workqueue: use mod_delayed_work() instead of cancel + queue
[deliverable/linux.git] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 Intel Linux Wireless <ilw@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
28
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <j@w1.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
43
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
106
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
110
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
114
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
118
119 The flow of data on the TX side is as follows:
120
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124 The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169 #include "ipw.h"
170
171 #define IPW2100_VERSION "git-1.2.2"
172
173 #define DRV_NAME "ipw2100"
174 #define DRV_VERSION IPW2100_VERSION
175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
177
178 static struct pm_qos_request ipw2100_pm_qos_req;
179
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG /* Reception debugging */
183 #endif
184
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217 if (ipw2100_debug_level & (level)) { \
218 printk(KERN_DEBUG "ipw2100: %c %s ", \
219 in_interrupt() ? 'I' : 'U', __func__); \
220 printk(message); \
221 } \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif /* CONFIG_IPW2100_DEBUG */
226
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229 "undefined",
230 "unused", /* HOST_ATTENTION */
231 "HOST_COMPLETE",
232 "unused", /* SLEEP */
233 "unused", /* HOST_POWER_DOWN */
234 "unused",
235 "SYSTEM_CONFIG",
236 "unused", /* SET_IMR */
237 "SSID",
238 "MANDATORY_BSSID",
239 "AUTHENTICATION_TYPE",
240 "ADAPTER_ADDRESS",
241 "PORT_TYPE",
242 "INTERNATIONAL_MODE",
243 "CHANNEL",
244 "RTS_THRESHOLD",
245 "FRAG_THRESHOLD",
246 "POWER_MODE",
247 "TX_RATES",
248 "BASIC_TX_RATES",
249 "WEP_KEY_INFO",
250 "unused",
251 "unused",
252 "unused",
253 "unused",
254 "WEP_KEY_INDEX",
255 "WEP_FLAGS",
256 "ADD_MULTICAST",
257 "CLEAR_ALL_MULTICAST",
258 "BEACON_INTERVAL",
259 "ATIM_WINDOW",
260 "CLEAR_STATISTICS",
261 "undefined",
262 "undefined",
263 "undefined",
264 "undefined",
265 "TX_POWER_INDEX",
266 "undefined",
267 "undefined",
268 "undefined",
269 "undefined",
270 "undefined",
271 "undefined",
272 "BROADCAST_SCAN",
273 "CARD_DISABLE",
274 "PREFERRED_BSSID",
275 "SET_SCAN_OPTIONS",
276 "SCAN_DWELL_TIME",
277 "SWEEP_TABLE",
278 "AP_OR_STATION_TABLE",
279 "GROUP_ORDINALS",
280 "SHORT_RETRY_LIMIT",
281 "LONG_RETRY_LIMIT",
282 "unused", /* SAVE_CALIBRATION */
283 "unused", /* RESTORE_CALIBRATION */
284 "undefined",
285 "undefined",
286 "undefined",
287 "HOST_PRE_POWER_DOWN",
288 "unused", /* HOST_INTERRUPT_COALESCING */
289 "undefined",
290 "CARD_DISABLE_PHY_OFF",
291 "MSDU_TX_RATES",
292 "undefined",
293 "SET_STATION_STAT_BITS",
294 "CLEAR_STATIONS_STAT_BITS",
295 "LEAP_ROGUE_MODE",
296 "SET_SECURITY_INFORMATION",
297 "DISASSOCIATION_BSSID",
298 "SET_WPA_ASS_IE"
299 };
300 #endif
301
302 static const long ipw2100_frequencies[] = {
303 2412, 2417, 2422, 2427,
304 2432, 2437, 2442, 2447,
305 2452, 2457, 2462, 2467,
306 2472, 2484
307 };
308
309 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies)
310
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312 { .bitrate = 10 },
313 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330 struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332 struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334 size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336 size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338 struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340 struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static struct iw_handler_def ipw2100_wx_handler_def;
344
345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347 struct ipw2100_priv *priv = libipw_priv(dev);
348
349 *val = ioread32(priv->ioaddr + reg);
350 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352
353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355 struct ipw2100_priv *priv = libipw_priv(dev);
356
357 iowrite32(val, priv->ioaddr + reg);
358 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360
361 static inline void read_register_word(struct net_device *dev, u32 reg,
362 u16 * val)
363 {
364 struct ipw2100_priv *priv = libipw_priv(dev);
365
366 *val = ioread16(priv->ioaddr + reg);
367 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369
370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372 struct ipw2100_priv *priv = libipw_priv(dev);
373
374 *val = ioread8(priv->ioaddr + reg);
375 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380 struct ipw2100_priv *priv = libipw_priv(dev);
381
382 iowrite16(val, priv->ioaddr + reg);
383 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385
386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388 struct ipw2100_priv *priv = libipw_priv(dev);
389
390 iowrite8(val, priv->ioaddr + reg);
391 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393
394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397 addr & IPW_REG_INDIRECT_ADDR_MASK);
398 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400
401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404 addr & IPW_REG_INDIRECT_ADDR_MASK);
405 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407
408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411 addr & IPW_REG_INDIRECT_ADDR_MASK);
412 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414
415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418 addr & IPW_REG_INDIRECT_ADDR_MASK);
419 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421
422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425 addr & IPW_REG_INDIRECT_ADDR_MASK);
426 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428
429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432 addr & IPW_REG_INDIRECT_ADDR_MASK);
433 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435
436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439 addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441
442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446
447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448 const u8 * buf)
449 {
450 u32 aligned_addr;
451 u32 aligned_len;
452 u32 dif_len;
453 u32 i;
454
455 /* read first nibble byte by byte */
456 aligned_addr = addr & (~0x3);
457 dif_len = addr - aligned_addr;
458 if (dif_len) {
459 /* Start reading at aligned_addr + dif_len */
460 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461 aligned_addr);
462 for (i = dif_len; i < 4; i++, buf++)
463 write_register_byte(dev,
464 IPW_REG_INDIRECT_ACCESS_DATA + i,
465 *buf);
466
467 len -= dif_len;
468 aligned_addr += 4;
469 }
470
471 /* read DWs through autoincrement registers */
472 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473 aligned_len = len & (~0x3);
474 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476
477 /* copy the last nibble */
478 dif_len = len - aligned_len;
479 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480 for (i = 0; i < dif_len; i++, buf++)
481 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482 *buf);
483 }
484
485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486 u8 * buf)
487 {
488 u32 aligned_addr;
489 u32 aligned_len;
490 u32 dif_len;
491 u32 i;
492
493 /* read first nibble byte by byte */
494 aligned_addr = addr & (~0x3);
495 dif_len = addr - aligned_addr;
496 if (dif_len) {
497 /* Start reading at aligned_addr + dif_len */
498 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499 aligned_addr);
500 for (i = dif_len; i < 4; i++, buf++)
501 read_register_byte(dev,
502 IPW_REG_INDIRECT_ACCESS_DATA + i,
503 buf);
504
505 len -= dif_len;
506 aligned_addr += 4;
507 }
508
509 /* read DWs through autoincrement registers */
510 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511 aligned_len = len & (~0x3);
512 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514
515 /* copy the last nibble */
516 dif_len = len - aligned_len;
517 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518 for (i = 0; i < dif_len; i++, buf++)
519 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521
522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524 u32 dbg;
525
526 read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527
528 return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530
531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532 void *val, u32 * len)
533 {
534 struct ipw2100_ordinals *ordinals = &priv->ordinals;
535 u32 addr;
536 u32 field_info;
537 u16 field_len;
538 u16 field_count;
539 u32 total_length;
540
541 if (ordinals->table1_addr == 0) {
542 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543 "before they have been loaded.\n");
544 return -EINVAL;
545 }
546
547 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
550
551 printk(KERN_WARNING DRV_NAME
552 ": ordinal buffer length too small, need %zd\n",
553 IPW_ORD_TAB_1_ENTRY_SIZE);
554
555 return -EINVAL;
556 }
557
558 read_nic_dword(priv->net_dev,
559 ordinals->table1_addr + (ord << 2), &addr);
560 read_nic_dword(priv->net_dev, addr, val);
561
562 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
563
564 return 0;
565 }
566
567 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568
569 ord -= IPW_START_ORD_TAB_2;
570
571 /* get the address of statistic */
572 read_nic_dword(priv->net_dev,
573 ordinals->table2_addr + (ord << 3), &addr);
574
575 /* get the second DW of statistics ;
576 * two 16-bit words - first is length, second is count */
577 read_nic_dword(priv->net_dev,
578 ordinals->table2_addr + (ord << 3) + sizeof(u32),
579 &field_info);
580
581 /* get each entry length */
582 field_len = *((u16 *) & field_info);
583
584 /* get number of entries */
585 field_count = *(((u16 *) & field_info) + 1);
586
587 /* abort if no enough memory */
588 total_length = field_len * field_count;
589 if (total_length > *len) {
590 *len = total_length;
591 return -EINVAL;
592 }
593
594 *len = total_length;
595 if (!total_length)
596 return 0;
597
598 /* read the ordinal data from the SRAM */
599 read_nic_memory(priv->net_dev, addr, total_length, val);
600
601 return 0;
602 }
603
604 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605 "in table 2\n", ord);
606
607 return -EINVAL;
608 }
609
610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611 u32 * len)
612 {
613 struct ipw2100_ordinals *ordinals = &priv->ordinals;
614 u32 addr;
615
616 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
619 IPW_DEBUG_INFO("wrong size\n");
620 return -EINVAL;
621 }
622
623 read_nic_dword(priv->net_dev,
624 ordinals->table1_addr + (ord << 2), &addr);
625
626 write_nic_dword(priv->net_dev, addr, *val);
627
628 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
629
630 return 0;
631 }
632
633 IPW_DEBUG_INFO("wrong table\n");
634 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635 return -EINVAL;
636
637 return -EINVAL;
638 }
639
640 static char *snprint_line(char *buf, size_t count,
641 const u8 * data, u32 len, u32 ofs)
642 {
643 int out, i, j, l;
644 char c;
645
646 out = snprintf(buf, count, "%08X", ofs);
647
648 for (l = 0, i = 0; i < 2; i++) {
649 out += snprintf(buf + out, count - out, " ");
650 for (j = 0; j < 8 && l < len; j++, l++)
651 out += snprintf(buf + out, count - out, "%02X ",
652 data[(i * 8 + j)]);
653 for (; j < 8; j++)
654 out += snprintf(buf + out, count - out, " ");
655 }
656
657 out += snprintf(buf + out, count - out, " ");
658 for (l = 0, i = 0; i < 2; i++) {
659 out += snprintf(buf + out, count - out, " ");
660 for (j = 0; j < 8 && l < len; j++, l++) {
661 c = data[(i * 8 + j)];
662 if (!isascii(c) || !isprint(c))
663 c = '.';
664
665 out += snprintf(buf + out, count - out, "%c", c);
666 }
667
668 for (; j < 8; j++)
669 out += snprintf(buf + out, count - out, " ");
670 }
671
672 return buf;
673 }
674
675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677 char line[81];
678 u32 ofs = 0;
679 if (!(ipw2100_debug_level & level))
680 return;
681
682 while (len) {
683 printk(KERN_DEBUG "%s\n",
684 snprint_line(line, sizeof(line), &data[ofs],
685 min(len, 16U), ofs));
686 ofs += 16;
687 len -= min(len, 16U);
688 }
689 }
690
691 #define MAX_RESET_BACKOFF 10
692
693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695 unsigned long now = get_seconds();
696
697 /* If we haven't received a reset request within the backoff period,
698 * then we can reset the backoff interval so this reset occurs
699 * immediately */
700 if (priv->reset_backoff &&
701 (now - priv->last_reset > priv->reset_backoff))
702 priv->reset_backoff = 0;
703
704 priv->last_reset = get_seconds();
705
706 if (!(priv->status & STATUS_RESET_PENDING)) {
707 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
708 priv->net_dev->name, priv->reset_backoff);
709 netif_carrier_off(priv->net_dev);
710 netif_stop_queue(priv->net_dev);
711 priv->status |= STATUS_RESET_PENDING;
712 if (priv->reset_backoff)
713 schedule_delayed_work(&priv->reset_work,
714 priv->reset_backoff * HZ);
715 else
716 schedule_delayed_work(&priv->reset_work, 0);
717
718 if (priv->reset_backoff < MAX_RESET_BACKOFF)
719 priv->reset_backoff++;
720
721 wake_up_interruptible(&priv->wait_command_queue);
722 } else
723 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724 priv->net_dev->name);
725
726 }
727
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730 struct host_command *cmd)
731 {
732 struct list_head *element;
733 struct ipw2100_tx_packet *packet;
734 unsigned long flags;
735 int err = 0;
736
737 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738 command_types[cmd->host_command], cmd->host_command,
739 cmd->host_command_length);
740 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741 cmd->host_command_length);
742
743 spin_lock_irqsave(&priv->low_lock, flags);
744
745 if (priv->fatal_error) {
746 IPW_DEBUG_INFO
747 ("Attempt to send command while hardware in fatal error condition.\n");
748 err = -EIO;
749 goto fail_unlock;
750 }
751
752 if (!(priv->status & STATUS_RUNNING)) {
753 IPW_DEBUG_INFO
754 ("Attempt to send command while hardware is not running.\n");
755 err = -EIO;
756 goto fail_unlock;
757 }
758
759 if (priv->status & STATUS_CMD_ACTIVE) {
760 IPW_DEBUG_INFO
761 ("Attempt to send command while another command is pending.\n");
762 err = -EBUSY;
763 goto fail_unlock;
764 }
765
766 if (list_empty(&priv->msg_free_list)) {
767 IPW_DEBUG_INFO("no available msg buffers\n");
768 goto fail_unlock;
769 }
770
771 priv->status |= STATUS_CMD_ACTIVE;
772 priv->messages_sent++;
773
774 element = priv->msg_free_list.next;
775
776 packet = list_entry(element, struct ipw2100_tx_packet, list);
777 packet->jiffy_start = jiffies;
778
779 /* initialize the firmware command packet */
780 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782 packet->info.c_struct.cmd->host_command_len_reg =
783 cmd->host_command_length;
784 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785
786 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787 cmd->host_command_parameters,
788 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789
790 list_del(element);
791 DEC_STAT(&priv->msg_free_stat);
792
793 list_add_tail(element, &priv->msg_pend_list);
794 INC_STAT(&priv->msg_pend_stat);
795
796 ipw2100_tx_send_commands(priv);
797 ipw2100_tx_send_data(priv);
798
799 spin_unlock_irqrestore(&priv->low_lock, flags);
800
801 /*
802 * We must wait for this command to complete before another
803 * command can be sent... but if we wait more than 3 seconds
804 * then there is a problem.
805 */
806
807 err =
808 wait_event_interruptible_timeout(priv->wait_command_queue,
809 !(priv->
810 status & STATUS_CMD_ACTIVE),
811 HOST_COMPLETE_TIMEOUT);
812
813 if (err == 0) {
814 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817 priv->status &= ~STATUS_CMD_ACTIVE;
818 schedule_reset(priv);
819 return -EIO;
820 }
821
822 if (priv->fatal_error) {
823 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824 priv->net_dev->name);
825 return -EIO;
826 }
827
828 /* !!!!! HACK TEST !!!!!
829 * When lots of debug trace statements are enabled, the driver
830 * doesn't seem to have as many firmware restart cycles...
831 *
832 * As a test, we're sticking in a 1/100s delay here */
833 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834
835 return 0;
836
837 fail_unlock:
838 spin_unlock_irqrestore(&priv->low_lock, flags);
839
840 return err;
841 }
842
843 /*
844 * Verify the values and data access of the hardware
845 * No locks needed or used. No functions called.
846 */
847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849 u32 data1, data2;
850 u32 address;
851
852 u32 val1 = 0x76543210;
853 u32 val2 = 0xFEDCBA98;
854
855 /* Domain 0 check - all values should be DOA_DEBUG */
856 for (address = IPW_REG_DOA_DEBUG_AREA_START;
857 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858 read_register(priv->net_dev, address, &data1);
859 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860 return -EIO;
861 }
862
863 /* Domain 1 check - use arbitrary read/write compare */
864 for (address = 0; address < 5; address++) {
865 /* The memory area is not used now */
866 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867 val1);
868 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869 val2);
870 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871 &data1);
872 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873 &data2);
874 if (val1 == data1 && val2 == data2)
875 return 0;
876 }
877
878 return -EIO;
879 }
880
881 /*
882 *
883 * Loop until the CARD_DISABLED bit is the same value as the
884 * supplied parameter
885 *
886 * TODO: See if it would be more efficient to do a wait/wake
887 * cycle and have the completion event trigger the wakeup
888 *
889 */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893 int i;
894 u32 card_state;
895 u32 len = sizeof(card_state);
896 int err;
897
898 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900 &card_state, &len);
901 if (err) {
902 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903 "failed.\n");
904 return 0;
905 }
906
907 /* We'll break out if either the HW state says it is
908 * in the state we want, or if HOST_COMPLETE command
909 * finishes */
910 if ((card_state == state) ||
911 ((priv->status & STATUS_ENABLED) ?
912 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913 if (state == IPW_HW_STATE_ENABLED)
914 priv->status |= STATUS_ENABLED;
915 else
916 priv->status &= ~STATUS_ENABLED;
917
918 return 0;
919 }
920
921 udelay(50);
922 }
923
924 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925 state ? "DISABLED" : "ENABLED");
926 return -EIO;
927 }
928
929 /*********************************************************************
930 Procedure : sw_reset_and_clock
931 Purpose : Asserts s/w reset, asserts clock initialization
932 and waits for clock stabilization
933 ********************************************************************/
934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936 int i;
937 u32 r;
938
939 // assert s/w reset
940 write_register(priv->net_dev, IPW_REG_RESET_REG,
941 IPW_AUX_HOST_RESET_REG_SW_RESET);
942
943 // wait for clock stabilization
944 for (i = 0; i < 1000; i++) {
945 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946
947 // check clock ready bit
948 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950 break;
951 }
952
953 if (i == 1000)
954 return -EIO; // TODO: better error value
955
956 /* set "initialization complete" bit to move adapter to
957 * D0 state */
958 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960
961 /* wait for clock stabilization */
962 for (i = 0; i < 10000; i++) {
963 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964
965 /* check clock ready bit */
966 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968 break;
969 }
970
971 if (i == 10000)
972 return -EIO; /* TODO: better error value */
973
974 /* set D0 standby bit */
975 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978
979 return 0;
980 }
981
982 /*********************************************************************
983 Procedure : ipw2100_download_firmware
984 Purpose : Initiaze adapter after power on.
985 The sequence is:
986 1. assert s/w reset first!
987 2. awake clocks & wait for clock stabilization
988 3. hold ARC (don't ask me why...)
989 4. load Dino ucode and reset/clock init again
990 5. zero-out shared mem
991 6. download f/w
992 *******************************************************************/
993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995 u32 address;
996 int err;
997
998 #ifndef CONFIG_PM
999 /* Fetch the firmware and microcode */
1000 struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002
1003 if (priv->fatal_error) {
1004 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005 "fatal error %d. Interface must be brought down.\n",
1006 priv->net_dev->name, priv->fatal_error);
1007 return -EINVAL;
1008 }
1009 #ifdef CONFIG_PM
1010 if (!ipw2100_firmware.version) {
1011 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012 if (err) {
1013 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014 priv->net_dev->name, err);
1015 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016 goto fail;
1017 }
1018 }
1019 #else
1020 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021 if (err) {
1022 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023 priv->net_dev->name, err);
1024 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025 goto fail;
1026 }
1027 #endif
1028 priv->firmware_version = ipw2100_firmware.version;
1029
1030 /* s/w reset and clock stabilization */
1031 err = sw_reset_and_clock(priv);
1032 if (err) {
1033 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034 priv->net_dev->name, err);
1035 goto fail;
1036 }
1037
1038 err = ipw2100_verify(priv);
1039 if (err) {
1040 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041 priv->net_dev->name, err);
1042 goto fail;
1043 }
1044
1045 /* Hold ARC */
1046 write_nic_dword(priv->net_dev,
1047 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048
1049 /* allow ARC to run */
1050 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051
1052 /* load microcode */
1053 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054 if (err) {
1055 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056 priv->net_dev->name, err);
1057 goto fail;
1058 }
1059
1060 /* release ARC */
1061 write_nic_dword(priv->net_dev,
1062 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063
1064 /* s/w reset and clock stabilization (again!!!) */
1065 err = sw_reset_and_clock(priv);
1066 if (err) {
1067 printk(KERN_ERR DRV_NAME
1068 ": %s: sw_reset_and_clock failed: %d\n",
1069 priv->net_dev->name, err);
1070 goto fail;
1071 }
1072
1073 /* load f/w */
1074 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075 if (err) {
1076 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077 priv->net_dev->name, err);
1078 goto fail;
1079 }
1080 #ifndef CONFIG_PM
1081 /*
1082 * When the .resume method of the driver is called, the other
1083 * part of the system, i.e. the ide driver could still stay in
1084 * the suspend stage. This prevents us from loading the firmware
1085 * from the disk. --YZ
1086 */
1087
1088 /* free any storage allocated for firmware image */
1089 ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091
1092 /* zero out Domain 1 area indirectly (Si requirement) */
1093 for (address = IPW_HOST_FW_SHARED_AREA0;
1094 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095 write_nic_dword(priv->net_dev, address, 0);
1096 for (address = IPW_HOST_FW_SHARED_AREA1;
1097 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098 write_nic_dword(priv->net_dev, address, 0);
1099 for (address = IPW_HOST_FW_SHARED_AREA2;
1100 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101 write_nic_dword(priv->net_dev, address, 0);
1102 for (address = IPW_HOST_FW_SHARED_AREA3;
1103 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104 write_nic_dword(priv->net_dev, address, 0);
1105 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107 write_nic_dword(priv->net_dev, address, 0);
1108
1109 return 0;
1110
1111 fail:
1112 ipw2100_release_firmware(priv, &ipw2100_firmware);
1113 return err;
1114 }
1115
1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118 if (priv->status & STATUS_INT_ENABLED)
1119 return;
1120 priv->status |= STATUS_INT_ENABLED;
1121 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123
1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126 if (!(priv->status & STATUS_INT_ENABLED))
1127 return;
1128 priv->status &= ~STATUS_INT_ENABLED;
1129 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131
1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134 struct ipw2100_ordinals *ord = &priv->ordinals;
1135
1136 IPW_DEBUG_INFO("enter\n");
1137
1138 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139 &ord->table1_addr);
1140
1141 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142 &ord->table2_addr);
1143
1144 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146
1147 ord->table2_size &= 0x0000FFFF;
1148
1149 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151 IPW_DEBUG_INFO("exit\n");
1152 }
1153
1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156 u32 reg = 0;
1157 /*
1158 * Set GPIO 3 writable by FW; GPIO 1 writable
1159 * by driver and enable clock
1160 */
1161 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162 IPW_BIT_GPIO_LED_OFF);
1163 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165
1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170
1171 unsigned short value = 0;
1172 u32 reg = 0;
1173 int i;
1174
1175 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177 priv->status &= ~STATUS_RF_KILL_HW;
1178 return 0;
1179 }
1180
1181 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182 udelay(RF_KILL_CHECK_DELAY);
1183 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185 }
1186
1187 if (value == 0) {
1188 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189 priv->status |= STATUS_RF_KILL_HW;
1190 } else {
1191 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192 priv->status &= ~STATUS_RF_KILL_HW;
1193 }
1194
1195 return (value == 0);
1196 }
1197
1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200 u32 addr, len;
1201 u32 val;
1202
1203 /*
1204 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205 */
1206 len = sizeof(addr);
1207 if (ipw2100_get_ordinal
1208 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210 __LINE__);
1211 return -EIO;
1212 }
1213
1214 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215
1216 /*
1217 * EEPROM version is the byte at offset 0xfd in firmware
1218 * We read 4 bytes, then shift out the byte we actually want */
1219 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220 priv->eeprom_version = (val >> 24) & 0xFF;
1221 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222
1223 /*
1224 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225 *
1226 * notice that the EEPROM bit is reverse polarity, i.e.
1227 * bit = 0 signifies HW RF kill switch is supported
1228 * bit = 1 signifies HW RF kill switch is NOT supported
1229 */
1230 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231 if (!((val >> 24) & 0x01))
1232 priv->hw_features |= HW_FEATURE_RFKILL;
1233
1234 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236
1237 return 0;
1238 }
1239
1240 /*
1241 * Start firmware execution after power on and intialization
1242 * The sequence is:
1243 * 1. Release ARC
1244 * 2. Wait for f/w initialization completes;
1245 */
1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248 int i;
1249 u32 inta, inta_mask, gpio;
1250
1251 IPW_DEBUG_INFO("enter\n");
1252
1253 if (priv->status & STATUS_RUNNING)
1254 return 0;
1255
1256 /*
1257 * Initialize the hw - drive adapter to DO state by setting
1258 * init_done bit. Wait for clk_ready bit and Download
1259 * fw & dino ucode
1260 */
1261 if (ipw2100_download_firmware(priv)) {
1262 printk(KERN_ERR DRV_NAME
1263 ": %s: Failed to power on the adapter.\n",
1264 priv->net_dev->name);
1265 return -EIO;
1266 }
1267
1268 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1269 * in the firmware RBD and TBD ring queue */
1270 ipw2100_queues_initialize(priv);
1271
1272 ipw2100_hw_set_gpio(priv);
1273
1274 /* TODO -- Look at disabling interrupts here to make sure none
1275 * get fired during FW initialization */
1276
1277 /* Release ARC - clear reset bit */
1278 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279
1280 /* wait for f/w intialization complete */
1281 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282 i = 5000;
1283 do {
1284 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285 /* Todo... wait for sync command ... */
1286
1287 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288
1289 /* check "init done" bit */
1290 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291 /* reset "init done" bit */
1292 write_register(priv->net_dev, IPW_REG_INTA,
1293 IPW2100_INTA_FW_INIT_DONE);
1294 break;
1295 }
1296
1297 /* check error conditions : we check these after the firmware
1298 * check so that if there is an error, the interrupt handler
1299 * will see it and the adapter will be reset */
1300 if (inta &
1301 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302 /* clear error conditions */
1303 write_register(priv->net_dev, IPW_REG_INTA,
1304 IPW2100_INTA_FATAL_ERROR |
1305 IPW2100_INTA_PARITY_ERROR);
1306 }
1307 } while (--i);
1308
1309 /* Clear out any pending INTAs since we aren't supposed to have
1310 * interrupts enabled at this point... */
1311 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313 inta &= IPW_INTERRUPT_MASK;
1314 /* Clear out any pending interrupts */
1315 if (inta & inta_mask)
1316 write_register(priv->net_dev, IPW_REG_INTA, inta);
1317
1318 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319 i ? "SUCCESS" : "FAILED");
1320
1321 if (!i) {
1322 printk(KERN_WARNING DRV_NAME
1323 ": %s: Firmware did not initialize.\n",
1324 priv->net_dev->name);
1325 return -EIO;
1326 }
1327
1328 /* allow firmware to write to GPIO1 & GPIO3 */
1329 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330
1331 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332
1333 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334
1335 /* Ready to receive commands */
1336 priv->status |= STATUS_RUNNING;
1337
1338 /* The adapter has been reset; we are not associated */
1339 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340
1341 IPW_DEBUG_INFO("exit\n");
1342
1343 return 0;
1344 }
1345
1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348 if (!priv->fatal_error)
1349 return;
1350
1351 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353 priv->fatal_error = 0;
1354 }
1355
1356 /* NOTE: Our interrupt is disabled when this method is called */
1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359 u32 reg;
1360 int i;
1361
1362 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363
1364 ipw2100_hw_set_gpio(priv);
1365
1366 /* Step 1. Stop Master Assert */
1367 write_register(priv->net_dev, IPW_REG_RESET_REG,
1368 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369
1370 /* Step 2. Wait for stop Master Assert
1371 * (not more than 50us, otherwise ret error */
1372 i = 5;
1373 do {
1374 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1376
1377 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378 break;
1379 } while (--i);
1380
1381 priv->status &= ~STATUS_RESET_PENDING;
1382
1383 if (!i) {
1384 IPW_DEBUG_INFO
1385 ("exit - waited too long for master assert stop\n");
1386 return -EIO;
1387 }
1388
1389 write_register(priv->net_dev, IPW_REG_RESET_REG,
1390 IPW_AUX_HOST_RESET_REG_SW_RESET);
1391
1392 /* Reset any fatal_error conditions */
1393 ipw2100_reset_fatalerror(priv);
1394
1395 /* At this point, the adapter is now stopped and disabled */
1396 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397 STATUS_ASSOCIATED | STATUS_ENABLED);
1398
1399 return 0;
1400 }
1401
1402 /*
1403 * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404 *
1405 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406 *
1407 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408 * if STATUS_ASSN_LOST is sent.
