 IPW_DEBUG_INFO("enter\n");
4618
4619 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4620 if (err) {
4621 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4622 return err;
4623 }
4624
4625 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4626 if (err) {
4627 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4628 bd_queue_free(priv, &priv->rx_queue);
4629 return err;
4630 }
4631
4632 /*
4633 * allocate packets
4634 */
4635 priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4636 sizeof(struct ipw2100_rx_packet),
4637 GFP_KERNEL);
4638 if (!priv->rx_buffers) {
4639 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4640
4641 bd_queue_free(priv, &priv->rx_queue);
4642
4643 status_queue_free(priv);
4644
4645 return -ENOMEM;
4646 }
4647
4648 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4649 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4650
4651 err = ipw2100_alloc_skb(priv, packet);
4652 if (unlikely(err)) {
4653 err = -ENOMEM;
4654 break;
4655 }
4656
4657 /* The BD holds the cache aligned address */
4658 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4659 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4660 priv->status_queue.drv[i].status_fields = 0;
4661 }
4662
4663 if (i == RX_QUEUE_LENGTH)
4664 return 0;
4665
4666 for (j = 0; j < i; j++) {
4667 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4668 sizeof(struct ipw2100_rx_packet),
4669 PCI_DMA_FROMDEVICE);
4670 dev_kfree_skb(priv->rx_buffers[j].skb);
4671 }
4672
4673 kfree(priv->rx_buffers);
4674 priv->rx_buffers = NULL;
4675
4676 bd_queue_free(priv, &priv->rx_queue);
4677
4678 status_queue_free(priv);
4679
4680 return err;
4681 }
4682
4683 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4684 {
4685 IPW_DEBUG_INFO("enter\n");
4686
4687 priv->rx_queue.oldest = 0;
4688 priv->rx_queue.available = priv->rx_queue.entries - 1;
4689 priv->rx_queue.next = priv->rx_queue.entries - 1;
4690
4691 INIT_STAT(&priv->rxq_stat);
4692 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4693
4694 bd_queue_initialize(priv, &priv->rx_queue,
4695 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4696 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4697 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4698 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4699
4700 /* set up the status queue */
4701 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4702 priv->status_queue.nic);
4703
4704 IPW_DEBUG_INFO("exit\n");
4705 }
4706
4707 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4708 {
4709 int i;
4710
4711 IPW_DEBUG_INFO("enter\n");
4712
4713 bd_queue_free(priv, &priv->rx_queue);
4714 status_queue_free(priv);
4715
4716 if (!priv->rx_buffers)
4717 return;
4718
4719 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4720 if (priv->rx_buffers[i].rxp) {
4721 pci_unmap_single(priv->pci_dev,
4722 priv->rx_buffers[i].dma_addr,
4723 sizeof(struct ipw2100_rx),
4724 PCI_DMA_FROMDEVICE);
4725 dev_kfree_skb(priv->rx_buffers[i].skb);
4726 }
4727 }
4728
4729 kfree(priv->rx_buffers);
4730 priv->rx_buffers = NULL;
4731
4732 IPW_DEBUG_INFO("exit\n");
4733 }
4734
4735 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4736 {
4737 u32 length = ETH_ALEN;
4738 u8 addr[ETH_ALEN];
4739
4740 int err;
4741
4742 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4743 if (err) {
4744 IPW_DEBUG_INFO("MAC address read failed\n");
4745 return -EIO;
4746 }
4747
4748 memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4749 IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4750
4751 return 0;
4752 }
4753
4754 /********************************************************************
4755 *
4756 * Firmware Commands
4757 *
4758 ********************************************************************/
4759
4760 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4761 {
4762 struct host_command cmd = {
4763 .host_command = ADAPTER_ADDRESS,
4764 .host_command_sequence = 0,
4765 .host_command_length = ETH_ALEN
4766 };
4767 int err;
4768
4769 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4770
4771 IPW_DEBUG_INFO("enter\n");
4772
4773 if (priv->config & CFG_CUSTOM_MAC) {
4774 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4775 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4776 } else
4777 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4778 ETH_ALEN);
4779
4780 err = ipw2100_hw_send_command(priv, &cmd);
4781
4782 IPW_DEBUG_INFO("exit\n");
4783 return err;
4784 }
4785
4786 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4787 int batch_mode)
4788 {
4789 struct host_command cmd = {
4790 .host_command = PORT_TYPE,
4791 .host_command_sequence = 0,
4792 .host_command_length = sizeof(u32)
4793 };
4794 int err;
4795
4796 switch (port_type) {
4797 case IW_MODE_INFRA:
4798 cmd.host_command_parameters[0] = IPW_BSS;
4799 break;
4800 case IW_MODE_ADHOC:
4801 cmd.host_command_parameters[0] = IPW_IBSS;
4802 break;
4803 }
4804
4805 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4806 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4807
4808 if (!batch_mode) {
4809 err = ipw2100_disable_adapter(priv);
4810 if (err) {
4811 printk(KERN_ERR DRV_NAME
4812 ": %s: Could not disable adapter %d\n",
4813 priv->net_dev->name, err);
4814 return err;
4815 }
4816 }
4817
4818 /* send cmd to firmware */
4819 err = ipw2100_hw_send_command(priv, &cmd);
4820
4821 if (!batch_mode)
4822 ipw2100_enable_adapter(priv);
4823
4824 return err;
4825 }
4826
4827 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4828 int batch_mode)
4829 {
4830 struct host_command cmd = {
4831 .host_command = CHANNEL,
4832 .host_command_sequence = 0,
4833 .host_command_length = sizeof(u32)
4834 };
4835 int err;
4836
4837 cmd.host_command_parameters[0] = channel;
4838
4839 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4840
4841 /* If BSS then we don't support channel selection */
4842 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4843 return 0;
4844
4845 if ((channel != 0) &&
4846 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4847 return -EINVAL;
4848
4849 if (!batch_mode) {
4850 err = ipw2100_disable_adapter(priv);
4851 if (err)
4852 return err;
4853 }
4854
4855 err = ipw2100_hw_send_command(priv, &cmd);
4856 if (err) {
4857 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4858 return err;
4859 }
4860
4861 if (channel)
4862 priv->config |= CFG_STATIC_CHANNEL;
4863 else
4864 priv->config &= ~CFG_STATIC_CHANNEL;
4865
4866 priv->channel = channel;
4867
4868 if (!batch_mode) {
4869 err = ipw2100_enable_adapter(priv);
4870 if (err)
4871 return err;
4872 }
4873
4874 return 0;
4875 }
4876
4877 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4878 {
4879 struct host_command cmd = {
4880 .host_command = SYSTEM_CONFIG,
4881 .host_command_sequence = 0,
4882 .host_command_length = 12,
4883 };
4884 u32 ibss_mask, len = sizeof(u32);
4885 int err;
4886
4887 /* Set system configuration */
4888
4889 if (!batch_mode) {
4890 err = ipw2100_disable_adapter(priv);
4891 if (err)
4892 return err;
4893 }
4894
4895 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4896 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4897
4898 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4899 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4900
4901 if (!(priv->config & CFG_LONG_PREAMBLE))
4902 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4903
4904 err = ipw2100_get_ordinal(priv,
4905 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4906 &ibss_mask, &len);
4907 if (err)
4908 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4909
4910 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4911 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4912
4913 /* 11b only */
4914 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4915
4916 err = ipw2100_hw_send_command(priv, &cmd);
4917 if (err)
4918 return err;
4919
4920 /* If IPv6 is configured in the kernel then we don't want to filter out all
4921 * of the multicast packets as IPv6 needs some. */
4922 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4923 cmd.host_command = ADD_MULTICAST;
4924 cmd.host_command_sequence = 0;
4925 cmd.host_command_length = 0;
4926
4927 ipw2100_hw_send_command(priv, &cmd);
4928 #endif
4929 if (!batch_mode) {
4930 err = ipw2100_enable_adapter(priv);
4931 if (err)
4932 return err;
4933 }
4934
4935 return 0;
4936 }
4937
4938 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4939 int batch_mode)
4940 {
4941 struct host_command cmd = {
4942 .host_command = BASIC_TX_RATES,
4943 .host_command_sequence = 0,
4944 .host_command_length = 4
4945 };
4946 int err;
4947
4948 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4949
4950 if (!batch_mode) {
4951 err = ipw2100_disable_adapter(priv);
4952 if (err)
4953 return err;
4954 }
4955
4956 /* Set BASIC TX Rate first */
4957 ipw2100_hw_send_command(priv, &cmd);
4958
4959 /* Set TX Rate */
4960 cmd.host_command = TX_RATES;
4961 ipw2100_hw_send_command(priv, &cmd);
4962
4963 /* Set MSDU TX Rate */
4964 cmd.host_command = MSDU_TX_RATES;
4965 ipw2100_hw_send_command(priv, &cmd);
4966
4967 if (!batch_mode) {
4968 err = ipw2100_enable_adapter(priv);
4969 if (err)
4970 return err;
4971 }
4972
4973 priv->tx_rates = rate;
4974
4975 return 0;
4976 }
4977
4978 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4979 {
4980 struct host_command cmd = {
4981 .host_command = POWER_MODE,
4982 .host_command_sequence = 0,
4983 .host_command_length = 4
4984 };
4985 int err;
4986
4987 cmd.host_command_parameters[0] = power_level;
4988
4989 err = ipw2100_hw_send_command(priv, &cmd);
4990 if (err)
4991 return err;
4992
4993 if (power_level == IPW_POWER_MODE_CAM)
4994 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4995 else
4996 priv->power_mode = IPW_POWER_ENABLED | power_level;
4997
4998 #ifdef IPW2100_TX_POWER
4999 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
5000 /* Set beacon interval */
5001 cmd.host_command = TX_POWER_INDEX;
5002 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
5003
5004 err = ipw2100_hw_send_command(priv, &cmd);
5005 if (err)
5006 return err;
5007 }
5008 #endif
5009
5010 return 0;
5011 }
5012
5013 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
5014 {
5015 struct host_command cmd = {
5016 .host_command = RTS_THRESHOLD,
5017 .host_command_sequence = 0,
5018 .host_command_length = 4
5019 };
5020 int err;
5021
5022 if (threshold & RTS_DISABLED)
5023 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
5024 else
5025 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
5026
5027 err = ipw2100_hw_send_command(priv, &cmd);
5028 if (err)
5029 return err;
5030
5031 priv->rts_threshold = threshold;
5032
5033 return 0;
5034 }
5035
5036 #if 0
5037 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
5038 u32 threshold, int batch_mode)
5039 {
5040 struct host_command cmd = {
5041 .host_command = FRAG_THRESHOLD,
5042 .host_command_sequence = 0,
5043 .host_command_length = 4,
5044 .host_command_parameters[0] = 0,
5045 };
5046 int err;
5047
5048 if (!batch_mode) {
5049 err = ipw2100_disable_adapter(priv);
5050 if (err)
5051 return err;
5052 }
5053
5054 if (threshold == 0)
5055 threshold = DEFAULT_FRAG_THRESHOLD;
5056 else {
5057 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5058 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5059 }
5060
5061 cmd.host_command_parameters[0] = threshold;
5062
5063 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5064
5065 err = ipw2100_hw_send_command(priv, &cmd);
5066
5067 if (!batch_mode)
5068 ipw2100_enable_adapter(priv);
5069
5070 if (!err)
5071 priv->frag_threshold = threshold;
5072
5073 return err;
5074 }
5075 #endif
5076
5077 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5078 {
5079 struct host_command cmd = {
5080 .host_command = SHORT_RETRY_LIMIT,
5081 .host_command_sequence = 0,
5082 .host_command_length = 4
5083 };
5084 int err;
5085
5086 cmd.host_command_parameters[0] = retry;
5087
5088 err = ipw2100_hw_send_command(priv, &cmd);
5089 if (err)
5090 return err;
5091
5092 priv->short_retry_limit = retry;
5093
5094 return 0;
5095 }
5096
5097 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5098 {
5099 struct host_command cmd = {
5100 .host_command = LONG_RETRY_LIMIT,
5101 .host_command_sequence = 0,
5102 .host_command_length = 4
5103 };
5104 int err;
5105
5106 cmd.host_command_parameters[0] = retry;
5107
5108 err = ipw2100_hw_send_command(priv, &cmd);
5109 if (err)
5110 return err;
5111
5112 priv->long_retry_limit = retry;
5113
5114 return 0;
5115 }
5116
5117 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5118 int batch_mode)
5119 {
5120 struct host_command cmd = {
5121 .host_command = MANDATORY_BSSID,
5122 .host_command_sequence = 0,
5123 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5124 };
5125 int err;
5126
5127 #ifdef CONFIG_IPW2100_DEBUG
5128 if (bssid != NULL)
5129 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5130 else
5131 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5132 #endif
5133 /* if BSSID is empty then we disable mandatory bssid mode */
5134 if (bssid != NULL)
5135 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5136
5137 if (!batch_mode) {
5138 err = ipw2100_disable_adapter(priv);
5139 if (err)
5140 return err;
5141 }
5142
5143 err = ipw2100_hw_send_command(priv, &cmd);
5144
5145 if (!batch_mode)
5146 ipw2100_enable_adapter(priv);
5147
5148 return err;
5149 }
5150
5151 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5152 {
5153 struct host_command cmd = {
5154 .host_command = DISASSOCIATION_BSSID,
5155 .host_command_sequence = 0,
5156 .host_command_length = ETH_ALEN
5157 };
5158 int err;
5159 int len;
5160
5161 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5162
5163 len = ETH_ALEN;
5164 /* The Firmware currently ignores the BSSID and just disassociates from
5165 * the currently associated AP -- but in the off chance that a future
5166 * firmware does use the BSSID provided here, we go ahead and try and
5167 * set it to the currently associated AP's BSSID */
5168 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5169
5170 err = ipw2100_hw_send_command(priv, &cmd);
5171
5172 return err;
5173 }
5174
5175 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5176 struct ipw2100_wpa_assoc_frame *, int)
5177 __attribute__ ((unused));
5178
5179 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5180 struct ipw2100_wpa_assoc_frame *wpa_frame,
5181 int batch_mode)
5182 {
5183 struct host_command cmd = {
5184 .host_command = SET_WPA_IE,
5185 .host_command_sequence = 0,
5186 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5187 };
5188 int err;
5189
5190 IPW_DEBUG_HC("SET_WPA_IE\n");
5191
5192 if (!batch_mode) {
5193 err = ipw2100_disable_adapter(priv);
5194 if (err)
5195 return err;
5196 }
5197
5198 memcpy(cmd.host_command_parameters, wpa_frame,
5199 sizeof(struct ipw2100_wpa_assoc_frame));
5200
5201 err = ipw2100_hw_send_command(priv, &cmd);
5202
5203 if (!batch_mode) {
5204 if (ipw2100_enable_adapter(priv))
5205 err = -EIO;
5206 }
5207
5208 return err;
5209 }
5210
5211 struct security_info_params {
5212 u32 allowed_ciphers;
5213 u16 version;
5214 u8 auth_mode;
5215 u8 replay_counters_number;
5216 u8 unicast_using_group;
5217 } __packed;
5218
5219 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5220 int auth_mode,
5221 int security_level,
5222 int unicast_using_group,
5223 int batch_mode)
5224 {
5225 struct host_command cmd = {
5226 .host_command = SET_SECURITY_INFORMATION,
5227 .host_command_sequence = 0,
5228 .host_command_length = sizeof(struct security_info_params)
5229 };
5230 struct security_info_params *security =
5231 (struct security_info_params *)&cmd.host_command_parameters;
5232 int err;
5233 memset(security, 0, sizeof(*security));
5234
5235 /* If shared key AP authentication is turned on, then we need to
5236 * configure the firmware to try and use it.
