Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[deliverable/linux.git] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 Intel Linux Wireless <ilw@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
28
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <j@w1.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
43
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
106
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
110
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
114
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
118
119 The flow of data on the TX side is as follows:
120
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124 The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169 #include "ipw.h"
170
171 #define IPW2100_VERSION "git-1.2.2"
172
173 #define DRV_NAME "ipw2100"
174 #define DRV_VERSION IPW2100_VERSION
175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
177
178 static struct pm_qos_request ipw2100_pm_qos_req;
179
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG /* Reception debugging */
183 #endif
184
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217 if (ipw2100_debug_level & (level)) { \
218 printk(KERN_DEBUG "ipw2100: %c %s ", \
219 in_interrupt() ? 'I' : 'U', __func__); \
220 printk(message); \
221 } \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif /* CONFIG_IPW2100_DEBUG */
226
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229 "undefined",
230 "unused", /* HOST_ATTENTION */
231 "HOST_COMPLETE",
232 "unused", /* SLEEP */
233 "unused", /* HOST_POWER_DOWN */
234 "unused",
235 "SYSTEM_CONFIG",
236 "unused", /* SET_IMR */
237 "SSID",
238 "MANDATORY_BSSID",
239 "AUTHENTICATION_TYPE",
240 "ADAPTER_ADDRESS",
241 "PORT_TYPE",
242 "INTERNATIONAL_MODE",
243 "CHANNEL",
244 "RTS_THRESHOLD",
245 "FRAG_THRESHOLD",
246 "POWER_MODE",
247 "TX_RATES",
248 "BASIC_TX_RATES",
249 "WEP_KEY_INFO",
250 "unused",
251 "unused",
252 "unused",
253 "unused",
254 "WEP_KEY_INDEX",
255 "WEP_FLAGS",
256 "ADD_MULTICAST",
257 "CLEAR_ALL_MULTICAST",
258 "BEACON_INTERVAL",
259 "ATIM_WINDOW",
260 "CLEAR_STATISTICS",
261 "undefined",
262 "undefined",
263 "undefined",
264 "undefined",
265 "TX_POWER_INDEX",
266 "undefined",
267 "undefined",
268 "undefined",
269 "undefined",
270 "undefined",
271 "undefined",
272 "BROADCAST_SCAN",
273 "CARD_DISABLE",
274 "PREFERRED_BSSID",
275 "SET_SCAN_OPTIONS",
276 "SCAN_DWELL_TIME",
277 "SWEEP_TABLE",
278 "AP_OR_STATION_TABLE",
279 "GROUP_ORDINALS",
280 "SHORT_RETRY_LIMIT",
281 "LONG_RETRY_LIMIT",
282 "unused", /* SAVE_CALIBRATION */
283 "unused", /* RESTORE_CALIBRATION */
284 "undefined",
285 "undefined",
286 "undefined",
287 "HOST_PRE_POWER_DOWN",
288 "unused", /* HOST_INTERRUPT_COALESCING */
289 "undefined",
290 "CARD_DISABLE_PHY_OFF",
291 "MSDU_TX_RATES",
292 "undefined",
293 "SET_STATION_STAT_BITS",
294 "CLEAR_STATIONS_STAT_BITS",
295 "LEAP_ROGUE_MODE",
296 "SET_SECURITY_INFORMATION",
297 "DISASSOCIATION_BSSID",
298 "SET_WPA_ASS_IE"
299 };
300 #endif
301
302 static const long ipw2100_frequencies[] = {
303 2412, 2417, 2422, 2427,
304 2432, 2437, 2442, 2447,
305 2452, 2457, 2462, 2467,
306 2472, 2484
307 };
308
309 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies)
310
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312 { .bitrate = 10 },
313 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330 struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332 struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334 size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336 size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338 struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340 struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static struct iw_handler_def ipw2100_wx_handler_def;
344
345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347 struct ipw2100_priv *priv = libipw_priv(dev);
348
349 *val = ioread32(priv->ioaddr + reg);
350 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352
353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355 struct ipw2100_priv *priv = libipw_priv(dev);
356
357 iowrite32(val, priv->ioaddr + reg);
358 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360
361 static inline void read_register_word(struct net_device *dev, u32 reg,
362 u16 * val)
363 {
364 struct ipw2100_priv *priv = libipw_priv(dev);
365
366 *val = ioread16(priv->ioaddr + reg);
367 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369
370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372 struct ipw2100_priv *priv = libipw_priv(dev);
373
374 *val = ioread8(priv->ioaddr + reg);
375 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380 struct ipw2100_priv *priv = libipw_priv(dev);
381
382 iowrite16(val, priv->ioaddr + reg);
383 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385
386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388 struct ipw2100_priv *priv = libipw_priv(dev);
389
390 iowrite8(val, priv->ioaddr + reg);
391 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393
394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397 addr & IPW_REG_INDIRECT_ADDR_MASK);
398 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400
401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404 addr & IPW_REG_INDIRECT_ADDR_MASK);
405 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407
408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411 addr & IPW_REG_INDIRECT_ADDR_MASK);
412 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414
415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418 addr & IPW_REG_INDIRECT_ADDR_MASK);
419 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421
422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425 addr & IPW_REG_INDIRECT_ADDR_MASK);
426 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428
429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432 addr & IPW_REG_INDIRECT_ADDR_MASK);
433 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435
436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439 addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441
442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446
447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448 const u8 * buf)
449 {
450 u32 aligned_addr;
451 u32 aligned_len;
452 u32 dif_len;
453 u32 i;
454
455 /* read first nibble byte by byte */
456 aligned_addr = addr & (~0x3);
457 dif_len = addr - aligned_addr;
458 if (dif_len) {
459 /* Start reading at aligned_addr + dif_len */
460 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461 aligned_addr);
462 for (i = dif_len; i < 4; i++, buf++)
463 write_register_byte(dev,
464 IPW_REG_INDIRECT_ACCESS_DATA + i,
465 *buf);
466
467 len -= dif_len;
468 aligned_addr += 4;
469 }
470
471 /* read DWs through autoincrement registers */
472 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473 aligned_len = len & (~0x3);
474 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476
477 /* copy the last nibble */
478 dif_len = len - aligned_len;
479 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480 for (i = 0; i < dif_len; i++, buf++)
481 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482 *buf);
483 }
484
485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486 u8 * buf)
487 {
488 u32 aligned_addr;
489 u32 aligned_len;
490 u32 dif_len;
491 u32 i;
492
493 /* read first nibble byte by byte */
494 aligned_addr = addr & (~0x3);
495 dif_len = addr - aligned_addr;
496 if (dif_len) {
497 /* Start reading at aligned_addr + dif_len */
498 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499 aligned_addr);
500 for (i = dif_len; i < 4; i++, buf++)
501 read_register_byte(dev,
502 IPW_REG_INDIRECT_ACCESS_DATA + i,
503 buf);
504
505 len -= dif_len;
506 aligned_addr += 4;
507 }
508
509 /* read DWs through autoincrement registers */
510 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511 aligned_len = len & (~0x3);
512 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514
515 /* copy the last nibble */
516 dif_len = len - aligned_len;
517 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518 for (i = 0; i < dif_len; i++, buf++)
519 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521
522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524 u32 dbg;
525
526 read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527
528 return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530
531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532 void *val, u32 * len)
533 {
534 struct ipw2100_ordinals *ordinals = &priv->ordinals;
535 u32 addr;
536 u32 field_info;
537 u16 field_len;
538 u16 field_count;
539 u32 total_length;
540
541 if (ordinals->table1_addr == 0) {
542 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543 "before they have been loaded.\n");
544 return -EINVAL;
545 }
546
547 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
550
551 printk(KERN_WARNING DRV_NAME
552 ": ordinal buffer length too small, need %zd\n",
553 IPW_ORD_TAB_1_ENTRY_SIZE);
554
555 return -EINVAL;
556 }
557
558 read_nic_dword(priv->net_dev,
559 ordinals->table1_addr + (ord << 2), &addr);
560 read_nic_dword(priv->net_dev, addr, val);
561
562 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
563
564 return 0;
565 }
566
567 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568
569 ord -= IPW_START_ORD_TAB_2;
570
571 /* get the address of statistic */
572 read_nic_dword(priv->net_dev,
573 ordinals->table2_addr + (ord << 3), &addr);
574
575 /* get the second DW of statistics ;
576 * two 16-bit words - first is length, second is count */
577 read_nic_dword(priv->net_dev,
578 ordinals->table2_addr + (ord << 3) + sizeof(u32),
579 &field_info);
580
581 /* get each entry length */
582 field_len = *((u16 *) & field_info);
583
584 /* get number of entries */
585 field_count = *(((u16 *) & field_info) + 1);
586
587 /* abort if no enough memory */
588 total_length = field_len * field_count;
589 if (total_length > *len) {
590 *len = total_length;
591 return -EINVAL;
592 }
593
594 *len = total_length;
595 if (!total_length)
596 return 0;
597
598 /* read the ordinal data from the SRAM */
599 read_nic_memory(priv->net_dev, addr, total_length, val);
600
601 return 0;
602 }
603
604 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605 "in table 2\n", ord);
606
607 return -EINVAL;
608 }
609
610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611 u32 * len)
612 {
613 struct ipw2100_ordinals *ordinals = &priv->ordinals;
614 u32 addr;
615
616 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
619 IPW_DEBUG_INFO("wrong size\n");
620 return -EINVAL;
621 }
622
623 read_nic_dword(priv->net_dev,
624 ordinals->table1_addr + (ord << 2), &addr);
625
626 write_nic_dword(priv->net_dev, addr, *val);
627
628 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
629
630 return 0;
631 }
632
633 IPW_DEBUG_INFO("wrong table\n");
634 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635 return -EINVAL;
636
637 return -EINVAL;
638 }
639
640 static char *snprint_line(char *buf, size_t count,
641 const u8 * data, u32 len, u32 ofs)
642 {
643 int out, i, j, l;
644 char c;
645
646 out = snprintf(buf, count, "%08X", ofs);
647
648 for (l = 0, i = 0; i < 2; i++) {
649 out += snprintf(buf + out, count - out, " ");
650 for (j = 0; j < 8 && l < len; j++, l++)
651 out += snprintf(buf + out, count - out, "%02X ",
652 data[(i * 8 + j)]);
653 for (; j < 8; j++)
654 out += snprintf(buf + out, count - out, " ");
655 }
656
657 out += snprintf(buf + out, count - out, " ");
658 for (l = 0, i = 0; i < 2; i++) {
659 out += snprintf(buf + out, count - out, " ");
660 for (j = 0; j < 8 && l < len; j++, l++) {
661 c = data[(i * 8 + j)];
662 if (!isascii(c) || !isprint(c))
663 c = '.';
664
665 out += snprintf(buf + out, count - out, "%c", c);
666 }
667
668 for (; j < 8; j++)
669 out += snprintf(buf + out, count - out, " ");
670 }
671
672 return buf;
673 }
674
675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677 char line[81];
678 u32 ofs = 0;
679 if (!(ipw2100_debug_level & level))
680 return;
681
682 while (len) {
683 printk(KERN_DEBUG "%s\n",
684 snprint_line(line, sizeof(line), &data[ofs],
685 min(len, 16U), ofs));
686 ofs += 16;
687 len -= min(len, 16U);
688 }
689 }
690
691 #define MAX_RESET_BACKOFF 10
692
693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695 unsigned long now = get_seconds();
696
697 /* If we haven't received a reset request within the backoff period,
698 * then we can reset the backoff interval so this reset occurs
699 * immediately */
700 if (priv->reset_backoff &&
701 (now - priv->last_reset > priv->reset_backoff))
702 priv->reset_backoff = 0;
703
704 priv->last_reset = get_seconds();
705
706 if (!(priv->status & STATUS_RESET_PENDING)) {
707 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
708 priv->net_dev->name, priv->reset_backoff);
709 netif_carrier_off(priv->net_dev);
710 netif_stop_queue(priv->net_dev);
711 priv->status |= STATUS_RESET_PENDING;
712 if (priv->reset_backoff)
713 schedule_delayed_work(&priv->reset_work,
714 priv->reset_backoff * HZ);
715 else
716 schedule_delayed_work(&priv->reset_work, 0);
717
718 if (priv->reset_backoff < MAX_RESET_BACKOFF)
719 priv->reset_backoff++;
720
721 wake_up_interruptible(&priv->wait_command_queue);
722 } else
723 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724 priv->net_dev->name);
725
726 }
727
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730 struct host_command *cmd)
731 {
732 struct list_head *element;
733 struct ipw2100_tx_packet *packet;
734 unsigned long flags;
735 int err = 0;
736
737 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738 command_types[cmd->host_command], cmd->host_command,
739 cmd->host_command_length);
740 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741 cmd->host_command_length);
742
743 spin_lock_irqsave(&priv->low_lock, flags);
744
745 if (priv->fatal_error) {
746 IPW_DEBUG_INFO
747 ("Attempt to send command while hardware in fatal error condition.\n");
748 err = -EIO;
749 goto fail_unlock;
750 }
751
752 if (!(priv->status & STATUS_RUNNING)) {
753 IPW_DEBUG_INFO
754 ("Attempt to send command while hardware is not running.\n");
755 err = -EIO;
756 goto fail_unlock;
757 }
758
759 if (priv->status & STATUS_CMD_ACTIVE) {
760 IPW_DEBUG_INFO
761 ("Attempt to send command while another command is pending.\n");
762 err = -EBUSY;
763 goto fail_unlock;
764 }
765
766 if (list_empty(&priv->msg_free_list)) {
767 IPW_DEBUG_INFO("no available msg buffers\n");
768 goto fail_unlock;
769 }
770
771 priv->status |= STATUS_CMD_ACTIVE;
772 priv->messages_sent++;
773
774 element = priv->msg_free_list.next;
775
776 packet = list_entry(element, struct ipw2100_tx_packet, list);
777 packet->jiffy_start = jiffies;
778
779 /* initialize the firmware command packet */
780 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782 packet->info.c_struct.cmd->host_command_len_reg =
783 cmd->host_command_length;
784 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785
786 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787 cmd->host_command_parameters,
788 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789
790 list_del(element);
791 DEC_STAT(&priv->msg_free_stat);
792
793 list_add_tail(element, &priv->msg_pend_list);
794 INC_STAT(&priv->msg_pend_stat);
795
796 ipw2100_tx_send_commands(priv);
797 ipw2100_tx_send_data(priv);
798
799 spin_unlock_irqrestore(&priv->low_lock, flags);
800
801 /*
802 * We must wait for this command to complete before another
803 * command can be sent... but if we wait more than 3 seconds
804 * then there is a problem.
805 */
806
807 err =
808 wait_event_interruptible_timeout(priv->wait_command_queue,
809 !(priv->
810 status & STATUS_CMD_ACTIVE),
811 HOST_COMPLETE_TIMEOUT);
812
813 if (err == 0) {
814 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817 priv->status &= ~STATUS_CMD_ACTIVE;
818 schedule_reset(priv);
819 return -EIO;
820 }
821
822 if (priv->fatal_error) {
823 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824 priv->net_dev->name);
825 return -EIO;
826 }
827
828 /* !!!!! HACK TEST !!!!!
829 * When lots of debug trace statements are enabled, the driver
830 * doesn't seem to have as many firmware restart cycles...
831 *
832 * As a test, we're sticking in a 1/100s delay here */
833 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834
835 return 0;
836
837 fail_unlock:
838 spin_unlock_irqrestore(&priv->low_lock, flags);
839
840 return err;
841 }
842
843 /*
844 * Verify the values and data access of the hardware
845 * No locks needed or used. No functions called.
846 */
847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849 u32 data1, data2;
850 u32 address;
851
852 u32 val1 = 0x76543210;
853 u32 val2 = 0xFEDCBA98;
854
855 /* Domain 0 check - all values should be DOA_DEBUG */
856 for (address = IPW_REG_DOA_DEBUG_AREA_START;
857 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858 read_register(priv->net_dev, address, &data1);
859 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860 return -EIO;
861 }
862
863 /* Domain 1 check - use arbitrary read/write compare */
864 for (address = 0; address < 5; address++) {
865 /* The memory area is not used now */
866 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867 val1);
868 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869 val2);
870 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871 &data1);
872 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873 &data2);
874 if (val1 == data1 && val2 == data2)
875 return 0;
876 }
877
878 return -EIO;
879 }
880
881 /*
882 *
883 * Loop until the CARD_DISABLED bit is the same value as the
884 * supplied parameter
885 *
886 * TODO: See if it would be more efficient to do a wait/wake
887 * cycle and have the completion event trigger the wakeup
888 *
889 */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893 int i;
894 u32 card_state;
895 u32 len = sizeof(card_state);
896 int err;
897
898 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900 &card_state, &len);
901 if (err) {
902 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903 "failed.\n");
904 return 0;
905 }
906
907 /* We'll break out if either the HW state says it is
908 * in the state we want, or if HOST_COMPLETE command
909 * finishes */
910 if ((card_state == state) ||
911 ((priv->status & STATUS_ENABLED) ?
912 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913 if (state == IPW_HW_STATE_ENABLED)
914 priv->status |= STATUS_ENABLED;
915 else
916 priv->status &= ~STATUS_ENABLED;
917
918 return 0;
919 }
920
921 udelay(50);
922 }
923
924 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925 state ? "DISABLED" : "ENABLED");
926 return -EIO;
927 }
928
929 /*********************************************************************
930 Procedure : sw_reset_and_clock
931 Purpose : Asserts s/w reset, asserts clock initialization
932 and waits for clock stabilization
933 ********************************************************************/
934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936 int i;
937 u32 r;
938
939 // assert s/w reset
940 write_register(priv->net_dev, IPW_REG_RESET_REG,
941 IPW_AUX_HOST_RESET_REG_SW_RESET);
942
943 // wait for clock stabilization
944 for (i = 0; i < 1000; i++) {
945 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946
947 // check clock ready bit
948 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950 break;
951 }
952
953 if (i == 1000)
954 return -EIO; // TODO: better error value
955
956 /* set "initialization complete" bit to move adapter to
957 * D0 state */
958 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960
961 /* wait for clock stabilization */
962 for (i = 0; i < 10000; i++) {
963 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964
965 /* check clock ready bit */
966 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968 break;
969 }
970
971 if (i == 10000)
972 return -EIO; /* TODO: better error value */
973
974 /* set D0 standby bit */
975 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978
979 return 0;
980 }
981
982 /*********************************************************************
983 Procedure : ipw2100_download_firmware
984 Purpose : Initiaze adapter after power on.
985 The sequence is:
986 1. assert s/w reset first!
987 2. awake clocks & wait for clock stabilization
988 3. hold ARC (don't ask me why...)