1409 */
1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412
1413 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1414
1415 struct host_command cmd = {
1416 .host_command = CARD_DISABLE_PHY_OFF,
1417 .host_command_sequence = 0,
1418 .host_command_length = 0,
1419 };
1420 int err, i;
1421 u32 val1, val2;
1422
1423 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424
1425 /* Turn off the radio */
1426 err = ipw2100_hw_send_command(priv, &cmd);
1427 if (err)
1428 return err;
1429
1430 for (i = 0; i < 2500; i++) {
1431 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433
1434 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435 (val2 & IPW2100_COMMAND_PHY_OFF))
1436 return 0;
1437
1438 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439 }
1440
1441 return -EIO;
1442 }
1443
1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446 struct host_command cmd = {
1447 .host_command = HOST_COMPLETE,
1448 .host_command_sequence = 0,
1449 .host_command_length = 0
1450 };
1451 int err = 0;
1452
1453 IPW_DEBUG_HC("HOST_COMPLETE\n");
1454
1455 if (priv->status & STATUS_ENABLED)
1456 return 0;
1457
1458 mutex_lock(&priv->adapter_mutex);
1459
1460 if (rf_kill_active(priv)) {
1461 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462 goto fail_up;
1463 }
1464
1465 err = ipw2100_hw_send_command(priv, &cmd);
1466 if (err) {
1467 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468 goto fail_up;
1469 }
1470
1471 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472 if (err) {
1473 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474 priv->net_dev->name);
1475 goto fail_up;
1476 }
1477
1478 if (priv->stop_hang_check) {
1479 priv->stop_hang_check = 0;
1480 schedule_delayed_work(&priv->hang_check, HZ / 2);
1481 }
1482
1483 fail_up:
1484 mutex_unlock(&priv->adapter_mutex);
1485 return err;
1486 }
1487
1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491
1492 struct host_command cmd = {
1493 .host_command = HOST_PRE_POWER_DOWN,
1494 .host_command_sequence = 0,
1495 .host_command_length = 0,
1496 };
1497 int err, i;
1498 u32 reg;
1499
1500 if (!(priv->status & STATUS_RUNNING))
1501 return 0;
1502
1503 priv->status |= STATUS_STOPPING;
1504
1505 /* We can only shut down the card if the firmware is operational. So,
1506 * if we haven't reset since a fatal_error, then we can not send the
1507 * shutdown commands. */
1508 if (!priv->fatal_error) {
1509 /* First, make sure the adapter is enabled so that the PHY_OFF
1510 * command can shut it down */
1511 ipw2100_enable_adapter(priv);
1512
1513 err = ipw2100_hw_phy_off(priv);
1514 if (err)
1515 printk(KERN_WARNING DRV_NAME
1516 ": Error disabling radio %d\n", err);
1517
1518 /*
1519 * If in D0-standby mode going directly to D3 may cause a
1520 * PCI bus violation. Therefore we must change out of the D0
1521 * state.
1522 *
1523 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524 * hardware from going into standby mode and will transition
1525 * out of D0-standby if it is already in that state.
1526 *
1527 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528 * driver upon completion. Once received, the driver can
1529 * proceed to the D3 state.
1530 *
1531 * Prepare for power down command to fw. This command would
1532 * take HW out of D0-standby and prepare it for D3 state.
1533 *
1534 * Currently FW does not support event notification for this
1535 * event. Therefore, skip waiting for it. Just wait a fixed
1536 * 100ms
1537 */
1538 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539
1540 err = ipw2100_hw_send_command(priv, &cmd);
1541 if (err)
1542 printk(KERN_WARNING DRV_NAME ": "
1543 "%s: Power down command failed: Error %d\n",
1544 priv->net_dev->name, err);
1545 else
1546 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547 }
1548
1549 priv->status &= ~STATUS_ENABLED;
1550
1551 /*
1552 * Set GPIO 3 writable by FW; GPIO 1 writable
1553 * by driver and enable clock
1554 */
1555 ipw2100_hw_set_gpio(priv);
1556
1557 /*
1558 * Power down adapter. Sequence:
1559 * 1. Stop master assert (RESET_REG[9]=1)
1560 * 2. Wait for stop master (RESET_REG[8]==1)
1561 * 3. S/w reset assert (RESET_REG[7] = 1)
1562 */
1563
1564 /* Stop master assert */
1565 write_register(priv->net_dev, IPW_REG_RESET_REG,
1566 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567
1568 /* wait stop master not more than 50 usec.
1569 * Otherwise return error. */
1570 for (i = 5; i > 0; i--) {
1571 udelay(10);
1572
1573 /* Check master stop bit */
1574 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1575
1576 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577 break;
1578 }
1579
1580 if (i == 0)
1581 printk(KERN_WARNING DRV_NAME
1582 ": %s: Could now power down adapter.\n",
1583 priv->net_dev->name);
1584
1585 /* assert s/w reset */
1586 write_register(priv->net_dev, IPW_REG_RESET_REG,
1587 IPW_AUX_HOST_RESET_REG_SW_RESET);
1588
1589 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590
1591 return 0;
1592 }
1593
1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596 struct host_command cmd = {
1597 .host_command = CARD_DISABLE,
1598 .host_command_sequence = 0,
1599 .host_command_length = 0
1600 };
1601 int err = 0;
1602
1603 IPW_DEBUG_HC("CARD_DISABLE\n");
1604
1605 if (!(priv->status & STATUS_ENABLED))
1606 return 0;
1607
1608 /* Make sure we clear the associated state */
1609 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610
1611 if (!priv->stop_hang_check) {
1612 priv->stop_hang_check = 1;
1613 cancel_delayed_work(&priv->hang_check);
1614 }
1615
1616 mutex_lock(&priv->adapter_mutex);
1617
1618 err = ipw2100_hw_send_command(priv, &cmd);
1619 if (err) {
1620 printk(KERN_WARNING DRV_NAME
1621 ": exit - failed to send CARD_DISABLE command\n");
1622 goto fail_up;
1623 }
1624
1625 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626 if (err) {
1627 printk(KERN_WARNING DRV_NAME
1628 ": exit - card failed to change to DISABLED\n");
1629 goto fail_up;
1630 }
1631
1632 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633
1634 fail_up:
1635 mutex_unlock(&priv->adapter_mutex);
1636 return err;
1637 }
1638
1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641 struct host_command cmd = {
1642 .host_command = SET_SCAN_OPTIONS,
1643 .host_command_sequence = 0,
1644 .host_command_length = 8
1645 };
1646 int err;
1647
1648 IPW_DEBUG_INFO("enter\n");
1649
1650 IPW_DEBUG_SCAN("setting scan options\n");
1651
1652 cmd.host_command_parameters[0] = 0;
1653
1654 if (!(priv->config & CFG_ASSOCIATE))
1655 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658 if (priv->config & CFG_PASSIVE_SCAN)
1659 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660
1661 cmd.host_command_parameters[1] = priv->channel_mask;
1662
1663 err = ipw2100_hw_send_command(priv, &cmd);
1664
1665 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666 cmd.host_command_parameters[0]);
1667
1668 return err;
1669 }
1670
1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673 struct host_command cmd = {
1674 .host_command = BROADCAST_SCAN,
1675 .host_command_sequence = 0,
1676 .host_command_length = 4
1677 };
1678 int err;
1679
1680 IPW_DEBUG_HC("START_SCAN\n");
1681
1682 cmd.host_command_parameters[0] = 0;
1683
1684 /* No scanning if in monitor mode */
1685 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686 return 1;
1687
1688 if (priv->status & STATUS_SCANNING) {
1689 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690 return 0;
1691 }
1692
1693 IPW_DEBUG_INFO("enter\n");
1694
1695 /* Not clearing here; doing so makes iwlist always return nothing...
1696 *
1697 * We should modify the table logic to use aging tables vs. clearing
1698 * the table on each scan start.
1699 */
1700 IPW_DEBUG_SCAN("starting scan\n");
1701
1702 priv->status |= STATUS_SCANNING;
1703 err = ipw2100_hw_send_command(priv, &cmd);
1704 if (err)
1705 priv->status &= ~STATUS_SCANNING;
1706
1707 IPW_DEBUG_INFO("exit\n");
1708
1709 return err;
1710 }
1711
1712 static const struct libipw_geo ipw_geos[] = {
1713 { /* Restricted */
1714 "---",
1715 .bg_channels = 14,
1716 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717 {2427, 4}, {2432, 5}, {2437, 6},
1718 {2442, 7}, {2447, 8}, {2452, 9},
1719 {2457, 10}, {2462, 11}, {2467, 12},
1720 {2472, 13}, {2484, 14}},
1721 },
1722 };
1723
1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726 unsigned long flags;
1727 int rc = 0;
1728 u32 lock;
1729 u32 ord_len = sizeof(lock);
1730
1731 /* Age scan list entries found before suspend */
1732 if (priv->suspend_time) {
1733 libipw_networks_age(priv->ieee, priv->suspend_time);
1734 priv->suspend_time = 0;
1735 }
1736
1737 /* Quiet if manually disabled. */
1738 if (priv->status & STATUS_RF_KILL_SW) {
1739 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740 "switch\n", priv->net_dev->name);
1741 return 0;
1742 }
1743
1744 /* the ipw2100 hardware really doesn't want power management delays
1745 * longer than 175usec
1746 */
1747 pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748
1749 /* If the interrupt is enabled, turn it off... */
1750 spin_lock_irqsave(&priv->low_lock, flags);
1751 ipw2100_disable_interrupts(priv);
1752
1753 /* Reset any fatal_error conditions */
1754 ipw2100_reset_fatalerror(priv);
1755 spin_unlock_irqrestore(&priv->low_lock, flags);
1756
1757 if (priv->status & STATUS_POWERED ||
1758 (priv->status & STATUS_RESET_PENDING)) {
1759 /* Power cycle the card ... */
1760 if (ipw2100_power_cycle_adapter(priv)) {
1761 printk(KERN_WARNING DRV_NAME
1762 ": %s: Could not cycle adapter.\n",
1763 priv->net_dev->name);
1764 rc = 1;
1765 goto exit;
1766 }
1767 } else
1768 priv->status |= STATUS_POWERED;
1769
1770 /* Load the firmware, start the clocks, etc. */
1771 if (ipw2100_start_adapter(priv)) {
1772 printk(KERN_ERR DRV_NAME
1773 ": %s: Failed to start the firmware.\n",
1774 priv->net_dev->name);
1775 rc = 1;
1776 goto exit;
1777 }
1778
1779 ipw2100_initialize_ordinals(priv);
1780
1781 /* Determine capabilities of this particular HW configuration */
1782 if (ipw2100_get_hw_features(priv)) {
1783 printk(KERN_ERR DRV_NAME
1784 ": %s: Failed to determine HW features.\n",
1785 priv->net_dev->name);
1786 rc = 1;
1787 goto exit;
1788 }
1789
1790 /* Initialize the geo */
1791 if (libipw_set_geo(priv->ieee, &ipw_geos[0])) {
1792 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1793 return 0;
1794 }
1795 priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1796
1797 lock = LOCK_NONE;
1798 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1799 printk(KERN_ERR DRV_NAME
1800 ": %s: Failed to clear ordinal lock.\n",
1801 priv->net_dev->name);
1802 rc = 1;
1803 goto exit;
1804 }
1805
1806 priv->status &= ~STATUS_SCANNING;
1807
1808 if (rf_kill_active(priv)) {
1809 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1810 priv->net_dev->name);
1811
1812 if (priv->stop_rf_kill) {
1813 priv->stop_rf_kill = 0;
1814 schedule_delayed_work(&priv->rf_kill,
1815 round_jiffies_relative(HZ));
1816 }
1817
1818 deferred = 1;
1819 }
1820
1821 /* Turn on the interrupt so that commands can be processed */
1822 ipw2100_enable_interrupts(priv);
1823
1824 /* Send all of the commands that must be sent prior to
1825 * HOST_COMPLETE */
1826 if (ipw2100_adapter_setup(priv)) {
1827 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1828 priv->net_dev->name);
1829 rc = 1;
1830 goto exit;
1831 }
1832
1833 if (!deferred) {
1834 /* Enable the adapter - sends HOST_COMPLETE */
1835 if (ipw2100_enable_adapter(priv)) {
1836 printk(KERN_ERR DRV_NAME ": "
1837 "%s: failed in call to enable adapter.\n",
1838 priv->net_dev->name);
1839 ipw2100_hw_stop_adapter(priv);
1840 rc = 1;
1841 goto exit;
1842 }
1843
1844 /* Start a scan . . . */
1845 ipw2100_set_scan_options(priv);
1846 ipw2100_start_scan(priv);
1847 }
1848
1849 exit:
1850 return rc;
1851 }
1852
1853 static void ipw2100_down(struct ipw2100_priv *priv)
1854 {
1855 unsigned long flags;
1856 union iwreq_data wrqu = {
1857 .ap_addr = {
1858 .sa_family = ARPHRD_ETHER}
1859 };
1860 int associated = priv->status & STATUS_ASSOCIATED;
1861
1862 /* Kill the RF switch timer */
1863 if (!priv->stop_rf_kill) {
1864 priv->stop_rf_kill = 1;
1865 cancel_delayed_work(&priv->rf_kill);
1866 }
1867
1868 /* Kill the firmware hang check timer */
1869 if (!priv->stop_hang_check) {
1870 priv->stop_hang_check = 1;
1871 cancel_delayed_work(&priv->hang_check);
1872 }
1873
1874 /* Kill any pending resets */
1875 if (priv->status & STATUS_RESET_PENDING)
1876 cancel_delayed_work(&priv->reset_work);
1877
1878 /* Make sure the interrupt is on so that FW commands will be
1879 * processed correctly */
1880 spin_lock_irqsave(&priv->low_lock, flags);
1881 ipw2100_enable_interrupts(priv);
1882 spin_unlock_irqrestore(&priv->low_lock, flags);
1883
1884 if (ipw2100_hw_stop_adapter(priv))
1885 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1886 priv->net_dev->name);
1887
1888 /* Do not disable the interrupt until _after_ we disable
1889 * the adaptor. Otherwise the CARD_DISABLE command will never
1890 * be ack'd by the firmware */
1891 spin_lock_irqsave(&priv->low_lock, flags);
1892 ipw2100_disable_interrupts(priv);
1893 spin_unlock_irqrestore(&priv->low_lock, flags);
1894
1895 pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1896
1897 /* We have to signal any supplicant if we are disassociating */
1898 if (associated)
1899 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1900
1901 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1902 netif_carrier_off(priv->net_dev);
1903 netif_stop_queue(priv->net_dev);
1904 }
1905
1906 static int ipw2100_wdev_init(struct net_device *dev)
1907 {
1908 struct ipw2100_priv *priv = libipw_priv(dev);
1909 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1910 struct wireless_dev *wdev = &priv->ieee->wdev;
1911 int i;
1912
1913 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1914
1915 /* fill-out priv->ieee->bg_band */
1916 if (geo->bg_channels) {
1917 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1918
1919 bg_band->band = IEEE80211_BAND_2GHZ;
1920 bg_band->n_channels = geo->bg_channels;
1921 bg_band->channels = kcalloc(geo->bg_channels,
1922 sizeof(struct ieee80211_channel),
1923 GFP_KERNEL);
1924 if (!bg_band->channels) {
1925 ipw2100_down(priv);
1926 return -ENOMEM;
1927 }
1928 /* translate geo->bg to bg_band.channels */
1929 for (i = 0; i < geo->bg_channels; i++) {
1930 bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1931 bg_band->channels[i].center_freq = geo->bg[i].freq;
1932 bg_band->channels[i].hw_value = geo->bg[i].channel;
1933 bg_band->channels[i].max_power = geo->bg[i].max_power;
1934 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1935 bg_band->channels[i].flags |=
1936 IEEE80211_CHAN_PASSIVE_SCAN;
1937 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1938 bg_band->channels[i].flags |=
1939 IEEE80211_CHAN_NO_IBSS;
1940 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1941 bg_band->channels[i].flags |=
1942 IEEE80211_CHAN_RADAR;
1943 /* No equivalent for LIBIPW_CH_80211H_RULES,
1944 LIBIPW_CH_UNIFORM_SPREADING, or
1945 LIBIPW_CH_B_ONLY... */
1946 }
1947 /* point at bitrate info */
1948 bg_band->bitrates = ipw2100_bg_rates;
1949 bg_band->n_bitrates = RATE_COUNT;
1950
1951 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1952 }
1953
1954 wdev->wiphy->cipher_suites = ipw_cipher_suites;
1955 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1956
1957 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1958 if (wiphy_register(wdev->wiphy))
1959 return -EIO;
1960 return 0;
1961 }
1962
1963 static void ipw2100_reset_adapter(struct work_struct *work)
1964 {
1965 struct ipw2100_priv *priv =
1966 container_of(work, struct ipw2100_priv, reset_work.work);
1967 unsigned long flags;
1968 union iwreq_data wrqu = {
1969 .ap_addr = {
1970 .sa_family = ARPHRD_ETHER}
1971 };
1972 int associated = priv->status & STATUS_ASSOCIATED;
1973
1974 spin_lock_irqsave(&priv->low_lock, flags);
1975 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1976 priv->resets++;
1977 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1978 priv->status |= STATUS_SECURITY_UPDATED;
1979
1980 /* Force a power cycle even if interface hasn't been opened
1981 * yet */
1982 cancel_delayed_work(&priv->reset_work);
1983 priv->status |= STATUS_RESET_PENDING;
1984 spin_unlock_irqrestore(&priv->low_lock, flags);
1985
1986 mutex_lock(&priv->action_mutex);
1987 /* stop timed checks so that they don't interfere with reset */
1988 priv->stop_hang_check = 1;
1989 cancel_delayed_work(&priv->hang_check);
1990
1991 /* We have to signal any supplicant if we are disassociating */
1992 if (associated)
1993 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1994
1995 ipw2100_up(priv, 0);
1996 mutex_unlock(&priv->action_mutex);
1997
1998 }
1999
2000 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
2001 {
2002
2003 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2004 int ret;
2005 unsigned int len, essid_len;
2006 char essid[IW_ESSID_MAX_SIZE];
2007 u32 txrate;
2008 u32 chan;
2009 char *txratename;
2010 u8 bssid[ETH_ALEN];
2011 DECLARE_SSID_BUF(ssid);
2012
2013 /*
2014 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2015 * an actual MAC of the AP. Seems like FW sets this
2016 * address too late. Read it later and expose through
2017 * /proc or schedule a later task to query and update
2018 */
2019
2020 essid_len = IW_ESSID_MAX_SIZE;
2021 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2022 essid, &essid_len);
2023 if (ret) {
2024 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2025 __LINE__);
2026 return;
2027 }
2028
2029 len = sizeof(u32);
2030 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2031 if (ret) {
2032 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2033 __LINE__);
2034 return;
2035 }
2036
2037 len = sizeof(u32);
2038 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2039 if (ret) {
2040 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2041 __LINE__);
2042 return;
2043 }
2044 len = ETH_ALEN;
2045 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
2046 if (ret) {
2047 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2048 __LINE__);
2049 return;
2050 }
2051 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2052
2053 switch (txrate) {
2054 case TX_RATE_1_MBIT:
2055 txratename = "1Mbps";
2056 break;
2057 case TX_RATE_2_MBIT:
2058 txratename = "2Mbsp";
2059 break;
2060 case TX_RATE_5_5_MBIT:
2061 txratename = "5.5Mbps";
2062 break;
2063 case TX_RATE_11_MBIT:
2064 txratename = "11Mbps";
2065 break;
2066 default:
2067 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2068 txratename = "unknown rate";
2069 break;
2070 }
2071
2072 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2073 priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2074 txratename, chan, bssid);
2075
2076 /* now we copy read ssid into dev */
2077 if (!(priv->config & CFG_STATIC_ESSID)) {
2078 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2079 memcpy(priv->essid, essid, priv->essid_len);
2080 }
2081 priv->channel = chan;
2082 memcpy(priv->bssid, bssid, ETH_ALEN);
2083
2084 priv->status |= STATUS_ASSOCIATING;
2085 priv->connect_start = get_seconds();
2086
2087 schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2088 }
2089
2090 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2091 int length, int batch_mode)
2092 {
2093 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2094 struct host_command cmd = {
2095 .host_command = SSID,
2096 .host_command_sequence = 0,
2097 .host_command_length = ssid_len
2098 };
2099 int err;
2100 DECLARE_SSID_BUF(ssid);
2101
2102 IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2103
2104 if (ssid_len)
2105 memcpy(cmd.host_command_parameters, essid, ssid_len);
2106
2107 if (!batch_mode) {
2108 err = ipw2100_disable_adapter(priv);
2109 if (err)
2110 return err;
2111 }
2112
2113 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2114 * disable auto association -- so we cheat by setting a bogus SSID */
2115 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2116 int i;
2117 u8 *bogus = (u8 *) cmd.host_command_parameters;
2118 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2119 bogus[i] = 0x18 + i;
2120 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2121 }
2122
2123 /* NOTE: We always send the SSID command even if the provided ESSID is
2124 * the same as what we currently think is set. */
2125
2126 err = ipw2100_hw_send_command(priv, &cmd);
2127 if (!err) {
2128 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2129 memcpy(priv->essid, essid, ssid_len);
2130 priv->essid_len = ssid_len;
2131 }
2132
2133 if (!batch_mode) {
2134 if (ipw2100_enable_adapter(priv))
2135 err = -EIO;
2136 }
2137
2138 return err;
2139 }
2140
2141 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2142 {
2143 DECLARE_SSID_BUF(ssid);
2144
2145 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2146 "disassociated: '%s' %pM\n",
2147 print_ssid(ssid, priv->essid, priv->essid_len),
2148 priv->bssid);
2149
2150 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2151
2152 if (priv->status & STATUS_STOPPING) {
2153 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2154 return;
2155 }
2156
2157 memset(priv->bssid, 0, ETH_ALEN);
2158 memset(priv->ieee->bssid, 0, ETH_ALEN);
2159
2160 netif_carrier_off(priv->net_dev);
2161 netif_stop_queue(priv->net_dev);
2162
2163 if (!(priv->status & STATUS_RUNNING))
2164 return;
2165
2166 if (priv->status & STATUS_SECURITY_UPDATED)
2167 schedule_delayed_work(&priv->security_work, 0);
2168
2169 schedule_delayed_work(&priv->wx_event_work, 0);
2170 }
2171
2172 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2173 {
2174 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2175 priv->net_dev->name);
2176
2177 /* RF_KILL is now enabled (else we wouldn't be here) */
2178 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2179 priv->status |= STATUS_RF_KILL_HW;
2180
2181 /* Make sure the RF Kill check timer is running */
2182 priv->stop_rf_kill = 0;
2183 mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2184 }
2185
2186 static void send_scan_event(void *data)
2187 {
2188 struct ipw2100_priv *priv = data;
2189 union iwreq_data wrqu;
2190
2191 wrqu.data.length = 0;
2192 wrqu.data.flags = 0;
2193 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2194 }
2195
2196 static void ipw2100_scan_event_later(struct work_struct *work)
2197 {
2198 send_scan_event(container_of(work, struct ipw2100_priv,
2199 scan_event_later.work));
2200 }
2201
2202 static void ipw2100_scan_event_now(struct work_struct *work)
2203 {
2204 send_scan_event(container_of(work, struct ipw2100_priv,
2205 scan_event_now));
2206 }
2207
2208 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2209 {
2210 IPW_DEBUG_SCAN("scan complete\n");
2211 /* Age the scan results... */
2212 priv->ieee->scans++;
2213 priv->status &= ~STATUS_SCANNING;
2214
2215 /* Only userspace-requested scan completion events go out immediately */
2216 if (!priv->user_requested_scan) {
2217 if (!delayed_work_pending(&priv->scan_event_later))
2218 schedule_delayed_work(&priv->scan_event_later,
2219 round_jiffies_relative(msecs_to_jiffies(4000)));
2220 } else {
2221 priv->user_requested_scan = 0;
2222 cancel_delayed_work(&priv->scan_event_later);
2223 schedule_work(&priv->scan_event_now);
2224 }
2225 }
2226
2227 #ifdef CONFIG_IPW2100_DEBUG
2228 #define IPW2100_HANDLER(v, f) { v, f, # v }
2229 struct ipw2100_status_indicator {
2230 int status;
2231 void (*cb) (struct ipw2100_priv * priv, u32 status);
2232 char *name;
2233 };
2234 #else
2235 #define IPW2100_HANDLER(v, f) { v, f }
2236 struct ipw2100_status_indicator {
2237 int status;
2238 void (*cb) (struct ipw2100_priv * priv, u32 status);
2239 };
2240 #endif /* CONFIG_IPW2100_DEBUG */
2241
2242 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2243 {
2244 IPW_DEBUG_SCAN("Scanning...\n");
2245 priv->status |= STATUS_SCANNING;
2246 }
2247
2248 static const struct ipw2100_status_indicator status_handlers[] = {
2249 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2250 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2251 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2252 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2253 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2254 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2255 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2256 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2257 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2258 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2259 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2260 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2261 IPW2100_HANDLER(-1, NULL)
2262 };
2263
2264 static void isr_status_change(struct ipw2100_priv *priv, int status)
2265 {
2266 int i;
2267
2268 if (status == IPW_STATE_SCANNING &&
2269 priv->status & STATUS_ASSOCIATED &&
2270 !(priv->status & STATUS_SCANNING)) {
2271 IPW_DEBUG_INFO("Scan detected while associated, with "
2272 "no scan request. Restarting firmware.\n");
2273
2274 /* Wake up any sleeping jobs */
2275 schedule_reset(priv);
2276 }
2277
2278 for (i = 0; status_handlers[i].status != -1; i++) {
2279 if (status == status_handlers[i].status) {
2280 IPW_DEBUG_NOTIF("Status change: %s\n",
2281 status_handlers[i].name);
2282 if (status_handlers[i].cb)
2283 status_handlers[i].cb(priv, status);
2284 priv->wstats.status = status;
2285 return;
2286 }
2287 }
2288
2289 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2290 }
2291
2292 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2293 struct ipw2100_cmd_header *cmd)
2294 {
2295 #ifdef CONFIG_IPW2100_DEBUG
2296 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2297 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2298 command_types[cmd->host_command_reg],
2299 cmd->host_command_reg);
2300 }
2301 #endif
2302 if (cmd->host_command_reg == HOST_COMPLETE)
2303 priv->status |= STATUS_ENABLED;
2304
2305 if (cmd->host_command_reg == CARD_DISABLE)
2306 priv->status &= ~STATUS_ENABLED;
2307
2308 priv->status &= ~STATUS_CMD_ACTIVE;
2309
2310 wake_up_interruptible(&priv->wait_command_queue);
2311 }
2312
2313 #ifdef CONFIG_IPW2100_DEBUG
2314 static const char *frame_types[] = {
2315 "COMMAND_STATUS_VAL",
2316 "STATUS_CHANGE_VAL",
2317 "P80211_DATA_VAL",
2318 "P8023_DATA_VAL",
2319 "HOST_NOTIFICATION_VAL"
2320 };
2321 #endif
2322
2323 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2324 struct ipw2100_rx_packet *packet)
2325 {
2326 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2327 if (!packet->skb)
2328 return -ENOMEM;
2329
2330 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2331 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2332 sizeof(struct ipw2100_rx),
2333 PCI_DMA_FROMDEVICE);
2334 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2335 * dma_addr */
2336
2337 return 0;
2338 }
2339
2340 #define SEARCH_ERROR 0xffffffff
2341 #define SEARCH_FAIL 0xfffffffe
2342 #define SEARCH_SUCCESS 0xfffffff0
2343 #define SEARCH_DISCARD 0
2344 #define SEARCH_SNAPSHOT 1
2345
2346 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2347 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2348 {
2349 int i;
2350 if (!priv->snapshot[0])
2351 return;
2352 for (i = 0; i < 0x30; i++)
2353 kfree(priv->snapshot[i]);
2354 priv->snapshot[0] = NULL;
2355 }
2356
2357 #ifdef IPW2100_DEBUG_C3
2358 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2359 {
2360 int i;
2361 if (priv->snapshot[0])
2362 return 1;
2363 for (i = 0; i < 0x30; i++) {
2364 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2365 if (!priv->snapshot[i]) {
2366 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2367 "buffer %d\n", priv->net_dev->name, i);
2368 while (i > 0)
2369 kfree(priv->snapshot[--i]);
2370 priv->snapshot[0] = NULL;
2371 return 0;
2372 }
2373 }
2374
2375 return 1;
2376 }
2377
2378 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2379 size_t len, int mode)
2380 {
2381 u32 i, j;
2382 u32 tmp;
2383 u8 *s, *d;
2384 u32 ret;
2385
2386 s = in_buf;
2387 if (mode == SEARCH_SNAPSHOT) {
2388 if (!ipw2100_snapshot_alloc(priv))
2389 mode = SEARCH_DISCARD;
2390 }
2391
2392 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2393 read_nic_dword(priv->net_dev, i, &tmp);
2394 if (mode == SEARCH_SNAPSHOT)
2395 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2396 if (ret == SEARCH_FAIL) {
2397 d = (u8 *) & tmp;
2398 for (j = 0; j < 4; j++) {
2399 if (*s != *d) {
2400 s = in_buf;
2401 continue;
2402 }
2403
2404 s++;
2405 d++;
2406
2407 if ((s - in_buf) == len)
2408 ret = (i + j) - len + 1;
2409 }
2410 } else if (mode == SEARCH_DISCARD)
2411 return ret;
2412 }
2413
2414 return ret;
2415 }
2416 #endif
2417
2418 /*
2419 *
2420 * 0) Disconnect the SKB from the firmware (just unmap)
2421 * 1) Pack the ETH header into the SKB
2422 * 2) Pass the SKB to the network stack
2423 *
2424 * When packet is provided by the firmware, it contains the following:
2425 *
2426 * . libipw_hdr
2427 * . libipw_snap_hdr
2428 *
2429 * The size of the constructed ethernet
2430 *
2431 */
2432 #ifdef IPW2100_RX_DEBUG
2433 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2434 #endif
2435
2436 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2437 {
2438 #ifdef IPW2100_DEBUG_C3
2439 struct ipw2100_status *status = &priv->status_queue.drv[i];
2440 u32 match, reg;
2441 int j;
2442 #endif
2443
2444 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2445 i * sizeof(struct ipw2100_status));
2446
2447 #ifdef IPW2100_DEBUG_C3
2448 /* Halt the firmware so we can get a good image */
2449 write_register(priv->net_dev, IPW_REG_RESET_REG,
2450 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2451 j = 5;
2452 do {
2453 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2454 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2455
2456 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2457 break;
2458 } while (j--);
2459
2460 match = ipw2100_match_buf(priv, (u8 *) status,
2461 sizeof(struct ipw2100_status),
2462 SEARCH_SNAPSHOT);
2463 if (match < SEARCH_SUCCESS)
2464 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2465 "offset 0x%06X, length %d:\n",
2466 priv->net_dev->name, match,
2467 sizeof(struct ipw2100_status));
2468 else
2469 IPW_DEBUG_INFO("%s: No DMA status match in "
2470 "Firmware.\n", priv->net_dev->name);
2471
2472 printk_buf((u8 *) priv->status_queue.drv,
2473 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2474 #endif
2475
2476 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2477 priv->net_dev->stats.rx_errors++;
2478 schedule_reset(priv);
2479 }
2480
2481 static void isr_rx(struct ipw2100_priv *priv, int i,
2482 struct libipw_rx_stats *stats)
2483 {
2484 struct net_device *dev = priv->net_dev;
2485 struct ipw2100_status *status = &priv->status_queue.drv[i];
2486 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2487
2488 IPW_DEBUG_RX("Handler...\n");
2489
2490 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2491 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2492 " Dropping.\n",
2493 dev->name,
2494 status->frame_size, skb_tailroom(packet->skb));
2495 dev->stats.rx_errors++;
2496 return;
2497 }
2498
2499 if (unlikely(!netif_running(dev))) {
2500 dev->stats.rx_errors++;
2501 priv->wstats.discard.misc++;
2502 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2503 return;
2504 }
2505
2506 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2507 !(priv->status & STATUS_ASSOCIATED))) {
2508 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2509 priv->wstats.discard.misc++;
2510 return;
2511 }
2512
2513 pci_unmap_single(priv->pci_dev,
2514 packet->dma_addr,
2515 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2516
2517 skb_put(packet->skb, status->frame_size);
2518
2519 #ifdef IPW2100_RX_DEBUG
2520 /* Make a copy of the frame so we can dump it to the logs if
2521 * libipw_rx fails */
2522 skb_copy_from_linear_data(packet->skb, packet_data,
2523 min_t(u32, status->frame_size,
2524 IPW_RX_NIC_BUFFER_LENGTH));
2525 #endif
2526
2527 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2528 #ifdef IPW2100_RX_DEBUG
2529 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2530 dev->name);
2531 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2532 #endif
2533 dev->stats.rx_errors++;
2534
2535 /* libipw_rx failed, so it didn't free the SKB */
2536 dev_kfree_skb_any(packet->skb);
2537 packet->skb = NULL;
2538 }
2539
2540 /* We need to allocate a new SKB and attach it to the RDB. */
2541 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2542 printk(KERN_WARNING DRV_NAME ": "
2543 "%s: Unable to allocate SKB onto RBD ring - disabling "
2544 "adapter.\n", dev->name);
2545 /* TODO: schedule adapter shutdown */
2546 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2547 }
2548
2549 /* Update the RDB entry */
2550 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2551 }
2552
2553 #ifdef CONFIG_IPW2100_MONITOR
2554
2555 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2556 struct libipw_rx_stats *stats)
2557 {
2558 struct net_device *dev = priv->net_dev;
2559 struct ipw2100_status *status = &priv->status_queue.drv[i];
2560 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2561
2562 /* Magic struct that slots into the radiotap header -- no reason
2563 * to build this manually element by element, we can write it much
2564 * more efficiently than we can parse it. ORDER MATTERS HERE */
2565 struct ipw_rt_hdr {
2566 struct ieee80211_radiotap_header rt_hdr;
2567 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2568 } *ipw_rt;
2569
2570 IPW_DEBUG_RX("Handler...\n");
2571
2572 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2573 sizeof(struct ipw_rt_hdr))) {
2574 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2575 " Dropping.\n",
2576 dev->name,
2577 status->frame_size,
2578 skb_tailroom(packet->skb));
2579 dev->stats.rx_errors++;
2580 return;
2581 }
2582
2583 if (unlikely(!netif_running(dev))) {
2584 dev->stats.rx_errors++;
2585 priv->wstats.discard.misc++;
2586 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2587 return;
2588 }
2589
2590 if (unlikely(priv->config & CFG_CRC_CHECK &&
2591 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2592 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2593 dev->stats.rx_errors++;
2594 return;
2595 }
2596
2597 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2598 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2599 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2600 packet->skb->data, status->frame_size);
2601
2602 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2603
2604 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2605 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2606 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2607
2608 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2609
2610 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2611
2612 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2613
2614 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2615 dev->stats.rx_errors++;
2616
2617 /* libipw_rx failed, so it didn't free the SKB */
2618 dev_kfree_skb_any(packet->skb);
2619 packet->skb = NULL;
2620 }
2621
2622 /* We need to allocate a new SKB and attach it to the RDB. */
2623 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2624 IPW_DEBUG_WARNING(
2625 "%s: Unable to allocate SKB onto RBD ring - disabling "
2626 "adapter.\n", dev->name);
2627 /* TODO: schedule adapter shutdown */
2628 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2629 }
2630
2631 /* Update the RDB entry */
2632 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2633 }
2634
2635 #endif
2636
2637 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2638 {
2639 struct ipw2100_status *status = &priv->status_queue.drv[i];
2640 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2641 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2642
2643 switch (frame_type) {
2644 case COMMAND_STATUS_VAL:
2645 return (status->frame_size != sizeof(u->rx_data.command));
2646 case STATUS_CHANGE_VAL:
2647 return (status->frame_size != sizeof(u->rx_data.status));
2648 case HOST_NOTIFICATION_VAL:
2649 return (status->frame_size < sizeof(u->rx_data.notification));
2650 case P80211_DATA_VAL:
2651 case P8023_DATA_VAL:
2652 #ifdef CONFIG_IPW2100_MONITOR
2653 return 0;
2654 #else
2655 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2656 case IEEE80211_FTYPE_MGMT:
2657 case IEEE80211_FTYPE_CTL:
2658 return 0;
2659 case IEEE80211_FTYPE_DATA:
2660 return (status->frame_size >
2661 IPW_MAX_802_11_PAYLOAD_LENGTH);
2662 }
2663 #endif
2664 }
2665
2666 return 1;
2667 }
2668
2669 /*
2670 * ipw2100 interrupts are disabled at this point, and the ISR
2671 * is the only code that calls this method. So, we do not need
2672 * to play with any locks.