5237 *
5238 * Actual data encryption/decryption is handled by the host. */
5239 security->auth_mode = auth_mode;
5240 security->unicast_using_group = unicast_using_group;
5241
5242 switch (security_level) {
5243 default:
5244 case SEC_LEVEL_0:
5245 security->allowed_ciphers = IPW_NONE_CIPHER;
5246 break;
5247 case SEC_LEVEL_1:
5248 security->allowed_ciphers = IPW_WEP40_CIPHER |
5249 IPW_WEP104_CIPHER;
5250 break;
5251 case SEC_LEVEL_2:
5252 security->allowed_ciphers = IPW_WEP40_CIPHER |
5253 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5254 break;
5255 case SEC_LEVEL_2_CKIP:
5256 security->allowed_ciphers = IPW_WEP40_CIPHER |
5257 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5258 break;
5259 case SEC_LEVEL_3:
5260 security->allowed_ciphers = IPW_WEP40_CIPHER |
5261 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5262 break;
5263 }
5264
5265 IPW_DEBUG_HC
5266 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5267 security->auth_mode, security->allowed_ciphers, security_level);
5268
5269 security->replay_counters_number = 0;
5270
5271 if (!batch_mode) {
5272 err = ipw2100_disable_adapter(priv);
5273 if (err)
5274 return err;
5275 }
5276
5277 err = ipw2100_hw_send_command(priv, &cmd);
5278
5279 if (!batch_mode)
5280 ipw2100_enable_adapter(priv);
5281
5282 return err;
5283 }
5284
5285 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5286 {
5287 struct host_command cmd = {
5288 .host_command = TX_POWER_INDEX,
5289 .host_command_sequence = 0,
5290 .host_command_length = 4
5291 };
5292 int err = 0;
5293 u32 tmp = tx_power;
5294
5295 if (tx_power != IPW_TX_POWER_DEFAULT)
5296 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5297 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5298
5299 cmd.host_command_parameters[0] = tmp;
5300
5301 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5302 err = ipw2100_hw_send_command(priv, &cmd);
5303 if (!err)
5304 priv->tx_power = tx_power;
5305
5306 return 0;
5307 }
5308
5309 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5310 u32 interval, int batch_mode)
5311 {
5312 struct host_command cmd = {
5313 .host_command = BEACON_INTERVAL,
5314 .host_command_sequence = 0,
5315 .host_command_length = 4
5316 };
5317 int err;
5318
5319 cmd.host_command_parameters[0] = interval;
5320
5321 IPW_DEBUG_INFO("enter\n");
5322
5323 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5324 if (!batch_mode) {
5325 err = ipw2100_disable_adapter(priv);
5326 if (err)
5327 return err;
5328 }
5329
5330 ipw2100_hw_send_command(priv, &cmd);
5331
5332 if (!batch_mode) {
5333 err = ipw2100_enable_adapter(priv);
5334 if (err)
5335 return err;
5336 }
5337 }
5338
5339 IPW_DEBUG_INFO("exit\n");
5340
5341 return 0;
5342 }
5343
5344 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5345 {
5346 ipw2100_tx_initialize(priv);
5347 ipw2100_rx_initialize(priv);
5348 ipw2100_msg_initialize(priv);
5349 }
5350
5351 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5352 {
5353 ipw2100_tx_free(priv);
5354 ipw2100_rx_free(priv);
5355 ipw2100_msg_free(priv);
5356 }
5357
5358 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5359 {
5360 if (ipw2100_tx_allocate(priv) ||
5361 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5362 goto fail;
5363
5364 return 0;
5365
5366 fail:
5367 ipw2100_tx_free(priv);
5368 ipw2100_rx_free(priv);
5369 ipw2100_msg_free(priv);
5370 return -ENOMEM;
5371 }
5372
5373 #define IPW_PRIVACY_CAPABLE 0x0008
5374
5375 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5376 int batch_mode)
5377 {
5378 struct host_command cmd = {
5379 .host_command = WEP_FLAGS,
5380 .host_command_sequence = 0,
5381 .host_command_length = 4
5382 };
5383 int err;
5384
5385 cmd.host_command_parameters[0] = flags;
5386
5387 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5388
5389 if (!batch_mode) {
5390 err = ipw2100_disable_adapter(priv);
5391 if (err) {
5392 printk(KERN_ERR DRV_NAME
5393 ": %s: Could not disable adapter %d\n",
5394 priv->net_dev->name, err);
5395 return err;
5396 }
5397 }
5398
5399 /* send cmd to firmware */
5400 err = ipw2100_hw_send_command(priv, &cmd);
5401
5402 if (!batch_mode)
5403 ipw2100_enable_adapter(priv);
5404
5405 return err;
5406 }
5407
5408 struct ipw2100_wep_key {
5409 u8 idx;
5410 u8 len;
5411 u8 key[13];
5412 };
5413
5414 /* Macros to ease up priting WEP keys */
5415 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5416 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5417 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5418 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5419
5420 /**
5421 * Set a the wep key
5422 *
5423 * @priv: struct to work on
5424 * @idx: index of the key we want to set
5425 * @key: ptr to the key data to set
5426 * @len: length of the buffer at @key
5427 * @batch_mode: FIXME perform the operation in batch mode, not
5428 * disabling the device.
5429 *
5430 * @returns 0 if OK, < 0 errno code on error.
5431 *
5432 * Fill out a command structure with the new wep key, length an
5433 * index and send it down the wire.
5434 */
5435 static int ipw2100_set_key(struct ipw2100_priv *priv,
5436 int idx, char *key, int len, int batch_mode)
5437 {
5438 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5439 struct host_command cmd = {
5440 .host_command = WEP_KEY_INFO,
5441 .host_command_sequence = 0,
5442 .host_command_length = sizeof(struct ipw2100_wep_key),
5443 };
5444 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5445 int err;
5446
5447 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5448 idx, keylen, len);
5449
5450 /* NOTE: We don't check cached values in case the firmware was reset
5451 * or some other problem is occurring. If the user is setting the key,
5452 * then we push the change */
5453
5454 wep_key->idx = idx;
5455 wep_key->len = keylen;
5456
5457 if (keylen) {
5458 memcpy(wep_key->key, key, len);
5459 memset(wep_key->key + len, 0, keylen - len);
5460 }
5461
5462 /* Will be optimized out on debug not being configured in */
5463 if (keylen == 0)
5464 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5465 priv->net_dev->name, wep_key->idx);
5466 else if (keylen == 5)
5467 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5468 priv->net_dev->name, wep_key->idx, wep_key->len,
5469 WEP_STR_64(wep_key->key));
5470 else
5471 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5472 "\n",
5473 priv->net_dev->name, wep_key->idx, wep_key->len,
5474 WEP_STR_128(wep_key->key));
5475
5476 if (!batch_mode) {
5477 err = ipw2100_disable_adapter(priv);
5478 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5479 if (err) {
5480 printk(KERN_ERR DRV_NAME
5481 ": %s: Could not disable adapter %d\n",
5482 priv->net_dev->name, err);
5483 return err;
5484 }
5485 }
5486
5487 /* send cmd to firmware */
5488 err = ipw2100_hw_send_command(priv, &cmd);
5489
5490 if (!batch_mode) {
5491 int err2 = ipw2100_enable_adapter(priv);
5492 if (err == 0)
5493 err = err2;
5494 }
5495 return err;
5496 }
5497
5498 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5499 int idx, int batch_mode)
5500 {
5501 struct host_command cmd = {
5502 .host_command = WEP_KEY_INDEX,
5503 .host_command_sequence = 0,
5504 .host_command_length = 4,
5505 .host_command_parameters = {idx},
5506 };
5507 int err;
5508
5509 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5510
5511 if (idx < 0 || idx > 3)
5512 return -EINVAL;
5513
5514 if (!batch_mode) {
5515 err = ipw2100_disable_adapter(priv);
5516 if (err) {
5517 printk(KERN_ERR DRV_NAME
5518 ": %s: Could not disable adapter %d\n",
5519 priv->net_dev->name, err);
5520 return err;
5521 }
5522 }
5523
5524 /* send cmd to firmware */
5525 err = ipw2100_hw_send_command(priv, &cmd);
5526
5527 if (!batch_mode)
5528 ipw2100_enable_adapter(priv);
5529
5530 return err;
5531 }
5532
5533 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5534 {
5535 int i, err, auth_mode, sec_level, use_group;
5536
5537 if (!(priv->status & STATUS_RUNNING))
5538 return 0;
5539
5540 if (!batch_mode) {
5541 err = ipw2100_disable_adapter(priv);
5542 if (err)
5543 return err;
5544 }
5545
5546 if (!priv->ieee->sec.enabled) {
5547 err =
5548 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5549 SEC_LEVEL_0, 0, 1);
5550 } else {
5551 auth_mode = IPW_AUTH_OPEN;
5552 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5553 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5554 auth_mode = IPW_AUTH_SHARED;
5555 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5556 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5557 }
5558
5559 sec_level = SEC_LEVEL_0;
5560 if (priv->ieee->sec.flags & SEC_LEVEL)
5561 sec_level = priv->ieee->sec.level;
5562
5563 use_group = 0;
5564 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5565 use_group = priv->ieee->sec.unicast_uses_group;
5566
5567 err =
5568 ipw2100_set_security_information(priv, auth_mode, sec_level,
5569 use_group, 1);
5570 }
5571
5572 if (err)
5573 goto exit;
5574
5575 if (priv->ieee->sec.enabled) {
5576 for (i = 0; i < 4; i++) {
5577 if (!(priv->ieee->sec.flags & (1 << i))) {
5578 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5579 priv->ieee->sec.key_sizes[i] = 0;
5580 } else {
5581 err = ipw2100_set_key(priv, i,
5582 priv->ieee->sec.keys[i],
5583 priv->ieee->sec.
5584 key_sizes[i], 1);
5585 if (err)
5586 goto exit;
5587 }
5588 }
5589
5590 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5591 }
5592
5593 /* Always enable privacy so the Host can filter WEP packets if
5594 * encrypted data is sent up */
5595 err =
5596 ipw2100_set_wep_flags(priv,
5597 priv->ieee->sec.
5598 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5599 if (err)
5600 goto exit;
5601
5602 priv->status &= ~STATUS_SECURITY_UPDATED;
5603
5604 exit:
5605 if (!batch_mode)
5606 ipw2100_enable_adapter(priv);
5607
5608 return err;
5609 }
5610
5611 static void ipw2100_security_work(struct work_struct *work)
5612 {
5613 struct ipw2100_priv *priv =
5614 container_of(work, struct ipw2100_priv, security_work.work);
5615
5616 /* If we happen to have reconnected before we get a chance to
5617 * process this, then update the security settings--which causes
5618 * a disassociation to occur */
5619 if (!(priv->status & STATUS_ASSOCIATED) &&
5620 priv->status & STATUS_SECURITY_UPDATED)
5621 ipw2100_configure_security(priv, 0);
5622 }
5623
5624 static void shim__set_security(struct net_device *dev,
5625 struct libipw_security *sec)
5626 {
5627 struct ipw2100_priv *priv = libipw_priv(dev);
5628 int i, force_update = 0;
5629
5630 mutex_lock(&priv->action_mutex);
5631 if (!(priv->status & STATUS_INITIALIZED))
5632 goto done;
5633
5634 for (i = 0; i < 4; i++) {
5635 if (sec->flags & (1 << i)) {
5636 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5637 if (sec->key_sizes[i] == 0)
5638 priv->ieee->sec.flags &= ~(1 << i);
5639 else
5640 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5641 sec->key_sizes[i]);
5642 if (sec->level == SEC_LEVEL_1) {
5643 priv->ieee->sec.flags |= (1 << i);
5644 priv->status |= STATUS_SECURITY_UPDATED;
5645 } else
5646 priv->ieee->sec.flags &= ~(1 << i);
5647 }
5648 }
5649
5650 if ((sec->flags & SEC_ACTIVE_KEY) &&
5651 priv->ieee->sec.active_key != sec->active_key) {
5652 if (sec->active_key <= 3) {
5653 priv->ieee->sec.active_key = sec->active_key;
5654 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5655 } else
5656 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5657
5658 priv->status |= STATUS_SECURITY_UPDATED;
5659 }
5660
5661 if ((sec->flags & SEC_AUTH_MODE) &&
5662 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5663 priv->ieee->sec.auth_mode = sec->auth_mode;
5664 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5665 priv->status |= STATUS_SECURITY_UPDATED;
5666 }
5667
5668 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5669 priv->ieee->sec.flags |= SEC_ENABLED;
5670 priv->ieee->sec.enabled = sec->enabled;
5671 priv->status |= STATUS_SECURITY_UPDATED;
5672 force_update = 1;
5673 }
5674
5675 if (sec->flags & SEC_ENCRYPT)
5676 priv->ieee->sec.encrypt = sec->encrypt;
5677
5678 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5679 priv->ieee->sec.level = sec->level;
5680 priv->ieee->sec.flags |= SEC_LEVEL;
5681 priv->status |= STATUS_SECURITY_UPDATED;
5682 }
5683
5684 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5685 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5686 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5687 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5688 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5689 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5690 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5691 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5692 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5693 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5694
5695 /* As a temporary work around to enable WPA until we figure out why
5696 * wpa_supplicant toggles the security capability of the driver, which
5697 * forces a disassocation with force_update...