989 4. load Dino ucode and reset/clock init again
990 5. zero-out shared mem
991 6. download f/w
992 *******************************************************************/
993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995 u32 address;
996 int err;
997
998 #ifndef CONFIG_PM
999 /* Fetch the firmware and microcode */
1000 struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002
1003 if (priv->fatal_error) {
1004 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005 "fatal error %d. Interface must be brought down.\n",
1006 priv->net_dev->name, priv->fatal_error);
1007 return -EINVAL;
1008 }
1009 #ifdef CONFIG_PM
1010 if (!ipw2100_firmware.version) {
1011 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012 if (err) {
1013 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014 priv->net_dev->name, err);
1015 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016 goto fail;
1017 }
1018 }
1019 #else
1020 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021 if (err) {
1022 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023 priv->net_dev->name, err);
1024 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025 goto fail;
1026 }
1027 #endif
1028 priv->firmware_version = ipw2100_firmware.version;
1029
1030 /* s/w reset and clock stabilization */
1031 err = sw_reset_and_clock(priv);
1032 if (err) {
1033 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034 priv->net_dev->name, err);
1035 goto fail;
1036 }
1037
1038 err = ipw2100_verify(priv);
1039 if (err) {
1040 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041 priv->net_dev->name, err);
1042 goto fail;
1043 }
1044
1045 /* Hold ARC */
1046 write_nic_dword(priv->net_dev,
1047 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048
1049 /* allow ARC to run */
1050 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051
1052 /* load microcode */
1053 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054 if (err) {
1055 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056 priv->net_dev->name, err);
1057 goto fail;
1058 }
1059
1060 /* release ARC */
1061 write_nic_dword(priv->net_dev,
1062 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063
1064 /* s/w reset and clock stabilization (again!!!) */
1065 err = sw_reset_and_clock(priv);
1066 if (err) {
1067 printk(KERN_ERR DRV_NAME
1068 ": %s: sw_reset_and_clock failed: %d\n",
1069 priv->net_dev->name, err);
1070 goto fail;
1071 }
1072
1073 /* load f/w */
1074 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075 if (err) {
1076 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077 priv->net_dev->name, err);
1078 goto fail;
1079 }
1080 #ifndef CONFIG_PM
1081 /*
1082 * When the .resume method of the driver is called, the other
1083 * part of the system, i.e. the ide driver could still stay in
1084 * the suspend stage. This prevents us from loading the firmware
1085 * from the disk. --YZ
1086 */
1087
1088 /* free any storage allocated for firmware image */
1089 ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091
1092 /* zero out Domain 1 area indirectly (Si requirement) */
1093 for (address = IPW_HOST_FW_SHARED_AREA0;
1094 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095 write_nic_dword(priv->net_dev, address, 0);
1096 for (address = IPW_HOST_FW_SHARED_AREA1;
1097 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098 write_nic_dword(priv->net_dev, address, 0);
1099 for (address = IPW_HOST_FW_SHARED_AREA2;
1100 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101 write_nic_dword(priv->net_dev, address, 0);
1102 for (address = IPW_HOST_FW_SHARED_AREA3;
1103 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104 write_nic_dword(priv->net_dev, address, 0);
1105 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107 write_nic_dword(priv->net_dev, address, 0);
1108
1109 return 0;
1110
1111 fail:
1112 ipw2100_release_firmware(priv, &ipw2100_firmware);
1113 return err;
1114 }
1115
1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118 if (priv->status & STATUS_INT_ENABLED)
1119 return;
1120 priv->status |= STATUS_INT_ENABLED;
1121 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123
1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126 if (!(priv->status & STATUS_INT_ENABLED))
1127 return;
1128 priv->status &= ~STATUS_INT_ENABLED;
1129 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131
1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134 struct ipw2100_ordinals *ord = &priv->ordinals;
1135
1136 IPW_DEBUG_INFO("enter\n");
1137
1138 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139 &ord->table1_addr);
1140
1141 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142 &ord->table2_addr);
1143
1144 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146
1147 ord->table2_size &= 0x0000FFFF;
1148
1149 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151 IPW_DEBUG_INFO("exit\n");
1152 }
1153
1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156 u32 reg = 0;
1157 /*
1158 * Set GPIO 3 writable by FW; GPIO 1 writable
1159 * by driver and enable clock
1160 */
1161 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162 IPW_BIT_GPIO_LED_OFF);
1163 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165
1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170
1171 unsigned short value = 0;
1172 u32 reg = 0;
1173 int i;
1174
1175 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177 priv->status &= ~STATUS_RF_KILL_HW;
1178 return 0;
1179 }
1180
1181 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182 udelay(RF_KILL_CHECK_DELAY);
1183 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185 }
1186
1187 if (value == 0) {
1188 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189 priv->status |= STATUS_RF_KILL_HW;
1190 } else {
1191 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192 priv->status &= ~STATUS_RF_KILL_HW;
1193 }
1194
1195 return (value == 0);
1196 }
1197
1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200 u32 addr, len;
1201 u32 val;
1202
1203 /*
1204 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205 */
1206 len = sizeof(addr);
1207 if (ipw2100_get_ordinal
1208 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210 __LINE__);
1211 return -EIO;
1212 }
1213
1214 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215
1216 /*
1217 * EEPROM version is the byte at offset 0xfd in firmware
1218 * We read 4 bytes, then shift out the byte we actually want */
1219 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220 priv->eeprom_version = (val >> 24) & 0xFF;
1221 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222
1223 /*
1224 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225 *
1226 * notice that the EEPROM bit is reverse polarity, i.e.
1227 * bit = 0 signifies HW RF kill switch is supported
1228 * bit = 1 signifies HW RF kill switch is NOT supported
1229 */
1230 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231 if (!((val >> 24) & 0x01))
1232 priv->hw_features |= HW_FEATURE_RFKILL;
1233
1234 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236
1237 return 0;
1238 }
1239
1240 /*
1241 * Start firmware execution after power on and intialization
1242 * The sequence is:
1243 * 1. Release ARC
1244 * 2. Wait for f/w initialization completes;
1245 */
1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248 int i;
1249 u32 inta, inta_mask, gpio;
1250
1251 IPW_DEBUG_INFO("enter\n");
1252
1253 if (priv->status & STATUS_RUNNING)
1254 return 0;
1255
1256 /*
1257 * Initialize the hw - drive adapter to DO state by setting
1258 * init_done bit. Wait for clk_ready bit and Download
1259 * fw & dino ucode
1260 */
1261 if (ipw2100_download_firmware(priv)) {
1262 printk(KERN_ERR DRV_NAME
1263 ": %s: Failed to power on the adapter.\n",
1264 priv->net_dev->name);
1265 return -EIO;
1266 }
1267
1268 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1269 * in the firmware RBD and TBD ring queue */
1270 ipw2100_queues_initialize(priv);
1271
1272 ipw2100_hw_set_gpio(priv);
1273
1274 /* TODO -- Look at disabling interrupts here to make sure none
1275 * get fired during FW initialization */
1276
1277 /* Release ARC - clear reset bit */
1278 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279
1280 /* wait for f/w intialization complete */
1281 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282 i = 5000;
1283 do {
1284 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285 /* Todo... wait for sync command ... */
1286
1287 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288
1289 /* check "init done" bit */
1290 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291 /* reset "init done" bit */
1292 write_register(priv->net_dev, IPW_REG_INTA,
1293 IPW2100_INTA_FW_INIT_DONE);
1294 break;
1295 }
1296
1297 /* check error conditions : we check these after the firmware
1298 * check so that if there is an error, the interrupt handler
1299 * will see it and the adapter will be reset */
1300 if (inta &
1301 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302 /* clear error conditions */
1303 write_register(priv->net_dev, IPW_REG_INTA,
1304 IPW2100_INTA_FATAL_ERROR |
1305 IPW2100_INTA_PARITY_ERROR);
1306 }
1307 } while (--i);
1308
1309 /* Clear out any pending INTAs since we aren't supposed to have
1310 * interrupts enabled at this point... */
1311 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313 inta &= IPW_INTERRUPT_MASK;
1314 /* Clear out any pending interrupts */
1315 if (inta & inta_mask)
1316 write_register(priv->net_dev, IPW_REG_INTA, inta);
1317
1318 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319 i ? "SUCCESS" : "FAILED");
1320
1321 if (!i) {
1322 printk(KERN_WARNING DRV_NAME
1323 ": %s: Firmware did not initialize.\n",
1324 priv->net_dev->name);
1325 return -EIO;
1326 }
1327
1328 /* allow firmware to write to GPIO1 & GPIO3 */
1329 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330
1331 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332
1333 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334
1335 /* Ready to receive commands */
1336 priv->status |= STATUS_RUNNING;
1337
1338 /* The adapter has been reset; we are not associated */
1339 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340
1341 IPW_DEBUG_INFO("exit\n");
1342
1343 return 0;
1344 }
1345
1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348 if (!priv->fatal_error)
1349 return;
1350
1351 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353 priv->fatal_error = 0;
1354 }
1355
1356 /* NOTE: Our interrupt is disabled when this method is called */
1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359 u32 reg;
1360 int i;
1361
1362 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363
1364 ipw2100_hw_set_gpio(priv);
1365
1366 /* Step 1. Stop Master Assert */
1367 write_register(priv->net_dev, IPW_REG_RESET_REG,
1368 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369
1370 /* Step 2. Wait for stop Master Assert
1371 * (not more than 50us, otherwise ret error */
1372 i = 5;
1373 do {
1374 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1376
1377 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378 break;
1379 } while (--i);
1380
1381 priv->status &= ~STATUS_RESET_PENDING;
1382
1383 if (!i) {
1384 IPW_DEBUG_INFO
1385 ("exit - waited too long for master assert stop\n");
1386 return -EIO;
1387 }
1388
1389 write_register(priv->net_dev, IPW_REG_RESET_REG,
1390 IPW_AUX_HOST_RESET_REG_SW_RESET);
1391
1392 /* Reset any fatal_error conditions */
1393 ipw2100_reset_fatalerror(priv);
1394
1395 /* At this point, the adapter is now stopped and disabled */
1396 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397 STATUS_ASSOCIATED | STATUS_ENABLED);
1398
1399 return 0;
1400 }
1401
1402 /*
1403 * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404 *
1405 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406 *
1407 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408 * if STATUS_ASSN_LOST is sent.
1409 */
1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412
1413 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1414
1415 struct host_command cmd = {
1416 .host_command = CARD_DISABLE_PHY_OFF,
1417 .host_command_sequence = 0,
1418 .host_command_length = 0,
1419 };
1420 int err, i;
1421 u32 val1, val2;
1422
1423 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424
1425 /* Turn off the radio */
1426 err = ipw2100_hw_send_command(priv, &cmd);
1427 if (err)
1428 return err;
1429
1430 for (i = 0; i < 2500; i++) {
1431 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433
1434 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435 (val2 & IPW2100_COMMAND_PHY_OFF))
1436 return 0;
1437
1438 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439 }
1440
1441 return -EIO;
1442 }
1443
1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446 struct host_command cmd = {
1447 .host_command = HOST_COMPLETE,
1448 .host_command_sequence = 0,
1449 .host_command_length = 0
1450 };
1451 int err = 0;
1452
1453 IPW_DEBUG_HC("HOST_COMPLETE\n");
1454
1455 if (priv->status & STATUS_ENABLED)
1456 return 0;
1457
1458 mutex_lock(&priv->adapter_mutex);
1459
1460 if (rf_kill_active(priv)) {
1461 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462 goto fail_up;
1463 }
1464
1465 err = ipw2100_hw_send_command(priv, &cmd);
1466 if (err) {
1467 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468 goto fail_up;
1469 }
1470
1471 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472 if (err) {
1473 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474 priv->net_dev->name);
1475 goto fail_up;
1476 }
1477
1478 if (priv->stop_hang_check) {
1479 priv->stop_hang_check = 0;
1480 schedule_delayed_work(&priv->hang_check, HZ / 2);
1481 }
1482
1483 fail_up:
1484 mutex_unlock(&priv->adapter_mutex);
1485 return err;
1486 }
1487
1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491
1492 struct host_command cmd = {
1493 .host_command = HOST_PRE_POWER_DOWN,
1494 .host_command_sequence = 0,
1495 .host_command_length = 0,
1496 };
1497 int err, i;
1498 u32 reg;
1499
1500 if (!(priv->status & STATUS_RUNNING))
1501 return 0;
1502
1503 priv->status |= STATUS_STOPPING;
1504
1505 /* We can only shut down the card if the firmware is operational. So,
1506 * if we haven't reset since a fatal_error, then we can not send the
1507 * shutdown commands. */
1508 if (!priv->fatal_error) {
1509 /* First, make sure the adapter is enabled so that the PHY_OFF
1510 * command can shut it down */
1511 ipw2100_enable_adapter(priv);
1512
1513 err = ipw2100_hw_phy_off(priv);
1514 if (err)
1515 printk(KERN_WARNING DRV_NAME
1516 ": Error disabling radio %d\n", err);
1517
1518 /*
1519 * If in D0-standby mode going directly to D3 may cause a
1520 * PCI bus violation. Therefore we must change out of the D0
1521 * state.
1522 *
1523 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524 * hardware from going into standby mode and will transition
1525 * out of D0-standby if it is already in that state.
1526 *
1527 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528 * driver upon completion. Once received, the driver can
1529 * proceed to the D3 state.
1530 *
1531 * Prepare for power down command to fw. This command would
1532 * take HW out of D0-standby and prepare it for D3 state.
1533 *
1534 * Currently FW does not support event notification for this
1535 * event. Therefore, skip waiting for it. Just wait a fixed
1536 * 100ms
1537 */
1538 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539
1540 err = ipw2100_hw_send_command(priv, &cmd);
1541 if (err)
1542 printk(KERN_WARNING DRV_NAME ": "
1543 "%s: Power down command failed: Error %d\n",
1544 priv->net_dev->name, err);
1545 else
1546 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547 }
1548
1549 priv->status &= ~STATUS_ENABLED;
1550
1551 /*
1552 * Set GPIO 3 writable by FW; GPIO 1 writable
1553 * by driver and enable clock
1554 */
1555 ipw2100_hw_set_gpio(priv);
1556
1557 /*
1558 * Power down adapter. Sequence:
1559 * 1. Stop master assert (RESET_REG[9]=1)
1560 * 2. Wait for stop master (RESET_REG[8]==1)
1561 * 3. S/w reset assert (RESET_REG[7] = 1)
1562 */
1563
1564 /* Stop master assert */
1565 write_register(priv->net_dev, IPW_REG_RESET_REG,
1566 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567
1568 /* wait stop master not more than 50 usec.
1569 * Otherwise return error. */
1570 for (i = 5; i > 0; i--) {
1571 udelay(10);
1572
1573 /* Check master stop bit */
1574 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1575
1576 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577 break;
1578 }
1579
1580 if (i == 0)
1581 printk(KERN_WARNING DRV_NAME
1582 ": %s: Could now power down adapter.\n",
1583 priv->net_dev->name);
1584
1585 /* assert s/w reset */
1586 write_register(priv->net_dev, IPW_REG_RESET_REG,
1587 IPW_AUX_HOST_RESET_REG_SW_RESET);
1588
1589 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590
1591 return 0;
1592 }
1593
1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596 struct host_command cmd = {
1597 .host_command = CARD_DISABLE,
1598 .host_command_sequence = 0,
1599 .host_command_length = 0
1600 };
1601 int err = 0;
1602
1603 IPW_DEBUG_HC("CARD_DISABLE\n");
1604
1605 if (!(priv->status & STATUS_ENABLED))
1606 return 0;
1607
1608 /* Make sure we clear the associated state */
1609 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610
1611 if (!priv->stop_hang_check) {
1612 priv->stop_hang_check = 1;
1613 cancel_delayed_work(&priv->hang_check);
1614 }
1615
1616 mutex_lock(&priv->adapter_mutex);
1617
1618 err = ipw2100_hw_send_command(priv, &cmd);
1619 if (err) {
1620 printk(KERN_WARNING DRV_NAME
1621 ": exit - failed to send CARD_DISABLE command\n");
1622 goto fail_up;
1623 }
1624
1625 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626 if (err) {
1627 printk(KERN_WARNING DRV_NAME
1628 ": exit - card failed to change to DISABLED\n");
1629 goto fail_up;
1630 }
1631
1632 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633
1634 fail_up:
1635 mutex_unlock(&priv->adapter_mutex);
1636 return err;
1637 }
1638
1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641 struct host_command cmd = {
1642 .host_command = SET_SCAN_OPTIONS,
1643 .host_command_sequence = 0,
1644 .host_command_length = 8
1645 };
1646 int err;
1647
1648 IPW_DEBUG_INFO("enter\n");
1649
1650 IPW_DEBUG_SCAN("setting scan options\n");
1651
1652 cmd.host_command_parameters[0] = 0;
1653
1654 if (!(priv->config & CFG_ASSOCIATE))
1655 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658 if (priv->config & CFG_PASSIVE_SCAN)
1659 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660
1661 cmd.host_command_parameters[1] = priv->channel_mask;
1662
1663 err = ipw2100_hw_send_command(priv, &cmd);
1664
1665 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666 cmd.host_command_parameters[0]);
1667
1668 return err;
1669 }
1670
1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673 struct host_command cmd = {
1674 .host_command = BROADCAST_SCAN,
1675 .host_command_sequence = 0,
1676 .host_command_length = 4
1677 };
1678 int err;
1679
1680 IPW_DEBUG_HC("START_SCAN\n");
1681
1682 cmd.host_command_parameters[0] = 0;
1683
1684 /* No scanning if in monitor mode */
1685 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686 return 1;
1687
1688 if (priv->status & STATUS_SCANNING) {
1689 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690 return 0;
1691 }
1692
1693 IPW_DEBUG_INFO("enter\n");
1694
1695 /* Not clearing here; doing so makes iwlist always return nothing...
1696 *
1697 * We should modify the table logic to use aging tables vs. clearing
1698 * the table on each scan start.
