cfg80211: consolidate passive-scan and no-ibss flags
[deliverable/linux.git] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 Intel Linux Wireless <ilw@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
28
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <j@w1.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
43
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
106
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
110
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
114
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
118
119 The flow of data on the TX side is as follows:
120
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124 The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169 #include "ipw.h"
170
171 #define IPW2100_VERSION "git-1.2.2"
172
173 #define DRV_NAME "ipw2100"
174 #define DRV_VERSION IPW2100_VERSION
175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
177
178 static struct pm_qos_request ipw2100_pm_qos_req;
179
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG /* Reception debugging */
183 #endif
184
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217 if (ipw2100_debug_level & (level)) { \
218 printk(KERN_DEBUG "ipw2100: %c %s ", \
219 in_interrupt() ? 'I' : 'U', __func__); \
220 printk(message); \
221 } \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif /* CONFIG_IPW2100_DEBUG */
226
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229 "undefined",
230 "unused", /* HOST_ATTENTION */
231 "HOST_COMPLETE",
232 "unused", /* SLEEP */
233 "unused", /* HOST_POWER_DOWN */
234 "unused",
235 "SYSTEM_CONFIG",
236 "unused", /* SET_IMR */
237 "SSID",
238 "MANDATORY_BSSID",
239 "AUTHENTICATION_TYPE",
240 "ADAPTER_ADDRESS",
241 "PORT_TYPE",
242 "INTERNATIONAL_MODE",
243 "CHANNEL",
244 "RTS_THRESHOLD",
245 "FRAG_THRESHOLD",
246 "POWER_MODE",
247 "TX_RATES",
248 "BASIC_TX_RATES",
249 "WEP_KEY_INFO",
250 "unused",
251 "unused",
252 "unused",
253 "unused",
254 "WEP_KEY_INDEX",
255 "WEP_FLAGS",
256 "ADD_MULTICAST",
257 "CLEAR_ALL_MULTICAST",
258 "BEACON_INTERVAL",
259 "ATIM_WINDOW",
260 "CLEAR_STATISTICS",
261 "undefined",
262 "undefined",
263 "undefined",
264 "undefined",
265 "TX_POWER_INDEX",
266 "undefined",
267 "undefined",
268 "undefined",
269 "undefined",
270 "undefined",
271 "undefined",
272 "BROADCAST_SCAN",
273 "CARD_DISABLE",
274 "PREFERRED_BSSID",
275 "SET_SCAN_OPTIONS",
276 "SCAN_DWELL_TIME",
277 "SWEEP_TABLE",
278 "AP_OR_STATION_TABLE",
279 "GROUP_ORDINALS",
280 "SHORT_RETRY_LIMIT",
281 "LONG_RETRY_LIMIT",
282 "unused", /* SAVE_CALIBRATION */
283 "unused", /* RESTORE_CALIBRATION */
284 "undefined",
285 "undefined",
286 "undefined",
287 "HOST_PRE_POWER_DOWN",
288 "unused", /* HOST_INTERRUPT_COALESCING */
289 "undefined",
290 "CARD_DISABLE_PHY_OFF",
291 "MSDU_TX_RATES",
292 "undefined",
293 "SET_STATION_STAT_BITS",
294 "CLEAR_STATIONS_STAT_BITS",
295 "LEAP_ROGUE_MODE",
296 "SET_SECURITY_INFORMATION",
297 "DISASSOCIATION_BSSID",
298 "SET_WPA_ASS_IE"
299 };
300 #endif
301
302 static const long ipw2100_frequencies[] = {
303 2412, 2417, 2422, 2427,
304 2432, 2437, 2442, 2447,
305 2452, 2457, 2462, 2467,
306 2472, 2484
307 };
308
309 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies)
310
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312 { .bitrate = 10 },
313 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330 struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332 struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334 size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336 size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338 struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340 struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static struct iw_handler_def ipw2100_wx_handler_def;
344
345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347 struct ipw2100_priv *priv = libipw_priv(dev);
348
349 *val = ioread32(priv->ioaddr + reg);
350 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352
353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355 struct ipw2100_priv *priv = libipw_priv(dev);
356
357 iowrite32(val, priv->ioaddr + reg);
358 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360
361 static inline void read_register_word(struct net_device *dev, u32 reg,
362 u16 * val)
363 {
364 struct ipw2100_priv *priv = libipw_priv(dev);
365
366 *val = ioread16(priv->ioaddr + reg);
367 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369
370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372 struct ipw2100_priv *priv = libipw_priv(dev);
373
374 *val = ioread8(priv->ioaddr + reg);
375 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380 struct ipw2100_priv *priv = libipw_priv(dev);
381
382 iowrite16(val, priv->ioaddr + reg);
383 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385
386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388 struct ipw2100_priv *priv = libipw_priv(dev);
389
390 iowrite8(val, priv->ioaddr + reg);
391 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393
394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397 addr & IPW_REG_INDIRECT_ADDR_MASK);
398 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400
401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404 addr & IPW_REG_INDIRECT_ADDR_MASK);
405 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407
408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411 addr & IPW_REG_INDIRECT_ADDR_MASK);
412 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414
415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418 addr & IPW_REG_INDIRECT_ADDR_MASK);
419 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421
422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425 addr & IPW_REG_INDIRECT_ADDR_MASK);
426 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428
429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432 addr & IPW_REG_INDIRECT_ADDR_MASK);
433 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435
436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439 addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441
442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446
447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448 const u8 * buf)
449 {
450 u32 aligned_addr;
451 u32 aligned_len;
452 u32 dif_len;
453 u32 i;
454
455 /* read first nibble byte by byte */
456 aligned_addr = addr & (~0x3);
457 dif_len = addr - aligned_addr;
458 if (dif_len) {
459 /* Start reading at aligned_addr + dif_len */
460 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461 aligned_addr);
462 for (i = dif_len; i < 4; i++, buf++)
463 write_register_byte(dev,
464 IPW_REG_INDIRECT_ACCESS_DATA + i,
465 *buf);
466
467 len -= dif_len;
468 aligned_addr += 4;
469 }
470
471 /* read DWs through autoincrement registers */
472 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473 aligned_len = len & (~0x3);
474 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476
477 /* copy the last nibble */
478 dif_len = len - aligned_len;
479 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480 for (i = 0; i < dif_len; i++, buf++)
481 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482 *buf);
483 }
484
485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486 u8 * buf)
487 {
488 u32 aligned_addr;
489 u32 aligned_len;
490 u32 dif_len;
491 u32 i;
492
493 /* read first nibble byte by byte */
494 aligned_addr = addr & (~0x3);
495 dif_len = addr - aligned_addr;
496 if (dif_len) {
497 /* Start reading at aligned_addr + dif_len */
498 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499 aligned_addr);
500 for (i = dif_len; i < 4; i++, buf++)
501 read_register_byte(dev,
502 IPW_REG_INDIRECT_ACCESS_DATA + i,
503 buf);
504
505 len -= dif_len;
506 aligned_addr += 4;
507 }
508
509 /* read DWs through autoincrement registers */
510 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511 aligned_len = len & (~0x3);
512 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514
515 /* copy the last nibble */
516 dif_len = len - aligned_len;
517 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518 for (i = 0; i < dif_len; i++, buf++)
519 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521
522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524 u32 dbg;
525
526 read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527
528 return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530
531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532 void *val, u32 * len)
533 {
534 struct ipw2100_ordinals *ordinals = &priv->ordinals;
535 u32 addr;
536 u32 field_info;
537 u16 field_len;
538 u16 field_count;
539 u32 total_length;
540
541 if (ordinals->table1_addr == 0) {
542 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543 "before they have been loaded.\n");
544 return -EINVAL;
545 }
546
547 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
550
551 printk(KERN_WARNING DRV_NAME
552 ": ordinal buffer length too small, need %zd\n",
553 IPW_ORD_TAB_1_ENTRY_SIZE);
554
555 return -EINVAL;
556 }
557
558 read_nic_dword(priv->net_dev,
559 ordinals->table1_addr + (ord << 2), &addr);
560 read_nic_dword(priv->net_dev, addr, val);
561
562 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
563
564 return 0;
565 }
566
567 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568
569 ord -= IPW_START_ORD_TAB_2;
570
571 /* get the address of statistic */
572 read_nic_dword(priv->net_dev,
573 ordinals->table2_addr + (ord << 3), &addr);
574
575 /* get the second DW of statistics ;
576 * two 16-bit words - first is length, second is count */
577 read_nic_dword(priv->net_dev,
578 ordinals->table2_addr + (ord << 3) + sizeof(u32),
579 &field_info);
580
581 /* get each entry length */
582 field_len = *((u16 *) & field_info);
583
584 /* get number of entries */
585 field_count = *(((u16 *) & field_info) + 1);
586
587 /* abort if no enough memory */
588 total_length = field_len * field_count;
589 if (total_length > *len) {
590 *len = total_length;
591 return -EINVAL;
592 }
593
594 *len = total_length;
595 if (!total_length)
596 return 0;
597
598 /* read the ordinal data from the SRAM */
599 read_nic_memory(priv->net_dev, addr, total_length, val);
600
601 return 0;
602 }
603
604 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605 "in table 2\n", ord);
606
607 return -EINVAL;
608 }
609
610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611 u32 * len)
612 {
613 struct ipw2100_ordinals *ordinals = &priv->ordinals;
614 u32 addr;
615
616 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
619 IPW_DEBUG_INFO("wrong size\n");
620 return -EINVAL;
621 }
622
623 read_nic_dword(priv->net_dev,
624 ordinals->table1_addr + (ord << 2), &addr);
625
626 write_nic_dword(priv->net_dev, addr, *val);
627
628 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
629
630 return 0;
631 }
632
633 IPW_DEBUG_INFO("wrong table\n");
634 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635 return -EINVAL;
636
637 return -EINVAL;
638 }
639
640 static char *snprint_line(char *buf, size_t count,
641 const u8 * data, u32 len, u32 ofs)
642 {
643 int out, i, j, l;
644 char c;
645
646 out = snprintf(buf, count, "%08X", ofs);
647
648 for (l = 0, i = 0; i < 2; i++) {
649 out += snprintf(buf + out, count - out, " ");
650 for (j = 0; j < 8 && l < len; j++, l++)
651 out += snprintf(buf + out, count - out, "%02X ",
652 data[(i * 8 + j)]);
653 for (; j < 8; j++)
654 out += snprintf(buf + out, count - out, " ");
655 }
656
657 out += snprintf(buf + out, count - out, " ");
658 for (l = 0, i = 0; i < 2; i++) {
659 out += snprintf(buf + out, count - out, " ");
660 for (j = 0; j < 8 && l < len; j++, l++) {
661 c = data[(i * 8 + j)];
662 if (!isascii(c) || !isprint(c))
663 c = '.';
664
665 out += snprintf(buf + out, count - out, "%c", c);
666 }
667
668 for (; j < 8; j++)
669 out += snprintf(buf + out, count - out, " ");
670 }
671
672 return buf;
673 }
674
675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677 char line[81];
678 u32 ofs = 0;
679 if (!(ipw2100_debug_level & level))
680 return;
681
682 while (len) {
683 printk(KERN_DEBUG "%s\n",
684 snprint_line(line, sizeof(line), &data[ofs],
685 min(len, 16U), ofs));
686 ofs += 16;
687 len -= min(len, 16U);
688 }
689 }
690
691 #define MAX_RESET_BACKOFF 10
692
693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695 unsigned long now = get_seconds();
696
697 /* If we haven't received a reset request within the backoff period,
698 * then we can reset the backoff interval so this reset occurs
699 * immediately */
700 if (priv->reset_backoff &&
701 (now - priv->last_reset > priv->reset_backoff))
702 priv->reset_backoff = 0;
703
704 priv->last_reset = get_seconds();
705
706 if (!(priv->status & STATUS_RESET_PENDING)) {
707 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
708 priv->net_dev->name, priv->reset_backoff);
709 netif_carrier_off(priv->net_dev);
710 netif_stop_queue(priv->net_dev);
711 priv->status |= STATUS_RESET_PENDING;
712 if (priv->reset_backoff)
713 schedule_delayed_work(&priv->reset_work,
714 priv->reset_backoff * HZ);
715 else
716 schedule_delayed_work(&priv->reset_work, 0);
717
718 if (priv->reset_backoff < MAX_RESET_BACKOFF)
719 priv->reset_backoff++;
720
721 wake_up_interruptible(&priv->wait_command_queue);
722 } else
723 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724 priv->net_dev->name);
725
726 }
727
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730 struct host_command *cmd)
731 {
732 struct list_head *element;
733 struct ipw2100_tx_packet *packet;
734 unsigned long flags;
735 int err = 0;
736
737 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738 command_types[cmd->host_command], cmd->host_command,
739 cmd->host_command_length);
740 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741 cmd->host_command_length);
742
743 spin_lock_irqsave(&priv->low_lock, flags);
744
745 if (priv->fatal_error) {
746 IPW_DEBUG_INFO
747 ("Attempt to send command while hardware in fatal error condition.\n");
748 err = -EIO;
749 goto fail_unlock;
750 }
751
752 if (!(priv->status & STATUS_RUNNING)) {
753 IPW_DEBUG_INFO
754 ("Attempt to send command while hardware is not running.\n");
755 err = -EIO;
756 goto fail_unlock;
757 }
758
759 if (priv->status & STATUS_CMD_ACTIVE) {
760 IPW_DEBUG_INFO
761 ("Attempt to send command while another command is pending.\n");
762 err = -EBUSY;
763 goto fail_unlock;
764 }
765
766 if (list_empty(&priv->msg_free_list)) {
767 IPW_DEBUG_INFO("no available msg buffers\n");
768 goto fail_unlock;
769 }
770
771 priv->status |= STATUS_CMD_ACTIVE;
772 priv->messages_sent++;
773
774 element = priv->msg_free_list.next;
775
776 packet = list_entry(element, struct ipw2100_tx_packet, list);
777 packet->jiffy_start = jiffies;
778
779 /* initialize the firmware command packet */
780 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782 packet->info.c_struct.cmd->host_command_len_reg =
783 cmd->host_command_length;
784 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785
786 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787 cmd->host_command_parameters,
788 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789
790 list_del(element);
791 DEC_STAT(&priv->msg_free_stat);
792
793 list_add_tail(element, &priv->msg_pend_list);
794 INC_STAT(&priv->msg_pend_stat);
795
796 ipw2100_tx_send_commands(priv);
797 ipw2100_tx_send_data(priv);
798
799 spin_unlock_irqrestore(&priv->low_lock, flags);
800
801 /*
802 * We must wait for this command to complete before another
803 * command can be sent... but if we wait more than 3 seconds
804 * then there is a problem.
805 */
806
807 err =
808 wait_event_interruptible_timeout(priv->wait_command_queue,
809 !(priv->
810 status & STATUS_CMD_ACTIVE),
811 HOST_COMPLETE_TIMEOUT);
812
813 if (err == 0) {
814 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817 priv->status &= ~STATUS_CMD_ACTIVE;
818 schedule_reset(priv);
819 return -EIO;
820 }
821
822 if (priv->fatal_error) {
823 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824 priv->net_dev->name);
825 return -EIO;
826 }
827
828 /* !!!!! HACK TEST !!!!!
829 * When lots of debug trace statements are enabled, the driver
830 * doesn't seem to have as many firmware restart cycles...
831 *
832 * As a test, we're sticking in a 1/100s delay here */
833 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834
835 return 0;
836
837 fail_unlock:
838 spin_unlock_irqrestore(&priv->low_lock, flags);
839
840 return err;
841 }
842
843 /*
844 * Verify the values and data access of the hardware
845 * No locks needed or used. No functions called.
846 */
847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849 u32 data1, data2;
850 u32 address;
851
852 u32 val1 = 0x76543210;
853 u32 val2 = 0xFEDCBA98;
854
855 /* Domain 0 check - all values should be DOA_DEBUG */
856 for (address = IPW_REG_DOA_DEBUG_AREA_START;
857 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858 read_register(priv->net_dev, address, &data1);
859 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860 return -EIO;
861 }
862
863 /* Domain 1 check - use arbitrary read/write compare */
864 for (address = 0; address < 5; address++) {
865 /* The memory area is not used now */
866 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867 val1);
868 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869 val2);
870 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871 &data1);
872 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873 &data2);
874 if (val1 == data1 && val2 == data2)
875 return 0;
876 }
877
878 return -EIO;
879 }
880
881 /*
882 *
883 * Loop until the CARD_DISABLED bit is the same value as the
884 * supplied parameter
885 *
886 * TODO: See if it would be more efficient to do a wait/wake
887 * cycle and have the completion event trigger the wakeup
888 *
889 */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893 int i;
894 u32 card_state;
895 u32 len = sizeof(card_state);
896 int err;
897
898 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900 &card_state, &len);
901 if (err) {
902 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903 "failed.\n");
904 return 0;
905 }
906
907 /* We'll break out if either the HW state says it is
908 * in the state we want, or if HOST_COMPLETE command
909 * finishes */
910 if ((card_state == state) ||
911 ((priv->status & STATUS_ENABLED) ?
912 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913 if (state == IPW_HW_STATE_ENABLED)
914 priv->status |= STATUS_ENABLED;
915 else
916 priv->status &= ~STATUS_ENABLED;
917
918 return 0;
919 }
920
921 udelay(50);
922 }
923
924 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925 state ? "DISABLED" : "ENABLED");
926 return -EIO;
927 }
928
929 /*********************************************************************
930 Procedure : sw_reset_and_clock
931 Purpose : Asserts s/w reset, asserts clock initialization
932 and waits for clock stabilization
933 ********************************************************************/
934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936 int i;
937 u32 r;
938
939 // assert s/w reset
940 write_register(priv->net_dev, IPW_REG_RESET_REG,
941 IPW_AUX_HOST_RESET_REG_SW_RESET);
942
943 // wait for clock stabilization
944 for (i = 0; i < 1000; i++) {
945 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946
947 // check clock ready bit
948 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950 break;
951 }
952
953 if (i == 1000)
954 return -EIO; // TODO: better error value
955
956 /* set "initialization complete" bit to move adapter to
957 * D0 state */
958 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960
961 /* wait for clock stabilization */
962 for (i = 0; i < 10000; i++) {
963 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964
965 /* check clock ready bit */
966 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968 break;
969 }
970
971 if (i == 10000)
972 return -EIO; /* TODO: better error value */
973
974 /* set D0 standby bit */
975 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978
979 return 0;
980 }
981
982 /*********************************************************************
983 Procedure : ipw2100_download_firmware
984 Purpose : Initiaze adapter after power on.
985 The sequence is:
986 1. assert s/w reset first!
987 2. awake clocks & wait for clock stabilization
988 3. hold ARC (don't ask me why...)
989 4. load Dino ucode and reset/clock init again
990 5. zero-out shared mem
991 6. download f/w
992 *******************************************************************/
993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995 u32 address;
996 int err;
997
998 #ifndef CONFIG_PM
999 /* Fetch the firmware and microcode */
1000 struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002
1003 if (priv->fatal_error) {
1004 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005 "fatal error %d. Interface must be brought down.\n",
1006 priv->net_dev->name, priv->fatal_error);
1007 return -EINVAL;
1008 }
1009 #ifdef CONFIG_PM
1010 if (!ipw2100_firmware.version) {
1011 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012 if (err) {
1013 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014 priv->net_dev->name, err);
1015 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016 goto fail;
1017 }
1018 }
1019 #else
1020 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021 if (err) {
1022 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023 priv->net_dev->name, err);
1024 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025 goto fail;
1026 }
1027 #endif
1028 priv->firmware_version = ipw2100_firmware.version;
1029
1030 /* s/w reset and clock stabilization */
1031 err = sw_reset_and_clock(priv);
1032 if (err) {
1033 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034 priv->net_dev->name, err);
1035 goto fail;
1036 }
1037
1038 err = ipw2100_verify(priv);
1039 if (err) {
1040 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041 priv->net_dev->name, err);
1042 goto fail;
1043 }
1044
1045 /* Hold ARC */
1046 write_nic_dword(priv->net_dev,
1047 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048
1049 /* allow ARC to run */
1050 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051
1052 /* load microcode */
1053 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054 if (err) {
1055 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056 priv->net_dev->name, err);
1057 goto fail;
1058 }
1059
1060 /* release ARC */
1061 write_nic_dword(priv->net_dev,
1062 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063
1064 /* s/w reset and clock stabilization (again!!!) */
1065 err = sw_reset_and_clock(priv);
1066 if (err) {
1067 printk(KERN_ERR DRV_NAME
1068 ": %s: sw_reset_and_clock failed: %d\n",
1069 priv->net_dev->name, err);
1070 goto fail;
1071 }
1072
1073 /* load f/w */
1074 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075 if (err) {
1076 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077 priv->net_dev->name, err);
1078 goto fail;
1079 }
1080 #ifndef CONFIG_PM
1081 /*
1082 * When the .resume method of the driver is called, the other
1083 * part of the system, i.e. the ide driver could still stay in
1084 * the suspend stage. This prevents us from loading the firmware
1085 * from the disk. --YZ
1086 */
1087
1088 /* free any storage allocated for firmware image */
1089 ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091
1092 /* zero out Domain 1 area indirectly (Si requirement) */
1093 for (address = IPW_HOST_FW_SHARED_AREA0;
1094 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095 write_nic_dword(priv->net_dev, address, 0);
1096 for (address = IPW_HOST_FW_SHARED_AREA1;
1097 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098 write_nic_dword(priv->net_dev, address, 0);
1099 for (address = IPW_HOST_FW_SHARED_AREA2;
1100 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101 write_nic_dword(priv->net_dev, address, 0);
1102 for (address = IPW_HOST_FW_SHARED_AREA3;
1103 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104 write_nic_dword(priv->net_dev, address, 0);
1105 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107 write_nic_dword(priv->net_dev, address, 0);
1108
1109 return 0;
1110
1111 fail:
1112 ipw2100_release_firmware(priv, &ipw2100_firmware);
1113 return err;
1114 }
1115
1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118 if (priv->status & STATUS_INT_ENABLED)
1119 return;
1120 priv->status |= STATUS_INT_ENABLED;
1121 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123
1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126 if (!(priv->status & STATUS_INT_ENABLED))
1127 return;
1128 priv->status &= ~STATUS_INT_ENABLED;
1129 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131
1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134 struct ipw2100_ordinals *ord = &priv->ordinals;
1135
1136 IPW_DEBUG_INFO("enter\n");
1137
1138 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139 &ord->table1_addr);
1140
1141 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142 &ord->table2_addr);
1143
1144 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146
1147 ord->table2_size &= 0x0000FFFF;
1148
1149 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151 IPW_DEBUG_INFO("exit\n");
1152 }
1153
1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156 u32 reg = 0;
1157 /*
1158 * Set GPIO 3 writable by FW; GPIO 1 writable
1159 * by driver and enable clock
1160 */
1161 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162 IPW_BIT_GPIO_LED_OFF);
1163 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165
1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170
1171 unsigned short value = 0;
1172 u32 reg = 0;
1173 int i;
1174
1175 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177 priv->status &= ~STATUS_RF_KILL_HW;
1178 return 0;
1179 }
1180
1181 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182 udelay(RF_KILL_CHECK_DELAY);
1183 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185 }
1186
1187 if (value == 0) {
1188 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189 priv->status |= STATUS_RF_KILL_HW;
1190 } else {
1191 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192 priv->status &= ~STATUS_RF_KILL_HW;
1193 }
1194
1195 return (value == 0);
1196 }
1197
1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200 u32 addr, len;
1201 u32 val;
1202
1203 /*
1204 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205 */
1206 len = sizeof(addr);
1207 if (ipw2100_get_ordinal
1208 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210 __LINE__);
1211 return -EIO;
1212 }
1213
1214 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215
1216 /*
1217 * EEPROM version is the byte at offset 0xfd in firmware
1218 * We read 4 bytes, then shift out the byte we actually want */
1219 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220 priv->eeprom_version = (val >> 24) & 0xFF;
1221 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222
1223 /*
1224 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225 *
1226 * notice that the EEPROM bit is reverse polarity, i.e.
1227 * bit = 0 signifies HW RF kill switch is supported
1228 * bit = 1 signifies HW RF kill switch is NOT supported
1229 */
1230 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231 if (!((val >> 24) & 0x01))
1232 priv->hw_features |= HW_FEATURE_RFKILL;
1233
1234 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236
1237 return 0;
1238 }
1239
1240 /*
1241 * Start firmware execution after power on and intialization
1242 * The sequence is:
1243 * 1. Release ARC
1244 * 2. Wait for f/w initialization completes;
1245 */
1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248 int i;
1249 u32 inta, inta_mask, gpio;
1250
1251 IPW_DEBUG_INFO("enter\n");
1252
1253 if (priv->status & STATUS_RUNNING)
1254 return 0;
1255
1256 /*
1257 * Initialize the hw - drive adapter to DO state by setting
1258 * init_done bit. Wait for clk_ready bit and Download
1259 * fw & dino ucode
1260 */
1261 if (ipw2100_download_firmware(priv)) {
1262 printk(KERN_ERR DRV_NAME
1263 ": %s: Failed to power on the adapter.\n",
1264 priv->net_dev->name);
1265 return -EIO;
1266 }
1267
1268 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1269 * in the firmware RBD and TBD ring queue */
1270 ipw2100_queues_initialize(priv);
1271
1272 ipw2100_hw_set_gpio(priv);
1273
1274 /* TODO -- Look at disabling interrupts here to make sure none
1275 * get fired during FW initialization */
1276
1277 /* Release ARC - clear reset bit */
1278 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279
1280 /* wait for f/w intialization complete */
1281 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282 i = 5000;
1283 do {
1284 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285 /* Todo... wait for sync command ... */
1286
1287 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288
1289 /* check "init done" bit */
1290 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291 /* reset "init done" bit */
1292 write_register(priv->net_dev, IPW_REG_INTA,
1293 IPW2100_INTA_FW_INIT_DONE);
1294 break;
1295 }
1296
1297 /* check error conditions : we check these after the firmware
1298 * check so that if there is an error, the interrupt handler
1299 * will see it and the adapter will be reset */
1300 if (inta &
1301 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302 /* clear error conditions */
1303 write_register(priv->net_dev, IPW_REG_INTA,
1304 IPW2100_INTA_FATAL_ERROR |
1305 IPW2100_INTA_PARITY_ERROR);
1306 }
1307 } while (--i);
1308
1309 /* Clear out any pending INTAs since we aren't supposed to have
1310 * interrupts enabled at this point... */
1311 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313 inta &= IPW_INTERRUPT_MASK;
1314 /* Clear out any pending interrupts */
1315 if (inta & inta_mask)
1316 write_register(priv->net_dev, IPW_REG_INTA, inta);
1317
1318 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319 i ? "SUCCESS" : "FAILED");
1320
1321 if (!i) {
1322 printk(KERN_WARNING DRV_NAME
1323 ": %s: Firmware did not initialize.\n",
1324 priv->net_dev->name);
1325 return -EIO;
1326 }
1327
1328 /* allow firmware to write to GPIO1 & GPIO3 */
1329 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330
1331 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332
1333 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334
1335 /* Ready to receive commands */
1336 priv->status |= STATUS_RUNNING;
1337
1338 /* The adapter has been reset; we are not associated */
1339 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340
1341 IPW_DEBUG_INFO("exit\n");
1342
1343 return 0;
1344 }
1345
1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348 if (!priv->fatal_error)
1349 return;
1350
1351 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353 priv->fatal_error = 0;
1354 }
1355
1356 /* NOTE: Our interrupt is disabled when this method is called */
1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359 u32 reg;
1360 int i;
1361
1362 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363
1364 ipw2100_hw_set_gpio(priv);
1365
1366 /* Step 1. Stop Master Assert */
1367 write_register(priv->net_dev, IPW_REG_RESET_REG,
1368 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369
1370 /* Step 2. Wait for stop Master Assert
1371 * (not more than 50us, otherwise ret error */
1372 i = 5;
1373 do {
1374 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1376
1377 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378 break;
1379 } while (--i);
1380
1381 priv->status &= ~STATUS_RESET_PENDING;
1382
1383 if (!i) {
1384 IPW_DEBUG_INFO
1385 ("exit - waited too long for master assert stop\n");
1386 return -EIO;
1387 }
1388
1389 write_register(priv->net_dev, IPW_REG_RESET_REG,
1390 IPW_AUX_HOST_RESET_REG_SW_RESET);
1391
1392 /* Reset any fatal_error conditions */
1393 ipw2100_reset_fatalerror(priv);
1394
1395 /* At this point, the adapter is now stopped and disabled */
1396 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397 STATUS_ASSOCIATED | STATUS_ENABLED);
1398
1399 return 0;
1400 }
1401
1402 /*
1403 * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404 *
1405 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406 *
1407 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408 * if STATUS_ASSN_LOST is sent.