5698 *
5699 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5700 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5701 ipw2100_configure_security(priv, 0);
5702 done:
5703 mutex_unlock(&priv->action_mutex);
5704 }
5705
5706 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5707 {
5708 int err;
5709 int batch_mode = 1;
5710 u8 *bssid;
5711
5712 IPW_DEBUG_INFO("enter\n");
5713
5714 err = ipw2100_disable_adapter(priv);
5715 if (err)
5716 return err;
5717 #ifdef CONFIG_IPW2100_MONITOR
5718 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5719 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5720 if (err)
5721 return err;
5722
5723 IPW_DEBUG_INFO("exit\n");
5724
5725 return 0;
5726 }
5727 #endif /* CONFIG_IPW2100_MONITOR */
5728
5729 err = ipw2100_read_mac_address(priv);
5730 if (err)
5731 return -EIO;
5732
5733 err = ipw2100_set_mac_address(priv, batch_mode);
5734 if (err)
5735 return err;
5736
5737 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5738 if (err)
5739 return err;
5740
5741 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5742 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5743 if (err)
5744 return err;
5745 }
5746
5747 err = ipw2100_system_config(priv, batch_mode);
5748 if (err)
5749 return err;
5750
5751 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5752 if (err)
5753 return err;
5754
5755 /* Default to power mode OFF */
5756 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5757 if (err)
5758 return err;
5759
5760 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5761 if (err)
5762 return err;
5763
5764 if (priv->config & CFG_STATIC_BSSID)
5765 bssid = priv->bssid;
5766 else
5767 bssid = NULL;
5768 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5769 if (err)
5770 return err;
5771
5772 if (priv->config & CFG_STATIC_ESSID)
5773 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5774 batch_mode);
5775 else
5776 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5777 if (err)
5778 return err;
5779
5780 err = ipw2100_configure_security(priv, batch_mode);
5781 if (err)
5782 return err;
5783
5784 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5785 err =
5786 ipw2100_set_ibss_beacon_interval(priv,
5787 priv->beacon_interval,
5788 batch_mode);
5789 if (err)
5790 return err;
5791
5792 err = ipw2100_set_tx_power(priv, priv->tx_power);
5793 if (err)
5794 return err;
5795 }
5796
5797 /*
5798 err = ipw2100_set_fragmentation_threshold(
5799 priv, priv->frag_threshold, batch_mode);
5800 if (err)
5801 return err;
5802 */
5803
5804 IPW_DEBUG_INFO("exit\n");
5805
5806 return 0;
5807 }
5808
5809 /*************************************************************************
5810 *
5811 * EXTERNALLY CALLED METHODS
5812 *
5813 *************************************************************************/
5814
5815 /* This method is called by the network layer -- not to be confused with
5816 * ipw2100_set_mac_address() declared above called by this driver (and this
5817 * method as well) to talk to the firmware */
5818 static int ipw2100_set_address(struct net_device *dev, void *p)
5819 {
5820 struct ipw2100_priv *priv = libipw_priv(dev);
5821 struct sockaddr *addr = p;
5822 int err = 0;
5823
5824 if (!is_valid_ether_addr(addr->sa_data))
5825 return -EADDRNOTAVAIL;
5826
5827 mutex_lock(&priv->action_mutex);
5828
5829 priv->config |= CFG_CUSTOM_MAC;
5830 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5831
5832 err = ipw2100_set_mac_address(priv, 0);
5833 if (err)
5834 goto done;
5835
5836 priv->reset_backoff = 0;
5837 mutex_unlock(&priv->action_mutex);
5838 ipw2100_reset_adapter(&priv->reset_work.work);
5839 return 0;
5840
5841 done:
5842 mutex_unlock(&priv->action_mutex);
5843 return err;
5844 }
5845
5846 static int ipw2100_open(struct net_device *dev)
5847 {
5848 struct ipw2100_priv *priv = libipw_priv(dev);
5849 unsigned long flags;
5850 IPW_DEBUG_INFO("dev->open\n");
5851
5852 spin_lock_irqsave(&priv->low_lock, flags);
5853 if (priv->status & STATUS_ASSOCIATED) {
5854 netif_carrier_on(dev);
5855 netif_start_queue(dev);
5856 }
5857 spin_unlock_irqrestore(&priv->low_lock, flags);
5858
5859 return 0;
5860 }
5861
5862 static int ipw2100_close(struct net_device *dev)
5863 {
5864 struct ipw2100_priv *priv = libipw_priv(dev);
5865 unsigned long flags;
5866 struct list_head *element;
5867 struct ipw2100_tx_packet *packet;
5868
5869 IPW_DEBUG_INFO("enter\n");
5870
5871 spin_lock_irqsave(&priv->low_lock, flags);
5872
5873 if (priv->status & STATUS_ASSOCIATED)
5874 netif_carrier_off(dev);
5875 netif_stop_queue(dev);
5876
5877 /* Flush the TX queue ... */
5878 while (!list_empty(&priv->tx_pend_list)) {
5879 element = priv->tx_pend_list.next;
5880 packet = list_entry(element, struct ipw2100_tx_packet, list);
5881
5882 list_del(element);
5883 DEC_STAT(&priv->tx_pend_stat);
5884
5885 libipw_txb_free(packet->info.d_struct.txb);
5886 packet->info.d_struct.txb = NULL;
5887
5888 list_add_tail(element, &priv->tx_free_list);
5889 INC_STAT(&priv->tx_free_stat);
5890 }
5891 spin_unlock_irqrestore(&priv->low_lock, flags);
5892
5893 IPW_DEBUG_INFO("exit\n");
5894
5895 return 0;
5896 }
5897
5898 /*
5899 * TODO: Fix this function... its just wrong
5900 */
5901 static void ipw2100_tx_timeout(struct net_device *dev)
5902 {
5903 struct ipw2100_priv *priv = libipw_priv(dev);
5904
5905 dev->stats.tx_errors++;
5906
5907 #ifdef CONFIG_IPW2100_MONITOR
5908 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5909 return;
5910 #endif
5911
5912 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5913 dev->name);
5914 schedule_reset(priv);
5915 }
5916
5917 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5918 {
5919 /* This is called when wpa_supplicant loads and closes the driver
5920 * interface. */
5921 priv->ieee->wpa_enabled = value;
5922 return 0;
5923 }
5924
5925 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5926 {
5927
5928 struct libipw_device *ieee = priv->ieee;
5929 struct libipw_security sec = {
5930 .flags = SEC_AUTH_MODE,
5931 };
5932 int ret = 0;
5933
5934 if (value & IW_AUTH_ALG_SHARED_KEY) {
5935 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5936 ieee->open_wep = 0;
5937 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5938 sec.auth_mode = WLAN_AUTH_OPEN;
5939 ieee->open_wep = 1;
5940 } else if (value & IW_AUTH_ALG_LEAP) {
5941 sec.auth_mode = WLAN_AUTH_LEAP;
5942 ieee->open_wep = 1;
5943 } else
5944 return -EINVAL;
5945
5946 if (ieee->set_security)
5947 ieee->set_security(ieee->dev, &sec);
5948 else
5949 ret = -EOPNOTSUPP;
5950
5951 return ret;
5952 }
5953
5954 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5955 char *wpa_ie, int wpa_ie_len)
5956 {
5957
5958 struct ipw2100_wpa_assoc_frame frame;
5959
5960 frame.fixed_ie_mask = 0;
5961
5962 /* copy WPA IE */
5963 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5964 frame.var_ie_len = wpa_ie_len;
5965
5966 /* make sure WPA is enabled */
5967 ipw2100_wpa_enable(priv, 1);
5968 ipw2100_set_wpa_ie(priv, &frame, 0);
5969 }
5970
5971 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5972 struct ethtool_drvinfo *info)
5973 {
5974 struct ipw2100_priv *priv = libipw_priv(dev);
5975 char fw_ver[64], ucode_ver[64];
5976
5977 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5978 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5979
5980 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5981 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5982
5983 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5984 fw_ver, priv->eeprom_version, ucode_ver);
5985
5986 strlcpy(info->bus_info, pci_name(priv->pci_dev),
5987 sizeof(info->bus_info));
5988 }
5989
5990 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5991 {
5992 struct ipw2100_priv *priv = libipw_priv(dev);
5993 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5994 }
5995
5996 static const struct ethtool_ops ipw2100_ethtool_ops = {
5997 .get_link = ipw2100_ethtool_get_link,
5998 .get_drvinfo = ipw_ethtool_get_drvinfo,
5999 };
6000
6001 static void ipw2100_hang_check(struct work_struct *work)
6002 {
6003 struct ipw2100_priv *priv =
6004 container_of(work, struct ipw2100_priv, hang_check.work);
6005 unsigned long flags;
6006 u32 rtc = 0xa5a5a5a5;
6007 u32 len = sizeof(rtc);
6008 int restart = 0;
6009
6010 spin_lock_irqsave(&priv->low_lock, flags);
6011
6012 if (priv->fatal_error != 0) {
6013 /* If fatal_error is set then we need to restart */
6014 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
6015 priv->net_dev->name);
6016
6017 restart = 1;
6018 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
6019 (rtc == priv->last_rtc)) {
6020 /* Check if firmware is hung */
6021 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
6022 priv->net_dev->name);
6023
6024 restart = 1;
6025 }
6026
6027 if (restart) {
6028 /* Kill timer */
6029 priv->stop_hang_check = 1;
6030 priv->hangs++;
6031
6032 /* Restart the NIC */
6033 schedule_reset(priv);
6034 }
6035
6036 priv->last_rtc = rtc;
6037
6038 if (!priv->stop_hang_check)
6039 schedule_delayed_work(&priv->hang_check, HZ / 2);
6040
6041 spin_unlock_irqrestore(&priv->low_lock, flags);
6042 }
6043
6044 static void ipw2100_rf_kill(struct work_struct *work)
6045 {
6046 struct ipw2100_priv *priv =
6047 container_of(work, struct ipw2100_priv, rf_kill.work);
6048 unsigned long flags;
6049
6050 spin_lock_irqsave(&priv->low_lock, flags);
6051
6052 if (rf_kill_active(priv)) {
6053 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6054 if (!priv->stop_rf_kill)
6055 schedule_delayed_work(&priv->rf_kill,
6056 round_jiffies_relative(HZ));
6057 goto exit_unlock;
6058 }
6059
6060 /* RF Kill is now disabled, so bring the device back up */
6061
6062 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6063 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6064 "device\n");
6065 schedule_reset(priv);
6066 } else
6067 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
6068 "enabled\n");
6069
6070 exit_unlock:
6071 spin_unlock_irqrestore(&priv->low_lock, flags);
6072 }
6073
6074 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6075
6076 static const struct net_device_ops ipw2100_netdev_ops = {
6077 .ndo_open = ipw2100_open,
6078 .ndo_stop = ipw2100_close,
6079 .ndo_start_xmit = libipw_xmit,
6080 .ndo_change_mtu = libipw_change_mtu,
6081 .ndo_tx_timeout = ipw2100_tx_timeout,
6082 .ndo_set_mac_address = ipw2100_set_address,
6083 .ndo_validate_addr = eth_validate_addr,
6084 };
6085
6086 /* Look into using netdev destructor to shutdown libipw? */
6087
6088 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6089 void __iomem * ioaddr)
6090 {
6091 struct ipw2100_priv *priv;
6092 struct net_device *dev;
6093
6094 dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6095 if (!dev)
6096 return NULL;
6097 priv = libipw_priv(dev);
6098 priv->ieee = netdev_priv(dev);
6099 priv->pci_dev = pci_dev;
6100 priv->net_dev = dev;
6101 priv->ioaddr = ioaddr;
6102
6103 priv->ieee->hard_start_xmit = ipw2100_tx;
6104 priv->ieee->set_security = shim__set_security;
6105
6106 priv->ieee->perfect_rssi = -20;
6107 priv->ieee->worst_rssi = -85;
6108
6109 dev->netdev_ops = &ipw2100_netdev_ops;
6110 dev->ethtool_ops = &ipw2100_ethtool_ops;
6111 dev->wireless_handlers = &ipw2100_wx_handler_def;
6112 priv->wireless_data.libipw = priv->ieee;
6113 dev->wireless_data = &priv->wireless_data;
6114 dev->watchdog_timeo = 3 * HZ;
6115 dev->irq = 0;
6116
6117 /* NOTE: We don't use the wireless_handlers hook
6118 * in dev as the system will start throwing WX requests
6119 * to us before we're actually initialized and it just
6120 * ends up causing problems. So, we just handle
6121 * the WX extensions through the ipw2100_ioctl interface */
6122
6123 /* memset() puts everything to 0, so we only have explicitly set
6124 * those values that need to be something else */
6125
6126 /* If power management is turned on, default to AUTO mode */
6127 priv->power_mode = IPW_POWER_AUTO;
6128
6129 #ifdef CONFIG_IPW2100_MONITOR
6130 priv->config |= CFG_CRC_CHECK;
6131 #endif
6132 priv->ieee->wpa_enabled = 0;
6133 priv->ieee->drop_unencrypted = 0;
6134 priv->ieee->privacy_invoked = 0;
6135 priv->ieee->ieee802_1x = 1;
6136
6137 /* Set module parameters */
6138 switch (network_mode) {
6139 case 1:
6140 priv->ieee->iw_mode = IW_MODE_ADHOC;
6141 break;
6142 #ifdef CONFIG_IPW2100_MONITOR
6143 case 2:
6144 priv->ieee->iw_mode = IW_MODE_MONITOR;
6145 break;
6146 #endif
6147 default:
6148 case 0:
6149 priv->ieee->iw_mode = IW_MODE_INFRA;
6150 break;
6151 }
6152
6153 if (disable == 1)
6154 priv->status |= STATUS_RF_KILL_SW;
6155
6156 if (channel != 0 &&
6157 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6158 priv->config |= CFG_STATIC_CHANNEL;
6159 priv->channel = channel;
6160 }
6161
6162 if (associate)
6163 priv->config |= CFG_ASSOCIATE;
6164
6165 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6166 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6167 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6168 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6169 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6170 priv->tx_power = IPW_TX_POWER_DEFAULT;
6171 priv->tx_rates = DEFAULT_TX_RATES;
6172
6173 strcpy(priv->nick, "ipw2100");
6174
6175 spin_lock_init(&priv->low_lock);
6176 mutex_init(&priv->action_mutex);
6177 mutex_init(&priv->adapter_mutex);
6178
6179 init_waitqueue_head(&priv->wait_command_queue);
6180
6181 netif_carrier_off(dev);
6182
6183 INIT_LIST_HEAD(&priv->msg_free_list);
6184 INIT_LIST_HEAD(&priv->msg_pend_list);
6185 INIT_STAT(&priv->msg_free_stat);
6186 INIT_STAT(&priv->msg_pend_stat);
6187
6188 INIT_LIST_HEAD(&priv->tx_free_list);
6189 INIT_LIST_HEAD(&priv->tx_pend_list);
6190 INIT_STAT(&priv->tx_free_stat);
6191 INIT_STAT(&priv->tx_pend_stat);
6192
6193 INIT_LIST_HEAD(&priv->fw_pend_list);
6194 INIT_STAT(&priv->fw_pend_stat);
6195
6196 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6197 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6198 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6199 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6200 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6201 INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6202 INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6203
6204 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6205 ipw2100_irq_tasklet, (unsigned long)priv);
6206
6207 /* NOTE: We do not start the deferred work for status checks yet */
6208 priv->stop_rf_kill = 1;
6209 priv->stop_hang_check = 1;
6210
6211 return dev;
6212 }
6213
6214 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6215 const struct pci_device_id *ent)
6216 {
6217 void __iomem *ioaddr;
6218 struct net_device *dev = NULL;
6219 struct ipw2100_priv *priv = NULL;
6220 int err = 0;
6221 int registered = 0;
6222 u32 val;
6223
6224 IPW_DEBUG_INFO("enter\n");
6225
6226 if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6227 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6228 err = -ENODEV;
6229 goto out;
6230 }
6231
6232 ioaddr = pci_iomap(pci_dev, 0, 0);
6233 if (!ioaddr) {
6234 printk(KERN_WARNING DRV_NAME
6235 "Error calling ioremap_nocache.\n");
6236 err = -EIO;
6237 goto fail;
6238 }
6239
6240 /* allocate and initialize our net_device */
6241 dev = ipw2100_alloc_device(pci_dev, ioaddr);
6242 if (!dev) {
6243 printk(KERN_WARNING DRV_NAME
6244 "Error calling ipw2100_alloc_device.\n");
6245 err = -ENOMEM;
6246 goto fail;
6247 }
6248
6249 /* set up PCI mappings for device */
6250 err = pci_enable_device(pci_dev);
6251 if (err) {
6252 printk(KERN_WARNING DRV_NAME
6253 "Error calling pci_enable_device.\n");
6254 return err;
6255 }
6256
6257 priv = libipw_priv(dev);
6258
6259 pci_set_master(pci_dev);
6260 pci_set_drvdata(pci_dev, priv);
6261
6262 err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6263 if (err) {
6264 printk(KERN_WARNING DRV_NAME
6265 "Error calling pci_set_dma_mask.\n");
6266 pci_disable_device(pci_dev);
6267 return err;
6268 }
6269
6270 err = pci_request_regions(pci_dev, DRV_NAME);
6271 if (err) {
6272 printk(KERN_WARNING DRV_NAME
6273 "Error calling pci_request_regions.\n");
6274 pci_disable_device(pci_dev);
6275 return err;
6276 }
6277
6278 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6279 * PCI Tx retries from interfering with C3 CPU state */
6280 pci_read_config_dword(pci_dev, 0x40, &val);
6281 if ((val & 0x0000ff00) != 0)
6282 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6283
6284 pci_set_power_state(pci_dev, PCI_D0);
6285
6286 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6287 printk(KERN_WARNING DRV_NAME
6288 "Device not found via register read.\n");
6289 err = -ENODEV;
6290 goto fail;
6291 }
6292
6293 SET_NETDEV_DEV(dev, &pci_dev->dev);
6294
6295 /* Force interrupts to be shut off on the device */
6296 priv->status |= STATUS_INT_ENABLED;
6297 ipw2100_disable_interrupts(priv);
6298
6299 /* Allocate and initialize the Tx/Rx queues and lists */
6300 if (ipw2100_queues_allocate(priv)) {
6301 printk(KERN_WARNING DRV_NAME
6302 "Error calling ipw2100_queues_allocate.\n");
6303 err = -ENOMEM;
6304 goto fail;
6305 }
6306 ipw2100_queues_initialize(priv);
6307
6308 err = request_irq(pci_dev->irq,
6309 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6310 if (err) {
6311 printk(KERN_WARNING DRV_NAME
6312 "Error calling request_irq: %d.\n", pci_dev->irq);
6313 goto fail;
6314 }
6315 dev->irq = pci_dev->irq;
6316
6317 IPW_DEBUG_INFO("Attempting to register device...\n");
6318
6319 printk(KERN_INFO DRV_NAME
6320 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6321
6322 err = ipw2100_up(priv, 1);
6323 if (err)
6324 goto fail;
6325
6326 err = ipw2100_wdev_init(dev);
6327 if (err)
6328 goto fail;
6329 registered = 1;
6330
6331 /* Bring up the interface. Pre 0.46, after we registered the
6332 * network device we would call ipw2100_up. This introduced a race
6333 * condition with newer hotplug configurations (network was coming
6334 * up and making calls before the device was initialized).