1699 */
1700 IPW_DEBUG_SCAN("starting scan\n");
1701
1702 priv->status |= STATUS_SCANNING;
1703 err = ipw2100_hw_send_command(priv, &cmd);
1704 if (err)
1705 priv->status &= ~STATUS_SCANNING;
1706
1707 IPW_DEBUG_INFO("exit\n");
1708
1709 return err;
1710 }
1711
1712 static const struct libipw_geo ipw_geos[] = {
1713 { /* Restricted */
1714 "---",
1715 .bg_channels = 14,
1716 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717 {2427, 4}, {2432, 5}, {2437, 6},
1718 {2442, 7}, {2447, 8}, {2452, 9},
1719 {2457, 10}, {2462, 11}, {2467, 12},
1720 {2472, 13}, {2484, 14}},
1721 },
1722 };
1723
1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726 unsigned long flags;
1727 int rc = 0;
1728 u32 lock;
1729 u32 ord_len = sizeof(lock);
1730
1731 /* Age scan list entries found before suspend */
1732 if (priv->suspend_time) {
1733 libipw_networks_age(priv->ieee, priv->suspend_time);
1734 priv->suspend_time = 0;
1735 }
1736
1737 /* Quiet if manually disabled. */
1738 if (priv->status & STATUS_RF_KILL_SW) {
1739 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740 "switch\n", priv->net_dev->name);
1741 return 0;
1742 }
1743
1744 /* the ipw2100 hardware really doesn't want power management delays
1745 * longer than 175usec
1746 */
1747 pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748
1749 /* If the interrupt is enabled, turn it off... */
1750 spin_lock_irqsave(&priv->low_lock, flags);
1751 ipw2100_disable_interrupts(priv);
1752
1753 /* Reset any fatal_error conditions */
1754 ipw2100_reset_fatalerror(priv);
1755 spin_unlock_irqrestore(&priv->low_lock, flags);
1756
1757 if (priv->status & STATUS_POWERED ||
1758 (priv->status & STATUS_RESET_PENDING)) {
1759 /* Power cycle the card ... */
1760 if (ipw2100_power_cycle_adapter(priv)) {
1761 printk(KERN_WARNING DRV_NAME
1762 ": %s: Could not cycle adapter.\n",
1763 priv->net_dev->name);
1764 rc = 1;
1765 goto exit;
1766 }
1767 } else
1768 priv->status |= STATUS_POWERED;
1769
1770 /* Load the firmware, start the clocks, etc. */
1771 if (ipw2100_start_adapter(priv)) {
1772 printk(KERN_ERR DRV_NAME
1773 ": %s: Failed to start the firmware.\n",
1774 priv->net_dev->name);
1775 rc = 1;
1776 goto exit;
1777 }
1778
1779 ipw2100_initialize_ordinals(priv);
1780
1781 /* Determine capabilities of this particular HW configuration */
1782 if (ipw2100_get_hw_features(priv)) {
1783 printk(KERN_ERR DRV_NAME
1784 ": %s: Failed to determine HW features.\n",
1785 priv->net_dev->name);
1786 rc = 1;
1787 goto exit;
1788 }
1789
1790 /* Initialize the geo */
1791 if (libipw_set_geo(priv->ieee, &ipw_geos[0])) {
1792 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1793 return 0;
1794 }
1795 priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1796
1797 lock = LOCK_NONE;
1798 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1799 printk(KERN_ERR DRV_NAME
1800 ": %s: Failed to clear ordinal lock.\n",
1801 priv->net_dev->name);
1802 rc = 1;
1803 goto exit;
1804 }
1805
1806 priv->status &= ~STATUS_SCANNING;
1807
1808 if (rf_kill_active(priv)) {
1809 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1810 priv->net_dev->name);
1811
1812 if (priv->stop_rf_kill) {
1813 priv->stop_rf_kill = 0;
1814 schedule_delayed_work(&priv->rf_kill,
1815 round_jiffies_relative(HZ));
1816 }
1817
1818 deferred = 1;
1819 }
1820
1821 /* Turn on the interrupt so that commands can be processed */
1822 ipw2100_enable_interrupts(priv);
1823
1824 /* Send all of the commands that must be sent prior to
1825 * HOST_COMPLETE */
1826 if (ipw2100_adapter_setup(priv)) {
1827 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1828 priv->net_dev->name);
1829 rc = 1;
1830 goto exit;
1831 }
1832
1833 if (!deferred) {
1834 /* Enable the adapter - sends HOST_COMPLETE */
1835 if (ipw2100_enable_adapter(priv)) {
1836 printk(KERN_ERR DRV_NAME ": "
1837 "%s: failed in call to enable adapter.\n",
1838 priv->net_dev->name);
1839 ipw2100_hw_stop_adapter(priv);
1840 rc = 1;
1841 goto exit;
1842 }
1843
1844 /* Start a scan . . . */
1845 ipw2100_set_scan_options(priv);
1846 ipw2100_start_scan(priv);
1847 }
1848
1849 exit:
1850 return rc;
1851 }
1852
1853 static void ipw2100_down(struct ipw2100_priv *priv)
1854 {
1855 unsigned long flags;
1856 union iwreq_data wrqu = {
1857 .ap_addr = {
1858 .sa_family = ARPHRD_ETHER}
1859 };
1860 int associated = priv->status & STATUS_ASSOCIATED;
1861
1862 /* Kill the RF switch timer */
1863 if (!priv->stop_rf_kill) {
1864 priv->stop_rf_kill = 1;
1865 cancel_delayed_work(&priv->rf_kill);
1866 }
1867
1868 /* Kill the firmware hang check timer */
1869 if (!priv->stop_hang_check) {
1870 priv->stop_hang_check = 1;
1871 cancel_delayed_work(&priv->hang_check);
1872 }
1873
1874 /* Kill any pending resets */
1875 if (priv->status & STATUS_RESET_PENDING)
1876 cancel_delayed_work(&priv->reset_work);
1877
1878 /* Make sure the interrupt is on so that FW commands will be
1879 * processed correctly */
1880 spin_lock_irqsave(&priv->low_lock, flags);
1881 ipw2100_enable_interrupts(priv);
1882 spin_unlock_irqrestore(&priv->low_lock, flags);
1883
1884 if (ipw2100_hw_stop_adapter(priv))
1885 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1886 priv->net_dev->name);
1887
1888 /* Do not disable the interrupt until _after_ we disable
1889 * the adaptor. Otherwise the CARD_DISABLE command will never
1890 * be ack'd by the firmware */
1891 spin_lock_irqsave(&priv->low_lock, flags);
1892 ipw2100_disable_interrupts(priv);
1893 spin_unlock_irqrestore(&priv->low_lock, flags);
1894
1895 pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1896
1897 /* We have to signal any supplicant if we are disassociating */
1898 if (associated)
1899 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1900
1901 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1902 netif_carrier_off(priv->net_dev);
1903 netif_stop_queue(priv->net_dev);
1904 }
1905
1906 /* Called by register_netdev() */
1907 static int ipw2100_net_init(struct net_device *dev)
1908 {
1909 struct ipw2100_priv *priv = libipw_priv(dev);
1910
1911 return ipw2100_up(priv, 1);
1912 }
1913
1914 static int ipw2100_wdev_init(struct net_device *dev)
1915 {
1916 struct ipw2100_priv *priv = libipw_priv(dev);
1917 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1918 struct wireless_dev *wdev = &priv->ieee->wdev;
1919 int i;
1920
1921 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1922
1923 /* fill-out priv->ieee->bg_band */
1924 if (geo->bg_channels) {
1925 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1926
1927 bg_band->band = IEEE80211_BAND_2GHZ;
1928 bg_band->n_channels = geo->bg_channels;
1929 bg_band->channels = kcalloc(geo->bg_channels,
1930 sizeof(struct ieee80211_channel),
1931 GFP_KERNEL);
1932 if (!bg_band->channels) {
1933 ipw2100_down(priv);
1934 return -ENOMEM;
1935 }
1936 /* translate geo->bg to bg_band.channels */
1937 for (i = 0; i < geo->bg_channels; i++) {
1938 bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1939 bg_band->channels[i].center_freq = geo->bg[i].freq;
1940 bg_band->channels[i].hw_value = geo->bg[i].channel;
1941 bg_band->channels[i].max_power = geo->bg[i].max_power;
1942 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1943 bg_band->channels[i].flags |=
1944 IEEE80211_CHAN_PASSIVE_SCAN;
1945 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1946 bg_band->channels[i].flags |=
1947 IEEE80211_CHAN_NO_IBSS;
1948 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1949 bg_band->channels[i].flags |=
1950 IEEE80211_CHAN_RADAR;
1951 /* No equivalent for LIBIPW_CH_80211H_RULES,
1952 LIBIPW_CH_UNIFORM_SPREADING, or
1953 LIBIPW_CH_B_ONLY... */
1954 }
1955 /* point at bitrate info */
1956 bg_band->bitrates = ipw2100_bg_rates;
1957 bg_band->n_bitrates = RATE_COUNT;
1958
1959 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1960 }
1961
1962 wdev->wiphy->cipher_suites = ipw_cipher_suites;
1963 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1964
1965 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1966 if (wiphy_register(wdev->wiphy)) {
1967 ipw2100_down(priv);
1968 return -EIO;
1969 }
1970 return 0;
1971 }
1972
1973 static void ipw2100_reset_adapter(struct work_struct *work)
1974 {
1975 struct ipw2100_priv *priv =
1976 container_of(work, struct ipw2100_priv, reset_work.work);
1977 unsigned long flags;
1978 union iwreq_data wrqu = {
1979 .ap_addr = {
1980 .sa_family = ARPHRD_ETHER}
1981 };
1982 int associated = priv->status & STATUS_ASSOCIATED;
1983
1984 spin_lock_irqsave(&priv->low_lock, flags);
1985 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1986 priv->resets++;
1987 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1988 priv->status |= STATUS_SECURITY_UPDATED;
1989
1990 /* Force a power cycle even if interface hasn't been opened
1991 * yet */
1992 cancel_delayed_work(&priv->reset_work);
1993 priv->status |= STATUS_RESET_PENDING;
1994 spin_unlock_irqrestore(&priv->low_lock, flags);
1995
1996 mutex_lock(&priv->action_mutex);
1997 /* stop timed checks so that they don't interfere with reset */
1998 priv->stop_hang_check = 1;
1999 cancel_delayed_work(&priv->hang_check);
2000
2001 /* We have to signal any supplicant if we are disassociating */
2002 if (associated)
2003 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
2004
2005 ipw2100_up(priv, 0);
2006 mutex_unlock(&priv->action_mutex);
2007
2008 }
2009
2010 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
2011 {
2012
2013 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2014 int ret;
2015 unsigned int len, essid_len;
2016 char essid[IW_ESSID_MAX_SIZE];
2017 u32 txrate;
2018 u32 chan;
2019 char *txratename;
2020 u8 bssid[ETH_ALEN];
2021 DECLARE_SSID_BUF(ssid);
2022
2023 /*
2024 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2025 * an actual MAC of the AP. Seems like FW sets this
2026 * address too late. Read it later and expose through
2027 * /proc or schedule a later task to query and update
2028 */
2029
2030 essid_len = IW_ESSID_MAX_SIZE;
2031 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2032 essid, &essid_len);
2033 if (ret) {
2034 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2035 __LINE__);
2036 return;
2037 }
2038
2039 len = sizeof(u32);
2040 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2041 if (ret) {
2042 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2043 __LINE__);
2044 return;
2045 }
2046
2047 len = sizeof(u32);
2048 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2049 if (ret) {
2050 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2051 __LINE__);
2052 return;
2053 }
2054 len = ETH_ALEN;
2055 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
2056 if (ret) {
2057 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2058 __LINE__);
2059 return;
2060 }
2061 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2062
2063 switch (txrate) {
2064 case TX_RATE_1_MBIT:
2065 txratename = "1Mbps";
2066 break;
2067 case TX_RATE_2_MBIT:
2068 txratename = "2Mbsp";
2069 break;
2070 case TX_RATE_5_5_MBIT:
2071 txratename = "5.5Mbps";
2072 break;
2073 case TX_RATE_11_MBIT:
2074 txratename = "11Mbps";
2075 break;
2076 default:
2077 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2078 txratename = "unknown rate";
2079 break;
2080 }
2081
2082 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2083 priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2084 txratename, chan, bssid);
2085
2086 /* now we copy read ssid into dev */
2087 if (!(priv->config & CFG_STATIC_ESSID)) {
2088 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2089 memcpy(priv->essid, essid, priv->essid_len);
2090 }
2091 priv->channel = chan;
2092 memcpy(priv->bssid, bssid, ETH_ALEN);
2093
2094 priv->status |= STATUS_ASSOCIATING;
2095 priv->connect_start = get_seconds();
2096
2097 schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2098 }
2099
2100 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2101 int length, int batch_mode)
2102 {
2103 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2104 struct host_command cmd = {
2105 .host_command = SSID,
2106 .host_command_sequence = 0,
2107 .host_command_length = ssid_len
2108 };
2109 int err;
2110 DECLARE_SSID_BUF(ssid);
2111
2112 IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2113
2114 if (ssid_len)
2115 memcpy(cmd.host_command_parameters, essid, ssid_len);
2116
2117 if (!batch_mode) {
2118 err = ipw2100_disable_adapter(priv);
2119 if (err)
2120 return err;
2121 }
2122
2123 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2124 * disable auto association -- so we cheat by setting a bogus SSID */
2125 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2126 int i;
2127 u8 *bogus = (u8 *) cmd.host_command_parameters;
2128 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2129 bogus[i] = 0x18 + i;
2130 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2131 }
2132
2133 /* NOTE: We always send the SSID command even if the provided ESSID is
2134 * the same as what we currently think is set. */
2135
2136 err = ipw2100_hw_send_command(priv, &cmd);
2137 if (!err) {
2138 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2139 memcpy(priv->essid, essid, ssid_len);
2140 priv->essid_len = ssid_len;
2141 }
2142
2143 if (!batch_mode) {
2144 if (ipw2100_enable_adapter(priv))
2145 err = -EIO;
2146 }
2147
2148 return err;
2149 }
2150
2151 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2152 {
2153 DECLARE_SSID_BUF(ssid);
2154
2155 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2156 "disassociated: '%s' %pM\n",
2157 print_ssid(ssid, priv->essid, priv->essid_len),
2158 priv->bssid);
2159
2160 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2161
2162 if (priv->status & STATUS_STOPPING) {
2163 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2164 return;
2165 }
2166
2167 memset(priv->bssid, 0, ETH_ALEN);
2168 memset(priv->ieee->bssid, 0, ETH_ALEN);
2169
2170 netif_carrier_off(priv->net_dev);
2171 netif_stop_queue(priv->net_dev);
2172
2173 if (!(priv->status & STATUS_RUNNING))
2174 return;
2175
2176 if (priv->status & STATUS_SECURITY_UPDATED)
2177 schedule_delayed_work(&priv->security_work, 0);
2178
2179 schedule_delayed_work(&priv->wx_event_work, 0);
2180 }
2181
2182 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2183 {
2184 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2185 priv->net_dev->name);
2186
2187 /* RF_KILL is now enabled (else we wouldn't be here) */
2188 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2189 priv->status |= STATUS_RF_KILL_HW;
2190
2191 /* Make sure the RF Kill check timer is running */
2192 priv->stop_rf_kill = 0;
2193 cancel_delayed_work(&priv->rf_kill);
2194 schedule_delayed_work(&priv->rf_kill, round_jiffies_relative(HZ));
2195 }
2196
2197 static void send_scan_event(void *data)
2198 {
2199 struct ipw2100_priv *priv = data;
2200 union iwreq_data wrqu;
2201
2202 wrqu.data.length = 0;
2203 wrqu.data.flags = 0;
2204 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2205 }
2206
2207 static void ipw2100_scan_event_later(struct work_struct *work)
2208 {
2209 send_scan_event(container_of(work, struct ipw2100_priv,
2210 scan_event_later.work));
2211 }
2212
2213 static void ipw2100_scan_event_now(struct work_struct *work)
2214 {
2215 send_scan_event(container_of(work, struct ipw2100_priv,
2216 scan_event_now));
2217 }
2218
2219 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2220 {
2221 IPW_DEBUG_SCAN("scan complete\n");
2222 /* Age the scan results... */
2223 priv->ieee->scans++;
2224 priv->status &= ~STATUS_SCANNING;
2225
2226 /* Only userspace-requested scan completion events go out immediately */
2227 if (!priv->user_requested_scan) {
2228 if (!delayed_work_pending(&priv->scan_event_later))
2229 schedule_delayed_work(&priv->scan_event_later,
2230 round_jiffies_relative(msecs_to_jiffies(4000)));
2231 } else {
2232 priv->user_requested_scan = 0;
2233 cancel_delayed_work(&priv->scan_event_later);
2234 schedule_work(&priv->scan_event_now);
2235 }
2236 }
2237
2238 #ifdef CONFIG_IPW2100_DEBUG
2239 #define IPW2100_HANDLER(v, f) { v, f, # v }
2240 struct ipw2100_status_indicator {
2241 int status;
2242 void (*cb) (struct ipw2100_priv * priv, u32 status);
2243 char *name;
2244 };
2245 #else
2246 #define IPW2100_HANDLER(v, f) { v, f }
2247 struct ipw2100_status_indicator {
2248 int status;
2249 void (*cb) (struct ipw2100_priv * priv, u32 status);
2250 };
2251 #endif /* CONFIG_IPW2100_DEBUG */
2252
2253 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2254 {
2255 IPW_DEBUG_SCAN("Scanning...\n");
2256 priv->status |= STATUS_SCANNING;
2257 }
2258
2259 static const struct ipw2100_status_indicator status_handlers[] = {
2260 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2261 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2262 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2263 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2264 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2265 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2266 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2267 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2268 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2269 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2270 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2271 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2272 IPW2100_HANDLER(-1, NULL)
2273 };
2274
2275 static void isr_status_change(struct ipw2100_priv *priv, int status)
2276 {
2277 int i;
2278
2279 if (status == IPW_STATE_SCANNING &&
2280 priv->status & STATUS_ASSOCIATED &&
2281 !(priv->status & STATUS_SCANNING)) {
2282 IPW_DEBUG_INFO("Scan detected while associated, with "
2283 "no scan request. Restarting firmware.\n");
2284
2285 /* Wake up any sleeping jobs */
2286 schedule_reset(priv);
2287 }
2288
2289 for (i = 0; status_handlers[i].status != -1; i++) {
2290 if (status == status_handlers[i].status) {
2291 IPW_DEBUG_NOTIF("Status change: %s\n",
2292 status_handlers[i].name);
2293 if (status_handlers[i].cb)
2294 status_handlers[i].cb(priv, status);
2295 priv->wstats.status = status;
2296 return;
2297 }
2298 }
2299
2300 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2301 }
2302
2303 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2304 struct ipw2100_cmd_header *cmd)
2305 {
2306 #ifdef CONFIG_IPW2100_DEBUG
2307 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2308 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2309 command_types[cmd->host_command_reg],
2310 cmd->host_command_reg);
2311 }
2312 #endif
2313 if (cmd->host_command_reg == HOST_COMPLETE)
2314 priv->status |= STATUS_ENABLED;
2315
2316 if (cmd->host_command_reg == CARD_DISABLE)
2317 priv->status &= ~STATUS_ENABLED;
2318
2319 priv->status &= ~STATUS_CMD_ACTIVE;
2320
2321 wake_up_interruptible(&priv->wait_command_queue);
2322 }
2323
2324 #ifdef CONFIG_IPW2100_DEBUG
2325 static const char *frame_types[] = {
2326 "COMMAND_STATUS_VAL",
2327 "STATUS_CHANGE_VAL",
2328 "P80211_DATA_VAL",
2329 "P8023_DATA_VAL",
2330 "HOST_NOTIFICATION_VAL"
2331 };
2332 #endif
2333
2334 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2335 struct ipw2100_rx_packet *packet)
2336 {
2337 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2338 if (!packet->skb)
2339 return -ENOMEM;
2340
2341 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2342 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2343 sizeof(struct ipw2100_rx),
2344 PCI_DMA_FROMDEVICE);
2345 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2346 * dma_addr */
2347
2348 return 0;
2349 }
2350
2351 #define SEARCH_ERROR 0xffffffff
2352 #define SEARCH_FAIL 0xfffffffe
2353 #define SEARCH_SUCCESS 0xfffffff0
2354 #define SEARCH_DISCARD 0
2355 #define SEARCH_SNAPSHOT 1
2356
2357 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2358 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2359 {
2360 int i;
2361 if (!priv->snapshot[0])
2362 return;
2363 for (i = 0; i < 0x30; i++)
2364 kfree(priv->snapshot[i]);
2365 priv->snapshot[0] = NULL;
2366 }
2367
2368 #ifdef IPW2100_DEBUG_C3
2369 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2370 {
2371 int i;
2372 if (priv->snapshot[0])
2373 return 1;
2374 for (i = 0; i < 0x30; i++) {
2375 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2376 if (!priv->snapshot[i]) {
2377 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2378 "buffer %d\n", priv->net_dev->name, i);
2379 while (i > 0)
2380 kfree(priv->snapshot[--i]);
2381 priv->snapshot[0] = NULL;
2382 return 0;
2383 }
2384 }
2385
2386 return 1;
2387 }
2388
2389 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2390 size_t len, int mode)
2391 {
2392 u32 i, j;
2393 u32 tmp;
2394 u8 *s, *d;
2395 u32 ret;
2396
2397 s = in_buf;
2398 if (mode == SEARCH_SNAPSHOT) {
2399 if (!ipw2100_snapshot_alloc(priv))
2400 mode = SEARCH_DISCARD;
2401 }
2402
2403 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2404 read_nic_dword(priv->net_dev, i, &tmp);
2405 if (mode == SEARCH_SNAPSHOT)
2406 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2407 if (ret == SEARCH_FAIL) {
2408 d = (u8 *) & tmp;
2409 for (j = 0; j < 4; j++) {
2410 if (*s != *d) {
2411 s = in_buf;
2412 continue;
2413 }
2414
2415 s++;
2416 d++;
2417
2418 if ((s - in_buf) == len)
2419 ret = (i + j) - len + 1;
2420 }
2421 } else if (mode == SEARCH_DISCARD)
2422 return ret;
2423 }
2424
2425 return ret;
2426 }
2427 #endif
2428
2429 /*
2430 *
2431 * 0) Disconnect the SKB from the firmware (just unmap)
2432 * 1) Pack the ETH header into the SKB
2433 * 2) Pass the SKB to the network stack
2434 *
2435 * When packet is provided by the firmware, it contains the following:
2436 *
2437 * . libipw_hdr
2438 * . libipw_snap_hdr
2439 *
2440 * The size of the constructed ethernet
2441 *
2442 */
2443 #ifdef IPW2100_RX_DEBUG
2444 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2445 #endif
2446
2447 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2448 {
2449 #ifdef IPW2100_DEBUG_C3
2450 struct ipw2100_status *status = &priv->status_queue.drv[i];
2451 u32 match, reg;
2452 int j;
2453 #endif
2454
2455 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2456 i * sizeof(struct ipw2100_status));
2457
2458 #ifdef IPW2100_DEBUG_C3
2459 /* Halt the firmware so we can get a good image */
2460 write_register(priv->net_dev, IPW_REG_RESET_REG,
2461 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2462 j = 5;
2463 do {
2464 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2465 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2466
2467 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2468 break;
2469 } while (j--);
2470
2471 match = ipw2100_match_buf(priv, (u8 *) status,
2472 sizeof(struct ipw2100_status),
2473 SEARCH_SNAPSHOT);
2474 if (match < SEARCH_SUCCESS)
2475 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2476 "offset 0x%06X, length %d:\n",
2477 priv->net_dev->name, match,
2478 sizeof(struct ipw2100_status));
2479 else
2480 IPW_DEBUG_INFO("%s: No DMA status match in "
2481 "Firmware.\n", priv->net_dev->name);
2482
2483 printk_buf((u8 *) priv->status_queue.drv,
2484 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2485 #endif
2486
2487 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2488 priv->net_dev->stats.rx_errors++;
2489 schedule_reset(priv);
2490 }
2491
2492 static void isr_rx(struct ipw2100_priv *priv, int i,
2493 struct libipw_rx_stats *stats)
2494 {
2495 struct net_device *dev = priv->net_dev;
2496 struct ipw2100_status *status = &priv->status_queue.drv[i];
2497 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2498
2499 IPW_DEBUG_RX("Handler...\n");
2500
2501 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2502 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2503 " Dropping.\n",
2504 dev->name,
2505 status->frame_size, skb_tailroom(packet->skb));
2506 dev->stats.rx_errors++;
2507 return;
2508 }
2509
2510 if (unlikely(!netif_running(dev))) {
2511 dev->stats.rx_errors++;
2512 priv->wstats.discard.misc++;
2513 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2514 return;
2515 }
2516
2517 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2518 !(priv->status & STATUS_ASSOCIATED))) {
2519 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2520 priv->wstats.discard.misc++;
2521 return;
2522 }
2523
2524 pci_unmap_single(priv->pci_dev,
2525 packet->dma_addr,
2526 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2527
2528 skb_put(packet->skb, status->frame_size);
2529
2530 #ifdef IPW2100_RX_DEBUG
2531 /* Make a copy of the frame so we can dump it to the logs if
2532 * libipw_rx fails */
2533 skb_copy_from_linear_data(packet->skb, packet_data,
2534 min_t(u32, status->frame_size,
2535 IPW_RX_NIC_BUFFER_LENGTH));
2536 #endif
2537
2538 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2539 #ifdef IPW2100_RX_DEBUG
2540 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2541 dev->name);
2542 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2543 #endif
2544 dev->stats.rx_errors++;
2545
2546 /* libipw_rx failed, so it didn't free the SKB */
2547 dev_kfree_skb_any(packet->skb);
2548 packet->skb = NULL;
2549 }
2550
2551 /* We need to allocate a new SKB and attach it to the RDB. */
2552 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2553 printk(KERN_WARNING DRV_NAME ": "
2554 "%s: Unable to allocate SKB onto RBD ring - disabling "
2555 "adapter.\n", dev->name);
2556 /* TODO: schedule adapter shutdown */
2557 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2558 }
2559
2560 /* Update the RDB entry */
2561 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2562 }
2563
2564 #ifdef CONFIG_IPW2100_MONITOR
2565
2566 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2567 struct libipw_rx_stats *stats)
2568 {
2569 struct net_device *dev = priv->net_dev;
2570 struct ipw2100_status *status = &priv->status_queue.drv[i];
2571 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2572
2573 /* Magic struct that slots into the radiotap header -- no reason
2574 * to build this manually element by element, we can write it much
2575 * more efficiently than we can parse it. ORDER MATTERS HERE */
2576 struct ipw_rt_hdr {
2577 struct ieee80211_radiotap_header rt_hdr;
2578 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2579 } *ipw_rt;
2580
2581 IPW_DEBUG_RX("Handler...\n");
2582
2583 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2584 sizeof(struct ipw_rt_hdr))) {
2585 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2586 " Dropping.\n",
2587 dev->name,
2588 status->frame_size,
2589 skb_tailroom(packet->skb));
2590 dev->stats.rx_errors++;
2591 return;
2592 }
2593
2594 if (unlikely(!netif_running(dev))) {
2595 dev->stats.rx_errors++;
2596 priv->wstats.discard.misc++;
2597 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2598 return;
2599 }
2600
2601 if (unlikely(priv->config & CFG_CRC_CHECK &&
2602 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2603 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2604 dev->stats.rx_errors++;
2605 return;
2606 }
2607
2608 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2609 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2610 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2611 packet->skb->data, status->frame_size);
2612
2613 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2614
2615 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2616 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2617 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2618
2619 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2620
2621 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2622
2623 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2624
2625 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2626 dev->stats.rx_errors++;
2627
2628 /* libipw_rx failed, so it didn't free the SKB */
2629 dev_kfree_skb_any(packet->skb);
2630 packet->skb = NULL;
2631 }
2632
2633 /* We need to allocate a new SKB and attach it to the RDB. */
2634 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2635 IPW_DEBUG_WARNING(
2636 "%s: Unable to allocate SKB onto RBD ring - disabling "
2637 "adapter.\n", dev->name);
2638 /* TODO: schedule adapter shutdown */
2639 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2640 }
2641
2642 /* Update the RDB entry */
2643 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2644 }
2645
2646 #endif
2647
2648 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2649 {
2650 struct ipw2100_status *status = &priv->status_queue.drv[i];
2651 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2652 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2653
2654 switch (frame_type) {
2655 case COMMAND_STATUS_VAL:
2656 return (status->frame_size != sizeof(u->rx_data.command));
2657 case STATUS_CHANGE_VAL:
2658 return (status->frame_size != sizeof(u->rx_data.status));
2659 case HOST_NOTIFICATION_VAL:
2660 return (status->frame_size < sizeof(u->rx_data.notification));
2661 case P80211_DATA_VAL:
2662 case P8023_DATA_VAL:
2663 #ifdef CONFIG_IPW2100_MONITOR
2664 return 0;
2665 #else
2666 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2667 case IEEE80211_FTYPE_MGMT:
2668 case IEEE80211_FTYPE_CTL:
2669 return 0;
2670 case IEEE80211_FTYPE_DATA:
2671 return (status->frame_size >
2672 IPW_MAX_802_11_PAYLOAD_LENGTH);
2673 }
2674 #endif
2675 }
2676
2677 return 1;
2678 }
2679
2680 /*
2681 * ipw2100 interrupts are disabled at this point, and the ISR
2682 * is the only code that calls this method. So, we do not need
2683 * to play with any locks.