2673 *
2674 * RX Queue works as follows:
2675 *
2676 * Read index - firmware places packet in entry identified by the
2677 * Read index and advances Read index. In this manner,
2678 * Read index will always point to the next packet to
2679 * be filled--but not yet valid.
2680 *
2681 * Write index - driver fills this entry with an unused RBD entry.
2682 * This entry has not filled by the firmware yet.
2683 *
2684 * In between the W and R indexes are the RBDs that have been received
2685 * but not yet processed.
2686 *
2687 * The process of handling packets will start at WRITE + 1 and advance
2688 * until it reaches the READ index.
2689 *
2690 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2691 *
2692 */
2693 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2694 {
2695 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2696 struct ipw2100_status_queue *sq = &priv->status_queue;
2697 struct ipw2100_rx_packet *packet;
2698 u16 frame_type;
2699 u32 r, w, i, s;
2700 struct ipw2100_rx *u;
2701 struct libipw_rx_stats stats = {
2702 .mac_time = jiffies,
2703 };
2704
2705 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2706 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2707
2708 if (r >= rxq->entries) {
2709 IPW_DEBUG_RX("exit - bad read index\n");
2710 return;
2711 }
2712
2713 i = (rxq->next + 1) % rxq->entries;
2714 s = i;
2715 while (i != r) {
2716 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2717 r, rxq->next, i); */
2718
2719 packet = &priv->rx_buffers[i];
2720
2721 /* Sync the DMA for the RX buffer so CPU is sure to get
2722 * the correct values */
2723 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2724 sizeof(struct ipw2100_rx),
2725 PCI_DMA_FROMDEVICE);
2726
2727 if (unlikely(ipw2100_corruption_check(priv, i))) {
2728 ipw2100_corruption_detected(priv, i);
2729 goto increment;
2730 }
2731
2732 u = packet->rxp;
2733 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2734 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2735 stats.len = sq->drv[i].frame_size;
2736
2737 stats.mask = 0;
2738 if (stats.rssi != 0)
2739 stats.mask |= LIBIPW_STATMASK_RSSI;
2740 stats.freq = LIBIPW_24GHZ_BAND;
2741
2742 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2743 priv->net_dev->name, frame_types[frame_type],
2744 stats.len);
2745
2746 switch (frame_type) {
2747 case COMMAND_STATUS_VAL:
2748 /* Reset Rx watchdog */
2749 isr_rx_complete_command(priv, &u->rx_data.command);
2750 break;
2751
2752 case STATUS_CHANGE_VAL:
2753 isr_status_change(priv, u->rx_data.status);
2754 break;
2755
2756 case P80211_DATA_VAL:
2757 case P8023_DATA_VAL:
2758 #ifdef CONFIG_IPW2100_MONITOR
2759 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2760 isr_rx_monitor(priv, i, &stats);
2761 break;
2762 }
2763 #endif
2764 if (stats.len < sizeof(struct libipw_hdr_3addr))
2765 break;
2766 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2767 case IEEE80211_FTYPE_MGMT:
2768 libipw_rx_mgt(priv->ieee,
2769 &u->rx_data.header, &stats);
2770 break;
2771
2772 case IEEE80211_FTYPE_CTL:
2773 break;
2774
2775 case IEEE80211_FTYPE_DATA:
2776 isr_rx(priv, i, &stats);
2777 break;
2778
2779 }
2780 break;
2781 }
2782
2783 increment:
2784 /* clear status field associated with this RBD */
2785 rxq->drv[i].status.info.field = 0;
2786
2787 i = (i + 1) % rxq->entries;
2788 }
2789
2790 if (i != s) {
2791 /* backtrack one entry, wrapping to end if at 0 */
2792 rxq->next = (i ? i : rxq->entries) - 1;
2793
2794 write_register(priv->net_dev,
2795 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2796 }
2797 }
2798
2799 /*
2800 * __ipw2100_tx_process
2801 *
2802 * This routine will determine whether the next packet on
2803 * the fw_pend_list has been processed by the firmware yet.
2804 *
2805 * If not, then it does nothing and returns.
2806 *
2807 * If so, then it removes the item from the fw_pend_list, frees
2808 * any associated storage, and places the item back on the
2809 * free list of its source (either msg_free_list or tx_free_list)
2810 *
2811 * TX Queue works as follows:
2812 *
2813 * Read index - points to the next TBD that the firmware will
2814 * process. The firmware will read the data, and once
2815 * done processing, it will advance the Read index.
2816 *
2817 * Write index - driver fills this entry with an constructed TBD
2818 * entry. The Write index is not advanced until the
2819 * packet has been configured.
2820 *
2821 * In between the W and R indexes are the TBDs that have NOT been
2822 * processed. Lagging behind the R index are packets that have
2823 * been processed but have not been freed by the driver.
2824 *
2825 * In order to free old storage, an internal index will be maintained
2826 * that points to the next packet to be freed. When all used
2827 * packets have been freed, the oldest index will be the same as the
2828 * firmware's read index.
2829 *
2830 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2831 *
2832 * Because the TBD structure can not contain arbitrary data, the
2833 * driver must keep an internal queue of cached allocations such that
2834 * it can put that data back into the tx_free_list and msg_free_list
2835 * for use by future command and data packets.
2836 *
2837 */
2838 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2839 {
2840 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2841 struct ipw2100_bd *tbd;
2842 struct list_head *element;
2843 struct ipw2100_tx_packet *packet;
2844 int descriptors_used;
2845 int e, i;
2846 u32 r, w, frag_num = 0;
2847
2848 if (list_empty(&priv->fw_pend_list))
2849 return 0;
2850
2851 element = priv->fw_pend_list.next;
2852
2853 packet = list_entry(element, struct ipw2100_tx_packet, list);
2854 tbd = &txq->drv[packet->index];
2855
2856 /* Determine how many TBD entries must be finished... */
2857 switch (packet->type) {
2858 case COMMAND:
2859 /* COMMAND uses only one slot; don't advance */
2860 descriptors_used = 1;
2861 e = txq->oldest;
2862 break;
2863
2864 case DATA:
2865 /* DATA uses two slots; advance and loop position. */
2866 descriptors_used = tbd->num_fragments;
2867 frag_num = tbd->num_fragments - 1;
2868 e = txq->oldest + frag_num;
2869 e %= txq->entries;
2870 break;
2871
2872 default:
2873 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2874 priv->net_dev->name);
2875 return 0;
2876 }
2877
2878 /* if the last TBD is not done by NIC yet, then packet is
2879 * not ready to be released.
2880 *
2881 */
2882 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2883 &r);
2884 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2885 &w);
2886 if (w != txq->next)
2887 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2888 priv->net_dev->name);
2889
2890 /*
2891 * txq->next is the index of the last packet written txq->oldest is
2892 * the index of the r is the index of the next packet to be read by
2893 * firmware
2894 */
2895
2896 /*
2897 * Quick graphic to help you visualize the following
2898 * if / else statement
2899 *
2900 * ===>| s---->|===============
2901 * e>|
2902 * | a | b | c | d | e | f | g | h | i | j | k | l
2903 * r---->|
2904 * w
2905 *
2906 * w - updated by driver
2907 * r - updated by firmware
2908 * s - start of oldest BD entry (txq->oldest)
2909 * e - end of oldest BD entry
2910 *
2911 */
2912 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2913 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2914 return 0;
2915 }
2916
2917 list_del(element);
2918 DEC_STAT(&priv->fw_pend_stat);
2919
2920 #ifdef CONFIG_IPW2100_DEBUG
2921 {
2922 i = txq->oldest;
2923 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2924 &txq->drv[i],
2925 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2926 txq->drv[i].host_addr, txq->drv[i].buf_length);
2927
2928 if (packet->type == DATA) {
2929 i = (i + 1) % txq->entries;
2930
2931 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2932 &txq->drv[i],
2933 (u32) (txq->nic + i *
2934 sizeof(struct ipw2100_bd)),
2935 (u32) txq->drv[i].host_addr,
2936 txq->drv[i].buf_length);
2937 }
2938 }
2939 #endif
2940
2941 switch (packet->type) {
2942 case DATA:
2943 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2944 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2945 "Expecting DATA TBD but pulled "
2946 "something else: ids %d=%d.\n",
2947 priv->net_dev->name, txq->oldest, packet->index);
2948
2949 /* DATA packet; we have to unmap and free the SKB */
2950 for (i = 0; i < frag_num; i++) {
2951 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2952
2953 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2954 (packet->index + 1 + i) % txq->entries,
2955 tbd->host_addr, tbd->buf_length);
2956
2957 pci_unmap_single(priv->pci_dev,
2958 tbd->host_addr,
2959 tbd->buf_length, PCI_DMA_TODEVICE);
2960 }
2961
2962 libipw_txb_free(packet->info.d_struct.txb);
2963 packet->info.d_struct.txb = NULL;
2964
2965 list_add_tail(element, &priv->tx_free_list);
2966 INC_STAT(&priv->tx_free_stat);
2967
2968 /* We have a free slot in the Tx queue, so wake up the
2969 * transmit layer if it is stopped. */
2970 if (priv->status & STATUS_ASSOCIATED)
2971 netif_wake_queue(priv->net_dev);
2972
2973 /* A packet was processed by the hardware, so update the
2974 * watchdog */
2975 priv->net_dev->trans_start = jiffies;
2976
2977 break;
2978
2979 case COMMAND:
2980 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2981 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2982 "Expecting COMMAND TBD but pulled "
2983 "something else: ids %d=%d.\n",
2984 priv->net_dev->name, txq->oldest, packet->index);
2985
2986 #ifdef CONFIG_IPW2100_DEBUG
2987 if (packet->info.c_struct.cmd->host_command_reg <
2988 ARRAY_SIZE(command_types))
2989 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2990 command_types[packet->info.c_struct.cmd->
2991 host_command_reg],
2992 packet->info.c_struct.cmd->
2993 host_command_reg,
2994 packet->info.c_struct.cmd->cmd_status_reg);
2995 #endif
2996
2997 list_add_tail(element, &priv->msg_free_list);
2998 INC_STAT(&priv->msg_free_stat);
2999 break;
3000 }
3001
3002 /* advance oldest used TBD pointer to start of next entry */
3003 txq->oldest = (e + 1) % txq->entries;
3004 /* increase available TBDs number */
3005 txq->available += descriptors_used;
3006 SET_STAT(&priv->txq_stat, txq->available);
3007
3008 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
3009 jiffies - packet->jiffy_start);
3010
3011 return (!list_empty(&priv->fw_pend_list));
3012 }
3013
3014 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3015 {
3016 int i = 0;
3017
3018 while (__ipw2100_tx_process(priv) && i < 200)
3019 i++;
3020
3021 if (i == 200) {
3022 printk(KERN_WARNING DRV_NAME ": "
3023 "%s: Driver is running slow (%d iters).\n",
3024 priv->net_dev->name, i);
3025 }
3026 }
3027
3028 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3029 {
3030 struct list_head *element;
3031 struct ipw2100_tx_packet *packet;
3032 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3033 struct ipw2100_bd *tbd;
3034 int next = txq->next;
3035
3036 while (!list_empty(&priv->msg_pend_list)) {
3037 /* if there isn't enough space in TBD queue, then
3038 * don't stuff a new one in.
3039 * NOTE: 3 are needed as a command will take one,
3040 * and there is a minimum of 2 that must be
3041 * maintained between the r and w indexes
3042 */
3043 if (txq->available <= 3) {
3044 IPW_DEBUG_TX("no room in tx_queue\n");
3045 break;
3046 }
3047
3048 element = priv->msg_pend_list.next;
3049 list_del(element);
3050 DEC_STAT(&priv->msg_pend_stat);
3051
3052 packet = list_entry(element, struct ipw2100_tx_packet, list);
3053
3054 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3055 &txq->drv[txq->next],
3056 (u32) (txq->nic + txq->next *
3057 sizeof(struct ipw2100_bd)));
3058
3059 packet->index = txq->next;
3060
3061 tbd = &txq->drv[txq->next];
3062
3063 /* initialize TBD */
3064 tbd->host_addr = packet->info.c_struct.cmd_phys;
3065 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3066 /* not marking number of fragments causes problems
3067 * with f/w debug version */
3068 tbd->num_fragments = 1;
3069 tbd->status.info.field =
3070 IPW_BD_STATUS_TX_FRAME_COMMAND |
3071 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3072
3073 /* update TBD queue counters */
3074 txq->next++;
3075 txq->next %= txq->entries;
3076 txq->available--;
3077 DEC_STAT(&priv->txq_stat);
3078
3079 list_add_tail(element, &priv->fw_pend_list);
3080 INC_STAT(&priv->fw_pend_stat);
3081 }
3082
3083 if (txq->next != next) {
3084 /* kick off the DMA by notifying firmware the
3085 * write index has moved; make sure TBD stores are sync'd */
3086 wmb();
3087 write_register(priv->net_dev,
3088 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3089 txq->next);
3090 }
3091 }
3092
3093 /*
3094 * ipw2100_tx_send_data
3095 *
3096 */
3097 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3098 {
3099 struct list_head *element;
3100 struct ipw2100_tx_packet *packet;
3101 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3102 struct ipw2100_bd *tbd;
3103 int next = txq->next;
3104 int i = 0;
3105 struct ipw2100_data_header *ipw_hdr;
3106 struct libipw_hdr_3addr *hdr;
3107
3108 while (!list_empty(&priv->tx_pend_list)) {
3109 /* if there isn't enough space in TBD queue, then
3110 * don't stuff a new one in.
3111 * NOTE: 4 are needed as a data will take two,
3112 * and there is a minimum of 2 that must be
3113 * maintained between the r and w indexes
3114 */
3115 element = priv->tx_pend_list.next;
3116 packet = list_entry(element, struct ipw2100_tx_packet, list);
3117
3118 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3119 IPW_MAX_BDS)) {
3120 /* TODO: Support merging buffers if more than
3121 * IPW_MAX_BDS are used */
3122 IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded. "
3123 "Increase fragmentation level.\n",
3124 priv->net_dev->name);
3125 }
3126
3127 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3128 IPW_DEBUG_TX("no room in tx_queue\n");
3129 break;
3130 }
3131
3132 list_del(element);
3133 DEC_STAT(&priv->tx_pend_stat);
3134
3135 tbd = &txq->drv[txq->next];
3136
3137 packet->index = txq->next;
3138
3139 ipw_hdr = packet->info.d_struct.data;
3140 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3141 fragments[0]->data;
3142
3143 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3144 /* To DS: Addr1 = BSSID, Addr2 = SA,
3145 Addr3 = DA */
3146 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3147 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3148 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3149 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3150 Addr3 = BSSID */
3151 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3152 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3153 }
3154
3155 ipw_hdr->host_command_reg = SEND;
3156 ipw_hdr->host_command_reg1 = 0;
3157
3158 /* For now we only support host based encryption */
3159 ipw_hdr->needs_encryption = 0;
3160 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3161 if (packet->info.d_struct.txb->nr_frags > 1)
3162 ipw_hdr->fragment_size =
3163 packet->info.d_struct.txb->frag_size -
3164 LIBIPW_3ADDR_LEN;
3165 else
3166 ipw_hdr->fragment_size = 0;
3167
3168 tbd->host_addr = packet->info.d_struct.data_phys;
3169 tbd->buf_length = sizeof(struct ipw2100_data_header);
3170 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3171 tbd->status.info.field =
3172 IPW_BD_STATUS_TX_FRAME_802_3 |
3173 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3174 txq->next++;
3175 txq->next %= txq->entries;
3176
3177 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3178 packet->index, tbd->host_addr, tbd->buf_length);
3179 #ifdef CONFIG_IPW2100_DEBUG
3180 if (packet->info.d_struct.txb->nr_frags > 1)
3181 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3182 packet->info.d_struct.txb->nr_frags);
3183 #endif
3184
3185 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3186 tbd = &txq->drv[txq->next];
3187 if (i == packet->info.d_struct.txb->nr_frags - 1)
3188 tbd->status.info.field =
3189 IPW_BD_STATUS_TX_FRAME_802_3 |
3190 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3191 else
3192 tbd->status.info.field =
3193 IPW_BD_STATUS_TX_FRAME_802_3 |
3194 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3195
3196 tbd->buf_length = packet->info.d_struct.txb->
3197 fragments[i]->len - LIBIPW_3ADDR_LEN;
3198
3199 tbd->host_addr = pci_map_single(priv->pci_dev,
3200 packet->info.d_struct.
3201 txb->fragments[i]->
3202 data +
3203 LIBIPW_3ADDR_LEN,
3204 tbd->buf_length,
3205 PCI_DMA_TODEVICE);
3206
3207 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3208 txq->next, tbd->host_addr,
3209 tbd->buf_length);
3210
3211 pci_dma_sync_single_for_device(priv->pci_dev,
3212 tbd->host_addr,
3213 tbd->buf_length,
3214 PCI_DMA_TODEVICE);
3215
3216 txq->next++;
3217 txq->next %= txq->entries;
3218 }
3219
3220 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3221 SET_STAT(&priv->txq_stat, txq->available);
3222
3223 list_add_tail(element, &priv->fw_pend_list);
3224 INC_STAT(&priv->fw_pend_stat);
3225 }
3226
3227 if (txq->next != next) {
3228 /* kick off the DMA by notifying firmware the
3229 * write index has moved; make sure TBD stores are sync'd */
3230 write_register(priv->net_dev,
3231 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3232 txq->next);
3233 }
3234 }
3235
3236 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3237 {
3238 struct net_device *dev = priv->net_dev;
3239 unsigned long flags;
3240 u32 inta, tmp;
3241
3242 spin_lock_irqsave(&priv->low_lock, flags);
3243 ipw2100_disable_interrupts(priv);
3244
3245 read_register(dev, IPW_REG_INTA, &inta);
3246
3247 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3248 (unsigned long)inta & IPW_INTERRUPT_MASK);
3249
3250 priv->in_isr++;
3251 priv->interrupts++;
3252
3253 /* We do not loop and keep polling for more interrupts as this
3254 * is frowned upon and doesn't play nicely with other potentially
3255 * chained IRQs */
3256 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3257 (unsigned long)inta & IPW_INTERRUPT_MASK);
3258
3259 if (inta & IPW2100_INTA_FATAL_ERROR) {
3260 printk(KERN_WARNING DRV_NAME
3261 ": Fatal interrupt. Scheduling firmware restart.\n");
3262 priv->inta_other++;
3263 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3264
3265 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3266 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3267 priv->net_dev->name, priv->fatal_error);
3268
3269 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3270 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3271 priv->net_dev->name, tmp);
3272
3273 /* Wake up any sleeping jobs */
3274 schedule_reset(priv);
3275 }
3276
3277 if (inta & IPW2100_INTA_PARITY_ERROR) {
3278 printk(KERN_ERR DRV_NAME
3279 ": ***** PARITY ERROR INTERRUPT !!!!\n");
3280 priv->inta_other++;
3281 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3282 }
3283
3284 if (inta & IPW2100_INTA_RX_TRANSFER) {
3285 IPW_DEBUG_ISR("RX interrupt\n");
3286
3287 priv->rx_interrupts++;
3288
3289 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3290
3291 __ipw2100_rx_process(priv);
3292 __ipw2100_tx_complete(priv);
3293 }
3294
3295 if (inta & IPW2100_INTA_TX_TRANSFER) {
3296 IPW_DEBUG_ISR("TX interrupt\n");
3297
3298 priv->tx_interrupts++;
3299
3300 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3301
3302 __ipw2100_tx_complete(priv);
3303 ipw2100_tx_send_commands(priv);
3304 ipw2100_tx_send_data(priv);
3305 }
3306
3307 if (inta & IPW2100_INTA_TX_COMPLETE) {
3308 IPW_DEBUG_ISR("TX complete\n");
3309 priv->inta_other++;
3310 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3311
3312 __ipw2100_tx_complete(priv);
3313 }
3314
3315 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3316 /* ipw2100_handle_event(dev); */
3317 priv->inta_other++;
3318 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3319 }
3320
3321 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3322 IPW_DEBUG_ISR("FW init done interrupt\n");
3323 priv->inta_other++;
3324
3325 read_register(dev, IPW_REG_INTA, &tmp);
3326 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3327 IPW2100_INTA_PARITY_ERROR)) {
3328 write_register(dev, IPW_REG_INTA,
3329 IPW2100_INTA_FATAL_ERROR |
3330 IPW2100_INTA_PARITY_ERROR);
3331 }
3332
3333 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3334 }
3335
3336 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3337 IPW_DEBUG_ISR("Status change interrupt\n");
3338 priv->inta_other++;
3339 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3340 }
3341
3342 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3343 IPW_DEBUG_ISR("slave host mode interrupt\n");
3344 priv->inta_other++;
3345 write_register(dev, IPW_REG_INTA,
3346 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3347 }
3348
3349 priv->in_isr--;
3350 ipw2100_enable_interrupts(priv);
3351
3352 spin_unlock_irqrestore(&priv->low_lock, flags);
3353
3354 IPW_DEBUG_ISR("exit\n");
3355 }
3356
3357 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3358 {
3359 struct ipw2100_priv *priv = data;
3360 u32 inta, inta_mask;
3361
3362 if (!data)
3363 return IRQ_NONE;
3364
3365 spin_lock(&priv->low_lock);
3366
3367 /* We check to see if we should be ignoring interrupts before
3368 * we touch the hardware. During ucode load if we try and handle
3369 * an interrupt we can cause keyboard problems as well as cause
3370 * the ucode to fail to initialize */
3371 if (!(priv->status & STATUS_INT_ENABLED)) {
3372 /* Shared IRQ */
3373 goto none;
3374 }
3375
3376 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3377 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3378
3379 if (inta == 0xFFFFFFFF) {
3380 /* Hardware disappeared */
3381 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3382 goto none;
3383 }
3384
3385 inta &= IPW_INTERRUPT_MASK;
3386
3387 if (!(inta & inta_mask)) {
3388 /* Shared interrupt */
3389 goto none;
3390 }
3391
3392 /* We disable the hardware interrupt here just to prevent unneeded
3393 * calls to be made. We disable this again within the actual
3394 * work tasklet, so if another part of the code re-enables the
3395 * interrupt, that is fine */
3396 ipw2100_disable_interrupts(priv);
3397
3398 tasklet_schedule(&priv->irq_tasklet);
3399 spin_unlock(&priv->low_lock);
3400
3401 return IRQ_HANDLED;
3402 none:
3403 spin_unlock(&priv->low_lock);
3404 return IRQ_NONE;
3405 }
3406
3407 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3408 struct net_device *dev, int pri)
3409 {
3410 struct ipw2100_priv *priv = libipw_priv(dev);
3411 struct list_head *element;
3412 struct ipw2100_tx_packet *packet;
3413 unsigned long flags;
3414
3415 spin_lock_irqsave(&priv->low_lock, flags);
3416
3417 if (!(priv->status & STATUS_ASSOCIATED)) {
3418 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3419 priv->net_dev->stats.tx_carrier_errors++;
3420 netif_stop_queue(dev);
3421 goto fail_unlock;
3422 }
3423
3424 if (list_empty(&priv->tx_free_list))
3425 goto fail_unlock;
3426
3427 element = priv->tx_free_list.next;
3428 packet = list_entry(element, struct ipw2100_tx_packet, list);
3429
3430 packet->info.d_struct.txb = txb;
3431
3432 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3433 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3434
3435 packet->jiffy_start = jiffies;
3436
3437 list_del(element);
3438 DEC_STAT(&priv->tx_free_stat);
3439
3440 list_add_tail(element, &priv->tx_pend_list);
3441 INC_STAT(&priv->tx_pend_stat);
3442
3443 ipw2100_tx_send_data(priv);
3444
3445 spin_unlock_irqrestore(&priv->low_lock, flags);
3446 return NETDEV_TX_OK;
3447
3448 fail_unlock:
3449 netif_stop_queue(dev);
3450 spin_unlock_irqrestore(&priv->low_lock, flags);
3451 return NETDEV_TX_BUSY;
3452 }
3453
3454 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3455 {
3456 int i, j, err = -EINVAL;
3457 void *v;
3458 dma_addr_t p;
3459
3460 priv->msg_buffers =
3461 kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3462 GFP_KERNEL);
3463 if (!priv->msg_buffers)
3464 return -ENOMEM;
3465
3466 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3467 v = pci_alloc_consistent(priv->pci_dev,
3468 sizeof(struct ipw2100_cmd_header), &p);
3469 if (!v) {
3470 printk(KERN_ERR DRV_NAME ": "
3471 "%s: PCI alloc failed for msg "
3472 "buffers.\n", priv->net_dev->name);
3473 err = -ENOMEM;
3474 break;
3475 }
3476
3477 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3478
3479 priv->msg_buffers[i].type = COMMAND;
3480 priv->msg_buffers[i].info.c_struct.cmd =
3481 (struct ipw2100_cmd_header *)v;
3482 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3483 }
3484
3485 if (i == IPW_COMMAND_POOL_SIZE)
3486 return 0;
3487
3488 for (j = 0; j < i; j++) {
3489 pci_free_consistent(priv->pci_dev,
3490 sizeof(struct ipw2100_cmd_header),
3491 priv->msg_buffers[j].info.c_struct.cmd,
3492 priv->msg_buffers[j].info.c_struct.