1409 */
1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412
1413 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1414
1415 struct host_command cmd = {
1416 .host_command = CARD_DISABLE_PHY_OFF,
1417 .host_command_sequence = 0,
1418 .host_command_length = 0,
1419 };
1420 int err, i;
1421 u32 val1, val2;
1422
1423 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424
1425 /* Turn off the radio */
1426 err = ipw2100_hw_send_command(priv, &cmd);
1427 if (err)
1428 return err;
1429
1430 for (i = 0; i < 2500; i++) {
1431 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433
1434 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435 (val2 & IPW2100_COMMAND_PHY_OFF))
1436 return 0;
1437
1438 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439 }
1440
1441 return -EIO;
1442 }
1443
1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446 struct host_command cmd = {
1447 .host_command = HOST_COMPLETE,
1448 .host_command_sequence = 0,
1449 .host_command_length = 0
1450 };
1451 int err = 0;
1452
1453 IPW_DEBUG_HC("HOST_COMPLETE\n");
1454
1455 if (priv->status & STATUS_ENABLED)
1456 return 0;
1457
1458 mutex_lock(&priv->adapter_mutex);
1459
1460 if (rf_kill_active(priv)) {
1461 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462 goto fail_up;
1463 }
1464
1465 err = ipw2100_hw_send_command(priv, &cmd);
1466 if (err) {
1467 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468 goto fail_up;
1469 }
1470
1471 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472 if (err) {
1473 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474 priv->net_dev->name);
1475 goto fail_up;
1476 }
1477
1478 if (priv->stop_hang_check) {
1479 priv->stop_hang_check = 0;
1480 schedule_delayed_work(&priv->hang_check, HZ / 2);
1481 }
1482
1483 fail_up:
1484 mutex_unlock(&priv->adapter_mutex);
1485 return err;
1486 }
1487
1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491
1492 struct host_command cmd = {
1493 .host_command = HOST_PRE_POWER_DOWN,
1494 .host_command_sequence = 0,
1495 .host_command_length = 0,
1496 };
1497 int err, i;
1498 u32 reg;
1499
1500 if (!(priv->status & STATUS_RUNNING))
1501 return 0;
1502
1503 priv->status |= STATUS_STOPPING;
1504
1505 /* We can only shut down the card if the firmware is operational. So,
1506 * if we haven't reset since a fatal_error, then we can not send the
1507 * shutdown commands. */
1508 if (!priv->fatal_error) {
1509 /* First, make sure the adapter is enabled so that the PHY_OFF
1510 * command can shut it down */
1511 ipw2100_enable_adapter(priv);
1512
1513 err = ipw2100_hw_phy_off(priv);
1514 if (err)
1515 printk(KERN_WARNING DRV_NAME
1516 ": Error disabling radio %d\n", err);
1517
1518 /*
1519 * If in D0-standby mode going directly to D3 may cause a
1520 * PCI bus violation. Therefore we must change out of the D0
1521 * state.
1522 *
1523 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524 * hardware from going into standby mode and will transition
1525 * out of D0-standby if it is already in that state.
1526 *
1527 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528 * driver upon completion. Once received, the driver can
1529 * proceed to the D3 state.
1530 *
1531 * Prepare for power down command to fw. This command would
1532 * take HW out of D0-standby and prepare it for D3 state.
1533 *
1534 * Currently FW does not support event notification for this
1535 * event. Therefore, skip waiting for it. Just wait a fixed
1536 * 100ms
1537 */
1538 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539
1540 err = ipw2100_hw_send_command(priv, &cmd);
1541 if (err)
1542 printk(KERN_WARNING DRV_NAME ": "
1543 "%s: Power down command failed: Error %d\n",
1544 priv->net_dev->name, err);
1545 else
1546 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547 }
1548
1549 priv->status &= ~STATUS_ENABLED;
1550
1551 /*
1552 * Set GPIO 3 writable by FW; GPIO 1 writable
1553 * by driver and enable clock
1554 */
1555 ipw2100_hw_set_gpio(priv);
1556
1557 /*
1558 * Power down adapter. Sequence:
1559 * 1. Stop master assert (RESET_REG[9]=1)
1560 * 2. Wait for stop master (RESET_REG[8]==1)
1561 * 3. S/w reset assert (RESET_REG[7] = 1)
1562 */
1563
1564 /* Stop master assert */
1565 write_register(priv->net_dev, IPW_REG_RESET_REG,
1566 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567
1568 /* wait stop master not more than 50 usec.
1569 * Otherwise return error. */
1570 for (i = 5; i > 0; i--) {
1571 udelay(10);
1572
1573 /* Check master stop bit */
1574 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1575
1576 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577 break;
1578 }
1579
1580 if (i == 0)
1581 printk(KERN_WARNING DRV_NAME
1582 ": %s: Could now power down adapter.\n",
1583 priv->net_dev->name);
1584
1585 /* assert s/w reset */
1586 write_register(priv->net_dev, IPW_REG_RESET_REG,
1587 IPW_AUX_HOST_RESET_REG_SW_RESET);
1588
1589 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590
1591 return 0;
1592 }
1593
1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596 struct host_command cmd = {
1597 .host_command = CARD_DISABLE,
1598 .host_command_sequence = 0,
1599 .host_command_length = 0
1600 };
1601 int err = 0;
1602
1603 IPW_DEBUG_HC("CARD_DISABLE\n");
1604
1605 if (!(priv->status & STATUS_ENABLED))
1606 return 0;
1607
1608 /* Make sure we clear the associated state */
1609 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610
1611 if (!priv->stop_hang_check) {
1612 priv->stop_hang_check = 1;
1613 cancel_delayed_work(&priv->hang_check);
1614 }
1615
1616 mutex_lock(&priv->adapter_mutex);
1617
1618 err = ipw2100_hw_send_command(priv, &cmd);
1619 if (err) {
1620 printk(KERN_WARNING DRV_NAME
1621 ": exit - failed to send CARD_DISABLE command\n");
1622 goto fail_up;
1623 }
1624
1625 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626 if (err) {
1627 printk(KERN_WARNING DRV_NAME
1628 ": exit - card failed to change to DISABLED\n");
1629 goto fail_up;
1630 }
1631
1632 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633
1634 fail_up:
1635 mutex_unlock(&priv->adapter_mutex);
1636 return err;
1637 }
1638
1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641 struct host_command cmd = {
1642 .host_command = SET_SCAN_OPTIONS,
1643 .host_command_sequence = 0,
1644 .host_command_length = 8
1645 };
1646 int err;
1647
1648 IPW_DEBUG_INFO("enter\n");
1649
1650 IPW_DEBUG_SCAN("setting scan options\n");
1651
1652 cmd.host_command_parameters[0] = 0;
1653
1654 if (!(priv->config & CFG_ASSOCIATE))
1655 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658 if (priv->config & CFG_PASSIVE_SCAN)
1659 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660
1661 cmd.host_command_parameters[1] = priv->channel_mask;
1662
1663 err = ipw2100_hw_send_command(priv, &cmd);
1664
1665 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666 cmd.host_command_parameters[0]);
1667
1668 return err;
1669 }
1670
1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673 struct host_command cmd = {
1674 .host_command = BROADCAST_SCAN,
1675 .host_command_sequence = 0,
1676 .host_command_length = 4
1677 };
1678 int err;
1679
1680 IPW_DEBUG_HC("START_SCAN\n");
1681
1682 cmd.host_command_parameters[0] = 0;
1683
1684 /* No scanning if in monitor mode */
1685 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686 return 1;
1687
1688 if (priv->status & STATUS_SCANNING) {
1689 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690 return 0;
1691 }
1692
1693 IPW_DEBUG_INFO("enter\n");
1694
1695 /* Not clearing here; doing so makes iwlist always return nothing...
1696 *
1697 * We should modify the table logic to use aging tables vs. clearing
1698 * the table on each scan start.
1699 */
1700 IPW_DEBUG_SCAN("starting scan\n");
1701
1702 priv->status |= STATUS_SCANNING;
1703 err = ipw2100_hw_send_command(priv, &cmd);
1704 if (err)
1705 priv->status &= ~STATUS_SCANNING;
1706
1707 IPW_DEBUG_INFO("exit\n");
1708
1709 return err;
1710 }
1711
1712 static const struct libipw_geo ipw_geos[] = {
1713 { /* Restricted */
1714 "---",
1715 .bg_channels = 14,
1716 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717 {2427, 4}, {2432, 5}, {2437, 6},
1718 {2442, 7}, {2447, 8}, {2452, 9},
1719 {2457, 10}, {2462, 11}, {2467, 12},
1720 {2472, 13}, {2484, 14}},
1721 },
1722 };
1723
1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726 unsigned long flags;
1727 int rc = 0;
1728 u32 lock;
1729 u32 ord_len = sizeof(lock);
1730
1731 /* Age scan list entries found before suspend */
1732 if (priv->suspend_time) {
1733 libipw_networks_age(priv->ieee, priv->suspend_time);
1734 priv->suspend_time = 0;
1735 }
1736
1737 /* Quiet if manually disabled. */
1738 if (priv->status & STATUS_RF_KILL_SW) {
1739 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740 "switch\n", priv->net_dev->name);
1741 return 0;
1742 }
1743
1744 /* the ipw2100 hardware really doesn't want power management delays
1745 * longer than 175usec
1746 */
1747 pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748
1749 /* If the interrupt is enabled, turn it off... */
1750 spin_lock_irqsave(&priv->low_lock, flags);
1751 ipw2100_disable_interrupts(priv);
1752
1753 /* Reset any fatal_error conditions */
1754 ipw2100_reset_fatalerror(priv);
1755 spin_unlock_irqrestore(&priv->low_lock, flags);
1756
1757 if (priv->status & STATUS_POWERED ||
1758 (priv->status & STATUS_RESET_PENDING)) {
1759 /* Power cycle the card ... */
1760 if (ipw2100_power_cycle_adapter(priv)) {
1761 printk(KERN_WARNING DRV_NAME
1762 ": %s: Could not cycle adapter.\n",
1763 priv->net_dev->name);
1764 rc = 1;
1765 goto exit;
1766 }
1767 } else
1768 priv->status |= STATUS_POWERED;
1769
1770 /* Load the firmware, start the clocks, etc. */
1771 if (ipw2100_start_adapter(priv)) {
1772 printk(KERN_ERR DRV_NAME
1773 ": %s: Failed to start the firmware.\n",
1774 priv->net_dev->name);
1775 rc = 1;
1776 goto exit;
1777 }
1778
1779 ipw2100_initialize_ordinals(priv);
1780
1781 /* Determine capabilities of this particular HW configuration */
1782 if (ipw2100_get_hw_features(priv)) {
1783 printk(KERN_ERR DRV_NAME
1784 ": %s: Failed to determine HW features.\n",
1785 priv->net_dev->name);
1786 rc = 1;
1787 goto exit;
1788 }
1789
1790 /* Initialize the geo */
1791 libipw_set_geo(priv->ieee, &ipw_geos[0]);
1792 priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1793
1794 lock = LOCK_NONE;
1795 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1796 printk(KERN_ERR DRV_NAME
1797 ": %s: Failed to clear ordinal lock.\n",
1798 priv->net_dev->name);
1799 rc = 1;
1800 goto exit;
1801 }
1802
1803 priv->status &= ~STATUS_SCANNING;
1804
1805 if (rf_kill_active(priv)) {
1806 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807 priv->net_dev->name);
1808
1809 if (priv->stop_rf_kill) {
1810 priv->stop_rf_kill = 0;
1811 schedule_delayed_work(&priv->rf_kill,
1812 round_jiffies_relative(HZ));
1813 }
1814
1815 deferred = 1;
1816 }
1817
1818 /* Turn on the interrupt so that commands can be processed */
1819 ipw2100_enable_interrupts(priv);
1820
1821 /* Send all of the commands that must be sent prior to
1822 * HOST_COMPLETE */
1823 if (ipw2100_adapter_setup(priv)) {
1824 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1825 priv->net_dev->name);
1826 rc = 1;
1827 goto exit;
1828 }
1829
1830 if (!deferred) {
1831 /* Enable the adapter - sends HOST_COMPLETE */
1832 if (ipw2100_enable_adapter(priv)) {
1833 printk(KERN_ERR DRV_NAME ": "
1834 "%s: failed in call to enable adapter.\n",
1835 priv->net_dev->name);
1836 ipw2100_hw_stop_adapter(priv);
1837 rc = 1;
1838 goto exit;
1839 }
1840
1841 /* Start a scan . . . */
1842 ipw2100_set_scan_options(priv);
1843 ipw2100_start_scan(priv);
1844 }
1845
1846 exit:
1847 return rc;
1848 }
1849
1850 static void ipw2100_down(struct ipw2100_priv *priv)
1851 {
1852 unsigned long flags;
1853 union iwreq_data wrqu = {
1854 .ap_addr = {
1855 .sa_family = ARPHRD_ETHER}
1856 };
1857 int associated = priv->status & STATUS_ASSOCIATED;
1858
1859 /* Kill the RF switch timer */
1860 if (!priv->stop_rf_kill) {
1861 priv->stop_rf_kill = 1;
1862 cancel_delayed_work(&priv->rf_kill);
1863 }
1864
1865 /* Kill the firmware hang check timer */
1866 if (!priv->stop_hang_check) {
1867 priv->stop_hang_check = 1;
1868 cancel_delayed_work(&priv->hang_check);
1869 }
1870
1871 /* Kill any pending resets */
1872 if (priv->status & STATUS_RESET_PENDING)
1873 cancel_delayed_work(&priv->reset_work);
1874
1875 /* Make sure the interrupt is on so that FW commands will be
1876 * processed correctly */
1877 spin_lock_irqsave(&priv->low_lock, flags);
1878 ipw2100_enable_interrupts(priv);
1879 spin_unlock_irqrestore(&priv->low_lock, flags);
1880
1881 if (ipw2100_hw_stop_adapter(priv))
1882 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883 priv->net_dev->name);
1884
1885 /* Do not disable the interrupt until _after_ we disable
1886 * the adaptor. Otherwise the CARD_DISABLE command will never
1887 * be ack'd by the firmware */
1888 spin_lock_irqsave(&priv->low_lock, flags);
1889 ipw2100_disable_interrupts(priv);
1890 spin_unlock_irqrestore(&priv->low_lock, flags);
1891
1892 pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1893
1894 /* We have to signal any supplicant if we are disassociating */
1895 if (associated)
1896 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1897
1898 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899 netif_carrier_off(priv->net_dev);
1900 netif_stop_queue(priv->net_dev);
1901 }
1902
1903 static int ipw2100_wdev_init(struct net_device *dev)
1904 {
1905 struct ipw2100_priv *priv = libipw_priv(dev);
1906 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1907 struct wireless_dev *wdev = &priv->ieee->wdev;
1908 int i;
1909
1910 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1911
1912 /* fill-out priv->ieee->bg_band */
1913 if (geo->bg_channels) {
1914 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1915
1916 bg_band->band = IEEE80211_BAND_2GHZ;
1917 bg_band->n_channels = geo->bg_channels;
1918 bg_band->channels = kcalloc(geo->bg_channels,
1919 sizeof(struct ieee80211_channel),
1920 GFP_KERNEL);
1921 if (!bg_band->channels) {
1922 ipw2100_down(priv);
1923 return -ENOMEM;
1924 }
1925 /* translate geo->bg to bg_band.channels */
1926 for (i = 0; i < geo->bg_channels; i++) {
1927 bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1928 bg_band->channels[i].center_freq = geo->bg[i].freq;
1929 bg_band->channels[i].hw_value = geo->bg[i].channel;
1930 bg_band->channels[i].max_power = geo->bg[i].max_power;
1931 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1932 bg_band->channels[i].flags |=
1933 IEEE80211_CHAN_NO_IR;
1934 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1935 bg_band->channels[i].flags |=
1936 IEEE80211_CHAN_NO_IR;
1937 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1938 bg_band->channels[i].flags |=
1939 IEEE80211_CHAN_RADAR;
1940 /* No equivalent for LIBIPW_CH_80211H_RULES,
1941 LIBIPW_CH_UNIFORM_SPREADING, or
1942 LIBIPW_CH_B_ONLY... */
1943 }
1944 /* point at bitrate info */
1945 bg_band->bitrates = ipw2100_bg_rates;
1946 bg_band->n_bitrates = RATE_COUNT;
1947
1948 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1949 }
1950
1951 wdev->wiphy->cipher_suites = ipw_cipher_suites;
1952 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1953
1954 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1955 if (wiphy_register(wdev->wiphy))
1956 return -EIO;
1957 return 0;
1958 }
1959
1960 static void ipw2100_reset_adapter(struct work_struct *work)
1961 {
1962 struct ipw2100_priv *priv =
1963 container_of(work, struct ipw2100_priv, reset_work.work);
1964 unsigned long flags;
1965 union iwreq_data wrqu = {
1966 .ap_addr = {
1967 .sa_family = ARPHRD_ETHER}
1968 };
1969 int associated = priv->status & STATUS_ASSOCIATED;
1970
1971 spin_lock_irqsave(&priv->low_lock, flags);
1972 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1973 priv->resets++;
1974 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1975 priv->status |= STATUS_SECURITY_UPDATED;
1976
1977 /* Force a power cycle even if interface hasn't been opened
1978 * yet */
1979 cancel_delayed_work(&priv->reset_work);
1980 priv->status |= STATUS_RESET_PENDING;
1981 spin_unlock_irqrestore(&priv->low_lock, flags);
1982
1983 mutex_lock(&priv->action_mutex);
1984 /* stop timed checks so that they don't interfere with reset */
1985 priv->stop_hang_check = 1;
1986 cancel_delayed_work(&priv->hang_check);
1987
1988 /* We have to signal any supplicant if we are disassociating */
1989 if (associated)
1990 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1991
1992 ipw2100_up(priv, 0);
1993 mutex_unlock(&priv->action_mutex);
1994
1995 }
1996
1997 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1998 {
1999
2000 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2001 int ret;
2002 unsigned int len, essid_len;
2003 char essid[IW_ESSID_MAX_SIZE];
2004 u32 txrate;
2005 u32 chan;
2006 char *txratename;
2007 u8 bssid[ETH_ALEN];
2008 DECLARE_SSID_BUF(ssid);
2009
2010 /*
2011 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2012 * an actual MAC of the AP. Seems like FW sets this
2013 * address too late. Read it later and expose through
2014 * /proc or schedule a later task to query and update
2015 */
2016
2017 essid_len = IW_ESSID_MAX_SIZE;
2018 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2019 essid, &essid_len);
2020 if (ret) {
2021 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2022 __LINE__);
2023 return;
2024 }
2025
2026 len = sizeof(u32);
2027 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2028 if (ret) {
2029 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2030 __LINE__);
2031 return;
2032 }
2033
2034 len = sizeof(u32);
2035 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2036 if (ret) {
2037 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2038 __LINE__);
2039 return;
2040 }
2041 len = ETH_ALEN;
2042 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2043 &len);
2044 if (ret) {
2045 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2046 __LINE__);
2047 return;
2048 }
2049 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2050
2051 switch (txrate) {
2052 case TX_RATE_1_MBIT:
2053 txratename = "1Mbps";
2054 break;
2055 case TX_RATE_2_MBIT:
2056 txratename = "2Mbsp";
2057 break;
2058 case TX_RATE_5_5_MBIT:
2059 txratename = "5.5Mbps";
2060 break;
2061 case TX_RATE_11_MBIT:
2062 txratename = "11Mbps";
2063 break;
2064 default:
2065 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2066 txratename = "unknown rate";
2067 break;
2068 }
2069
2070 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2071 priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2072 txratename, chan, bssid);
2073
2074 /* now we copy read ssid into dev */
2075 if (!(priv->config & CFG_STATIC_ESSID)) {
2076 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2077 memcpy(priv->essid, essid, priv->essid_len);
2078 }
2079 priv->channel = chan;
2080 memcpy(priv->bssid, bssid, ETH_ALEN);
2081
2082 priv->status |= STATUS_ASSOCIATING;
2083 priv->connect_start = get_seconds();
2084
2085 schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2086 }
2087
2088 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2089 int length, int batch_mode)
2090 {
2091 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2092 struct host_command cmd = {
2093 .host_command = SSID,
2094 .host_command_sequence = 0,
2095 .host_command_length = ssid_len
2096 };
2097 int err;
2098 DECLARE_SSID_BUF(ssid);
2099
2100 IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2101
2102 if (ssid_len)
2103 memcpy(cmd.host_command_parameters, essid, ssid_len);
2104
2105 if (!batch_mode) {
2106 err = ipw2100_disable_adapter(priv);
2107 if (err)
2108 return err;
2109 }
2110
2111 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2112 * disable auto association -- so we cheat by setting a bogus SSID */
2113 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2114 int i;
2115 u8 *bogus = (u8 *) cmd.host_command_parameters;
2116 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2117 bogus[i] = 0x18 + i;
2118 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2119 }
2120
2121 /* NOTE: We always send the SSID command even if the provided ESSID is
2122 * the same as what we currently think is set. */
2123
2124 err = ipw2100_hw_send_command(priv, &cmd);
2125 if (!err) {
2126 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2127 memcpy(priv->essid, essid, ssid_len);
2128 priv->essid_len = ssid_len;
2129 }
2130
2131 if (!batch_mode) {
2132 if (ipw2100_enable_adapter(priv))
2133 err = -EIO;
2134 }
2135
2136 return err;
2137 }
2138
2139 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2140 {
2141 DECLARE_SSID_BUF(ssid);
2142
2143 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2144 "disassociated: '%s' %pM\n",
2145 print_ssid(ssid, priv->essid, priv->essid_len),
2146 priv->bssid);
2147
2148 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2149
2150 if (priv->status & STATUS_STOPPING) {
2151 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2152 return;
2153 }
2154
2155 memset(priv->bssid, 0, ETH_ALEN);
2156 memset(priv->ieee->bssid, 0, ETH_ALEN);
2157
2158 netif_carrier_off(priv->net_dev);
2159 netif_stop_queue(priv->net_dev);
2160
2161 if (!(priv->status & STATUS_RUNNING))
2162 return;
2163
2164 if (priv->status & STATUS_SECURITY_UPDATED)
2165 schedule_delayed_work(&priv->security_work, 0);
2166
2167 schedule_delayed_work(&priv->wx_event_work, 0);
2168 }
2169
2170 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2171 {
2172 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2173 priv->net_dev->name);
2174
2175 /* RF_KILL is now enabled (else we wouldn't be here) */
2176 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2177 priv->status |= STATUS_RF_KILL_HW;
2178
2179 /* Make sure the RF Kill check timer is running */
2180 priv->stop_rf_kill = 0;
2181 mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2182 }
2183
2184 static void ipw2100_scan_event(struct work_struct *work)
2185 {
2186 struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv,
2187 scan_event.work);
2188 union iwreq_data wrqu;
2189
2190 wrqu.data.length = 0;
2191 wrqu.data.flags = 0;
2192 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2193 }
2194
2195 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2196 {
2197 IPW_DEBUG_SCAN("scan complete\n");
2198 /* Age the scan results... */
2199 priv->ieee->scans++;
2200 priv->status &= ~STATUS_SCANNING;
2201
2202 /* Only userspace-requested scan completion events go out immediately */
2203 if (!priv->user_requested_scan) {
2204 schedule_delayed_work(&priv->scan_event,
2205 round_jiffies_relative(msecs_to_jiffies(4000)));
2206 } else {
2207 priv->user_requested_scan = 0;
2208 mod_delayed_work(system_wq, &priv->scan_event, 0);
2209 }
2210 }
2211
2212 #ifdef CONFIG_IPW2100_DEBUG
2213 #define IPW2100_HANDLER(v, f) { v, f, # v }
2214 struct ipw2100_status_indicator {
2215 int status;
2216 void (*cb) (struct ipw2100_priv * priv, u32 status);
2217 char *name;
2218 };
2219 #else
2220 #define IPW2100_HANDLER(v, f) { v, f }
2221 struct ipw2100_status_indicator {
2222 int status;
2223 void (*cb) (struct ipw2100_priv * priv, u32 status);
2224 };
2225 #endif /* CONFIG_IPW2100_DEBUG */
2226
2227 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2228 {
2229 IPW_DEBUG_SCAN("Scanning...\n");
2230 priv->status |= STATUS_SCANNING;
2231 }
2232
2233 static const struct ipw2100_status_indicator status_handlers[] = {
2234 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2235 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2236 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2237 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2238 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2239 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2240 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2241 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2242 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2243 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2244 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2245 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2246 IPW2100_HANDLER(-1, NULL)
2247 };
2248
2249 static void isr_status_change(struct ipw2100_priv *priv, int status)
2250 {
2251 int i;
2252
2253 if (status == IPW_STATE_SCANNING &&
2254 priv->status & STATUS_ASSOCIATED &&
2255 !(priv->status & STATUS_SCANNING)) {
2256 IPW_DEBUG_INFO("Scan detected while associated, with "
2257 "no scan request. Restarting firmware.\n");
2258
2259 /* Wake up any sleeping jobs */
2260 schedule_reset(priv);
2261 }
2262
2263 for (i = 0; status_handlers[i].status != -1; i++) {
2264 if (status == status_handlers[i].status) {
2265 IPW_DEBUG_NOTIF("Status change: %s\n",
2266 status_handlers[i].name);
2267 if (status_handlers[i].cb)
2268 status_handlers[i].cb(priv, status);
2269 priv->wstats.status = status;
2270 return;
2271 }
2272 }
2273
2274 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2275 }
2276
2277 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2278 struct ipw2100_cmd_header *cmd)
2279 {
2280 #ifdef CONFIG_IPW2100_DEBUG
2281 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2282 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2283 command_types[cmd->host_command_reg],
2284 cmd->host_command_reg);
2285 }
2286 #endif
2287 if (cmd->host_command_reg == HOST_COMPLETE)
2288 priv->status |= STATUS_ENABLED;
2289
2290 if (cmd->host_command_reg == CARD_DISABLE)
2291 priv->status &= ~STATUS_ENABLED;
2292
2293 priv->status &= ~STATUS_CMD_ACTIVE;
2294
2295 wake_up_interruptible(&priv->wait_command_queue);
2296 }
2297
2298 #ifdef CONFIG_IPW2100_DEBUG
2299 static const char *frame_types[] = {
2300 "COMMAND_STATUS_VAL",
2301 "STATUS_CHANGE_VAL",
2302 "P80211_DATA_VAL",
2303 "P8023_DATA_VAL",
2304 "HOST_NOTIFICATION_VAL"
2305 };
2306 #endif
2307
2308 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2309 struct ipw2100_rx_packet *packet)
2310 {
2311 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2312 if (!packet->skb)
2313 return -ENOMEM;
2314
2315 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2316 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2317 sizeof(struct ipw2100_rx),
2318 PCI_DMA_FROMDEVICE);
2319 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2320 * dma_addr */
2321
2322 return 0;
2323 }
2324
2325 #define SEARCH_ERROR 0xffffffff
2326 #define SEARCH_FAIL 0xfffffffe
2327 #define SEARCH_SUCCESS 0xfffffff0
2328 #define SEARCH_DISCARD 0
2329 #define SEARCH_SNAPSHOT 1
2330
2331 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2332 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2333 {
2334 int i;
2335 if (!priv->snapshot[0])
2336 return;
2337 for (i = 0; i < 0x30; i++)
2338 kfree(priv->snapshot[i]);
2339 priv->snapshot[0] = NULL;
2340 }
2341
2342 #ifdef IPW2100_DEBUG_C3
2343 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2344 {
2345 int i;
2346 if (priv->snapshot[0])
2347 return 1;
2348 for (i = 0; i < 0x30; i++) {
2349 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2350 if (!priv->snapshot[i]) {
2351 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2352 "buffer %d\n", priv->net_dev->name, i);
2353 while (i > 0)
2354 kfree(priv->snapshot[--i]);
2355 priv->snapshot[0] = NULL;
2356 return 0;
2357 }
2358 }
2359
2360 return 1;
2361 }
2362
2363 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2364 size_t len, int mode)
2365 {
2366 u32 i, j;
2367 u32 tmp;
2368 u8 *s, *d;
2369 u32 ret;
2370
2371 s = in_buf;
2372 if (mode == SEARCH_SNAPSHOT) {
2373 if (!ipw2100_snapshot_alloc(priv))
2374 mode = SEARCH_DISCARD;
2375 }
2376
2377 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2378 read_nic_dword(priv->net_dev, i, &tmp);
2379 if (mode == SEARCH_SNAPSHOT)
2380 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2381 if (ret == SEARCH_FAIL) {
2382 d = (u8 *) & tmp;
2383 for (j = 0; j < 4; j++) {
2384 if (*s != *d) {
2385 s = in_buf;
2386 continue;
2387 }
2388
2389 s++;
2390 d++;
2391
2392 if ((s - in_buf) == len)
2393 ret = (i + j) - len + 1;
2394 }
2395 } else if (mode == SEARCH_DISCARD)
2396 return ret;
2397 }
2398
2399 return ret;
2400 }
2401 #endif
2402
2403 /*
2404 *
2405 * 0) Disconnect the SKB from the firmware (just unmap)
2406 * 1) Pack the ETH header into the SKB
2407 * 2) Pass the SKB to the network stack
2408 *
2409 * When packet is provided by the firmware, it contains the following:
2410 *
2411 * . libipw_hdr
2412 * . libipw_snap_hdr
2413 *
2414 * The size of the constructed ethernet
2415 *
2416 */
2417 #ifdef IPW2100_RX_DEBUG
2418 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2419 #endif
2420
2421 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2422 {
2423 #ifdef IPW2100_DEBUG_C3
2424 struct ipw2100_status *status = &priv->status_queue.drv[i];
2425 u32 match, reg;
2426 int j;
2427 #endif
2428
2429 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2430 i * sizeof(struct ipw2100_status));
2431
2432 #ifdef IPW2100_DEBUG_C3
2433 /* Halt the firmware so we can get a good image */
2434 write_register(priv->net_dev, IPW_REG_RESET_REG,
2435 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2436 j = 5;
2437 do {
2438 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2439 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2440
2441 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2442 break;
2443 } while (j--);
2444
2445 match = ipw2100_match_buf(priv, (u8 *) status,
2446 sizeof(struct ipw2100_status),
2447 SEARCH_SNAPSHOT);
2448 if (match < SEARCH_SUCCESS)
2449 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2450 "offset 0x%06X, length %d:\n",
2451 priv->net_dev->name, match,
2452 sizeof(struct ipw2100_status));
2453 else
2454 IPW_DEBUG_INFO("%s: No DMA status match in "
2455 "Firmware.\n", priv->net_dev->name);
2456
2457 printk_buf((u8 *) priv->status_queue.drv,
2458 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2459 #endif
2460
2461 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2462 priv->net_dev->stats.rx_errors++;
2463 schedule_reset(priv);
2464 }
2465
2466 static void isr_rx(struct ipw2100_priv *priv, int i,
2467 struct libipw_rx_stats *stats)
2468 {
2469 struct net_device *dev = priv->net_dev;
2470 struct ipw2100_status *status = &priv->status_queue.drv[i];
2471 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2472
2473 IPW_DEBUG_RX("Handler...\n");
2474
2475 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2476 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2477 " Dropping.\n",
2478 dev->name,
2479 status->frame_size, skb_tailroom(packet->skb));
2480 dev->stats.rx_errors++;
2481 return;
2482 }
2483
2484 if (unlikely(!netif_running(dev))) {
2485 dev->stats.rx_errors++;
2486 priv->wstats.discard.misc++;
2487 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2488 return;
2489 }
2490
2491 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2492 !(priv->status & STATUS_ASSOCIATED))) {
2493 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2494 priv->wstats.discard.misc++;
2495 return;
2496 }
2497
2498 pci_unmap_single(priv->pci_dev,
2499 packet->dma_addr,
2500 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2501
2502 skb_put(packet->skb, status->frame_size);
2503
2504 #ifdef IPW2100_RX_DEBUG
2505 /* Make a copy of the frame so we can dump it to the logs if
2506 * libipw_rx fails */
2507 skb_copy_from_linear_data(packet->skb, packet_data,
2508 min_t(u32, status->frame_size,
2509 IPW_RX_NIC_BUFFER_LENGTH));
2510 #endif
2511
2512 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2513 #ifdef IPW2100_RX_DEBUG
2514 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2515 dev->name);
2516 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2517 #endif
2518 dev->stats.rx_errors++;
2519
2520 /* libipw_rx failed, so it didn't free the SKB */
2521 dev_kfree_skb_any(packet->skb);
2522 packet->skb = NULL;
2523 }
2524
2525 /* We need to allocate a new SKB and attach it to the RDB. */
2526 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2527 printk(KERN_WARNING DRV_NAME ": "
2528 "%s: Unable to allocate SKB onto RBD ring - disabling "
2529 "adapter.\n", dev->name);
2530 /* TODO: schedule adapter shutdown */
2531 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2532 }
2533
2534 /* Update the RDB entry */
2535 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2536 }
2537
2538 #ifdef CONFIG_IPW2100_MONITOR
2539
2540 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2541 struct libipw_rx_stats *stats)
2542 {
2543 struct net_device *dev = priv->net_dev;
2544 struct ipw2100_status *status = &priv->status_queue.drv[i];
2545 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2546
2547 /* Magic struct that slots into the radiotap header -- no reason
2548 * to build this manually element by element, we can write it much
2549 * more efficiently than we can parse it. ORDER MATTERS HERE */
2550 struct ipw_rt_hdr {
2551 struct ieee80211_radiotap_header rt_hdr;
2552 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2553 } *ipw_rt;
2554
2555 IPW_DEBUG_RX("Handler...\n");
2556
2557 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2558 sizeof(struct ipw_rt_hdr))) {
2559 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2560 " Dropping.\n",
2561 dev->name,
2562 status->frame_size,
2563 skb_tailroom(packet->skb));
2564 dev->stats.rx_errors++;
2565 return;
2566 }
2567
2568 if (unlikely(!netif_running(dev))) {
2569 dev->stats.rx_errors++;
2570 priv->wstats.discard.misc++;
2571 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2572 return;
2573 }
2574
2575 if (unlikely(priv->config & CFG_CRC_CHECK &&
2576 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2577 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2578 dev->stats.rx_errors++;
2579 return;
2580 }
2581
2582 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2583 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2584 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2585 packet->skb->data, status->frame_size);
2586
2587 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2588
2589 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2590 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2591 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2592
2593 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2594
2595 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2596
2597 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2598
2599 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2600 dev->stats.rx_errors++;
2601
2602 /* libipw_rx failed, so it didn't free the SKB */
2603 dev_kfree_skb_any(packet->skb);
2604 packet->skb = NULL;
2605 }
2606
2607 /* We need to allocate a new SKB and attach it to the RDB. */
2608 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2609 IPW_DEBUG_WARNING(
2610 "%s: Unable to allocate SKB onto RBD ring - disabling "
2611 "adapter.\n", dev->name);
2612 /* TODO: schedule adapter shutdown */
2613 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2614 }
2615
2616 /* Update the RDB entry */
2617 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2618 }
2619
2620 #endif
2621
2622 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2623 {
2624 struct ipw2100_status *status = &priv->status_queue.drv[i];
2625 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2626 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2627
2628 switch (frame_type) {
2629 case COMMAND_STATUS_VAL:
2630 return (status->frame_size != sizeof(u->rx_data.command));
2631 case STATUS_CHANGE_VAL:
2632 return (status->frame_size != sizeof(u->rx_data.status));
2633 case HOST_NOTIFICATION_VAL:
2634 return (status->frame_size < sizeof(u->rx_data.notification));
2635 case P80211_DATA_VAL:
2636 case P8023_DATA_VAL:
2637 #ifdef CONFIG_IPW2100_MONITOR
2638 return 0;
2639 #else
2640 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2641 case IEEE80211_FTYPE_MGMT:
2642 case IEEE80211_FTYPE_CTL:
2643 return 0;
2644 case IEEE80211_FTYPE_DATA:
2645 return (status->frame_size >
2646 IPW_MAX_802_11_PAYLOAD_LENGTH);
2647 }
2648 #endif
2649 }
2650
2651 return 1;
2652 }
2653
2654 /*
2655 * ipw2100 interrupts are disabled at this point, and the ISR
2656 * is the only code that calls this method. So, we do not need
2657 * to play with any locks.