2684 *
2685 * RX Queue works as follows:
2686 *
2687 * Read index - firmware places packet in entry identified by the
2688 * Read index and advances Read index. In this manner,
2689 * Read index will always point to the next packet to
2690 * be filled--but not yet valid.
2691 *
2692 * Write index - driver fills this entry with an unused RBD entry.
2693 * This entry has not filled by the firmware yet.
2694 *
2695 * In between the W and R indexes are the RBDs that have been received
2696 * but not yet processed.
2697 *
2698 * The process of handling packets will start at WRITE + 1 and advance
2699 * until it reaches the READ index.
2700 *
2701 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2702 *
2703 */
2704 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2705 {
2706 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2707 struct ipw2100_status_queue *sq = &priv->status_queue;
2708 struct ipw2100_rx_packet *packet;
2709 u16 frame_type;
2710 u32 r, w, i, s;
2711 struct ipw2100_rx *u;
2712 struct libipw_rx_stats stats = {
2713 .mac_time = jiffies,
2714 };
2715
2716 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2717 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2718
2719 if (r >= rxq->entries) {
2720 IPW_DEBUG_RX("exit - bad read index\n");
2721 return;
2722 }
2723
2724 i = (rxq->next + 1) % rxq->entries;
2725 s = i;
2726 while (i != r) {
2727 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2728 r, rxq->next, i); */
2729
2730 packet = &priv->rx_buffers[i];
2731
2732 /* Sync the DMA for the RX buffer so CPU is sure to get
2733 * the correct values */
2734 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2735 sizeof(struct ipw2100_rx),
2736 PCI_DMA_FROMDEVICE);
2737
2738 if (unlikely(ipw2100_corruption_check(priv, i))) {
2739 ipw2100_corruption_detected(priv, i);
2740 goto increment;
2741 }
2742
2743 u = packet->rxp;
2744 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2745 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2746 stats.len = sq->drv[i].frame_size;
2747
2748 stats.mask = 0;
2749 if (stats.rssi != 0)
2750 stats.mask |= LIBIPW_STATMASK_RSSI;
2751 stats.freq = LIBIPW_24GHZ_BAND;
2752
2753 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2754 priv->net_dev->name, frame_types[frame_type],
2755 stats.len);
2756
2757 switch (frame_type) {
2758 case COMMAND_STATUS_VAL:
2759 /* Reset Rx watchdog */
2760 isr_rx_complete_command(priv, &u->rx_data.command);
2761 break;
2762
2763 case STATUS_CHANGE_VAL:
2764 isr_status_change(priv, u->rx_data.status);
2765 break;
2766
2767 case P80211_DATA_VAL:
2768 case P8023_DATA_VAL:
2769 #ifdef CONFIG_IPW2100_MONITOR
2770 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2771 isr_rx_monitor(priv, i, &stats);
2772 break;
2773 }
2774 #endif
2775 if (stats.len < sizeof(struct libipw_hdr_3addr))
2776 break;
2777 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2778 case IEEE80211_FTYPE_MGMT:
2779 libipw_rx_mgt(priv->ieee,
2780 &u->rx_data.header, &stats);
2781 break;
2782
2783 case IEEE80211_FTYPE_CTL:
2784 break;
2785
2786 case IEEE80211_FTYPE_DATA:
2787 isr_rx(priv, i, &stats);
2788 break;
2789
2790 }
2791 break;
2792 }
2793
2794 increment:
2795 /* clear status field associated with this RBD */
2796 rxq->drv[i].status.info.field = 0;
2797
2798 i = (i + 1) % rxq->entries;
2799 }
2800
2801 if (i != s) {
2802 /* backtrack one entry, wrapping to end if at 0 */
2803 rxq->next = (i ? i : rxq->entries) - 1;
2804
2805 write_register(priv->net_dev,
2806 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2807 }
2808 }
2809
2810 /*
2811 * __ipw2100_tx_process
2812 *
2813 * This routine will determine whether the next packet on
2814 * the fw_pend_list has been processed by the firmware yet.
2815 *
2816 * If not, then it does nothing and returns.
2817 *
2818 * If so, then it removes the item from the fw_pend_list, frees
2819 * any associated storage, and places the item back on the
2820 * free list of its source (either msg_free_list or tx_free_list)
2821 *
2822 * TX Queue works as follows:
2823 *
2824 * Read index - points to the next TBD that the firmware will
2825 * process. The firmware will read the data, and once
2826 * done processing, it will advance the Read index.
2827 *
2828 * Write index - driver fills this entry with an constructed TBD
2829 * entry. The Write index is not advanced until the
2830 * packet has been configured.
2831 *
2832 * In between the W and R indexes are the TBDs that have NOT been
2833 * processed. Lagging behind the R index are packets that have
2834 * been processed but have not been freed by the driver.
2835 *
2836 * In order to free old storage, an internal index will be maintained
2837 * that points to the next packet to be freed. When all used
2838 * packets have been freed, the oldest index will be the same as the
2839 * firmware's read index.
2840 *
2841 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2842 *
2843 * Because the TBD structure can not contain arbitrary data, the
2844 * driver must keep an internal queue of cached allocations such that
2845 * it can put that data back into the tx_free_list and msg_free_list
2846 * for use by future command and data packets.
2847 *
2848 */
2849 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2850 {
2851 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2852 struct ipw2100_bd *tbd;
2853 struct list_head *element;
2854 struct ipw2100_tx_packet *packet;
2855 int descriptors_used;
2856 int e, i;
2857 u32 r, w, frag_num = 0;
2858
2859 if (list_empty(&priv->fw_pend_list))
2860 return 0;
2861
2862 element = priv->fw_pend_list.next;
2863
2864 packet = list_entry(element, struct ipw2100_tx_packet, list);
2865 tbd = &txq->drv[packet->index];
2866
2867 /* Determine how many TBD entries must be finished... */
2868 switch (packet->type) {
2869 case COMMAND:
2870 /* COMMAND uses only one slot; don't advance */
2871 descriptors_used = 1;
2872 e = txq->oldest;
2873 break;
2874
2875 case DATA:
2876 /* DATA uses two slots; advance and loop position. */
2877 descriptors_used = tbd->num_fragments;
2878 frag_num = tbd->num_fragments - 1;
2879 e = txq->oldest + frag_num;
2880 e %= txq->entries;
2881 break;
2882
2883 default:
2884 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2885 priv->net_dev->name);
2886 return 0;
2887 }
2888
2889 /* if the last TBD is not done by NIC yet, then packet is
2890 * not ready to be released.
2891 *
2892 */
2893 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2894 &r);
2895 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2896 &w);
2897 if (w != txq->next)
2898 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2899 priv->net_dev->name);
2900
2901 /*
2902 * txq->next is the index of the last packet written txq->oldest is
2903 * the index of the r is the index of the next packet to be read by
2904 * firmware
2905 */
2906
2907 /*
2908 * Quick graphic to help you visualize the following
2909 * if / else statement
2910 *
2911 * ===>| s---->|===============
2912 * e>|
2913 * | a | b | c | d | e | f | g | h | i | j | k | l
2914 * r---->|
2915 * w
2916 *
2917 * w - updated by driver
2918 * r - updated by firmware
2919 * s - start of oldest BD entry (txq->oldest)
2920 * e - end of oldest BD entry
2921 *
2922 */
2923 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2924 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2925 return 0;
2926 }
2927
2928 list_del(element);
2929 DEC_STAT(&priv->fw_pend_stat);
2930
2931 #ifdef CONFIG_IPW2100_DEBUG
2932 {
2933 i = txq->oldest;
2934 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2935 &txq->drv[i],
2936 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2937 txq->drv[i].host_addr, txq->drv[i].buf_length);
2938
2939 if (packet->type == DATA) {
2940 i = (i + 1) % txq->entries;
2941
2942 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2943 &txq->drv[i],
2944 (u32) (txq->nic + i *
2945 sizeof(struct ipw2100_bd)),
2946 (u32) txq->drv[i].host_addr,
2947 txq->drv[i].buf_length);
2948 }
2949 }
2950 #endif
2951
2952 switch (packet->type) {
2953 case DATA:
2954 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2955 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2956 "Expecting DATA TBD but pulled "
2957 "something else: ids %d=%d.\n",
2958 priv->net_dev->name, txq->oldest, packet->index);
2959
2960 /* DATA packet; we have to unmap and free the SKB */
2961 for (i = 0; i < frag_num; i++) {
2962 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2963
2964 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2965 (packet->index + 1 + i) % txq->entries,
2966 tbd->host_addr, tbd->buf_length);
2967
2968 pci_unmap_single(priv->pci_dev,
2969 tbd->host_addr,
2970 tbd->buf_length, PCI_DMA_TODEVICE);
2971 }
2972
2973 libipw_txb_free(packet->info.d_struct.txb);
2974 packet->info.d_struct.txb = NULL;
2975
2976 list_add_tail(element, &priv->tx_free_list);
2977 INC_STAT(&priv->tx_free_stat);
2978
2979 /* We have a free slot in the Tx queue, so wake up the
2980 * transmit layer if it is stopped. */
2981 if (priv->status & STATUS_ASSOCIATED)
2982 netif_wake_queue(priv->net_dev);
2983
2984 /* A packet was processed by the hardware, so update the
2985 * watchdog */
2986 priv->net_dev->trans_start = jiffies;
2987
2988 break;
2989
2990 case COMMAND:
2991 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2992 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2993 "Expecting COMMAND TBD but pulled "
2994 "something else: ids %d=%d.\n",
2995 priv->net_dev->name, txq->oldest, packet->index);
2996
2997 #ifdef CONFIG_IPW2100_DEBUG
2998 if (packet->info.c_struct.cmd->host_command_reg <
2999 ARRAY_SIZE(command_types))
3000 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
3001 command_types[packet->info.c_struct.cmd->
3002 host_command_reg],
3003 packet->info.c_struct.cmd->
3004 host_command_reg,
3005 packet->info.c_struct.cmd->cmd_status_reg);
3006 #endif
3007
3008 list_add_tail(element, &priv->msg_free_list);
3009 INC_STAT(&priv->msg_free_stat);
3010 break;
3011 }
3012
3013 /* advance oldest used TBD pointer to start of next entry */
3014 txq->oldest = (e + 1) % txq->entries;
3015 /* increase available TBDs number */
3016 txq->available += descriptors_used;
3017 SET_STAT(&priv->txq_stat, txq->available);
3018
3019 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
3020 jiffies - packet->jiffy_start);
3021
3022 return (!list_empty(&priv->fw_pend_list));
3023 }
3024
3025 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3026 {
3027 int i = 0;
3028
3029 while (__ipw2100_tx_process(priv) && i < 200)
3030 i++;
3031
3032 if (i == 200) {
3033 printk(KERN_WARNING DRV_NAME ": "
3034 "%s: Driver is running slow (%d iters).\n",
3035 priv->net_dev->name, i);
3036 }
3037 }
3038
3039 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3040 {
3041 struct list_head *element;
3042 struct ipw2100_tx_packet *packet;
3043 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3044 struct ipw2100_bd *tbd;
3045 int next = txq->next;
3046
3047 while (!list_empty(&priv->msg_pend_list)) {
3048 /* if there isn't enough space in TBD queue, then
3049 * don't stuff a new one in.
3050 * NOTE: 3 are needed as a command will take one,
3051 * and there is a minimum of 2 that must be
3052 * maintained between the r and w indexes
3053 */
3054 if (txq->available <= 3) {
3055 IPW_DEBUG_TX("no room in tx_queue\n");
3056 break;
3057 }
3058
3059 element = priv->msg_pend_list.next;
3060 list_del(element);
3061 DEC_STAT(&priv->msg_pend_stat);
3062
3063 packet = list_entry(element, struct ipw2100_tx_packet, list);
3064
3065 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3066 &txq->drv[txq->next],
3067 (u32) (txq->nic + txq->next *
3068 sizeof(struct ipw2100_bd)));
3069
3070 packet->index = txq->next;
3071
3072 tbd = &txq->drv[txq->next];
3073
3074 /* initialize TBD */
3075 tbd->host_addr = packet->info.c_struct.cmd_phys;
3076 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3077 /* not marking number of fragments causes problems
3078 * with f/w debug version */
3079 tbd->num_fragments = 1;
3080 tbd->status.info.field =
3081 IPW_BD_STATUS_TX_FRAME_COMMAND |
3082 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3083
3084 /* update TBD queue counters */
3085 txq->next++;
3086 txq->next %= txq->entries;
3087 txq->available--;
3088 DEC_STAT(&priv->txq_stat);
3089
3090 list_add_tail(element, &priv->fw_pend_list);
3091 INC_STAT(&priv->fw_pend_stat);
3092 }
3093
3094 if (txq->next != next) {
3095 /* kick off the DMA by notifying firmware the
3096 * write index has moved; make sure TBD stores are sync'd */
3097 wmb();
3098 write_register(priv->net_dev,
3099 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3100 txq->next);
3101 }
3102 }
3103
3104 /*
3105 * ipw2100_tx_send_data
3106 *
3107 */
3108 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3109 {
3110 struct list_head *element;
3111 struct ipw2100_tx_packet *packet;
3112 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3113 struct ipw2100_bd *tbd;
3114 int next = txq->next;
3115 int i = 0;
3116 struct ipw2100_data_header *ipw_hdr;
3117 struct libipw_hdr_3addr *hdr;
3118
3119 while (!list_empty(&priv->tx_pend_list)) {
3120 /* if there isn't enough space in TBD queue, then
3121 * don't stuff a new one in.
3122 * NOTE: 4 are needed as a data will take two,
3123 * and there is a minimum of 2 that must be
3124 * maintained between the r and w indexes
3125 */
3126 element = priv->tx_pend_list.next;
3127 packet = list_entry(element, struct ipw2100_tx_packet, list);
3128
3129 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3130 IPW_MAX_BDS)) {
3131 /* TODO: Support merging buffers if more than
3132 * IPW_MAX_BDS are used */
3133 IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded. "
3134 "Increase fragmentation level.\n",
3135 priv->net_dev->name);
3136 }
3137
3138 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3139 IPW_DEBUG_TX("no room in tx_queue\n");
3140 break;
3141 }
3142
3143 list_del(element);
3144 DEC_STAT(&priv->tx_pend_stat);
3145
3146 tbd = &txq->drv[txq->next];
3147
3148 packet->index = txq->next;
3149
3150 ipw_hdr = packet->info.d_struct.data;
3151 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3152 fragments[0]->data;
3153
3154 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3155 /* To DS: Addr1 = BSSID, Addr2 = SA,
3156 Addr3 = DA */
3157 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3158 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3159 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3160 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3161 Addr3 = BSSID */
3162 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3163 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3164 }
3165
3166 ipw_hdr->host_command_reg = SEND;
3167 ipw_hdr->host_command_reg1 = 0;
3168
3169 /* For now we only support host based encryption */
3170 ipw_hdr->needs_encryption = 0;
3171 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3172 if (packet->info.d_struct.txb->nr_frags > 1)
3173 ipw_hdr->fragment_size =
3174 packet->info.d_struct.txb->frag_size -
3175 LIBIPW_3ADDR_LEN;
3176 else
3177 ipw_hdr->fragment_size = 0;
3178
3179 tbd->host_addr = packet->info.d_struct.data_phys;
3180 tbd->buf_length = sizeof(struct ipw2100_data_header);
3181 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3182 tbd->status.info.field =
3183 IPW_BD_STATUS_TX_FRAME_802_3 |
3184 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3185 txq->next++;
3186 txq->next %= txq->entries;
3187
3188 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3189 packet->index, tbd->host_addr, tbd->buf_length);
3190 #ifdef CONFIG_IPW2100_DEBUG
3191 if (packet->info.d_struct.txb->nr_frags > 1)
3192 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3193 packet->info.d_struct.txb->nr_frags);
3194 #endif
3195
3196 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3197 tbd = &txq->drv[txq->next];
3198 if (i == packet->info.d_struct.txb->nr_frags - 1)
3199 tbd->status.info.field =
3200 IPW_BD_STATUS_TX_FRAME_802_3 |
3201 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3202 else
3203 tbd->status.info.field =
3204 IPW_BD_STATUS_TX_FRAME_802_3 |
3205 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3206
3207 tbd->buf_length = packet->info.d_struct.txb->
3208 fragments[i]->len - LIBIPW_3ADDR_LEN;
3209
3210 tbd->host_addr = pci_map_single(priv->pci_dev,
3211 packet->info.d_struct.