3493 cmd_phys);
3494 }
3495
3496 kfree(priv->msg_buffers);
3497 priv->msg_buffers = NULL;
3498
3499 return err;
3500 }
3501
3502 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3503 {
3504 int i;
3505
3506 INIT_LIST_HEAD(&priv->msg_free_list);
3507 INIT_LIST_HEAD(&priv->msg_pend_list);
3508
3509 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3510 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3511 SET_STAT(&priv->msg_free_stat, i);
3512
3513 return 0;
3514 }
3515
3516 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3517 {
3518 int i;
3519
3520 if (!priv->msg_buffers)
3521 return;
3522
3523 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3524 pci_free_consistent(priv->pci_dev,
3525 sizeof(struct ipw2100_cmd_header),
3526 priv->msg_buffers[i].info.c_struct.cmd,
3527 priv->msg_buffers[i].info.c_struct.
3528 cmd_phys);
3529 }
3530
3531 kfree(priv->msg_buffers);
3532 priv->msg_buffers = NULL;
3533 }
3534
3535 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3536 char *buf)
3537 {
3538 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3539 char *out = buf;
3540 int i, j;
3541 u32 val;
3542
3543 for (i = 0; i < 16; i++) {
3544 out += sprintf(out, "[%08X] ", i * 16);
3545 for (j = 0; j < 16; j += 4) {
3546 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3547 out += sprintf(out, "%08X ", val);
3548 }
3549 out += sprintf(out, "\n");
3550 }
3551
3552 return out - buf;
3553 }
3554
3555 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3556
3557 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3558 char *buf)
3559 {
3560 struct ipw2100_priv *p = dev_get_drvdata(d);
3561 return sprintf(buf, "0x%08x\n", (int)p->config);
3562 }
3563
3564 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3565
3566 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3567 char *buf)
3568 {
3569 struct ipw2100_priv *p = dev_get_drvdata(d);
3570 return sprintf(buf, "0x%08x\n", (int)p->status);
3571 }
3572
3573 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3574
3575 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3576 char *buf)
3577 {
3578 struct ipw2100_priv *p = dev_get_drvdata(d);
3579 return sprintf(buf, "0x%08x\n", (int)p->capability);
3580 }
3581
3582 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3583
3584 #define IPW2100_REG(x) { IPW_ ##x, #x }
3585 static const struct {
3586 u32 addr;
3587 const char *name;
3588 } hw_data[] = {
3589 IPW2100_REG(REG_GP_CNTRL),
3590 IPW2100_REG(REG_GPIO),
3591 IPW2100_REG(REG_INTA),
3592 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3593 #define IPW2100_NIC(x, s) { x, #x, s }
3594 static const struct {
3595 u32 addr;
3596 const char *name;
3597 size_t size;
3598 } nic_data[] = {
3599 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3600 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3601 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3602 static const struct {
3603 u8 index;
3604 const char *name;
3605 const char *desc;
3606 } ord_data[] = {
3607 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3608 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3609 "successful Host Tx's (MSDU)"),
3610 IPW2100_ORD(STAT_TX_DIR_DATA,
3611 "successful Directed Tx's (MSDU)"),
3612 IPW2100_ORD(STAT_TX_DIR_DATA1,
3613 "successful Directed Tx's (MSDU) @ 1MB"),
3614 IPW2100_ORD(STAT_TX_DIR_DATA2,
3615 "successful Directed Tx's (MSDU) @ 2MB"),
3616 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3617 "successful Directed Tx's (MSDU) @ 5_5MB"),
3618 IPW2100_ORD(STAT_TX_DIR_DATA11,
3619 "successful Directed Tx's (MSDU) @ 11MB"),
3620 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3621 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3622 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3623 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3624 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3625 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3626 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3627 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3628 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3629 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3630 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3631 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3632 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3633 IPW2100_ORD(STAT_TX_ASSN_RESP,
3634 "successful Association response Tx's"),
3635 IPW2100_ORD(STAT_TX_REASSN,
3636 "successful Reassociation Tx's"),
3637 IPW2100_ORD(STAT_TX_REASSN_RESP,
3638 "successful Reassociation response Tx's"),
3639 IPW2100_ORD(STAT_TX_PROBE,
3640 "probes successfully transmitted"),
3641 IPW2100_ORD(STAT_TX_PROBE_RESP,
3642 "probe responses successfully transmitted"),
3643 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3644 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3645 IPW2100_ORD(STAT_TX_DISASSN,
3646 "successful Disassociation TX"),
3647 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3648 IPW2100_ORD(STAT_TX_DEAUTH,
3649 "successful Deauthentication TX"),
3650 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3651 "Total successful Tx data bytes"),
3652 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3653 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3654 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3655 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3656 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3657 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3658 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3659 "times max tries in a hop failed"),
3660 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3661 "times disassociation failed"),
3662 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3663 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3664 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3665 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3666 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3667 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3668 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3669 "directed packets at 5.5MB"),
3670 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3671 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3672 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3673 "nondirected packets at 1MB"),
3674 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3675 "nondirected packets at 2MB"),
3676 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3677 "nondirected packets at 5.5MB"),
3678 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3679 "nondirected packets at 11MB"),
3680 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3681 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3682 "Rx CTS"),
3683 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3684 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3685 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3686 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3687 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3688 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3689 IPW2100_ORD(STAT_RX_REASSN_RESP,
3690 "Reassociation response Rx's"),
3691 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3692 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3693 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3694 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3695 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3696 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3697 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3698 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3699 "Total rx data bytes received"),
3700 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3701 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3702 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3703 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3704 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3705 IPW2100_ORD(STAT_RX_DUPLICATE1,
3706 "duplicate rx packets at 1MB"),
3707 IPW2100_ORD(STAT_RX_DUPLICATE2,
3708 "duplicate rx packets at 2MB"),
3709 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3710 "duplicate rx packets at 5.5MB"),
3711 IPW2100_ORD(STAT_RX_DUPLICATE11,
3712 "duplicate rx packets at 11MB"),
3713 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3714 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3715 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3716 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3717 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3718 "rx frames with invalid protocol"),
3719 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3720 IPW2100_ORD(STAT_RX_NO_BUFFER,
3721 "rx frames rejected due to no buffer"),
3722 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3723 "rx frames dropped due to missing fragment"),
3724 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3725 "rx frames dropped due to non-sequential fragment"),
3726 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3727 "rx frames dropped due to unmatched 1st frame"),
3728 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3729 "rx frames dropped due to uncompleted frame"),
3730 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3731 "ICV errors during decryption"),
3732 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3733 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3734 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3735 "poll response timeouts"),
3736 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3737 "timeouts waiting for last {broad,multi}cast pkt"),
3738 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3739 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3740 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3741 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3742 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3743 "current calculation of % missed beacons"),
3744 IPW2100_ORD(STAT_PERCENT_RETRIES,
3745 "current calculation of % missed tx retries"),
3746 IPW2100_ORD(ASSOCIATED_AP_PTR,
3747 "0 if not associated, else pointer to AP table entry"),
3748 IPW2100_ORD(AVAILABLE_AP_CNT,
3749 "AP's decsribed in the AP table"),
3750 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3751 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3752 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3753 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3754 "failures due to response fail"),
3755 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3756 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3757 IPW2100_ORD(STAT_ROAM_INHIBIT,
3758 "times roaming was inhibited due to activity"),
3759 IPW2100_ORD(RSSI_AT_ASSN,
3760 "RSSI of associated AP at time of association"),
3761 IPW2100_ORD(STAT_ASSN_CAUSE1,
3762 "reassociation: no probe response or TX on hop"),
3763 IPW2100_ORD(STAT_ASSN_CAUSE2,
3764 "reassociation: poor tx/rx quality"),
3765 IPW2100_ORD(STAT_ASSN_CAUSE3,
3766 "reassociation: tx/rx quality (excessive AP load"),
3767 IPW2100_ORD(STAT_ASSN_CAUSE4,
3768 "reassociation: AP RSSI level"),
3769 IPW2100_ORD(STAT_ASSN_CAUSE5,
3770 "reassociations due to load leveling"),
3771 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3772 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3773 "times authentication response failed"),
3774 IPW2100_ORD(STATION_TABLE_CNT,
3775 "entries in association table"),
3776 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3777 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3778 IPW2100_ORD(COUNTRY_CODE,
3779 "IEEE country code as recv'd from beacon"),
3780 IPW2100_ORD(COUNTRY_CHANNELS,
3781 "channels supported by country"),
3782 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3783 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3784 IPW2100_ORD(ANTENNA_DIVERSITY,
3785 "TRUE if antenna diversity is disabled"),
3786 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3787 IPW2100_ORD(OUR_FREQ,
3788 "current radio freq lower digits - channel ID"),
3789 IPW2100_ORD(RTC_TIME, "current RTC time"),
3790 IPW2100_ORD(PORT_TYPE, "operating mode"),
3791 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3792 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3793 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3794 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3795 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3796 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3797 IPW2100_ORD(CAPABILITIES,
3798 "Management frame capability field"),
3799 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3800 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3801 IPW2100_ORD(RTS_THRESHOLD,
3802 "Min packet length for RTS handshaking"),
3803 IPW2100_ORD(INT_MODE, "International mode"),
3804 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3805 "protocol frag threshold"),
3806 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3807 "EEPROM offset in SRAM"),
3808 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3809 "EEPROM size in SRAM"),
3810 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3811 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3812 "EEPROM IBSS 11b channel set"),
3813 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3814 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3815 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3816 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3817 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3818
3819 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3820 char *buf)
3821 {
3822 int i;
3823 struct ipw2100_priv *priv = dev_get_drvdata(d);
3824 struct net_device *dev = priv->net_dev;
3825 char *out = buf;
3826 u32 val = 0;
3827
3828 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3829
3830 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3831 read_register(dev, hw_data[i].addr, &val);
3832 out += sprintf(out, "%30s [%08X] : %08X\n",
3833 hw_data[i].name, hw_data[i].addr, val);
3834 }
3835
3836 return out - buf;
3837 }
3838
3839 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3840
3841 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3842 char *buf)
3843 {
3844 struct ipw2100_priv *priv = dev_get_drvdata(d);
3845 struct net_device *dev = priv->net_dev;
3846 char *out = buf;
3847 int i;
3848
3849 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3850
3851 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3852 u8 tmp8;
3853 u16 tmp16;
3854 u32 tmp32;
3855
3856 switch (nic_data[i].size) {
3857 case 1:
3858 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3859 out += sprintf(out, "%30s [%08X] : %02X\n",
3860 nic_data[i].name, nic_data[i].addr,
3861 tmp8);
3862 break;
3863 case 2:
3864 read_nic_word(dev, nic_data[i].addr, &tmp16);
3865 out += sprintf(out, "%30s [%08X] : %04X\n",
3866 nic_data[i].name, nic_data[i].addr,
3867 tmp16);
3868 break;
3869 case 4:
3870 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3871 out += sprintf(out, "%30s [%08X] : %08X\n",
3872 nic_data[i].name, nic_data[i].addr,
3873 tmp32);
3874 break;
3875 }
3876 }
3877 return out - buf;
3878 }
3879
3880 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3881
3882 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3883 char *buf)
3884 {
3885 struct ipw2100_priv *priv = dev_get_drvdata(d);
3886 struct net_device *dev = priv->net_dev;
3887 static unsigned long loop = 0;
3888 int len = 0;
3889 u32 buffer[4];
3890 int i;
3891 char line[81];
3892
3893 if (loop >= 0x30000)
3894 loop = 0;
3895
3896 /* sysfs provides us PAGE_SIZE buffer */
3897 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3898
3899 if (priv->snapshot[0])
3900 for (i = 0; i < 4; i++)
3901 buffer[i] =
3902 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3903 else
3904 for (i = 0; i < 4; i++)
3905 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3906
3907 if (priv->dump_raw)
3908 len += sprintf(buf + len,
3909 "%c%c%c%c"
3910 "%c%c%c%c"
3911 "%c%c%c%c"
3912 "%c%c%c%c",
3913 ((u8 *) buffer)[0x0],
3914 ((u8 *) buffer)[0x1],
3915 ((u8 *) buffer)[0x2],
3916 ((u8 *) buffer)[0x3],
3917 ((u8 *) buffer)[0x4],
3918 ((u8 *) buffer)[0x5],
3919 ((u8 *) buffer)[0x6],
3920 ((u8 *) buffer)[0x7],
3921 ((u8 *) buffer)[0x8],
3922 ((u8 *) buffer)[0x9],
3923 ((u8 *) buffer)[0xa],
3924 ((u8 *) buffer)[0xb],
3925 ((u8 *) buffer)[0xc],
3926 ((u8 *) buffer)[0xd],
3927 ((u8 *) buffer)[0xe],
3928 ((u8 *) buffer)[0xf]);
3929 else
3930 len += sprintf(buf + len, "%s\n",
3931 snprint_line(line, sizeof(line),
3932 (u8 *) buffer, 16, loop));
3933 loop += 16;
3934 }
3935
3936 return len;
3937 }
3938
3939 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3940 const char *buf, size_t count)
3941 {
3942 struct ipw2100_priv *priv = dev_get_drvdata(d);
3943 struct net_device *dev = priv->net_dev;
3944 const char *p = buf;
3945
3946 (void)dev; /* kill unused-var warning for debug-only code */
3947
3948 if (count < 1)
3949 return count;
3950
3951 if (p[0] == '1' ||
3952 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3953 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3954 dev->name);
3955 priv->dump_raw = 1;
3956
3957 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3958 tolower(p[1]) == 'f')) {
3959 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3960 dev->name);
3961 priv->dump_raw = 0;
3962
3963 } else if (tolower(p[0]) == 'r') {
3964 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3965 ipw2100_snapshot_free(priv);
3966
3967 } else
3968 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3969 "reset = clear memory snapshot\n", dev->name);
3970
3971 return count;
3972 }
3973
3974 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3975
3976 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3977 char *buf)
3978 {
3979 struct ipw2100_priv *priv = dev_get_drvdata(d);
3980 u32 val = 0;
3981 int len = 0;
3982 u32 val_len;
3983 static int loop = 0;
3984
3985 if (priv->status & STATUS_RF_KILL_MASK)
3986 return 0;
3987
3988 if (loop >= ARRAY_SIZE(ord_data))
3989 loop = 0;
3990
3991 /* sysfs provides us PAGE_SIZE buffer */
3992 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3993 val_len = sizeof(u32);
3994
3995 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3996 &val_len))
3997 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3998 ord_data[loop].index,
3999 ord_data[loop].desc);
4000 else
4001 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
4002 ord_data[loop].index, val,
4003 ord_data[loop].desc);
4004 loop++;
4005 }
4006
4007 return len;
4008 }
4009
4010 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
4011
4012 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
4013 char *buf)
4014 {
4015 struct ipw2100_priv *priv = dev_get_drvdata(d);
4016 char *out = buf;
4017
4018 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4019 priv->interrupts, priv->tx_interrupts,
4020 priv->rx_interrupts, priv->inta_other);
4021 out += sprintf(out, "firmware resets: %d\n", priv->resets);
4022 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4023 #ifdef CONFIG_IPW2100_DEBUG
4024 out += sprintf(out, "packet mismatch image: %s\n",
4025 priv->snapshot[0] ? "YES" : "NO");
4026 #endif
4027
4028 return out - buf;
4029 }
4030
4031 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4032
4033 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4034 {
4035 int err;
4036
4037 if (mode == priv->ieee->iw_mode)
4038 return 0;
4039
4040 err = ipw2100_disable_adapter(priv);
4041 if (err) {
4042 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4043 priv->net_dev->name, err);
4044 return err;
4045 }
4046
4047 switch (mode) {
4048 case IW_MODE_INFRA:
4049 priv->net_dev->type = ARPHRD_ETHER;
4050 break;
4051 case IW_MODE_ADHOC:
4052 priv->net_dev->type = ARPHRD_ETHER;
4053 break;
4054 #ifdef CONFIG_IPW2100_MONITOR
4055 case IW_MODE_MONITOR:
4056 priv->last_mode = priv->ieee->iw_mode;
4057 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4058 break;
4059 #endif /* CONFIG_IPW2100_MONITOR */
4060 }
4061
4062 priv->ieee->iw_mode = mode;
4063
4064 #ifdef CONFIG_PM
4065 /* Indicate ipw2100_download_firmware download firmware
4066 * from disk instead of memory. */
4067 ipw2100_firmware.version = 0;
4068 #endif
4069
4070 printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4071 priv->reset_backoff = 0;
4072 schedule_reset(priv);
4073
4074 return 0;
4075 }
4076
4077 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4078 char *buf)
4079 {
4080 struct ipw2100_priv *priv = dev_get_drvdata(d);
4081 int len = 0;
4082
4083 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4084
4085 if (priv->status & STATUS_ASSOCIATED)
4086 len += sprintf(buf + len, "connected: %lu\n",
4087 get_seconds() - priv->connect_start);
4088 else
4089 len += sprintf(buf + len, "not connected\n");
4090
4091 DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4092 DUMP_VAR(status, "08lx");
4093 DUMP_VAR(config, "08lx");
4094 DUMP_VAR(capability, "08lx");
4095
4096 len +=
4097 sprintf(buf + len, "last_rtc: %lu\n",
4098 (unsigned long)priv->last_rtc);
4099
4100 DUMP_VAR(fatal_error, "d");
4101 DUMP_VAR(stop_hang_check, "d");
4102 DUMP_VAR(stop_rf_kill, "d");
4103 DUMP_VAR(messages_sent, "d");
4104
4105 DUMP_VAR(tx_pend_stat.value, "d");
4106 DUMP_VAR(tx_pend_stat.hi, "d");
4107
4108 DUMP_VAR(tx_free_stat.value, "d");
4109 DUMP_VAR(tx_free_stat.lo, "d");
4110
4111 DUMP_VAR(msg_free_stat.value, "d");
4112 DUMP_VAR(msg_free_stat.lo, "d");
4113
4114 DUMP_VAR(msg_pend_stat.value, "d");
4115 DUMP_VAR(msg_pend_stat.hi, "d");
4116
4117 DUMP_VAR(fw_pend_stat.value, "d");
4118 DUMP_VAR(fw_pend_stat.hi, "d");
4119
4120 DUMP_VAR(txq_stat.value, "d");
4121 DUMP_VAR(txq_stat.lo, "d");
4122
4123 DUMP_VAR(ieee->scans, "d");
4124 DUMP_VAR(reset_backoff, "d");
4125
4126 return len;
4127 }
4128
4129 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4130
4131 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4132 char *buf)
4133 {
4134 struct ipw2100_priv *priv = dev_get_drvdata(d);
4135 char essid[IW_ESSID_MAX_SIZE + 1];
4136 u8 bssid[ETH_ALEN];
4137 u32 chan = 0;
4138 char *out = buf;
4139 unsigned int length;
4140 int ret;
4141
4142 if (priv->status & STATUS_RF_KILL_MASK)
4143 return 0;
4144
4145 memset(essid, 0, sizeof(essid));
4146 memset(bssid, 0, sizeof(bssid));
4147
4148 length = IW_ESSID_MAX_SIZE;
4149 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4150 if (ret)
4151 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4152 __LINE__);
4153
4154 length = sizeof(bssid);
4155 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4156 bssid, &length);
4157 if (ret)
4158 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4159 __LINE__);
4160
4161 length = sizeof(u32);
4162 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4163 if (ret)
4164 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4165 __LINE__);
4166
4167 out += sprintf(out, "ESSID: %s\n", essid);
4168 out += sprintf(out, "BSSID: %pM\n", bssid);
4169 out += sprintf(out, "Channel: %d\n", chan);
4170
4171 return out - buf;
4172 }
4173
4174 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4175
4176 #ifdef CONFIG_IPW2100_DEBUG
4177 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4178 {
4179 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4180 }
4181
4182 static ssize_t store_debug_level(struct device_driver *d,
4183 const char *buf, size_t count)
4184 {
4185 char *p = (char *)buf;
4186 u32 val;
4187
4188 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4189 p++;
4190 if (p[0] == 'x' || p[0] == 'X')
4191 p++;
4192 val = simple_strtoul(p, &p, 16);
4193 } else
4194 val = simple_strtoul(p, &p, 10);
4195 if (p == buf)
4196 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4197 else
4198 ipw2100_debug_level = val;
4199
4200 return strnlen(buf, count);
4201 }
4202
4203 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4204 store_debug_level);
4205 #endif /* CONFIG_IPW2100_DEBUG */
4206
4207 static ssize_t show_fatal_error(struct device *d,
4208 struct device_attribute *attr, char *buf)
4209 {
4210 struct ipw2100_priv *priv = dev_get_drvdata(d);
4211 char *out = buf;
4212 int i;
4213
4214 if (priv->fatal_error)
4215 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4216 else
4217 out += sprintf(out, "0\n");
4218
4219 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4220 if (!priv->fatal_errors[(priv->fatal_index - i) %
4221 IPW2100_ERROR_QUEUE])
4222 continue;
4223
4224 out += sprintf(out, "%d. 0x%08X\n", i,
4225 priv->fatal_errors[(priv->fatal_index - i) %
4226 IPW2100_ERROR_QUEUE]);
4227 }
4228
4229 return out - buf;
4230 }
4231
4232 static ssize_t store_fatal_error(struct device *d,
4233 struct device_attribute *attr, const char *buf,
4234 size_t count)
4235 {
4236 struct ipw2100_priv *priv = dev_get_drvdata(d);
4237 schedule_reset(priv);
4238 return count;
4239 }
4240
4241 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4242 store_fatal_error);
4243
4244 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4245 char *buf)
4246 {
4247 struct ipw2100_priv *priv = dev_get_drvdata(d);
4248 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4249 }
4250
4251 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4252 const char *buf, size_t count)
4253 {
4254 struct ipw2100_priv *priv = dev_get_drvdata(d);
4255 struct net_device *dev = priv->net_dev;
4256 char buffer[] = "00000000";
4257 unsigned long len =
4258 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4259 unsigned long val;
4260 char *p = buffer;
4261
4262 (void)dev; /* kill unused-var warning for debug-only code */
4263
4264 IPW_DEBUG_INFO("enter\n");
4265
4266 strncpy(buffer, buf, len);
4267 buffer[len] = 0;
4268
4269 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4270 p++;
4271 if (p[0] == 'x' || p[0] == 'X')
4272 p++;
4273 val = simple_strtoul(p, &p, 16);
4274 } else
4275 val = simple_strtoul(p, &p, 10);
4276 if (p == buffer) {
4277 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4278 } else {
4279 priv->ieee->scan_age = val;
4280 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4281 }
4282
4283 IPW_DEBUG_INFO("exit\n");
4284 return len;
4285 }
4286
4287 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4288
4289 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4290 char *buf)
4291 {
4292 /* 0 - RF kill not enabled
4293 1 - SW based RF kill active (sysfs)
4294 2 - HW based RF kill active
4295 3 - Both HW and SW baed RF kill active */
4296 struct ipw2100_priv *priv = dev_get_drvdata(d);
4297 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4298 (rf_kill_active(priv) ? 0x2 : 0x0);
4299 return sprintf(buf, "%i\n", val);
4300 }
4301
4302 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4303 {
4304 if ((disable_radio ? 1 : 0) ==
4305 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4306 return 0;
4307
4308 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4309 disable_radio ? "OFF" : "ON");
4310
4311 mutex_lock(&priv->action_mutex);
4312
4313 if (disable_radio) {
4314 priv->status |= STATUS_RF_KILL_SW;
4315 ipw2100_down(priv);
4316 } else {
4317 priv->status &= ~STATUS_RF_KILL_SW;
4318 if (rf_kill_active(priv)) {
4319 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4320 "disabled by HW switch\n");
4321 /* Make sure the RF_KILL check timer is running */
4322 priv->stop_rf_kill = 0;
4323 mod_delayed_work(system_wq, &priv->rf_kill,
4324 round_jiffies_relative(HZ));
4325 } else
4326 schedule_reset(priv);
4327 }
4328
4329 mutex_unlock(&priv->action_mutex);
4330 return 1;
4331 }
4332
4333 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4334 const char *buf, size_t count)
4335 {
4336 struct ipw2100_priv *priv = dev_get_drvdata(d);
4337 ipw_radio_kill_sw(priv, buf[0] == '1');
4338 return count;
4339 }
4340
4341 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4342
4343 static struct attribute *ipw2100_sysfs_entries[] = {
4344 &dev_attr_hardware.attr,
4345 &dev_attr_registers.attr,
4346 &dev_attr_ordinals.attr,
4347 &dev_attr_pci.attr,
4348 &dev_attr_stats.attr,
4349 &dev_attr_internals.attr,
4350 &dev_attr_bssinfo.attr,
4351 &dev_attr_memory.attr,
4352 &dev_attr_scan_age.attr,
4353 &dev_attr_fatal_error.attr,
4354 &dev_attr_rf_kill.attr,
4355 &dev_attr_cfg.attr,
4356 &dev_attr_status.attr,
4357 &dev_attr_capability.attr,
4358 NULL,
4359 };
4360
4361 static struct attribute_group ipw2100_attribute_group = {
4362 .attrs = ipw2100_sysfs_entries,
4363 };
4364
4365 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4366 {
4367 struct ipw2100_status_queue *q = &priv->status_queue;
4368
4369 IPW_DEBUG_INFO("enter\n");
4370
4371 q->size = entries * sizeof(struct ipw2100_status);
4372 q->drv =
4373 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4374 q->size, &q->nic);
4375 if (!q->drv) {
4376 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4377 return -ENOMEM;
4378 }
4379
4380 memset(q->drv, 0, q->size);
4381
4382 IPW_DEBUG_INFO("exit\n");
4383
4384 return 0;
4385 }
4386
4387 static void status_queue_free(struct ipw2100_priv *priv)
4388 {
4389 IPW_DEBUG_INFO("enter\n");
4390
4391 if (priv->status_queue.drv) {
4392 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4393 priv->status_queue.drv,
4394 priv->status_queue.nic);
4395 priv->status_queue.drv = NULL;
4396 }
4397
4398 IPW_DEBUG_INFO("exit\n");
4399 }
4400
4401 static int bd_queue_allocate(struct ipw2100_priv *priv,
4402 struct ipw2100_bd_queue *q, int entries)
4403 {
4404 IPW_DEBUG_INFO("enter\n");
4405
4406 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4407
4408 q->entries = entries;
4409 q->size = entries * sizeof(struct ipw2100_bd);
4410 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4411 if (!q->drv) {
4412 IPW_DEBUG_INFO
4413 ("can't allocate shared memory for buffer descriptors\n");
4414 return -ENOMEM;
4415 }
4416 memset(q->drv, 0, q->size);
4417
4418 IPW_DEBUG_INFO("exit\n");
4419
4420 return 0;
4421 }
4422
4423 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4424 {
4425 IPW_DEBUG_INFO("enter\n");
4426
4427 if (!q)
4428 return;
4429
4430 if (q->drv) {
4431 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4432 q->drv = NULL;
4433 }
4434
4435 IPW_DEBUG_INFO("exit\n");
4436 }
4437
4438 static void bd_queue_initialize(struct ipw2100_priv *priv,
4439 struct ipw2100_bd_queue *q, u32 base, u32 size,
4440 u32 r, u32 w)
4441 {
4442 IPW_DEBUG_INFO("enter\n");
4443
4444 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4445 (u32) q->nic);
4446
4447 write_register(priv->net_dev, base, q->nic);
4448 write_register(priv->net_dev, size, q->entries);
4449 write_register(priv->net_dev, r, q->oldest);
4450 write_register(priv->net_dev, w, q->next);
4451
4452 IPW_DEBUG_INFO("exit\n");
4453 }
4454
4455 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4456 {
4457 priv->stop_rf_kill = 1;
4458 priv->stop_hang_check = 1;
4459 cancel_delayed_work_sync(&priv->reset_work);
4460 cancel_delayed_work_sync(&priv->security_work);
4461 cancel_delayed_work_sync(&priv->wx_event_work);
4462 cancel_delayed_work_sync(&priv->hang_check);
4463 cancel_delayed_work_sync(&priv->rf_kill);
4464 cancel_work_sync(&priv->scan_event_now);
4465 cancel_delayed_work_sync(&priv->scan_event_later);
4466 }
4467
4468 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4469 {
4470 int i, j, err = -EINVAL;
4471 void *v;
4472 dma_addr_t p;
4473
4474 IPW_DEBUG_INFO("enter\n");
4475
4476 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4477 if (err) {
4478 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4479 priv->net_dev->name);
4480 return err;
4481 }
4482
4483 priv->tx_buffers =
4484 kmalloc(TX_PENDED_QUEUE_LENGTH * sizeof(struct ipw2100_tx_packet),
4485 GFP_ATOMIC);
4486 if (!priv->tx_buffers) {
4487 printk(KERN_ERR DRV_NAME
4488 ": %s: alloc failed form tx buffers.\n",
4489 priv->net_dev->name);
4490 bd_queue_free(priv, &priv->tx_queue);
4491 return -ENOMEM;
4492 }
4493
4494 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4495 v = pci_alloc_consistent(priv->pci_dev,
4496 sizeof(struct ipw2100_data_header),
4497 &p);
4498 if (!v) {
4499 printk(KERN_ERR DRV_NAME
4500 ": %s: PCI alloc failed for tx " "buffers.\n",
4501 priv->net_dev->name);
4502 err = -ENOMEM;
4503 break;
4504 }
4505
4506 priv->tx_buffers[i].type = DATA;
4507 priv->tx_buffers[i].info.d_struct.data =
4508 (struct ipw2100_data_header *)v;
4509 priv->tx_buffers[i].info.d_struct.data_phys = p;
4510 priv->tx_buffers[i].info.d_struct.txb = NULL;
4511 }
4512
4513 if (i == TX_PENDED_QUEUE_LENGTH)
4514 return 0;
4515
4516 for (j = 0; j < i; j++) {
4517 pci_free_consistent(priv->pci_dev,
4518 sizeof(struct ipw2100_data_header),
4519 priv->tx_buffers[j].info.d_struct.data,
4520 priv->tx_buffers[j].info.d_struct.