6335 */
6336 err = register_netdev(dev);
6337 if (err) {
6338 printk(KERN_WARNING DRV_NAME
6339 "Error calling register_netdev.\n");
6340 goto fail;
6341 }
6342 registered = 2;
6343
6344 mutex_lock(&priv->action_mutex);
6345
6346 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6347
6348 /* perform this after register_netdev so that dev->name is set */
6349 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6350 if (err)
6351 goto fail_unlock;
6352
6353 /* If the RF Kill switch is disabled, go ahead and complete the
6354 * startup sequence */
6355 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6356 /* Enable the adapter - sends HOST_COMPLETE */
6357 if (ipw2100_enable_adapter(priv)) {
6358 printk(KERN_WARNING DRV_NAME
6359 ": %s: failed in call to enable adapter.\n",
6360 priv->net_dev->name);
6361 ipw2100_hw_stop_adapter(priv);
6362 err = -EIO;
6363 goto fail_unlock;
6364 }
6365
6366 /* Start a scan . . . */
6367 ipw2100_set_scan_options(priv);
6368 ipw2100_start_scan(priv);
6369 }
6370
6371 IPW_DEBUG_INFO("exit\n");
6372
6373 priv->status |= STATUS_INITIALIZED;
6374
6375 mutex_unlock(&priv->action_mutex);
6376 out:
6377 return err;
6378
6379 fail_unlock:
6380 mutex_unlock(&priv->action_mutex);
6381 fail:
6382 if (dev) {
6383 if (registered >= 2)
6384 unregister_netdev(dev);
6385
6386 if (registered) {
6387 wiphy_unregister(priv->ieee->wdev.wiphy);
6388 kfree(priv->ieee->bg_band.channels);
6389 }
6390
6391 ipw2100_hw_stop_adapter(priv);
6392
6393 ipw2100_disable_interrupts(priv);
6394
6395 if (dev->irq)
6396 free_irq(dev->irq, priv);
6397
6398 ipw2100_kill_works(priv);
6399
6400 /* These are safe to call even if they weren't allocated */
6401 ipw2100_queues_free(priv);
6402 sysfs_remove_group(&pci_dev->dev.kobj,
6403 &ipw2100_attribute_group);
6404
6405 free_libipw(dev, 0);
6406 pci_set_drvdata(pci_dev, NULL);
6407 }
6408
6409 pci_iounmap(pci_dev, ioaddr);
6410
6411 pci_release_regions(pci_dev);
6412 pci_disable_device(pci_dev);
6413 goto out;
6414 }
6415
6416 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6417 {
6418 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6419 struct net_device *dev = priv->net_dev;
6420
6421 mutex_lock(&priv->action_mutex);
6422
6423 priv->status &= ~STATUS_INITIALIZED;
6424
6425 sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6426
6427 #ifdef CONFIG_PM
6428 if (ipw2100_firmware.version)
6429 ipw2100_release_firmware(priv, &ipw2100_firmware);
6430 #endif
6431 /* Take down the hardware */
6432 ipw2100_down(priv);
6433
6434 /* Release the mutex so that the network subsystem can
6435 * complete any needed calls into the driver... */
6436 mutex_unlock(&priv->action_mutex);
6437
6438 /* Unregister the device first - this results in close()
6439 * being called if the device is open. If we free storage
6440 * first, then close() will crash.
6441 * FIXME: remove the comment above. */
6442 unregister_netdev(dev);
6443
6444 ipw2100_kill_works(priv);
6445
6446 ipw2100_queues_free(priv);
6447
6448 /* Free potential debugging firmware snapshot */
6449 ipw2100_snapshot_free(priv);
6450
6451 free_irq(dev->irq, priv);
6452
6453 pci_iounmap(pci_dev, priv->ioaddr);
6454
6455 /* wiphy_unregister needs to be here, before free_libipw */
6456 wiphy_unregister(priv->ieee->wdev.wiphy);
6457 kfree(priv->ieee->bg_band.channels);
6458 free_libipw(dev, 0);
6459
6460 pci_release_regions(pci_dev);
6461 pci_disable_device(pci_dev);
6462
6463 IPW_DEBUG_INFO("exit\n");
6464 }
6465
6466 #ifdef CONFIG_PM
6467 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6468 {
6469 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6470 struct net_device *dev = priv->net_dev;
6471
6472 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6473
6474 mutex_lock(&priv->action_mutex);
6475 if (priv->status & STATUS_INITIALIZED) {
6476 /* Take down the device; powers it off, etc. */
6477 ipw2100_down(priv);
6478 }
6479
6480 /* Remove the PRESENT state of the device */
6481 netif_device_detach(dev);
6482
6483 pci_save_state(pci_dev);
6484 pci_disable_device(pci_dev);
6485 pci_set_power_state(pci_dev, PCI_D3hot);
6486
6487 priv->suspend_at = get_seconds();
6488
6489 mutex_unlock(&priv->action_mutex);
6490
6491 return 0;
6492 }
6493
6494 static int ipw2100_resume(struct pci_dev *pci_dev)
6495 {
6496 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6497 struct net_device *dev = priv->net_dev;
6498 int err;
6499 u32 val;
6500
6501 if (IPW2100_PM_DISABLED)
6502 return 0;
6503
6504 mutex_lock(&priv->action_mutex);
6505
6506 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6507
6508 pci_set_power_state(pci_dev, PCI_D0);
6509 err = pci_enable_device(pci_dev);
6510 if (err) {
6511 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6512 dev->name);
6513 mutex_unlock(&priv->action_mutex);
6514 return err;
6515 }
6516 pci_restore_state(pci_dev);
6517
6518 /*
6519 * Suspend/Resume resets the PCI configuration space, so we have to
6520 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6521 * from interfering with C3 CPU state. pci_restore_state won't help
6522 * here since it only restores the first 64 bytes pci config header.
6523 */
6524 pci_read_config_dword(pci_dev, 0x40, &val);
6525 if ((val & 0x0000ff00) != 0)
6526 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6527
6528 /* Set the device back into the PRESENT state; this will also wake
6529 * the queue of needed */
6530 netif_device_attach(dev);
6531
6532 priv->suspend_time = get_seconds() - priv->suspend_at;
6533
6534 /* Bring the device back up */
6535 if (!(priv->status & STATUS_RF_KILL_SW))
6536 ipw2100_up(priv, 0);
6537
6538 mutex_unlock(&priv->action_mutex);
6539
6540 return 0;
6541 }
6542 #endif
6543
6544 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6545 {
6546 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6547
6548 /* Take down the device; powers it off, etc. */
6549 ipw2100_down(priv);
6550
6551 pci_disable_device(pci_dev);
6552 }
6553
6554 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6555
6556 static DEFINE_PCI_DEVICE_TABLE(ipw2100_pci_id_table) = {
6557 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6558 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6559 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6560 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6561 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6562 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6563 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6564 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6565 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6566 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6567 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6568 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6569 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6570
6571 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6572 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6573 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6574 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6575 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6576
6577 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6578 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6579 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6580 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6581 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6582 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6583 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6584
6585 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6586
6587 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6588 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6589 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6590 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6591 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6592 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6593 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6594
6595 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6596 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6597 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6598 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6599 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6600 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6601
6602 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6603 {0,},
6604 };
6605
6606 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6607
6608 static struct pci_driver ipw2100_pci_driver = {
6609 .name = DRV_NAME,
6610 .id_table = ipw2100_pci_id_table,
6611 .probe = ipw2100_pci_init_one,
6612 .remove = __devexit_p(ipw2100_pci_remove_one),
6613 #ifdef CONFIG_PM
6614 .suspend = ipw2100_suspend,
6615 .resume = ipw2100_resume,
6616 #endif
6617 .shutdown = ipw2100_shutdown,
6618 };
6619
6620 /**
6621 * Initialize the ipw2100 driver/module
6622 *
6623 * @returns 0 if ok, < 0 errno node con error.
6624 *
6625 * Note: we cannot init the /proc stuff until the PCI driver is there,
6626 * or we risk an unlikely race condition on someone accessing
6627 * uninitialized data in the PCI dev struct through /proc.