3212 txb->fragments[i]->
3213 data +
3214 LIBIPW_3ADDR_LEN,
3215 tbd->buf_length,
3216 PCI_DMA_TODEVICE);
3217
3218 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3219 txq->next, tbd->host_addr,
3220 tbd->buf_length);
3221
3222 pci_dma_sync_single_for_device(priv->pci_dev,
3223 tbd->host_addr,
3224 tbd->buf_length,
3225 PCI_DMA_TODEVICE);
3226
3227 txq->next++;
3228 txq->next %= txq->entries;
3229 }
3230
3231 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3232 SET_STAT(&priv->txq_stat, txq->available);
3233
3234 list_add_tail(element, &priv->fw_pend_list);
3235 INC_STAT(&priv->fw_pend_stat);
3236 }
3237
3238 if (txq->next != next) {
3239 /* kick off the DMA by notifying firmware the
3240 * write index has moved; make sure TBD stores are sync'd */
3241 write_register(priv->net_dev,
3242 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3243 txq->next);
3244 }
3245 }
3246
3247 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3248 {
3249 struct net_device *dev = priv->net_dev;
3250 unsigned long flags;
3251 u32 inta, tmp;
3252
3253 spin_lock_irqsave(&priv->low_lock, flags);
3254 ipw2100_disable_interrupts(priv);
3255
3256 read_register(dev, IPW_REG_INTA, &inta);
3257
3258 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3259 (unsigned long)inta & IPW_INTERRUPT_MASK);
3260
3261 priv->in_isr++;
3262 priv->interrupts++;
3263
3264 /* We do not loop and keep polling for more interrupts as this
3265 * is frowned upon and doesn't play nicely with other potentially
3266 * chained IRQs */
3267 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3268 (unsigned long)inta & IPW_INTERRUPT_MASK);
3269
3270 if (inta & IPW2100_INTA_FATAL_ERROR) {
3271 printk(KERN_WARNING DRV_NAME
3272 ": Fatal interrupt. Scheduling firmware restart.\n");
3273 priv->inta_other++;
3274 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3275
3276 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3277 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3278 priv->net_dev->name, priv->fatal_error);
3279
3280 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3281 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3282 priv->net_dev->name, tmp);
3283
3284 /* Wake up any sleeping jobs */
3285 schedule_reset(priv);
3286 }
3287
3288 if (inta & IPW2100_INTA_PARITY_ERROR) {
3289 printk(KERN_ERR DRV_NAME
3290 ": ***** PARITY ERROR INTERRUPT !!!!\n");
3291 priv->inta_other++;
3292 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3293 }
3294
3295 if (inta & IPW2100_INTA_RX_TRANSFER) {
3296 IPW_DEBUG_ISR("RX interrupt\n");
3297
3298 priv->rx_interrupts++;
3299
3300 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3301
3302 __ipw2100_rx_process(priv);
3303 __ipw2100_tx_complete(priv);
3304 }
3305
3306 if (inta & IPW2100_INTA_TX_TRANSFER) {
3307 IPW_DEBUG_ISR("TX interrupt\n");
3308
3309 priv->tx_interrupts++;
3310
3311 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3312
3313 __ipw2100_tx_complete(priv);
3314 ipw2100_tx_send_commands(priv);
3315 ipw2100_tx_send_data(priv);
3316 }
3317
3318 if (inta & IPW2100_INTA_TX_COMPLETE) {
3319 IPW_DEBUG_ISR("TX complete\n");
3320 priv->inta_other++;
3321 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3322
3323 __ipw2100_tx_complete(priv);
3324 }
3325
3326 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3327 /* ipw2100_handle_event(dev); */
3328 priv->inta_other++;
3329 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3330 }
3331
3332 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3333 IPW_DEBUG_ISR("FW init done interrupt\n");
3334 priv->inta_other++;
3335
3336 read_register(dev, IPW_REG_INTA, &tmp);
3337 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3338 IPW2100_INTA_PARITY_ERROR)) {
3339 write_register(dev, IPW_REG_INTA,
3340 IPW2100_INTA_FATAL_ERROR |
3341 IPW2100_INTA_PARITY_ERROR);
3342 }
3343
3344 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3345 }
3346
3347 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3348 IPW_DEBUG_ISR("Status change interrupt\n");
3349 priv->inta_other++;
3350 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3351 }
3352
3353 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3354 IPW_DEBUG_ISR("slave host mode interrupt\n");
3355 priv->inta_other++;
3356 write_register(dev, IPW_REG_INTA,
3357 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3358 }
3359
3360 priv->in_isr--;
3361 ipw2100_enable_interrupts(priv);
3362
3363 spin_unlock_irqrestore(&priv->low_lock, flags);
3364
3365 IPW_DEBUG_ISR("exit\n");
3366 }
3367
3368 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3369 {
3370 struct ipw2100_priv *priv = data;
3371 u32 inta, inta_mask;
3372
3373 if (!data)
3374 return IRQ_NONE;
3375
3376 spin_lock(&priv->low_lock);
3377
3378 /* We check to see if we should be ignoring interrupts before
3379 * we touch the hardware. During ucode load if we try and handle
3380 * an interrupt we can cause keyboard problems as well as cause
3381 * the ucode to fail to initialize */
3382 if (!(priv->status & STATUS_INT_ENABLED)) {
3383 /* Shared IRQ */
3384 goto none;
3385 }
3386
3387 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3388 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3389
3390 if (inta == 0xFFFFFFFF) {
3391 /* Hardware disappeared */
3392 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3393 goto none;
3394 }
3395
3396 inta &= IPW_INTERRUPT_MASK;
3397
3398 if (!(inta & inta_mask)) {
3399 /* Shared interrupt */
3400 goto none;
3401 }
3402
3403 /* We disable the hardware interrupt here just to prevent unneeded
3404 * calls to be made. We disable this again within the actual
3405 * work tasklet, so if another part of the code re-enables the
3406 * interrupt, that is fine */
3407 ipw2100_disable_interrupts(priv);
3408
3409 tasklet_schedule(&priv->irq_tasklet);
3410 spin_unlock(&priv->low_lock);
3411
3412 return IRQ_HANDLED;
3413 none:
3414 spin_unlock(&priv->low_lock);
3415 return IRQ_NONE;
3416 }
3417
3418 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3419 struct net_device *dev, int pri)
3420 {
3421 struct ipw2100_priv *priv = libipw_priv(dev);
3422 struct list_head *element;
3423 struct ipw2100_tx_packet *packet;
3424 unsigned long flags;
3425
3426 spin_lock_irqsave(&priv->low_lock, flags);
3427
3428 if (!(priv->status & STATUS_ASSOCIATED)) {
3429 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3430 priv->net_dev->stats.tx_carrier_errors++;
3431 netif_stop_queue(dev);
3432 goto fail_unlock;
3433 }
3434
3435 if (list_empty(&priv->tx_free_list))
3436 goto fail_unlock;
3437
3438 element = priv->tx_free_list.next;
3439 packet = list_entry(element, struct ipw2100_tx_packet, list);
3440
3441 packet->info.d_struct.txb = txb;
3442
3443 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3444 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3445
3446 packet->jiffy_start = jiffies;
3447
3448 list_del(element);
3449 DEC_STAT(&priv->tx_free_stat);
3450
3451 list_add_tail(element, &priv->tx_pend_list);
3452 INC_STAT(&priv->tx_pend_stat);
3453
3454 ipw2100_tx_send_data(priv);
3455
3456 spin_unlock_irqrestore(&priv->low_lock, flags);
3457 return NETDEV_TX_OK;
3458
3459 fail_unlock:
3460 netif_stop_queue(dev);
3461 spin_unlock_irqrestore(&priv->low_lock, flags);
3462 return NETDEV_TX_BUSY;
3463 }
3464
3465 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3466 {
3467 int i, j, err = -EINVAL;
3468 void *v;
3469 dma_addr_t p;
3470
3471 priv->msg_buffers =
3472 kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3473 GFP_KERNEL);
3474 if (!priv->msg_buffers)
3475 return -ENOMEM;
3476
3477 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3478 v = pci_alloc_consistent(priv->pci_dev,
3479 sizeof(struct ipw2100_cmd_header), &p);
3480 if (!v) {
3481 printk(KERN_ERR DRV_NAME ": "
3482 "%s: PCI alloc failed for msg "
3483 "buffers.\n", priv->net_dev->name);
3484 err = -ENOMEM;
3485 break;
3486 }
3487
3488 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3489
3490 priv->msg_buffers[i].type = COMMAND;
3491 priv->msg_buffers[i].info.c_struct.cmd =
3492 (struct ipw2100_cmd_header *)v;
3493 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3494 }
3495
3496 if (i == IPW_COMMAND_POOL_SIZE)
3497 return 0;
3498
3499 for (j = 0; j < i; j++) {
3500 pci_free_consistent(priv->pci_dev,
3501 sizeof(struct ipw2100_cmd_header),
3502 priv->msg_buffers[j].info.c_struct.cmd,
3503 priv->msg_buffers[j].info.c_struct.
3504 cmd_phys);
3505 }
3506
3507 kfree(priv->msg_buffers);
3508 priv->msg_buffers = NULL;
3509
3510 return err;
3511 }
3512
3513 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3514 {
3515 int i;
3516
3517 INIT_LIST_HEAD(&priv->msg_free_list);
3518 INIT_LIST_HEAD(&priv->msg_pend_list);
3519
3520 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3521 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3522 SET_STAT(&priv->msg_free_stat, i);
3523
3524 return 0;
3525 }
3526
3527 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3528 {
3529 int i;
3530
3531 if (!priv->msg_buffers)
3532 return;
3533
3534 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3535 pci_free_consistent(priv->pci_dev,
3536 sizeof(struct ipw2100_cmd_header),
3537 priv->msg_buffers[i].info.c_struct.cmd,
3538 priv->msg_buffers[i].info.c_struct.
3539 cmd_phys);
3540 }
3541
3542 kfree(priv->msg_buffers);
3543 priv->msg_buffers = NULL;
3544 }
3545
3546 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3547 char *buf)
3548 {
3549 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3550 char *out = buf;
3551 int i, j;
3552 u32 val;
3553
3554 for (i = 0; i < 16; i++) {
3555 out += sprintf(out, "[%08X] ", i * 16);
3556 for (j = 0; j < 16; j += 4) {
3557 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3558 out += sprintf(out, "%08X ", val);
3559 }
3560 out += sprintf(out, "\n");
3561 }
3562
3563 return out - buf;
3564 }
3565
3566 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3567
3568 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3569 char *buf)
3570 {
3571 struct ipw2100_priv *p = dev_get_drvdata(d);
3572 return sprintf(buf, "0x%08x\n", (int)p->config);
3573 }
3574
3575 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3576
3577 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3578 char *buf)
3579 {
3580 struct ipw2100_priv *p = dev_get_drvdata(d);
3581 return sprintf(buf, "0x%08x\n", (int)p->status);
3582 }
3583
3584 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3585
3586 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3587 char *buf)
3588 {
3589 struct ipw2100_priv *p = dev_get_drvdata(d);
3590 return sprintf(buf, "0x%08x\n", (int)p->capability);
3591 }
3592
3593 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3594
3595 #define IPW2100_REG(x) { IPW_ ##x, #x }
3596 static const struct {
3597 u32 addr;
3598 const char *name;
3599 } hw_data[] = {
3600 IPW2100_REG(REG_GP_CNTRL),
3601 IPW2100_REG(REG_GPIO),
3602 IPW2100_REG(REG_INTA),
3603 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3604 #define IPW2100_NIC(x, s) { x, #x, s }
3605 static const struct {
3606 u32 addr;
3607 const char *name;
3608 size_t size;
3609 } nic_data[] = {
3610 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3611 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3612 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3613 static const struct {
3614 u8 index;
3615 const char *name;
3616 const char *desc;
3617 } ord_data[] = {
3618 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3619 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3620 "successful Host Tx's (MSDU)"),
3621 IPW2100_ORD(STAT_TX_DIR_DATA,
3622 "successful Directed Tx's (MSDU)"),
3623 IPW2100_ORD(STAT_TX_DIR_DATA1,
3624 "successful Directed Tx's (MSDU) @ 1MB"),
3625 IPW2100_ORD(STAT_TX_DIR_DATA2,
3626 "successful Directed Tx's (MSDU) @ 2MB"),
3627 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3628 "successful Directed Tx's (MSDU) @ 5_5MB"),
3629 IPW2100_ORD(STAT_TX_DIR_DATA11,
3630 "successful Directed Tx's (MSDU) @ 11MB"),
3631 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3632 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3633 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3634 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3635 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3636 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3637 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3638 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3639 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3640 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3641 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3642 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3643 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3644 IPW2100_ORD(STAT_TX_ASSN_RESP,
3645 "successful Association response Tx's"),
3646 IPW2100_ORD(STAT_TX_REASSN,
3647 "successful Reassociation Tx's"),
3648 IPW2100_ORD(STAT_TX_REASSN_RESP,
3649 "successful Reassociation response Tx's"),
3650 IPW2100_ORD(STAT_TX_PROBE,
3651 "probes successfully transmitted"),
3652 IPW2100_ORD(STAT_TX_PROBE_RESP,
3653 "probe responses successfully transmitted"),
3654 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3655 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3656 IPW2100_ORD(STAT_TX_DISASSN,
3657 "successful Disassociation TX"),
3658 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3659 IPW2100_ORD(STAT_TX_DEAUTH,
3660 "successful Deauthentication TX"),
3661 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3662 "Total successful Tx data bytes"),
3663 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3664 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3665 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3666 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3667 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3668 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3669 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3670 "times max tries in a hop failed"),
3671 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3672 "times disassociation failed"),
3673 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3674 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3675 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3676 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3677 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3678 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3679 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3680 "directed packets at 5.5MB"),
3681 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3682 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3683 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3684 "nondirected packets at 1MB"),
3685 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3686 "nondirected packets at 2MB"),
3687 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3688 "nondirected packets at 5.5MB"),
3689 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3690 "nondirected packets at 11MB"),
3691 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3692 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3693 "Rx CTS"),
3694 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3695 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3696 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3697 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3698 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3699 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3700 IPW2100_ORD(STAT_RX_REASSN_RESP,
3701 "Reassociation response Rx's"),
3702 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3703 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3704 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3705 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3706 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3707 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3708 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3709 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3710 "Total rx data bytes received"),
3711 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3712 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3713 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3714 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3715 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3716 IPW2100_ORD(STAT_RX_DUPLICATE1,
3717 "duplicate rx packets at 1MB"),
3718 IPW2100_ORD(STAT_RX_DUPLICATE2,
3719 "duplicate rx packets at 2MB"),
3720 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3721 "duplicate rx packets at 5.5MB"),
3722 IPW2100_ORD(STAT_RX_DUPLICATE11,
3723 "duplicate rx packets at 11MB"),
3724 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3725 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3726 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3727 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3728 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3729 "rx frames with invalid protocol"),
3730 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3731 IPW2100_ORD(STAT_RX_NO_BUFFER,
3732 "rx frames rejected due to no buffer"),
3733 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3734 "rx frames dropped due to missing fragment"),
3735 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3736 "rx frames dropped due to non-sequential fragment"),
3737 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3738 "rx frames dropped due to unmatched 1st frame"),
3739 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3740 "rx frames dropped due to uncompleted frame"),
3741 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3742 "ICV errors during decryption"),
3743 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3744 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3745 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3746 "poll response timeouts"),
3747 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3748 "timeouts waiting for last {broad,multi}cast pkt"),
3749 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3750 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3751 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3752 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3753 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3754 "current calculation of % missed beacons"),
3755 IPW2100_ORD(STAT_PERCENT_RETRIES,
3756 "current calculation of % missed tx retries"),
3757 IPW2100_ORD(ASSOCIATED_AP_PTR,
3758 "0 if not associated, else pointer to AP table entry"),
3759 IPW2100_ORD(AVAILABLE_AP_CNT,
3760 "AP's decsribed in the AP table"),
3761 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3762 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3763 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3764 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3765 "failures due to response fail"),
3766 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3767 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3768 IPW2100_ORD(STAT_ROAM_INHIBIT,
3769 "times roaming was inhibited due to activity"),
3770 IPW2100_ORD(RSSI_AT_ASSN,
3771 "RSSI of associated AP at time of association"),
3772 IPW2100_ORD(STAT_ASSN_CAUSE1,
3773 "reassociation: no probe response or TX on hop"),
3774 IPW2100_ORD(STAT_ASSN_CAUSE2,
3775 "reassociation: poor tx/rx quality"),
3776 IPW2100_ORD(STAT_ASSN_CAUSE3,
3777 "reassociation: tx/rx quality (excessive AP load"),
3778 IPW2100_ORD(STAT_ASSN_CAUSE4,
3779 "reassociation: AP RSSI level"),
3780 IPW2100_ORD(STAT_ASSN_CAUSE5,
3781 "reassociations due to load leveling"),
3782 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3783 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3784 "times authentication response failed"),
3785 IPW2100_ORD(STATION_TABLE_CNT,
3786 "entries in association table"),
3787 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3788 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3789 IPW2100_ORD(COUNTRY_CODE,
3790 "IEEE country code as recv'd from beacon"),
3791 IPW2100_ORD(COUNTRY_CHANNELS,
3792 "channels supported by country"),
3793 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3794 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3795 IPW2100_ORD(ANTENNA_DIVERSITY,
3796 "TRUE if antenna diversity is disabled"),
3797 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3798 IPW2100_ORD(OUR_FREQ,
3799 "current radio freq lower digits - channel ID"),
3800 IPW2100_ORD(RTC_TIME, "current RTC time"),
3801 IPW2100_ORD(PORT_TYPE, "operating mode"),
3802 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3803 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3804 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3805 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3806 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3807 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3808 IPW2100_ORD(CAPABILITIES,
3809 "Management frame capability field"),
3810 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3811 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3812 IPW2100_ORD(RTS_THRESHOLD,
3813 "Min packet length for RTS handshaking"),
3814 IPW2100_ORD(INT_MODE, "International mode"),
3815 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3816 "protocol frag threshold"),
3817 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3818 "EEPROM offset in SRAM"),
3819 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3820 "EEPROM size in SRAM"),
3821 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3822 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3823 "EEPROM IBSS 11b channel set"),