4521 data_phys);
4522 }
4523
4524 kfree(priv->tx_buffers);
4525 priv->tx_buffers = NULL;
4526
4527 return err;
4528 }
4529
4530 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4531 {
4532 int i;
4533
4534 IPW_DEBUG_INFO("enter\n");
4535
4536 /*
4537 * reinitialize packet info lists
4538 */
4539 INIT_LIST_HEAD(&priv->fw_pend_list);
4540 INIT_STAT(&priv->fw_pend_stat);
4541
4542 /*
4543 * reinitialize lists
4544 */
4545 INIT_LIST_HEAD(&priv->tx_pend_list);
4546 INIT_LIST_HEAD(&priv->tx_free_list);
4547 INIT_STAT(&priv->tx_pend_stat);
4548 INIT_STAT(&priv->tx_free_stat);
4549
4550 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4551 /* We simply drop any SKBs that have been queued for
4552 * transmit */
4553 if (priv->tx_buffers[i].info.d_struct.txb) {
4554 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4555 txb);
4556 priv->tx_buffers[i].info.d_struct.txb = NULL;
4557 }
4558
4559 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4560 }
4561
4562 SET_STAT(&priv->tx_free_stat, i);
4563
4564 priv->tx_queue.oldest = 0;
4565 priv->tx_queue.available = priv->tx_queue.entries;
4566 priv->tx_queue.next = 0;
4567 INIT_STAT(&priv->txq_stat);
4568 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4569
4570 bd_queue_initialize(priv, &priv->tx_queue,
4571 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4572 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4573 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4574 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4575
4576 IPW_DEBUG_INFO("exit\n");
4577
4578 }
4579
4580 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4581 {
4582 int i;
4583
4584 IPW_DEBUG_INFO("enter\n");
4585
4586 bd_queue_free(priv, &priv->tx_queue);
4587
4588 if (!priv->tx_buffers)
4589 return;
4590
4591 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4592 if (priv->tx_buffers[i].info.d_struct.txb) {
4593 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4594 txb);
4595 priv->tx_buffers[i].info.d_struct.txb = NULL;
4596 }
4597 if (priv->tx_buffers[i].info.d_struct.data)
4598 pci_free_consistent(priv->pci_dev,
4599 sizeof(struct ipw2100_data_header),
4600 priv->tx_buffers[i].info.d_struct.
4601 data,
4602 priv->tx_buffers[i].info.d_struct.
4603 data_phys);
4604 }
4605
4606 kfree(priv->tx_buffers);
4607 priv->tx_buffers = NULL;
4608
4609 IPW_DEBUG_INFO("exit\n");
4610 }
4611
4612 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4613 {
4614 int i, j, err = -EINVAL;
4615
4616 IPW_DEBUG_INFO("enter\n");
4617
4618 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4619 if (err) {
4620 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4621 return err;
4622 }
4623
4624 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4625 if (err) {
4626 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4627 bd_queue_free(priv, &priv->rx_queue);
4628 return err;
4629 }
4630
4631 /*
4632 * allocate packets
4633 */
4634 priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4635 sizeof(struct ipw2100_rx_packet),
4636 GFP_KERNEL);
4637 if (!priv->rx_buffers) {
4638 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4639
4640 bd_queue_free(priv, &priv->rx_queue);
4641
4642 status_queue_free(priv);
4643
4644 return -ENOMEM;
4645 }
4646
4647 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4648 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4649
4650 err = ipw2100_alloc_skb(priv, packet);
4651 if (unlikely(err)) {
4652 err = -ENOMEM;
4653 break;
4654 }
4655
4656 /* The BD holds the cache aligned address */
4657 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4658 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4659 priv->status_queue.drv[i].status_fields = 0;
4660 }
4661
4662 if (i == RX_QUEUE_LENGTH)
4663 return 0;
4664
4665 for (j = 0; j < i; j++) {
4666 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4667 sizeof(struct ipw2100_rx_packet),
4668 PCI_DMA_FROMDEVICE);
4669 dev_kfree_skb(priv->rx_buffers[j].skb);
4670 }
4671
4672 kfree(priv->rx_buffers);
4673 priv->rx_buffers = NULL;
4674
4675 bd_queue_free(priv, &priv->rx_queue);
4676
4677 status_queue_free(priv);
4678
4679 return err;
4680 }
4681
4682 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4683 {
4684 IPW_DEBUG_INFO("enter\n");
4685
4686 priv->rx_queue.oldest = 0;
4687 priv->rx_queue.available = priv->rx_queue.entries - 1;
4688 priv->rx_queue.next = priv->rx_queue.entries - 1;
4689
4690 INIT_STAT(&priv->rxq_stat);
4691 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4692
4693 bd_queue_initialize(priv, &priv->rx_queue,
4694 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4695 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4696 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4697 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4698
4699 /* set up the status queue */
4700 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4701 priv->status_queue.nic);
4702
4703 IPW_DEBUG_INFO("exit\n");
4704 }
4705
4706 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4707 {
4708 int i;
4709
4710 IPW_DEBUG_INFO("enter\n");
4711
4712 bd_queue_free(priv, &priv->rx_queue);
4713 status_queue_free(priv);
4714
4715 if (!priv->rx_buffers)
4716 return;
4717
4718 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4719 if (priv->rx_buffers[i].rxp) {
4720 pci_unmap_single(priv->pci_dev,
4721 priv->rx_buffers[i].dma_addr,
4722 sizeof(struct ipw2100_rx),
4723 PCI_DMA_FROMDEVICE);
4724 dev_kfree_skb(priv->rx_buffers[i].skb);
4725 }
4726 }
4727
4728 kfree(priv->rx_buffers);
4729 priv->rx_buffers = NULL;
4730
4731 IPW_DEBUG_INFO("exit\n");
4732 }
4733
4734 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4735 {
4736 u32 length = ETH_ALEN;
4737 u8 addr[ETH_ALEN];
4738
4739 int err;
4740
4741 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4742 if (err) {
4743 IPW_DEBUG_INFO("MAC address read failed\n");
4744 return -EIO;
4745 }
4746
4747 memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4748 IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4749
4750 return 0;
4751 }
4752
4753 /********************************************************************
4754 *
4755 * Firmware Commands
4756 *
4757 ********************************************************************/
4758
4759 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4760 {
4761 struct host_command cmd = {
4762 .host_command = ADAPTER_ADDRESS,
4763 .host_command_sequence = 0,
4764 .host_command_length = ETH_ALEN
4765 };
4766 int err;
4767
4768 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4769
4770 IPW_DEBUG_INFO("enter\n");
4771
4772 if (priv->config & CFG_CUSTOM_MAC) {
4773 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4774 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4775 } else
4776 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4777 ETH_ALEN);
4778
4779 err = ipw2100_hw_send_command(priv, &cmd);
4780
4781 IPW_DEBUG_INFO("exit\n");
4782 return err;
4783 }
4784
4785 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4786 int batch_mode)
4787 {
4788 struct host_command cmd = {
4789 .host_command = PORT_TYPE,
4790 .host_command_sequence = 0,
4791 .host_command_length = sizeof(u32)
4792 };
4793 int err;
4794
4795 switch (port_type) {
4796 case IW_MODE_INFRA:
4797 cmd.host_command_parameters[0] = IPW_BSS;
4798 break;
4799 case IW_MODE_ADHOC:
4800 cmd.host_command_parameters[0] = IPW_IBSS;
4801 break;
4802 }
4803
4804 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4805 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4806
4807 if (!batch_mode) {
4808 err = ipw2100_disable_adapter(priv);
4809 if (err) {
4810 printk(KERN_ERR DRV_NAME
4811 ": %s: Could not disable adapter %d\n",
4812 priv->net_dev->name, err);
4813 return err;
4814 }
4815 }
4816
4817 /* send cmd to firmware */
4818 err = ipw2100_hw_send_command(priv, &cmd);
4819
4820 if (!batch_mode)
4821 ipw2100_enable_adapter(priv);
4822
4823 return err;
4824 }
4825
4826 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4827 int batch_mode)
4828 {
4829 struct host_command cmd = {
4830 .host_command = CHANNEL,
4831 .host_command_sequence = 0,
4832 .host_command_length = sizeof(u32)
4833 };
4834 int err;
4835
4836 cmd.host_command_parameters[0] = channel;
4837
4838 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4839
4840 /* If BSS then we don't support channel selection */
4841 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4842 return 0;
4843
4844 if ((channel != 0) &&
4845 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4846 return -EINVAL;
4847
4848 if (!batch_mode) {
4849 err = ipw2100_disable_adapter(priv);
4850 if (err)
4851 return err;
4852 }
4853
4854 err = ipw2100_hw_send_command(priv, &cmd);
4855 if (err) {
4856 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4857 return err;
4858 }
4859
4860 if (channel)
4861 priv->config |= CFG_STATIC_CHANNEL;
4862 else
4863 priv->config &= ~CFG_STATIC_CHANNEL;
4864
4865 priv->channel = channel;
4866
4867 if (!batch_mode) {
4868 err = ipw2100_enable_adapter(priv);
4869 if (err)
4870 return err;
4871 }
4872
4873 return 0;
4874 }
4875
4876 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4877 {
4878 struct host_command cmd = {
4879 .host_command = SYSTEM_CONFIG,
4880 .host_command_sequence = 0,
4881 .host_command_length = 12,
4882 };
4883 u32 ibss_mask, len = sizeof(u32);
4884 int err;
4885
4886 /* Set system configuration */
4887
4888 if (!batch_mode) {
4889 err = ipw2100_disable_adapter(priv);
4890 if (err)
4891 return err;
4892 }
4893
4894 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4895 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4896
4897 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4898 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4899
4900 if (!(priv->config & CFG_LONG_PREAMBLE))
4901 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4902
4903 err = ipw2100_get_ordinal(priv,
4904 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4905 &ibss_mask, &len);
4906 if (err)
4907 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4908
4909 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4910 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4911
4912 /* 11b only */
4913 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4914
4915 err = ipw2100_hw_send_command(priv, &cmd);
4916 if (err)
4917 return err;
4918
4919 /* If IPv6 is configured in the kernel then we don't want to filter out all
4920 * of the multicast packets as IPv6 needs some. */
4921 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4922 cmd.host_command = ADD_MULTICAST;
4923 cmd.host_command_sequence = 0;
4924 cmd.host_command_length = 0;
4925
4926 ipw2100_hw_send_command(priv, &cmd);
4927 #endif
4928 if (!batch_mode) {
4929 err = ipw2100_enable_adapter(priv);
4930 if (err)
4931 return err;
4932 }
4933
4934 return 0;
4935 }
4936
4937 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4938 int batch_mode)
4939 {
4940 struct host_command cmd = {
4941 .host_command = BASIC_TX_RATES,
4942 .host_command_sequence = 0,
4943 .host_command_length = 4
4944 };
4945 int err;
4946
4947 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4948
4949 if (!batch_mode) {
4950 err = ipw2100_disable_adapter(priv);
4951 if (err)
4952 return err;
4953 }
4954
4955 /* Set BASIC TX Rate first */
4956 ipw2100_hw_send_command(priv, &cmd);
4957
4958 /* Set TX Rate */
4959 cmd.host_command = TX_RATES;
4960 ipw2100_hw_send_command(priv, &cmd);
4961
4962 /* Set MSDU TX Rate */
4963 cmd.host_command = MSDU_TX_RATES;
4964 ipw2100_hw_send_command(priv, &cmd);
4965
4966 if (!batch_mode) {
4967 err = ipw2100_enable_adapter(priv);
4968 if (err)
4969 return err;
4970 }
4971
4972 priv->tx_rates = rate;
4973
4974 return 0;
4975 }
4976
4977 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4978 {
4979 struct host_command cmd = {
4980 .host_command = POWER_MODE,
4981 .host_command_sequence = 0,
4982 .host_command_length = 4
4983 };
4984 int err;
4985
4986 cmd.host_command_parameters[0] = power_level;
4987
4988 err = ipw2100_hw_send_command(priv, &cmd);
4989 if (err)
4990 return err;
4991
4992 if (power_level == IPW_POWER_MODE_CAM)
4993 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4994 else
4995 priv->power_mode = IPW_POWER_ENABLED | power_level;
4996
4997 #ifdef IPW2100_TX_POWER
4998 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4999 /* Set beacon interval */
5000 cmd.host_command = TX_POWER_INDEX;
5001 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
5002
5003 err = ipw2100_hw_send_command(priv, &cmd);
5004 if (err)
5005 return err;
5006 }
5007 #endif
5008
5009 return 0;
5010 }
5011
5012 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
5013 {
5014 struct host_command cmd = {
5015 .host_command = RTS_THRESHOLD,
5016 .host_command_sequence = 0,
5017 .host_command_length = 4
5018 };
5019 int err;
5020
5021 if (threshold & RTS_DISABLED)
5022 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
5023 else
5024 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
5025
5026 err = ipw2100_hw_send_command(priv, &cmd);
5027 if (err)
5028 return err;
5029
5030 priv->rts_threshold = threshold;
5031
5032 return 0;
5033 }
5034
5035 #if 0
5036 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
5037 u32 threshold, int batch_mode)
5038 {
5039 struct host_command cmd = {
5040 .host_command = FRAG_THRESHOLD,
5041 .host_command_sequence = 0,
5042 .host_command_length = 4,
5043 .host_command_parameters[0] = 0,
5044 };
5045 int err;
5046
5047 if (!batch_mode) {
5048 err = ipw2100_disable_adapter(priv);
5049 if (err)
5050 return err;
5051 }
5052
5053 if (threshold == 0)
5054 threshold = DEFAULT_FRAG_THRESHOLD;
5055 else {
5056 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5057 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5058 }
5059
5060 cmd.host_command_parameters[0] = threshold;
5061
5062 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5063
5064 err = ipw2100_hw_send_command(priv, &cmd);
5065
5066 if (!batch_mode)
5067 ipw2100_enable_adapter(priv);
5068
5069 if (!err)
5070 priv->frag_threshold = threshold;
5071
5072 return err;
5073 }
5074 #endif
5075
5076 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5077 {
5078 struct host_command cmd = {
5079 .host_command = SHORT_RETRY_LIMIT,
5080 .host_command_sequence = 0,
5081 .host_command_length = 4
5082 };
5083 int err;
5084
5085 cmd.host_command_parameters[0] = retry;
5086
5087 err = ipw2100_hw_send_command(priv, &cmd);
5088 if (err)
5089 return err;
5090
5091 priv->short_retry_limit = retry;
5092
5093 return 0;
5094 }
5095
5096 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5097 {
5098 struct host_command cmd = {
5099 .host_command = LONG_RETRY_LIMIT,
5100 .host_command_sequence = 0,
5101 .host_command_length = 4
5102 };
5103 int err;
5104
5105 cmd.host_command_parameters[0] = retry;
5106
5107 err = ipw2100_hw_send_command(priv, &cmd);
5108 if (err)
5109 return err;
5110
5111 priv->long_retry_limit = retry;
5112
5113 return 0;
5114 }
5115
5116 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5117 int batch_mode)
5118 {
5119 struct host_command cmd = {
5120 .host_command = MANDATORY_BSSID,
5121 .host_command_sequence = 0,
5122 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5123 };
5124 int err;
5125
5126 #ifdef CONFIG_IPW2100_DEBUG
5127 if (bssid != NULL)
5128 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5129 else
5130 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5131 #endif
5132 /* if BSSID is empty then we disable mandatory bssid mode */
5133 if (bssid != NULL)
5134 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5135
5136 if (!batch_mode) {
5137 err = ipw2100_disable_adapter(priv);
5138 if (err)
5139 return err;
5140 }
5141
5142 err = ipw2100_hw_send_command(priv, &cmd);
5143
5144 if (!batch_mode)
5145 ipw2100_enable_adapter(priv);
5146
5147 return err;
5148 }
5149
5150 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5151 {
5152 struct host_command cmd = {
5153 .host_command = DISASSOCIATION_BSSID,
5154 .host_command_sequence = 0,
5155 .host_command_length = ETH_ALEN
5156 };
5157 int err;
5158 int len;
5159
5160 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5161
5162 len = ETH_ALEN;
5163 /* The Firmware currently ignores the BSSID and just disassociates from
5164 * the currently associated AP -- but in the off chance that a future
5165 * firmware does use the BSSID provided here, we go ahead and try and
5166 * set it to the currently associated AP's BSSID */
5167 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5168
5169 err = ipw2100_hw_send_command(priv, &cmd);
5170
5171 return err;
5172 }
5173
5174 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5175 struct ipw2100_wpa_assoc_frame *, int)
5176 __attribute__ ((unused));
5177
5178 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5179 struct ipw2100_wpa_assoc_frame *wpa_frame,
5180 int batch_mode)
5181 {
5182 struct host_command cmd = {
5183 .host_command = SET_WPA_IE,
5184 .host_command_sequence = 0,
5185 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5186 };
5187 int err;
5188
5189 IPW_DEBUG_HC("SET_WPA_IE\n");
5190
5191 if (!batch_mode) {
5192 err = ipw2100_disable_adapter(priv);
5193 if (err)
5194 return err;
5195 }
5196
5197 memcpy(cmd.host_command_parameters, wpa_frame,
5198 sizeof(struct ipw2100_wpa_assoc_frame));
5199
5200 err = ipw2100_hw_send_command(priv, &cmd);
5201
5202 if (!batch_mode) {
5203 if (ipw2100_enable_adapter(priv))
5204 err = -EIO;
5205 }
5206
5207 return err;
5208 }
5209
5210 struct security_info_params {
5211 u32 allowed_ciphers;
5212 u16 version;
5213 u8 auth_mode;
5214 u8 replay_counters_number;
5215 u8 unicast_using_group;
5216 } __packed;
5217
5218 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5219 int auth_mode,
5220 int security_level,
5221 int unicast_using_group,
5222 int batch_mode)
5223 {
5224 struct host_command cmd = {
5225 .host_command = SET_SECURITY_INFORMATION,
5226 .host_command_sequence = 0,
5227 .host_command_length = sizeof(struct security_info_params)
5228 };
5229 struct security_info_params *security =
5230 (struct security_info_params *)&cmd.host_command_parameters;
5231 int err;
5232 memset(security, 0, sizeof(*security));
5233
5234 /* If shared key AP authentication is turned on, then we need to
5235 * configure the firmware to try and use it.
5236 *
5237 * Actual data encryption/decryption is handled by the host. */
5238 security->auth_mode = auth_mode;
5239 security->unicast_using_group = unicast_using_group;
5240
5241 switch (security_level) {
5242 default:
5243 case SEC_LEVEL_0:
5244 security->allowed_ciphers = IPW_NONE_CIPHER;
5245 break;
5246 case SEC_LEVEL_1:
5247 security->allowed_ciphers = IPW_WEP40_CIPHER |
5248 IPW_WEP104_CIPHER;
5249 break;
5250 case SEC_LEVEL_2:
5251 security->allowed_ciphers = IPW_WEP40_CIPHER |
5252 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5253 break;
5254 case SEC_LEVEL_2_CKIP:
5255 security->allowed_ciphers = IPW_WEP40_CIPHER |
5256 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5257 break;
5258 case SEC_LEVEL_3:
5259 security->allowed_ciphers = IPW_WEP40_CIPHER |
5260 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5261 break;
5262 }
5263
5264 IPW_DEBUG_HC
5265 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5266 security->auth_mode, security->allowed_ciphers, security_level);
5267
5268 security->replay_counters_number = 0;
5269
5270 if (!batch_mode) {
5271 err = ipw2100_disable_adapter(priv);
5272 if (err)
5273 return err;
5274 }
5275
5276 err = ipw2100_hw_send_command(priv, &cmd);
5277
5278 if (!batch_mode)
5279 ipw2100_enable_adapter(priv);
5280
5281 return err;
5282 }
5283
5284 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5285 {
5286 struct host_command cmd = {
5287 .host_command = TX_POWER_INDEX,
5288 .host_command_sequence = 0,
5289 .host_command_length = 4
5290 };
5291 int err = 0;
5292 u32 tmp = tx_power;
5293
5294 if (tx_power != IPW_TX_POWER_DEFAULT)
5295 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5296 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5297
5298 cmd.host_command_parameters[0] = tmp;
5299
5300 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5301 err = ipw2100_hw_send_command(priv, &cmd);
5302 if (!err)
5303 priv->tx_power = tx_power;
5304
5305 return 0;
5306 }
5307
5308 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5309 u32 interval, int batch_mode)
5310 {
5311 struct host_command cmd = {
5312 .host_command = BEACON_INTERVAL,
5313 .host_command_sequence = 0,
5314 .host_command_length = 4
5315 };
5316 int err;
5317
5318 cmd.host_command_parameters[0] = interval;
5319
5320 IPW_DEBUG_INFO("enter\n");
5321
5322 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5323 if (!batch_mode) {
5324 err = ipw2100_disable_adapter(priv);
5325 if (err)
5326 return err;
5327 }
5328
5329 ipw2100_hw_send_command(priv, &cmd);
5330
5331 if (!batch_mode) {
5332 err = ipw2100_enable_adapter(priv);
5333 if (err)
5334 return err;
5335 }
5336 }
5337
5338 IPW_DEBUG_INFO("exit\n");
5339
5340 return 0;
5341 }
5342
5343 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5344 {
5345 ipw2100_tx_initialize(priv);
5346 ipw2100_rx_initialize(priv);
5347 ipw2100_msg_initialize(priv);
5348 }
5349
5350 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5351 {
5352 ipw2100_tx_free(priv);
5353 ipw2100_rx_free(priv);
5354 ipw2100_msg_free(priv);
5355 }
5356
5357 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5358 {
5359 if (ipw2100_tx_allocate(priv) ||
5360 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5361 goto fail;
5362
5363 return 0;
5364
5365 fail:
5366 ipw2100_tx_free(priv);
5367 ipw2100_rx_free(priv);
5368 ipw2100_msg_free(priv);
5369 return -ENOMEM;
5370 }
5371
5372 #define IPW_PRIVACY_CAPABLE 0x0008
5373
5374 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5375 int batch_mode)
5376 {
5377 struct host_command cmd = {
5378 .host_command = WEP_FLAGS,
5379 .host_command_sequence = 0,
5380 .host_command_length = 4
5381 };
5382 int err;
5383
5384 cmd.host_command_parameters[0] = flags;
5385
5386 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5387
5388 if (!batch_mode) {
5389 err = ipw2100_disable_adapter(priv);
5390 if (err) {
5391 printk(KERN_ERR DRV_NAME
5392 ": %s: Could not disable adapter %d\n",
5393 priv->net_dev->name, err);
5394 return err;
5395 }
5396 }
5397
5398 /* send cmd to firmware */
5399 err = ipw2100_hw_send_command(priv, &cmd);
5400
5401 if (!batch_mode)
5402 ipw2100_enable_adapter(priv);
5403
5404 return err;
5405 }
5406
5407 struct ipw2100_wep_key {
5408 u8 idx;
5409 u8 len;
5410 u8 key[13];
5411 };
5412
5413 /* Macros to ease up priting WEP keys */
5414 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5415 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5416 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5417 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5418
5419 /**
5420 * Set a the wep key
5421 *
5422 * @priv: struct to work on
5423 * @idx: index of the key we want to set
5424 * @key: ptr to the key data to set
5425 * @len: length of the buffer at @key
5426 * @batch_mode: FIXME perform the operation in batch mode, not
5427 * disabling the device.
5428 *
5429 * @returns 0 if OK, < 0 errno code on error.
5430 *
5431 * Fill out a command structure with the new wep key, length an
5432 * index and send it down the wire.
5433 */
5434 static int ipw2100_set_key(struct ipw2100_priv *priv,
5435 int idx, char *key, int len, int batch_mode)
5436 {
5437 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5438 struct host_command cmd = {
5439 .host_command = WEP_KEY_INFO,
5440 .host_command_sequence = 0,
5441 .host_command_length = sizeof(struct ipw2100_wep_key),
5442 };
5443 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5444 int err;
5445
5446 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5447 idx, keylen, len);
5448
5449 /* NOTE: We don't check cached values in case the firmware was reset
5450 * or some other problem is occurring. If the user is setting the key,
5451 * then we push the change */
5452
5453 wep_key->idx = idx;
5454 wep_key->len = keylen;
5455
5456 if (keylen) {
5457 memcpy(wep_key->key, key, len);
5458 memset(wep_key->key + len, 0, keylen - len);
5459 }
5460
5461 /* Will be optimized out on debug not being configured in */
5462 if (keylen == 0)
5463 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5464 priv->net_dev->name, wep_key->idx);
5465 else if (keylen == 5)
5466 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5467 priv->net_dev->name, wep_key->idx, wep_key->len,
5468 WEP_STR_64(wep_key->key));
5469 else
5470 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5471 "\n",
5472 priv->net_dev->name, wep_key->idx, wep_key->len,
5473 WEP_STR_128(wep_key->key));
5474
5475 if (!batch_mode) {
5476 err = ipw2100_disable_adapter(priv);
5477 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5478 if (err) {
5479 printk(KERN_ERR DRV_NAME
5480 ": %s: Could not disable adapter %d\n",
5481 priv->net_dev->name, err);
5482 return err;
5483 }
5484 }
5485
5486 /* send cmd to firmware */
5487 err = ipw2100_hw_send_command(priv, &cmd);
5488
5489 if (!batch_mode) {
5490 int err2 = ipw2100_enable_adapter(priv);
5491 if (err == 0)
5492 err = err2;
5493 }
5494 return err;
5495 }
5496
5497 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5498 int idx, int batch_mode)
5499 {
5500 struct host_command cmd = {
5501 .host_command = WEP_KEY_INDEX,
5502 .host_command_sequence = 0,
5503 .host_command_length = 4,
5504 .host_command_parameters = {idx},
5505 };
5506 int err;
5507
5508 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5509
5510 if (idx < 0 || idx > 3)
5511 return -EINVAL;
5512
5513 if (!batch_mode) {
5514 err = ipw2100_disable_adapter(priv);
5515 if (err) {
5516 printk(KERN_ERR DRV_NAME
5517 ": %s: Could not disable adapter %d\n",
5518 priv->net_dev->name, err);
5519 return err;
5520 }
5521 }
5522
5523 /* send cmd to firmware */
5524 err = ipw2100_hw_send_command(priv, &cmd);
5525
5526 if (!batch_mode)
5527 ipw2100_enable_adapter(priv);
5528
5529 return err;
5530 }
5531
5532 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5533 {
5534 int i, err, auth_mode, sec_level, use_group;
5535
5536 if (!(priv->status & STATUS_RUNNING))
5537 return 0;
5538
5539 if (!batch_mode) {
5540 err = ipw2100_disable_adapter(priv);
5541 if (err)
5542 return err;
5543 }
5544
5545 if (!priv->ieee->sec.enabled) {
5546 err =
5547 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5548 SEC_LEVEL_0, 0, 1);
5549 } else {
5550 auth_mode = IPW_AUTH_OPEN;
5551 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5552 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5553 auth_mode = IPW_AUTH_SHARED;
5554 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5555 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5556 }
5557
5558 sec_level = SEC_LEVEL_0;
5559 if (priv->ieee->sec.flags & SEC_LEVEL)
5560 sec_level = priv->ieee->sec.level;
5561
5562 use_group = 0;
5563 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5564 use_group = priv->ieee->sec.unicast_uses_group;
5565
5566 err =
5567 ipw2100_set_security_information(priv, auth_mode, sec_level,
5568 use_group, 1);
5569 }
5570
5571 if (err)
5572 goto exit;
5573
5574 if (priv->ieee->sec.enabled) {
5575 for (i = 0; i < 4; i++) {
5576 if (!(priv->ieee->sec.flags & (1 << i))) {
5577 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5578 priv->ieee->sec.key_sizes[i] = 0;
5579 } else {
5580 err = ipw2100_set_key(priv, i,
5581 priv->ieee->sec.keys[i],
5582 priv->ieee->sec.
5583 key_sizes[i], 1);
5584 if (err)
5585 goto exit;
5586 }
5587 }
5588
5589 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5590 }
5591
5592 /* Always enable privacy so the Host can filter WEP packets if
5593 * encrypted data is sent up */
5594 err =
5595 ipw2100_set_wep_flags(priv,
5596 priv->ieee->sec.