6628 */
6629 static int __init ipw2100_init(void)
6630 {
6631 int ret;
6632
6633 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6634 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6635
6636 pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6637 PM_QOS_DEFAULT_VALUE);
6638
6639 ret = pci_register_driver(&ipw2100_pci_driver);
6640 if (ret)
6641 goto out;
6642
6643 #ifdef CONFIG_IPW2100_DEBUG
6644 ipw2100_debug_level = debug;
6645 ret = driver_create_file(&ipw2100_pci_driver.driver,
6646 &driver_attr_debug_level);
6647 #endif
6648
6649 out:
6650 return ret;
6651 }
6652
6653 /**
6654 * Cleanup ipw2100 driver registration
6655 */
6656 static void __exit ipw2100_exit(void)
6657 {
6658 /* FIXME: IPG: check that we have no instances of the devices open */
6659 #ifdef CONFIG_IPW2100_DEBUG
6660 driver_remove_file(&ipw2100_pci_driver.driver,
6661 &driver_attr_debug_level);
6662 #endif
6663 pci_unregister_driver(&ipw2100_pci_driver);
6664 pm_qos_remove_request(&ipw2100_pm_qos_req);
6665 }
6666
6667 module_init(ipw2100_init);
6668 module_exit(ipw2100_exit);
6669
6670 static int ipw2100_wx_get_name(struct net_device *dev,
6671 struct iw_request_info *info,
6672 union iwreq_data *wrqu, char *extra)
6673 {
6674 /*
6675 * This can be called at any time. No action lock required
6676 */
6677
6678 struct ipw2100_priv *priv = libipw_priv(dev);
6679 if (!(priv->status & STATUS_ASSOCIATED))
6680 strcpy(wrqu->name, "unassociated");
6681 else
6682 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6683
6684 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6685 return 0;
6686 }
6687
6688 static int ipw2100_wx_set_freq(struct net_device *dev,
6689 struct iw_request_info *info,
6690 union iwreq_data *wrqu, char *extra)
6691 {
6692 struct ipw2100_priv *priv = libipw_priv(dev);
6693 struct iw_freq *fwrq = &wrqu->freq;
6694 int err = 0;
6695
6696 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6697 return -EOPNOTSUPP;
6698
6699 mutex_lock(&priv->action_mutex);
6700 if (!(priv->status & STATUS_INITIALIZED)) {
6701 err = -EIO;
6702 goto done;
6703 }
6704
6705 /* if setting by freq convert to channel */
6706 if (fwrq->e == 1) {
6707 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6708 int f = fwrq->m / 100000;
6709 int c = 0;
6710
6711 while ((c < REG_MAX_CHANNEL) &&
6712 (f != ipw2100_frequencies[c]))
6713 c++;
6714
6715 /* hack to fall through */
6716 fwrq->e = 0;
6717 fwrq->m = c + 1;
6718 }
6719 }
6720
6721 if (fwrq->e > 0 || fwrq->m > 1000) {
6722 err = -EOPNOTSUPP;
6723 goto done;
6724 } else { /* Set the channel */
6725 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6726 err = ipw2100_set_channel(priv, fwrq->m, 0);
6727 }
6728
6729 done:
6730 mutex_unlock(&priv->action_mutex);
6731 return err;
6732 }
6733
6734 static int ipw2100_wx_get_freq(struct net_device *dev,
6735 struct iw_request_info *info,
6736 union iwreq_data *wrqu, char *extra)
6737 {
6738 /*
6739 * This can be called at any time. No action lock required
6740 */
6741
6742 struct ipw2100_priv *priv = libipw_priv(dev);
6743
6744 wrqu->freq.e = 0;
6745
6746 /* If we are associated, trying to associate, or have a statically
6747 * configured CHANNEL then return that; otherwise return ANY */
6748 if (priv->config & CFG_STATIC_CHANNEL ||
6749 priv->status & STATUS_ASSOCIATED)
6750 wrqu->freq.m = priv->channel;
6751 else
6752 wrqu->freq.m = 0;
6753
6754 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6755 return 0;
6756
6757 }
6758
6759 static int ipw2100_wx_set_mode(struct net_device *dev,
6760 struct iw_request_info *info,
6761 union iwreq_data *wrqu, char *extra)
6762 {
6763 struct ipw2100_priv *priv = libipw_priv(dev);
6764 int err = 0;
6765
6766 IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6767
6768 if (wrqu->mode == priv->ieee->iw_mode)
6769 return 0;
6770
6771 mutex_lock(&priv->action_mutex);
6772 if (!(priv->status & STATUS_INITIALIZED)) {
6773 err = -EIO;
6774 goto done;
6775 }
6776
6777 switch (wrqu->mode) {
6778 #ifdef CONFIG_IPW2100_MONITOR
6779 case IW_MODE_MONITOR:
6780 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6781 break;
6782 #endif /* CONFIG_IPW2100_MONITOR */
6783 case IW_MODE_ADHOC:
6784 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6785 break;
6786 case IW_MODE_INFRA:
6787 case IW_MODE_AUTO:
6788 default:
6789 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6790 break;
6791 }
6792
6793 done:
6794 mutex_unlock(&priv->action_mutex);
6795 return err;
6796 }
6797
6798 static int ipw2100_wx_get_mode(struct net_device *dev,
6799 struct iw_request_info *info,
6800 union iwreq_data *wrqu, char *extra)
6801 {
6802 /*
6803 * This can be called at any time. No action lock required
6804 */
6805
6806 struct ipw2100_priv *priv = libipw_priv(dev);
6807
6808 wrqu->mode = priv->ieee->iw_mode;
6809 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6810
6811 return 0;
6812 }
6813
6814 #define POWER_MODES 5
6815
6816 /* Values are in microsecond */
6817 static const s32 timeout_duration[POWER_MODES] = {
6818 350000,
6819 250000,
6820 75000,
6821 37000,
6822 25000,
6823 };
6824
6825 static const s32 period_duration[POWER_MODES] = {
6826 400000,
6827 700000,
6828 1000000,
6829 1000000,
6830 1000000
6831 };
6832
6833 static int ipw2100_wx_get_range(struct net_device *dev,
6834 struct iw_request_info *info,
6835 union iwreq_data *wrqu, char *extra)
6836 {
6837 /*
6838 * This can be called at any time. No action lock required
6839 */
6840
6841 struct ipw2100_priv *priv = libipw_priv(dev);
6842 struct iw_range *range = (struct iw_range *)extra;
6843 u16 val;
6844 int i, level;
6845
6846 wrqu->data.length = sizeof(*range);
6847 memset(range, 0, sizeof(*range));
6848
6849 /* Let's try to keep this struct in the same order as in
6850 * linux/include/wireless.h
6851 */
6852
6853 /* TODO: See what values we can set, and remove the ones we can't
6854 * set, or fill them with some default data.
6855 */
6856
6857 /* ~5 Mb/s real (802.11b) */
6858 range->throughput = 5 * 1000 * 1000;
6859
6860 // range->sensitivity; /* signal level threshold range */
6861
6862 range->max_qual.qual = 100;
6863 /* TODO: Find real max RSSI and stick here */
6864 range->max_qual.level = 0;
6865 range->max_qual.noise = 0;
6866 range->max_qual.updated = 7; /* Updated all three */
6867
6868 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6869 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6870 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6871 range->avg_qual.noise = 0;
6872 range->avg_qual.updated = 7; /* Updated all three */
6873
6874 range->num_bitrates = RATE_COUNT;
6875
6876 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6877 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6878 }
6879
6880 range->min_rts = MIN_RTS_THRESHOLD;
6881 range->max_rts = MAX_RTS_THRESHOLD;
6882 range->min_frag = MIN_FRAG_THRESHOLD;
6883 range->max_frag = MAX_FRAG_THRESHOLD;
6884
6885 range->min_pmp = period_duration[0]; /* Minimal PM period */
6886 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6887 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6888 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6889
6890 /* How to decode max/min PM period */
6891 range->pmp_flags = IW_POWER_PERIOD;
6892 /* How to decode max/min PM period */
6893 range->pmt_flags = IW_POWER_TIMEOUT;
6894 /* What PM options are supported */
6895 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6896
6897 range->encoding_size[0] = 5;
6898 range->encoding_size[1] = 13; /* Different token sizes */
6899 range->num_encoding_sizes = 2; /* Number of entry in the list */
6900 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6901 // range->encoding_login_index; /* token index for login token */
6902
6903 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6904 range->txpower_capa = IW_TXPOW_DBM;
6905 range->num_txpower = IW_MAX_TXPOWER;
6906 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6907 i < IW_MAX_TXPOWER;
6908 i++, level -=
6909 ((IPW_TX_POWER_MAX_DBM -
6910 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6911 range->txpower[i] = level / 16;
6912 } else {
6913 range->txpower_capa = 0;
6914 range->num_txpower = 0;
6915 }
6916
6917 /* Set the Wireless Extension versions */
6918 range->we_version_compiled = WIRELESS_EXT;
6919 range->we_version_source = 18;
6920
6921 // range->retry_capa; /* What retry options are supported */
6922 // range->retry_flags; /* How to decode max/min retry limit */
6923 // range->r_time_flags; /* How to decode max/min retry life */
6924 // range->min_retry; /* Minimal number of retries */
6925 // range->max_retry; /* Maximal number of retries */
6926 // range->min_r_time; /* Minimal retry lifetime */
6927 // range->max_r_time; /* Maximal retry lifetime */
6928
6929 range->num_channels = FREQ_COUNT;
6930
6931 val = 0;
6932 for (i = 0; i < FREQ_COUNT; i++) {
6933 // TODO: Include only legal frequencies for some countries
6934 // if (local->channel_mask & (1 << i)) {
6935 range->freq[val].i = i + 1;
6936 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6937 range->freq[val].e = 1;
6938 val++;
6939 // }
6940 if (val == IW_MAX_FREQUENCIES)
6941 break;
6942 }
6943 range->num_frequency = val;
6944
6945 /* Event capability (kernel + driver) */
6946 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6947 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6948 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6949
6950 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6951 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6952
6953 IPW_DEBUG_WX("GET Range\n");
6954
6955 return 0;
6956 }
6957
6958 static int ipw2100_wx_set_wap(struct net_device *dev,
6959 struct iw_request_info *info,
6960 union iwreq_data *wrqu, char *extra)
6961 {
6962 struct ipw2100_priv *priv = libipw_priv(dev);
6963 int err = 0;
6964
6965 static const unsigned char any[] = {
6966 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6967 };
6968 static const unsigned char off[] = {
6969 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6970 };
6971
6972 // sanity checks
6973 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6974 return -EINVAL;
6975
6976 mutex_lock(&priv->action_mutex);
6977 if (!(priv->status & STATUS_INITIALIZED)) {
6978 err = -EIO;
6979 goto done;
6980 }
6981
6982 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6983 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6984 /* we disable mandatory BSSID association */
6985 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6986 priv->config &= ~CFG_STATIC_BSSID;
6987 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6988 goto done;
6989 }
6990
6991 priv->config |= CFG_STATIC_BSSID;
6992 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6993
6994 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6995
6996 IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6997
6998 done:
6999 mutex_unlock(&priv->action_mutex);
7000 return err;
7001 }
7002
7003 static int ipw2100_wx_get_wap(struct net_device *dev,
7004 struct iw_request_info *info,
7005 union iwreq_data *wrqu, char *extra)
7006 {
7007 /*
7008 * This can be called at any time. No action lock required
7009 */
7010
7011 struct ipw2100_priv *priv = libipw_priv(dev);
7012
7013 /* If we are associated, trying to associate, or have a statically
7014 * configured BSSID then return that; otherwise return ANY */
7015 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
7016 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
7017 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
7018 } else
7019 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
7020
7021 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
7022 return 0;
7023 }
7024
7025 static int ipw2100_wx_set_essid(struct net_device *dev,
7026 struct iw_request_info *info,
7027 union iwreq_data *wrqu, char *extra)
7028 {
7029 struct ipw2100_priv *priv = libipw_priv(dev);
7030 char *essid = ""; /* ANY */
7031 int length = 0;
7032 int err = 0;
7033 DECLARE_SSID_BUF(ssid);
7034
7035 mutex_lock(&priv->action_mutex);
7036 if (!(priv->status & STATUS_INITIALIZED)) {
7037 err = -EIO;
7038 goto done;
7039 }
7040
7041 if (wrqu->essid.flags && wrqu->essid.length) {
7042 length = wrqu->essid.length;
7043 essid = extra;
7044 }
7045
7046 if (length == 0) {
7047 IPW_DEBUG_WX("Setting ESSID to ANY\n");
7048 priv->config &= ~CFG_STATIC_ESSID;
7049 err = ipw2100_set_essid(priv, NULL, 0, 0);
7050 goto done;
7051 }
7052
7053 length = min(length, IW_ESSID_MAX_SIZE);
7054
7055 priv->config |= CFG_STATIC_ESSID;
7056
7057 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7058 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7059 err = 0;
7060 goto done;
7061 }
7062
7063 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
7064 print_ssid(ssid, essid, length), length);
7065
7066 priv->essid_len = length;
7067 memcpy(priv->essid, essid, priv->essid_len);
7068
7069 err = ipw2100_set_essid(priv, essid, length, 0);
7070
7071 done:
7072 mutex_unlock(&priv->action_mutex);
7073 return err;
7074 }
7075
7076 static int ipw2100_wx_get_essid(struct net_device *dev,
7077 struct iw_request_info *info,
7078 union iwreq_data *wrqu, char *extra)
7079 {
7080 /*
7081 * This can be called at any time. No action lock required
7082 */
7083
7084 struct ipw2100_priv *priv = libipw_priv(dev);
7085 DECLARE_SSID_BUF(ssid);
7086
7087 /* If we are associated, trying to associate, or have a statically
7088 * configured ESSID then return that; otherwise return ANY */
7089 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7090 IPW_DEBUG_WX("Getting essid: '%s'\n",
7091 print_ssid(ssid, priv->essid, priv->essid_len));
7092 memcpy(extra, priv->essid, priv->essid_len);
7093 wrqu->essid.length = priv->essid_len;
7094 wrqu->essid.flags = 1; /* active */
7095 } else {
7096 IPW_DEBUG_WX("Getting essid: ANY\n");
7097 wrqu->essid.length = 0;
7098 wrqu->essid.flags = 0; /* active */
7099 }
7100
7101 return 0;
7102 }
7103
7104 static int ipw2100_wx_set_nick(struct net_device *dev,
7105 struct iw_request_info *info,
7106 union iwreq_data *wrqu, char *extra)
7107 {
7108 /*
7109 * This can be called at any time. No action lock required
7110 */
7111
7112 struct ipw2100_priv *priv = libipw_priv(dev);
7113
7114 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7115 return -E2BIG;
7116
7117 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7118 memset(priv->nick, 0, sizeof(priv->nick));
7119 memcpy(priv->nick, extra, wrqu->data.length);
7120
7121 IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7122
7123 return 0;
7124 }
7125
7126 static int ipw2100_wx_get_nick(struct net_device *dev,
7127 struct iw_request_info *info,
7128 union iwreq_data *wrqu, char *extra)
7129 {
7130 /*
7131 * This can be called at any time. No action lock required
7132 */
7133
7134 struct ipw2100_priv *priv = libipw_priv(dev);
7135
7136 wrqu->data.length = strlen(priv->nick);
7137 memcpy(extra, priv->nick, wrqu->data.length);
7138 wrqu->data.flags = 1; /* active */
7139
7140 IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7141
7142 return 0;
7143 }
7144
7145 static int ipw2100_wx_set_rate(struct net_device *dev,
7146 struct iw_request_info *info,
7147 union iwreq_data *wrqu, char *extra)
7148 {
7149 struct ipw2100_priv *priv = libipw_priv(dev);
7150 u32 target_rate = wrqu->bitrate.value;
7151 u32 rate;
7152 int err = 0;
7153
7154 mutex_lock(&priv->action_mutex);
7155 if (!(priv->status & STATUS_INITIALIZED)) {
7156 err = -EIO;
7157 goto done;
7158 }
7159
7160 rate = 0;
7161
7162 if (target_rate == 1000000 ||
7163 (!wrqu->bitrate.fixed && target_rate > 1000000))