2658 *
2659 * RX Queue works as follows:
2660 *
2661 * Read index - firmware places packet in entry identified by the
2662 * Read index and advances Read index. In this manner,
2663 * Read index will always point to the next packet to
2664 * be filled--but not yet valid.
2665 *
2666 * Write index - driver fills this entry with an unused RBD entry.
2667 * This entry has not filled by the firmware yet.
2668 *
2669 * In between the W and R indexes are the RBDs that have been received
2670 * but not yet processed.
2671 *
2672 * The process of handling packets will start at WRITE + 1 and advance
2673 * until it reaches the READ index.
2674 *
2675 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2676 *
2677 */
2678 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2679 {
2680 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2681 struct ipw2100_status_queue *sq = &priv->status_queue;
2682 struct ipw2100_rx_packet *packet;
2683 u16 frame_type;
2684 u32 r, w, i, s;
2685 struct ipw2100_rx *u;
2686 struct libipw_rx_stats stats = {
2687 .mac_time = jiffies,
2688 };
2689
2690 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2691 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2692
2693 if (r >= rxq->entries) {
2694 IPW_DEBUG_RX("exit - bad read index\n");
2695 return;
2696 }
2697
2698 i = (rxq->next + 1) % rxq->entries;
2699 s = i;
2700 while (i != r) {
2701 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2702 r, rxq->next, i); */
2703
2704 packet = &priv->rx_buffers[i];
2705
2706 /* Sync the DMA for the RX buffer so CPU is sure to get
2707 * the correct values */
2708 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2709 sizeof(struct ipw2100_rx),
2710 PCI_DMA_FROMDEVICE);
2711
2712 if (unlikely(ipw2100_corruption_check(priv, i))) {
2713 ipw2100_corruption_detected(priv, i);
2714 goto increment;
2715 }
2716
2717 u = packet->rxp;
2718 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2719 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2720 stats.len = sq->drv[i].frame_size;
2721
2722 stats.mask = 0;
2723 if (stats.rssi != 0)
2724 stats.mask |= LIBIPW_STATMASK_RSSI;
2725 stats.freq = LIBIPW_24GHZ_BAND;
2726
2727 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2728 priv->net_dev->name, frame_types[frame_type],
2729 stats.len);
2730
2731 switch (frame_type) {
2732 case COMMAND_STATUS_VAL:
2733 /* Reset Rx watchdog */
2734 isr_rx_complete_command(priv, &u->rx_data.command);
2735 break;
2736
2737 case STATUS_CHANGE_VAL:
2738 isr_status_change(priv, u->rx_data.status);
2739 break;
2740
2741 case P80211_DATA_VAL:
2742 case P8023_DATA_VAL:
2743 #ifdef CONFIG_IPW2100_MONITOR
2744 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2745 isr_rx_monitor(priv, i, &stats);
2746 break;
2747 }
2748 #endif
2749 if (stats.len < sizeof(struct libipw_hdr_3addr))
2750 break;
2751 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2752 case IEEE80211_FTYPE_MGMT:
2753 libipw_rx_mgt(priv->ieee,
2754 &u->rx_data.header, &stats);
2755 break;
2756
2757 case IEEE80211_FTYPE_CTL:
2758 break;
2759
2760 case IEEE80211_FTYPE_DATA:
2761 isr_rx(priv, i, &stats);
2762 break;
2763
2764 }
2765 break;
2766 }
2767
2768 increment:
2769 /* clear status field associated with this RBD */
2770 rxq->drv[i].status.info.field = 0;
2771
2772 i = (i + 1) % rxq->entries;
2773 }
2774
2775 if (i != s) {
2776 /* backtrack one entry, wrapping to end if at 0 */
2777 rxq->next = (i ? i : rxq->entries) - 1;
2778
2779 write_register(priv->net_dev,
2780 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2781 }
2782 }
2783
2784 /*
2785 * __ipw2100_tx_process
2786 *
2787 * This routine will determine whether the next packet on
2788 * the fw_pend_list has been processed by the firmware yet.
2789 *
2790 * If not, then it does nothing and returns.
2791 *
2792 * If so, then it removes the item from the fw_pend_list, frees
2793 * any associated storage, and places the item back on the
2794 * free list of its source (either msg_free_list or tx_free_list)
2795 *
2796 * TX Queue works as follows:
2797 *
2798 * Read index - points to the next TBD that the firmware will
2799 * process. The firmware will read the data, and once
2800 * done processing, it will advance the Read index.
2801 *
2802 * Write index - driver fills this entry with an constructed TBD
2803 * entry. The Write index is not advanced until the
2804 * packet has been configured.
2805 *
2806 * In between the W and R indexes are the TBDs that have NOT been
2807 * processed. Lagging behind the R index are packets that have
2808 * been processed but have not been freed by the driver.
2809 *
2810 * In order to free old storage, an internal index will be maintained
2811 * that points to the next packet to be freed. When all used
2812 * packets have been freed, the oldest index will be the same as the
2813 * firmware's read index.
2814 *
2815 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2816 *
2817 * Because the TBD structure can not contain arbitrary data, the
2818 * driver must keep an internal queue of cached allocations such that
2819 * it can put that data back into the tx_free_list and msg_free_list
2820 * for use by future command and data packets.
2821 *
2822 */
2823 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2824 {
2825 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2826 struct ipw2100_bd *tbd;
2827 struct list_head *element;
2828 struct ipw2100_tx_packet *packet;
2829 int descriptors_used;
2830 int e, i;
2831 u32 r, w, frag_num = 0;
2832
2833 if (list_empty(&priv->fw_pend_list))
2834 return 0;
2835
2836 element = priv->fw_pend_list.next;
2837
2838 packet = list_entry(element, struct ipw2100_tx_packet, list);
2839 tbd = &txq->drv[packet->index];
2840
2841 /* Determine how many TBD entries must be finished... */
2842 switch (packet->type) {
2843 case COMMAND:
2844 /* COMMAND uses only one slot; don't advance */
2845 descriptors_used = 1;
2846 e = txq->oldest;
2847 break;
2848
2849 case DATA:
2850 /* DATA uses two slots; advance and loop position. */
2851 descriptors_used = tbd->num_fragments;
2852 frag_num = tbd->num_fragments - 1;
2853 e = txq->oldest + frag_num;
2854 e %= txq->entries;
2855 break;
2856
2857 default:
2858 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2859 priv->net_dev->name);
2860 return 0;
2861 }
2862
2863 /* if the last TBD is not done by NIC yet, then packet is
2864 * not ready to be released.
2865 *
2866 */
2867 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2868 &r);
2869 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2870 &w);
2871 if (w != txq->next)
2872 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2873 priv->net_dev->name);
2874
2875 /*
2876 * txq->next is the index of the last packet written txq->oldest is
2877 * the index of the r is the index of the next packet to be read by
2878 * firmware
2879 */
2880
2881 /*
2882 * Quick graphic to help you visualize the following
2883 * if / else statement
2884 *
2885 * ===>| s---->|===============
2886 * e>|
2887 * | a | b | c | d | e | f | g | h | i | j | k | l
2888 * r---->|
2889 * w
2890 *
2891 * w - updated by driver
2892 * r - updated by firmware
2893 * s - start of oldest BD entry (txq->oldest)
2894 * e - end of oldest BD entry
2895 *
2896 */
2897 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2898 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2899 return 0;
2900 }
2901
2902 list_del(element);
2903 DEC_STAT(&priv->fw_pend_stat);
2904
2905 #ifdef CONFIG_IPW2100_DEBUG
2906 {
2907 i = txq->oldest;
2908 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2909 &txq->drv[i],
2910 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2911 txq->drv[i].host_addr, txq->drv[i].buf_length);
2912
2913 if (packet->type == DATA) {
2914 i = (i + 1) % txq->entries;
2915
2916 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2917 &txq->drv[i],
2918 (u32) (txq->nic + i *
2919 sizeof(struct ipw2100_bd)),
2920 (u32) txq->drv[i].host_addr,
2921 txq->drv[i].buf_length);
2922 }
2923 }
2924 #endif
2925
2926 switch (packet->type) {
2927 case DATA:
2928 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2929 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2930 "Expecting DATA TBD but pulled "
2931 "something else: ids %d=%d.\n",
2932 priv->net_dev->name, txq->oldest, packet->index);
2933
2934 /* DATA packet; we have to unmap and free the SKB */
2935 for (i = 0; i < frag_num; i++) {
2936 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2937
2938 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2939 (packet->index + 1 + i) % txq->entries,
2940 tbd->host_addr, tbd->buf_length);
2941
2942 pci_unmap_single(priv->pci_dev,
2943 tbd->host_addr,
2944 tbd->buf_length, PCI_DMA_TODEVICE);
2945 }
2946
2947 libipw_txb_free(packet->info.d_struct.txb);
2948 packet->info.d_struct.txb = NULL;
2949
2950 list_add_tail(element, &priv->tx_free_list);
2951 INC_STAT(&priv->tx_free_stat);
2952
2953 /* We have a free slot in the Tx queue, so wake up the
2954 * transmit layer if it is stopped. */
2955 if (priv->status & STATUS_ASSOCIATED)
2956 netif_wake_queue(priv->net_dev);
2957
2958 /* A packet was processed by the hardware, so update the
2959 * watchdog */
2960 priv->net_dev->trans_start = jiffies;
2961
2962 break;
2963
2964 case COMMAND:
2965 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2966 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2967 "Expecting COMMAND TBD but pulled "
2968 "something else: ids %d=%d.\n",
2969 priv->net_dev->name, txq->oldest, packet->index);
2970
2971 #ifdef CONFIG_IPW2100_DEBUG
2972 if (packet->info.c_struct.cmd->host_command_reg <
2973 ARRAY_SIZE(command_types))
2974 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2975 command_types[packet->info.c_struct.cmd->
2976 host_command_reg],
2977 packet->info.c_struct.cmd->
2978 host_command_reg,
2979 packet->info.c_struct.cmd->cmd_status_reg);
2980 #endif
2981
2982 list_add_tail(element, &priv->msg_free_list);
2983 INC_STAT(&priv->msg_free_stat);
2984 break;
2985 }
2986
2987 /* advance oldest used TBD pointer to start of next entry */
2988 txq->oldest = (e + 1) % txq->entries;
2989 /* increase available TBDs number */
2990 txq->available += descriptors_used;
2991 SET_STAT(&priv->txq_stat, txq->available);
2992
2993 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2994 jiffies - packet->jiffy_start);
2995
2996 return (!list_empty(&priv->fw_pend_list));
2997 }
2998
2999 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3000 {
3001 int i = 0;
3002
3003 while (__ipw2100_tx_process(priv) && i < 200)
3004 i++;
3005
3006 if (i == 200) {
3007 printk(KERN_WARNING DRV_NAME ": "
3008 "%s: Driver is running slow (%d iters).\n",
3009 priv->net_dev->name, i);
3010 }
3011 }
3012
3013 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3014 {
3015 struct list_head *element;
3016 struct ipw2100_tx_packet *packet;
3017 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3018 struct ipw2100_bd *tbd;
3019 int next = txq->next;
3020
3021 while (!list_empty(&priv->msg_pend_list)) {
3022 /* if there isn't enough space in TBD queue, then
3023 * don't stuff a new one in.
3024 * NOTE: 3 are needed as a command will take one,
3025 * and there is a minimum of 2 that must be
3026 * maintained between the r and w indexes
3027 */
3028 if (txq->available <= 3) {
3029 IPW_DEBUG_TX("no room in tx_queue\n");
3030 break;
3031 }
3032
3033 element = priv->msg_pend_list.next;
3034 list_del(element);
3035 DEC_STAT(&priv->msg_pend_stat);
3036
3037 packet = list_entry(element, struct ipw2100_tx_packet, list);
3038
3039 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3040 &txq->drv[txq->next],
3041 (u32) (txq->nic + txq->next *
3042 sizeof(struct ipw2100_bd)));
3043
3044 packet->index = txq->next;
3045
3046 tbd = &txq->drv[txq->next];
3047
3048 /* initialize TBD */
3049 tbd->host_addr = packet->info.c_struct.cmd_phys;
3050 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3051 /* not marking number of fragments causes problems
3052 * with f/w debug version */
3053 tbd->num_fragments = 1;
3054 tbd->status.info.field =
3055 IPW_BD_STATUS_TX_FRAME_COMMAND |
3056 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3057
3058 /* update TBD queue counters */
3059 txq->next++;
3060 txq->next %= txq->entries;
3061 txq->available--;
3062 DEC_STAT(&priv->txq_stat);
3063
3064 list_add_tail(element, &priv->fw_pend_list);
3065 INC_STAT(&priv->fw_pend_stat);
3066 }
3067
3068 if (txq->next != next) {
3069 /* kick off the DMA by notifying firmware the
3070 * write index has moved; make sure TBD stores are sync'd */
3071 wmb();
3072 write_register(priv->net_dev,
3073 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3074 txq->next);
3075 }
3076 }
3077
3078 /*
3079 * ipw2100_tx_send_data
3080 *
3081 */
3082 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3083 {
3084 struct list_head *element;
3085 struct ipw2100_tx_packet *packet;
3086 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3087 struct ipw2100_bd *tbd;
3088 int next = txq->next;
3089 int i = 0;
3090 struct ipw2100_data_header *ipw_hdr;
3091 struct libipw_hdr_3addr *hdr;
3092
3093 while (!list_empty(&priv->tx_pend_list)) {
3094 /* if there isn't enough space in TBD queue, then
3095 * don't stuff a new one in.
3096 * NOTE: 4 are needed as a data will take two,
3097 * and there is a minimum of 2 that must be
3098 * maintained between the r and w indexes
3099 */
3100 element = priv->tx_pend_list.next;
3101 packet = list_entry(element, struct ipw2100_tx_packet, list);
3102
3103 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3104 IPW_MAX_BDS)) {
3105 /* TODO: Support merging buffers if more than
3106 * IPW_MAX_BDS are used */
3107 IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded. "
3108 "Increase fragmentation level.\n",
3109 priv->net_dev->name);
3110 }
3111
3112 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3113 IPW_DEBUG_TX("no room in tx_queue\n");
3114 break;
3115 }
3116
3117 list_del(element);
3118 DEC_STAT(&priv->tx_pend_stat);
3119
3120 tbd = &txq->drv[txq->next];
3121
3122 packet->index = txq->next;
3123
3124 ipw_hdr = packet->info.d_struct.data;
3125 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3126 fragments[0]->data;
3127
3128 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3129 /* To DS: Addr1 = BSSID, Addr2 = SA,
3130 Addr3 = DA */
3131 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3132 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3133 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3134 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3135 Addr3 = BSSID */
3136 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3137 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3138 }
3139
3140 ipw_hdr->host_command_reg = SEND;
3141 ipw_hdr->host_command_reg1 = 0;
3142
3143 /* For now we only support host based encryption */
3144 ipw_hdr->needs_encryption = 0;
3145 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3146 if (packet->info.d_struct.txb->nr_frags > 1)
3147 ipw_hdr->fragment_size =
3148 packet->info.d_struct.txb->frag_size -
3149 LIBIPW_3ADDR_LEN;
3150 else
3151 ipw_hdr->fragment_size = 0;
3152
3153 tbd->host_addr = packet->info.d_struct.data_phys;
3154 tbd->buf_length = sizeof(struct ipw2100_data_header);
3155 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3156 tbd->status.info.field =
3157 IPW_BD_STATUS_TX_FRAME_802_3 |
3158 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3159 txq->next++;
3160 txq->next %= txq->entries;
3161
3162 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3163 packet->index, tbd->host_addr, tbd->buf_length);
3164 #ifdef CONFIG_IPW2100_DEBUG
3165 if (packet->info.d_struct.txb->nr_frags > 1)
3166 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3167 packet->info.d_struct.txb->nr_frags);
3168 #endif
3169
3170 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3171 tbd = &txq->drv[txq->next];
3172 if (i == packet->info.d_struct.txb->nr_frags - 1)
3173 tbd->status.info.field =
3174 IPW_BD_STATUS_TX_FRAME_802_3 |
3175 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3176 else
3177 tbd->status.info.field =
3178 IPW_BD_STATUS_TX_FRAME_802_3 |
3179 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3180
3181 tbd->buf_length = packet->info.d_struct.txb->
3182 fragments[i]->len - LIBIPW_3ADDR_LEN;
3183
3184 tbd->host_addr = pci_map_single(priv->pci_dev,
3185 packet->info.d_struct.
3186 txb->fragments[i]->
3187 data +
3188 LIBIPW_3ADDR_LEN,
3189 tbd->buf_length,
3190 PCI_DMA_TODEVICE);
3191
3192 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3193 txq->next, tbd->host_addr,
3194 tbd->buf_length);
3195
3196 pci_dma_sync_single_for_device(priv->pci_dev,
3197 tbd->host_addr,
3198 tbd->buf_length,
3199 PCI_DMA_TODEVICE);
3200
3201 txq->next++;
3202 txq->next %= txq->entries;
3203 }
3204
3205 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3206 SET_STAT(&priv->txq_stat, txq->available);
3207
3208 list_add_tail(element, &priv->fw_pend_list);
3209 INC_STAT(&priv->fw_pend_stat);
3210 }
3211
3212 if (txq->next != next) {
3213 /* kick off the DMA by notifying firmware the
3214 * write index has moved; make sure TBD stores are sync'd */
3215 write_register(priv->net_dev,
3216 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3217 txq->next);
3218 }
3219 }
3220
3221 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3222 {
3223 struct net_device *dev = priv->net_dev;
3224 unsigned long flags;
3225 u32 inta, tmp;
3226
3227 spin_lock_irqsave(&priv->low_lock, flags);
3228 ipw2100_disable_interrupts(priv);
3229
3230 read_register(dev, IPW_REG_INTA, &inta);
3231
3232 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3233 (unsigned long)inta & IPW_INTERRUPT_MASK);
3234
3235 priv->in_isr++;
3236 priv->interrupts++;
3237
3238 /* We do not loop and keep polling for more interrupts as this
3239 * is frowned upon and doesn't play nicely with other potentially
3240 * chained IRQs */
3241 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3242 (unsigned long)inta & IPW_INTERRUPT_MASK);
3243
3244 if (inta & IPW2100_INTA_FATAL_ERROR) {
3245 printk(KERN_WARNING DRV_NAME
3246 ": Fatal interrupt. Scheduling firmware restart.\n");
3247 priv->inta_other++;
3248 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3249
3250 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3251 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3252 priv->net_dev->name, priv->fatal_error);
3253
3254 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3255 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3256 priv->net_dev->name, tmp);
3257
3258 /* Wake up any sleeping jobs */
3259 schedule_reset(priv);
3260 }
3261
3262 if (inta & IPW2100_INTA_PARITY_ERROR) {
3263 printk(KERN_ERR DRV_NAME
3264 ": ***** PARITY ERROR INTERRUPT !!!!\n");
3265 priv->inta_other++;
3266 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3267 }
3268
3269 if (inta & IPW2100_INTA_RX_TRANSFER) {
3270 IPW_DEBUG_ISR("RX interrupt\n");
3271
3272 priv->rx_interrupts++;
3273
3274 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3275
3276 __ipw2100_rx_process(priv);
3277 __ipw2100_tx_complete(priv);
3278 }
3279
3280 if (inta & IPW2100_INTA_TX_TRANSFER) {
3281 IPW_DEBUG_ISR("TX interrupt\n");
3282
3283 priv->tx_interrupts++;
3284
3285 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3286
3287 __ipw2100_tx_complete(priv);
3288 ipw2100_tx_send_commands(priv);
3289 ipw2100_tx_send_data(priv);
3290 }
3291
3292 if (inta & IPW2100_INTA_TX_COMPLETE) {
3293 IPW_DEBUG_ISR("TX complete\n");
3294 priv->inta_other++;
3295 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3296
3297 __ipw2100_tx_complete(priv);
3298 }
3299
3300 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3301 /* ipw2100_handle_event(dev); */
3302 priv->inta_other++;
3303 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3304 }
3305
3306 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3307 IPW_DEBUG_ISR("FW init done interrupt\n");
3308 priv->inta_other++;
3309
3310 read_register(dev, IPW_REG_INTA, &tmp);
3311 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3312 IPW2100_INTA_PARITY_ERROR)) {
3313 write_register(dev, IPW_REG_INTA,
3314 IPW2100_INTA_FATAL_ERROR |
3315 IPW2100_INTA_PARITY_ERROR);
3316 }
3317
3318 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3319 }
3320
3321 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3322 IPW_DEBUG_ISR("Status change interrupt\n");
3323 priv->inta_other++;
3324 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3325 }
3326
3327 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3328 IPW_DEBUG_ISR("slave host mode interrupt\n");
3329 priv->inta_other++;
3330 write_register(dev, IPW_REG_INTA,
3331 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3332 }
3333
3334 priv->in_isr--;
3335 ipw2100_enable_interrupts(priv);
3336
3337 spin_unlock_irqrestore(&priv->low_lock, flags);
3338
3339 IPW_DEBUG_ISR("exit\n");
3340 }
3341
3342 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3343 {
3344 struct ipw2100_priv *priv = data;
3345 u32 inta, inta_mask;
3346
3347 if (!data)
3348 return IRQ_NONE;
3349
3350 spin_lock(&priv->low_lock);
3351
3352 /* We check to see if we should be ignoring interrupts before
3353 * we touch the hardware. During ucode load if we try and handle
3354 * an interrupt we can cause keyboard problems as well as cause
3355 * the ucode to fail to initialize */
3356 if (!(priv->status & STATUS_INT_ENABLED)) {
3357 /* Shared IRQ */
3358 goto none;
3359 }
3360
3361 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3362 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3363
3364 if (inta == 0xFFFFFFFF) {
3365 /* Hardware disappeared */
3366 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3367 goto none;
3368 }
3369
3370 inta &= IPW_INTERRUPT_MASK;
3371
3372 if (!(inta & inta_mask)) {
3373 /* Shared interrupt */
3374 goto none;
3375 }
3376
3377 /* We disable the hardware interrupt here just to prevent unneeded
3378 * calls to be made. We disable this again within the actual
3379 * work tasklet, so if another part of the code re-enables the
3380 * interrupt, that is fine */
3381 ipw2100_disable_interrupts(priv);
3382
3383 tasklet_schedule(&priv->irq_tasklet);
3384 spin_unlock(&priv->low_lock);
3385
3386 return IRQ_HANDLED;
3387 none:
3388 spin_unlock(&priv->low_lock);
3389 return IRQ_NONE;
3390 }
3391
3392 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3393 struct net_device *dev, int pri)
3394 {
3395 struct ipw2100_priv *priv = libipw_priv(dev);
3396 struct list_head *element;
3397 struct ipw2100_tx_packet *packet;
3398 unsigned long flags;
3399
3400 spin_lock_irqsave(&priv->low_lock, flags);
3401
3402 if (!(priv->status & STATUS_ASSOCIATED)) {
3403 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3404 priv->net_dev->stats.tx_carrier_errors++;
3405 netif_stop_queue(dev);
3406 goto fail_unlock;
3407 }
3408
3409 if (list_empty(&priv->tx_free_list))
3410 goto fail_unlock;
3411
3412 element = priv->tx_free_list.next;
3413 packet = list_entry(element, struct ipw2100_tx_packet, list);
3414
3415 packet->info.d_struct.txb = txb;
3416
3417 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3418 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3419
3420 packet->jiffy_start = jiffies;
3421
3422 list_del(element);
3423 DEC_STAT(&priv->tx_free_stat);
3424
3425 list_add_tail(element, &priv->tx_pend_list);
3426 INC_STAT(&priv->tx_pend_stat);
3427
3428 ipw2100_tx_send_data(priv);
3429
3430 spin_unlock_irqrestore(&priv->low_lock, flags);
3431 return NETDEV_TX_OK;
3432
3433 fail_unlock:
3434 netif_stop_queue(dev);
3435 spin_unlock_irqrestore(&priv->low_lock, flags);
3436 return NETDEV_TX_BUSY;
3437 }
3438
3439 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3440 {
3441 int i, j, err = -EINVAL;
3442 void *v;
3443 dma_addr_t p;
3444
3445 priv->msg_buffers =
3446 kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3447 GFP_KERNEL);
3448 if (!priv->msg_buffers)
3449 return -ENOMEM;
3450
3451 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3452 v = pci_alloc_consistent(priv->pci_dev,
3453 sizeof(struct ipw2100_cmd_header), &p);
3454 if (!v) {
3455 printk(KERN_ERR DRV_NAME ": "
3456 "%s: PCI alloc failed for msg "
3457 "buffers.\n", priv->net_dev->name);
3458 err = -ENOMEM;
3459 break;
3460 }
3461
3462 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3463
3464 priv->msg_buffers[i].type = COMMAND;
3465 priv->msg_buffers[i].info.c_struct.cmd =
3466 (struct ipw2100_cmd_header *)v;
3467 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3468 }
3469
3470 if (i == IPW_COMMAND_POOL_SIZE)
3471 return 0;
3472
3473 for (j = 0; j < i; j++) {
3474 pci_free_consistent(priv->pci_dev,
3475 sizeof(struct ipw2100_cmd_header),
3476 priv->msg_buffers[j].info.c_struct.cmd,
3477 priv->msg_buffers[j].info.c_struct.