5597 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5598 if (err)
5599 goto exit;
5600
5601 priv->status &= ~STATUS_SECURITY_UPDATED;
5602
5603 exit:
5604 if (!batch_mode)
5605 ipw2100_enable_adapter(priv);
5606
5607 return err;
5608 }
5609
5610 static void ipw2100_security_work(struct work_struct *work)
5611 {
5612 struct ipw2100_priv *priv =
5613 container_of(work, struct ipw2100_priv, security_work.work);
5614
5615 /* If we happen to have reconnected before we get a chance to
5616 * process this, then update the security settings--which causes
5617 * a disassociation to occur */
5618 if (!(priv->status & STATUS_ASSOCIATED) &&
5619 priv->status & STATUS_SECURITY_UPDATED)
5620 ipw2100_configure_security(priv, 0);
5621 }
5622
5623 static void shim__set_security(struct net_device *dev,
5624 struct libipw_security *sec)
5625 {
5626 struct ipw2100_priv *priv = libipw_priv(dev);
5627 int i, force_update = 0;
5628
5629 mutex_lock(&priv->action_mutex);
5630 if (!(priv->status & STATUS_INITIALIZED))
5631 goto done;
5632
5633 for (i = 0; i < 4; i++) {
5634 if (sec->flags & (1 << i)) {
5635 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5636 if (sec->key_sizes[i] == 0)
5637 priv->ieee->sec.flags &= ~(1 << i);
5638 else
5639 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5640 sec->key_sizes[i]);
5641 if (sec->level == SEC_LEVEL_1) {
5642 priv->ieee->sec.flags |= (1 << i);
5643 priv->status |= STATUS_SECURITY_UPDATED;
5644 } else
5645 priv->ieee->sec.flags &= ~(1 << i);
5646 }
5647 }
5648
5649 if ((sec->flags & SEC_ACTIVE_KEY) &&
5650 priv->ieee->sec.active_key != sec->active_key) {
5651 if (sec->active_key <= 3) {
5652 priv->ieee->sec.active_key = sec->active_key;
5653 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5654 } else
5655 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5656
5657 priv->status |= STATUS_SECURITY_UPDATED;
5658 }
5659
5660 if ((sec->flags & SEC_AUTH_MODE) &&
5661 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5662 priv->ieee->sec.auth_mode = sec->auth_mode;
5663 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5664 priv->status |= STATUS_SECURITY_UPDATED;
5665 }
5666
5667 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5668 priv->ieee->sec.flags |= SEC_ENABLED;
5669 priv->ieee->sec.enabled = sec->enabled;
5670 priv->status |= STATUS_SECURITY_UPDATED;
5671 force_update = 1;
5672 }
5673
5674 if (sec->flags & SEC_ENCRYPT)
5675 priv->ieee->sec.encrypt = sec->encrypt;
5676
5677 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5678 priv->ieee->sec.level = sec->level;
5679 priv->ieee->sec.flags |= SEC_LEVEL;
5680 priv->status |= STATUS_SECURITY_UPDATED;
5681 }
5682
5683 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5684 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5685 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5686 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5687 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5688 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5689 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5690 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5691 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5692 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5693
5694 /* As a temporary work around to enable WPA until we figure out why
5695 * wpa_supplicant toggles the security capability of the driver, which
5696 * forces a disassocation with force_update...
5697 *
5698 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5699 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5700 ipw2100_configure_security(priv, 0);
5701 done:
5702 mutex_unlock(&priv->action_mutex);
5703 }
5704
5705 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5706 {
5707 int err;
5708 int batch_mode = 1;
5709 u8 *bssid;
5710
5711 IPW_DEBUG_INFO("enter\n");
5712
5713 err = ipw2100_disable_adapter(priv);
5714 if (err)
5715 return err;
5716 #ifdef CONFIG_IPW2100_MONITOR
5717 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5718 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5719 if (err)
5720 return err;
5721
5722 IPW_DEBUG_INFO("exit\n");
5723
5724 return 0;
5725 }
5726 #endif /* CONFIG_IPW2100_MONITOR */
5727
5728 err = ipw2100_read_mac_address(priv);
5729 if (err)
5730 return -EIO;
5731
5732 err = ipw2100_set_mac_address(priv, batch_mode);
5733 if (err)
5734 return err;
5735
5736 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5737 if (err)
5738 return err;
5739
5740 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5741 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5742 if (err)
5743 return err;
5744 }
5745
5746 err = ipw2100_system_config(priv, batch_mode);
5747 if (err)
5748 return err;
5749
5750 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5751 if (err)
5752 return err;
5753
5754 /* Default to power mode OFF */
5755 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5756 if (err)
5757 return err;
5758
5759 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5760 if (err)
5761 return err;
5762
5763 if (priv->config & CFG_STATIC_BSSID)
5764 bssid = priv->bssid;
5765 else
5766 bssid = NULL;
5767 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5768 if (err)
5769 return err;
5770
5771 if (priv->config & CFG_STATIC_ESSID)
5772 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5773 batch_mode);
5774 else
5775 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5776 if (err)
5777 return err;
5778
5779 err = ipw2100_configure_security(priv, batch_mode);
5780 if (err)
5781 return err;
5782
5783 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5784 err =
5785 ipw2100_set_ibss_beacon_interval(priv,
5786 priv->beacon_interval,
5787 batch_mode);
5788 if (err)
5789 return err;
5790
5791 err = ipw2100_set_tx_power(priv, priv->tx_power);
5792 if (err)
5793 return err;
5794 }
5795
5796 /*
5797 err = ipw2100_set_fragmentation_threshold(
5798 priv, priv->frag_threshold, batch_mode);
5799 if (err)
5800 return err;
5801 */
5802
5803 IPW_DEBUG_INFO("exit\n");
5804
5805 return 0;
5806 }
5807
5808 /*************************************************************************
5809 *
5810 * EXTERNALLY CALLED METHODS
5811 *
5812 *************************************************************************/
5813
5814 /* This method is called by the network layer -- not to be confused with
5815 * ipw2100_set_mac_address() declared above called by this driver (and this
5816 * method as well) to talk to the firmware */
5817 static int ipw2100_set_address(struct net_device *dev, void *p)
5818 {
5819 struct ipw2100_priv *priv = libipw_priv(dev);
5820 struct sockaddr *addr = p;
5821 int err = 0;
5822
5823 if (!is_valid_ether_addr(addr->sa_data))
5824 return -EADDRNOTAVAIL;
5825
5826 mutex_lock(&priv->action_mutex);
5827
5828 priv->config |= CFG_CUSTOM_MAC;
5829 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5830
5831 err = ipw2100_set_mac_address(priv, 0);
5832 if (err)
5833 goto done;
5834
5835 priv->reset_backoff = 0;
5836 mutex_unlock(&priv->action_mutex);
5837 ipw2100_reset_adapter(&priv->reset_work.work);
5838 return 0;
5839
5840 done:
5841 mutex_unlock(&priv->action_mutex);
5842 return err;
5843 }
5844
5845 static int ipw2100_open(struct net_device *dev)
5846 {
5847 struct ipw2100_priv *priv = libipw_priv(dev);
5848 unsigned long flags;
5849 IPW_DEBUG_INFO("dev->open\n");
5850
5851 spin_lock_irqsave(&priv->low_lock, flags);
5852 if (priv->status & STATUS_ASSOCIATED) {
5853 netif_carrier_on(dev);
5854 netif_start_queue(dev);
5855 }
5856 spin_unlock_irqrestore(&priv->low_lock, flags);
5857
5858 return 0;
5859 }
5860
5861 static int ipw2100_close(struct net_device *dev)
5862 {
5863 struct ipw2100_priv *priv = libipw_priv(dev);
5864 unsigned long flags;
5865 struct list_head *element;
5866 struct ipw2100_tx_packet *packet;
5867
5868 IPW_DEBUG_INFO("enter\n");
5869
5870 spin_lock_irqsave(&priv->low_lock, flags);
5871
5872 if (priv->status & STATUS_ASSOCIATED)
5873 netif_carrier_off(dev);
5874 netif_stop_queue(dev);
5875
5876 /* Flush the TX queue ... */
5877 while (!list_empty(&priv->tx_pend_list)) {
5878 element = priv->tx_pend_list.next;
5879 packet = list_entry(element, struct ipw2100_tx_packet, list);
5880
5881 list_del(element);
5882 DEC_STAT(&priv->tx_pend_stat);
5883
5884 libipw_txb_free(packet->info.d_struct.txb);
5885 packet->info.d_struct.txb = NULL;
5886
5887 list_add_tail(element, &priv->tx_free_list);
5888 INC_STAT(&priv->tx_free_stat);
5889 }
5890 spin_unlock_irqrestore(&priv->low_lock, flags);
5891
5892 IPW_DEBUG_INFO("exit\n");
5893
5894 return 0;
5895 }
5896
5897 /*
5898 * TODO: Fix this function... its just wrong
5899 */
5900 static void ipw2100_tx_timeout(struct net_device *dev)
5901 {
5902 struct ipw2100_priv *priv = libipw_priv(dev);
5903
5904 dev->stats.tx_errors++;
5905
5906 #ifdef CONFIG_IPW2100_MONITOR
5907 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5908 return;
5909 #endif
5910
5911 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5912 dev->name);
5913 schedule_reset(priv);
5914 }
5915
5916 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5917 {
5918 /* This is called when wpa_supplicant loads and closes the driver
5919 * interface. */
5920 priv->ieee->wpa_enabled = value;
5921 return 0;
5922 }
5923
5924 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5925 {
5926
5927 struct libipw_device *ieee = priv->ieee;
5928 struct libipw_security sec = {
5929 .flags = SEC_AUTH_MODE,
5930 };
5931 int ret = 0;
5932
5933 if (value & IW_AUTH_ALG_SHARED_KEY) {
5934 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5935 ieee->open_wep = 0;
5936 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5937 sec.auth_mode = WLAN_AUTH_OPEN;
5938 ieee->open_wep = 1;
5939 } else if (value & IW_AUTH_ALG_LEAP) {
5940 sec.auth_mode = WLAN_AUTH_LEAP;
5941 ieee->open_wep = 1;
5942 } else
5943 return -EINVAL;
5944
5945 if (ieee->set_security)
5946 ieee->set_security(ieee->dev, &sec);
5947 else
5948 ret = -EOPNOTSUPP;
5949
5950 return ret;
5951 }
5952
5953 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5954 char *wpa_ie, int wpa_ie_len)
5955 {
5956
5957 struct ipw2100_wpa_assoc_frame frame;
5958
5959 frame.fixed_ie_mask = 0;
5960
5961 /* copy WPA IE */
5962 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5963 frame.var_ie_len = wpa_ie_len;
5964
5965 /* make sure WPA is enabled */
5966 ipw2100_wpa_enable(priv, 1);
5967 ipw2100_set_wpa_ie(priv, &frame, 0);
5968 }
5969
5970 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5971 struct ethtool_drvinfo *info)
5972 {
5973 struct ipw2100_priv *priv = libipw_priv(dev);
5974 char fw_ver[64], ucode_ver[64];
5975
5976 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5977 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5978
5979 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5980 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5981
5982 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5983 fw_ver, priv->eeprom_version, ucode_ver);
5984
5985 strlcpy(info->bus_info, pci_name(priv->pci_dev),
5986 sizeof(info->bus_info));
5987 }
5988
5989 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5990 {
5991 struct ipw2100_priv *priv = libipw_priv(dev);
5992 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5993 }
5994
5995 static const struct ethtool_ops ipw2100_ethtool_ops = {
5996 .get_link = ipw2100_ethtool_get_link,
5997 .get_drvinfo = ipw_ethtool_get_drvinfo,
5998 };
5999
6000 static void ipw2100_hang_check(struct work_struct *work)
6001 {
6002 struct ipw2100_priv *priv =
6003 container_of(work, struct ipw2100_priv, hang_check.work);
6004 unsigned long flags;
6005 u32 rtc = 0xa5a5a5a5;
6006 u32 len = sizeof(rtc);
6007 int restart = 0;
6008
6009 spin_lock_irqsave(&priv->low_lock, flags);
6010
6011 if (priv->fatal_error != 0) {
6012 /* If fatal_error is set then we need to restart */
6013 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
6014 priv->net_dev->name);
6015
6016 restart = 1;
6017 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
6018 (rtc == priv->last_rtc)) {
6019 /* Check if firmware is hung */
6020 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
6021 priv->net_dev->name);
6022
6023 restart = 1;
6024 }
6025
6026 if (restart) {
6027 /* Kill timer */
6028 priv->stop_hang_check = 1;
6029 priv->hangs++;
6030
6031 /* Restart the NIC */
6032 schedule_reset(priv);
6033 }
6034
6035 priv->last_rtc = rtc;
6036
6037 if (!priv->stop_hang_check)
6038 schedule_delayed_work(&priv->hang_check, HZ / 2);
6039
6040 spin_unlock_irqrestore(&priv->low_lock, flags);
6041 }
6042
6043 static void ipw2100_rf_kill(struct work_struct *work)
6044 {
6045 struct ipw2100_priv *priv =
6046 container_of(work, struct ipw2100_priv, rf_kill.work);
6047 unsigned long flags;
6048
6049 spin_lock_irqsave(&priv->low_lock, flags);
6050
6051 if (rf_kill_active(priv)) {
6052 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6053 if (!priv->stop_rf_kill)
6054 schedule_delayed_work(&priv->rf_kill,
6055 round_jiffies_relative(HZ));
6056 goto exit_unlock;
6057 }
6058
6059 /* RF Kill is now disabled, so bring the device back up */
6060
6061 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6062 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6063 "device\n");
6064 schedule_reset(priv);
6065 } else
6066 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
6067 "enabled\n");
6068
6069 exit_unlock:
6070 spin_unlock_irqrestore(&priv->low_lock, flags);
6071 }
6072
6073 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6074
6075 static const struct net_device_ops ipw2100_netdev_ops = {
6076 .ndo_open = ipw2100_open,
6077 .ndo_stop = ipw2100_close,
6078 .ndo_start_xmit = libipw_xmit,
6079 .ndo_change_mtu = libipw_change_mtu,
6080 .ndo_tx_timeout = ipw2100_tx_timeout,
6081 .ndo_set_mac_address = ipw2100_set_address,
6082 .ndo_validate_addr = eth_validate_addr,
6083 };
6084
6085 /* Look into using netdev destructor to shutdown libipw? */
6086
6087 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6088 void __iomem * ioaddr)
6089 {
6090 struct ipw2100_priv *priv;
6091 struct net_device *dev;
6092
6093 dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6094 if (!dev)
6095 return NULL;
6096 priv = libipw_priv(dev);
6097 priv->ieee = netdev_priv(dev);
6098 priv->pci_dev = pci_dev;
6099 priv->net_dev = dev;
6100 priv->ioaddr = ioaddr;
6101
6102 priv->ieee->hard_start_xmit = ipw2100_tx;
6103 priv->ieee->set_security = shim__set_security;
6104
6105 priv->ieee->perfect_rssi = -20;
6106 priv->ieee->worst_rssi = -85;
6107
6108 dev->netdev_ops = &ipw2100_netdev_ops;
6109 dev->ethtool_ops = &ipw2100_ethtool_ops;
6110 dev->wireless_handlers = &ipw2100_wx_handler_def;
6111 priv->wireless_data.libipw = priv->ieee;
6112 dev->wireless_data = &priv->wireless_data;
6113 dev->watchdog_timeo = 3 * HZ;
6114 dev->irq = 0;
6115
6116 /* NOTE: We don't use the wireless_handlers hook
6117 * in dev as the system will start throwing WX requests
6118 * to us before we're actually initialized and it just
6119 * ends up causing problems. So, we just handle
6120 * the WX extensions through the ipw2100_ioctl interface */
6121
6122 /* memset() puts everything to 0, so we only have explicitly set
6123 * those values that need to be something else */
6124
6125 /* If power management is turned on, default to AUTO mode */
6126 priv->power_mode = IPW_POWER_AUTO;
6127
6128 #ifdef CONFIG_IPW2100_MONITOR
6129 priv->config |= CFG_CRC_CHECK;
6130 #endif
6131 priv->ieee->wpa_enabled = 0;
6132 priv->ieee->drop_unencrypted = 0;
6133 priv->ieee->privacy_invoked = 0;
6134 priv->ieee->ieee802_1x = 1;
6135
6136 /* Set module parameters */
6137 switch (network_mode) {
6138 case 1:
6139 priv->ieee->iw_mode = IW_MODE_ADHOC;
6140 break;
6141 #ifdef CONFIG_IPW2100_MONITOR
6142 case 2:
6143 priv->ieee->iw_mode = IW_MODE_MONITOR;
6144 break;
6145 #endif
6146 default:
6147 case 0:
6148 priv->ieee->iw_mode = IW_MODE_INFRA;
6149 break;
6150 }
6151
6152 if (disable == 1)
6153 priv->status |= STATUS_RF_KILL_SW;
6154
6155 if (channel != 0 &&
6156 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6157 priv->config |= CFG_STATIC_CHANNEL;
6158 priv->channel = channel;
6159 }
6160
6161 if (associate)
6162 priv->config |= CFG_ASSOCIATE;
6163
6164 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6165 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6166 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6167 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6168 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6169 priv->tx_power = IPW_TX_POWER_DEFAULT;
6170 priv->tx_rates = DEFAULT_TX_RATES;
6171
6172 strcpy(priv->nick, "ipw2100");
6173
6174 spin_lock_init(&priv->low_lock);
6175 mutex_init(&priv->action_mutex);
6176 mutex_init(&priv->adapter_mutex);
6177
6178 init_waitqueue_head(&priv->wait_command_queue);
6179
6180 netif_carrier_off(dev);
6181
6182 INIT_LIST_HEAD(&priv->msg_free_list);
6183 INIT_LIST_HEAD(&priv->msg_pend_list);
6184 INIT_STAT(&priv->msg_free_stat);
6185 INIT_STAT(&priv->msg_pend_stat);
6186
6187 INIT_LIST_HEAD(&priv->tx_free_list);
6188 INIT_LIST_HEAD(&priv->tx_pend_list);
6189 INIT_STAT(&priv->tx_free_stat);
6190 INIT_STAT(&priv->tx_pend_stat);
6191
6192 INIT_LIST_HEAD(&priv->fw_pend_list);
6193 INIT_STAT(&priv->fw_pend_stat);
6194
6195 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6196 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6197 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6198 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6199 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6200 INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6201 INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6202
6203 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6204 ipw2100_irq_tasklet, (unsigned long)priv);
6205
6206 /* NOTE: We do not start the deferred work for status checks yet */
6207 priv->stop_rf_kill = 1;
6208 priv->stop_hang_check = 1;
6209
6210 return dev;
6211 }
6212
6213 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6214 const struct pci_device_id *ent)
6215 {
6216 void __iomem *ioaddr;
6217 struct net_device *dev = NULL;
6218 struct ipw2100_priv *priv = NULL;
6219 int err = 0;
6220 int registered = 0;
6221 u32 val;
6222
6223 IPW_DEBUG_INFO("enter\n");
6224
6225 if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6226 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6227 err = -ENODEV;
6228 goto out;
6229 }
6230
6231 ioaddr = pci_iomap(pci_dev, 0, 0);
6232 if (!ioaddr) {
6233 printk(KERN_WARNING DRV_NAME
6234 "Error calling ioremap_nocache.\n");
6235 err = -EIO;
6236 goto fail;
6237 }
6238
6239 /* allocate and initialize our net_device */
6240 dev = ipw2100_alloc_device(pci_dev, ioaddr);
6241 if (!dev) {
6242 printk(KERN_WARNING DRV_NAME
6243 "Error calling ipw2100_alloc_device.\n");
6244 err = -ENOMEM;
6245 goto fail;
6246 }
6247
6248 /* set up PCI mappings for device */
6249 err = pci_enable_device(pci_dev);
6250 if (err) {
6251 printk(KERN_WARNING DRV_NAME
6252 "Error calling pci_enable_device.\n");
6253 return err;
6254 }
6255
6256 priv = libipw_priv(dev);
6257
6258 pci_set_master(pci_dev);
6259 pci_set_drvdata(pci_dev, priv);
6260
6261 err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6262 if (err) {
6263 printk(KERN_WARNING DRV_NAME
6264 "Error calling pci_set_dma_mask.\n");
6265 pci_disable_device(pci_dev);
6266 return err;
6267 }
6268
6269 err = pci_request_regions(pci_dev, DRV_NAME);
6270 if (err) {
6271 printk(KERN_WARNING DRV_NAME
6272 "Error calling pci_request_regions.\n");
6273 pci_disable_device(pci_dev);
6274 return err;
6275 }
6276
6277 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6278 * PCI Tx retries from interfering with C3 CPU state */
6279 pci_read_config_dword(pci_dev, 0x40, &val);
6280 if ((val & 0x0000ff00) != 0)
6281 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6282
6283 pci_set_power_state(pci_dev, PCI_D0);
6284
6285 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6286 printk(KERN_WARNING DRV_NAME
6287 "Device not found via register read.\n");
6288 err = -ENODEV;
6289 goto fail;
6290 }
6291
6292 SET_NETDEV_DEV(dev, &pci_dev->dev);
6293
6294 /* Force interrupts to be shut off on the device */
6295 priv->status |= STATUS_INT_ENABLED;
6296 ipw2100_disable_interrupts(priv);
6297
6298 /* Allocate and initialize the Tx/Rx queues and lists */
6299 if (ipw2100_queues_allocate(priv)) {
6300 printk(KERN_WARNING DRV_NAME
6301 "Error calling ipw2100_queues_allocate.\n");
6302 err = -ENOMEM;
6303 goto fail;
6304 }
6305 ipw2100_queues_initialize(priv);
6306
6307 err = request_irq(pci_dev->irq,
6308 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6309 if (err) {
6310 printk(KERN_WARNING DRV_NAME
6311 "Error calling request_irq: %d.\n", pci_dev->irq);
6312 goto fail;
6313 }
6314 dev->irq = pci_dev->irq;
6315
6316 IPW_DEBUG_INFO("Attempting to register device...\n");
6317
6318 printk(KERN_INFO DRV_NAME
6319 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6320
6321 err = ipw2100_up(priv, 1);
6322 if (err)
6323 goto fail;
6324
6325 err = ipw2100_wdev_init(dev);
6326 if (err)
6327 goto fail;
6328 registered = 1;
6329
6330 /* Bring up the interface. Pre 0.46, after we registered the
6331 * network device we would call ipw2100_up. This introduced a race
6332 * condition with newer hotplug configurations (network was coming
6333 * up and making calls before the device was initialized).
6334 */
6335 err = register_netdev(dev);
6336 if (err) {
6337 printk(KERN_WARNING DRV_NAME
6338 "Error calling register_netdev.\n");
6339 goto fail;
6340 }
6341 registered = 2;
6342
6343 mutex_lock(&priv->action_mutex);
6344
6345 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6346
6347 /* perform this after register_netdev so that dev->name is set */
6348 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6349 if (err)
6350 goto fail_unlock;
6351
6352 /* If the RF Kill switch is disabled, go ahead and complete the
6353 * startup sequence */
6354 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6355 /* Enable the adapter - sends HOST_COMPLETE */
6356 if (ipw2100_enable_adapter(priv)) {
6357 printk(KERN_WARNING DRV_NAME
6358 ": %s: failed in call to enable adapter.\n",
6359 priv->net_dev->name);
6360 ipw2100_hw_stop_adapter(priv);
6361 err = -EIO;
6362 goto fail_unlock;
6363 }
6364
6365 /* Start a scan . . . */
6366 ipw2100_set_scan_options(priv);
6367 ipw2100_start_scan(priv);
6368 }
6369
6370 IPW_DEBUG_INFO("exit\n");
6371
6372 priv->status |= STATUS_INITIALIZED;
6373
6374 mutex_unlock(&priv->action_mutex);
6375 out:
6376 return err;
6377
6378 fail_unlock:
6379 mutex_unlock(&priv->action_mutex);
6380 fail:
6381 if (dev) {
6382 if (registered >= 2)
6383 unregister_netdev(dev);
6384
6385 if (registered) {
6386 wiphy_unregister(priv->ieee->wdev.wiphy);
6387 kfree(priv->ieee->bg_band.channels);
6388 }
6389
6390 ipw2100_hw_stop_adapter(priv);
6391
6392 ipw2100_disable_interrupts(priv);
6393
6394 if (dev->irq)
6395 free_irq(dev->irq, priv);
6396
6397 ipw2100_kill_works(priv);
6398
6399 /* These are safe to call even if they weren't allocated */
6400 ipw2100_queues_free(priv);
6401 sysfs_remove_group(&pci_dev->dev.kobj,
6402 &ipw2100_attribute_group);
6403
6404 free_libipw(dev, 0);
6405 pci_set_drvdata(pci_dev, NULL);
6406 }
6407
6408 pci_iounmap(pci_dev, ioaddr);
6409
6410 pci_release_regions(pci_dev);
6411 pci_disable_device(pci_dev);
6412 goto out;
6413 }
6414
6415 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6416 {
6417 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6418 struct net_device *dev = priv->net_dev;
6419
6420 mutex_lock(&priv->action_mutex);
6421
6422 priv->status &= ~STATUS_INITIALIZED;
6423
6424 sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6425
6426 #ifdef CONFIG_PM
6427 if (ipw2100_firmware.version)
6428 ipw2100_release_firmware(priv, &ipw2100_firmware);
6429 #endif
6430 /* Take down the hardware */
6431 ipw2100_down(priv);
6432
6433 /* Release the mutex so that the network subsystem can
6434 * complete any needed calls into the driver... */
6435 mutex_unlock(&priv->action_mutex);
6436
6437 /* Unregister the device first - this results in close()
6438 * being called if the device is open. If we free storage
6439 * first, then close() will crash.
6440 * FIXME: remove the comment above. */
6441 unregister_netdev(dev);
6442
6443 ipw2100_kill_works(priv);
6444
6445 ipw2100_queues_free(priv);
6446
6447 /* Free potential debugging firmware snapshot */
6448 ipw2100_snapshot_free(priv);
6449
6450 free_irq(dev->irq, priv);
6451
6452 pci_iounmap(pci_dev, priv->ioaddr);
6453
6454 /* wiphy_unregister needs to be here, before free_libipw */
6455 wiphy_unregister(priv->ieee->wdev.wiphy);
6456 kfree(priv->ieee->bg_band.channels);
6457 free_libipw(dev, 0);
6458
6459 pci_release_regions(pci_dev);
6460 pci_disable_device(pci_dev);
6461
6462 IPW_DEBUG_INFO("exit\n");
6463 }
6464
6465 #ifdef CONFIG_PM
6466 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6467 {
6468 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6469 struct net_device *dev = priv->net_dev;
6470
6471 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6472
6473 mutex_lock(&priv->action_mutex);
6474 if (priv->status & STATUS_INITIALIZED) {
6475 /* Take down the device; powers it off, etc. */
6476 ipw2100_down(priv);
6477 }
6478
6479 /* Remove the PRESENT state of the device */
6480 netif_device_detach(dev);
6481
6482 pci_save_state(pci_dev);
6483 pci_disable_device(pci_dev);
6484 pci_set_power_state(pci_dev, PCI_D3hot);
6485
6486 priv->suspend_at = get_seconds();
6487
6488 mutex_unlock(&priv->action_mutex);
6489
6490 return 0;
6491 }
6492
6493 static int ipw2100_resume(struct pci_dev *pci_dev)
6494 {
6495 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6496 struct net_device *dev = priv->net_dev;
6497 int err;
6498 u32 val;
6499
6500 if (IPW2100_PM_DISABLED)
6501 return 0;
6502
6503 mutex_lock(&priv->action_mutex);
6504
6505 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6506
6507 pci_set_power_state(pci_dev, PCI_D0);
6508 err = pci_enable_device(pci_dev);
6509 if (err) {
6510 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6511 dev->name);
6512 mutex_unlock(&priv->action_mutex);
6513 return err;
6514 }
6515 pci_restore_state(pci_dev);
6516
6517 /*
6518 * Suspend/Resume resets the PCI configuration space, so we have to
6519 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6520 * from interfering with C3 CPU state. pci_restore_state won't help
6521 * here since it only restores the first 64 bytes pci config header.
6522 */
6523 pci_read_config_dword(pci_dev, 0x40, &val);
6524 if ((val & 0x0000ff00) != 0)
6525 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6526
6527 /* Set the device back into the PRESENT state; this will also wake
6528 * the queue of needed */
6529 netif_device_attach(dev);
6530
6531 priv->suspend_time = get_seconds() - priv->suspend_at;
6532
6533 /* Bring the device back up */
6534 if (!(priv->status & STATUS_RF_KILL_SW))
6535 ipw2100_up(priv, 0);
6536
6537 mutex_unlock(&priv->action_mutex);
6538
6539 return 0;
6540 }
6541 #endif
6542
6543 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6544 {
6545 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6546
6547 /* Take down the device; powers it off, etc. */
6548 ipw2100_down(priv);
6549
6550 pci_disable_device(pci_dev);
6551 }
6552
6553 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6554
6555 static DEFINE_PCI_DEVICE_TABLE(ipw2100_pci_id_table) = {
6556 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6557 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6558 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6559 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6560 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6561 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6562 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6563 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6564 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6565 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6566 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6567 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6568 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6569
6570 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6571 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6572 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6573 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6574 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6575
6576 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6577 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6578 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6579 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6580 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6581 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6582 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6583
6584 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6585
6586 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6587 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6588 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6589 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6590 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6591 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6592 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6593
6594 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6595 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6596 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6597 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6598 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6599 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6600
6601 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6602 {0,},
6603 };
6604
6605 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6606
6607 static struct pci_driver ipw2100_pci_driver = {
6608 .name = DRV_NAME,
6609 .id_table = ipw2100_pci_id_table,
6610 .probe = ipw2100_pci_init_one,
6611 .remove = __devexit_p(ipw2100_pci_remove_one),
6612 #ifdef CONFIG_PM
6613 .suspend = ipw2100_suspend,
6614 .resume = ipw2100_resume,
6615 #endif
6616 .shutdown = ipw2100_shutdown,
6617 };
6618
6619 /**
6620 * Initialize the ipw2100 driver/module
6621 *
6622 * @returns 0 if ok, < 0 errno node con error.
6623 *
6624 * Note: we cannot init the /proc stuff until the PCI driver is there,
6625 * or we risk an unlikely race condition on someone accessing
6626 * uninitialized data in the PCI dev struct through /proc.