7164 rate |= TX_RATE_1_MBIT;
7165 if (target_rate == 2000000 ||
7166 (!wrqu->bitrate.fixed && target_rate > 2000000))
7167 rate |= TX_RATE_2_MBIT;
7168 if (target_rate == 5500000 ||
7169 (!wrqu->bitrate.fixed && target_rate > 5500000))
7170 rate |= TX_RATE_5_5_MBIT;
7171 if (target_rate == 11000000 ||
7172 (!wrqu->bitrate.fixed && target_rate > 11000000))
7173 rate |= TX_RATE_11_MBIT;
7174 if (rate == 0)
7175 rate = DEFAULT_TX_RATES;
7176
7177 err = ipw2100_set_tx_rates(priv, rate, 0);
7178
7179 IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7180 done:
7181 mutex_unlock(&priv->action_mutex);
7182 return err;
7183 }
7184
7185 static int ipw2100_wx_get_rate(struct net_device *dev,
7186 struct iw_request_info *info,
7187 union iwreq_data *wrqu, char *extra)
7188 {
7189 struct ipw2100_priv *priv = libipw_priv(dev);
7190 int val;
7191 unsigned int len = sizeof(val);
7192 int err = 0;
7193
7194 if (!(priv->status & STATUS_ENABLED) ||
7195 priv->status & STATUS_RF_KILL_MASK ||
7196 !(priv->status & STATUS_ASSOCIATED)) {
7197 wrqu->bitrate.value = 0;
7198 return 0;
7199 }
7200
7201 mutex_lock(&priv->action_mutex);
7202 if (!(priv->status & STATUS_INITIALIZED)) {
7203 err = -EIO;
7204 goto done;
7205 }
7206
7207 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7208 if (err) {
7209 IPW_DEBUG_WX("failed querying ordinals.\n");
7210 goto done;
7211 }
7212
7213 switch (val & TX_RATE_MASK) {
7214 case TX_RATE_1_MBIT:
7215 wrqu->bitrate.value = 1000000;
7216 break;
7217 case TX_RATE_2_MBIT:
7218 wrqu->bitrate.value = 2000000;
7219 break;
7220 case TX_RATE_5_5_MBIT:
7221 wrqu->bitrate.value = 5500000;
7222 break;
7223 case TX_RATE_11_MBIT:
7224 wrqu->bitrate.value = 11000000;
7225 break;
7226 default:
7227 wrqu->bitrate.value = 0;
7228 }
7229
7230 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7231
7232 done:
7233 mutex_unlock(&priv->action_mutex);
7234 return err;
7235 }
7236
7237 static int ipw2100_wx_set_rts(struct net_device *dev,
7238 struct iw_request_info *info,
7239 union iwreq_data *wrqu, char *extra)
7240 {
7241 struct ipw2100_priv *priv = libipw_priv(dev);
7242 int value, err;
7243
7244 /* Auto RTS not yet supported */
7245 if (wrqu->rts.fixed == 0)
7246 return -EINVAL;
7247
7248 mutex_lock(&priv->action_mutex);
7249 if (!(priv->status & STATUS_INITIALIZED)) {
7250 err = -EIO;
7251 goto done;
7252 }
7253
7254 if (wrqu->rts.disabled)
7255 value = priv->rts_threshold | RTS_DISABLED;
7256 else {
7257 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7258 err = -EINVAL;
7259 goto done;
7260 }
7261 value = wrqu->rts.value;
7262 }
7263
7264 err = ipw2100_set_rts_threshold(priv, value);
7265
7266 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7267 done:
7268 mutex_unlock(&priv->action_mutex);
7269 return err;
7270 }
7271
7272 static int ipw2100_wx_get_rts(struct net_device *dev,
7273 struct iw_request_info *info,
7274 union iwreq_data *wrqu, char *extra)
7275 {
7276 /*
7277 * This can be called at any time. No action lock required
7278 */
7279
7280 struct ipw2100_priv *priv = libipw_priv(dev);
7281
7282 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7283 wrqu->rts.fixed = 1; /* no auto select */
7284
7285 /* If RTS is set to the default value, then it is disabled */
7286 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7287
7288 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7289
7290 return 0;
7291 }
7292
7293 static int ipw2100_wx_set_txpow(struct net_device *dev,
7294 struct iw_request_info *info,
7295 union iwreq_data *wrqu, char *extra)
7296 {
7297 struct ipw2100_priv *priv = libipw_priv(dev);
7298 int err = 0, value;
7299
7300 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7301 return -EINPROGRESS;
7302
7303 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7304 return 0;
7305
7306 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7307 return -EINVAL;
7308
7309 if (wrqu->txpower.fixed == 0)
7310 value = IPW_TX_POWER_DEFAULT;
7311 else {
7312 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7313 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7314 return -EINVAL;
7315
7316 value = wrqu->txpower.value;
7317 }
7318
7319 mutex_lock(&priv->action_mutex);
7320 if (!(priv->status & STATUS_INITIALIZED)) {
7321 err = -EIO;
7322 goto done;
7323 }
7324
7325 err = ipw2100_set_tx_power(priv, value);
7326
7327 IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7328
7329 done:
7330 mutex_unlock(&priv->action_mutex);
7331 return err;
7332 }
7333
7334 static int ipw2100_wx_get_txpow(struct net_device *dev,
7335 struct iw_request_info *info,
7336 union iwreq_data *wrqu, char *extra)
7337 {
7338 /*
7339 * This can be called at any time. No action lock required
7340 */
7341
7342 struct ipw2100_priv *priv = libipw_priv(dev);
7343
7344 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7345
7346 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7347 wrqu->txpower.fixed = 0;
7348 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7349 } else {
7350 wrqu->txpower.fixed = 1;
7351 wrqu->txpower.value = priv->tx_power;
7352 }
7353
7354 wrqu->txpower.flags = IW_TXPOW_DBM;
7355
7356 IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7357
7358 return 0;
7359 }
7360
7361 static int ipw2100_wx_set_frag(struct net_device *dev,
7362 struct iw_request_info *info,
7363 union iwreq_data *wrqu, char *extra)
7364 {
7365 /*
7366 * This can be called at any time. No action lock required
7367 */
7368
7369 struct ipw2100_priv *priv = libipw_priv(dev);
7370
7371 if (!wrqu->frag.fixed)
7372 return -EINVAL;
7373
7374 if (wrqu->frag.disabled) {
7375 priv->frag_threshold |= FRAG_DISABLED;
7376 priv->ieee->fts = DEFAULT_FTS;
7377 } else {
7378 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7379 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7380 return -EINVAL;
7381
7382 priv->ieee->fts = wrqu->frag.value & ~0x1;
7383 priv->frag_threshold = priv->ieee->fts;
7384 }
7385
7386 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7387
7388 return 0;
7389 }
7390
7391 static int ipw2100_wx_get_frag(struct net_device *dev,
7392 struct iw_request_info *info,
7393 union iwreq_data *wrqu, char *extra)
7394 {
7395 /*
7396 * This can be called at any time. No action lock required
7397 */
7398
7399 struct ipw2100_priv *priv = libipw_priv(dev);
7400 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7401 wrqu->frag.fixed = 0; /* no auto select */
7402 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7403
7404 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7405
7406 return 0;
7407 }
7408
7409 static int ipw2100_wx_set_retry(struct net_device *dev,
7410 struct iw_request_info *info,
7411 union iwreq_data *wrqu, char *extra)
7412 {
7413 struct ipw2100_priv *priv = libipw_priv(dev);
7414 int err = 0;
7415
7416 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7417 return -EINVAL;
7418
7419 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7420 return 0;
7421
7422 mutex_lock(&priv->action_mutex);
7423 if (!(priv->status & STATUS_INITIALIZED)) {
7424 err = -EIO;
7425 goto done;
7426 }
7427
7428 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7429 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7430 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7431 wrqu->retry.value);
7432 goto done;
7433 }
7434
7435 if (wrqu->retry.flags & IW_RETRY_LONG) {
7436 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7437 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7438 wrqu->retry.value);
7439 goto done;
7440 }
7441
7442 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7443 if (!err)
7444 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7445
7446 IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7447
7448 done:
7449 mutex_unlock(&priv->action_mutex);
7450 return err;
7451 }
7452
7453 static int ipw2100_wx_get_retry(struct net_device *dev,
7454 struct iw_request_info *info,
7455 union iwreq_data *wrqu, char *extra)
7456 {
7457 /*
7458 * This can be called at any time. No action lock required
7459 */
7460
7461 struct ipw2100_priv *priv = libipw_priv(dev);
7462
7463 wrqu->retry.disabled = 0; /* can't be disabled */
7464
7465 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7466 return -EINVAL;
7467
7468 if (wrqu->retry.flags & IW_RETRY_LONG) {
7469 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7470 wrqu->retry.value = priv->long_retry_limit;
7471 } else {
7472 wrqu->retry.flags =
7473 (priv->short_retry_limit !=
7474 priv->long_retry_limit) ?
7475 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7476
7477 wrqu->retry.value = priv->short_retry_limit;
7478 }
7479
7480 IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7481
7482 return 0;
7483 }
7484
7485 static int ipw2100_wx_set_scan(struct net_device *dev,
7486 struct iw_request_info *info,
7487 union iwreq_data *wrqu, char *extra)
7488 {
7489 struct ipw2100_priv *priv = libipw_priv(dev);
7490 int err = 0;
7491
7492 mutex_lock(&priv->action_mutex);
7493 if (!(priv->status & STATUS_INITIALIZED)) {
7494 err = -EIO;
7495 goto done;
7496 }
7497
7498 IPW_DEBUG_WX("Initiating scan...\n");
7499
7500 priv->user_requested_scan = 1;
7501 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7502 IPW_DEBUG_WX("Start scan failed.\n");
7503
7504 /* TODO: Mark a scan as pending so when hardware initialized
7505 * a scan starts */
7506 }
7507
7508 done:
7509 mutex_unlock(&priv->action_mutex);
7510 return err;
7511 }
7512
7513 static int ipw2100_wx_get_scan(struct net_device *dev,
7514 struct iw_request_info *info,
7515 union iwreq_data *wrqu, char *extra)
7516 {
7517 /*
7518 * This can be called at any time. No action lock required
7519 */
7520
7521 struct ipw2100_priv *priv = libipw_priv(dev);
7522 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7523 }
7524
7525 /*
7526 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7527 */
7528 static int ipw2100_wx_set_encode(struct net_device *dev,
7529 struct iw_request_info *info,
7530 union iwreq_data *wrqu, char *key)
7531 {
7532 /*
7533 * No check of STATUS_INITIALIZED required
7534 */
7535
7536 struct ipw2100_priv *priv = libipw_priv(dev);
7537 return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7538 }
7539
7540 static int ipw2100_wx_get_encode(struct net_device *dev,
7541 struct iw_request_info *info,
7542 union iwreq_data *wrqu, char *key)
7543 {
7544 /*
7545 * This can be called at any time. No action lock required
7546 */
7547
7548 struct ipw2100_priv *priv = libipw_priv(dev);
7549 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7550 }
7551
7552 static int ipw2100_wx_set_power(struct net_device *dev,
7553 struct iw_request_info *info,
7554 union iwreq_data *wrqu, char *extra)
7555 {
7556 struct ipw2100_priv *priv = libipw_priv(dev);
7557 int err = 0;
7558
7559 mutex_lock(&priv->action_mutex);
7560 if (!(priv->status & STATUS_INITIALIZED)) {
7561 err = -EIO;
7562 goto done;
7563 }
7564
7565 if (wrqu->power.disabled) {
7566 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7567 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7568 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7569 goto done;
7570 }
7571
7572 switch (wrqu->power.flags & IW_POWER_MODE) {
7573 case IW_POWER_ON: /* If not specified */
7574 case IW_POWER_MODE: /* If set all mask */
7575 case IW_POWER_ALL_R: /* If explicitly state all */
7576 break;
7577 default: /* Otherwise we don't support it */
7578 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7579 wrqu->power.flags);
7580 err = -EOPNOTSUPP;
7581 goto done;
7582 }
7583
7584 /* If the user hasn't specified a power management mode yet, default
7585 * to BATTERY */
7586 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7587 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7588
7589 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7590
7591 done:
7592 mutex_unlock(&priv->action_mutex);
7593 return err;
7594
7595 }
7596
7597 static int ipw2100_wx_get_power(struct net_device *dev,
7598 struct iw_request_info *info,
7599 union iwreq_data *wrqu, char *extra)
7600 {
7601 /*
7602 * This can be called at any time. No action lock required
7603 */
7604
7605 struct ipw2100_priv *priv = libipw_priv(dev);
7606
7607 if (!(priv->power_mode & IPW_POWER_ENABLED))
7608 wrqu->power.disabled = 1;
7609 else {
7610 wrqu->power.disabled = 0;
7611 wrqu->power.flags = 0;
7612 }
7613
7614 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7615
7616 return 0;
7617 }
7618
7619 /*
7620 * WE-18 WPA support
7621 */
7622
7623 /* SIOCSIWGENIE */
7624 static int ipw2100_wx_set_genie(struct net_device *dev,
7625 struct iw_request_info *info,
7626 union iwreq_data *wrqu, char *extra)
7627 {
7628
7629 struct ipw2100_priv *priv = libipw_priv(dev);
7630 struct libipw_device *ieee = priv->ieee;
7631 u8 *buf;
7632
7633 if (!ieee->wpa_enabled)
7634 return -EOPNOTSUPP;
7635
7636 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7637 (wrqu->data.length && extra == NULL))
7638 return -EINVAL;
7639
7640 if (wrqu->data.length) {
7641 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7642 if (buf == NULL)
7643 return -ENOMEM;
7644
7645 kfree(ieee->wpa_ie);
7646 ieee->wpa_ie = buf;
7647 ieee->wpa_ie_len = wrqu->data.length;
7648 } else {
7649 kfree(ieee->wpa_ie);
7650 ieee->wpa_ie = NULL;
7651 ieee->wpa_ie_len = 0;
7652 }
7653
7654 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7655
7656 return 0;
7657 }
7658
7659 /* SIOCGIWGENIE */
7660 static int ipw2100_wx_get_genie(struct net_device *dev,
7661 struct iw_request_info *info,
7662 union iwreq_data *wrqu, char *extra)
7663 {
7664 struct ipw2100_priv *priv = libipw_priv(dev);
7665 struct libipw_device *ieee = priv->ieee;
7666
7667 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7668 wrqu->data.length = 0;
7669 return 0;
7670 }
7671
7672 if (wrqu->data.length < ieee->wpa_ie_len)
7673 return -E2BIG;
7674
7675 wrqu->data.length = ieee->wpa_ie_len;
7676 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7677
7678 return 0;
7679 }
7680
7681 /* SIOCSIWAUTH */
7682 static int ipw2100_wx_set_auth(struct net_device *dev,
7683 struct iw_request_info *info,
7684 union iwreq_data *wrqu, char *extra)
7685 {
7686 struct ipw2100_priv *priv = libipw_priv(dev);
7687 struct libipw_device *ieee = priv->ieee;
7688 struct iw_param *param = &wrqu->param;
7689 struct lib80211_crypt_data *crypt;
7690 unsigned long flags;
7691 int ret = 0;
7692
7693 switch (param->flags & IW_AUTH_INDEX) {
7694 case IW_AUTH_WPA_VERSION:
7695 case IW_AUTH_CIPHER_PAIRWISE:
7696 case IW_AUTH_CIPHER_GROUP:
7697 case IW_AUTH_KEY_MGMT:
7698 /*
7699 * ipw2200 does not use these parameters
7700 */
7701 break;
7702
7703 case IW_AUTH_TKIP_COUNTERMEASURES:
7704 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7705 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7706 break;
7707
7708 flags = crypt->ops->get_flags(crypt->priv);
7709
7710 if (param->value)
7711 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7712 else
7713 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7714
7715 crypt->ops->set_flags(flags, crypt->priv);
7716
7717 break;
7718
7719 case IW_AUTH_DROP_UNENCRYPTED:{
7720 /* HACK:
7721 *
7722 * wpa_supplicant calls set_wpa_enabled when the driver
7723 * is loaded and unloaded, regardless of if WPA is being
7724 * used. No other calls are made which can be used to
7725 * determine if encryption will be used or not prior to
7726 * association being expected. If encryption is not being
7727 * used, drop_unencrypted is set to false, else true -- we
7728 * can use this to determine if the CAP_PRIVACY_ON bit should
7729 * be set.