3478 cmd_phys);
3479 }
3480
3481 kfree(priv->msg_buffers);
3482 priv->msg_buffers = NULL;
3483
3484 return err;
3485 }
3486
3487 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3488 {
3489 int i;
3490
3491 INIT_LIST_HEAD(&priv->msg_free_list);
3492 INIT_LIST_HEAD(&priv->msg_pend_list);
3493
3494 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3495 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3496 SET_STAT(&priv->msg_free_stat, i);
3497
3498 return 0;
3499 }
3500
3501 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3502 {
3503 int i;
3504
3505 if (!priv->msg_buffers)
3506 return;
3507
3508 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3509 pci_free_consistent(priv->pci_dev,
3510 sizeof(struct ipw2100_cmd_header),
3511 priv->msg_buffers[i].info.c_struct.cmd,
3512 priv->msg_buffers[i].info.c_struct.
3513 cmd_phys);
3514 }
3515
3516 kfree(priv->msg_buffers);
3517 priv->msg_buffers = NULL;
3518 }
3519
3520 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3521 char *buf)
3522 {
3523 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3524 char *out = buf;
3525 int i, j;
3526 u32 val;
3527
3528 for (i = 0; i < 16; i++) {
3529 out += sprintf(out, "[%08X] ", i * 16);
3530 for (j = 0; j < 16; j += 4) {
3531 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3532 out += sprintf(out, "%08X ", val);
3533 }
3534 out += sprintf(out, "\n");
3535 }
3536
3537 return out - buf;
3538 }
3539
3540 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3541
3542 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3543 char *buf)
3544 {
3545 struct ipw2100_priv *p = dev_get_drvdata(d);
3546 return sprintf(buf, "0x%08x\n", (int)p->config);
3547 }
3548
3549 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3550
3551 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3552 char *buf)
3553 {
3554 struct ipw2100_priv *p = dev_get_drvdata(d);
3555 return sprintf(buf, "0x%08x\n", (int)p->status);
3556 }
3557
3558 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3559
3560 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3561 char *buf)
3562 {
3563 struct ipw2100_priv *p = dev_get_drvdata(d);
3564 return sprintf(buf, "0x%08x\n", (int)p->capability);
3565 }
3566
3567 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3568
3569 #define IPW2100_REG(x) { IPW_ ##x, #x }
3570 static const struct {
3571 u32 addr;
3572 const char *name;
3573 } hw_data[] = {
3574 IPW2100_REG(REG_GP_CNTRL),
3575 IPW2100_REG(REG_GPIO),
3576 IPW2100_REG(REG_INTA),
3577 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3578 #define IPW2100_NIC(x, s) { x, #x, s }
3579 static const struct {
3580 u32 addr;
3581 const char *name;
3582 size_t size;
3583 } nic_data[] = {
3584 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3585 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3586 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3587 static const struct {
3588 u8 index;
3589 const char *name;
3590 const char *desc;
3591 } ord_data[] = {
3592 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3593 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3594 "successful Host Tx's (MSDU)"),
3595 IPW2100_ORD(STAT_TX_DIR_DATA,
3596 "successful Directed Tx's (MSDU)"),
3597 IPW2100_ORD(STAT_TX_DIR_DATA1,
3598 "successful Directed Tx's (MSDU) @ 1MB"),
3599 IPW2100_ORD(STAT_TX_DIR_DATA2,
3600 "successful Directed Tx's (MSDU) @ 2MB"),
3601 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3602 "successful Directed Tx's (MSDU) @ 5_5MB"),
3603 IPW2100_ORD(STAT_TX_DIR_DATA11,
3604 "successful Directed Tx's (MSDU) @ 11MB"),
3605 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3606 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3607 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3608 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3609 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3610 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3611 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3612 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3613 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3614 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3615 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3616 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3617 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3618 IPW2100_ORD(STAT_TX_ASSN_RESP,
3619 "successful Association response Tx's"),
3620 IPW2100_ORD(STAT_TX_REASSN,
3621 "successful Reassociation Tx's"),
3622 IPW2100_ORD(STAT_TX_REASSN_RESP,
3623 "successful Reassociation response Tx's"),
3624 IPW2100_ORD(STAT_TX_PROBE,
3625 "probes successfully transmitted"),
3626 IPW2100_ORD(STAT_TX_PROBE_RESP,
3627 "probe responses successfully transmitted"),
3628 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3629 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3630 IPW2100_ORD(STAT_TX_DISASSN,
3631 "successful Disassociation TX"),
3632 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3633 IPW2100_ORD(STAT_TX_DEAUTH,
3634 "successful Deauthentication TX"),
3635 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3636 "Total successful Tx data bytes"),
3637 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3638 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3639 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3640 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3641 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3642 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3643 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3644 "times max tries in a hop failed"),
3645 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3646 "times disassociation failed"),
3647 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3648 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3649 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3650 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3651 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3652 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3653 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3654 "directed packets at 5.5MB"),
3655 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3656 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3657 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3658 "nondirected packets at 1MB"),
3659 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3660 "nondirected packets at 2MB"),
3661 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3662 "nondirected packets at 5.5MB"),
3663 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3664 "nondirected packets at 11MB"),
3665 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3666 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3667 "Rx CTS"),
3668 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3669 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3670 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3671 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3672 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3673 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3674 IPW2100_ORD(STAT_RX_REASSN_RESP,
3675 "Reassociation response Rx's"),
3676 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3677 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3678 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3679 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3680 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3681 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3682 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3683 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3684 "Total rx data bytes received"),
3685 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3686 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3687 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3688 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3689 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3690 IPW2100_ORD(STAT_RX_DUPLICATE1,
3691 "duplicate rx packets at 1MB"),
3692 IPW2100_ORD(STAT_RX_DUPLICATE2,
3693 "duplicate rx packets at 2MB"),
3694 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3695 "duplicate rx packets at 5.5MB"),
3696 IPW2100_ORD(STAT_RX_DUPLICATE11,
3697 "duplicate rx packets at 11MB"),
3698 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3699 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3700 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3701 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3702 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3703 "rx frames with invalid protocol"),
3704 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3705 IPW2100_ORD(STAT_RX_NO_BUFFER,
3706 "rx frames rejected due to no buffer"),
3707 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3708 "rx frames dropped due to missing fragment"),
3709 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3710 "rx frames dropped due to non-sequential fragment"),
3711 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3712 "rx frames dropped due to unmatched 1st frame"),
3713 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3714 "rx frames dropped due to uncompleted frame"),
3715 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3716 "ICV errors during decryption"),
3717 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3718 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3719 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3720 "poll response timeouts"),
3721 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3722 "timeouts waiting for last {broad,multi}cast pkt"),
3723 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3724 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3725 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3726 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3727 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3728 "current calculation of % missed beacons"),
3729 IPW2100_ORD(STAT_PERCENT_RETRIES,
3730 "current calculation of % missed tx retries"),
3731 IPW2100_ORD(ASSOCIATED_AP_PTR,
3732 "0 if not associated, else pointer to AP table entry"),
3733 IPW2100_ORD(AVAILABLE_AP_CNT,
3734 "AP's decsribed in the AP table"),
3735 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3736 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3737 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3738 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3739 "failures due to response fail"),
3740 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3741 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3742 IPW2100_ORD(STAT_ROAM_INHIBIT,
3743 "times roaming was inhibited due to activity"),
3744 IPW2100_ORD(RSSI_AT_ASSN,
3745 "RSSI of associated AP at time of association"),
3746 IPW2100_ORD(STAT_ASSN_CAUSE1,
3747 "reassociation: no probe response or TX on hop"),
3748 IPW2100_ORD(STAT_ASSN_CAUSE2,
3749 "reassociation: poor tx/rx quality"),
3750 IPW2100_ORD(STAT_ASSN_CAUSE3,
3751 "reassociation: tx/rx quality (excessive AP load"),
3752 IPW2100_ORD(STAT_ASSN_CAUSE4,
3753 "reassociation: AP RSSI level"),
3754 IPW2100_ORD(STAT_ASSN_CAUSE5,
3755 "reassociations due to load leveling"),
3756 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3757 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3758 "times authentication response failed"),
3759 IPW2100_ORD(STATION_TABLE_CNT,
3760 "entries in association table"),
3761 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3762 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3763 IPW2100_ORD(COUNTRY_CODE,
3764 "IEEE country code as recv'd from beacon"),
3765 IPW2100_ORD(COUNTRY_CHANNELS,
3766 "channels supported by country"),
3767 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3768 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3769 IPW2100_ORD(ANTENNA_DIVERSITY,
3770 "TRUE if antenna diversity is disabled"),
3771 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3772 IPW2100_ORD(OUR_FREQ,
3773 "current radio freq lower digits - channel ID"),
3774 IPW2100_ORD(RTC_TIME, "current RTC time"),
3775 IPW2100_ORD(PORT_TYPE, "operating mode"),
3776 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3777 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3778 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3779 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3780 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3781 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3782 IPW2100_ORD(CAPABILITIES,
3783 "Management frame capability field"),
3784 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3785 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3786 IPW2100_ORD(RTS_THRESHOLD,
3787 "Min packet length for RTS handshaking"),
3788 IPW2100_ORD(INT_MODE, "International mode"),
3789 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3790 "protocol frag threshold"),
3791 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3792 "EEPROM offset in SRAM"),
3793 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3794 "EEPROM size in SRAM"),
3795 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3796 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3797 "EEPROM IBSS 11b channel set"),
3798 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3799 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3800 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3801 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3802 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3803
3804 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3805 char *buf)
3806 {
3807 int i;
3808 struct ipw2100_priv *priv = dev_get_drvdata(d);
3809 struct net_device *dev = priv->net_dev;
3810 char *out = buf;
3811 u32 val = 0;
3812
3813 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3814
3815 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3816 read_register(dev, hw_data[i].addr, &val);
3817 out += sprintf(out, "%30s [%08X] : %08X\n",
3818 hw_data[i].name, hw_data[i].addr, val);
3819 }
3820
3821 return out - buf;
3822 }
3823
3824 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3825
3826 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3827 char *buf)
3828 {
3829 struct ipw2100_priv *priv = dev_get_drvdata(d);
3830 struct net_device *dev = priv->net_dev;
3831 char *out = buf;
3832 int i;
3833
3834 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3835
3836 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3837 u8 tmp8;
3838 u16 tmp16;
3839 u32 tmp32;
3840
3841 switch (nic_data[i].size) {
3842 case 1:
3843 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3844 out += sprintf(out, "%30s [%08X] : %02X\n",
3845 nic_data[i].name, nic_data[i].addr,
3846 tmp8);
3847 break;
3848 case 2:
3849 read_nic_word(dev, nic_data[i].addr, &tmp16);
3850 out += sprintf(out, "%30s [%08X] : %04X\n",
3851 nic_data[i].name, nic_data[i].addr,
3852 tmp16);
3853 break;
3854 case 4:
3855 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3856 out += sprintf(out, "%30s [%08X] : %08X\n",
3857 nic_data[i].name, nic_data[i].addr,
3858 tmp32);
3859 break;
3860 }
3861 }
3862 return out - buf;
3863 }
3864
3865 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3866
3867 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3868 char *buf)
3869 {
3870 struct ipw2100_priv *priv = dev_get_drvdata(d);
3871 struct net_device *dev = priv->net_dev;
3872 static unsigned long loop = 0;
3873 int len = 0;
3874 u32 buffer[4];
3875 int i;
3876 char line[81];
3877
3878 if (loop >= 0x30000)
3879 loop = 0;
3880
3881 /* sysfs provides us PAGE_SIZE buffer */
3882 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3883
3884 if (priv->snapshot[0])
3885 for (i = 0; i < 4; i++)
3886 buffer[i] =
3887 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3888 else
3889 for (i = 0; i < 4; i++)
3890 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3891
3892 if (priv->dump_raw)
3893 len += sprintf(buf + len,
3894 "%c%c%c%c"
3895 "%c%c%c%c"
3896 "%c%c%c%c"
3897 "%c%c%c%c",
3898 ((u8 *) buffer)[0x0],
3899 ((u8 *) buffer)[0x1],
3900 ((u8 *) buffer)[0x2],
3901 ((u8 *) buffer)[0x3],
3902 ((u8 *) buffer)[0x4],
3903 ((u8 *) buffer)[0x5],
3904 ((u8 *) buffer)[0x6],
3905 ((u8 *) buffer)[0x7],
3906 ((u8 *) buffer)[0x8],
3907 ((u8 *) buffer)[0x9],
3908 ((u8 *) buffer)[0xa],
3909 ((u8 *) buffer)[0xb],
3910 ((u8 *) buffer)[0xc],
3911 ((u8 *) buffer)[0xd],
3912 ((u8 *) buffer)[0xe],
3913 ((u8 *) buffer)[0xf]);
3914 else
3915 len += sprintf(buf + len, "%s\n",
3916 snprint_line(line, sizeof(line),
3917 (u8 *) buffer, 16, loop));
3918 loop += 16;
3919 }
3920
3921 return len;
3922 }
3923
3924 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3925 const char *buf, size_t count)
3926 {
3927 struct ipw2100_priv *priv = dev_get_drvdata(d);
3928 struct net_device *dev = priv->net_dev;
3929 const char *p = buf;
3930
3931 (void)dev; /* kill unused-var warning for debug-only code */
3932
3933 if (count < 1)
3934 return count;
3935
3936 if (p[0] == '1' ||
3937 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3938 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3939 dev->name);
3940 priv->dump_raw = 1;
3941
3942 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3943 tolower(p[1]) == 'f')) {
3944 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3945 dev->name);
3946 priv->dump_raw = 0;
3947
3948 } else if (tolower(p[0]) == 'r') {
3949 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3950 ipw2100_snapshot_free(priv);
3951
3952 } else
3953 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3954 "reset = clear memory snapshot\n", dev->name);
3955
3956 return count;
3957 }
3958
3959 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3960
3961 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3962 char *buf)
3963 {
3964 struct ipw2100_priv *priv = dev_get_drvdata(d);
3965 u32 val = 0;
3966 int len = 0;
3967 u32 val_len;
3968 static int loop = 0;
3969
3970 if (priv->status & STATUS_RF_KILL_MASK)
3971 return 0;
3972
3973 if (loop >= ARRAY_SIZE(ord_data))
3974 loop = 0;
3975
3976 /* sysfs provides us PAGE_SIZE buffer */
3977 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3978 val_len = sizeof(u32);
3979
3980 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3981 &val_len))
3982 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3983 ord_data[loop].index,
3984 ord_data[loop].desc);
3985 else
3986 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3987 ord_data[loop].index, val,
3988 ord_data[loop].desc);
3989 loop++;
3990 }
3991
3992 return len;
3993 }
3994
3995 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3996
3997 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3998 char *buf)
3999 {
4000 struct ipw2100_priv *priv = dev_get_drvdata(d);
4001 char *out = buf;
4002
4003 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4004 priv->interrupts, priv->tx_interrupts,
4005 priv->rx_interrupts, priv->inta_other);
4006 out += sprintf(out, "firmware resets: %d\n", priv->resets);
4007 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4008 #ifdef CONFIG_IPW2100_DEBUG
4009 out += sprintf(out, "packet mismatch image: %s\n",
4010 priv->snapshot[0] ? "YES" : "NO");
4011 #endif
4012
4013 return out - buf;
4014 }
4015
4016 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4017
4018 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4019 {
4020 int err;
4021
4022 if (mode == priv->ieee->iw_mode)
4023 return 0;
4024
4025 err = ipw2100_disable_adapter(priv);
4026 if (err) {
4027 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4028 priv->net_dev->name, err);
4029 return err;
4030 }
4031
4032 switch (mode) {
4033 case IW_MODE_INFRA:
4034 priv->net_dev->type = ARPHRD_ETHER;
4035 break;
4036 case IW_MODE_ADHOC:
4037 priv->net_dev->type = ARPHRD_ETHER;
4038 break;
4039 #ifdef CONFIG_IPW2100_MONITOR
4040 case IW_MODE_MONITOR:
4041 priv->last_mode = priv->ieee->iw_mode;
4042 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4043 break;
4044 #endif /* CONFIG_IPW2100_MONITOR */
4045 }
4046
4047 priv->ieee->iw_mode = mode;
4048
4049 #ifdef CONFIG_PM
4050 /* Indicate ipw2100_download_firmware download firmware
4051 * from disk instead of memory. */
4052 ipw2100_firmware.version = 0;
4053 #endif
4054
4055 printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4056 priv->reset_backoff = 0;
4057 schedule_reset(priv);
4058
4059 return 0;
4060 }
4061
4062 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4063 char *buf)
4064 {
4065 struct ipw2100_priv *priv = dev_get_drvdata(d);
4066 int len = 0;
4067
4068 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4069
4070 if (priv->status & STATUS_ASSOCIATED)
4071 len += sprintf(buf + len, "connected: %lu\n",
4072 get_seconds() - priv->connect_start);
4073 else
4074 len += sprintf(buf + len, "not connected\n");
4075
4076 DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4077 DUMP_VAR(status, "08lx");
4078 DUMP_VAR(config, "08lx");
4079 DUMP_VAR(capability, "08lx");
4080
4081 len +=
4082 sprintf(buf + len, "last_rtc: %lu\n",
4083 (unsigned long)priv->last_rtc);
4084
4085 DUMP_VAR(fatal_error, "d");
4086 DUMP_VAR(stop_hang_check, "d");
4087 DUMP_VAR(stop_rf_kill, "d");
4088 DUMP_VAR(messages_sent, "d");
4089
4090 DUMP_VAR(tx_pend_stat.value, "d");
4091 DUMP_VAR(tx_pend_stat.hi, "d");
4092
4093 DUMP_VAR(tx_free_stat.value, "d");
4094 DUMP_VAR(tx_free_stat.lo, "d");
4095
4096 DUMP_VAR(msg_free_stat.value, "d");
4097 DUMP_VAR(msg_free_stat.lo, "d");
4098
4099 DUMP_VAR(msg_pend_stat.value, "d");
4100 DUMP_VAR(msg_pend_stat.hi, "d");
4101
4102 DUMP_VAR(fw_pend_stat.value, "d");
4103 DUMP_VAR(fw_pend_stat.hi, "d");
4104
4105 DUMP_VAR(txq_stat.value, "d");
4106 DUMP_VAR(txq_stat.lo, "d");
4107
4108 DUMP_VAR(ieee->scans, "d");
4109 DUMP_VAR(reset_backoff, "d");
4110
4111 return len;
4112 }
4113
4114 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4115
4116 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4117 char *buf)
4118 {
4119 struct ipw2100_priv *priv = dev_get_drvdata(d);
4120 char essid[IW_ESSID_MAX_SIZE + 1];
4121 u8 bssid[ETH_ALEN];
4122 u32 chan = 0;
4123 char *out = buf;
4124 unsigned int length;
4125 int ret;
4126
4127 if (priv->status & STATUS_RF_KILL_MASK)
4128 return 0;
4129
4130 memset(essid, 0, sizeof(essid));
4131 memset(bssid, 0, sizeof(bssid));
4132
4133 length = IW_ESSID_MAX_SIZE;
4134 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4135 if (ret)
4136 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4137 __LINE__);
4138
4139 length = sizeof(bssid);
4140 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4141 bssid, &length);
4142 if (ret)
4143 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4144 __LINE__);
4145
4146 length = sizeof(u32);
4147 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4148 if (ret)
4149 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4150 __LINE__);
4151
4152 out += sprintf(out, "ESSID: %s\n", essid);
4153 out += sprintf(out, "BSSID: %pM\n", bssid);
4154 out += sprintf(out, "Channel: %d\n", chan);
4155
4156 return out - buf;
4157 }
4158
4159 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4160
4161 #ifdef CONFIG_IPW2100_DEBUG
4162 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4163 {
4164 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4165 }
4166
4167 static ssize_t store_debug_level(struct device_driver *d,
4168 const char *buf, size_t count)
4169 {
4170 u32 val;
4171 int ret;
4172
4173 ret = kstrtou32(buf, 0, &val);
4174 if (ret)
4175 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4176 else
4177 ipw2100_debug_level = val;
4178
4179 return strnlen(buf, count);
4180 }
4181
4182 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4183 store_debug_level);
4184 #endif /* CONFIG_IPW2100_DEBUG */
4185
4186 static ssize_t show_fatal_error(struct device *d,
4187 struct device_attribute *attr, char *buf)
4188 {
4189 struct ipw2100_priv *priv = dev_get_drvdata(d);
4190 char *out = buf;
4191 int i;
4192
4193 if (priv->fatal_error)
4194 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4195 else
4196 out += sprintf(out, "0\n");
4197
4198 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4199 if (!priv->fatal_errors[(priv->fatal_index - i) %
4200 IPW2100_ERROR_QUEUE])
4201 continue;
4202
4203 out += sprintf(out, "%d. 0x%08X\n", i,
4204 priv->fatal_errors[(priv->fatal_index - i) %
4205 IPW2100_ERROR_QUEUE]);
4206 }
4207
4208 return out - buf;
4209 }
4210
4211 static ssize_t store_fatal_error(struct device *d,
4212 struct device_attribute *attr, const char *buf,
4213 size_t count)
4214 {
4215 struct ipw2100_priv *priv = dev_get_drvdata(d);
4216 schedule_reset(priv);
4217 return count;
4218 }
4219
4220 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4221 store_fatal_error);
4222
4223 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4224 char *buf)
4225 {
4226 struct ipw2100_priv *priv = dev_get_drvdata(d);
4227 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4228 }
4229
4230 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4231 const char *buf, size_t count)
4232 {
4233 struct ipw2100_priv *priv = dev_get_drvdata(d);
4234 struct net_device *dev = priv->net_dev;
4235 unsigned long val;
4236 int ret;
4237
4238 (void)dev; /* kill unused-var warning for debug-only code */
4239
4240 IPW_DEBUG_INFO("enter\n");
4241
4242 ret = kstrtoul(buf, 0, &val);
4243 if (ret) {
4244 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4245 } else {
4246 priv->ieee->scan_age = val;
4247 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4248 }
4249
4250 IPW_DEBUG_INFO("exit\n");
4251 return strnlen(buf, count);
4252 }
4253
4254 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4255
4256 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4257 char *buf)
4258 {
4259 /* 0 - RF kill not enabled
4260 1 - SW based RF kill active (sysfs)
4261 2 - HW based RF kill active
4262 3 - Both HW and SW baed RF kill active */
4263 struct ipw2100_priv *priv = dev_get_drvdata(d);
4264 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4265 (rf_kill_active(priv) ? 0x2 : 0x0);
4266 return sprintf(buf, "%i\n", val);
4267 }
4268
4269 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4270 {
4271 if ((disable_radio ? 1 : 0) ==
4272 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4273 return 0;
4274
4275 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4276 disable_radio ? "OFF" : "ON");
4277
4278 mutex_lock(&priv->action_mutex);
4279
4280 if (disable_radio) {
4281 priv->status |= STATUS_RF_KILL_SW;
4282 ipw2100_down(priv);
4283 } else {
4284 priv->status &= ~STATUS_RF_KILL_SW;
4285 if (rf_kill_active(priv)) {
4286 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4287 "disabled by HW switch\n");
4288 /* Make sure the RF_KILL check timer is running */
4289 priv->stop_rf_kill = 0;
4290 mod_delayed_work(system_wq, &priv->rf_kill,
4291 round_jiffies_relative(HZ));
4292 } else
4293 schedule_reset(priv);
4294 }
4295
4296 mutex_unlock(&priv->action_mutex);
4297 return 1;
4298 }
4299
4300 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4301 const char *buf, size_t count)
4302 {
4303 struct ipw2100_priv *priv = dev_get_drvdata(d);
4304 ipw_radio_kill_sw(priv, buf[0] == '1');
4305 return count;
4306 }
4307
4308 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4309
4310 static struct attribute *ipw2100_sysfs_entries[] = {
4311 &dev_attr_hardware.attr,
4312 &dev_attr_registers.attr,
4313 &dev_attr_ordinals.attr,
4314 &dev_attr_pci.attr,
4315 &dev_attr_stats.attr,
4316 &dev_attr_internals.attr,
4317 &dev_attr_bssinfo.attr,
4318 &dev_attr_memory.attr,
4319 &dev_attr_scan_age.attr,
4320 &dev_attr_fatal_error.attr,
4321 &dev_attr_rf_kill.attr,
4322 &dev_attr_cfg.attr,
4323 &dev_attr_status.attr,
4324 &dev_attr_capability.attr,
4325 NULL,
4326 };
4327
4328 static struct attribute_group ipw2100_attribute_group = {
4329 .attrs = ipw2100_sysfs_entries,
4330 };
4331
4332 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4333 {
4334 struct ipw2100_status_queue *q = &priv->status_queue;
4335
4336 IPW_DEBUG_INFO("enter\n");
4337
4338 q->size = entries * sizeof(struct ipw2100_status);
4339 q->drv =
4340 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4341 q->size, &q->nic);
4342 if (!q->drv) {
4343 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4344 return -ENOMEM;
4345 }
4346
4347 memset(q->drv, 0, q->size);
4348
4349 IPW_DEBUG_INFO("exit\n");
4350
4351 return 0;
4352 }
4353
4354 static void status_queue_free(struct ipw2100_priv *priv)
4355 {
4356 IPW_DEBUG_INFO("enter\n");
4357
4358 if (priv->status_queue.drv) {
4359 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4360 priv->status_queue.drv,
4361 priv->status_queue.nic);
4362 priv->status_queue.drv = NULL;
4363 }
4364
4365 IPW_DEBUG_INFO("exit\n");
4366 }
4367
4368 static int bd_queue_allocate(struct ipw2100_priv *priv,
4369 struct ipw2100_bd_queue *q, int entries)
4370 {
4371 IPW_DEBUG_INFO("enter\n");
4372
4373 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4374
4375 q->entries = entries;
4376 q->size = entries * sizeof(struct ipw2100_bd);
4377 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4378 if (!q->drv) {
4379 IPW_DEBUG_INFO
4380 ("can't allocate shared memory for buffer descriptors\n");
4381 return -ENOMEM;
4382 }
4383 memset(q->drv, 0, q->size);
4384
4385 IPW_DEBUG_INFO("exit\n");
4386
4387 return 0;
4388 }
4389
4390 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4391 {
4392 IPW_DEBUG_INFO("enter\n");
4393
4394 if (!q)
4395 return;
4396
4397 if (q->drv) {
4398 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4399 q->drv = NULL;
4400 }
4401
4402 IPW_DEBUG_INFO("exit\n");
4403 }
4404
4405 static void bd_queue_initialize(struct ipw2100_priv *priv,
4406 struct ipw2100_bd_queue *q, u32 base, u32 size,
4407 u32 r, u32 w)
4408 {
4409 IPW_DEBUG_INFO("enter\n");
4410
4411 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4412 (u32) q->nic);
4413
4414 write_register(priv->net_dev, base, q->nic);
4415 write_register(priv->net_dev, size, q->entries);
4416 write_register(priv->net_dev, r, q->oldest);
4417 write_register(priv->net_dev, w, q->next);
4418
4419 IPW_DEBUG_INFO("exit\n");
4420 }
4421
4422 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4423 {
4424 priv->stop_rf_kill = 1;
4425 priv->stop_hang_check = 1;
4426 cancel_delayed_work_sync(&priv->reset_work);
4427 cancel_delayed_work_sync(&priv->security_work);
4428 cancel_delayed_work_sync(&priv->wx_event_work);
4429 cancel_delayed_work_sync(&priv->hang_check);
4430 cancel_delayed_work_sync(&priv->rf_kill);
4431 cancel_delayed_work_sync(&priv->scan_event);
4432 }
4433
4434 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4435 {
4436 int i, j, err = -EINVAL;
4437 void *v;
4438 dma_addr_t p;
4439
4440 IPW_DEBUG_INFO("enter\n");
4441
4442 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4443 if (err) {
4444 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4445 priv->net_dev->name);
4446 return err;
4447 }
4448
4449 priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH,
4450 sizeof(struct ipw2100_tx_packet),
4451 GFP_ATOMIC);
4452 if (!priv->tx_buffers) {
4453 bd_queue_free(priv, &priv->tx_queue);
4454 return -ENOMEM;
4455 }
4456
4457 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4458 v = pci_alloc_consistent(priv->pci_dev,
4459 sizeof(struct ipw2100_data_header),
4460 &p);
4461 if (!v) {
4462 printk(KERN_ERR DRV_NAME
4463 ": %s: PCI alloc failed for tx " "buffers.\n",
4464 priv->net_dev->name);
4465 err = -ENOMEM;
4466 break;
4467 }
4468
4469 priv->tx_buffers[i].type = DATA;
4470 priv->tx_buffers[i].info.d_struct.data =
4471 (struct ipw2100_data_header *)v;
4472 priv->tx_buffers[i].info.d_struct.data_phys = p;
4473 priv->tx_buffers[i].info.d_struct.txb = NULL;
4474 }
4475
4476 if (i == TX_PENDED_QUEUE_LENGTH)
4477 return 0;
4478
4479 for (j = 0; j < i; j++) {
4480 pci_free_consistent(priv->pci_dev,
4481 sizeof(struct ipw2100_data_header),
4482 priv->tx_buffers[j].info.d_struct.data,
4483 priv->tx_buffers[j].info.d_struct.