3824 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3825 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3826 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3827 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3828 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3829
3830 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3831 char *buf)
3832 {
3833 int i;
3834 struct ipw2100_priv *priv = dev_get_drvdata(d);
3835 struct net_device *dev = priv->net_dev;
3836 char *out = buf;
3837 u32 val = 0;
3838
3839 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3840
3841 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3842 read_register(dev, hw_data[i].addr, &val);
3843 out += sprintf(out, "%30s [%08X] : %08X\n",
3844 hw_data[i].name, hw_data[i].addr, val);
3845 }
3846
3847 return out - buf;
3848 }
3849
3850 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3851
3852 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3853 char *buf)
3854 {
3855 struct ipw2100_priv *priv = dev_get_drvdata(d);
3856 struct net_device *dev = priv->net_dev;
3857 char *out = buf;
3858 int i;
3859
3860 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3861
3862 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3863 u8 tmp8;
3864 u16 tmp16;
3865 u32 tmp32;
3866
3867 switch (nic_data[i].size) {
3868 case 1:
3869 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3870 out += sprintf(out, "%30s [%08X] : %02X\n",
3871 nic_data[i].name, nic_data[i].addr,
3872 tmp8);
3873 break;
3874 case 2:
3875 read_nic_word(dev, nic_data[i].addr, &tmp16);
3876 out += sprintf(out, "%30s [%08X] : %04X\n",
3877 nic_data[i].name, nic_data[i].addr,
3878 tmp16);
3879 break;
3880 case 4:
3881 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3882 out += sprintf(out, "%30s [%08X] : %08X\n",
3883 nic_data[i].name, nic_data[i].addr,
3884 tmp32);
3885 break;
3886 }
3887 }
3888 return out - buf;
3889 }
3890
3891 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3892
3893 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3894 char *buf)
3895 {
3896 struct ipw2100_priv *priv = dev_get_drvdata(d);
3897 struct net_device *dev = priv->net_dev;
3898 static unsigned long loop = 0;
3899 int len = 0;
3900 u32 buffer[4];
3901 int i;
3902 char line[81];
3903
3904 if (loop >= 0x30000)
3905 loop = 0;
3906
3907 /* sysfs provides us PAGE_SIZE buffer */
3908 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3909
3910 if (priv->snapshot[0])
3911 for (i = 0; i < 4; i++)
3912 buffer[i] =
3913 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3914 else
3915 for (i = 0; i < 4; i++)
3916 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3917
3918 if (priv->dump_raw)
3919 len += sprintf(buf + len,
3920 "%c%c%c%c"
3921 "%c%c%c%c"
3922 "%c%c%c%c"
3923 "%c%c%c%c",
3924 ((u8 *) buffer)[0x0],
3925 ((u8 *) buffer)[0x1],
3926 ((u8 *) buffer)[0x2],
3927 ((u8 *) buffer)[0x3],
3928 ((u8 *) buffer)[0x4],
3929 ((u8 *) buffer)[0x5],
3930 ((u8 *) buffer)[0x6],
3931 ((u8 *) buffer)[0x7],
3932 ((u8 *) buffer)[0x8],
3933 ((u8 *) buffer)[0x9],
3934 ((u8 *) buffer)[0xa],
3935 ((u8 *) buffer)[0xb],
3936 ((u8 *) buffer)[0xc],
3937 ((u8 *) buffer)[0xd],
3938 ((u8 *) buffer)[0xe],
3939 ((u8 *) buffer)[0xf]);
3940 else
3941 len += sprintf(buf + len, "%s\n",
3942 snprint_line(line, sizeof(line),
3943 (u8 *) buffer, 16, loop));
3944 loop += 16;
3945 }
3946
3947 return len;
3948 }
3949
3950 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3951 const char *buf, size_t count)
3952 {
3953 struct ipw2100_priv *priv = dev_get_drvdata(d);
3954 struct net_device *dev = priv->net_dev;
3955 const char *p = buf;
3956
3957 (void)dev; /* kill unused-var warning for debug-only code */
3958
3959 if (count < 1)
3960 return count;
3961
3962 if (p[0] == '1' ||
3963 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3964 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3965 dev->name);
3966 priv->dump_raw = 1;
3967
3968 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3969 tolower(p[1]) == 'f')) {
3970 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3971 dev->name);
3972 priv->dump_raw = 0;
3973
3974 } else if (tolower(p[0]) == 'r') {
3975 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3976 ipw2100_snapshot_free(priv);
3977
3978 } else
3979 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3980 "reset = clear memory snapshot\n", dev->name);
3981
3982 return count;
3983 }
3984
3985 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3986
3987 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3988 char *buf)
3989 {
3990 struct ipw2100_priv *priv = dev_get_drvdata(d);
3991 u32 val = 0;
3992 int len = 0;
3993 u32 val_len;
3994 static int loop = 0;
3995
3996 if (priv->status & STATUS_RF_KILL_MASK)
3997 return 0;
3998
3999 if (loop >= ARRAY_SIZE(ord_data))
4000 loop = 0;
4001
4002 /* sysfs provides us PAGE_SIZE buffer */
4003 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
4004 val_len = sizeof(u32);
4005
4006 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
4007 &val_len))
4008 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
4009 ord_data[loop].index,
4010 ord_data[loop].desc);
4011 else
4012 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
4013 ord_data[loop].index, val,
4014 ord_data[loop].desc);
4015 loop++;
4016 }
4017
4018 return len;
4019 }
4020
4021 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
4022
4023 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
4024 char *buf)
4025 {
4026 struct ipw2100_priv *priv = dev_get_drvdata(d);
4027 char *out = buf;
4028
4029 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4030 priv->interrupts, priv->tx_interrupts,
4031 priv->rx_interrupts, priv->inta_other);
4032 out += sprintf(out, "firmware resets: %d\n", priv->resets);
4033 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4034 #ifdef CONFIG_IPW2100_DEBUG
4035 out += sprintf(out, "packet mismatch image: %s\n",
4036 priv->snapshot[0] ? "YES" : "NO");
4037 #endif
4038
4039 return out - buf;
4040 }
4041
4042 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4043
4044 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4045 {
4046 int err;
4047
4048 if (mode == priv->ieee->iw_mode)
4049 return 0;
4050
4051 err = ipw2100_disable_adapter(priv);
4052 if (err) {
4053 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4054 priv->net_dev->name, err);
4055 return err;
4056 }
4057
4058 switch (mode) {
4059 case IW_MODE_INFRA:
4060 priv->net_dev->type = ARPHRD_ETHER;
4061 break;
4062 case IW_MODE_ADHOC:
4063 priv->net_dev->type = ARPHRD_ETHER;
4064 break;
4065 #ifdef CONFIG_IPW2100_MONITOR
4066 case IW_MODE_MONITOR:
4067 priv->last_mode = priv->ieee->iw_mode;
4068 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4069 break;
4070 #endif /* CONFIG_IPW2100_MONITOR */
4071 }
4072
4073 priv->ieee->iw_mode = mode;
4074
4075 #ifdef CONFIG_PM
4076 /* Indicate ipw2100_download_firmware download firmware
4077 * from disk instead of memory. */
4078 ipw2100_firmware.version = 0;
4079 #endif
4080
4081 printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4082 priv->reset_backoff = 0;
4083 schedule_reset(priv);
4084
4085 return 0;
4086 }
4087
4088 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4089 char *buf)
4090 {
4091 struct ipw2100_priv *priv = dev_get_drvdata(d);
4092 int len = 0;
4093
4094 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4095
4096 if (priv->status & STATUS_ASSOCIATED)
4097 len += sprintf(buf + len, "connected: %lu\n",
4098 get_seconds() - priv->connect_start);
4099 else
4100 len += sprintf(buf + len, "not connected\n");
4101
4102 DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4103 DUMP_VAR(status, "08lx");
4104 DUMP_VAR(config, "08lx");
4105 DUMP_VAR(capability, "08lx");
4106
4107 len +=
4108 sprintf(buf + len, "last_rtc: %lu\n",
4109 (unsigned long)priv->last_rtc);
4110
4111 DUMP_VAR(fatal_error, "d");
4112 DUMP_VAR(stop_hang_check, "d");
4113 DUMP_VAR(stop_rf_kill, "d");
4114 DUMP_VAR(messages_sent, "d");
4115
4116 DUMP_VAR(tx_pend_stat.value, "d");
4117 DUMP_VAR(tx_pend_stat.hi, "d");
4118
4119 DUMP_VAR(tx_free_stat.value, "d");
4120 DUMP_VAR(tx_free_stat.lo, "d");
4121
4122 DUMP_VAR(msg_free_stat.value, "d");
4123 DUMP_VAR(msg_free_stat.lo, "d");
4124
4125 DUMP_VAR(msg_pend_stat.value, "d");
4126 DUMP_VAR(msg_pend_stat.hi, "d");
4127
4128 DUMP_VAR(fw_pend_stat.value, "d");
4129 DUMP_VAR(fw_pend_stat.hi, "d");
4130
4131 DUMP_VAR(txq_stat.value, "d");
4132 DUMP_VAR(txq_stat.lo, "d");
4133
4134 DUMP_VAR(ieee->scans, "d");
4135 DUMP_VAR(reset_backoff, "d");
4136
4137 return len;
4138 }
4139
4140 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4141
4142 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4143 char *buf)
4144 {
4145 struct ipw2100_priv *priv = dev_get_drvdata(d);
4146 char essid[IW_ESSID_MAX_SIZE + 1];
4147 u8 bssid[ETH_ALEN];
4148 u32 chan = 0;
4149 char *out = buf;
4150 unsigned int length;
4151 int ret;
4152
4153 if (priv->status & STATUS_RF_KILL_MASK)
4154 return 0;
4155
4156 memset(essid, 0, sizeof(essid));
4157 memset(bssid, 0, sizeof(bssid));
4158
4159 length = IW_ESSID_MAX_SIZE;
4160 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4161 if (ret)
4162 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4163 __LINE__);
4164
4165 length = sizeof(bssid);
4166 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4167 bssid, &length);
4168 if (ret)
4169 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4170 __LINE__);
4171
4172 length = sizeof(u32);
4173 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4174 if (ret)
4175 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4176 __LINE__);
4177
4178 out += sprintf(out, "ESSID: %s\n", essid);
4179 out += sprintf(out, "BSSID: %pM\n", bssid);
4180 out += sprintf(out, "Channel: %d\n", chan);
4181
4182 return out - buf;
4183 }
4184
4185 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4186
4187 #ifdef CONFIG_IPW2100_DEBUG
4188 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4189 {
4190 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4191 }
4192
4193 static ssize_t store_debug_level(struct device_driver *d,
4194 const char *buf, size_t count)
4195 {
4196 char *p = (char *)buf;
4197 u32 val;
4198
4199 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4200 p++;
4201 if (p[0] == 'x' || p[0] == 'X')
4202 p++;
4203 val = simple_strtoul(p, &p, 16);
4204 } else
4205 val = simple_strtoul(p, &p, 10);
4206 if (p == buf)
4207 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4208 else
4209 ipw2100_debug_level = val;
4210
4211 return strnlen(buf, count);
4212 }
4213
4214 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4215 store_debug_level);
4216 #endif /* CONFIG_IPW2100_DEBUG */
4217
4218 static ssize_t show_fatal_error(struct device *d,
4219 struct device_attribute *attr, char *buf)
4220 {
4221 struct ipw2100_priv *priv = dev_get_drvdata(d);
4222 char *out = buf;
4223 int i;
4224
4225 if (priv->fatal_error)
4226 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4227 else
4228 out += sprintf(out, "0\n");
4229
4230 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4231 if (!priv->fatal_errors[(priv->fatal_index - i) %
4232 IPW2100_ERROR_QUEUE])
4233 continue;
4234
4235 out += sprintf(out, "%d. 0x%08X\n", i,
4236 priv->fatal_errors[(priv->fatal_index - i) %
4237 IPW2100_ERROR_QUEUE]);
4238 }
4239
4240 return out - buf;
4241 }
4242
4243 static ssize_t store_fatal_error(struct device *d,
4244 struct device_attribute *attr, const char *buf,
4245 size_t count)
4246 {
4247 struct ipw2100_priv *priv = dev_get_drvdata(d);
4248 schedule_reset(priv);
4249 return count;
4250 }
4251
4252 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4253 store_fatal_error);
4254
4255 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4256 char *buf)
4257 {
4258 struct ipw2100_priv *priv = dev_get_drvdata(d);
4259 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4260 }
4261
4262 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4263 const char *buf, size_t count)
4264 {
4265 struct ipw2100_priv *priv = dev_get_drvdata(d);
4266 struct net_device *dev = priv->net_dev;
4267 char buffer[] = "00000000";
4268 unsigned long len =
4269 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4270 unsigned long val;
4271 char *p = buffer;
4272
4273 (void)dev; /* kill unused-var warning for debug-only code */
4274
4275 IPW_DEBUG_INFO("enter\n");
4276
4277 strncpy(buffer, buf, len);
4278 buffer[len] = 0;
4279
4280 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4281 p++;
4282 if (p[0] == 'x' || p[0] == 'X')
4283 p++;
4284 val = simple_strtoul(p, &p, 16);
4285 } else
4286 val = simple_strtoul(p, &p, 10);
4287 if (p == buffer) {
4288 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4289 } else {
4290 priv->ieee->scan_age = val;
4291 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4292 }
4293
4294 IPW_DEBUG_INFO("exit\n");
4295 return len;
4296 }
4297
4298 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4299
4300 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4301 char *buf)
4302 {
4303 /* 0 - RF kill not enabled
4304 1 - SW based RF kill active (sysfs)
4305 2 - HW based RF kill active
4306 3 - Both HW and SW baed RF kill active */
4307 struct ipw2100_priv *priv = dev_get_drvdata(d);
4308 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4309 (rf_kill_active(priv) ? 0x2 : 0x0);
4310 return sprintf(buf, "%i\n", val);
4311 }
4312
4313 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4314 {
4315 if ((disable_radio ? 1 : 0) ==
4316 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4317 return 0;
4318
4319 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4320 disable_radio ? "OFF" : "ON");
4321
4322 mutex_lock(&priv->action_mutex);
4323
4324 if (disable_radio) {
4325 priv->status |= STATUS_RF_KILL_SW;
4326 ipw2100_down(priv);
4327 } else {
4328 priv->status &= ~STATUS_RF_KILL_SW;
4329 if (rf_kill_active(priv)) {
4330 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4331 "disabled by HW switch\n");
4332 /* Make sure the RF_KILL check timer is running */
4333 priv->stop_rf_kill = 0;
4334 cancel_delayed_work(&priv->rf_kill);
4335 schedule_delayed_work(&priv->rf_kill,
4336 round_jiffies_relative(HZ));
4337 } else
4338 schedule_reset(priv);
4339 }
4340
4341 mutex_unlock(&priv->action_mutex);
4342 return 1;
4343 }
4344
4345 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4346 const char *buf, size_t count)
4347 {
4348 struct ipw2100_priv *priv = dev_get_drvdata(d);
4349 ipw_radio_kill_sw(priv, buf[0] == '1');
4350 return count;
4351 }
4352
4353 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4354
4355 static struct attribute *ipw2100_sysfs_entries[] = {
4356 &dev_attr_hardware.attr,
4357 &dev_attr_registers.attr,
4358 &dev_attr_ordinals.attr,
4359 &dev_attr_pci.attr,
4360 &dev_attr_stats.attr,
4361 &dev_attr_internals.attr,
4362 &dev_attr_bssinfo.attr,
4363 &dev_attr_memory.attr,
4364 &dev_attr_scan_age.attr,
4365 &dev_attr_fatal_error.attr,
4366 &dev_attr_rf_kill.attr,
4367 &dev_attr_cfg.attr,
4368 &dev_attr_status.attr,
4369 &dev_attr_capability.attr,
4370 NULL,
4371 };
4372
4373 static struct attribute_group ipw2100_attribute_group = {
4374 .attrs = ipw2100_sysfs_entries,
4375 };
4376
4377 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4378 {
4379 struct ipw2100_status_queue *q = &priv->status_queue;
4380
4381 IPW_DEBUG_INFO("enter\n");
4382
4383 q->size = entries * sizeof(struct ipw2100_status);
4384 q->drv =
4385 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4386 q->size, &q->nic);
4387 if (!q->drv) {
4388 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4389 return -ENOMEM;
4390 }
4391
4392 memset(q->drv, 0, q->size);
4393
4394 IPW_DEBUG_INFO("exit\n");
4395
4396 return 0;
4397 }
4398
4399 static void status_queue_free(struct ipw2100_priv *priv)
4400 {
4401 IPW_DEBUG_INFO("enter\n");
4402
4403 if (priv->status_queue.drv) {
4404 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4405 priv->status_queue.drv,
4406 priv->status_queue.nic);
4407 priv->status_queue.drv = NULL;
4408 }
4409
4410 IPW_DEBUG_INFO("exit\n");
4411 }
4412
4413 static int bd_queue_allocate(struct ipw2100_priv *priv,
4414 struct ipw2100_bd_queue *q, int entries)
4415 {
4416 IPW_DEBUG_INFO("enter\n");
4417
4418 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4419
4420 q->entries = entries;
4421 q->size = entries * sizeof(struct ipw2100_bd);
4422 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4423 if (!q->drv) {
4424 IPW_DEBUG_INFO
4425 ("can't allocate shared memory for buffer descriptors\n");
4426 return -ENOMEM;
4427 }
4428 memset(q->drv, 0, q->size);
4429
4430 IPW_DEBUG_INFO("exit\n");
4431
4432 return 0;
4433 }
4434
4435 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4436 {
4437 IPW_DEBUG_INFO("enter\n");
4438
4439 if (!q)
4440 return;
4441
4442 if (q->drv) {
4443 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4444 q->drv = NULL;
4445 }
4446
4447 IPW_DEBUG_INFO("exit\n");
4448 }
4449
4450 static void bd_queue_initialize(struct ipw2100_priv *priv,
4451 struct ipw2100_bd_queue *q, u32 base, u32 size,
4452 u32 r, u32 w)
4453 {
4454 IPW_DEBUG_INFO("enter\n");
4455
4456 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4457 (u32) q->nic);
4458
4459 write_register(priv->net_dev, base, q->nic);
4460 write_register(priv->net_dev, size, q->entries);
4461 write_register(priv->net_dev, r, q->oldest);
4462 write_register(priv->net_dev, w, q->next);
4463
4464 IPW_DEBUG_INFO("exit\n");
4465 }
4466
4467 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4468 {
4469 priv->stop_rf_kill = 1;
4470 priv->stop_hang_check = 1;
4471 cancel_delayed_work_sync(&priv->reset_work);
4472 cancel_delayed_work_sync(&priv->security_work);
4473 cancel_delayed_work_sync(&priv->wx_event_work);
4474 cancel_delayed_work_sync(&priv->hang_check);
4475 cancel_delayed_work_sync(&priv->rf_kill);
4476 cancel_work_sync(&priv->scan_event_now);
4477 cancel_delayed_work_sync(&priv->scan_event_later);
4478 }
4479
4480 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4481 {
4482 int i, j, err = -EINVAL;
4483 void *v;
4484 dma_addr_t p;
4485
4486 IPW_DEBUG_INFO("enter\n");
4487
4488 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4489 if (err) {
4490 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4491 priv->net_dev->name);
4492 return err;
4493 }
4494
4495 priv->tx_buffers =
4496 kmalloc(TX_PENDED_QUEUE_LENGTH * sizeof(struct ipw2100_tx_packet),
4497 GFP_ATOMIC);
4498 if (!priv->tx_buffers) {
4499 printk(KERN_ERR DRV_NAME
4500 ": %s: alloc failed form tx buffers.\n",
4501 priv->net_dev->name);
4502 bd_queue_free(priv, &priv->tx_queue);
4503 return -ENOMEM;
4504 }
4505
4506 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4507 v = pci_alloc_consistent(priv->pci_dev,
4508 sizeof(struct ipw2100_data_header),
4509 &p);
4510 if (!v) {
4511 printk(KERN_ERR DRV_NAME
4512 ": %s: PCI alloc failed for tx " "buffers.\n",
4513 priv->net_dev->name);
4514 err = -ENOMEM;
4515 break;
4516 }
4517
4518 priv->tx_buffers[i].type = DATA;
4519 priv->tx_buffers[i].info.d_struct.data =
4520 (struct ipw2100_data_header *)v;
4521 priv->tx_buffers[i].info.d_struct.data_phys = p;
4522 priv->tx_buffers[i].info.d_struct.txb = NULL;
4523 }
4524
4525 if (i == TX_PENDED_QUEUE_LENGTH)
4526 return 0;
4527
4528 for (j = 0; j < i; j++) {
4529 pci_free_consistent(priv->pci_dev,
4530 sizeof(struct ipw2100_data_header),
4531 priv->tx_buffers[j].info.d_struct.data,
4532 priv->tx_buffers[j].info.d_struct.
4533 data_phys);
4534 }
4535
4536 kfree(priv->tx_buffers);
4537 priv->tx_buffers = NULL;
4538
4539 return err;
4540 }
4541
4542 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4543 {
4544 int i;
4545
4546 IPW_DEBUG_INFO("enter\n");
4547
4548 /*
4549 * reinitialize packet info lists
4550 */
4551 INIT_LIST_HEAD(&priv->fw_pend_list);
4552 INIT_STAT(&priv->fw_pend_stat);
4553
4554 /*
4555 * reinitialize lists
4556 */
4557 INIT_LIST_HEAD(&priv->tx_pend_list);
4558 INIT_LIST_HEAD(&priv->tx_free_list);
4559 INIT_STAT(&priv->tx_pend_stat);
4560 INIT_STAT(&priv->tx_free_stat);
4561
4562 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4563 /* We simply drop any SKBs that have been queued for
4564 * transmit */
4565 if (priv->tx_buffers[i].info.d_struct.txb) {
4566 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4567 txb);
4568 priv->tx_buffers[i].info.d_struct.txb = NULL;
4569 }
4570
4571 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4572 }
4573
4574 SET_STAT(&priv->tx_free_stat, i);
4575
4576 priv->tx_queue.oldest = 0;
4577 priv->tx_queue.available = priv->tx_queue.entries;
4578 priv->tx_queue.next = 0;
4579 INIT_STAT(&priv->txq_stat);
4580 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4581
4582 bd_queue_initialize(priv, &priv->tx_queue,
4583 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4584 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4585 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4586 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4587
4588 IPW_DEBUG_INFO("exit\n");
4589
4590 }
4591
4592 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4593 {
4594 int i;
4595
4596 IPW_DEBUG_INFO("enter\n");
4597
4598 bd_queue_free(priv, &priv->tx_queue);
4599
4600 if (!priv->tx_buffers)
4601 return;
4602
4603 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4604 if (priv->tx_buffers[i].info.d_struct.txb) {
4605 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4606 txb);
4607 priv->tx_buffers[i].info.d_struct.txb = NULL;
4608 }
4609 if (priv->tx_buffers[i].info.d_struct.data)
4610 pci_free_consistent(priv->pci_dev,
4611 sizeof(struct ipw2100_data_header),
4612 priv->tx_buffers[i].info.d_struct.
4613 data,
4614 priv->tx_buffers[i].info.d_struct.