7730 */
7731 struct libipw_security sec = {
7732 .flags = SEC_ENABLED,
7733 .enabled = param->value,
7734 };
7735 priv->ieee->drop_unencrypted = param->value;
7736 /* We only change SEC_LEVEL for open mode. Others
7737 * are set by ipw_wpa_set_encryption.
7738 */
7739 if (!param->value) {
7740 sec.flags |= SEC_LEVEL;
7741 sec.level = SEC_LEVEL_0;
7742 } else {
7743 sec.flags |= SEC_LEVEL;
7744 sec.level = SEC_LEVEL_1;
7745 }
7746 if (priv->ieee->set_security)
7747 priv->ieee->set_security(priv->ieee->dev, &sec);
7748 break;
7749 }
7750
7751 case IW_AUTH_80211_AUTH_ALG:
7752 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7753 break;
7754
7755 case IW_AUTH_WPA_ENABLED:
7756 ret = ipw2100_wpa_enable(priv, param->value);
7757 break;
7758
7759 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7760 ieee->ieee802_1x = param->value;
7761 break;
7762
7763 //case IW_AUTH_ROAMING_CONTROL:
7764 case IW_AUTH_PRIVACY_INVOKED:
7765 ieee->privacy_invoked = param->value;
7766 break;
7767
7768 default:
7769 return -EOPNOTSUPP;
7770 }
7771 return ret;
7772 }
7773
7774 /* SIOCGIWAUTH */
7775 static int ipw2100_wx_get_auth(struct net_device *dev,
7776 struct iw_request_info *info,
7777 union iwreq_data *wrqu, char *extra)
7778 {
7779 struct ipw2100_priv *priv = libipw_priv(dev);
7780 struct libipw_device *ieee = priv->ieee;
7781 struct lib80211_crypt_data *crypt;
7782 struct iw_param *param = &wrqu->param;
7783 int ret = 0;
7784
7785 switch (param->flags & IW_AUTH_INDEX) {
7786 case IW_AUTH_WPA_VERSION:
7787 case IW_AUTH_CIPHER_PAIRWISE:
7788 case IW_AUTH_CIPHER_GROUP:
7789 case IW_AUTH_KEY_MGMT:
7790 /*
7791 * wpa_supplicant will control these internally
7792 */
7793 ret = -EOPNOTSUPP;
7794 break;
7795
7796 case IW_AUTH_TKIP_COUNTERMEASURES:
7797 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7798 if (!crypt || !crypt->ops->get_flags) {
7799 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7800 "crypt not set!\n");
7801 break;
7802 }
7803
7804 param->value = (crypt->ops->get_flags(crypt->priv) &
7805 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7806
7807 break;
7808
7809 case IW_AUTH_DROP_UNENCRYPTED:
7810 param->value = ieee->drop_unencrypted;
7811 break;
7812
7813 case IW_AUTH_80211_AUTH_ALG:
7814 param->value = priv->ieee->sec.auth_mode;
7815 break;
7816
7817 case IW_AUTH_WPA_ENABLED:
7818 param->value = ieee->wpa_enabled;
7819 break;
7820
7821 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7822 param->value = ieee->ieee802_1x;
7823 break;
7824
7825 case IW_AUTH_ROAMING_CONTROL:
7826 case IW_AUTH_PRIVACY_INVOKED:
7827 param->value = ieee->privacy_invoked;
7828 break;
7829
7830 default:
7831 return -EOPNOTSUPP;
7832 }
7833 return 0;
7834 }
7835
7836 /* SIOCSIWENCODEEXT */
7837 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7838 struct iw_request_info *info,
7839 union iwreq_data *wrqu, char *extra)
7840 {
7841 struct ipw2100_priv *priv = libipw_priv(dev);
7842 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7843 }
7844
7845 /* SIOCGIWENCODEEXT */
7846 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7847 struct iw_request_info *info,
7848 union iwreq_data *wrqu, char *extra)
7849 {
7850 struct ipw2100_priv *priv = libipw_priv(dev);
7851 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7852 }
7853
7854 /* SIOCSIWMLME */
7855 static int ipw2100_wx_set_mlme(struct net_device *dev,
7856 struct iw_request_info *info,
7857 union iwreq_data *wrqu, char *extra)
7858 {
7859 struct ipw2100_priv *priv = libipw_priv(dev);
7860 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7861 __le16 reason;
7862
7863 reason = cpu_to_le16(mlme->reason_code);
7864
7865 switch (mlme->cmd) {
7866 case IW_MLME_DEAUTH:
7867 // silently ignore
7868 break;
7869
7870 case IW_MLME_DISASSOC:
7871 ipw2100_disassociate_bssid(priv);
7872 break;
7873
7874 default:
7875 return -EOPNOTSUPP;
7876 }
7877 return 0;
7878 }
7879
7880 /*
7881 *
7882 * IWPRIV handlers
7883 *
7884 */
7885 #ifdef CONFIG_IPW2100_MONITOR
7886 static int ipw2100_wx_set_promisc(struct net_device *dev,
7887 struct iw_request_info *info,
7888 union iwreq_data *wrqu, char *extra)
7889 {
7890 struct ipw2100_priv *priv = libipw_priv(dev);
7891 int *parms = (int *)extra;
7892 int enable = (parms[0] > 0);
7893 int err = 0;
7894
7895 mutex_lock(&priv->action_mutex);
7896 if (!(priv->status & STATUS_INITIALIZED)) {
7897 err = -EIO;
7898 goto done;
7899 }
7900
7901 if (enable) {
7902 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7903 err = ipw2100_set_channel(priv, parms[1], 0);
7904 goto done;
7905 }
7906 priv->channel = parms[1];
7907 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7908 } else {
7909 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7910 err = ipw2100_switch_mode(priv, priv->last_mode);
7911 }
7912 done:
7913 mutex_unlock(&priv->action_mutex);
7914 return err;
7915 }
7916
7917 static int ipw2100_wx_reset(struct net_device *dev,
7918 struct iw_request_info *info,
7919 union iwreq_data *wrqu, char *extra)
7920 {
7921 struct ipw2100_priv *priv = libipw_priv(dev);
7922 if (priv->status & STATUS_INITIALIZED)
7923 schedule_reset(priv);
7924 return 0;
7925 }
7926
7927 #endif
7928
7929 static int ipw2100_wx_set_powermode(struct net_device *dev,
7930 struct iw_request_info *info,
7931 union iwreq_data *wrqu, char *extra)
7932 {
7933 struct ipw2100_priv *priv = libipw_priv(dev);
7934 int err = 0, mode = *(int *)extra;
7935
7936 mutex_lock(&priv->action_mutex);
7937 if (!(priv->status & STATUS_INITIALIZED)) {
7938 err = -EIO;
7939 goto done;
7940 }
7941
7942 if ((mode < 0) || (mode > POWER_MODES))
7943 mode = IPW_POWER_AUTO;
7944
7945 if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7946 err = ipw2100_set_power_mode(priv, mode);
7947 done:
7948 mutex_unlock(&priv->action_mutex);
7949 return err;
7950 }
7951
7952 #define MAX_POWER_STRING 80
7953 static int ipw2100_wx_get_powermode(struct net_device *dev,
7954 struct iw_request_info *info,
7955 union iwreq_data *wrqu, char *extra)
7956 {
7957 /*
7958 * This can be called at any time. No action lock required
7959 */
7960
7961 struct ipw2100_priv *priv = libipw_priv(dev);
7962 int level = IPW_POWER_LEVEL(priv->power_mode);
7963 s32 timeout, period;
7964
7965 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7966 snprintf(extra, MAX_POWER_STRING,
7967 "Power save level: %d (Off)", level);
7968 } else {
7969 switch (level) {
7970 case IPW_POWER_MODE_CAM:
7971 snprintf(extra, MAX_POWER_STRING,
7972 "Power save level: %d (None)", level);
7973 break;
7974 case IPW_POWER_AUTO:
7975 snprintf(extra, MAX_POWER_STRING,
7976 "Power save level: %d (Auto)", level);
7977 break;
7978 default:
7979 timeout = timeout_duration[level - 1] / 1000;
7980 period = period_duration[level - 1] / 1000;
7981 snprintf(extra, MAX_POWER_STRING,
7982 "Power save level: %d "
7983 "(Timeout %dms, Period %dms)",
7984 level, timeout, period);
7985 }
7986 }
7987
7988 wrqu->data.length = strlen(extra) + 1;
7989
7990 return 0;
7991 }
7992
7993 static int ipw2100_wx_set_preamble(struct net_device *dev,
7994 struct iw_request_info *info,
7995 union iwreq_data *wrqu, char *extra)
7996 {
7997 struct ipw2100_priv *priv = libipw_priv(dev);
7998 int err, mode = *(int *)extra;
7999
8000 mutex_lock(&priv->action_mutex);
8001 if (!(priv->status & STATUS_INITIALIZED)) {
8002 err = -EIO;
8003 goto done;
8004 }
8005
8006 if (mode == 1)
8007 priv->config |= CFG_LONG_PREAMBLE;
8008 else if (mode == 0)
8009 priv->config &= ~CFG_LONG_PREAMBLE;
8010 else {
8011 err = -EINVAL;
8012 goto done;
8013 }
8014
8015 err = ipw2100_system_config(priv, 0);
8016
8017 done:
8018 mutex_unlock(&priv->action_mutex);
8019 return err;
8020 }
8021
8022 static int ipw2100_wx_get_preamble(struct net_device *dev,
8023 struct iw_request_info *info,
8024 union iwreq_data *wrqu, char *extra)
8025 {
8026 /*
8027 * This can be called at any time. No action lock required
8028 */
8029
8030 struct ipw2100_priv *priv = libipw_priv(dev);
8031
8032 if (priv->config & CFG_LONG_PREAMBLE)
8033 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
8034 else
8035 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
8036
8037 return 0;
8038 }
8039
8040 #ifdef CONFIG_IPW2100_MONITOR
8041 static int ipw2100_wx_set_crc_check(struct net_device *dev,
8042 struct iw_request_info *info,
8043 union iwreq_data *wrqu, char *extra)
8044 {
8045 struct ipw2100_priv *priv = libipw_priv(dev);
8046 int err, mode = *(int *)extra;
8047
8048 mutex_lock(&priv->action_mutex);
8049 if (!(priv->status & STATUS_INITIALIZED)) {
8050 err = -EIO;
8051 goto done;
8052 }
8053
8054 if (mode == 1)
8055 priv->config |= CFG_CRC_CHECK;
8056 else if (mode == 0)
8057 priv->config &= ~CFG_CRC_CHECK;
8058 else {
8059 err = -EINVAL;
8060 goto done;
8061 }
8062 err = 0;
8063
8064 done:
8065 mutex_unlock(&priv->action_mutex);
8066 return err;
8067 }
8068
8069 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8070 struct iw_request_info *info,
8071 union iwreq_data *wrqu, char *extra)
8072 {
8073 /*
8074 * This can be called at any time. No action lock required
8075 */
8076
8077 struct ipw2100_priv *priv = libipw_priv(dev);
8078
8079 if (priv->config & CFG_CRC_CHECK)
8080 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8081 else
8082 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8083
8084 return 0;
8085 }
8086 #endif /* CONFIG_IPW2100_MONITOR */
8087
8088 static iw_handler ipw2100_wx_handlers[] = {
8089 IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8090 IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8091 IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8092 IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8093 IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8094 IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8095 IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8096 IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8097 IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8098 IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8099 IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8100 IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8101 IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8102 IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8103 IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8104 IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8105 IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8106 IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8107 IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8108 IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8109 IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8110 IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8111 IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8112 IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8113 IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8114 IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8115 IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8116 IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8117 IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8118 IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8119 IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8120 IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8121 IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8122 IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8123 IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8124 };
8125
8126 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8127 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8128 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8129 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8130 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8131 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8132 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8133 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8134
8135 static const struct iw_priv_args ipw2100_private_args[] = {
8136
8137 #ifdef CONFIG_IPW2100_MONITOR
8138 {
8139 IPW2100_PRIV_SET_MONITOR,
8140 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8141 {
8142 IPW2100_PRIV_RESET,
8143 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8144 #endif /* CONFIG_IPW2100_MONITOR */
8145
8146 {
8147 IPW2100_PRIV_SET_POWER,
8148 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8149 {
8150 IPW2100_PRIV_GET_POWER,
8151 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8152 "get_power"},
8153 {
8154 IPW2100_PRIV_SET_LONGPREAMBLE,
8155 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8156 {
8157 IPW2100_PRIV_GET_LONGPREAMBLE,
8158 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8159 #ifdef CONFIG_IPW2100_MONITOR
8160 {
8161 IPW2100_PRIV_SET_CRC_CHECK,
8162 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8163 {
8164 IPW2100_PRIV_GET_CRC_CHECK,
8165 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8166 #endif /* CONFIG_IPW2100_MONITOR */
8167 };
8168
8169 static iw_handler ipw2100_private_handler[] = {
8170 #ifdef CONFIG_IPW2100_MONITOR
8171 ipw2100_wx_set_promisc,
8172 ipw2100_wx_reset,
8173 #else /* CONFIG_IPW2100_MONITOR */
8174 NULL,
8175 NULL,
8176 #endif /* CONFIG_IPW2100_MONITOR */
8177 ipw2100_wx_set_powermode,
8178 ipw2100_wx_get_powermode,
8179 ipw2100_wx_set_preamble,
8180 ipw2100_wx_get_preamble,
8181 #ifdef CONFIG_IPW2100_MONITOR
8182 ipw2100_wx_set_crc_check,
8183 ipw2100_wx_get_crc_check,
8184 #else /* CONFIG_IPW2100_MONITOR */
8185 NULL,
8186 NULL,
8187 #endif /* CONFIG_IPW2100_MONITOR */
8188 };
8189
8190 /*
8191 * Get wireless statistics.