4484 data_phys);
4485 }
4486
4487 kfree(priv->tx_buffers);
4488 priv->tx_buffers = NULL;
4489
4490 return err;
4491 }
4492
4493 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4494 {
4495 int i;
4496
4497 IPW_DEBUG_INFO("enter\n");
4498
4499 /*
4500 * reinitialize packet info lists
4501 */
4502 INIT_LIST_HEAD(&priv->fw_pend_list);
4503 INIT_STAT(&priv->fw_pend_stat);
4504
4505 /*
4506 * reinitialize lists
4507 */
4508 INIT_LIST_HEAD(&priv->tx_pend_list);
4509 INIT_LIST_HEAD(&priv->tx_free_list);
4510 INIT_STAT(&priv->tx_pend_stat);
4511 INIT_STAT(&priv->tx_free_stat);
4512
4513 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4514 /* We simply drop any SKBs that have been queued for
4515 * transmit */
4516 if (priv->tx_buffers[i].info.d_struct.txb) {
4517 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4518 txb);
4519 priv->tx_buffers[i].info.d_struct.txb = NULL;
4520 }
4521
4522 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4523 }
4524
4525 SET_STAT(&priv->tx_free_stat, i);
4526
4527 priv->tx_queue.oldest = 0;
4528 priv->tx_queue.available = priv->tx_queue.entries;
4529 priv->tx_queue.next = 0;
4530 INIT_STAT(&priv->txq_stat);
4531 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4532
4533 bd_queue_initialize(priv, &priv->tx_queue,
4534 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4535 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4536 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4537 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4538
4539 IPW_DEBUG_INFO("exit\n");
4540
4541 }
4542
4543 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4544 {
4545 int i;
4546
4547 IPW_DEBUG_INFO("enter\n");
4548
4549 bd_queue_free(priv, &priv->tx_queue);
4550
4551 if (!priv->tx_buffers)
4552 return;
4553
4554 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4555 if (priv->tx_buffers[i].info.d_struct.txb) {
4556 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4557 txb);
4558 priv->tx_buffers[i].info.d_struct.txb = NULL;
4559 }
4560 if (priv->tx_buffers[i].info.d_struct.data)
4561 pci_free_consistent(priv->pci_dev,
4562 sizeof(struct ipw2100_data_header),
4563 priv->tx_buffers[i].info.d_struct.
4564 data,
4565 priv->tx_buffers[i].info.d_struct.
4566 data_phys);
4567 }
4568
4569 kfree(priv->tx_buffers);
4570 priv->tx_buffers = NULL;
4571
4572 IPW_DEBUG_INFO("exit\n");
4573 }
4574
4575 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4576 {
4577 int i, j, err = -EINVAL;
4578
4579 IPW_DEBUG_INFO("enter\n");
4580
4581 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4582 if (err) {
4583 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4584 return err;
4585 }
4586
4587 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4588 if (err) {
4589 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4590 bd_queue_free(priv, &priv->rx_queue);
4591 return err;
4592 }
4593
4594 /*
4595 * allocate packets
4596 */
4597 priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4598 sizeof(struct ipw2100_rx_packet),
4599 GFP_KERNEL);
4600 if (!priv->rx_buffers) {
4601 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4602
4603 bd_queue_free(priv, &priv->rx_queue);
4604
4605 status_queue_free(priv);
4606
4607 return -ENOMEM;
4608 }
4609
4610 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4611 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4612
4613 err = ipw2100_alloc_skb(priv, packet);
4614 if (unlikely(err)) {
4615 err = -ENOMEM;
4616 break;
4617 }
4618
4619 /* The BD holds the cache aligned address */
4620 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4621 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4622 priv->status_queue.drv[i].status_fields = 0;
4623 }
4624
4625 if (i == RX_QUEUE_LENGTH)
4626 return 0;
4627
4628 for (j = 0; j < i; j++) {
4629 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4630 sizeof(struct ipw2100_rx_packet),
4631 PCI_DMA_FROMDEVICE);
4632 dev_kfree_skb(priv->rx_buffers[j].skb);
4633 }
4634
4635 kfree(priv->rx_buffers);
4636 priv->rx_buffers = NULL;
4637
4638 bd_queue_free(priv, &priv->rx_queue);
4639
4640 status_queue_free(priv);
4641
4642 return err;
4643 }
4644
4645 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4646 {
4647 IPW_DEBUG_INFO("enter\n");
4648
4649 priv->rx_queue.oldest = 0;
4650 priv->rx_queue.available = priv->rx_queue.entries - 1;
4651 priv->rx_queue.next = priv->rx_queue.entries - 1;
4652
4653 INIT_STAT(&priv->rxq_stat);
4654 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4655
4656 bd_queue_initialize(priv, &priv->rx_queue,
4657 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4658 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4659 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4660 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4661
4662 /* set up the status queue */
4663 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4664 priv->status_queue.nic);
4665
4666 IPW_DEBUG_INFO("exit\n");
4667 }
4668
4669 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4670 {
4671 int i;
4672
4673 IPW_DEBUG_INFO("enter\n");
4674
4675 bd_queue_free(priv, &priv->rx_queue);
4676 status_queue_free(priv);
4677
4678 if (!priv->rx_buffers)
4679 return;
4680
4681 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4682 if (priv->rx_buffers[i].rxp) {
4683 pci_unmap_single(priv->pci_dev,
4684 priv->rx_buffers[i].dma_addr,
4685 sizeof(struct ipw2100_rx),
4686 PCI_DMA_FROMDEVICE);
4687 dev_kfree_skb(priv->rx_buffers[i].skb);
4688 }
4689 }
4690
4691 kfree(priv->rx_buffers);
4692 priv->rx_buffers = NULL;
4693
4694 IPW_DEBUG_INFO("exit\n");
4695 }
4696
4697 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4698 {
4699 u32 length = ETH_ALEN;
4700 u8 addr[ETH_ALEN];
4701
4702 int err;
4703
4704 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4705 if (err) {
4706 IPW_DEBUG_INFO("MAC address read failed\n");
4707 return -EIO;
4708 }
4709
4710 memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4711 IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4712
4713 return 0;
4714 }
4715
4716 /********************************************************************
4717 *
4718 * Firmware Commands
4719 *
4720 ********************************************************************/
4721
4722 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4723 {
4724 struct host_command cmd = {
4725 .host_command = ADAPTER_ADDRESS,
4726 .host_command_sequence = 0,
4727 .host_command_length = ETH_ALEN
4728 };
4729 int err;
4730
4731 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4732
4733 IPW_DEBUG_INFO("enter\n");
4734
4735 if (priv->config & CFG_CUSTOM_MAC) {
4736 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4737 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4738 } else
4739 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4740 ETH_ALEN);
4741
4742 err = ipw2100_hw_send_command(priv, &cmd);
4743
4744 IPW_DEBUG_INFO("exit\n");
4745 return err;
4746 }
4747
4748 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4749 int batch_mode)
4750 {
4751 struct host_command cmd = {
4752 .host_command = PORT_TYPE,
4753 .host_command_sequence = 0,
4754 .host_command_length = sizeof(u32)
4755 };
4756 int err;
4757
4758 switch (port_type) {
4759 case IW_MODE_INFRA:
4760 cmd.host_command_parameters[0] = IPW_BSS;
4761 break;
4762 case IW_MODE_ADHOC:
4763 cmd.host_command_parameters[0] = IPW_IBSS;
4764 break;
4765 }
4766
4767 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4768 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4769
4770 if (!batch_mode) {
4771 err = ipw2100_disable_adapter(priv);
4772 if (err) {
4773 printk(KERN_ERR DRV_NAME
4774 ": %s: Could not disable adapter %d\n",
4775 priv->net_dev->name, err);
4776 return err;
4777 }
4778 }
4779
4780 /* send cmd to firmware */
4781 err = ipw2100_hw_send_command(priv, &cmd);
4782
4783 if (!batch_mode)
4784 ipw2100_enable_adapter(priv);
4785
4786 return err;
4787 }
4788
4789 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4790 int batch_mode)
4791 {
4792 struct host_command cmd = {
4793 .host_command = CHANNEL,
4794 .host_command_sequence = 0,
4795 .host_command_length = sizeof(u32)
4796 };
4797 int err;
4798
4799 cmd.host_command_parameters[0] = channel;
4800
4801 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4802
4803 /* If BSS then we don't support channel selection */
4804 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4805 return 0;
4806
4807 if ((channel != 0) &&
4808 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4809 return -EINVAL;
4810
4811 if (!batch_mode) {
4812 err = ipw2100_disable_adapter(priv);
4813 if (err)
4814 return err;
4815 }
4816
4817 err = ipw2100_hw_send_command(priv, &cmd);
4818 if (err) {
4819 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4820 return err;
4821 }
4822
4823 if (channel)
4824 priv->config |= CFG_STATIC_CHANNEL;
4825 else
4826 priv->config &= ~CFG_STATIC_CHANNEL;
4827
4828 priv->channel = channel;
4829
4830 if (!batch_mode) {
4831 err = ipw2100_enable_adapter(priv);
4832 if (err)
4833 return err;
4834 }
4835
4836 return 0;
4837 }
4838
4839 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4840 {
4841 struct host_command cmd = {
4842 .host_command = SYSTEM_CONFIG,
4843 .host_command_sequence = 0,
4844 .host_command_length = 12,
4845 };
4846 u32 ibss_mask, len = sizeof(u32);
4847 int err;
4848
4849 /* Set system configuration */
4850
4851 if (!batch_mode) {
4852 err = ipw2100_disable_adapter(priv);
4853 if (err)
4854 return err;
4855 }
4856
4857 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4858 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4859
4860 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4861 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4862
4863 if (!(priv->config & CFG_LONG_PREAMBLE))
4864 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4865
4866 err = ipw2100_get_ordinal(priv,
4867 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4868 &ibss_mask, &len);
4869 if (err)
4870 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4871
4872 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4873 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4874
4875 /* 11b only */
4876 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4877
4878 err = ipw2100_hw_send_command(priv, &cmd);
4879 if (err)
4880 return err;
4881
4882 /* If IPv6 is configured in the kernel then we don't want to filter out all
4883 * of the multicast packets as IPv6 needs some. */
4884 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4885 cmd.host_command = ADD_MULTICAST;
4886 cmd.host_command_sequence = 0;
4887 cmd.host_command_length = 0;
4888
4889 ipw2100_hw_send_command(priv, &cmd);
4890 #endif
4891 if (!batch_mode) {
4892 err = ipw2100_enable_adapter(priv);
4893 if (err)
4894 return err;
4895 }
4896
4897 return 0;
4898 }
4899
4900 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4901 int batch_mode)
4902 {
4903 struct host_command cmd = {
4904 .host_command = BASIC_TX_RATES,
4905 .host_command_sequence = 0,
4906 .host_command_length = 4
4907 };
4908 int err;
4909
4910 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4911
4912 if (!batch_mode) {
4913 err = ipw2100_disable_adapter(priv);
4914 if (err)
4915 return err;
4916 }
4917
4918 /* Set BASIC TX Rate first */
4919 ipw2100_hw_send_command(priv, &cmd);
4920
4921 /* Set TX Rate */
4922 cmd.host_command = TX_RATES;
4923 ipw2100_hw_send_command(priv, &cmd);
4924
4925 /* Set MSDU TX Rate */
4926 cmd.host_command = MSDU_TX_RATES;
4927 ipw2100_hw_send_command(priv, &cmd);
4928
4929 if (!batch_mode) {
4930 err = ipw2100_enable_adapter(priv);
4931 if (err)
4932 return err;
4933 }
4934
4935 priv->tx_rates = rate;
4936
4937 return 0;
4938 }
4939
4940 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4941 {
4942 struct host_command cmd = {
4943 .host_command = POWER_MODE,
4944 .host_command_sequence = 0,
4945 .host_command_length = 4
4946 };
4947 int err;
4948
4949 cmd.host_command_parameters[0] = power_level;
4950
4951 err = ipw2100_hw_send_command(priv, &cmd);
4952 if (err)
4953 return err;
4954
4955 if (power_level == IPW_POWER_MODE_CAM)
4956 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4957 else
4958 priv->power_mode = IPW_POWER_ENABLED | power_level;
4959
4960 #ifdef IPW2100_TX_POWER
4961 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4962 /* Set beacon interval */
4963 cmd.host_command = TX_POWER_INDEX;
4964 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4965
4966 err = ipw2100_hw_send_command(priv, &cmd);
4967 if (err)
4968 return err;
4969 }
4970 #endif
4971
4972 return 0;
4973 }
4974
4975 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4976 {
4977 struct host_command cmd = {
4978 .host_command = RTS_THRESHOLD,
4979 .host_command_sequence = 0,
4980 .host_command_length = 4
4981 };
4982 int err;
4983
4984 if (threshold & RTS_DISABLED)
4985 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4986 else
4987 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4988
4989 err = ipw2100_hw_send_command(priv, &cmd);
4990 if (err)
4991 return err;
4992
4993 priv->rts_threshold = threshold;
4994
4995 return 0;
4996 }
4997
4998 #if 0
4999 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
5000 u32 threshold, int batch_mode)
5001 {
5002 struct host_command cmd = {
5003 .host_command = FRAG_THRESHOLD,
5004 .host_command_sequence = 0,
5005 .host_command_length = 4,
5006 .host_command_parameters[0] = 0,
5007 };
5008 int err;
5009
5010 if (!batch_mode) {
5011 err = ipw2100_disable_adapter(priv);
5012 if (err)
5013 return err;
5014 }
5015
5016 if (threshold == 0)
5017 threshold = DEFAULT_FRAG_THRESHOLD;
5018 else {
5019 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5020 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5021 }
5022
5023 cmd.host_command_parameters[0] = threshold;
5024
5025 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5026
5027 err = ipw2100_hw_send_command(priv, &cmd);
5028
5029 if (!batch_mode)
5030 ipw2100_enable_adapter(priv);
5031
5032 if (!err)
5033 priv->frag_threshold = threshold;
5034
5035 return err;
5036 }
5037 #endif
5038
5039 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5040 {
5041 struct host_command cmd = {
5042 .host_command = SHORT_RETRY_LIMIT,
5043 .host_command_sequence = 0,
5044 .host_command_length = 4
5045 };
5046 int err;
5047
5048 cmd.host_command_parameters[0] = retry;
5049
5050 err = ipw2100_hw_send_command(priv, &cmd);
5051 if (err)
5052 return err;
5053
5054 priv->short_retry_limit = retry;
5055
5056 return 0;
5057 }
5058
5059 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5060 {
5061 struct host_command cmd = {
5062 .host_command = LONG_RETRY_LIMIT,
5063 .host_command_sequence = 0,
5064 .host_command_length = 4
5065 };
5066 int err;
5067
5068 cmd.host_command_parameters[0] = retry;
5069
5070 err = ipw2100_hw_send_command(priv, &cmd);
5071 if (err)
5072 return err;
5073
5074 priv->long_retry_limit = retry;
5075
5076 return 0;
5077 }
5078
5079 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5080 int batch_mode)
5081 {
5082 struct host_command cmd = {
5083 .host_command = MANDATORY_BSSID,
5084 .host_command_sequence = 0,
5085 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5086 };
5087 int err;
5088
5089 #ifdef CONFIG_IPW2100_DEBUG
5090 if (bssid != NULL)
5091 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5092 else
5093 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5094 #endif
5095 /* if BSSID is empty then we disable mandatory bssid mode */
5096 if (bssid != NULL)
5097 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5098
5099 if (!batch_mode) {
5100 err = ipw2100_disable_adapter(priv);
5101 if (err)
5102 return err;
5103 }
5104
5105 err = ipw2100_hw_send_command(priv, &cmd);
5106
5107 if (!batch_mode)
5108 ipw2100_enable_adapter(priv);
5109
5110 return err;
5111 }
5112
5113 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5114 {
5115 struct host_command cmd = {
5116 .host_command = DISASSOCIATION_BSSID,
5117 .host_command_sequence = 0,
5118 .host_command_length = ETH_ALEN
5119 };
5120 int err;
5121 int len;
5122
5123 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5124
5125 len = ETH_ALEN;
5126 /* The Firmware currently ignores the BSSID and just disassociates from
5127 * the currently associated AP -- but in the off chance that a future
5128 * firmware does use the BSSID provided here, we go ahead and try and
5129 * set it to the currently associated AP's BSSID */
5130 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5131
5132 err = ipw2100_hw_send_command(priv, &cmd);
5133
5134 return err;
5135 }
5136
5137 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5138 struct ipw2100_wpa_assoc_frame *, int)
5139 __attribute__ ((unused));
5140
5141 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5142 struct ipw2100_wpa_assoc_frame *wpa_frame,
5143 int batch_mode)
5144 {
5145 struct host_command cmd = {
5146 .host_command = SET_WPA_IE,
5147 .host_command_sequence = 0,
5148 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5149 };
5150 int err;
5151
5152 IPW_DEBUG_HC("SET_WPA_IE\n");
5153
5154 if (!batch_mode) {
5155 err = ipw2100_disable_adapter(priv);
5156 if (err)
5157 return err;
5158 }
5159
5160 memcpy(cmd.host_command_parameters, wpa_frame,
5161 sizeof(struct ipw2100_wpa_assoc_frame));
5162
5163 err = ipw2100_hw_send_command(priv, &cmd);
5164
5165 if (!batch_mode) {
5166 if (ipw2100_enable_adapter(priv))
5167 err = -EIO;
5168 }
5169
5170 return err;
5171 }
5172
5173 struct security_info_params {
5174 u32 allowed_ciphers;
5175 u16 version;
5176 u8 auth_mode;
5177 u8 replay_counters_number;
5178 u8 unicast_using_group;
5179 } __packed;
5180
5181 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5182 int auth_mode,
5183 int security_level,
5184 int unicast_using_group,
5185 int batch_mode)
5186 {
5187 struct host_command cmd = {
5188 .host_command = SET_SECURITY_INFORMATION,
5189 .host_command_sequence = 0,
5190 .host_command_length = sizeof(struct security_info_params)
5191 };
5192 struct security_info_params *security =
5193 (struct security_info_params *)&cmd.host_command_parameters;
5194 int err;
5195 memset(security, 0, sizeof(*security));
5196
5197 /* If shared key AP authentication is turned on, then we need to
5198 * configure the firmware to try and use it.
5199 *
5200 * Actual data encryption/decryption is handled by the host. */
5201 security->auth_mode = auth_mode;
5202 security->unicast_using_group = unicast_using_group;
5203
5204 switch (security_level) {
5205 default:
5206 case SEC_LEVEL_0:
5207 security->allowed_ciphers = IPW_NONE_CIPHER;
5208 break;
5209 case SEC_LEVEL_1:
5210 security->allowed_ciphers = IPW_WEP40_CIPHER |
5211 IPW_WEP104_CIPHER;
5212 break;
5213 case SEC_LEVEL_2:
5214 security->allowed_ciphers = IPW_WEP40_CIPHER |
5215 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5216 break;
5217 case SEC_LEVEL_2_CKIP:
5218 security->allowed_ciphers = IPW_WEP40_CIPHER |
5219 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5220 break;
5221 case SEC_LEVEL_3:
5222 security->allowed_ciphers = IPW_WEP40_CIPHER |
5223 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5224 break;
5225 }
5226
5227 IPW_DEBUG_HC
5228 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5229 security->auth_mode, security->allowed_ciphers, security_level);
5230
5231 security->replay_counters_number = 0;
5232
5233 if (!batch_mode) {
5234 err = ipw2100_disable_adapter(priv);
5235 if (err)
5236 return err;
5237 }
5238
5239 err = ipw2100_hw_send_command(priv, &cmd);
5240
5241 if (!batch_mode)
5242 ipw2100_enable_adapter(priv);
5243
5244 return err;
5245 }
5246
5247 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5248 {
5249 struct host_command cmd = {
5250 .host_command = TX_POWER_INDEX,
5251 .host_command_sequence = 0,
5252 .host_command_length = 4
5253 };
5254 int err = 0;
5255 u32 tmp = tx_power;
5256
5257 if (tx_power != IPW_TX_POWER_DEFAULT)
5258 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5259 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5260
5261 cmd.host_command_parameters[0] = tmp;
5262
5263 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5264 err = ipw2100_hw_send_command(priv, &cmd);
5265 if (!err)
5266 priv->tx_power = tx_power;
5267
5268 return 0;
5269 }
5270
5271 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5272 u32 interval, int batch_mode)
5273 {
5274 struct host_command cmd = {
5275 .host_command = BEACON_INTERVAL,
5276 .host_command_sequence = 0,
5277 .host_command_length = 4
5278 };
5279 int err;
5280
5281 cmd.host_command_parameters[0] = interval;
5282
5283 IPW_DEBUG_INFO("enter\n");
5284
5285 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5286 if (!batch_mode) {
5287 err = ipw2100_disable_adapter(priv);
5288 if (err)
5289 return err;
5290 }
5291
5292 ipw2100_hw_send_command(priv, &cmd);
5293
5294 if (!batch_mode) {
5295 err = ipw2100_enable_adapter(priv);
5296 if (err)
5297 return err;
5298 }
5299 }
5300
5301 IPW_DEBUG_INFO("exit\n");
5302
5303 return 0;
5304 }
5305
5306 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5307 {
5308 ipw2100_tx_initialize(priv);
5309 ipw2100_rx_initialize(priv);
5310 ipw2100_msg_initialize(priv);
5311 }
5312
5313 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5314 {
5315 ipw2100_tx_free(priv);
5316 ipw2100_rx_free(priv);
5317 ipw2100_msg_free(priv);
5318 }
5319
5320 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5321 {
5322 if (ipw2100_tx_allocate(priv) ||
5323 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5324 goto fail;
5325
5326 return 0;
5327
5328 fail:
5329 ipw2100_tx_free(priv);
5330 ipw2100_rx_free(priv);
5331 ipw2100_msg_free(priv);
5332 return -ENOMEM;
5333 }
5334
5335 #define IPW_PRIVACY_CAPABLE 0x0008
5336
5337 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5338 int batch_mode)
5339 {
5340 struct host_command cmd = {
5341 .host_command = WEP_FLAGS,
5342 .host_command_sequence = 0,
5343 .host_command_length = 4
5344 };
5345 int err;
5346
5347 cmd.host_command_parameters[0] = flags;
5348
5349 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5350
5351 if (!batch_mode) {
5352 err = ipw2100_disable_adapter(priv);
5353 if (err) {
5354 printk(KERN_ERR DRV_NAME
5355 ": %s: Could not disable adapter %d\n",
5356 priv->net_dev->name, err);
5357 return err;
5358 }
5359 }
5360
5361 /* send cmd to firmware */
5362 err = ipw2100_hw_send_command(priv, &cmd);
5363
5364 if (!batch_mode)
5365 ipw2100_enable_adapter(priv);
5366
5367 return err;
5368 }
5369
5370 struct ipw2100_wep_key {
5371 u8 idx;
5372 u8 len;
5373 u8 key[13];
5374 };
5375
5376 /* Macros to ease up priting WEP keys */
5377 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5378 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5379 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5380 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5381
5382 /**
5383 * Set a the wep key
5384 *
5385 * @priv: struct to work on
5386 * @idx: index of the key we want to set
5387 * @key: ptr to the key data to set
5388 * @len: length of the buffer at @key
5389 * @batch_mode: FIXME perform the operation in batch mode, not
5390 * disabling the device.
5391 *
5392 * @returns 0 if OK, < 0 errno code on error.
5393 *
5394 * Fill out a command structure with the new wep key, length an
5395 * index and send it down the wire.
5396 */
5397 static int ipw2100_set_key(struct ipw2100_priv *priv,
5398 int idx, char *key, int len, int batch_mode)
5399 {
5400 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5401 struct host_command cmd = {
5402 .host_command = WEP_KEY_INFO,
5403 .host_command_sequence = 0,
5404 .host_command_length = sizeof(struct ipw2100_wep_key),
5405 };
5406 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5407 int err;
5408
5409 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5410 idx, keylen, len);
5411
5412 /* NOTE: We don't check cached values in case the firmware was reset
5413 * or some other problem is occurring. If the user is setting the key,
5414 * then we push the change */
5415
5416 wep_key->idx = idx;
5417 wep_key->len = keylen;
5418
5419 if (keylen) {
5420 memcpy(wep_key->key, key, len);
5421 memset(wep_key->key + len, 0, keylen - len);
5422 }
5423
5424 /* Will be optimized out on debug not being configured in */
5425 if (keylen == 0)
5426 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5427 priv->net_dev->name, wep_key->idx);
5428 else if (keylen == 5)
5429 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5430 priv->net_dev->name, wep_key->idx, wep_key->len,
5431 WEP_STR_64(wep_key->key));
5432 else
5433 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5434 "\n",
5435 priv->net_dev->name, wep_key->idx, wep_key->len,
5436 WEP_STR_128(wep_key->key));
5437
5438 if (!batch_mode) {
5439 err = ipw2100_disable_adapter(priv);
5440 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5441 if (err) {
5442 printk(KERN_ERR DRV_NAME
5443 ": %s: Could not disable adapter %d\n",
5444 priv->net_dev->name, err);
5445 return err;
5446 }
5447 }
5448
5449 /* send cmd to firmware */
5450 err = ipw2100_hw_send_command(priv, &cmd);
5451
5452 if (!batch_mode) {
5453 int err2 = ipw2100_enable_adapter(priv);
5454 if (err == 0)
5455 err = err2;
5456 }
5457 return err;
5458 }
5459
5460 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5461 int idx, int batch_mode)
5462 {
5463 struct host_command cmd = {
5464 .host_command = WEP_KEY_INDEX,
5465 .host_command_sequence = 0,
5466 .host_command_length = 4,
5467 .host_command_parameters = {idx},
5468 };
5469 int err;
5470
5471 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5472
5473 if (idx < 0 || idx > 3)
5474 return -EINVAL;
5475
5476 if (!batch_mode) {
5477 err = ipw2100_disable_adapter(priv);
5478 if (err) {
5479 printk(KERN_ERR DRV_NAME
5480 ": %s: Could not disable adapter %d\n",
5481 priv->net_dev->name, err);
5482 return err;
5483 }
5484 }
5485
5486 /* send cmd to firmware */
5487 err = ipw2100_hw_send_command(priv, &cmd);
5488
5489 if (!batch_mode)
5490 ipw2100_enable_adapter(priv);
5491
5492 return err;
5493 }
5494
5495 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5496 {
5497 int i, err, auth_mode, sec_level, use_group;
5498
5499 if (!(priv->status & STATUS_RUNNING))
5500 return 0;
5501
5502 if (!batch_mode) {
5503 err = ipw2100_disable_adapter(priv);
5504 if (err)
5505 return err;
5506 }
5507
5508 if (!priv->ieee->sec.enabled) {
5509 err =
5510 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5511 SEC_LEVEL_0, 0, 1);
5512 } else {
5513 auth_mode = IPW_AUTH_OPEN;
5514 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5515 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5516 auth_mode = IPW_AUTH_SHARED;
5517 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5518 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5519 }
5520
5521 sec_level = SEC_LEVEL_0;
5522 if (priv->ieee->sec.flags & SEC_LEVEL)
5523 sec_level = priv->ieee->sec.level;
5524
5525 use_group = 0;
5526 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5527 use_group = priv->ieee->sec.unicast_uses_group;
5528
5529 err =
5530 ipw2100_set_security_information(priv, auth_mode, sec_level,
5531 use_group, 1);
5532 }
5533
5534 if (err)
5535 goto exit;
5536
5537 if (priv->ieee->sec.enabled) {
5538 for (i = 0; i < 4; i++) {
5539 if (!(priv->ieee->sec.flags & (1 << i))) {
5540 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5541 priv->ieee->sec.key_sizes[i] = 0;
5542 } else {
5543 err = ipw2100_set_key(priv, i,
5544 priv->ieee->sec.keys[i],
5545 priv->ieee->sec.
5546 key_sizes[i], 1);
5547 if (err)
5548 goto exit;
5549 }
5550 }
5551
5552 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5553 }
5554
5555 /* Always enable privacy so the Host can filter WEP packets if
5556 * encrypted data is sent up */
5557 err =
5558 ipw2100_set_wep_flags(priv,
5559 priv->ieee->sec.