6627 */
6628 static int __init ipw2100_init(void)
6629 {
6630 int ret;
6631
6632 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6633 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6634
6635 pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6636 PM_QOS_DEFAULT_VALUE);
6637
6638 ret = pci_register_driver(&ipw2100_pci_driver);
6639 if (ret)
6640 goto out;
6641
6642 #ifdef CONFIG_IPW2100_DEBUG
6643 ipw2100_debug_level = debug;
6644 ret = driver_create_file(&ipw2100_pci_driver.driver,
6645 &driver_attr_debug_level);
6646 #endif
6647
6648 out:
6649 return ret;
6650 }
6651
6652 /**
6653 * Cleanup ipw2100 driver registration
6654 */
6655 static void __exit ipw2100_exit(void)
6656 {
6657 /* FIXME: IPG: check that we have no instances of the devices open */
6658 #ifdef CONFIG_IPW2100_DEBUG
6659 driver_remove_file(&ipw2100_pci_driver.driver,
6660 &driver_attr_debug_level);
6661 #endif
6662 pci_unregister_driver(&ipw2100_pci_driver);
6663 pm_qos_remove_request(&ipw2100_pm_qos_req);
6664 }
6665
6666 module_init(ipw2100_init);
6667 module_exit(ipw2100_exit);
6668
6669 static int ipw2100_wx_get_name(struct net_device *dev,
6670 struct iw_request_info *info,
6671 union iwreq_data *wrqu, char *extra)
6672 {
6673 /*
6674 * This can be called at any time. No action lock required
6675 */
6676
6677 struct ipw2100_priv *priv = libipw_priv(dev);
6678 if (!(priv->status & STATUS_ASSOCIATED))
6679 strcpy(wrqu->name, "unassociated");
6680 else
6681 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6682
6683 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6684 return 0;
6685 }
6686
6687 static int ipw2100_wx_set_freq(struct net_device *dev,
6688 struct iw_request_info *info,
6689 union iwreq_data *wrqu, char *extra)
6690 {
6691 struct ipw2100_priv *priv = libipw_priv(dev);
6692 struct iw_freq *fwrq = &wrqu->freq;
6693 int err = 0;
6694
6695 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6696 return -EOPNOTSUPP;
6697
6698 mutex_lock(&priv->action_mutex);
6699 if (!(priv->status & STATUS_INITIALIZED)) {
6700 err = -EIO;
6701 goto done;
6702 }
6703
6704 /* if setting by freq convert to channel */
6705 if (fwrq->e == 1) {
6706 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6707 int f = fwrq->m / 100000;
6708 int c = 0;
6709
6710 while ((c < REG_MAX_CHANNEL) &&
6711 (f != ipw2100_frequencies[c]))
6712 c++;
6713
6714 /* hack to fall through */
6715 fwrq->e = 0;
6716 fwrq->m = c + 1;
6717 }
6718 }
6719
6720 if (fwrq->e > 0 || fwrq->m > 1000) {
6721 err = -EOPNOTSUPP;
6722 goto done;
6723 } else { /* Set the channel */
6724 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6725 err = ipw2100_set_channel(priv, fwrq->m, 0);
6726 }
6727
6728 done:
6729 mutex_unlock(&priv->action_mutex);
6730 return err;
6731 }
6732
6733 static int ipw2100_wx_get_freq(struct net_device *dev,
6734 struct iw_request_info *info,
6735 union iwreq_data *wrqu, char *extra)
6736 {
6737 /*
6738 * This can be called at any time. No action lock required
6739 */
6740
6741 struct ipw2100_priv *priv = libipw_priv(dev);
6742
6743 wrqu->freq.e = 0;
6744
6745 /* If we are associated, trying to associate, or have a statically
6746 * configured CHANNEL then return that; otherwise return ANY */
6747 if (priv->config & CFG_STATIC_CHANNEL ||
6748 priv->status & STATUS_ASSOCIATED)
6749 wrqu->freq.m = priv->channel;
6750 else
6751 wrqu->freq.m = 0;
6752
6753 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6754 return 0;
6755
6756 }
6757
6758 static int ipw2100_wx_set_mode(struct net_device *dev,
6759 struct iw_request_info *info,
6760 union iwreq_data *wrqu, char *extra)
6761 {
6762 struct ipw2100_priv *priv = libipw_priv(dev);
6763 int err = 0;
6764
6765 IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6766
6767 if (wrqu->mode == priv->ieee->iw_mode)
6768 return 0;
6769
6770 mutex_lock(&priv->action_mutex);
6771 if (!(priv->status & STATUS_INITIALIZED)) {
6772 err = -EIO;
6773 goto done;
6774 }
6775
6776 switch (wrqu->mode) {
6777 #ifdef CONFIG_IPW2100_MONITOR
6778 case IW_MODE_MONITOR:
6779 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6780 break;
6781 #endif /* CONFIG_IPW2100_MONITOR */
6782 case IW_MODE_ADHOC:
6783 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6784 break;
6785 case IW_MODE_INFRA:
6786 case IW_MODE_AUTO:
6787 default:
6788 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6789 break;
6790 }
6791
6792 done:
6793 mutex_unlock(&priv->action_mutex);
6794 return err;
6795 }
6796
6797 static int ipw2100_wx_get_mode(struct net_device *dev,
6798 struct iw_request_info *info,
6799 union iwreq_data *wrqu, char *extra)
6800 {
6801 /*
6802 * This can be called at any time. No action lock required
6803 */
6804
6805 struct ipw2100_priv *priv = libipw_priv(dev);
6806
6807 wrqu->mode = priv->ieee->iw_mode;
6808 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6809
6810 return 0;
6811 }
6812
6813 #define POWER_MODES 5
6814
6815 /* Values are in microsecond */
6816 static const s32 timeout_duration[POWER_MODES] = {
6817 350000,
6818 250000,
6819 75000,
6820 37000,
6821 25000,
6822 };
6823
6824 static const s32 period_duration[POWER_MODES] = {
6825 400000,
6826 700000,
6827 1000000,
6828 1000000,
6829 1000000
6830 };
6831
6832 static int ipw2100_wx_get_range(struct net_device *dev,
6833 struct iw_request_info *info,
6834 union iwreq_data *wrqu, char *extra)
6835 {
6836 /*
6837 * This can be called at any time. No action lock required
6838 */
6839
6840 struct ipw2100_priv *priv = libipw_priv(dev);
6841 struct iw_range *range = (struct iw_range *)extra;
6842 u16 val;
6843 int i, level;
6844
6845 wrqu->data.length = sizeof(*range);
6846 memset(range, 0, sizeof(*range));
6847
6848 /* Let's try to keep this struct in the same order as in
6849 * linux/include/wireless.h
6850 */
6851
6852 /* TODO: See what values we can set, and remove the ones we can't
6853 * set, or fill them with some default data.
6854 */
6855
6856 /* ~5 Mb/s real (802.11b) */
6857 range->throughput = 5 * 1000 * 1000;
6858
6859 // range->sensitivity; /* signal level threshold range */
6860
6861 range->max_qual.qual = 100;
6862 /* TODO: Find real max RSSI and stick here */
6863 range->max_qual.level = 0;
6864 range->max_qual.noise = 0;
6865 range->max_qual.updated = 7; /* Updated all three */
6866
6867 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6868 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6869 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6870 range->avg_qual.noise = 0;
6871 range->avg_qual.updated = 7; /* Updated all three */
6872
6873 range->num_bitrates = RATE_COUNT;
6874
6875 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6876 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6877 }
6878
6879 range->min_rts = MIN_RTS_THRESHOLD;
6880 range->max_rts = MAX_RTS_THRESHOLD;
6881 range->min_frag = MIN_FRAG_THRESHOLD;
6882 range->max_frag = MAX_FRAG_THRESHOLD;
6883
6884 range->min_pmp = period_duration[0]; /* Minimal PM period */
6885 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6886 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6887 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6888
6889 /* How to decode max/min PM period */
6890 range->pmp_flags = IW_POWER_PERIOD;
6891 /* How to decode max/min PM period */
6892 range->pmt_flags = IW_POWER_TIMEOUT;
6893 /* What PM options are supported */
6894 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6895
6896 range->encoding_size[0] = 5;
6897 range->encoding_size[1] = 13; /* Different token sizes */
6898 range->num_encoding_sizes = 2; /* Number of entry in the list */
6899 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6900 // range->encoding_login_index; /* token index for login token */
6901
6902 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6903 range->txpower_capa = IW_TXPOW_DBM;
6904 range->num_txpower = IW_MAX_TXPOWER;
6905 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6906 i < IW_MAX_TXPOWER;
6907 i++, level -=
6908 ((IPW_TX_POWER_MAX_DBM -
6909 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6910 range->txpower[i] = level / 16;
6911 } else {
6912 range->txpower_capa = 0;
6913 range->num_txpower = 0;
6914 }
6915
6916 /* Set the Wireless Extension versions */
6917 range->we_version_compiled = WIRELESS_EXT;
6918 range->we_version_source = 18;
6919
6920 // range->retry_capa; /* What retry options are supported */
6921 // range->retry_flags; /* How to decode max/min retry limit */
6922 // range->r_time_flags; /* How to decode max/min retry life */
6923 // range->min_retry; /* Minimal number of retries */
6924 // range->max_retry; /* Maximal number of retries */
6925 // range->min_r_time; /* Minimal retry lifetime */
6926 // range->max_r_time; /* Maximal retry lifetime */
6927
6928 range->num_channels = FREQ_COUNT;
6929
6930 val = 0;
6931 for (i = 0; i < FREQ_COUNT; i++) {
6932 // TODO: Include only legal frequencies for some countries
6933 // if (local->channel_mask & (1 << i)) {
6934 range->freq[val].i = i + 1;
6935 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6936 range->freq[val].e = 1;
6937 val++;
6938 // }
6939 if (val == IW_MAX_FREQUENCIES)
6940 break;
6941 }
6942 range->num_frequency = val;
6943
6944 /* Event capability (kernel + driver) */
6945 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6946 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6947 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6948
6949 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6950 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6951
6952 IPW_DEBUG_WX("GET Range\n");
6953
6954 return 0;
6955 }
6956
6957 static int ipw2100_wx_set_wap(struct net_device *dev,
6958 struct iw_request_info *info,
6959 union iwreq_data *wrqu, char *extra)
6960 {
6961 struct ipw2100_priv *priv = libipw_priv(dev);
6962 int err = 0;
6963
6964 static const unsigned char any[] = {
6965 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6966 };
6967 static const unsigned char off[] = {
6968 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6969 };
6970
6971 // sanity checks
6972 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6973 return -EINVAL;
6974
6975 mutex_lock(&priv->action_mutex);
6976 if (!(priv->status & STATUS_INITIALIZED)) {
6977 err = -EIO;
6978 goto done;
6979 }
6980
6981 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6982 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6983 /* we disable mandatory BSSID association */
6984 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6985 priv->config &= ~CFG_STATIC_BSSID;
6986 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6987 goto done;
6988 }
6989
6990 priv->config |= CFG_STATIC_BSSID;
6991 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6992
6993 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6994
6995 IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6996
6997 done:
6998 mutex_unlock(&priv->action_mutex);
6999 return err;
7000 }
7001
7002 static int ipw2100_wx_get_wap(struct net_device *dev,
7003 struct iw_request_info *info,
7004 union iwreq_data *wrqu, char *extra)
7005 {
7006 /*
7007 * This can be called at any time. No action lock required
7008 */
7009
7010 struct ipw2100_priv *priv = libipw_priv(dev);
7011
7012 /* If we are associated, trying to associate, or have a statically
7013 * configured BSSID then return that; otherwise return ANY */
7014 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
7015 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
7016 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
7017 } else
7018 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
7019
7020 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
7021 return 0;
7022 }
7023
7024 static int ipw2100_wx_set_essid(struct net_device *dev,
7025 struct iw_request_info *info,
7026 union iwreq_data *wrqu, char *extra)
7027 {
7028 struct ipw2100_priv *priv = libipw_priv(dev);
7029 char *essid = ""; /* ANY */
7030 int length = 0;
7031 int err = 0;
7032 DECLARE_SSID_BUF(ssid);
7033
7034 mutex_lock(&priv->action_mutex);
7035 if (!(priv->status & STATUS_INITIALIZED)) {
7036 err = -EIO;
7037 goto done;
7038 }
7039
7040 if (wrqu->essid.flags && wrqu->essid.length) {
7041 length = wrqu->essid.length;
7042 essid = extra;
7043 }
7044
7045 if (length == 0) {
7046 IPW_DEBUG_WX("Setting ESSID to ANY\n");
7047 priv->config &= ~CFG_STATIC_ESSID;
7048 err = ipw2100_set_essid(priv, NULL, 0, 0);
7049 goto done;
7050 }
7051
7052 length = min(length, IW_ESSID_MAX_SIZE);
7053
7054 priv->config |= CFG_STATIC_ESSID;
7055
7056 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7057 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7058 err = 0;
7059 goto done;
7060 }
7061
7062 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
7063 print_ssid(ssid, essid, length), length);
7064
7065 priv->essid_len = length;
7066 memcpy(priv->essid, essid, priv->essid_len);
7067
7068 err = ipw2100_set_essid(priv, essid, length, 0);
7069
7070 done:
7071 mutex_unlock(&priv->action_mutex);
7072 return err;
7073 }
7074
7075 static int ipw2100_wx_get_essid(struct net_device *dev,
7076 struct iw_request_info *info,
7077 union iwreq_data *wrqu, char *extra)
7078 {
7079 /*
7080 * This can be called at any time. No action lock required
7081 */
7082
7083 struct ipw2100_priv *priv = libipw_priv(dev);
7084 DECLARE_SSID_BUF(ssid);
7085
7086 /* If we are associated, trying to associate, or have a statically
7087 * configured ESSID then return that; otherwise return ANY */
7088 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7089 IPW_DEBUG_WX("Getting essid: '%s'\n",
7090 print_ssid(ssid, priv->essid, priv->essid_len));
7091 memcpy(extra, priv->essid, priv->essid_len);
7092 wrqu->essid.length = priv->essid_len;
7093 wrqu->essid.flags = 1; /* active */
7094 } else {
7095 IPW_DEBUG_WX("Getting essid: ANY\n");
7096 wrqu->essid.length = 0;
7097 wrqu->essid.flags = 0; /* active */
7098 }
7099
7100 return 0;
7101 }
7102
7103 static int ipw2100_wx_set_nick(struct net_device *dev,
7104 struct iw_request_info *info,
7105 union iwreq_data *wrqu, char *extra)
7106 {
7107 /*
7108 * This can be called at any time. No action lock required
7109 */
7110
7111 struct ipw2100_priv *priv = libipw_priv(dev);
7112
7113 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7114 return -E2BIG;
7115
7116 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7117 memset(priv->nick, 0, sizeof(priv->nick));
7118 memcpy(priv->nick, extra, wrqu->data.length);
7119
7120 IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7121
7122 return 0;
7123 }
7124
7125 static int ipw2100_wx_get_nick(struct net_device *dev,
7126 struct iw_request_info *info,
7127 union iwreq_data *wrqu, char *extra)
7128 {
7129 /*
7130 * This can be called at any time. No action lock required
7131 */
7132
7133 struct ipw2100_priv *priv = libipw_priv(dev);
7134
7135 wrqu->data.length = strlen(priv->nick);
7136 memcpy(extra, priv->nick, wrqu->data.length);
7137 wrqu->data.flags = 1; /* active */
7138
7139 IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7140
7141 return 0;
7142 }
7143
7144 static int ipw2100_wx_set_rate(struct net_device *dev,
7145 struct iw_request_info *info,
7146 union iwreq_data *wrqu, char *extra)
7147 {
7148 struct ipw2100_priv *priv = libipw_priv(dev);
7149 u32 target_rate = wrqu->bitrate.value;
7150 u32 rate;
7151 int err = 0;
7152
7153 mutex_lock(&priv->action_mutex);
7154 if (!(priv->status & STATUS_INITIALIZED)) {
7155 err = -EIO;
7156 goto done;
7157 }
7158
7159 rate = 0;
7160
7161 if (target_rate == 1000000 ||
7162 (!wrqu->bitrate.fixed && target_rate > 1000000))
7163 rate |= TX_RATE_1_MBIT;
7164 if (target_rate == 2000000 ||
7165 (!wrqu->bitrate.fixed && target_rate > 2000000))
7166 rate |= TX_RATE_2_MBIT;
7167 if (target_rate == 5500000 ||
7168 (!wrqu->bitrate.fixed && target_rate > 5500000))
7169 rate |= TX_RATE_5_5_MBIT;
7170 if (target_rate == 11000000 ||
7171 (!wrqu->bitrate.fixed && target_rate > 11000000))
7172 rate |= TX_RATE_11_MBIT;
7173 if (rate == 0)
7174 rate = DEFAULT_TX_RATES;
7175
7176 err = ipw2100_set_tx_rates(priv, rate, 0);
7177
7178 IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7179 done:
7180 mutex_unlock(&priv->action_mutex);
7181 return err;
7182 }
7183
7184 static int ipw2100_wx_get_rate(struct net_device *dev,
7185 struct iw_request_info *info,
7186 union iwreq_data *wrqu, char *extra)
7187 {
7188 struct ipw2100_priv *priv = libipw_priv(dev);
7189 int val;
7190 unsigned int len = sizeof(val);
7191 int err = 0;
7192
7193 if (!(priv->status & STATUS_ENABLED) ||
7194 priv->status & STATUS_RF_KILL_MASK ||
7195 !(priv->status & STATUS_ASSOCIATED)) {
7196 wrqu->bitrate.value = 0;
7197 return 0;
7198 }
7199
7200 mutex_lock(&priv->action_mutex);
7201 if (!(priv->status & STATUS_INITIALIZED)) {
7202 err = -EIO;
7203 goto done;
7204 }
7205
7206 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7207 if (err) {
7208 IPW_DEBUG_WX("failed querying ordinals.\n");
7209 goto done;
7210 }
7211
7212 switch (val & TX_RATE_MASK) {
7213 case TX_RATE_1_MBIT:
7214 wrqu->bitrate.value = 1000000;
7215 break;
7216 case TX_RATE_2_MBIT:
7217 wrqu->bitrate.value = 2000000;
7218 break;
7219 case TX_RATE_5_5_MBIT:
7220 wrqu->bitrate.value = 5500000;
7221 break;
7222 case TX_RATE_11_MBIT:
7223 wrqu->bitrate.value = 11000000;
7224 break;
7225 default:
7226 wrqu->bitrate.value = 0;
7227 }
7228
7229 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7230
7231 done:
7232 mutex_unlock(&priv->action_mutex);
7233 return err;
7234 }
7235
7236 static int ipw2100_wx_set_rts(struct net_device *dev,
7237 struct iw_request_info *info,
7238 union iwreq_data *wrqu, char *extra)
7239 {
7240 struct ipw2100_priv *priv = libipw_priv(dev);
7241 int value, err;
7242
7243 /* Auto RTS not yet supported */
7244 if (wrqu->rts.fixed == 0)
7245 return -EINVAL;
7246
7247 mutex_lock(&priv->action_mutex);
7248 if (!(priv->status & STATUS_INITIALIZED)) {
7249 err = -EIO;
7250 goto done;
7251 }
7252
7253 if (wrqu->rts.disabled)
7254 value = priv->rts_threshold | RTS_DISABLED;
7255 else {
7256 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7257 err = -EINVAL;
7258 goto done;
7259 }
7260 value = wrqu->rts.value;
7261 }
7262
7263 err = ipw2100_set_rts_threshold(priv, value);
7264
7265 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7266 done:
7267 mutex_unlock(&priv->action_mutex);
7268 return err;
7269 }
7270
7271 static int ipw2100_wx_get_rts(struct net_device *dev,
7272 struct iw_request_info *info,
7273 union iwreq_data *wrqu, char *extra)
7274 {
7275 /*
7276 * This can be called at any time. No action lock required
7277 */
7278
7279 struct ipw2100_priv *priv = libipw_priv(dev);
7280
7281 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7282 wrqu->rts.fixed = 1; /* no auto select */
7283
7284 /* If RTS is set to the default value, then it is disabled */
7285 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7286
7287 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7288
7289 return 0;
7290 }
7291
7292 static int ipw2100_wx_set_txpow(struct net_device *dev,
7293 struct iw_request_info *info,
7294 union iwreq_data *wrqu, char *extra)
7295 {
7296 struct ipw2100_priv *priv = libipw_priv(dev);
7297 int err = 0, value;
7298
7299 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7300 return -EINPROGRESS;
7301
7302 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7303 return 0;
7304
7305 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7306 return -EINVAL;
7307
7308 if (wrqu->txpower.fixed == 0)
7309 value = IPW_TX_POWER_DEFAULT;
7310 else {
7311 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7312 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7313 return -EINVAL;
7314
7315 value = wrqu->txpower.value;
7316 }
7317
7318 mutex_lock(&priv->action_mutex);
7319 if (!(priv->status & STATUS_INITIALIZED)) {
7320 err = -EIO;
7321 goto done;
7322 }
7323
7324 err = ipw2100_set_tx_power(priv, value);
7325
7326 IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7327
7328 done:
7329 mutex_unlock(&priv->action_mutex);
7330 return err;
7331 }
7332
7333 static int ipw2100_wx_get_txpow(struct net_device *dev,
7334 struct iw_request_info *info,
7335 union iwreq_data *wrqu, char *extra)
7336 {
7337 /*
7338 * This can be called at any time. No action lock required
7339 */
7340
7341 struct ipw2100_priv *priv = libipw_priv(dev);
7342
7343 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7344
7345 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7346 wrqu->txpower.fixed = 0;
7347 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7348 } else {
7349 wrqu->txpower.fixed = 1;
7350 wrqu->txpower.value = priv->tx_power;
7351 }
7352
7353 wrqu->txpower.flags = IW_TXPOW_DBM;
7354
7355 IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7356
7357 return 0;
7358 }
7359
7360 static int ipw2100_wx_set_frag(struct net_device *dev,
7361 struct iw_request_info *info,
7362 union iwreq_data *wrqu, char *extra)
7363 {
7364 /*
7365 * This can be called at any time. No action lock required
7366 */
7367
7368 struct ipw2100_priv *priv = libipw_priv(dev);
7369
7370 if (!wrqu->frag.fixed)
7371 return -EINVAL;
7372
7373 if (wrqu->frag.disabled) {
7374 priv->frag_threshold |= FRAG_DISABLED;
7375 priv->ieee->fts = DEFAULT_FTS;
7376 } else {
7377 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7378 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7379 return -EINVAL;
7380
7381 priv->ieee->fts = wrqu->frag.value & ~0x1;
7382 priv->frag_threshold = priv->ieee->fts;
7383 }
7384
7385 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7386
7387 return 0;
7388 }
7389
7390 static int ipw2100_wx_get_frag(struct net_device *dev,
7391 struct iw_request_info *info,
7392 union iwreq_data *wrqu, char *extra)
7393 {
7394 /*
7395 * This can be called at any time. No action lock required
7396 */
7397
7398 struct ipw2100_priv *priv = libipw_priv(dev);
7399 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7400 wrqu->frag.fixed = 0; /* no auto select */
7401 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7402
7403 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7404
7405 return 0;
7406 }
7407
7408 static int ipw2100_wx_set_retry(struct net_device *dev,
7409 struct iw_request_info *info,
7410 union iwreq_data *wrqu, char *extra)
7411 {
7412 struct ipw2100_priv *priv = libipw_priv(dev);
7413 int err = 0;
7414
7415 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7416 return -EINVAL;
7417
7418 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7419 return 0;
7420
7421 mutex_lock(&priv->action_mutex);
7422 if (!(priv->status & STATUS_INITIALIZED)) {
7423 err = -EIO;
7424 goto done;
7425 }
7426
7427 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7428 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7429 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7430 wrqu->retry.value);
7431 goto done;
7432 }
7433
7434 if (wrqu->retry.flags & IW_RETRY_LONG) {
7435 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7436 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7437 wrqu->retry.value);
7438 goto done;
7439 }
7440
7441 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7442 if (!err)
7443 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7444
7445 IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7446
7447 done:
7448 mutex_unlock(&priv->action_mutex);
7449 return err;
7450 }
7451
7452 static int ipw2100_wx_get_retry(struct net_device *dev,
7453 struct iw_request_info *info,
7454 union iwreq_data *wrqu, char *extra)
7455 {
7456 /*
7457 * This can be called at any time. No action lock required
7458 */
7459
7460 struct ipw2100_priv *priv = libipw_priv(dev);
7461
7462 wrqu->retry.disabled = 0; /* can't be disabled */
7463
7464 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7465 return -EINVAL;
7466
7467 if (wrqu->retry.flags & IW_RETRY_LONG) {
7468 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7469 wrqu->retry.value = priv->long_retry_limit;
7470 } else {
7471 wrqu->retry.flags =
7472 (priv->short_retry_limit !=
7473 priv->long_retry_limit) ?
7474 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7475
7476 wrqu->retry.value = priv->short_retry_limit;
7477 }
7478
7479 IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7480
7481 return 0;
7482 }
7483
7484 static int ipw2100_wx_set_scan(struct net_device *dev,
7485 struct iw_request_info *info,
7486 union iwreq_data *wrqu, char *extra)
7487 {
7488 struct ipw2100_priv *priv = libipw_priv(dev);
7489 int err = 0;
7490
7491 mutex_lock(&priv->action_mutex);
7492 if (!(priv->status & STATUS_INITIALIZED)) {
7493 err = -EIO;
7494 goto done;
7495 }
7496
7497 IPW_DEBUG_WX("Initiating scan...\n");
7498
7499 priv->user_requested_scan = 1;
7500 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7501 IPW_DEBUG_WX("Start scan failed.\n");
7502
7503 /* TODO: Mark a scan as pending so when hardware initialized
7504 * a scan starts */
7505 }
7506
7507 done:
7508 mutex_unlock(&priv->action_mutex);
7509 return err;
7510 }
7511
7512 static int ipw2100_wx_get_scan(struct net_device *dev,
7513 struct iw_request_info *info,
7514 union iwreq_data *wrqu, char *extra)
7515 {
7516 /*
7517 * This can be called at any time. No action lock required
7518 */
7519
7520 struct ipw2100_priv *priv = libipw_priv(dev);
7521 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7522 }
7523
7524 /*
7525 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7526 */
7527 static int ipw2100_wx_set_encode(struct net_device *dev,
7528 struct iw_request_info *info,
7529 union iwreq_data *wrqu, char *key)
7530 {
7531 /*
7532 * No check of STATUS_INITIALIZED required
7533 */
7534
7535 struct ipw2100_priv *priv = libipw_priv(dev);
7536 return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7537 }
7538
7539 static int ipw2100_wx_get_encode(struct net_device *dev,
7540 struct iw_request_info *info,
7541 union iwreq_data *wrqu, char *key)
7542 {
7543 /*
7544 * This can be called at any time. No action lock required
7545 */
7546
7547 struct ipw2100_priv *priv = libipw_priv(dev);
7548 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7549 }
7550
7551 static int ipw2100_wx_set_power(struct net_device *dev,
7552 struct iw_request_info *info,
7553 union iwreq_data *wrqu, char *extra)
7554 {
7555 struct ipw2100_priv *priv = libipw_priv(dev);
7556 int err = 0;
7557
7558 mutex_lock(&priv->action_mutex);
7559 if (!(priv->status & STATUS_INITIALIZED)) {
7560 err = -EIO;
7561 goto done;
7562 }
7563
7564 if (wrqu->power.disabled) {
7565 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7566 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7567 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7568 goto done;
7569 }
7570
7571 switch (wrqu->power.flags & IW_POWER_MODE) {
7572 case IW_POWER_ON: /* If not specified */
7573 case IW_POWER_MODE: /* If set all mask */
7574 case IW_POWER_ALL_R: /* If explicitly state all */
7575 break;
7576 default: /* Otherwise we don't support it */
7577 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7578 wrqu->power.flags);
7579 err = -EOPNOTSUPP;
7580 goto done;
7581 }
7582
7583 /* If the user hasn't specified a power management mode yet, default
7584 * to BATTERY */
7585 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7586 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7587
7588 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7589
7590 done:
7591 mutex_unlock(&priv->action_mutex);
7592 return err;
7593
7594 }
7595
7596 static int ipw2100_wx_get_power(struct net_device *dev,
7597 struct iw_request_info *info,
7598 union iwreq_data *wrqu, char *extra)
7599 {
7600 /*
7601 * This can be called at any time. No action lock required
7602 */
7603
7604 struct ipw2100_priv *priv = libipw_priv(dev);
7605
7606 if (!(priv->power_mode & IPW_POWER_ENABLED))
7607 wrqu->power.disabled = 1;
7608 else {
7609 wrqu->power.disabled = 0;
7610 wrqu->power.flags = 0;
7611 }
7612
7613 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7614
7615 return 0;
7616 }
7617
7618 /*
7619 * WE-18 WPA support
7620 */
7621
7622 /* SIOCSIWGENIE */
7623 static int ipw2100_wx_set_genie(struct net_device *dev,
7624 struct iw_request_info *info,
7625 union iwreq_data *wrqu, char *extra)
7626 {
7627
7628 struct ipw2100_priv *priv = libipw_priv(dev);
7629 struct libipw_device *ieee = priv->ieee;
7630 u8 *buf;
7631
7632 if (!ieee->wpa_enabled)
7633 return -EOPNOTSUPP;
7634
7635 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7636 (wrqu->data.length && extra == NULL))
7637 return -EINVAL;
7638
7639 if (wrqu->data.length) {
7640 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7641 if (buf == NULL)
7642 return -ENOMEM;
7643
7644 kfree(ieee->wpa_ie);
7645 ieee->wpa_ie = buf;
7646 ieee->wpa_ie_len = wrqu->data.length;
7647 } else {
7648 kfree(ieee->wpa_ie);
7649 ieee->wpa_ie = NULL;
7650 ieee->wpa_ie_len = 0;
7651 }
7652
7653 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7654
7655 return 0;
7656 }
7657
7658 /* SIOCGIWGENIE */
7659 static int ipw2100_wx_get_genie(struct net_device *dev,
7660 struct iw_request_info *info,
7661 union iwreq_data *wrqu, char *extra)
7662 {
7663 struct ipw2100_priv *priv = libipw_priv(dev);
7664 struct libipw_device *ieee = priv->ieee;
7665
7666 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7667 wrqu->data.length = 0;
7668 return 0;
7669 }
7670
7671 if (wrqu->data.length < ieee->wpa_ie_len)
7672 return -E2BIG;
7673
7674 wrqu->data.length = ieee->wpa_ie_len;
7675 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7676
7677 return 0;
7678 }
7679
7680 /* SIOCSIWAUTH */
7681 static int ipw2100_wx_set_auth(struct net_device *dev,
7682 struct iw_request_info *info,
7683 union iwreq_data *wrqu, char *extra)
7684 {
7685 struct ipw2100_priv *priv = libipw_priv(dev);
7686 struct libipw_device *ieee = priv->ieee;
7687 struct iw_param *param = &wrqu->param;
7688 struct lib80211_crypt_data *crypt;
7689 unsigned long flags;
7690 int ret = 0;
7691
7692 switch (param->flags & IW_AUTH_INDEX) {
7693 case IW_AUTH_WPA_VERSION:
7694 case IW_AUTH_CIPHER_PAIRWISE:
7695 case IW_AUTH_CIPHER_GROUP:
7696 case IW_AUTH_KEY_MGMT:
7697 /*
7698 * ipw2200 does not use these parameters
7699 */
7700 break;
7701
7702 case IW_AUTH_TKIP_COUNTERMEASURES:
7703 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7704 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7705 break;
7706
7707 flags = crypt->ops->get_flags(crypt->priv);
7708
7709 if (param->value)
7710 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7711 else
7712 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7713
7714 crypt->ops->set_flags(flags, crypt->priv);
7715
7716 break;
7717
7718 case IW_AUTH_DROP_UNENCRYPTED:{
7719 /* HACK:
7720 *
7721 * wpa_supplicant calls set_wpa_enabled when the driver
7722 * is loaded and unloaded, regardless of if WPA is being
7723 * used. No other calls are made which can be used to
7724 * determine if encryption will be used or not prior to
7725 * association being expected. If encryption is not being
7726 * used, drop_unencrypted is set to false, else true -- we
7727 * can use this to determine if the CAP_PRIVACY_ON bit should
7728 * be set.