8192 * Called by /proc/net/wireless
8193 * Also called by SIOCGIWSTATS
8194 */
8195 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8196 {
8197 enum {
8198 POOR = 30,
8199 FAIR = 60,
8200 GOOD = 80,
8201 VERY_GOOD = 90,
8202 EXCELLENT = 95,
8203 PERFECT = 100
8204 };
8205 int rssi_qual;
8206 int tx_qual;
8207 int beacon_qual;
8208 int quality;
8209
8210 struct ipw2100_priv *priv = libipw_priv(dev);
8211 struct iw_statistics *wstats;
8212 u32 rssi, tx_retries, missed_beacons, tx_failures;
8213 u32 ord_len = sizeof(u32);
8214
8215 if (!priv)
8216 return (struct iw_statistics *)NULL;
8217
8218 wstats = &priv->wstats;
8219
8220 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8221 * ipw2100_wx_wireless_stats seems to be called before fw is
8222 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8223 * and associated; if not associcated, the values are all meaningless
8224 * anyway, so set them all to NULL and INVALID */
8225 if (!(priv->status & STATUS_ASSOCIATED)) {
8226 wstats->miss.beacon = 0;
8227 wstats->discard.retries = 0;
8228 wstats->qual.qual = 0;
8229 wstats->qual.level = 0;
8230 wstats->qual.noise = 0;
8231 wstats->qual.updated = 7;
8232 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8233 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8234 return wstats;
8235 }
8236
8237 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8238 &missed_beacons, &ord_len))
8239 goto fail_get_ordinal;
8240
8241 /* If we don't have a connection the quality and level is 0 */
8242 if (!(priv->status & STATUS_ASSOCIATED)) {
8243 wstats->qual.qual = 0;
8244 wstats->qual.level = 0;
8245 } else {
8246 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8247 &rssi, &ord_len))
8248 goto fail_get_ordinal;
8249 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8250 if (rssi < 10)
8251 rssi_qual = rssi * POOR / 10;
8252 else if (rssi < 15)
8253 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8254 else if (rssi < 20)
8255 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8256 else if (rssi < 30)
8257 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8258 10 + GOOD;
8259 else
8260 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8261 10 + VERY_GOOD;
8262
8263 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8264 &tx_retries, &ord_len))
8265 goto fail_get_ordinal;
8266
8267 if (tx_retries > 75)
8268 tx_qual = (90 - tx_retries) * POOR / 15;
8269 else if (tx_retries > 70)
8270 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8271 else if (tx_retries > 65)
8272 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8273 else if (tx_retries > 50)
8274 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8275 15 + GOOD;
8276 else
8277 tx_qual = (50 - tx_retries) *
8278 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8279
8280 if (missed_beacons > 50)
8281 beacon_qual = (60 - missed_beacons) * POOR / 10;
8282 else if (missed_beacons > 40)
8283 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8284 10 + POOR;
8285 else if (missed_beacons > 32)
8286 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8287 18 + FAIR;
8288 else if (missed_beacons > 20)
8289 beacon_qual = (32 - missed_beacons) *
8290 (VERY_GOOD - GOOD) / 20 + GOOD;
8291 else
8292 beacon_qual = (20 - missed_beacons) *
8293 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8294
8295 quality = min(tx_qual, rssi_qual);
8296 quality = min(beacon_qual, quality);
8297
8298 #ifdef CONFIG_IPW2100_DEBUG
8299 if (beacon_qual == quality)
8300 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8301 else if (tx_qual == quality)
8302 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8303 else if (quality != 100)
8304 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8305 else
8306 IPW_DEBUG_WX("Quality not clamped.\n");
8307 #endif
8308
8309 wstats->qual.qual = quality;
8310 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8311 }
8312
8313 wstats->qual.noise = 0;
8314 wstats->qual.updated = 7;
8315 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8316
8317 /* FIXME: this is percent and not a # */
8318 wstats->miss.beacon = missed_beacons;
8319
8320 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8321 &tx_failures, &ord_len))
8322 goto fail_get_ordinal;
8323 wstats->discard.retries = tx_failures;
8324
8325 return wstats;
8326
8327 fail_get_ordinal:
8328 IPW_DEBUG_WX("failed querying ordinals.\n");
8329
8330 return (struct iw_statistics *)NULL;
8331 }
8332
8333 static struct iw_handler_def ipw2100_wx_handler_def = {
8334 .standard = ipw2100_wx_handlers,
8335 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8336 .num_private = ARRAY_SIZE(ipw2100_private_handler),
8337 .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8338 .private = (iw_handler *) ipw2100_private_handler,
8339 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8340 .get_wireless_stats = ipw2100_wx_wireless_stats,
8341 };
8342
8343 static void ipw2100_wx_event_work(struct work_struct *work)
8344 {
8345 struct ipw2100_priv *priv =
8346 container_of(work, struct ipw2100_priv, wx_event_work.work);
8347 union iwreq_data wrqu;
8348 unsigned int len = ETH_ALEN;
8349
8350 if (priv->status & STATUS_STOPPING)
8351 return;
8352
8353 mutex_lock(&priv->action_mutex);
8354
8355 IPW_DEBUG_WX("enter\n");
8356
8357 mutex_unlock(&priv->action_mutex);
8358
8359 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8360
8361 /* Fetch BSSID from the hardware */
8362 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8363 priv->status & STATUS_RF_KILL_MASK ||
8364 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8365 &priv->bssid, &len)) {
8366 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8367 } else {
8368 /* We now have the BSSID, so can finish setting to the full
8369 * associated state */
8370 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8371 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8372 priv->status &= ~STATUS_ASSOCIATING;
8373 priv->status |= STATUS_ASSOCIATED;
8374 netif_carrier_on(priv->net_dev);
8375 netif_wake_queue(priv->net_dev);
8376 }
8377
8378 if (!(priv->status & STATUS_ASSOCIATED)) {
8379 IPW_DEBUG_WX("Configuring ESSID\n");
8380 mutex_lock(&priv->action_mutex);
8381 /* This is a disassociation event, so kick the firmware to
8382 * look for another AP */
8383 if (priv->config & CFG_STATIC_ESSID)
8384 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8385 0);
8386 else
8387 ipw2100_set_essid(priv, NULL, 0, 0);
8388 mutex_unlock(&priv->action_mutex);
8389 }
8390
8391 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8392 }
8393
8394 #define IPW2100_FW_MAJOR_VERSION 1
8395 #define IPW2100_FW_MINOR_VERSION 3
8396
8397 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8398 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8399
8400 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8401 IPW2100_FW_MAJOR_VERSION)
8402
8403 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8404 "." __stringify(IPW2100_FW_MINOR_VERSION)
8405
8406 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8407
8408 /*
8409
8410 BINARY FIRMWARE HEADER FORMAT
8411
8412 offset length desc
8413 0 2 version
8414 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8415 4 4 fw_len
8416 8 4 uc_len
8417 C fw_len firmware data
8418 12 + fw_len uc_len microcode data
8419
8420 */
8421
8422 struct ipw2100_fw_header {
8423 short version;
8424 short mode;
8425 unsigned int fw_size;
8426 unsigned int uc_size;
8427 } __packed;
8428
8429 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8430 {
8431 struct ipw2100_fw_header *h =
8432 (struct ipw2100_fw_header *)fw->fw_entry->data;
8433
8434 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8435 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8436 "(detected version id of %u). "
8437 "See Documentation/networking/README.ipw2100\n",
8438 h->version);
8439 return 1;
8440 }
8441
8442 fw->version = h->version;
8443 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8444 fw->fw.size = h->fw_size;
8445 fw->uc.data = fw->fw.data + h->fw_size;
8446 fw->uc.size = h->uc_size;
8447
8448 return 0;
8449 }
8450
8451 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8452 struct ipw2100_fw *fw)
8453 {
8454 char *fw_name;
8455 int rc;
8456
8457 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8458 priv->net_dev->name);
8459
8460 switch (priv->ieee->iw_mode) {
8461 case IW_MODE_ADHOC:
8462 fw_name = IPW2100_FW_NAME("-i");
8463 break;
8464 #ifdef CONFIG_IPW2100_MONITOR
8465 case IW_MODE_MONITOR:
8466 fw_name = IPW2100_FW_NAME("-p");
8467 break;
8468 #endif
8469 case IW_MODE_INFRA:
8470 default:
8471 fw_name = IPW2100_FW_NAME("");
8472 break;
8473 }
8474
8475 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8476
8477 if (rc < 0) {
8478 printk(KERN_ERR DRV_NAME ": "
8479 "%s: Firmware '%s' not available or load failed.\n",
8480 priv->net_dev->name, fw_name);
8481 return rc;
8482 }
8483 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8484 fw->fw_entry->size);
8485
8486 ipw2100_mod_firmware_load(fw);
8487
8488 return 0;
8489 }
8490
8491 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8492 #ifdef CONFIG_IPW2100_MONITOR
8493 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8494 #endif
8495 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8496
8497 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8498 struct ipw2100_fw *fw)
8499 {
8500 fw->version = 0;
8501 release_firmware(fw->fw_entry);
8502 fw->fw_entry = NULL;
8503 }
8504
8505 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8506 size_t max)
8507 {
8508 char ver[MAX_FW_VERSION_LEN];
8509 u32 len = MAX_FW_VERSION_LEN;
8510 u32 tmp;
8511 int i;
8512 /* firmware version is an ascii string (max len of 14) */
8513 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8514 return -EIO;
8515 tmp = max;
8516 if (len >= max)
8517 len = max - 1;
8518 for (i = 0; i < len; i++)
8519 buf[i] = ver[i];
8520 buf[i] = '\0';
8521 return tmp;
8522 }
8523
8524 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8525 size_t max)
8526 {
8527 u32 ver;
8528 u32 len = sizeof(ver);
8529 /* microcode version is a 32 bit integer */
8530 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8531 return -EIO;
8532 return snprintf(buf, max, "%08X", ver);
8533 }
8534
8535 /*
8536 * On exit, the firmware will have been freed from the fw list
8537 */
8538 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8539 {
8540 /* firmware is constructed of N contiguous entries, each entry is
8541 * structured as:
8542 *
8543 * offset sie desc
8544 * 0 4 address to write to
8545 * 4 2 length of data run
8546 * 6 length data
8547 */
8548 unsigned int addr;
8549 unsigned short len;
8550
8551 const unsigned char *firmware_data = fw->fw.data;
8552 unsigned int firmware_data_left = fw->fw.size;
8553
8554 while (firmware_data_left > 0) {
8555 addr = *(u32 *) (firmware_data);
8556 firmware_data += 4;
8557 firmware_data_left -= 4;
8558
8559 len = *(u16 *) (firmware_data);
8560 firmware_data += 2;
8561 firmware_data_left -= 2;
8562
8563 if (len > 32) {
8564 printk(KERN_ERR DRV_NAME ": "
8565 "Invalid firmware run-length of %d bytes\n",
8566 len);
8567 return -EINVAL;
8568 }
8569
8570 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8571 firmware_data += len;
8572 firmware_data_left -= len;
8573 }
8574
8575 return 0;
8576 }
8577
8578 struct symbol_alive_response {
8579 u8 cmd_id;
8580 u8 seq_num;
8581 u8 ucode_rev;
8582 u8 eeprom_valid;
8583 u16 valid_flags;
8584 u8 IEEE_addr[6];
8585 u16 flags;
8586 u16 pcb_rev;
8587 u16 clock_settle_time; // 1us LSB
8588 u16 powerup_settle_time; // 1us LSB
8589 u16 hop_settle_time; // 1us LSB
8590 u8 date[3]; // month, day, year
8591 u8 time[2]; // hours, minutes
8592 u8 ucode_valid;
8593 };
8594
8595 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8596 struct ipw2100_fw *fw)
8597 {
8598 struct net_device *dev = priv->net_dev;
8599 const unsigned char *microcode_data = fw->uc.data;
8600 unsigned int microcode_data_left = fw->uc.size;
8601 void __iomem *reg = priv->ioaddr;
8602
8603 struct symbol_alive_response response;
8604 int i, j;
8605 u8 data;
8606
8607 /* Symbol control */
8608 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8609 readl(reg);
8610 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8611 readl(reg);
8612
8613 /* HW config */
8614 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8615 readl(reg);
8616 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8617 readl(reg);
8618
8619 /* EN_CS_ACCESS bit to reset control store pointer */
8620 write_nic_byte(dev, 0x210000, 0x40);
8621 readl(reg);
8622 write_nic_byte(dev, 0x210000, 0x0);
8623 readl(reg);
8624 write_nic_byte(dev, 0x210000, 0x40);
8625 readl(reg);
8626
8627 /* copy microcode from buffer into Symbol */
8628
8629 while (microcode_data_left > 0) {
8630 write_nic_byte(dev, 0x210010, *microcode_data++);
8631 write_nic_byte(dev, 0x210010, *microcode_data++);
8632 microcode_data_left -= 2;
8633 }
8634
8635 /* EN_CS_ACCESS bit to reset the control store pointer */
8636 write_nic_byte(dev, 0x210000, 0x0);
8637 readl(reg);
8638
8639 /* Enable System (Reg 0)
8640 * first enable causes garbage in RX FIFO */
8641 write_nic_byte(dev, 0x210000, 0x0);
8642 readl(reg);
8643 write_nic_byte(dev, 0x210000, 0x80);
8644 readl(reg);
8645
8646 /* Reset External Baseband Reg */
8647 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8648 readl(reg);
8649 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8650 readl(reg);
8651
8652 /* HW Config (Reg 5) */
8653 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8654 readl(reg);
8655 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8656 readl(reg);
8657
8658 /* Enable System (Reg 0)
8659 * second enable should be OK */
8660 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8661 readl(reg);
8662 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8663
8664 /* check Symbol is enabled - upped this from 5 as it wasn't always
8665 * catching the update */
8666 for (i = 0; i < 10; i++) {
8667 udelay(10);
8668
8669 /* check Dino is enabled bit */
8670 read_nic_byte(dev, 0x210000, &data);
8671 if (data & 0x1)
8672 break;
8673 }
8674
8675 if (i == 10) {
8676 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8677 dev->name);
8678 return -EIO;
8679 }
8680
8681 /* Get Symbol alive response */
8682 for (i = 0; i < 30; i++) {
8683 /* Read alive response structure */
8684 for (j = 0;
8685 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8686 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8687
8688 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8689 break;
8690 udelay(10);
8691 }
8692
8693 if (i == 30) {
8694 printk(KERN_ERR DRV_NAME
8695 ": %s: No response from Symbol - hw not alive\n",
8696 dev->name);
8697 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8698 return -EIO;
8699 }
8700
8701 return 0;
8702 }
This page took 0.299868 seconds and 5 git commands to generate.