5560 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5561 if (err)
5562 goto exit;
5563
5564 priv->status &= ~STATUS_SECURITY_UPDATED;
5565
5566 exit:
5567 if (!batch_mode)
5568 ipw2100_enable_adapter(priv);
5569
5570 return err;
5571 }
5572
5573 static void ipw2100_security_work(struct work_struct *work)
5574 {
5575 struct ipw2100_priv *priv =
5576 container_of(work, struct ipw2100_priv, security_work.work);
5577
5578 /* If we happen to have reconnected before we get a chance to
5579 * process this, then update the security settings--which causes
5580 * a disassociation to occur */
5581 if (!(priv->status & STATUS_ASSOCIATED) &&
5582 priv->status & STATUS_SECURITY_UPDATED)
5583 ipw2100_configure_security(priv, 0);
5584 }
5585
5586 static void shim__set_security(struct net_device *dev,
5587 struct libipw_security *sec)
5588 {
5589 struct ipw2100_priv *priv = libipw_priv(dev);
5590 int i, force_update = 0;
5591
5592 mutex_lock(&priv->action_mutex);
5593 if (!(priv->status & STATUS_INITIALIZED))
5594 goto done;
5595
5596 for (i = 0; i < 4; i++) {
5597 if (sec->flags & (1 << i)) {
5598 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5599 if (sec->key_sizes[i] == 0)
5600 priv->ieee->sec.flags &= ~(1 << i);
5601 else
5602 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5603 sec->key_sizes[i]);
5604 if (sec->level == SEC_LEVEL_1) {
5605 priv->ieee->sec.flags |= (1 << i);
5606 priv->status |= STATUS_SECURITY_UPDATED;
5607 } else
5608 priv->ieee->sec.flags &= ~(1 << i);
5609 }
5610 }
5611
5612 if ((sec->flags & SEC_ACTIVE_KEY) &&
5613 priv->ieee->sec.active_key != sec->active_key) {
5614 if (sec->active_key <= 3) {
5615 priv->ieee->sec.active_key = sec->active_key;
5616 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5617 } else
5618 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5619
5620 priv->status |= STATUS_SECURITY_UPDATED;
5621 }
5622
5623 if ((sec->flags & SEC_AUTH_MODE) &&
5624 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5625 priv->ieee->sec.auth_mode = sec->auth_mode;
5626 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5627 priv->status |= STATUS_SECURITY_UPDATED;
5628 }
5629
5630 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5631 priv->ieee->sec.flags |= SEC_ENABLED;
5632 priv->ieee->sec.enabled = sec->enabled;
5633 priv->status |= STATUS_SECURITY_UPDATED;
5634 force_update = 1;
5635 }
5636
5637 if (sec->flags & SEC_ENCRYPT)
5638 priv->ieee->sec.encrypt = sec->encrypt;
5639
5640 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5641 priv->ieee->sec.level = sec->level;
5642 priv->ieee->sec.flags |= SEC_LEVEL;
5643 priv->status |= STATUS_SECURITY_UPDATED;
5644 }
5645
5646 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5647 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5648 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5649 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5650 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5651 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5652 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5653 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5654 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5655 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5656
5657 /* As a temporary work around to enable WPA until we figure out why
5658 * wpa_supplicant toggles the security capability of the driver, which
5659 * forces a disassocation with force_update...
5660 *
5661 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5662 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5663 ipw2100_configure_security(priv, 0);
5664 done:
5665 mutex_unlock(&priv->action_mutex);
5666 }
5667
5668 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5669 {
5670 int err;
5671 int batch_mode = 1;
5672 u8 *bssid;
5673
5674 IPW_DEBUG_INFO("enter\n");
5675
5676 err = ipw2100_disable_adapter(priv);
5677 if (err)
5678 return err;
5679 #ifdef CONFIG_IPW2100_MONITOR
5680 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5681 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5682 if (err)
5683 return err;
5684
5685 IPW_DEBUG_INFO("exit\n");
5686
5687 return 0;
5688 }
5689 #endif /* CONFIG_IPW2100_MONITOR */
5690
5691 err = ipw2100_read_mac_address(priv);
5692 if (err)
5693 return -EIO;
5694
5695 err = ipw2100_set_mac_address(priv, batch_mode);
5696 if (err)
5697 return err;
5698
5699 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5700 if (err)
5701 return err;
5702
5703 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5704 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5705 if (err)
5706 return err;
5707 }
5708
5709 err = ipw2100_system_config(priv, batch_mode);
5710 if (err)
5711 return err;
5712
5713 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5714 if (err)
5715 return err;
5716
5717 /* Default to power mode OFF */
5718 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5719 if (err)
5720 return err;
5721
5722 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5723 if (err)
5724 return err;
5725
5726 if (priv->config & CFG_STATIC_BSSID)
5727 bssid = priv->bssid;
5728 else
5729 bssid = NULL;
5730 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5731 if (err)
5732 return err;
5733
5734 if (priv->config & CFG_STATIC_ESSID)
5735 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5736 batch_mode);
5737 else
5738 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5739 if (err)
5740 return err;
5741
5742 err = ipw2100_configure_security(priv, batch_mode);
5743 if (err)
5744 return err;
5745
5746 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5747 err =
5748 ipw2100_set_ibss_beacon_interval(priv,
5749 priv->beacon_interval,
5750 batch_mode);
5751 if (err)
5752 return err;
5753
5754 err = ipw2100_set_tx_power(priv, priv->tx_power);
5755 if (err)
5756 return err;
5757 }
5758
5759 /*
5760 err = ipw2100_set_fragmentation_threshold(
5761 priv, priv->frag_threshold, batch_mode);
5762 if (err)
5763 return err;
5764 */
5765
5766 IPW_DEBUG_INFO("exit\n");
5767
5768 return 0;
5769 }
5770
5771 /*************************************************************************
5772 *
5773 * EXTERNALLY CALLED METHODS
5774 *
5775 *************************************************************************/
5776
5777 /* This method is called by the network layer -- not to be confused with
5778 * ipw2100_set_mac_address() declared above called by this driver (and this
5779 * method as well) to talk to the firmware */
5780 static int ipw2100_set_address(struct net_device *dev, void *p)
5781 {
5782 struct ipw2100_priv *priv = libipw_priv(dev);
5783 struct sockaddr *addr = p;
5784 int err = 0;
5785
5786 if (!is_valid_ether_addr(addr->sa_data))
5787 return -EADDRNOTAVAIL;
5788
5789 mutex_lock(&priv->action_mutex);
5790
5791 priv->config |= CFG_CUSTOM_MAC;
5792 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5793
5794 err = ipw2100_set_mac_address(priv, 0);
5795 if (err)
5796 goto done;
5797
5798 priv->reset_backoff = 0;
5799 mutex_unlock(&priv->action_mutex);
5800 ipw2100_reset_adapter(&priv->reset_work.work);
5801 return 0;
5802
5803 done:
5804 mutex_unlock(&priv->action_mutex);
5805 return err;
5806 }
5807
5808 static int ipw2100_open(struct net_device *dev)
5809 {
5810 struct ipw2100_priv *priv = libipw_priv(dev);
5811 unsigned long flags;
5812 IPW_DEBUG_INFO("dev->open\n");
5813
5814 spin_lock_irqsave(&priv->low_lock, flags);
5815 if (priv->status & STATUS_ASSOCIATED) {
5816 netif_carrier_on(dev);
5817 netif_start_queue(dev);
5818 }
5819 spin_unlock_irqrestore(&priv->low_lock, flags);
5820
5821 return 0;
5822 }
5823
5824 static int ipw2100_close(struct net_device *dev)
5825 {
5826 struct ipw2100_priv *priv = libipw_priv(dev);
5827 unsigned long flags;
5828 struct list_head *element;
5829 struct ipw2100_tx_packet *packet;
5830
5831 IPW_DEBUG_INFO("enter\n");
5832
5833 spin_lock_irqsave(&priv->low_lock, flags);
5834
5835 if (priv->status & STATUS_ASSOCIATED)
5836 netif_carrier_off(dev);
5837 netif_stop_queue(dev);
5838
5839 /* Flush the TX queue ... */
5840 while (!list_empty(&priv->tx_pend_list)) {
5841 element = priv->tx_pend_list.next;
5842 packet = list_entry(element, struct ipw2100_tx_packet, list);
5843
5844 list_del(element);
5845 DEC_STAT(&priv->tx_pend_stat);
5846
5847 libipw_txb_free(packet->info.d_struct.txb);
5848 packet->info.d_struct.txb = NULL;
5849
5850 list_add_tail(element, &priv->tx_free_list);
5851 INC_STAT(&priv->tx_free_stat);
5852 }
5853 spin_unlock_irqrestore(&priv->low_lock, flags);
5854
5855 IPW_DEBUG_INFO("exit\n");
5856
5857 return 0;
5858 }
5859
5860 /*
5861 * TODO: Fix this function... its just wrong
5862 */
5863 static void ipw2100_tx_timeout(struct net_device *dev)
5864 {
5865 struct ipw2100_priv *priv = libipw_priv(dev);
5866
5867 dev->stats.tx_errors++;
5868
5869 #ifdef CONFIG_IPW2100_MONITOR
5870 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5871 return;
5872 #endif
5873
5874 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5875 dev->name);
5876 schedule_reset(priv);
5877 }
5878
5879 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5880 {
5881 /* This is called when wpa_supplicant loads and closes the driver
5882 * interface. */
5883 priv->ieee->wpa_enabled = value;
5884 return 0;
5885 }
5886
5887 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5888 {
5889
5890 struct libipw_device *ieee = priv->ieee;
5891 struct libipw_security sec = {
5892 .flags = SEC_AUTH_MODE,
5893 };
5894 int ret = 0;
5895
5896 if (value & IW_AUTH_ALG_SHARED_KEY) {
5897 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5898 ieee->open_wep = 0;
5899 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5900 sec.auth_mode = WLAN_AUTH_OPEN;
5901 ieee->open_wep = 1;
5902 } else if (value & IW_AUTH_ALG_LEAP) {
5903 sec.auth_mode = WLAN_AUTH_LEAP;
5904 ieee->open_wep = 1;
5905 } else
5906 return -EINVAL;
5907
5908 if (ieee->set_security)
5909 ieee->set_security(ieee->dev, &sec);
5910 else
5911 ret = -EOPNOTSUPP;
5912
5913 return ret;
5914 }
5915
5916 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5917 char *wpa_ie, int wpa_ie_len)
5918 {
5919
5920 struct ipw2100_wpa_assoc_frame frame;
5921
5922 frame.fixed_ie_mask = 0;
5923
5924 /* copy WPA IE */
5925 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5926 frame.var_ie_len = wpa_ie_len;
5927
5928 /* make sure WPA is enabled */
5929 ipw2100_wpa_enable(priv, 1);
5930 ipw2100_set_wpa_ie(priv, &frame, 0);
5931 }
5932
5933 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5934 struct ethtool_drvinfo *info)
5935 {
5936 struct ipw2100_priv *priv = libipw_priv(dev);
5937 char fw_ver[64], ucode_ver[64];
5938
5939 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5940 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5941
5942 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5943 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5944
5945 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5946 fw_ver, priv->eeprom_version, ucode_ver);
5947
5948 strlcpy(info->bus_info, pci_name(priv->pci_dev),
5949 sizeof(info->bus_info));
5950 }
5951
5952 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5953 {
5954 struct ipw2100_priv *priv = libipw_priv(dev);
5955 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5956 }
5957
5958 static const struct ethtool_ops ipw2100_ethtool_ops = {
5959 .get_link = ipw2100_ethtool_get_link,
5960 .get_drvinfo = ipw_ethtool_get_drvinfo,
5961 };
5962
5963 static void ipw2100_hang_check(struct work_struct *work)
5964 {
5965 struct ipw2100_priv *priv =
5966 container_of(work, struct ipw2100_priv, hang_check.work);
5967 unsigned long flags;
5968 u32 rtc = 0xa5a5a5a5;
5969 u32 len = sizeof(rtc);
5970 int restart = 0;
5971
5972 spin_lock_irqsave(&priv->low_lock, flags);
5973
5974 if (priv->fatal_error != 0) {
5975 /* If fatal_error is set then we need to restart */
5976 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5977 priv->net_dev->name);
5978
5979 restart = 1;
5980 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5981 (rtc == priv->last_rtc)) {
5982 /* Check if firmware is hung */
5983 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5984 priv->net_dev->name);
5985
5986 restart = 1;
5987 }
5988
5989 if (restart) {
5990 /* Kill timer */
5991 priv->stop_hang_check = 1;
5992 priv->hangs++;
5993
5994 /* Restart the NIC */
5995 schedule_reset(priv);
5996 }
5997
5998 priv->last_rtc = rtc;
5999
6000 if (!priv->stop_hang_check)
6001 schedule_delayed_work(&priv->hang_check, HZ / 2);
6002
6003 spin_unlock_irqrestore(&priv->low_lock, flags);
6004 }
6005
6006 static void ipw2100_rf_kill(struct work_struct *work)
6007 {
6008 struct ipw2100_priv *priv =
6009 container_of(work, struct ipw2100_priv, rf_kill.work);
6010 unsigned long flags;
6011
6012 spin_lock_irqsave(&priv->low_lock, flags);
6013
6014 if (rf_kill_active(priv)) {
6015 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6016 if (!priv->stop_rf_kill)
6017 schedule_delayed_work(&priv->rf_kill,
6018 round_jiffies_relative(HZ));
6019 goto exit_unlock;
6020 }
6021
6022 /* RF Kill is now disabled, so bring the device back up */
6023
6024 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6025 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6026 "device\n");
6027 schedule_reset(priv);
6028 } else
6029 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
6030 "enabled\n");
6031
6032 exit_unlock:
6033 spin_unlock_irqrestore(&priv->low_lock, flags);
6034 }
6035
6036 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6037
6038 static const struct net_device_ops ipw2100_netdev_ops = {
6039 .ndo_open = ipw2100_open,
6040 .ndo_stop = ipw2100_close,
6041 .ndo_start_xmit = libipw_xmit,
6042 .ndo_change_mtu = libipw_change_mtu,
6043 .ndo_tx_timeout = ipw2100_tx_timeout,
6044 .ndo_set_mac_address = ipw2100_set_address,
6045 .ndo_validate_addr = eth_validate_addr,
6046 };
6047
6048 /* Look into using netdev destructor to shutdown libipw? */
6049
6050 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6051 void __iomem * ioaddr)
6052 {
6053 struct ipw2100_priv *priv;
6054 struct net_device *dev;
6055
6056 dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6057 if (!dev)
6058 return NULL;
6059 priv = libipw_priv(dev);
6060 priv->ieee = netdev_priv(dev);
6061 priv->pci_dev = pci_dev;
6062 priv->net_dev = dev;
6063 priv->ioaddr = ioaddr;
6064
6065 priv->ieee->hard_start_xmit = ipw2100_tx;
6066 priv->ieee->set_security = shim__set_security;
6067
6068 priv->ieee->perfect_rssi = -20;
6069 priv->ieee->worst_rssi = -85;
6070
6071 dev->netdev_ops = &ipw2100_netdev_ops;
6072 dev->ethtool_ops = &ipw2100_ethtool_ops;
6073 dev->wireless_handlers = &ipw2100_wx_handler_def;
6074 priv->wireless_data.libipw = priv->ieee;
6075 dev->wireless_data = &priv->wireless_data;
6076 dev->watchdog_timeo = 3 * HZ;
6077 dev->irq = 0;
6078
6079 /* NOTE: We don't use the wireless_handlers hook
6080 * in dev as the system will start throwing WX requests
6081 * to us before we're actually initialized and it just
6082 * ends up causing problems. So, we just handle
6083 * the WX extensions through the ipw2100_ioctl interface */
6084
6085 /* memset() puts everything to 0, so we only have explicitly set
6086 * those values that need to be something else */
6087
6088 /* If power management is turned on, default to AUTO mode */
6089 priv->power_mode = IPW_POWER_AUTO;
6090
6091 #ifdef CONFIG_IPW2100_MONITOR
6092 priv->config |= CFG_CRC_CHECK;
6093 #endif
6094 priv->ieee->wpa_enabled = 0;
6095 priv->ieee->drop_unencrypted = 0;
6096 priv->ieee->privacy_invoked = 0;
6097 priv->ieee->ieee802_1x = 1;
6098
6099 /* Set module parameters */
6100 switch (network_mode) {
6101 case 1:
6102 priv->ieee->iw_mode = IW_MODE_ADHOC;
6103 break;
6104 #ifdef CONFIG_IPW2100_MONITOR
6105 case 2:
6106 priv->ieee->iw_mode = IW_MODE_MONITOR;
6107 break;
6108 #endif
6109 default:
6110 case 0:
6111 priv->ieee->iw_mode = IW_MODE_INFRA;
6112 break;
6113 }
6114
6115 if (disable == 1)
6116 priv->status |= STATUS_RF_KILL_SW;
6117
6118 if (channel != 0 &&
6119 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6120 priv->config |= CFG_STATIC_CHANNEL;
6121 priv->channel = channel;
6122 }
6123
6124 if (associate)
6125 priv->config |= CFG_ASSOCIATE;
6126
6127 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6128 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6129 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6130 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6131 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6132 priv->tx_power = IPW_TX_POWER_DEFAULT;
6133 priv->tx_rates = DEFAULT_TX_RATES;
6134
6135 strcpy(priv->nick, "ipw2100");
6136
6137 spin_lock_init(&priv->low_lock);
6138 mutex_init(&priv->action_mutex);
6139 mutex_init(&priv->adapter_mutex);
6140
6141 init_waitqueue_head(&priv->wait_command_queue);
6142
6143 netif_carrier_off(dev);
6144
6145 INIT_LIST_HEAD(&priv->msg_free_list);
6146 INIT_LIST_HEAD(&priv->msg_pend_list);
6147 INIT_STAT(&priv->msg_free_stat);
6148 INIT_STAT(&priv->msg_pend_stat);
6149
6150 INIT_LIST_HEAD(&priv->tx_free_list);
6151 INIT_LIST_HEAD(&priv->tx_pend_list);
6152 INIT_STAT(&priv->tx_free_stat);
6153 INIT_STAT(&priv->tx_pend_stat);
6154
6155 INIT_LIST_HEAD(&priv->fw_pend_list);
6156 INIT_STAT(&priv->fw_pend_stat);
6157
6158 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6159 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6160 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6161 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6162 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6163 INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event);
6164
6165 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6166 ipw2100_irq_tasklet, (unsigned long)priv);
6167
6168 /* NOTE: We do not start the deferred work for status checks yet */
6169 priv->stop_rf_kill = 1;
6170 priv->stop_hang_check = 1;
6171
6172 return dev;
6173 }
6174
6175 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6176 const struct pci_device_id *ent)
6177 {
6178 void __iomem *ioaddr;
6179 struct net_device *dev = NULL;
6180 struct ipw2100_priv *priv = NULL;
6181 int err = 0;
6182 int registered = 0;
6183 u32 val;
6184
6185 IPW_DEBUG_INFO("enter\n");
6186
6187 if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6188 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6189 err = -ENODEV;
6190 goto out;
6191 }
6192
6193 ioaddr = pci_iomap(pci_dev, 0, 0);
6194 if (!ioaddr) {
6195 printk(KERN_WARNING DRV_NAME
6196 "Error calling ioremap_nocache.\n");
6197 err = -EIO;
6198 goto fail;
6199 }
6200
6201 /* allocate and initialize our net_device */
6202 dev = ipw2100_alloc_device(pci_dev, ioaddr);
6203 if (!dev) {
6204 printk(KERN_WARNING DRV_NAME
6205 "Error calling ipw2100_alloc_device.\n");
6206 err = -ENOMEM;
6207 goto fail;
6208 }
6209
6210 /* set up PCI mappings for device */
6211 err = pci_enable_device(pci_dev);
6212 if (err) {
6213 printk(KERN_WARNING DRV_NAME
6214 "Error calling pci_enable_device.\n");
6215 return err;
6216 }
6217
6218 priv = libipw_priv(dev);
6219
6220 pci_set_master(pci_dev);
6221 pci_set_drvdata(pci_dev, priv);
6222
6223 err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6224 if (err) {
6225 printk(KERN_WARNING DRV_NAME
6226 "Error calling pci_set_dma_mask.\n");
6227 pci_disable_device(pci_dev);
6228 return err;
6229 }
6230
6231 err = pci_request_regions(pci_dev, DRV_NAME);
6232 if (err) {
6233 printk(KERN_WARNING DRV_NAME
6234 "Error calling pci_request_regions.\n");
6235 pci_disable_device(pci_dev);
6236 return err;
6237 }
6238
6239 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6240 * PCI Tx retries from interfering with C3 CPU state */
6241 pci_read_config_dword(pci_dev, 0x40, &val);
6242 if ((val & 0x0000ff00) != 0)
6243 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6244
6245 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6246 printk(KERN_WARNING DRV_NAME
6247 "Device not found via register read.\n");
6248 err = -ENODEV;
6249 goto fail;
6250 }
6251
6252 SET_NETDEV_DEV(dev, &pci_dev->dev);
6253
6254 /* Force interrupts to be shut off on the device */
6255 priv->status |= STATUS_INT_ENABLED;
6256 ipw2100_disable_interrupts(priv);
6257
6258 /* Allocate and initialize the Tx/Rx queues and lists */
6259 if (ipw2100_queues_allocate(priv)) {
6260 printk(KERN_WARNING DRV_NAME
6261 "Error calling ipw2100_queues_allocate.\n");
6262 err = -ENOMEM;
6263 goto fail;
6264 }
6265 ipw2100_queues_initialize(priv);
6266
6267 err = request_irq(pci_dev->irq,
6268 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6269 if (err) {
6270 printk(KERN_WARNING DRV_NAME
6271 "Error calling request_irq: %d.\n", pci_dev->irq);
6272 goto fail;
6273 }
6274 dev->irq = pci_dev->irq;
6275
6276 IPW_DEBUG_INFO("Attempting to register device...\n");
6277
6278 printk(KERN_INFO DRV_NAME
6279 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6280
6281 err = ipw2100_up(priv, 1);
6282 if (err)
6283 goto fail;
6284
6285 err = ipw2100_wdev_init(dev);
6286 if (err)
6287 goto fail;
6288 registered = 1;
6289
6290 /* Bring up the interface. Pre 0.46, after we registered the
6291 * network device we would call ipw2100_up. This introduced a race
6292 * condition with newer hotplug configurations (network was coming
6293 * up and making calls before the device was initialized).
6294 */
6295 err = register_netdev(dev);
6296 if (err) {
6297 printk(KERN_WARNING DRV_NAME
6298 "Error calling register_netdev.\n");
6299 goto fail;
6300 }
6301 registered = 2;
6302
6303 mutex_lock(&priv->action_mutex);
6304
6305 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6306
6307 /* perform this after register_netdev so that dev->name is set */
6308 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6309 if (err)
6310 goto fail_unlock;
6311
6312 /* If the RF Kill switch is disabled, go ahead and complete the
6313 * startup sequence */
6314 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6315 /* Enable the adapter - sends HOST_COMPLETE */
6316 if (ipw2100_enable_adapter(priv)) {
6317 printk(KERN_WARNING DRV_NAME
6318 ": %s: failed in call to enable adapter.\n",
6319 priv->net_dev->name);
6320 ipw2100_hw_stop_adapter(priv);
6321 err = -EIO;
6322 goto fail_unlock;
6323 }
6324
6325 /* Start a scan . . . */
6326 ipw2100_set_scan_options(priv);
6327 ipw2100_start_scan(priv);
6328 }
6329
6330 IPW_DEBUG_INFO("exit\n");
6331
6332 priv->status |= STATUS_INITIALIZED;
6333
6334 mutex_unlock(&priv->action_mutex);
6335 out:
6336 return err;
6337
6338 fail_unlock:
6339 mutex_unlock(&priv->action_mutex);
6340 fail:
6341 if (dev) {
6342 if (registered >= 2)
6343 unregister_netdev(dev);
6344
6345 if (registered) {
6346 wiphy_unregister(priv->ieee->wdev.wiphy);
6347 kfree(priv->ieee->bg_band.channels);
6348 }
6349
6350 ipw2100_hw_stop_adapter(priv);
6351
6352 ipw2100_disable_interrupts(priv);
6353
6354 if (dev->irq)
6355 free_irq(dev->irq, priv);
6356
6357 ipw2100_kill_works(priv);
6358
6359 /* These are safe to call even if they weren't allocated */
6360 ipw2100_queues_free(priv);
6361 sysfs_remove_group(&pci_dev->dev.kobj,
6362 &ipw2100_attribute_group);
6363
6364 free_libipw(dev, 0);
6365 pci_set_drvdata(pci_dev, NULL);
6366 }
6367
6368 pci_iounmap(pci_dev, ioaddr);
6369
6370 pci_release_regions(pci_dev);
6371 pci_disable_device(pci_dev);
6372 goto out;
6373 }
6374
6375 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6376 {
6377 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6378 struct net_device *dev = priv->net_dev;
6379
6380 mutex_lock(&priv->action_mutex);
6381
6382 priv->status &= ~STATUS_INITIALIZED;
6383
6384 sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6385
6386 #ifdef CONFIG_PM
6387 if (ipw2100_firmware.version)
6388 ipw2100_release_firmware(priv, &ipw2100_firmware);
6389 #endif
6390 /* Take down the hardware */
6391 ipw2100_down(priv);
6392
6393 /* Release the mutex so that the network subsystem can
6394 * complete any needed calls into the driver... */
6395 mutex_unlock(&priv->action_mutex);
6396
6397 /* Unregister the device first - this results in close()
6398 * being called if the device is open. If we free storage
6399 * first, then close() will crash.
6400 * FIXME: remove the comment above. */
6401 unregister_netdev(dev);
6402
6403 ipw2100_kill_works(priv);
6404
6405 ipw2100_queues_free(priv);
6406
6407 /* Free potential debugging firmware snapshot */
6408 ipw2100_snapshot_free(priv);
6409
6410 free_irq(dev->irq, priv);
6411
6412 pci_iounmap(pci_dev, priv->ioaddr);
6413
6414 /* wiphy_unregister needs to be here, before free_libipw */
6415 wiphy_unregister(priv->ieee->wdev.wiphy);
6416 kfree(priv->ieee->bg_band.channels);
6417 free_libipw(dev, 0);
6418
6419 pci_release_regions(pci_dev);
6420 pci_disable_device(pci_dev);
6421
6422 IPW_DEBUG_INFO("exit\n");
6423 }
6424
6425 #ifdef CONFIG_PM
6426 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6427 {
6428 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6429 struct net_device *dev = priv->net_dev;
6430
6431 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6432
6433 mutex_lock(&priv->action_mutex);
6434 if (priv->status & STATUS_INITIALIZED) {
6435 /* Take down the device; powers it off, etc. */
6436 ipw2100_down(priv);
6437 }
6438
6439 /* Remove the PRESENT state of the device */
6440 netif_device_detach(dev);
6441
6442 pci_save_state(pci_dev);
6443 pci_disable_device(pci_dev);
6444 pci_set_power_state(pci_dev, PCI_D3hot);
6445
6446 priv->suspend_at = get_seconds();
6447
6448 mutex_unlock(&priv->action_mutex);
6449
6450 return 0;
6451 }
6452
6453 static int ipw2100_resume(struct pci_dev *pci_dev)
6454 {
6455 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6456 struct net_device *dev = priv->net_dev;
6457 int err;
6458 u32 val;
6459
6460 if (IPW2100_PM_DISABLED)
6461 return 0;
6462
6463 mutex_lock(&priv->action_mutex);
6464
6465 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6466
6467 pci_set_power_state(pci_dev, PCI_D0);
6468 err = pci_enable_device(pci_dev);
6469 if (err) {
6470 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6471 dev->name);
6472 mutex_unlock(&priv->action_mutex);
6473 return err;
6474 }
6475 pci_restore_state(pci_dev);
6476
6477 /*
6478 * Suspend/Resume resets the PCI configuration space, so we have to
6479 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6480 * from interfering with C3 CPU state. pci_restore_state won't help
6481 * here since it only restores the first 64 bytes pci config header.
6482 */
6483 pci_read_config_dword(pci_dev, 0x40, &val);
6484 if ((val & 0x0000ff00) != 0)
6485 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6486
6487 /* Set the device back into the PRESENT state; this will also wake
6488 * the queue of needed */
6489 netif_device_attach(dev);
6490
6491 priv->suspend_time = get_seconds() - priv->suspend_at;
6492
6493 /* Bring the device back up */
6494 if (!(priv->status & STATUS_RF_KILL_SW))
6495 ipw2100_up(priv, 0);
6496
6497 mutex_unlock(&priv->action_mutex);
6498
6499 return 0;
6500 }
6501 #endif
6502
6503 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6504 {
6505 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6506
6507 /* Take down the device; powers it off, etc. */
6508 ipw2100_down(priv);
6509
6510 pci_disable_device(pci_dev);
6511 }
6512
6513 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6514
6515 static DEFINE_PCI_DEVICE_TABLE(ipw2100_pci_id_table) = {
6516 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6517 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6518 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6519 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6520 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6521 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6522 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6523 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6524 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6525 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6526 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6527 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6528 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6529
6530 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6531 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6532 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6533 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6534 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6535
6536 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6537 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6538 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6539 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6540 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6541 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6542 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6543
6544 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6545
6546 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6547 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6548 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6549 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6550 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6551 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6552 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6553
6554 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6555 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6556 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6557 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6558 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6559 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6560
6561 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6562 {0,},
6563 };
6564
6565 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6566
6567 static struct pci_driver ipw2100_pci_driver = {
6568 .name = DRV_NAME,
6569 .id_table = ipw2100_pci_id_table,
6570 .probe = ipw2100_pci_init_one,
6571 .remove = ipw2100_pci_remove_one,
6572 #ifdef CONFIG_PM
6573 .suspend = ipw2100_suspend,
6574 .resume = ipw2100_resume,
6575 #endif
6576 .shutdown = ipw2100_shutdown,
6577 };
6578
6579 /**
6580 * Initialize the ipw2100 driver/module
6581 *
6582 * @returns 0 if ok, < 0 errno node con error.
6583 *
6584 * Note: we cannot init the /proc stuff until the PCI driver is there,
6585 * or we risk an unlikely race condition on someone accessing
6586 * uninitialized data in the PCI dev struct through /proc.