4615 data_phys);
4616 }
4617
4618 kfree(priv->tx_buffers);
4619 priv->tx_buffers = NULL;
4620
4621 IPW_DEBUG_INFO("exit\n");
4622 }
4623
4624 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4625 {
4626 int i, j, err = -EINVAL;
4627
4628 IPW_DEBUG_INFO("enter\n");
4629
4630 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4631 if (err) {
4632 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4633 return err;
4634 }
4635
4636 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4637 if (err) {
4638 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4639 bd_queue_free(priv, &priv->rx_queue);
4640 return err;
4641 }
4642
4643 /*
4644 * allocate packets
4645 */
4646 priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4647 sizeof(struct ipw2100_rx_packet),
4648 GFP_KERNEL);
4649 if (!priv->rx_buffers) {
4650 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4651
4652 bd_queue_free(priv, &priv->rx_queue);
4653
4654 status_queue_free(priv);
4655
4656 return -ENOMEM;
4657 }
4658
4659 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4660 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4661
4662 err = ipw2100_alloc_skb(priv, packet);
4663 if (unlikely(err)) {
4664 err = -ENOMEM;
4665 break;
4666 }
4667
4668 /* The BD holds the cache aligned address */
4669 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4670 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4671 priv->status_queue.drv[i].status_fields = 0;
4672 }
4673
4674 if (i == RX_QUEUE_LENGTH)
4675 return 0;
4676
4677 for (j = 0; j < i; j++) {
4678 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4679 sizeof(struct ipw2100_rx_packet),
4680 PCI_DMA_FROMDEVICE);
4681 dev_kfree_skb(priv->rx_buffers[j].skb);
4682 }
4683
4684 kfree(priv->rx_buffers);
4685 priv->rx_buffers = NULL;
4686
4687 bd_queue_free(priv, &priv->rx_queue);
4688
4689 status_queue_free(priv);
4690
4691 return err;
4692 }
4693
4694 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4695 {
4696 IPW_DEBUG_INFO("enter\n");
4697
4698 priv->rx_queue.oldest = 0;
4699 priv->rx_queue.available = priv->rx_queue.entries - 1;
4700 priv->rx_queue.next = priv->rx_queue.entries - 1;
4701
4702 INIT_STAT(&priv->rxq_stat);
4703 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4704
4705 bd_queue_initialize(priv, &priv->rx_queue,
4706 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4707 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4708 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4709 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4710
4711 /* set up the status queue */
4712 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4713 priv->status_queue.nic);
4714
4715 IPW_DEBUG_INFO("exit\n");
4716 }
4717
4718 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4719 {
4720 int i;
4721
4722 IPW_DEBUG_INFO("enter\n");
4723
4724 bd_queue_free(priv, &priv->rx_queue);
4725 status_queue_free(priv);
4726
4727 if (!priv->rx_buffers)
4728 return;
4729
4730 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4731 if (priv->rx_buffers[i].rxp) {
4732 pci_unmap_single(priv->pci_dev,
4733 priv->rx_buffers[i].dma_addr,
4734 sizeof(struct ipw2100_rx),
4735 PCI_DMA_FROMDEVICE);
4736 dev_kfree_skb(priv->rx_buffers[i].skb);
4737 }
4738 }
4739
4740 kfree(priv->rx_buffers);
4741 priv->rx_buffers = NULL;
4742
4743 IPW_DEBUG_INFO("exit\n");
4744 }
4745
4746 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4747 {
4748 u32 length = ETH_ALEN;
4749 u8 addr[ETH_ALEN];
4750
4751 int err;
4752
4753 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4754 if (err) {
4755 IPW_DEBUG_INFO("MAC address read failed\n");
4756 return -EIO;
4757 }
4758
4759 memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4760 IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4761
4762 return 0;
4763 }
4764
4765 /********************************************************************
4766 *
4767 * Firmware Commands
4768 *
4769 ********************************************************************/
4770
4771 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4772 {
4773 struct host_command cmd = {
4774 .host_command = ADAPTER_ADDRESS,
4775 .host_command_sequence = 0,
4776 .host_command_length = ETH_ALEN
4777 };
4778 int err;
4779
4780 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4781
4782 IPW_DEBUG_INFO("enter\n");
4783
4784 if (priv->config & CFG_CUSTOM_MAC) {
4785 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4786 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4787 } else
4788 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4789 ETH_ALEN);
4790
4791 err = ipw2100_hw_send_command(priv, &cmd);
4792
4793 IPW_DEBUG_INFO("exit\n");
4794 return err;
4795 }
4796
4797 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4798 int batch_mode)
4799 {
4800 struct host_command cmd = {
4801 .host_command = PORT_TYPE,
4802 .host_command_sequence = 0,
4803 .host_command_length = sizeof(u32)
4804 };
4805 int err;
4806
4807 switch (port_type) {
4808 case IW_MODE_INFRA:
4809 cmd.host_command_parameters[0] = IPW_BSS;
4810 break;
4811 case IW_MODE_ADHOC:
4812 cmd.host_command_parameters[0] = IPW_IBSS;
4813 break;
4814 }
4815
4816 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4817 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4818
4819 if (!batch_mode) {
4820 err = ipw2100_disable_adapter(priv);
4821 if (err) {
4822 printk(KERN_ERR DRV_NAME
4823 ": %s: Could not disable adapter %d\n",
4824 priv->net_dev->name, err);
4825 return err;
4826 }
4827 }
4828
4829 /* send cmd to firmware */
4830 err = ipw2100_hw_send_command(priv, &cmd);
4831
4832 if (!batch_mode)
4833 ipw2100_enable_adapter(priv);
4834
4835 return err;
4836 }
4837
4838 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4839 int batch_mode)
4840 {
4841 struct host_command cmd = {
4842 .host_command = CHANNEL,
4843 .host_command_sequence = 0,
4844 .host_command_length = sizeof(u32)
4845 };
4846 int err;
4847
4848 cmd.host_command_parameters[0] = channel;
4849
4850 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4851
4852 /* If BSS then we don't support channel selection */
4853 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4854 return 0;
4855
4856 if ((channel != 0) &&
4857 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4858 return -EINVAL;
4859
4860 if (!batch_mode) {
4861 err = ipw2100_disable_adapter(priv);
4862 if (err)
4863 return err;
4864 }
4865
4866 err = ipw2100_hw_send_command(priv, &cmd);
4867 if (err) {
4868 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4869 return err;
4870 }
4871
4872 if (channel)
4873 priv->config |= CFG_STATIC_CHANNEL;
4874 else
4875 priv->config &= ~CFG_STATIC_CHANNEL;
4876
4877 priv->channel = channel;
4878
4879 if (!batch_mode) {
4880 err = ipw2100_enable_adapter(priv);
4881 if (err)
4882 return err;
4883 }
4884
4885 return 0;
4886 }
4887
4888 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4889 {
4890 struct host_command cmd = {
4891 .host_command = SYSTEM_CONFIG,
4892 .host_command_sequence = 0,
4893 .host_command_length = 12,
4894 };
4895 u32 ibss_mask, len = sizeof(u32);
4896 int err;
4897
4898 /* Set system configuration */
4899
4900 if (!batch_mode) {
4901 err = ipw2100_disable_adapter(priv);
4902 if (err)
4903 return err;
4904 }
4905
4906 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4907 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4908
4909 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4910 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4911
4912 if (!(priv->config & CFG_LONG_PREAMBLE))
4913 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4914
4915 err = ipw2100_get_ordinal(priv,
4916 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4917 &ibss_mask, &len);
4918 if (err)
4919 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4920
4921 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4922 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4923
4924 /* 11b only */
4925 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4926
4927 err = ipw2100_hw_send_command(priv, &cmd);
4928 if (err)
4929 return err;
4930
4931 /* If IPv6 is configured in the kernel then we don't want to filter out all
4932 * of the multicast packets as IPv6 needs some. */
4933 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4934 cmd.host_command = ADD_MULTICAST;
4935 cmd.host_command_sequence = 0;
4936 cmd.host_command_length = 0;
4937
4938 ipw2100_hw_send_command(priv, &cmd);
4939 #endif
4940 if (!batch_mode) {
4941 err = ipw2100_enable_adapter(priv);
4942 if (err)
4943 return err;
4944 }
4945
4946 return 0;
4947 }
4948
4949 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4950 int batch_mode)
4951 {
4952 struct host_command cmd = {
4953 .host_command = BASIC_TX_RATES,
4954 .host_command_sequence = 0,
4955 .host_command_length = 4
4956 };
4957 int err;
4958
4959 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4960
4961 if (!batch_mode) {
4962 err = ipw2100_disable_adapter(priv);
4963 if (err)
4964 return err;
4965 }
4966
4967 /* Set BASIC TX Rate first */
4968 ipw2100_hw_send_command(priv, &cmd);
4969
4970 /* Set TX Rate */
4971 cmd.host_command = TX_RATES;
4972 ipw2100_hw_send_command(priv, &cmd);
4973
4974 /* Set MSDU TX Rate */
4975 cmd.host_command = MSDU_TX_RATES;
4976 ipw2100_hw_send_command(priv, &cmd);
4977
4978 if (!batch_mode) {
4979 err = ipw2100_enable_adapter(priv);
4980 if (err)
4981 return err;
4982 }
4983
4984 priv->tx_rates = rate;
4985
4986 return 0;
4987 }
4988
4989 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4990 {
4991 struct host_command cmd = {
4992 .host_command = POWER_MODE,
4993 .host_command_sequence = 0,
4994 .host_command_length = 4
4995 };
4996 int err;
4997
4998 cmd.host_command_parameters[0] = power_level;
4999
5000 err = ipw2100_hw_send_command(priv, &cmd);
5001 if (err)
5002 return err;
5003
5004 if (power_level == IPW_POWER_MODE_CAM)
5005 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
5006 else
5007 priv->power_mode = IPW_POWER_ENABLED | power_level;
5008
5009 #ifdef IPW2100_TX_POWER
5010 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
5011 /* Set beacon interval */
5012 cmd.host_command = TX_POWER_INDEX;
5013 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
5014
5015 err = ipw2100_hw_send_command(priv, &cmd);
5016 if (err)
5017 return err;
5018 }
5019 #endif
5020
5021 return 0;
5022 }
5023
5024 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
5025 {
5026 struct host_command cmd = {
5027 .host_command = RTS_THRESHOLD,
5028 .host_command_sequence = 0,
5029 .host_command_length = 4
5030 };
5031 int err;
5032
5033 if (threshold & RTS_DISABLED)
5034 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
5035 else
5036 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
5037
5038 err = ipw2100_hw_send_command(priv, &cmd);
5039 if (err)
5040 return err;
5041
5042 priv->rts_threshold = threshold;
5043
5044 return 0;
5045 }
5046
5047 #if 0
5048 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
5049 u32 threshold, int batch_mode)
5050 {
5051 struct host_command cmd = {
5052 .host_command = FRAG_THRESHOLD,
5053 .host_command_sequence = 0,
5054 .host_command_length = 4,
5055 .host_command_parameters[0] = 0,
5056 };
5057 int err;
5058
5059 if (!batch_mode) {
5060 err = ipw2100_disable_adapter(priv);
5061 if (err)
5062 return err;
5063 }
5064
5065 if (threshold == 0)
5066 threshold = DEFAULT_FRAG_THRESHOLD;
5067 else {
5068 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5069 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5070 }
5071
5072 cmd.host_command_parameters[0] = threshold;
5073
5074 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5075
5076 err = ipw2100_hw_send_command(priv, &cmd);
5077
5078 if (!batch_mode)
5079 ipw2100_enable_adapter(priv);
5080
5081 if (!err)
5082 priv->frag_threshold = threshold;
5083
5084 return err;
5085 }
5086 #endif
5087
5088 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5089 {
5090 struct host_command cmd = {
5091 .host_command = SHORT_RETRY_LIMIT,
5092 .host_command_sequence = 0,
5093 .host_command_length = 4
5094 };
5095 int err;
5096
5097 cmd.host_command_parameters[0] = retry;
5098
5099 err = ipw2100_hw_send_command(priv, &cmd);
5100 if (err)
5101 return err;
5102
5103 priv->short_retry_limit = retry;
5104
5105 return 0;
5106 }
5107
5108 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5109 {
5110 struct host_command cmd = {
5111 .host_command = LONG_RETRY_LIMIT,
5112 .host_command_sequence = 0,
5113 .host_command_length = 4
5114 };
5115 int err;
5116
5117 cmd.host_command_parameters[0] = retry;
5118
5119 err = ipw2100_hw_send_command(priv, &cmd);
5120 if (err)
5121 return err;
5122
5123 priv->long_retry_limit = retry;
5124
5125 return 0;
5126 }
5127
5128 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5129 int batch_mode)
5130 {
5131 struct host_command cmd = {
5132 .host_command = MANDATORY_BSSID,
5133 .host_command_sequence = 0,
5134 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5135 };
5136 int err;
5137
5138 #ifdef CONFIG_IPW2100_DEBUG
5139 if (bssid != NULL)
5140 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5141 else
5142 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5143 #endif
5144 /* if BSSID is empty then we disable mandatory bssid mode */
5145 if (bssid != NULL)
5146 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5147
5148 if (!batch_mode) {
5149 err = ipw2100_disable_adapter(priv);
5150 if (err)
5151 return err;
5152 }
5153
5154 err = ipw2100_hw_send_command(priv, &cmd);
5155
5156 if (!batch_mode)
5157 ipw2100_enable_adapter(priv);
5158
5159 return err;
5160 }
5161
5162 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5163 {
5164 struct host_command cmd = {
5165 .host_command = DISASSOCIATION_BSSID,
5166 .host_command_sequence = 0,
5167 .host_command_length = ETH_ALEN
5168 };
5169 int err;
5170 int len;
5171
5172 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5173
5174 len = ETH_ALEN;
5175 /* The Firmware currently ignores the BSSID and just disassociates from
5176 * the currently associated AP -- but in the off chance that a future
5177 * firmware does use the BSSID provided here, we go ahead and try and
5178 * set it to the currently associated AP's BSSID */
5179 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5180
5181 err = ipw2100_hw_send_command(priv, &cmd);
5182
5183 return err;
5184 }
5185
5186 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5187 struct ipw2100_wpa_assoc_frame *, int)
5188 __attribute__ ((unused));
5189
5190 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5191 struct ipw2100_wpa_assoc_frame *wpa_frame,
5192 int batch_mode)
5193 {
5194 struct host_command cmd = {
5195 .host_command = SET_WPA_IE,
5196 .host_command_sequence = 0,
5197 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5198 };
5199 int err;
5200
5201 IPW_DEBUG_HC("SET_WPA_IE\n");
5202
5203 if (!batch_mode) {
5204 err = ipw2100_disable_adapter(priv);
5205 if (err)
5206 return err;
5207 }
5208
5209 memcpy(cmd.host_command_parameters, wpa_frame,
5210 sizeof(struct ipw2100_wpa_assoc_frame));
5211
5212 err = ipw2100_hw_send_command(priv, &cmd);
5213
5214 if (!batch_mode) {
5215 if (ipw2100_enable_adapter(priv))
5216 err = -EIO;
5217 }
5218
5219 return err;
5220 }
5221
5222 struct security_info_params {
5223 u32 allowed_ciphers;
5224 u16 version;
5225 u8 auth_mode;
5226 u8 replay_counters_number;
5227 u8 unicast_using_group;
5228 } __packed;
5229
5230 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5231 int auth_mode,
5232 int security_level,
5233 int unicast_using_group,
5234 int batch_mode)
5235 {
5236 struct host_command cmd = {
5237 .host_command = SET_SECURITY_INFORMATION,
5238 .host_command_sequence = 0,
5239 .host_command_length = sizeof(struct security_info_params)
5240 };
5241 struct security_info_params *security =
5242 (struct security_info_params *)&cmd.host_command_parameters;
5243 int err;
5244 memset(security, 0, sizeof(*security));
5245
5246 /* If shared key AP authentication is turned on, then we need to
5247 * configure the firmware to try and use it.
5248 *
5249 * Actual data encryption/decryption is handled by the host. */
5250 security->auth_mode = auth_mode;
5251 security->unicast_using_group = unicast_using_group;
5252
5253 switch (security_level) {
5254 default:
5255 case SEC_LEVEL_0:
5256 security->allowed_ciphers = IPW_NONE_CIPHER;
5257 break;
5258 case SEC_LEVEL_1:
5259 security->allowed_ciphers = IPW_WEP40_CIPHER |
5260 IPW_WEP104_CIPHER;
5261 break;
5262 case SEC_LEVEL_2:
5263 security->allowed_ciphers = IPW_WEP40_CIPHER |
5264 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5265 break;
5266 case SEC_LEVEL_2_CKIP:
5267 security->allowed_ciphers = IPW_WEP40_CIPHER |
5268 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5269 break;
5270 case SEC_LEVEL_3:
5271 security->allowed_ciphers = IPW_WEP40_CIPHER |
5272 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5273 break;
5274 }
5275
5276 IPW_DEBUG_HC
5277 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5278 security->auth_mode, security->allowed_ciphers, security_level);
5279
5280 security->replay_counters_number = 0;
5281
5282 if (!batch_mode) {
5283 err = ipw2100_disable_adapter(priv);
5284 if (err)
5285 return err;
5286 }
5287
5288 err = ipw2100_hw_send_command(priv, &cmd);
5289
5290 if (!batch_mode)
5291 ipw2100_enable_adapter(priv);
5292
5293 return err;
5294 }
5295
5296 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5297 {
5298 struct host_command cmd = {
5299 .host_command = TX_POWER_INDEX,
5300 .host_command_sequence = 0,
5301 .host_command_length = 4
5302 };
5303 int err = 0;
5304 u32 tmp = tx_power;
5305
5306 if (tx_power != IPW_TX_POWER_DEFAULT)
5307 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5308 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5309
5310 cmd.host_command_parameters[0] = tmp;
5311
5312 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5313 err = ipw2100_hw_send_command(priv, &cmd);
5314 if (!err)
5315 priv->tx_power = tx_power;
5316
5317 return 0;
5318 }
5319
5320 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5321 u32 interval, int batch_mode)
5322 {
5323 struct host_command cmd = {
5324 .host_command = BEACON_INTERVAL,
5325 .host_command_sequence = 0,
5326 .host_command_length = 4
5327 };
5328 int err;
5329
5330 cmd.host_command_parameters[0] = interval;
5331
5332 IPW_DEBUG_INFO("enter\n");
5333
5334 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5335 if (!batch_mode) {
5336 err = ipw2100_disable_adapter(priv);
5337 if (err)
5338 return err;
5339 }
5340
5341 ipw2100_hw_send_command(priv, &cmd);
5342
5343 if (!batch_mode) {
5344 err = ipw2100_enable_adapter(priv);
5345 if (err)
5346 return err;
5347 }
5348 }
5349
5350 IPW_DEBUG_INFO("exit\n");
5351
5352 return 0;
5353 }
5354
5355 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5356 {
5357 ipw2100_tx_initialize(priv);
5358 ipw2100_rx_initialize(priv);
5359 ipw2100_msg_initialize(priv);
5360 }
5361
5362 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5363 {
5364 ipw2100_tx_free(priv);
5365 ipw2100_rx_free(priv);
5366 ipw2100_msg_free(priv);
5367 }
5368
5369 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5370 {
5371 if (ipw2100_tx_allocate(priv) ||
5372 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5373 goto fail;
5374
5375 return 0;
5376
5377 fail:
5378 ipw2100_tx_free(priv);
5379 ipw2100_rx_free(priv);
5380 ipw2100_msg_free(priv);
5381 return -ENOMEM;
5382 }
5383
5384 #define IPW_PRIVACY_CAPABLE 0x0008
5385
5386 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5387 int batch_mode)
5388 {
5389 struct host_command cmd = {
5390 .host_command = WEP_FLAGS,
5391 .host_command_sequence = 0,
5392 .host_command_length = 4
5393 };
5394 int err;
5395
5396 cmd.host_command_parameters[0] = flags;
5397
5398 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5399
5400 if (!batch_mode) {
5401 err = ipw2100_disable_adapter(priv);
5402 if (err) {
5403 printk(KERN_ERR DRV_NAME
5404 ": %s: Could not disable adapter %d\n",
5405 priv->net_dev->name, err);
5406 return err;
5407 }
5408 }
5409
5410 /* send cmd to firmware */
5411 err = ipw2100_hw_send_command(priv, &cmd);
5412
5413 if (!batch_mode)
5414 ipw2100_enable_adapter(priv);
5415
5416 return err;
5417 }
5418
5419 struct ipw2100_wep_key {
5420 u8 idx;
5421 u8 len;
5422 u8 key[13];
5423 };
5424
5425 /* Macros to ease up priting WEP keys */
5426 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5427 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5428 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5429 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5430
5431 /**
5432 * Set a the wep key
5433 *
5434 * @priv: struct to work on
5435 * @idx: index of the key we want to set
5436 * @key: ptr to the key data to set
5437 * @len: length of the buffer at @key
5438 * @batch_mode: FIXME perform the operation in batch mode, not
5439 * disabling the device.
5440 *
5441 * @returns 0 if OK, < 0 errno code on error.
5442 *
5443 * Fill out a command structure with the new wep key, length an
5444 * index and send it down the wire.