7729 */
7730 struct libipw_security sec = {
7731 .flags = SEC_ENABLED,
7732 .enabled = param->value,
7733 };
7734 priv->ieee->drop_unencrypted = param->value;
7735 /* We only change SEC_LEVEL for open mode. Others
7736 * are set by ipw_wpa_set_encryption.
7737 */
7738 if (!param->value) {
7739 sec.flags |= SEC_LEVEL;
7740 sec.level = SEC_LEVEL_0;
7741 } else {
7742 sec.flags |= SEC_LEVEL;
7743 sec.level = SEC_LEVEL_1;
7744 }
7745 if (priv->ieee->set_security)
7746 priv->ieee->set_security(priv->ieee->dev, &sec);
7747 break;
7748 }
7749
7750 case IW_AUTH_80211_AUTH_ALG:
7751 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7752 break;
7753
7754 case IW_AUTH_WPA_ENABLED:
7755 ret = ipw2100_wpa_enable(priv, param->value);
7756 break;
7757
7758 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7759 ieee->ieee802_1x = param->value;
7760 break;
7761
7762 //case IW_AUTH_ROAMING_CONTROL:
7763 case IW_AUTH_PRIVACY_INVOKED:
7764 ieee->privacy_invoked = param->value;
7765 break;
7766
7767 default:
7768 return -EOPNOTSUPP;
7769 }
7770 return ret;
7771 }
7772
7773 /* SIOCGIWAUTH */
7774 static int ipw2100_wx_get_auth(struct net_device *dev,
7775 struct iw_request_info *info,
7776 union iwreq_data *wrqu, char *extra)
7777 {
7778 struct ipw2100_priv *priv = libipw_priv(dev);
7779 struct libipw_device *ieee = priv->ieee;
7780 struct lib80211_crypt_data *crypt;
7781 struct iw_param *param = &wrqu->param;
7782 int ret = 0;
7783
7784 switch (param->flags & IW_AUTH_INDEX) {
7785 case IW_AUTH_WPA_VERSION:
7786 case IW_AUTH_CIPHER_PAIRWISE:
7787 case IW_AUTH_CIPHER_GROUP:
7788 case IW_AUTH_KEY_MGMT:
7789 /*
7790 * wpa_supplicant will control these internally
7791 */
7792 ret = -EOPNOTSUPP;
7793 break;
7794
7795 case IW_AUTH_TKIP_COUNTERMEASURES:
7796 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7797 if (!crypt || !crypt->ops->get_flags) {
7798 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7799 "crypt not set!\n");
7800 break;
7801 }
7802
7803 param->value = (crypt->ops->get_flags(crypt->priv) &
7804 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7805
7806 break;
7807
7808 case IW_AUTH_DROP_UNENCRYPTED:
7809 param->value = ieee->drop_unencrypted;
7810 break;
7811
7812 case IW_AUTH_80211_AUTH_ALG:
7813 param->value = priv->ieee->sec.auth_mode;
7814 break;
7815
7816 case IW_AUTH_WPA_ENABLED:
7817 param->value = ieee->wpa_enabled;
7818 break;
7819
7820 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7821 param->value = ieee->ieee802_1x;
7822 break;
7823
7824 case IW_AUTH_ROAMING_CONTROL:
7825 case IW_AUTH_PRIVACY_INVOKED:
7826 param->value = ieee->privacy_invoked;
7827 break;
7828
7829 default:
7830 return -EOPNOTSUPP;
7831 }
7832 return 0;
7833 }
7834
7835 /* SIOCSIWENCODEEXT */
7836 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7837 struct iw_request_info *info,
7838 union iwreq_data *wrqu, char *extra)
7839 {
7840 struct ipw2100_priv *priv = libipw_priv(dev);
7841 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7842 }
7843
7844 /* SIOCGIWENCODEEXT */
7845 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7846 struct iw_request_info *info,
7847 union iwreq_data *wrqu, char *extra)
7848 {
7849 struct ipw2100_priv *priv = libipw_priv(dev);
7850 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7851 }
7852
7853 /* SIOCSIWMLME */
7854 static int ipw2100_wx_set_mlme(struct net_device *dev,
7855 struct iw_request_info *info,
7856 union iwreq_data *wrqu, char *extra)
7857 {
7858 struct ipw2100_priv *priv = libipw_priv(dev);
7859 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7860 __le16 reason;
7861
7862 reason = cpu_to_le16(mlme->reason_code);
7863
7864 switch (mlme->cmd) {
7865 case IW_MLME_DEAUTH:
7866 // silently ignore
7867 break;
7868
7869 case IW_MLME_DISASSOC:
7870 ipw2100_disassociate_bssid(priv);
7871 break;
7872
7873 default:
7874 return -EOPNOTSUPP;
7875 }
7876 return 0;
7877 }
7878
7879 /*
7880 *
7881 * IWPRIV handlers
7882 *
7883 */
7884 #ifdef CONFIG_IPW2100_MONITOR
7885 static int ipw2100_wx_set_promisc(struct net_device *dev,
7886 struct iw_request_info *info,
7887 union iwreq_data *wrqu, char *extra)
7888 {
7889 struct ipw2100_priv *priv = libipw_priv(dev);
7890 int *parms = (int *)extra;
7891 int enable = (parms[0] > 0);
7892 int err = 0;
7893
7894 mutex_lock(&priv->action_mutex);
7895 if (!(priv->status & STATUS_INITIALIZED)) {
7896 err = -EIO;
7897 goto done;
7898 }
7899
7900 if (enable) {
7901 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7902 err = ipw2100_set_channel(priv, parms[1], 0);
7903 goto done;
7904 }
7905 priv->channel = parms[1];
7906 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7907 } else {
7908 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7909 err = ipw2100_switch_mode(priv, priv->last_mode);
7910 }
7911 done:
7912 mutex_unlock(&priv->action_mutex);
7913 return err;
7914 }
7915
7916 static int ipw2100_wx_reset(struct net_device *dev,
7917 struct iw_request_info *info,
7918 union iwreq_data *wrqu, char *extra)
7919 {
7920 struct ipw2100_priv *priv = libipw_priv(dev);
7921 if (priv->status & STATUS_INITIALIZED)
7922 schedule_reset(priv);
7923 return 0;
7924 }
7925
7926 #endif
7927
7928 static int ipw2100_wx_set_powermode(struct net_device *dev,
7929 struct iw_request_info *info,
7930 union iwreq_data *wrqu, char *extra)
7931 {
7932 struct ipw2100_priv *priv = libipw_priv(dev);
7933 int err = 0, mode = *(int *)extra;
7934
7935 mutex_lock(&priv->action_mutex);
7936 if (!(priv->status & STATUS_INITIALIZED)) {
7937 err = -EIO;
7938 goto done;
7939 }
7940
7941 if ((mode < 0) || (mode > POWER_MODES))
7942 mode = IPW_POWER_AUTO;
7943
7944 if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7945 err = ipw2100_set_power_mode(priv, mode);
7946 done:
7947 mutex_unlock(&priv->action_mutex);
7948 return err;
7949 }
7950
7951 #define MAX_POWER_STRING 80
7952 static int ipw2100_wx_get_powermode(struct net_device *dev,
7953 struct iw_request_info *info,
7954 union iwreq_data *wrqu, char *extra)
7955 {
7956 /*
7957 * This can be called at any time. No action lock required
7958 */
7959
7960 struct ipw2100_priv *priv = libipw_priv(dev);
7961 int level = IPW_POWER_LEVEL(priv->power_mode);
7962 s32 timeout, period;
7963
7964 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7965 snprintf(extra, MAX_POWER_STRING,
7966 "Power save level: %d (Off)", level);
7967 } else {
7968 switch (level) {
7969 case IPW_POWER_MODE_CAM:
7970 snprintf(extra, MAX_POWER_STRING,
7971 "Power save level: %d (None)", level);
7972 break;
7973 case IPW_POWER_AUTO:
7974 snprintf(extra, MAX_POWER_STRING,
7975 "Power save level: %d (Auto)", level);
7976 break;
7977 default:
7978 timeout = timeout_duration[level - 1] / 1000;
7979 period = period_duration[level - 1] / 1000;
7980 snprintf(extra, MAX_POWER_STRING,
7981 "Power save level: %d "
7982 "(Timeout %dms, Period %dms)",
7983 level, timeout, period);
7984 }
7985 }
7986
7987 wrqu->data.length = strlen(extra) + 1;
7988
7989 return 0;
7990 }
7991
7992 static int ipw2100_wx_set_preamble(struct net_device *dev,
7993 struct iw_request_info *info,
7994 union iwreq_data *wrqu, char *extra)
7995 {
7996 struct ipw2100_priv *priv = libipw_priv(dev);
7997 int err, mode = *(int *)extra;
7998
7999 mutex_lock(&priv->action_mutex);
8000 if (!(priv->status & STATUS_INITIALIZED)) {
8001 err = -EIO;
8002 goto done;
8003 }
8004
8005 if (mode == 1)
8006 priv->config |= CFG_LONG_PREAMBLE;
8007 else if (mode == 0)
8008 priv->config &= ~CFG_LONG_PREAMBLE;
8009 else {
8010 err = -EINVAL;
8011 goto done;
8012 }
8013
8014 err = ipw2100_system_config(priv, 0);
8015
8016 done:
8017 mutex_unlock(&priv->action_mutex);
8018 return err;
8019 }
8020
8021 static int ipw2100_wx_get_preamble(struct net_device *dev,
8022 struct iw_request_info *info,
8023 union iwreq_data *wrqu, char *extra)
8024 {
8025 /*
8026 * This can be called at any time. No action lock required
8027 */
8028
8029 struct ipw2100_priv *priv = libipw_priv(dev);
8030
8031 if (priv->config & CFG_LONG_PREAMBLE)
8032 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
8033 else
8034 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
8035
8036 return 0;
8037 }
8038
8039 #ifdef CONFIG_IPW2100_MONITOR
8040 static int ipw2100_wx_set_crc_check(struct net_device *dev,
8041 struct iw_request_info *info,
8042 union iwreq_data *wrqu, char *extra)
8043 {
8044 struct ipw2100_priv *priv = libipw_priv(dev);
8045 int err, mode = *(int *)extra;
8046
8047 mutex_lock(&priv->action_mutex);
8048 if (!(priv->status & STATUS_INITIALIZED)) {
8049 err = -EIO;
8050 goto done;
8051 }
8052
8053 if (mode == 1)
8054 priv->config |= CFG_CRC_CHECK;
8055 else if (mode == 0)
8056 priv->config &= ~CFG_CRC_CHECK;
8057 else {
8058 err = -EINVAL;
8059 goto done;
8060 }
8061 err = 0;
8062
8063 done:
8064 mutex_unlock(&priv->action_mutex);
8065 return err;
8066 }
8067
8068 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8069 struct iw_request_info *info,
8070 union iwreq_data *wrqu, char *extra)
8071 {
8072 /*
8073 * This can be called at any time. No action lock required
8074 */
8075
8076 struct ipw2100_priv *priv = libipw_priv(dev);
8077
8078 if (priv->config & CFG_CRC_CHECK)
8079 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8080 else
8081 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8082
8083 return 0;
8084 }
8085 #endif /* CONFIG_IPW2100_MONITOR */
8086
8087 static iw_handler ipw2100_wx_handlers[] = {
8088 IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8089 IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8090 IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8091 IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8092 IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8093 IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8094 IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8095 IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8096 IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8097 IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8098 IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8099 IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8100 IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8101 IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8102 IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8103 IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8104 IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8105 IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8106 IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8107 IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8108 IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8109 IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8110 IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8111 IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8112 IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8113 IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8114 IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8115 IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8116 IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8117 IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8118 IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8119 IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8120 IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8121 IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8122 IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8123 };
8124
8125 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8126 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8127 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8128 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8129 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8130 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8131 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8132 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8133
8134 static const struct iw_priv_args ipw2100_private_args[] = {
8135
8136 #ifdef CONFIG_IPW2100_MONITOR
8137 {
8138 IPW2100_PRIV_SET_MONITOR,
8139 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8140 {
8141 IPW2100_PRIV_RESET,
8142 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8143 #endif /* CONFIG_IPW2100_MONITOR */
8144
8145 {
8146 IPW2100_PRIV_SET_POWER,
8147 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8148 {
8149 IPW2100_PRIV_GET_POWER,
8150 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8151 "get_power"},
8152 {
8153 IPW2100_PRIV_SET_LONGPREAMBLE,
8154 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8155 {
8156 IPW2100_PRIV_GET_LONGPREAMBLE,
8157 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8158 #ifdef CONFIG_IPW2100_MONITOR
8159 {
8160 IPW2100_PRIV_SET_CRC_CHECK,
8161 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8162 {
8163 IPW2100_PRIV_GET_CRC_CHECK,
8164 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8165 #endif /* CONFIG_IPW2100_MONITOR */
8166 };
8167
8168 static iw_handler ipw2100_private_handler[] = {
8169 #ifdef CONFIG_IPW2100_MONITOR
8170 ipw2100_wx_set_promisc,
8171 ipw2100_wx_reset,
8172 #else /* CONFIG_IPW2100_MONITOR */
8173 NULL,
8174 NULL,
8175 #endif /* CONFIG_IPW2100_MONITOR */
8176 ipw2100_wx_set_powermode,
8177 ipw2100_wx_get_powermode,
8178 ipw2100_wx_set_preamble,
8179 ipw2100_wx_get_preamble,
8180 #ifdef CONFIG_IPW2100_MONITOR
8181 ipw2100_wx_set_crc_check,
8182 ipw2100_wx_get_crc_check,
8183 #else /* CONFIG_IPW2100_MONITOR */
8184 NULL,
8185 NULL,
8186 #endif /* CONFIG_IPW2100_MONITOR */
8187 };
8188
8189 /*
8190 * Get wireless statistics.
8191 * Called by /proc/net/wireless
8192 * Also called by SIOCGIWSTATS
8193 */
8194 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8195 {
8196 enum {
8197 POOR = 30,
8198 FAIR = 60,
8199 GOOD = 80,
8200 VERY_GOOD = 90,
8201 EXCELLENT = 95,
8202 PERFECT = 100
8203 };
8204 int rssi_qual;
8205 int tx_qual;
8206 int beacon_qual;
8207 int quality;
8208
8209 struct ipw2100_priv *priv = libipw_priv(dev);
8210 struct iw_statistics *wstats;
8211 u32 rssi, tx_retries, missed_beacons, tx_failures;
8212 u32 ord_len = sizeof(u32);
8213
8214 if (!priv)
8215 return (struct iw_statistics *)NULL;
8216
8217 wstats = &priv->wstats;
8218
8219 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8220 * ipw2100_wx_wireless_stats seems to be called before fw is
8221 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8222 * and associated; if not associcated, the values are all meaningless
8223 * anyway, so set them all to NULL and INVALID */
8224 if (!(priv->status & STATUS_ASSOCIATED)) {
8225 wstats->miss.beacon = 0;
8226 wstats->discard.retries = 0;
8227 wstats->qual.qual = 0;
8228 wstats->qual.level = 0;
8229 wstats->qual.noise = 0;
8230 wstats->qual.updated = 7;
8231 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8232 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8233 return wstats;
8234 }
8235
8236 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8237 &missed_beacons, &ord_len))
8238 goto fail_get_ordinal;
8239
8240 /* If we don't have a connection the quality and level is 0 */
8241 if (!(priv->status & STATUS_ASSOCIATED)) {
8242 wstats->qual.qual = 0;
8243 wstats->qual.level = 0;
8244 } else {
8245 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8246 &rssi, &ord_len))
8247 goto fail_get_ordinal;
8248 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8249 if (rssi < 10)
8250 rssi_qual = rssi * POOR / 10;
8251 else if (rssi < 15)
8252 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8253 else if (rssi < 20)
8254 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8255 else if (rssi < 30)
8256 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8257 10 + GOOD;
8258 else
8259 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8260 10 + VERY_GOOD;
8261
8262 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8263 &tx_retries, &ord_len))
8264 goto fail_get_ordinal;
8265
8266 if (tx_retries > 75)
8267 tx_qual = (90 - tx_retries) * POOR / 15;
8268 else if (tx_retries > 70)
8269 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8270 else if (tx_retries > 65)
8271 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8272 else if (tx_retries > 50)
8273 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8274 15 + GOOD;
8275 else
8276 tx_qual = (50 - tx_retries) *
8277 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8278
8279 if (missed_beacons > 50)
8280 beacon_qual = (60 - missed_beacons) * POOR / 10;
8281 else if (missed_beacons > 40)
8282 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8283 10 + POOR;
8284 else if (missed_beacons > 32)
8285 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8286 18 + FAIR;
8287 else if (missed_beacons > 20)
8288 beacon_qual = (32 - missed_beacons) *
8289 (VERY_GOOD - GOOD) / 20 + GOOD;
8290 else
8291 beacon_qual = (20 - missed_beacons) *
8292 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8293
8294 quality = min(tx_qual, rssi_qual);
8295 quality = min(beacon_qual, quality);
8296
8297 #ifdef CONFIG_IPW2100_DEBUG
8298 if (beacon_qual == quality)
8299 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8300 else if (tx_qual == quality)
8301 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8302 else if (quality != 100)
8303 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8304 else
8305 IPW_DEBUG_WX("Quality not clamped.\n");
8306 #endif
8307
8308 wstats->qual.qual = quality;
8309 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8310 }
8311
8312 wstats->qual.noise = 0;
8313 wstats->qual.updated = 7;
8314 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8315
8316 /* FIXME: this is percent and not a # */
8317 wstats->miss.beacon = missed_beacons;
8318
8319 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8320 &tx_failures, &ord_len))
8321 goto fail_get_ordinal;
8322 wstats->discard.retries = tx_failures;
8323
8324 return wstats;
8325
8326 fail_get_ordinal:
8327 IPW_DEBUG_WX("failed querying ordinals.\n");
8328
8329 return (struct iw_statistics *)NULL;
8330 }
8331
8332 static struct iw_handler_def ipw2100_wx_handler_def = {
8333 .standard = ipw2100_wx_handlers,
8334 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8335 .num_private = ARRAY_SIZE(ipw2100_private_handler),
8336 .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8337 .private = (iw_handler *) ipw2100_private_handler,
8338 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8339 .get_wireless_stats = ipw2100_wx_wireless_stats,
8340 };
8341
8342 static void ipw2100_wx_event_work(struct work_struct *work)
8343 {
8344 struct ipw2100_priv *priv =
8345 container_of(work, struct ipw2100_priv, wx_event_work.work);
8346 union iwreq_data wrqu;
8347 unsigned int len = ETH_ALEN;
8348
8349 if (priv->status & STATUS_STOPPING)
8350 return;
8351
8352 mutex_lock(&priv->action_mutex);
8353
8354 IPW_DEBUG_WX("enter\n");
8355
8356 mutex_unlock(&priv->action_mutex);
8357
8358 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8359
8360 /* Fetch BSSID from the hardware */
8361 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8362 priv->status & STATUS_RF_KILL_MASK ||
8363 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8364 &priv->bssid, &len)) {
8365 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8366 } else {
8367 /* We now have the BSSID, so can finish setting to the full
8368 * associated state */
8369 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8370 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8371 priv->status &= ~STATUS_ASSOCIATING;
8372 priv->status |= STATUS_ASSOCIATED;
8373 netif_carrier_on(priv->net_dev);
8374 netif_wake_queue(priv->net_dev);
8375 }
8376
8377 if (!(priv->status & STATUS_ASSOCIATED)) {
8378 IPW_DEBUG_WX("Configuring ESSID\n");
8379 mutex_lock(&priv->action_mutex);
8380 /* This is a disassociation event, so kick the firmware to
8381 * look for another AP */
8382 if (priv->config & CFG_STATIC_ESSID)
8383 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8384 0);
8385 else
8386 ipw2100_set_essid(priv, NULL, 0, 0);
8387 mutex_unlock(&priv->action_mutex);
8388 }
8389
8390 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8391 }
8392
8393 #define IPW2100_FW_MAJOR_VERSION 1
8394 #define IPW2100_FW_MINOR_VERSION 3
8395
8396 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8397 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8398
8399 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8400 IPW2100_FW_MAJOR_VERSION)
8401
8402 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8403 "." __stringify(IPW2100_FW_MINOR_VERSION)
8404
8405 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8406
8407 /*
8408
8409 BINARY FIRMWARE HEADER FORMAT
8410
8411 offset length desc
8412 0 2 version
8413 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8414 4 4 fw_len
8415 8 4 uc_len
8416 C fw_len firmware data
8417 12 + fw_len uc_len microcode data
8418
8419 */
8420
8421 struct ipw2100_fw_header {
8422 short version;
8423 short mode;
8424 unsigned int fw_size;
8425 unsigned int uc_size;
8426 } __packed;
8427
8428 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8429 {
8430 struct ipw2100_fw_header *h =
8431 (struct ipw2100_fw_header *)fw->fw_entry->data;
8432
8433 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8434 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8435 "(detected version id of %u). "
8436 "See Documentation/networking/README.ipw2100\n",
8437 h->version);
8438 return 1;
8439 }
8440
8441 fw->version = h->version;
8442 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8443 fw->fw.size = h->fw_size;
8444 fw->uc.data = fw->fw.data + h->fw_size;
8445 fw->uc.size = h->uc_size;
8446
8447 return 0;
8448 }
8449
8450 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8451 struct ipw2100_fw *fw)
8452 {
8453 char *fw_name;
8454 int rc;
8455
8456 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8457 priv->net_dev->name);
8458
8459 switch (priv->ieee->iw_mode) {
8460 case IW_MODE_ADHOC:
8461 fw_name = IPW2100_FW_NAME("-i");
8462 break;
8463 #ifdef CONFIG_IPW2100_MONITOR
8464 case IW_MODE_MONITOR:
8465 fw_name = IPW2100_FW_NAME("-p");
8466 break;
8467 #endif
8468 case IW_MODE_INFRA:
8469 default:
8470 fw_name = IPW2100_FW_NAME("");
8471 break;
8472 }
8473
8474 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8475
8476 if (rc < 0) {
8477 printk(KERN_ERR DRV_NAME ": "
8478 "%s: Firmware '%s' not available or load failed.\n",
8479 priv->net_dev->name, fw_name);
8480 return rc;
8481 }
8482 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8483 fw->fw_entry->size);
8484
8485 ipw2100_mod_firmware_load(fw);
8486
8487 return 0;
8488 }
8489
8490 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8491 #ifdef CONFIG_IPW2100_MONITOR
8492 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8493 #endif
8494 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8495
8496 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8497 struct ipw2100_fw *fw)
8498 {
8499 fw->version = 0;
8500 release_firmware(fw->fw_entry);
8501 fw->fw_entry = NULL;
8502 }
8503
8504 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8505 size_t max)
8506 {
8507 char ver[MAX_FW_VERSION_LEN];
8508 u32 len = MAX_FW_VERSION_LEN;
8509 u32 tmp;
8510 int i;
8511 /* firmware version is an ascii string (max len of 14) */
8512 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8513 return -EIO;
8514 tmp = max;
8515 if (len >= max)
8516 len = max - 1;
8517 for (i = 0; i < len; i++)
8518 buf[i] = ver[i];
8519 buf[i] = '\0';
8520 return tmp;
8521 }
8522
8523 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8524 size_t max)
8525 {
8526 u32 ver;
8527 u32 len = sizeof(ver);
8528 /* microcode version is a 32 bit integer */
8529 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8530 return -EIO;
8531 return snprintf(buf, max, "%08X", ver);
8532 }
8533
8534 /*
8535 * On exit, the firmware will have been freed from the fw list
8536 */
8537 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8538 {
8539 /* firmware is constructed of N contiguous entries, each entry is
8540 * structured as:
8541 *
8542 * offset sie desc
8543 * 0 4 address to write to
8544 * 4 2 length of data run
8545 * 6 length data
8546 */
8547 unsigned int addr;
8548 unsigned short len;
8549
8550 const unsigned char *firmware_data = fw->fw.data;
8551 unsigned int firmware_data_left = fw->fw.size;
8552
8553 while (firmware_data_left > 0) {
8554 addr = *(u32 *) (firmware_data);
8555 firmware_data += 4;
8556 firmware_data_left -= 4;
8557
8558 len = *(u16 *) (firmware_data);
8559 firmware_data += 2;
8560 firmware_data_left -= 2;
8561
8562 if (len > 32) {
8563 printk(KERN_ERR DRV_NAME ": "
8564 "Invalid firmware run-length of %d bytes\n",
8565 len);
8566 return -EINVAL;
8567 }
8568
8569 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8570 firmware_data += len;
8571 firmware_data_left -= len;
8572 }
8573
8574 return 0;
8575 }
8576
8577 struct symbol_alive_response {
8578 u8 cmd_id;
8579 u8 seq_num;
8580 u8 ucode_rev;
8581 u8 eeprom_valid;
8582 u16 valid_flags;
8583 u8 IEEE_addr[6];
8584 u16 flags;
8585 u16 pcb_rev;
8586 u16 clock_settle_time; // 1us LSB
8587 u16 powerup_settle_time; // 1us LSB
8588 u16 hop_settle_time; // 1us LSB
8589 u8 date[3]; // month, day, year
8590 u8 time[2]; // hours, minutes
8591 u8 ucode_valid;
8592 };
8593
8594 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8595 struct ipw2100_fw *fw)
8596 {
8597 struct net_device *dev = priv->net_dev;
8598 const unsigned char *microcode_data = fw->uc.data;
8599 unsigned int microcode_data_left = fw->uc.size;
8600 void __iomem *reg = priv->ioaddr;
8601
8602 struct symbol_alive_response response;
8603 int i, j;
8604 u8 data;
8605
8606 /* Symbol control */
8607 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8608 readl(reg);
8609 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8610 readl(reg);
8611
8612 /* HW config */
8613 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8614 readl(reg);
8615 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8616 readl(reg);
8617
8618 /* EN_CS_ACCESS bit to reset control store pointer */
8619 write_nic_byte(dev, 0x210000, 0x40);
8620 readl(reg);
8621 write_nic_byte(dev, 0x210000, 0x0);
8622 readl(reg);
8623 write_nic_byte(dev, 0x210000, 0x40);
8624 readl(reg);
8625
8626 /* copy microcode from buffer into Symbol */
8627
8628 while (microcode_data_left > 0) {
8629 write_nic_byte(dev, 0x210010, *microcode_data++);
8630 write_nic_byte(dev, 0x210010, *microcode_data++);
8631 microcode_data_left -= 2;
8632 }
8633
8634 /* EN_CS_ACCESS bit to reset the control store pointer */
8635 write_nic_byte(dev, 0x210000, 0x0);
8636 readl(reg);
8637
8638 /* Enable System (Reg 0)
8639 * first enable causes garbage in RX FIFO */
8640 write_nic_byte(dev, 0x210000, 0x0);
8641 readl(reg);
8642 write_nic_byte(dev, 0x210000, 0x80);
8643 readl(reg);
8644
8645 /* Reset External Baseband Reg */
8646 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8647 readl(reg);
8648 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8649 readl(reg);
8650
8651 /* HW Config (Reg 5) */
8652 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8653 readl(reg);
8654 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8655 readl(reg);
8656
8657 /* Enable System (Reg 0)
8658 * second enable should be OK */
8659 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8660 readl(reg);
8661 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8662
8663 /* check Symbol is enabled - upped this from 5 as it wasn't always
8664 * catching the update */
8665 for (i = 0; i < 10; i++) {
8666 udelay(10);
8667
8668 /* check Dino is enabled bit */
8669 read_nic_byte(dev, 0x210000, &data);
8670 if (data & 0x1)
8671 break;
8672 }
8673
8674 if (i == 10) {
8675 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8676 dev->name);
8677 return -EIO;
8678 }
8679
8680 /* Get Symbol alive response */
8681 for (i = 0; i < 30; i++) {
8682 /* Read alive response structure */
8683 for (j = 0;
8684 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8685 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8686
8687 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8688 break;
8689 udelay(10);
8690 }
8691
8692 if (i == 30) {
8693 printk(KERN_ERR DRV_NAME
8694 ": %s: No response from Symbol - hw not alive\n",
8695 dev->name);
8696 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8697 return -EIO;
8698 }
8699
8700 return 0;
8701 }
This page took 0.328828 seconds and 5 git commands to generate.