6587 */
6588 static int __init ipw2100_init(void)
6589 {
6590 int ret;
6591
6592 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6593 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6594
6595 pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6596 PM_QOS_DEFAULT_VALUE);
6597
6598 ret = pci_register_driver(&ipw2100_pci_driver);
6599 if (ret)
6600 goto out;
6601
6602 #ifdef CONFIG_IPW2100_DEBUG
6603 ipw2100_debug_level = debug;
6604 ret = driver_create_file(&ipw2100_pci_driver.driver,
6605 &driver_attr_debug_level);
6606 #endif
6607
6608 out:
6609 return ret;
6610 }
6611
6612 /**
6613 * Cleanup ipw2100 driver registration
6614 */
6615 static void __exit ipw2100_exit(void)
6616 {
6617 /* FIXME: IPG: check that we have no instances of the devices open */
6618 #ifdef CONFIG_IPW2100_DEBUG
6619 driver_remove_file(&ipw2100_pci_driver.driver,
6620 &driver_attr_debug_level);
6621 #endif
6622 pci_unregister_driver(&ipw2100_pci_driver);
6623 pm_qos_remove_request(&ipw2100_pm_qos_req);
6624 }
6625
6626 module_init(ipw2100_init);
6627 module_exit(ipw2100_exit);
6628
6629 static int ipw2100_wx_get_name(struct net_device *dev,
6630 struct iw_request_info *info,
6631 union iwreq_data *wrqu, char *extra)
6632 {
6633 /*
6634 * This can be called at any time. No action lock required
6635 */
6636
6637 struct ipw2100_priv *priv = libipw_priv(dev);
6638 if (!(priv->status & STATUS_ASSOCIATED))
6639 strcpy(wrqu->name, "unassociated");
6640 else
6641 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6642
6643 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6644 return 0;
6645 }
6646
6647 static int ipw2100_wx_set_freq(struct net_device *dev,
6648 struct iw_request_info *info,
6649 union iwreq_data *wrqu, char *extra)
6650 {
6651 struct ipw2100_priv *priv = libipw_priv(dev);
6652 struct iw_freq *fwrq = &wrqu->freq;
6653 int err = 0;
6654
6655 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6656 return -EOPNOTSUPP;
6657
6658 mutex_lock(&priv->action_mutex);
6659 if (!(priv->status & STATUS_INITIALIZED)) {
6660 err = -EIO;
6661 goto done;
6662 }
6663
6664 /* if setting by freq convert to channel */
6665 if (fwrq->e == 1) {
6666 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6667 int f = fwrq->m / 100000;
6668 int c = 0;
6669
6670 while ((c < REG_MAX_CHANNEL) &&
6671 (f != ipw2100_frequencies[c]))
6672 c++;
6673
6674 /* hack to fall through */
6675 fwrq->e = 0;
6676 fwrq->m = c + 1;
6677 }
6678 }
6679
6680 if (fwrq->e > 0 || fwrq->m > 1000) {
6681 err = -EOPNOTSUPP;
6682 goto done;
6683 } else { /* Set the channel */
6684 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6685 err = ipw2100_set_channel(priv, fwrq->m, 0);
6686 }
6687
6688 done:
6689 mutex_unlock(&priv->action_mutex);
6690 return err;
6691 }
6692
6693 static int ipw2100_wx_get_freq(struct net_device *dev,
6694 struct iw_request_info *info,
6695 union iwreq_data *wrqu, char *extra)
6696 {
6697 /*
6698 * This can be called at any time. No action lock required
6699 */
6700
6701 struct ipw2100_priv *priv = libipw_priv(dev);
6702
6703 wrqu->freq.e = 0;
6704
6705 /* If we are associated, trying to associate, or have a statically
6706 * configured CHANNEL then return that; otherwise return ANY */
6707 if (priv->config & CFG_STATIC_CHANNEL ||
6708 priv->status & STATUS_ASSOCIATED)
6709 wrqu->freq.m = priv->channel;
6710 else
6711 wrqu->freq.m = 0;
6712
6713 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6714 return 0;
6715
6716 }
6717
6718 static int ipw2100_wx_set_mode(struct net_device *dev,
6719 struct iw_request_info *info,
6720 union iwreq_data *wrqu, char *extra)
6721 {
6722 struct ipw2100_priv *priv = libipw_priv(dev);
6723 int err = 0;
6724
6725 IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6726
6727 if (wrqu->mode == priv->ieee->iw_mode)
6728 return 0;
6729
6730 mutex_lock(&priv->action_mutex);
6731 if (!(priv->status & STATUS_INITIALIZED)) {
6732 err = -EIO;
6733 goto done;
6734 }
6735
6736 switch (wrqu->mode) {
6737 #ifdef CONFIG_IPW2100_MONITOR
6738 case IW_MODE_MONITOR:
6739 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6740 break;
6741 #endif /* CONFIG_IPW2100_MONITOR */
6742 case IW_MODE_ADHOC:
6743 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6744 break;
6745 case IW_MODE_INFRA:
6746 case IW_MODE_AUTO:
6747 default:
6748 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6749 break;
6750 }
6751
6752 done:
6753 mutex_unlock(&priv->action_mutex);
6754 return err;
6755 }
6756
6757 static int ipw2100_wx_get_mode(struct net_device *dev,
6758 struct iw_request_info *info,
6759 union iwreq_data *wrqu, char *extra)
6760 {
6761 /*
6762 * This can be called at any time. No action lock required
6763 */
6764
6765 struct ipw2100_priv *priv = libipw_priv(dev);
6766
6767 wrqu->mode = priv->ieee->iw_mode;
6768 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6769
6770 return 0;
6771 }
6772
6773 #define POWER_MODES 5
6774
6775 /* Values are in microsecond */
6776 static const s32 timeout_duration[POWER_MODES] = {
6777 350000,
6778 250000,
6779 75000,
6780 37000,
6781 25000,
6782 };
6783
6784 static const s32 period_duration[POWER_MODES] = {
6785 400000,
6786 700000,
6787 1000000,
6788 1000000,
6789 1000000
6790 };
6791
6792 static int ipw2100_wx_get_range(struct net_device *dev,
6793 struct iw_request_info *info,
6794 union iwreq_data *wrqu, char *extra)
6795 {
6796 /*
6797 * This can be called at any time. No action lock required
6798 */
6799
6800 struct ipw2100_priv *priv = libipw_priv(dev);
6801 struct iw_range *range = (struct iw_range *)extra;
6802 u16 val;
6803 int i, level;
6804
6805 wrqu->data.length = sizeof(*range);
6806 memset(range, 0, sizeof(*range));
6807
6808 /* Let's try to keep this struct in the same order as in
6809 * linux/include/wireless.h
6810 */
6811
6812 /* TODO: See what values we can set, and remove the ones we can't
6813 * set, or fill them with some default data.
6814 */
6815
6816 /* ~5 Mb/s real (802.11b) */
6817 range->throughput = 5 * 1000 * 1000;
6818
6819 // range->sensitivity; /* signal level threshold range */
6820
6821 range->max_qual.qual = 100;
6822 /* TODO: Find real max RSSI and stick here */
6823 range->max_qual.level = 0;
6824 range->max_qual.noise = 0;
6825 range->max_qual.updated = 7; /* Updated all three */
6826
6827 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6828 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6829 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6830 range->avg_qual.noise = 0;
6831 range->avg_qual.updated = 7; /* Updated all three */
6832
6833 range->num_bitrates = RATE_COUNT;
6834
6835 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6836 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6837 }
6838
6839 range->min_rts = MIN_RTS_THRESHOLD;
6840 range->max_rts = MAX_RTS_THRESHOLD;
6841 range->min_frag = MIN_FRAG_THRESHOLD;
6842 range->max_frag = MAX_FRAG_THRESHOLD;
6843
6844 range->min_pmp = period_duration[0]; /* Minimal PM period */
6845 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6846 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6847 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6848
6849 /* How to decode max/min PM period */
6850 range->pmp_flags = IW_POWER_PERIOD;
6851 /* How to decode max/min PM period */
6852 range->pmt_flags = IW_POWER_TIMEOUT;
6853 /* What PM options are supported */
6854 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6855
6856 range->encoding_size[0] = 5;
6857 range->encoding_size[1] = 13; /* Different token sizes */
6858 range->num_encoding_sizes = 2; /* Number of entry in the list */
6859 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6860 // range->encoding_login_index; /* token index for login token */
6861
6862 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6863 range->txpower_capa = IW_TXPOW_DBM;
6864 range->num_txpower = IW_MAX_TXPOWER;
6865 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6866 i < IW_MAX_TXPOWER;
6867 i++, level -=
6868 ((IPW_TX_POWER_MAX_DBM -
6869 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6870 range->txpower[i] = level / 16;
6871 } else {
6872 range->txpower_capa = 0;
6873 range->num_txpower = 0;
6874 }
6875
6876 /* Set the Wireless Extension versions */
6877 range->we_version_compiled = WIRELESS_EXT;
6878 range->we_version_source = 18;
6879
6880 // range->retry_capa; /* What retry options are supported */
6881 // range->retry_flags; /* How to decode max/min retry limit */
6882 // range->r_time_flags; /* How to decode max/min retry life */
6883 // range->min_retry; /* Minimal number of retries */
6884 // range->max_retry; /* Maximal number of retries */
6885 // range->min_r_time; /* Minimal retry lifetime */
6886 // range->max_r_time; /* Maximal retry lifetime */
6887
6888 range->num_channels = FREQ_COUNT;
6889
6890 val = 0;
6891 for (i = 0; i < FREQ_COUNT; i++) {
6892 // TODO: Include only legal frequencies for some countries
6893 // if (local->channel_mask & (1 << i)) {
6894 range->freq[val].i = i + 1;
6895 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6896 range->freq[val].e = 1;
6897 val++;
6898 // }
6899 if (val == IW_MAX_FREQUENCIES)
6900 break;
6901 }
6902 range->num_frequency = val;
6903
6904 /* Event capability (kernel + driver) */
6905 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6906 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6907 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6908
6909 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6910 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6911
6912 IPW_DEBUG_WX("GET Range\n");
6913
6914 return 0;
6915 }
6916
6917 static int ipw2100_wx_set_wap(struct net_device *dev,
6918 struct iw_request_info *info,
6919 union iwreq_data *wrqu, char *extra)
6920 {
6921 struct ipw2100_priv *priv = libipw_priv(dev);
6922 int err = 0;
6923
6924 // sanity checks
6925 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6926 return -EINVAL;
6927
6928 mutex_lock(&priv->action_mutex);
6929 if (!(priv->status & STATUS_INITIALIZED)) {
6930 err = -EIO;
6931 goto done;
6932 }
6933
6934 if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6935 is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6936 /* we disable mandatory BSSID association */
6937 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6938 priv->config &= ~CFG_STATIC_BSSID;
6939 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6940 goto done;
6941 }
6942
6943 priv->config |= CFG_STATIC_BSSID;
6944 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6945
6946 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6947
6948 IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6949
6950 done:
6951 mutex_unlock(&priv->action_mutex);
6952 return err;
6953 }
6954
6955 static int ipw2100_wx_get_wap(struct net_device *dev,
6956 struct iw_request_info *info,
6957 union iwreq_data *wrqu, char *extra)
6958 {
6959 /*
6960 * This can be called at any time. No action lock required
6961 */
6962
6963 struct ipw2100_priv *priv = libipw_priv(dev);
6964
6965 /* If we are associated, trying to associate, or have a statically
6966 * configured BSSID then return that; otherwise return ANY */
6967 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6968 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6969 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6970 } else
6971 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6972
6973 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6974 return 0;
6975 }
6976
6977 static int ipw2100_wx_set_essid(struct net_device *dev,
6978 struct iw_request_info *info,
6979 union iwreq_data *wrqu, char *extra)
6980 {
6981 struct ipw2100_priv *priv = libipw_priv(dev);
6982 char *essid = ""; /* ANY */
6983 int length = 0;
6984 int err = 0;
6985 DECLARE_SSID_BUF(ssid);
6986
6987 mutex_lock(&priv->action_mutex);
6988 if (!(priv->status & STATUS_INITIALIZED)) {
6989 err = -EIO;
6990 goto done;
6991 }
6992
6993 if (wrqu->essid.flags && wrqu->essid.length) {
6994 length = wrqu->essid.length;
6995 essid = extra;
6996 }
6997
6998 if (length == 0) {
6999 IPW_DEBUG_WX("Setting ESSID to ANY\n");
7000 priv->config &= ~CFG_STATIC_ESSID;
7001 err = ipw2100_set_essid(priv, NULL, 0, 0);
7002 goto done;
7003 }
7004
7005 length = min(length, IW_ESSID_MAX_SIZE);
7006
7007 priv->config |= CFG_STATIC_ESSID;
7008
7009 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7010 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7011 err = 0;
7012 goto done;
7013 }
7014
7015 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
7016 print_ssid(ssid, essid, length), length);
7017
7018 priv->essid_len = length;
7019 memcpy(priv->essid, essid, priv->essid_len);
7020
7021 err = ipw2100_set_essid(priv, essid, length, 0);
7022
7023 done:
7024 mutex_unlock(&priv->action_mutex);
7025 return err;
7026 }
7027
7028 static int ipw2100_wx_get_essid(struct net_device *dev,
7029 struct iw_request_info *info,
7030 union iwreq_data *wrqu, char *extra)
7031 {
7032 /*
7033 * This can be called at any time. No action lock required
7034 */
7035
7036 struct ipw2100_priv *priv = libipw_priv(dev);
7037 DECLARE_SSID_BUF(ssid);
7038
7039 /* If we are associated, trying to associate, or have a statically
7040 * configured ESSID then return that; otherwise return ANY */
7041 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7042 IPW_DEBUG_WX("Getting essid: '%s'\n",
7043 print_ssid(ssid, priv->essid, priv->essid_len));
7044 memcpy(extra, priv->essid, priv->essid_len);
7045 wrqu->essid.length = priv->essid_len;
7046 wrqu->essid.flags = 1; /* active */
7047 } else {
7048 IPW_DEBUG_WX("Getting essid: ANY\n");
7049 wrqu->essid.length = 0;
7050 wrqu->essid.flags = 0; /* active */
7051 }
7052
7053 return 0;
7054 }
7055
7056 static int ipw2100_wx_set_nick(struct net_device *dev,
7057 struct iw_request_info *info,
7058 union iwreq_data *wrqu, char *extra)
7059 {
7060 /*
7061 * This can be called at any time. No action lock required
7062 */
7063
7064 struct ipw2100_priv *priv = libipw_priv(dev);
7065
7066 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7067 return -E2BIG;
7068
7069 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7070 memset(priv->nick, 0, sizeof(priv->nick));
7071 memcpy(priv->nick, extra, wrqu->data.length);
7072
7073 IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7074
7075 return 0;
7076 }
7077
7078 static int ipw2100_wx_get_nick(struct net_device *dev,
7079 struct iw_request_info *info,
7080 union iwreq_data *wrqu, char *extra)
7081 {
7082 /*
7083 * This can be called at any time. No action lock required
7084 */
7085
7086 struct ipw2100_priv *priv = libipw_priv(dev);
7087
7088 wrqu->data.length = strlen(priv->nick);
7089 memcpy(extra, priv->nick, wrqu->data.length);
7090 wrqu->data.flags = 1; /* active */
7091
7092 IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7093
7094 return 0;
7095 }
7096
7097 static int ipw2100_wx_set_rate(struct net_device *dev,
7098 struct iw_request_info *info,
7099 union iwreq_data *wrqu, char *extra)
7100 {
7101 struct ipw2100_priv *priv = libipw_priv(dev);
7102 u32 target_rate = wrqu->bitrate.value;
7103 u32 rate;
7104 int err = 0;
7105
7106 mutex_lock(&priv->action_mutex);
7107 if (!(priv->status & STATUS_INITIALIZED)) {
7108 err = -EIO;
7109 goto done;
7110 }
7111
7112 rate = 0;
7113
7114 if (target_rate == 1000000 ||
7115 (!wrqu->bitrate.fixed && target_rate > 1000000))
7116 rate |= TX_RATE_1_MBIT;
7117 if (target_rate == 2000000 ||
7118 (!wrqu->bitrate.fixed && target_rate > 2000000))
7119 rate |= TX_RATE_2_MBIT;
7120 if (target_rate == 5500000 ||
7121 (!wrqu->bitrate.fixed && target_rate > 5500000))
7122 rate |= TX_RATE_5_5_MBIT;
7123 if (target_rate == 11000000 ||
7124 (!wrqu->bitrate.fixed && target_rate > 11000000))
7125 rate |= TX_RATE_11_MBIT;
7126 if (rate == 0)
7127 rate = DEFAULT_TX_RATES;
7128
7129 err = ipw2100_set_tx_rates(priv, rate, 0);
7130
7131 IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7132 done:
7133 mutex_unlock(&priv->action_mutex);
7134 return err;
7135 }
7136
7137 static int ipw2100_wx_get_rate(struct net_device *dev,
7138 struct iw_request_info *info,
7139 union iwreq_data *wrqu, char *extra)
7140 {
7141 struct ipw2100_priv *priv = libipw_priv(dev);
7142 int val;
7143 unsigned int len = sizeof(val);
7144 int err = 0;
7145
7146 if (!(priv->status & STATUS_ENABLED) ||
7147 priv->status & STATUS_RF_KILL_MASK ||
7148 !(priv->status & STATUS_ASSOCIATED)) {
7149 wrqu->bitrate.value = 0;
7150 return 0;
7151 }
7152
7153 mutex_lock(&priv->action_mutex);
7154 if (!(priv->status & STATUS_INITIALIZED)) {
7155 err = -EIO;
7156 goto done;
7157 }
7158
7159 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7160 if (err) {
7161 IPW_DEBUG_WX("failed querying ordinals.\n");
7162 goto done;
7163 }
7164
7165 switch (val & TX_RATE_MASK) {
7166 case TX_RATE_1_MBIT:
7167 wrqu->bitrate.value = 1000000;
7168 break;
7169 case TX_RATE_2_MBIT:
7170 wrqu->bitrate.value = 2000000;
7171 break;
7172 case TX_RATE_5_5_MBIT:
7173 wrqu->bitrate.value = 5500000;
7174 break;
7175 case TX_RATE_11_MBIT:
7176 wrqu->bitrate.value = 11000000;
7177 break;
7178 default:
7179 wrqu->bitrate.value = 0;
7180 }
7181
7182 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7183
7184 done:
7185 mutex_unlock(&priv->action_mutex);
7186 return err;
7187 }
7188
7189 static int ipw2100_wx_set_rts(struct net_device *dev,
7190 struct iw_request_info *info,
7191 union iwreq_data *wrqu, char *extra)
7192 {
7193 struct ipw2100_priv *priv = libipw_priv(dev);
7194 int value, err;
7195
7196 /* Auto RTS not yet supported */
7197 if (wrqu->rts.fixed == 0)
7198 return -EINVAL;
7199
7200 mutex_lock(&priv->action_mutex);
7201 if (!(priv->status & STATUS_INITIALIZED)) {
7202 err = -EIO;
7203 goto done;
7204 }
7205
7206 if (wrqu->rts.disabled)
7207 value = priv->rts_threshold | RTS_DISABLED;
7208 else {
7209 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7210 err = -EINVAL;
7211 goto done;
7212 }
7213 value = wrqu->rts.value;
7214 }
7215
7216 err = ipw2100_set_rts_threshold(priv, value);
7217
7218 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7219 done:
7220 mutex_unlock(&priv->action_mutex);
7221 return err;
7222 }
7223
7224 static int ipw2100_wx_get_rts(struct net_device *dev,
7225 struct iw_request_info *info,
7226 union iwreq_data *wrqu, char *extra)
7227 {
7228 /*
7229 * This can be called at any time. No action lock required
7230 */
7231
7232 struct ipw2100_priv *priv = libipw_priv(dev);
7233
7234 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7235 wrqu->rts.fixed = 1; /* no auto select */
7236
7237 /* If RTS is set to the default value, then it is disabled */
7238 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7239
7240 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7241
7242 return 0;
7243 }
7244
7245 static int ipw2100_wx_set_txpow(struct net_device *dev,
7246 struct iw_request_info *info,
7247 union iwreq_data *wrqu, char *extra)
7248 {
7249 struct ipw2100_priv *priv = libipw_priv(dev);
7250 int err = 0, value;
7251
7252 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7253 return -EINPROGRESS;
7254
7255 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7256 return 0;
7257
7258 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7259 return -EINVAL;
7260
7261 if (wrqu->txpower.fixed == 0)
7262 value = IPW_TX_POWER_DEFAULT;
7263 else {
7264 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7265 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7266 return -EINVAL;
7267
7268 value = wrqu->txpower.value;
7269 }
7270
7271 mutex_lock(&priv->action_mutex);
7272 if (!(priv->status & STATUS_INITIALIZED)) {
7273 err = -EIO;
7274 goto done;
7275 }
7276
7277 err = ipw2100_set_tx_power(priv, value);
7278
7279 IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7280
7281 done:
7282 mutex_unlock(&priv->action_mutex);
7283 return err;
7284 }
7285
7286 static int ipw2100_wx_get_txpow(struct net_device *dev,
7287 struct iw_request_info *info,
7288 union iwreq_data *wrqu, char *extra)
7289 {
7290 /*
7291 * This can be called at any time. No action lock required
7292 */
7293
7294 struct ipw2100_priv *priv = libipw_priv(dev);
7295
7296 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7297
7298 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7299 wrqu->txpower.fixed = 0;
7300 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7301 } else {
7302 wrqu->txpower.fixed = 1;
7303 wrqu->txpower.value = priv->tx_power;
7304 }
7305
7306 wrqu->txpower.flags = IW_TXPOW_DBM;
7307
7308 IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7309
7310 return 0;
7311 }
7312
7313 static int ipw2100_wx_set_frag(struct net_device *dev,
7314 struct iw_request_info *info,
7315 union iwreq_data *wrqu, char *extra)
7316 {
7317 /*
7318 * This can be called at any time. No action lock required
7319 */
7320
7321 struct ipw2100_priv *priv = libipw_priv(dev);
7322
7323 if (!wrqu->frag.fixed)
7324 return -EINVAL;
7325
7326 if (wrqu->frag.disabled) {
7327 priv->frag_threshold |= FRAG_DISABLED;
7328 priv->ieee->fts = DEFAULT_FTS;
7329 } else {
7330 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7331 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7332 return -EINVAL;
7333
7334 priv->ieee->fts = wrqu->frag.value & ~0x1;
7335 priv->frag_threshold = priv->ieee->fts;
7336 }
7337
7338 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7339
7340 return 0;
7341 }
7342
7343 static int ipw2100_wx_get_frag(struct net_device *dev,
7344 struct iw_request_info *info,
7345 union iwreq_data *wrqu, char *extra)
7346 {
7347 /*
7348 * This can be called at any time. No action lock required
7349 */
7350
7351 struct ipw2100_priv *priv = libipw_priv(dev);
7352 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7353 wrqu->frag.fixed = 0; /* no auto select */
7354 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7355
7356 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7357
7358 return 0;
7359 }
7360
7361 static int ipw2100_wx_set_retry(struct net_device *dev,
7362 struct iw_request_info *info,
7363 union iwreq_data *wrqu, char *extra)
7364 {
7365 struct ipw2100_priv *priv = libipw_priv(dev);
7366 int err = 0;
7367
7368 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7369 return -EINVAL;
7370
7371 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7372 return 0;
7373
7374 mutex_lock(&priv->action_mutex);
7375 if (!(priv->status & STATUS_INITIALIZED)) {
7376 err = -EIO;
7377 goto done;
7378 }
7379
7380 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7381 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7382 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7383 wrqu->retry.value);
7384 goto done;
7385 }
7386
7387 if (wrqu->retry.flags & IW_RETRY_LONG) {
7388 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7389 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7390 wrqu->retry.value);
7391 goto done;
7392 }
7393
7394 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7395 if (!err)
7396 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7397
7398 IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7399
7400 done:
7401 mutex_unlock(&priv->action_mutex);
7402 return err;
7403 }
7404
7405 static int ipw2100_wx_get_retry(struct net_device *dev,
7406 struct iw_request_info *info,
7407 union iwreq_data *wrqu, char *extra)
7408 {
7409 /*
7410 * This can be called at any time. No action lock required
7411 */
7412
7413 struct ipw2100_priv *priv = libipw_priv(dev);
7414
7415 wrqu->retry.disabled = 0; /* can't be disabled */
7416
7417 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7418 return -EINVAL;
7419
7420 if (wrqu->retry.flags & IW_RETRY_LONG) {
7421 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7422 wrqu->retry.value = priv->long_retry_limit;
7423 } else {
7424 wrqu->retry.flags =
7425 (priv->short_retry_limit !=
7426 priv->long_retry_limit) ?
7427 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7428
7429 wrqu->retry.value = priv->short_retry_limit;
7430 }
7431
7432 IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7433
7434 return 0;
7435 }
7436
7437 static int ipw2100_wx_set_scan(struct net_device *dev,
7438 struct iw_request_info *info,
7439 union iwreq_data *wrqu, char *extra)
7440 {
7441 struct ipw2100_priv *priv = libipw_priv(dev);
7442 int err = 0;
7443
7444 mutex_lock(&priv->action_mutex);
7445 if (!(priv->status & STATUS_INITIALIZED)) {
7446 err = -EIO;
7447 goto done;
7448 }
7449
7450 IPW_DEBUG_WX("Initiating scan...\n");
7451
7452 priv->user_requested_scan = 1;
7453 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7454 IPW_DEBUG_WX("Start scan failed.\n");
7455
7456 /* TODO: Mark a scan as pending so when hardware initialized
7457 * a scan starts */
7458 }
7459
7460 done:
7461 mutex_unlock(&priv->action_mutex);
7462 return err;
7463 }
7464
7465 static int ipw2100_wx_get_scan(struct net_device *dev,
7466 struct iw_request_info *info,
7467 union iwreq_data *wrqu, char *extra)
7468 {
7469 /*
7470 * This can be called at any time. No action lock required
7471 */
7472
7473 struct ipw2100_priv *priv = libipw_priv(dev);
7474 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7475 }
7476
7477 /*
7478 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7479 */
7480 static int ipw2100_wx_set_encode(struct net_device *dev,
7481 struct iw_request_info *info,
7482 union iwreq_data *wrqu, char *key)
7483 {
7484 /*
7485 * No check of STATUS_INITIALIZED required
7486 */
7487
7488 struct ipw2100_priv *priv = libipw_priv(dev);
7489 return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7490 }
7491
7492 static int ipw2100_wx_get_encode(struct net_device *dev,
7493 struct iw_request_info *info,
7494 union iwreq_data *wrqu, char *key)
7495 {
7496 /*
7497 * This can be called at any time. No action lock required
7498 */
7499
7500 struct ipw2100_priv *priv = libipw_priv(dev);
7501 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7502 }
7503
7504 static int ipw2100_wx_set_power(struct net_device *dev,
7505 struct iw_request_info *info,
7506 union iwreq_data *wrqu, char *extra)
7507 {
7508 struct ipw2100_priv *priv = libipw_priv(dev);
7509 int err = 0;
7510
7511 mutex_lock(&priv->action_mutex);
7512 if (!(priv->status & STATUS_INITIALIZED)) {
7513 err = -EIO;
7514 goto done;
7515 }
7516
7517 if (wrqu->power.disabled) {
7518 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7519 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7520 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7521 goto done;
7522 }
7523
7524 switch (wrqu->power.flags & IW_POWER_MODE) {
7525 case IW_POWER_ON: /* If not specified */
7526 case IW_POWER_MODE: /* If set all mask */
7527 case IW_POWER_ALL_R: /* If explicitly state all */
7528 break;
7529 default: /* Otherwise we don't support it */
7530 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7531 wrqu->power.flags);
7532 err = -EOPNOTSUPP;
7533 goto done;
7534 }
7535
7536 /* If the user hasn't specified a power management mode yet, default
7537 * to BATTERY */
7538 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7539 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7540
7541 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7542
7543 done:
7544 mutex_unlock(&priv->action_mutex);
7545 return err;
7546
7547 }
7548
7549 static int ipw2100_wx_get_power(struct net_device *dev,
7550 struct iw_request_info *info,
7551 union iwreq_data *wrqu, char *extra)
7552 {
7553 /*
7554 * This can be called at any time. No action lock required
7555 */
7556
7557 struct ipw2100_priv *priv = libipw_priv(dev);
7558
7559 if (!(priv->power_mode & IPW_POWER_ENABLED))
7560 wrqu->power.disabled = 1;
7561 else {
7562 wrqu->power.disabled = 0;
7563 wrqu->power.flags = 0;
7564 }
7565
7566 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7567
7568 return 0;
7569 }
7570
7571 /*
7572 * WE-18 WPA support
7573 */
7574
7575 /* SIOCSIWGENIE */
7576 static int ipw2100_wx_set_genie(struct net_device *dev,
7577 struct iw_request_info *info,
7578 union iwreq_data *wrqu, char *extra)
7579 {
7580
7581 struct ipw2100_priv *priv = libipw_priv(dev);
7582 struct libipw_device *ieee = priv->ieee;
7583 u8 *buf;
7584
7585 if (!ieee->wpa_enabled)
7586 return -EOPNOTSUPP;
7587
7588 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7589 (wrqu->data.length && extra == NULL))
7590 return -EINVAL;
7591
7592 if (wrqu->data.length) {
7593 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7594 if (buf == NULL)
7595 return -ENOMEM;
7596
7597 kfree(ieee->wpa_ie);
7598 ieee->wpa_ie = buf;
7599 ieee->wpa_ie_len = wrqu->data.length;
7600 } else {
7601 kfree(ieee->wpa_ie);
7602 ieee->wpa_ie = NULL;
7603 ieee->wpa_ie_len = 0;
7604 }
7605
7606 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7607
7608 return 0;
7609 }
7610
7611 /* SIOCGIWGENIE */
7612 static int ipw2100_wx_get_genie(struct net_device *dev,
7613 struct iw_request_info *info,
7614 union iwreq_data *wrqu, char *extra)
7615 {
7616 struct ipw2100_priv *priv = libipw_priv(dev);
7617 struct libipw_device *ieee = priv->ieee;
7618
7619 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7620 wrqu->data.length = 0;
7621 return 0;
7622 }
7623
7624 if (wrqu->data.length < ieee->wpa_ie_len)
7625 return -E2BIG;
7626
7627 wrqu->data.length = ieee->wpa_ie_len;
7628 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7629
7630 return 0;
7631 }
7632
7633 /* SIOCSIWAUTH */
7634 static int ipw2100_wx_set_auth(struct net_device *dev,
7635 struct iw_request_info *info,
7636 union iwreq_data *wrqu, char *extra)
7637 {
7638 struct ipw2100_priv *priv = libipw_priv(dev);
7639 struct libipw_device *ieee = priv->ieee;
7640 struct iw_param *param = &wrqu->param;
7641 struct lib80211_crypt_data *crypt;
7642 unsigned long flags;
7643 int ret = 0;
7644
7645 switch (param->flags & IW_AUTH_INDEX) {
7646 case IW_AUTH_WPA_VERSION:
7647 case IW_AUTH_CIPHER_PAIRWISE:
7648 case IW_AUTH_CIPHER_GROUP:
7649 case IW_AUTH_KEY_MGMT:
7650 /*
7651 * ipw2200 does not use these parameters
7652 */
7653 break;
7654
7655 case IW_AUTH_TKIP_COUNTERMEASURES:
7656 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7657 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7658 break;
7659
7660 flags = crypt->ops->get_flags(crypt->priv);
7661
7662 if (param->value)
7663 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7664 else
7665 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7666
7667 crypt->ops->set_flags(flags, crypt->priv);
7668
7669 break;
7670
7671 case IW_AUTH_DROP_UNENCRYPTED:{
7672 /* HACK:
7673 *
7674 * wpa_supplicant calls set_wpa_enabled when the driver
7675 * is loaded and unloaded, regardless of if WPA is being
7676 * used. No other calls are made which can be used to
7677 * determine if encryption will be used or not prior to
7678 * association being expected. If encryption is not being
7679 * used, drop_unencrypted is set to false, else true -- we
7680 * can use this to determine if the CAP_PRIVACY_ON bit should
7681 * be set.
7682 */
7683 struct libipw_security sec = {
7684 .flags = SEC_ENABLED,
7685 .enabled = param->value,
7686 };
7687 priv->ieee->drop_unencrypted = param->value;
7688 /* We only change SEC_LEVEL for open mode. Others
7689 * are set by ipw_wpa_set_encryption.
7690 */
7691 if (!param->value) {
7692 sec.flags |= SEC_LEVEL;
7693 sec.level = SEC_LEVEL_0;
7694 } else {
7695 sec.flags |= SEC_LEVEL;
7696 sec.level = SEC_LEVEL_1;
7697 }
7698 if (priv->ieee->set_security)
7699 priv->ieee->set_security(priv->ieee->dev, &sec);
7700 break;
7701 }
7702
7703 case IW_AUTH_80211_AUTH_ALG:
7704 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7705 break;
7706
7707 case IW_AUTH_WPA_ENABLED:
7708 ret = ipw2100_wpa_enable(priv, param->value);
7709 break;
7710
7711 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7712 ieee->ieee802_1x = param->value;
7713 break;
7714
7715 //case IW_AUTH_ROAMING_CONTROL:
7716 case IW_AUTH_PRIVACY_INVOKED:
7717 ieee->privacy_invoked = param->value;
7718 break;
7719
7720 default:
7721 return -EOPNOTSUPP;
7722 }
7723 return ret;
7724 }
7725
7726 /* SIOCGIWAUTH */
7727 static int ipw2100_wx_get_auth(struct net_device *dev,
7728 struct iw_request_info *info,
7729 union iwreq_data *wrqu, char *extra)
7730 {
7731 struct ipw2100_priv *priv = libipw_priv(dev);
7732 struct libipw_device *ieee = priv->ieee;
7733 struct lib80211_crypt_data *crypt;
7734 struct iw_param *param = &wrqu->param;
7735 int ret = 0;
7736
7737 switch (param->flags & IW_AUTH_INDEX) {
7738 case IW_AUTH_WPA_VERSION:
7739 case IW_AUTH_CIPHER_PAIRWISE:
7740 case IW_AUTH_CIPHER_GROUP:
7741 case IW_AUTH_KEY_MGMT:
7742 /*
7743 * wpa_supplicant will control these internally
7744 */
7745 ret = -EOPNOTSUPP;
7746 break;
7747
7748 case IW_AUTH_TKIP_COUNTERMEASURES:
7749 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7750 if (!crypt || !crypt->ops->get_flags) {
7751 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7752 "crypt not set!\n");
7753 break;
7754 }
7755
7756 param->value = (crypt->ops->get_flags(crypt->priv) &
7757 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7758
7759 break;
7760
7761 case IW_AUTH_DROP_UNENCRYPTED:
7762 param->value = ieee->drop_unencrypted;
7763 break;
7764
7765 case IW_AUTH_80211_AUTH_ALG:
7766 param->value = priv->ieee->sec.auth_mode;
7767 break;
7768
7769 case IW_AUTH_WPA_ENABLED:
7770 param->value = ieee->wpa_enabled;
7771 break;
7772
7773 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7774 param->value = ieee->ieee802_1x;
7775 break;
7776
7777 case IW_AUTH_ROAMING_CONTROL:
7778 case IW_AUTH_PRIVACY_INVOKED:
7779 param->value = ieee->privacy_invoked;
7780 break;
7781
7782 default:
7783 return -EOPNOTSUPP;
7784 }
7785 return 0;
7786 }
7787
7788 /* SIOCSIWENCODEEXT */
7789 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7790 struct iw_request_info *info,
7791 union iwreq_data *wrqu, char *extra)
7792 {
7793 struct ipw2100_priv *priv = libipw_priv(dev);
7794 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7795 }
7796
7797 /* SIOCGIWENCODEEXT */
7798 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7799 struct iw_request_info *info,
7800 union iwreq_data *wrqu, char *extra)
7801 {
7802 struct ipw2100_priv *priv = libipw_priv(dev);
7803 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7804 }
7805
7806 /* SIOCSIWMLME */
7807 static int ipw2100_wx_set_mlme(struct net_device *dev,
7808 struct iw_request_info *info,
7809 union iwreq_data *wrqu, char *extra)
7810 {
7811 struct ipw2100_priv *priv = libipw_priv(dev);
7812 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7813 __le16 reason;
7814
7815 reason = cpu_to_le16(mlme->reason_code);
7816
7817 switch (mlme->cmd) {
7818 case IW_MLME_DEAUTH:
7819 // silently ignore
7820 break;
7821
7822 case IW_MLME_DISASSOC:
7823 ipw2100_disassociate_bssid(priv);
7824 break;
7825
7826 default:
7827 return -EOPNOTSUPP;
7828 }
7829 return 0;
7830 }
7831
7832 /*
7833 *
7834 * IWPRIV handlers
7835 *
7836 */
7837 #ifdef CONFIG_IPW2100_MONITOR
7838 static int ipw2100_wx_set_promisc(struct net_device *dev,
7839 struct iw_request_info *info,
7840 union iwreq_data *wrqu, char *extra)
7841 {
7842 struct ipw2100_priv *priv = libipw_priv(dev);
7843 int *parms = (int *)extra;
7844 int enable = (parms[0] > 0);
7845 int err = 0;
7846
7847 mutex_lock(&priv->action_mutex);
7848 if (!(priv->status & STATUS_INITIALIZED)) {
7849 err = -EIO;
7850 goto done;
7851 }
7852
7853 if (enable) {
7854 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7855 err = ipw2100_set_channel(priv, parms[1], 0);
7856 goto done;
7857 }
7858 priv->channel = parms[1];
7859 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7860 } else {
7861 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7862 err = ipw2100_switch_mode(priv, priv->last_mode);
7863 }
7864 done:
7865 mutex_unlock(&priv->action_mutex);
7866 return err;
7867 }
7868
7869 static int ipw2100_wx_reset(struct net_device *dev,
7870 struct iw_request_info *info,
7871 union iwreq_data *wrqu, char *extra)
7872 {
7873 struct ipw2100_priv *priv = libipw_priv(dev);
7874 if (priv->status & STATUS_INITIALIZED)
7875 schedule_reset(priv);
7876 return 0;
7877 }
7878
7879 #endif
7880
7881 static int ipw2100_wx_set_powermode(struct net_device *dev,
7882 struct iw_request_info *info,
7883 union iwreq_data *wrqu, char *extra)
7884 {
7885 struct ipw2100_priv *priv = libipw_priv(dev);
7886 int err = 0, mode = *(int *)extra;
7887
7888 mutex_lock(&priv->action_mutex);
7889 if (!(priv->status & STATUS_INITIALIZED)) {
7890 err = -EIO;
7891 goto done;
7892 }
7893
7894 if ((mode < 0) || (mode > POWER_MODES))
7895 mode = IPW_POWER_AUTO;
7896
7897 if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7898 err = ipw2100_set_power_mode(priv, mode);
7899 done:
7900 mutex_unlock(&priv->action_mutex);
7901 return err;
7902 }
7903
7904 #define MAX_POWER_STRING 80
7905 static int ipw2100_wx_get_powermode(struct net_device *dev,
7906 struct iw_request_info *info,
7907 union iwreq_data *wrqu, char *extra)
7908 {
7909 /*
7910 * This can be called at any time. No action lock required
7911 */
7912
7913 struct ipw2100_priv *priv = libipw_priv(dev);
7914 int level = IPW_POWER_LEVEL(priv->power_mode);
7915 s32 timeout, period;
7916
7917 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7918 snprintf(extra, MAX_POWER_STRING,
7919 "Power save level: %d (Off)", level);
7920 } else {
7921 switch (level) {
7922 case IPW_POWER_MODE_CAM:
7923 snprintf(extra, MAX_POWER_STRING,
7924 "Power save level: %d (None)", level);
7925 break;
7926 case IPW_POWER_AUTO:
7927 snprintf(extra, MAX_POWER_STRING,
7928 "Power save level: %d (Auto)", level);
7929 break;
7930 default:
7931 timeout = timeout_duration[level - 1] / 1000;
7932 period = period_duration[level - 1] / 1000;
7933 snprintf(extra, MAX_POWER_STRING,
7934 "Power save level: %d "
7935 "(Timeout %dms, Period %dms)",
7936 level, timeout, period);
7937 }
7938 }
7939
7940 wrqu->data.length = strlen(extra) + 1;
7941
7942 return 0;
7943 }
7944
7945 static int ipw2100_wx_set_preamble(struct net_device *dev,
7946 struct iw_request_info *info,
7947 union iwreq_data *wrqu, char *extra)
7948 {
7949 struct ipw2100_priv *priv = libipw_priv(dev);
7950 int err, mode = *(int *)extra;
7951
7952 mutex_lock(&priv->action_mutex);
7953 if (!(priv->status & STATUS_INITIALIZED)) {
7954 err = -EIO;
7955 goto done;
7956 }
7957
7958 if (mode == 1)
7959 priv->config |= CFG_LONG_PREAMBLE;
7960 else if (mode == 0)
7961 priv->config &= ~CFG_LONG_PREAMBLE;
7962 else {
7963 err = -EINVAL;
7964 goto done;
7965 }
7966
7967 err = ipw2100_system_config(priv, 0);
7968
7969 done:
7970 mutex_unlock(&priv->action_mutex);
7971 return err;
7972 }
7973
7974 static int ipw2100_wx_get_preamble(struct net_device *dev,
7975 struct iw_request_info *info,
7976 union iwreq_data *wrqu, char *extra)
7977 {
7978 /*
7979 * This can be called at any time. No action lock required
7980 */
7981
7982 struct ipw2100_priv *priv = libipw_priv(dev);
7983
7984 if (priv->config & CFG_LONG_PREAMBLE)
7985 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7986 else
7987 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7988
7989 return 0;
7990 }
7991
7992 #ifdef CONFIG_IPW2100_MONITOR
7993 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7994 struct iw_request_info *info,
7995 union iwreq_data *wrqu, char *extra)
7996 {
7997 struct ipw2100_priv *priv = libipw_priv(dev);
7998 int err, mode = *(int *)extra;
7999
8000 mutex_lock(&priv->action_mutex);
8001 if (!(priv->status & STATUS_INITIALIZED)) {
8002 err = -EIO;
8003 goto done;
8004 }
8005
8006 if (mode == 1)
8007 priv->config |= CFG_CRC_CHECK;
8008 else if (mode == 0)
8009 priv->config &= ~CFG_CRC_CHECK;
8010 else {
8011 err = -EINVAL;
8012 goto done;
8013 }
8014 err = 0;
8015
8016 done:
8017 mutex_unlock(&priv->action_mutex);
8018 return err;
8019 }
8020
8021 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8022 struct iw_request_info *info,
8023 union iwreq_data *wrqu, char *extra)
8024 {
8025 /*
8026 * This can be called at any time. No action lock required
8027 */
8028
8029 struct ipw2100_priv *priv = libipw_priv(dev);
8030
8031 if (priv->config & CFG_CRC_CHECK)
8032 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8033 else
8034 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8035
8036 return 0;
8037 }
8038 #endif /* CONFIG_IPW2100_MONITOR */
8039
8040 static iw_handler ipw2100_wx_handlers[] = {
8041 IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8042 IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8043 IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8044 IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8045 IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8046 IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8047 IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8048 IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8049 IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8050 IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8051 IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8052 IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8053 IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8054 IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8055 IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8056 IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8057 IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8058 IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8059 IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8060 IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8061 IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8062 IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8063 IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8064 IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8065 IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8066 IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8067 IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8068 IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8069 IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8070 IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8071 IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8072 IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8073 IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8074 IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8075 IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8076 };
8077
8078 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8079 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8080 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8081 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8082 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8083 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8084 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8085 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8086
8087 static const struct iw_priv_args ipw2100_private_args[] = {
8088
8089 #ifdef CONFIG_IPW2100_MONITOR
8090 {
8091 IPW2100_PRIV_SET_MONITOR,
8092 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8093 {
8094 IPW2100_PRIV_RESET,
8095 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8096 #endif /* CONFIG_IPW2100_MONITOR */
8097
8098 {
8099 IPW2100_PRIV_SET_POWER,
8100 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8101 {
8102 IPW2100_PRIV_GET_POWER,
8103 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8104 "get_power"},
8105 {
8106 IPW2100_PRIV_SET_LONGPREAMBLE,
8107 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8108 {
8109 IPW2100_PRIV_GET_LONGPREAMBLE,
8110 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8111 #ifdef CONFIG_IPW2100_MONITOR
8112 {
8113 IPW2100_PRIV_SET_CRC_CHECK,
8114 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8115 {
8116 IPW2100_PRIV_GET_CRC_CHECK,
8117 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8118 #endif /* CONFIG_IPW2100_MONITOR */
8119 };
8120
8121 static iw_handler ipw2100_private_handler[] = {
8122 #ifdef CONFIG_IPW2100_MONITOR
8123 ipw2100_wx_set_promisc,
8124 ipw2100_wx_reset,
8125 #else /* CONFIG_IPW2100_MONITOR */
8126 NULL,
8127 NULL,
8128 #endif /* CONFIG_IPW2100_MONITOR */
8129 ipw2100_wx_set_powermode,
8130 ipw2100_wx_get_powermode,
8131 ipw2100_wx_set_preamble,
8132 ipw2100_wx_get_preamble,
8133 #ifdef CONFIG_IPW2100_MONITOR
8134 ipw2100_wx_set_crc_check,
8135 ipw2100_wx_get_crc_check,
8136 #else /* CONFIG_IPW2100_MONITOR */
8137 NULL,
8138 NULL,
8139 #endif /* CONFIG_IPW2100_MONITOR */
8140 };
8141
8142 /*
8143 * Get wireless statistics.
8144 * Called by /proc/net/wireless
8145 * Also called by SIOCGIWSTATS
8146 */
8147 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8148 {
8149 enum {
8150 POOR = 30,
8151 FAIR = 60,
8152 GOOD = 80,
8153 VERY_GOOD = 90,
8154 EXCELLENT = 95,
8155 PERFECT = 100
8156 };
8157 int rssi_qual;
8158 int tx_qual;
8159 int beacon_qual;
8160 int quality;
8161
8162 struct ipw2100_priv *priv = libipw_priv(dev);
8163 struct iw_statistics *wstats;
8164 u32 rssi, tx_retries, missed_beacons, tx_failures;
8165 u32 ord_len = sizeof(u32);
8166
8167 if (!priv)
8168 return (struct iw_statistics *)NULL;
8169
8170 wstats = &priv->wstats;
8171
8172 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8173 * ipw2100_wx_wireless_stats seems to be called before fw is
8174 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8175 * and associated; if not associcated, the values are all meaningless
8176 * anyway, so set them all to NULL and INVALID */
8177 if (!(priv->status & STATUS_ASSOCIATED)) {
8178 wstats->miss.beacon = 0;
8179 wstats->discard.retries = 0;
8180 wstats->qual.qual = 0;
8181 wstats->qual.level = 0;
8182 wstats->qual.noise = 0;
8183 wstats->qual.updated = 7;
8184 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8185 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8186 return wstats;
8187 }
8188
8189 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8190 &missed_beacons, &ord_len))
8191 goto fail_get_ordinal;
8192
8193 /* If we don't have a connection the quality and level is 0 */
8194 if (!(priv->status & STATUS_ASSOCIATED)) {
8195 wstats->qual.qual = 0;
8196 wstats->qual.level = 0;
8197 } else {
8198 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8199 &rssi, &ord_len))
8200 goto fail_get_ordinal;
8201 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8202 if (rssi < 10)
8203 rssi_qual = rssi * POOR / 10;
8204 else if (rssi < 15)
8205 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8206 else if (rssi < 20)
8207 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8208 else if (rssi < 30)
8209 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8210 10 + GOOD;
8211 else
8212 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8213 10 + VERY_GOOD;
8214
8215 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8216 &tx_retries, &ord_len))
8217 goto fail_get_ordinal;
8218
8219 if (tx_retries > 75)
8220 tx_qual = (90 - tx_retries) * POOR / 15;
8221 else if (tx_retries > 70)
8222 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8223 else if (tx_retries > 65)
8224 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8225 else if (tx_retries > 50)
8226 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8227 15 + GOOD;
8228 else
8229 tx_qual = (50 - tx_retries) *
8230 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8231
8232 if (missed_beacons > 50)
8233 beacon_qual = (60 - missed_beacons) * POOR / 10;
8234 else if (missed_beacons > 40)
8235 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8236 10 + POOR;
8237 else if (missed_beacons > 32)
8238 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8239 18 + FAIR;
8240 else if (missed_beacons > 20)
8241 beacon_qual = (32 - missed_beacons) *
8242 (VERY_GOOD - GOOD) / 20 + GOOD;
8243 else
8244 beacon_qual = (20 - missed_beacons) *
8245 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8246
8247 quality = min(tx_qual, rssi_qual);
8248 quality = min(beacon_qual, quality);
8249
8250 #ifdef CONFIG_IPW2100_DEBUG
8251 if (beacon_qual == quality)
8252 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8253 else if (tx_qual == quality)
8254 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8255 else if (quality != 100)
8256 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8257 else
8258 IPW_DEBUG_WX("Quality not clamped.\n");
8259 #endif
8260
8261 wstats->qual.qual = quality;
8262 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8263 }
8264
8265 wstats->qual.noise = 0;
8266 wstats->qual.updated = 7;
8267 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8268
8269 /* FIXME: this is percent and not a # */
8270 wstats->miss.beacon = missed_beacons;
8271
8272 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8273 &tx_failures, &ord_len))
8274 goto fail_get_ordinal;
8275 wstats->discard.retries = tx_failures;
8276
8277 return wstats;
8278
8279 fail_get_ordinal:
8280 IPW_DEBUG_WX("failed querying ordinals.\n");
8281
8282 return (struct iw_statistics *)NULL;
8283 }
8284
8285 static struct iw_handler_def ipw2100_wx_handler_def = {
8286 .standard = ipw2100_wx_handlers,
8287 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8288 .num_private = ARRAY_SIZE(ipw2100_private_handler),
8289 .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8290 .private = (iw_handler *) ipw2100_private_handler,
8291 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8292 .get_wireless_stats = ipw2100_wx_wireless_stats,
8293 };
8294
8295 static void ipw2100_wx_event_work(struct work_struct *work)
8296 {
8297 struct ipw2100_priv *priv =
8298 container_of(work, struct ipw2100_priv, wx_event_work.work);
8299 union iwreq_data wrqu;
8300 unsigned int len = ETH_ALEN;
8301
8302 if (priv->status & STATUS_STOPPING)
8303 return;
8304
8305 mutex_lock(&priv->action_mutex);
8306
8307 IPW_DEBUG_WX("enter\n");
8308
8309 mutex_unlock(&priv->action_mutex);
8310
8311 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8312
8313 /* Fetch BSSID from the hardware */
8314 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8315 priv->status & STATUS_RF_KILL_MASK ||
8316 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8317 &priv->bssid, &len)) {
8318 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8319 } else {
8320 /* We now have the BSSID, so can finish setting to the full
8321 * associated state */
8322 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8323 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8324 priv->status &= ~STATUS_ASSOCIATING;
8325 priv->status |= STATUS_ASSOCIATED;
8326 netif_carrier_on(priv->net_dev);
8327 netif_wake_queue(priv->net_dev);
8328 }
8329
8330 if (!(priv->status & STATUS_ASSOCIATED)) {
8331 IPW_DEBUG_WX("Configuring ESSID\n");
8332 mutex_lock(&priv->action_mutex);
8333 /* This is a disassociation event, so kick the firmware to
8334 * look for another AP */
8335 if (priv->config & CFG_STATIC_ESSID)
8336 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8337 0);
8338 else
8339 ipw2100_set_essid(priv, NULL, 0, 0);
8340 mutex_unlock(&priv->action_mutex);
8341 }
8342
8343 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8344 }
8345
8346 #define IPW2100_FW_MAJOR_VERSION 1
8347 #define IPW2100_FW_MINOR_VERSION 3
8348
8349 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8350 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8351
8352 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8353 IPW2100_FW_MAJOR_VERSION)
8354
8355 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8356 "." __stringify(IPW2100_FW_MINOR_VERSION)
8357
8358 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8359
8360 /*
8361
8362 BINARY FIRMWARE HEADER FORMAT
8363
8364 offset length desc
8365 0 2 version
8366 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8367 4 4 fw_len
8368 8 4 uc_len
8369 C fw_len firmware data
8370 12 + fw_len uc_len microcode data
8371
8372 */
8373
8374 struct ipw2100_fw_header {
8375 short version;
8376 short mode;
8377 unsigned int fw_size;
8378 unsigned int uc_size;
8379 } __packed;
8380
8381 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8382 {
8383 struct ipw2100_fw_header *h =
8384 (struct ipw2100_fw_header *)fw->fw_entry->data;
8385
8386 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8387 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8388 "(detected version id of %u). "
8389 "See Documentation/networking/README.ipw2100\n",
8390 h->version);
8391 return 1;
8392 }
8393
8394 fw->version = h->version;
8395 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8396 fw->fw.size = h->fw_size;
8397 fw->uc.data = fw->fw.data + h->fw_size;
8398 fw->uc.size = h->uc_size;
8399
8400 return 0;
8401 }
8402
8403 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8404 struct ipw2100_fw *fw)
8405 {
8406 char *fw_name;
8407 int rc;
8408
8409 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8410 priv->net_dev->name);
8411
8412 switch (priv->ieee->iw_mode) {
8413 case IW_MODE_ADHOC:
8414 fw_name = IPW2100_FW_NAME("-i");
8415 break;
8416 #ifdef CONFIG_IPW2100_MONITOR
8417 case IW_MODE_MONITOR:
8418 fw_name = IPW2100_FW_NAME("-p");
8419 break;
8420 #endif
8421 case IW_MODE_INFRA:
8422 default:
8423 fw_name = IPW2100_FW_NAME("");
8424 break;
8425 }
8426
8427 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8428
8429 if (rc < 0) {
8430 printk(KERN_ERR DRV_NAME ": "
8431 "%s: Firmware '%s' not available or load failed.\n",
8432 priv->net_dev->name, fw_name);
8433 return rc;
8434 }
8435 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8436 fw->fw_entry->size);
8437
8438 ipw2100_mod_firmware_load(fw);
8439
8440 return 0;
8441 }
8442
8443 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8444 #ifdef CONFIG_IPW2100_MONITOR
8445 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8446 #endif
8447 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8448
8449 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8450 struct ipw2100_fw *fw)
8451 {
8452 fw->version = 0;
8453 release_firmware(fw->fw_entry);
8454 fw->fw_entry = NULL;
8455 }
8456
8457 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8458 size_t max)
8459 {
8460 char ver[MAX_FW_VERSION_LEN];
8461 u32 len = MAX_FW_VERSION_LEN;
8462 u32 tmp;
8463 int i;
8464 /* firmware version is an ascii string (max len of 14) */
8465 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8466 return -EIO;
8467 tmp = max;
8468 if (len >= max)
8469 len = max - 1;
8470 for (i = 0; i < len; i++)
8471 buf[i] = ver[i];
8472 buf[i] = '\0';
8473 return tmp;
8474 }
8475
8476 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8477 size_t max)
8478 {
8479 u32 ver;
8480 u32 len = sizeof(ver);
8481 /* microcode version is a 32 bit integer */
8482 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8483 return -EIO;
8484 return snprintf(buf, max, "%08X", ver);
8485 }
8486
8487 /*
8488 * On exit, the firmware will have been freed from the fw list
8489 */
8490 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8491 {
8492 /* firmware is constructed of N contiguous entries, each entry is
8493 * structured as:
8494 *
8495 * offset sie desc
8496 * 0 4 address to write to
8497 * 4 2 length of data run
8498 * 6 length data
8499 */
8500 unsigned int addr;
8501 unsigned short len;
8502
8503 const unsigned char *firmware_data = fw->fw.data;
8504 unsigned int firmware_data_left = fw->fw.size;
8505
8506 while (firmware_data_left > 0) {
8507 addr = *(u32 *) (firmware_data);
8508 firmware_data += 4;
8509 firmware_data_left -= 4;
8510
8511 len = *(u16 *) (firmware_data);
8512 firmware_data += 2;
8513 firmware_data_left -= 2;
8514
8515 if (len > 32) {
8516 printk(KERN_ERR DRV_NAME ": "
8517 "Invalid firmware run-length of %d bytes\n",
8518 len);
8519 return -EINVAL;
8520 }
8521
8522 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8523 firmware_data += len;
8524 firmware_data_left -= len;
8525 }
8526
8527 return 0;
8528 }
8529
8530 struct symbol_alive_response {
8531 u8 cmd_id;
8532 u8 seq_num;
8533 u8 ucode_rev;
8534 u8 eeprom_valid;
8535 u16 valid_flags;
8536 u8 IEEE_addr[6];
8537 u16 flags;
8538 u16 pcb_rev;
8539 u16 clock_settle_time; // 1us LSB
8540 u16 powerup_settle_time; // 1us LSB
8541 u16 hop_settle_time; // 1us LSB
8542 u8 date[3]; // month, day, year
8543 u8 time[2]; // hours, minutes
8544 u8 ucode_valid;
8545 };
8546
8547 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8548 struct ipw2100_fw *fw)
8549 {
8550 struct net_device *dev = priv->net_dev;
8551 const unsigned char *microcode_data = fw->uc.data;
8552 unsigned int microcode_data_left = fw->uc.size;
8553 void __iomem *reg = priv->ioaddr;
8554
8555 struct symbol_alive_response response;
8556 int i, j;
8557 u8 data;
8558
8559 /* Symbol control */
8560 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8561 readl(reg);
8562 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8563 readl(reg);
8564
8565 /* HW config */
8566 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8567 readl(reg);
8568 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8569 readl(reg);
8570
8571 /* EN_CS_ACCESS bit to reset control store pointer */
8572 write_nic_byte(dev, 0x210000, 0x40);
8573 readl(reg);
8574 write_nic_byte(dev, 0x210000, 0x0);
8575 readl(reg);
8576 write_nic_byte(dev, 0x210000, 0x40);
8577 readl(reg);
8578
8579 /* copy microcode from buffer into Symbol */
8580
8581 while (microcode_data_left > 0) {
8582 write_nic_byte(dev, 0x210010, *microcode_data++);
8583 write_nic_byte(dev, 0x210010, *microcode_data++);
8584 microcode_data_left -= 2;
8585 }
8586
8587 /* EN_CS_ACCESS bit to reset the control store pointer */
8588 write_nic_byte(dev, 0x210000, 0x0);
8589 readl(reg);
8590
8591 /* Enable System (Reg 0)
8592 * first enable causes garbage in RX FIFO */
8593 write_nic_byte(dev, 0x210000, 0x0);
8594 readl(reg);
8595 write_nic_byte(dev, 0x210000, 0x80);
8596 readl(reg);
8597
8598 /* Reset External Baseband Reg */
8599 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8600 readl(reg);
8601 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8602 readl(reg);
8603
8604 /* HW Config (Reg 5) */
8605 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8606 readl(reg);
8607 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8608 readl(reg);
8609
8610 /* Enable System (Reg 0)
8611 * second enable should be OK */
8612 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8613 readl(reg);
8614 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8615
8616 /* check Symbol is enabled - upped this from 5 as it wasn't always
8617 * catching the update */
8618 for (i = 0; i < 10; i++) {
8619 udelay(10);
8620
8621 /* check Dino is enabled bit */
8622 read_nic_byte(dev, 0x210000, &data);
8623 if (data & 0x1)
8624 break;
8625 }
8626
8627 if (i == 10) {
8628 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8629 dev->name);
8630 return -EIO;
8631 }
8632
8633 /* Get Symbol alive response */
8634 for (i = 0; i < 30; i++) {
8635 /* Read alive response structure */
8636 for (j = 0;
8637 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8638 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8639
8640 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8641 break;
8642 udelay(10);
8643 }
8644
8645 if (i == 30) {
8646 printk(KERN_ERR DRV_NAME
8647 ": %s: No response from Symbol - hw not alive\n",
8648 dev->name);
8649 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8650 return -EIO;
8651 }
8652
8653 return 0;
8654 }
This page took 0.229587 seconds and 5 git commands to generate.