5445 */
5446 static int ipw2100_set_key(struct ipw2100_priv *priv,
5447 int idx, char *key, int len, int batch_mode)
5448 {
5449 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5450 struct host_command cmd = {
5451 .host_command = WEP_KEY_INFO,
5452 .host_command_sequence = 0,
5453 .host_command_length = sizeof(struct ipw2100_wep_key),
5454 };
5455 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5456 int err;
5457
5458 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5459 idx, keylen, len);
5460
5461 /* NOTE: We don't check cached values in case the firmware was reset
5462 * or some other problem is occurring. If the user is setting the key,
5463 * then we push the change */
5464
5465 wep_key->idx = idx;
5466 wep_key->len = keylen;
5467
5468 if (keylen) {
5469 memcpy(wep_key->key, key, len);
5470 memset(wep_key->key + len, 0, keylen - len);
5471 }
5472
5473 /* Will be optimized out on debug not being configured in */
5474 if (keylen == 0)
5475 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5476 priv->net_dev->name, wep_key->idx);
5477 else if (keylen == 5)
5478 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5479 priv->net_dev->name, wep_key->idx, wep_key->len,
5480 WEP_STR_64(wep_key->key));
5481 else
5482 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5483 "\n",
5484 priv->net_dev->name, wep_key->idx, wep_key->len,
5485 WEP_STR_128(wep_key->key));
5486
5487 if (!batch_mode) {
5488 err = ipw2100_disable_adapter(priv);
5489 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5490 if (err) {
5491 printk(KERN_ERR DRV_NAME
5492 ": %s: Could not disable adapter %d\n",
5493 priv->net_dev->name, err);
5494 return err;
5495 }
5496 }
5497
5498 /* send cmd to firmware */
5499 err = ipw2100_hw_send_command(priv, &cmd);
5500
5501 if (!batch_mode) {
5502 int err2 = ipw2100_enable_adapter(priv);
5503 if (err == 0)
5504 err = err2;
5505 }
5506 return err;
5507 }
5508
5509 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5510 int idx, int batch_mode)
5511 {
5512 struct host_command cmd = {
5513 .host_command = WEP_KEY_INDEX,
5514 .host_command_sequence = 0,
5515 .host_command_length = 4,
5516 .host_command_parameters = {idx},
5517 };
5518 int err;
5519
5520 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5521
5522 if (idx < 0 || idx > 3)
5523 return -EINVAL;
5524
5525 if (!batch_mode) {
5526 err = ipw2100_disable_adapter(priv);
5527 if (err) {
5528 printk(KERN_ERR DRV_NAME
5529 ": %s: Could not disable adapter %d\n",
5530 priv->net_dev->name, err);
5531 return err;
5532 }
5533 }
5534
5535 /* send cmd to firmware */
5536 err = ipw2100_hw_send_command(priv, &cmd);
5537
5538 if (!batch_mode)
5539 ipw2100_enable_adapter(priv);
5540
5541 return err;
5542 }
5543
5544 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5545 {
5546 int i, err, auth_mode, sec_level, use_group;
5547
5548 if (!(priv->status & STATUS_RUNNING))
5549 return 0;
5550
5551 if (!batch_mode) {
5552 err = ipw2100_disable_adapter(priv);
5553 if (err)
5554 return err;
5555 }
5556
5557 if (!priv->ieee->sec.enabled) {
5558 err =
5559 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5560 SEC_LEVEL_0, 0, 1);
5561 } else {
5562 auth_mode = IPW_AUTH_OPEN;
5563 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5564 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5565 auth_mode = IPW_AUTH_SHARED;
5566 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5567 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5568 }
5569
5570 sec_level = SEC_LEVEL_0;
5571 if (priv->ieee->sec.flags & SEC_LEVEL)
5572 sec_level = priv->ieee->sec.level;
5573
5574 use_group = 0;
5575 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5576 use_group = priv->ieee->sec.unicast_uses_group;
5577
5578 err =
5579 ipw2100_set_security_information(priv, auth_mode, sec_level,
5580 use_group, 1);
5581 }
5582
5583 if (err)
5584 goto exit;
5585
5586 if (priv->ieee->sec.enabled) {
5587 for (i = 0; i < 4; i++) {
5588 if (!(priv->ieee->sec.flags & (1 << i))) {
5589 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5590 priv->ieee->sec.key_sizes[i] = 0;
5591 } else {
5592 err = ipw2100_set_key(priv, i,
5593 priv->ieee->sec.keys[i],
5594 priv->ieee->sec.
5595 key_sizes[i], 1);
5596 if (err)
5597 goto exit;
5598 }
5599 }
5600
5601 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5602 }
5603
5604 /* Always enable privacy so the Host can filter WEP packets if
5605 * encrypted data is sent up */
5606 err =
5607 ipw2100_set_wep_flags(priv,
5608 priv->ieee->sec.
5609 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5610 if (err)
5611 goto exit;
5612
5613 priv->status &= ~STATUS_SECURITY_UPDATED;
5614
5615 exit:
5616 if (!batch_mode)
5617 ipw2100_enable_adapter(priv);
5618
5619 return err;
5620 }
5621
5622 static void ipw2100_security_work(struct work_struct *work)
5623 {
5624 struct ipw2100_priv *priv =
5625 container_of(work, struct ipw2100_priv, security_work.work);
5626
5627 /* If we happen to have reconnected before we get a chance to
5628 * process this, then update the security settings--which causes
5629 * a disassociation to occur */
5630 if (!(priv->status & STATUS_ASSOCIATED) &&
5631 priv->status & STATUS_SECURITY_UPDATED)
5632 ipw2100_configure_security(priv, 0);
5633 }
5634
5635 static void shim__set_security(struct net_device *dev,
5636 struct libipw_security *sec)
5637 {
5638 struct ipw2100_priv *priv = libipw_priv(dev);
5639 int i, force_update = 0;
5640
5641 mutex_lock(&priv->action_mutex);
5642 if (!(priv->status & STATUS_INITIALIZED))
5643 goto done;
5644
5645 for (i = 0; i < 4; i++) {
5646 if (sec->flags & (1 << i)) {
5647 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5648 if (sec->key_sizes[i] == 0)
5649 priv->ieee->sec.flags &= ~(1 << i);
5650 else
5651 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5652 sec->key_sizes[i]);
5653 if (sec->level == SEC_LEVEL_1) {
5654 priv->ieee->sec.flags |= (1 << i);
5655 priv->status |= STATUS_SECURITY_UPDATED;
5656 } else
5657 priv->ieee->sec.flags &= ~(1 << i);
5658 }
5659 }
5660
5661 if ((sec->flags & SEC_ACTIVE_KEY) &&
5662 priv->ieee->sec.active_key != sec->active_key) {
5663 if (sec->active_key <= 3) {
5664 priv->ieee->sec.active_key = sec->active_key;
5665 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5666 } else
5667 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5668
5669 priv->status |= STATUS_SECURITY_UPDATED;
5670 }
5671
5672 if ((sec->flags & SEC_AUTH_MODE) &&
5673 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5674 priv->ieee->sec.auth_mode = sec->auth_mode;
5675 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5676 priv->status |= STATUS_SECURITY_UPDATED;
5677 }
5678
5679 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5680 priv->ieee->sec.flags |= SEC_ENABLED;
5681 priv->ieee->sec.enabled = sec->enabled;
5682 priv->status |= STATUS_SECURITY_UPDATED;
5683 force_update = 1;
5684 }
5685
5686 if (sec->flags & SEC_ENCRYPT)
5687 priv->ieee->sec.encrypt = sec->encrypt;
5688
5689 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5690 priv->ieee->sec.level = sec->level;
5691 priv->ieee->sec.flags |= SEC_LEVEL;
5692 priv->status |= STATUS_SECURITY_UPDATED;
5693 }
5694
5695 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5696 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5697 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5698 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5699 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5700 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5701 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5702 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5703 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5704 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5705
5706 /* As a temporary work around to enable WPA until we figure out why
5707 * wpa_supplicant toggles the security capability of the driver, which
5708 * forces a disassocation with force_update...
5709 *
5710 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5711 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5712 ipw2100_configure_security(priv, 0);
5713 done:
5714 mutex_unlock(&priv->action_mutex);
5715 }
5716
5717 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5718 {
5719 int err;
5720 int batch_mode = 1;
5721 u8 *bssid;
5722
5723 IPW_DEBUG_INFO("enter\n");
5724
5725 err = ipw2100_disable_adapter(priv);
5726 if (err)
5727 return err;
5728 #ifdef CONFIG_IPW2100_MONITOR
5729 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5730 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5731 if (err)
5732 return err;
5733
5734 IPW_DEBUG_INFO("exit\n");
5735
5736 return 0;
5737 }
5738 #endif /* CONFIG_IPW2100_MONITOR */
5739
5740 err = ipw2100_read_mac_address(priv);
5741 if (err)
5742 return -EIO;
5743
5744 err = ipw2100_set_mac_address(priv, batch_mode);
5745 if (err)
5746 return err;
5747
5748 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5749 if (err)
5750 return err;
5751
5752 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5753 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5754 if (err)
5755 return err;
5756 }
5757
5758 err = ipw2100_system_config(priv, batch_mode);
5759 if (err)
5760 return err;
5761
5762 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5763 if (err)
5764 return err;
5765
5766 /* Default to power mode OFF */
5767 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5768 if (err)
5769 return err;
5770
5771 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5772 if (err)
5773 return err;
5774
5775 if (priv->config & CFG_STATIC_BSSID)
5776 bssid = priv->bssid;
5777 else
5778 bssid = NULL;
5779 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5780 if (err)
5781 return err;
5782
5783 if (priv->config & CFG_STATIC_ESSID)
5784 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5785 batch_mode);
5786 else
5787 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5788 if (err)
5789 return err;
5790
5791 err = ipw2100_configure_security(priv, batch_mode);
5792 if (err)
5793 return err;
5794
5795 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5796 err =
5797 ipw2100_set_ibss_beacon_interval(priv,
5798 priv->beacon_interval,
5799 batch_mode);
5800 if (err)
5801 return err;
5802
5803 err = ipw2100_set_tx_power(priv, priv->tx_power);
5804 if (err)
5805 return err;
5806 }
5807
5808 /*
5809 err = ipw2100_set_fragmentation_threshold(
5810 priv, priv->frag_threshold, batch_mode);
5811 if (err)
5812 return err;
5813 */
5814
5815 IPW_DEBUG_INFO("exit\n");
5816
5817 return 0;
5818 }
5819
5820 /*************************************************************************
5821 *
5822 * EXTERNALLY CALLED METHODS
5823 *
5824 *************************************************************************/
5825
5826 /* This method is called by the network layer -- not to be confused with
5827 * ipw2100_set_mac_address() declared above called by this driver (and this
5828 * method as well) to talk to the firmware */
5829 static int ipw2100_set_address(struct net_device *dev, void *p)
5830 {
5831 struct ipw2100_priv *priv = libipw_priv(dev);
5832 struct sockaddr *addr = p;
5833 int err = 0;
5834
5835 if (!is_valid_ether_addr(addr->sa_data))
5836 return -EADDRNOTAVAIL;
5837
5838 mutex_lock(&priv->action_mutex);
5839
5840 priv->config |= CFG_CUSTOM_MAC;
5841 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5842
5843 err = ipw2100_set_mac_address(priv, 0);
5844 if (err)
5845 goto done;
5846
5847 priv->reset_backoff = 0;
5848 mutex_unlock(&priv->action_mutex);
5849 ipw2100_reset_adapter(&priv->reset_work.work);
5850 return 0;
5851
5852 done:
5853 mutex_unlock(&priv->action_mutex);
5854 return err;
5855 }
5856
5857 static int ipw2100_open(struct net_device *dev)
5858 {
5859 struct ipw2100_priv *priv = libipw_priv(dev);
5860 unsigned long flags;
5861 IPW_DEBUG_INFO("dev->open\n");
5862
5863 spin_lock_irqsave(&priv->low_lock, flags);
5864 if (priv->status & STATUS_ASSOCIATED) {
5865 netif_carrier_on(dev);
5866 netif_start_queue(dev);
5867 }
5868 spin_unlock_irqrestore(&priv->low_lock, flags);
5869
5870 return 0;
5871 }
5872
5873 static int ipw2100_close(struct net_device *dev)
5874 {
5875 struct ipw2100_priv *priv = libipw_priv(dev);
5876 unsigned long flags;
5877 struct list_head *element;
5878 struct ipw2100_tx_packet *packet;
5879
5880 IPW_DEBUG_INFO("enter\n");
5881
5882 spin_lock_irqsave(&priv->low_lock, flags);
5883
5884 if (priv->status & STATUS_ASSOCIATED)
5885 netif_carrier_off(dev);
5886 netif_stop_queue(dev);
5887
5888 /* Flush the TX queue ... */
5889 while (!list_empty(&priv->tx_pend_list)) {
5890 element = priv->tx_pend_list.next;
5891 packet = list_entry(element, struct ipw2100_tx_packet, list);
5892
5893 list_del(element);
5894 DEC_STAT(&priv->tx_pend_stat);
5895
5896 libipw_txb_free(packet->info.d_struct.txb);
5897 packet->info.d_struct.txb = NULL;
5898
5899 list_add_tail(element, &priv->tx_free_list);
5900 INC_STAT(&priv->tx_free_stat);
5901 }
5902 spin_unlock_irqrestore(&priv->low_lock, flags);
5903
5904 IPW_DEBUG_INFO("exit\n");
5905
5906 return 0;
5907 }
5908
5909 /*
5910 * TODO: Fix this function... its just wrong
5911 */
5912 static void ipw2100_tx_timeout(struct net_device *dev)
5913 {
5914 struct ipw2100_priv *priv = libipw_priv(dev);
5915
5916 dev->stats.tx_errors++;
5917
5918 #ifdef CONFIG_IPW2100_MONITOR
5919 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5920 return;
5921 #endif
5922
5923 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5924 dev->name);
5925 schedule_reset(priv);
5926 }
5927
5928 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5929 {
5930 /* This is called when wpa_supplicant loads and closes the driver
5931 * interface. */
5932 priv->ieee->wpa_enabled = value;
5933 return 0;
5934 }
5935
5936 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5937 {
5938
5939 struct libipw_device *ieee = priv->ieee;
5940 struct libipw_security sec = {
5941 .flags = SEC_AUTH_MODE,
5942 };
5943 int ret = 0;
5944
5945 if (value & IW_AUTH_ALG_SHARED_KEY) {
5946 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5947 ieee->open_wep = 0;
5948 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5949 sec.auth_mode = WLAN_AUTH_OPEN;
5950 ieee->open_wep = 1;
5951 } else if (value & IW_AUTH_ALG_LEAP) {
5952 sec.auth_mode = WLAN_AUTH_LEAP;
5953 ieee->open_wep = 1;
5954 } else
5955 return -EINVAL;
5956
5957 if (ieee->set_security)
5958 ieee->set_security(ieee->dev, &sec);
5959 else
5960 ret = -EOPNOTSUPP;
5961
5962 return ret;
5963 }
5964
5965 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5966 char *wpa_ie, int wpa_ie_len)
5967 {
5968
5969 struct ipw2100_wpa_assoc_frame frame;
5970
5971 frame.fixed_ie_mask = 0;
5972
5973 /* copy WPA IE */
5974 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5975 frame.var_ie_len = wpa_ie_len;
5976
5977 /* make sure WPA is enabled */
5978 ipw2100_wpa_enable(priv, 1);
5979 ipw2100_set_wpa_ie(priv, &frame, 0);
5980 }
5981
5982 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5983 struct ethtool_drvinfo *info)
5984 {
5985 struct ipw2100_priv *priv = libipw_priv(dev);
5986 char fw_ver[64], ucode_ver[64];
5987
5988 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5989 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5990
5991 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5992 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5993
5994 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5995 fw_ver, priv->eeprom_version, ucode_ver);
5996
5997 strlcpy(info->bus_info, pci_name(priv->pci_dev),
5998 sizeof(info->bus_info));
5999 }
6000
6001 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
6002 {
6003 struct ipw2100_priv *priv = libipw_priv(dev);
6004 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
6005 }
6006
6007 static const struct ethtool_ops ipw2100_ethtool_ops = {
6008 .get_link = ipw2100_ethtool_get_link,
6009 .get_drvinfo = ipw_ethtool_get_drvinfo,
6010 };
6011
6012 static void ipw2100_hang_check(struct work_struct *work)
6013 {
6014 struct ipw2100_priv *priv =
6015 container_of(work, struct ipw2100_priv, hang_check.work);
6016 unsigned long flags;
6017 u32 rtc = 0xa5a5a5a5;
6018 u32 len = sizeof(rtc);
6019 int restart = 0;
6020
6021 spin_lock_irqsave(&priv->low_lock, flags);
6022
6023 if (priv->fatal_error != 0) {
6024 /* If fatal_error is set then we need to restart */
6025 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
6026 priv->net_dev->name);
6027
6028 restart = 1;
6029 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
6030 (rtc == priv->last_rtc)) {
6031 /* Check if firmware is hung */
6032 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
6033 priv->net_dev->name);
6034
6035 restart = 1;
6036 }
6037
6038 if (restart) {
6039 /* Kill timer */
6040 priv->stop_hang_check = 1;
6041 priv->hangs++;
6042
6043 /* Restart the NIC */
6044 schedule_reset(priv);
6045 }
6046
6047 priv->last_rtc = rtc;
6048
6049 if (!priv->stop_hang_check)
6050 schedule_delayed_work(&priv->hang_check, HZ / 2);
6051
6052 spin_unlock_irqrestore(&priv->low_lock, flags);
6053 }
6054
6055 static void ipw2100_rf_kill(struct work_struct *work)
6056 {
6057 struct ipw2100_priv *priv =
6058 container_of(work, struct ipw2100_priv, rf_kill.work);
6059 unsigned long flags;
6060
6061 spin_lock_irqsave(&priv->low_lock, flags);
6062
6063 if (rf_kill_active(priv)) {
6064 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6065 if (!priv->stop_rf_kill)
6066 schedule_delayed_work(&priv->rf_kill,
6067 round_jiffies_relative(HZ));
6068 goto exit_unlock;
6069 }
6070
6071 /* RF Kill is now disabled, so bring the device back up */
6072
6073 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6074 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6075 "device\n");
6076 schedule_reset(priv);
6077 } else
6078 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
6079 "enabled\n");
6080
6081 exit_unlock:
6082 spin_unlock_irqrestore(&priv->low_lock, flags);
6083 }
6084
6085 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6086
6087 static const struct net_device_ops ipw2100_netdev_ops = {
6088 .ndo_open = ipw2100_open,
6089 .ndo_stop = ipw2100_close,
6090 .ndo_start_xmit = libipw_xmit,
6091 .ndo_change_mtu = libipw_change_mtu,
6092 .ndo_init = ipw2100_net_init,
6093 .ndo_tx_timeout = ipw2100_tx_timeout,
6094 .ndo_set_mac_address = ipw2100_set_address,
6095 .ndo_validate_addr = eth_validate_addr,
6096 };
6097
6098 /* Look into using netdev destructor to shutdown libipw? */
6099
6100 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6101 void __iomem * ioaddr)
6102 {
6103 struct ipw2100_priv *priv;
6104 struct net_device *dev;
6105
6106 dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6107 if (!dev)
6108 return NULL;
6109 priv = libipw_priv(dev);
6110 priv->ieee = netdev_priv(dev);
6111 priv->pci_dev = pci_dev;
6112 priv->net_dev = dev;
6113 priv->ioaddr = ioaddr;
6114
6115 priv->ieee->hard_start_xmit = ipw2100_tx;
6116 priv->ieee->set_security = shim__set_security;
6117
6118 priv->ieee->perfect_rssi = -20;
6119 priv->ieee->worst_rssi = -85;
6120
6121 dev->netdev_ops = &ipw2100_netdev_ops;
6122 dev->ethtool_ops = &ipw2100_ethtool_ops;
6123 dev->wireless_handlers = &ipw2100_wx_handler_def;
6124 priv->wireless_data.libipw = priv->ieee;
6125 dev->wireless_data = &priv->wireless_data;
6126 dev->watchdog_timeo = 3 * HZ;
6127 dev->irq = 0;
6128
6129 /* NOTE: We don't use the wireless_handlers hook
6130 * in dev as the system will start throwing WX requests
6131 * to us before we're actually initialized and it just
6132 * ends up causing problems. So, we just handle
6133 * the WX extensions through the ipw2100_ioctl interface */
6134
6135 /* memset() puts everything to 0, so we only have explicitly set
6136 * those values that need to be something else */
6137
6138 /* If power management is turned on, default to AUTO mode */
6139 priv->power_mode = IPW_POWER_AUTO;
6140
6141 #ifdef CONFIG_IPW2100_MONITOR
6142 priv->config |= CFG_CRC_CHECK;
6143 #endif
6144 priv->ieee->wpa_enabled = 0;
6145 priv->ieee->drop_unencrypted = 0;
6146 priv->ieee->privacy_invoked = 0;
6147 priv->ieee->ieee802_1x = 1;
6148
6149 /* Set module parameters */
6150 switch (network_mode) {
6151 case 1:
6152 priv->ieee->iw_mode = IW_MODE_ADHOC;
6153 break;
6154 #ifdef CONFIG_IPW2100_MONITOR
6155 case 2:
6156 priv->ieee->iw_mode = IW_MODE_MONITOR;
6157 break;
6158 #endif
6159 default:
6160 case 0:
6161 priv->ieee->iw_mode = IW_MODE_INFRA;
6162 break;
6163 }
6164
6165 if (disable == 1)
6166 priv->status |= STATUS_RF_KILL_SW;
6167
6168 if (channel != 0 &&
6169 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6170 priv->config |= CFG_STATIC_CHANNEL;
6171 priv->channel = channel;
6172 }
6173
6174 if (associate)
6175 priv->config |= CFG_ASSOCIATE;
6176
6177 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6178 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6179 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6180 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6181 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6182 priv->tx_power = IPW_TX_POWER_DEFAULT;
6183 priv->tx_rates = DEFAULT_TX_RATES;
6184
6185 strcpy(priv->nick, "ipw2100");
6186
6187 spin_lock_init(&priv->low_lock);
6188 mutex_init(&priv->action_mutex);
6189 mutex_init(&priv->adapter_mutex);
6190
6191 init_waitqueue_head(&priv->wait_command_queue);
6192
6193 netif_carrier_off(dev);
6194
6195 INIT_LIST_HEAD(&priv->msg_free_list);
6196 INIT_LIST_HEAD(&priv->msg_pend_list);
6197 INIT_STAT(&priv->msg_free_stat);
6198 INIT_STAT(&priv->msg_pend_stat);
6199
6200 INIT_LIST_HEAD(&priv->tx_free_list);
6201 INIT_LIST_HEAD(&priv->tx_pend_list);
6202 INIT_STAT(&priv->tx_free_stat);
6203 INIT_STAT(&priv->tx_pend_stat);
6204
6205 INIT_LIST_HEAD(&priv->fw_pend_list);
6206 INIT_STAT(&priv->fw_pend_stat);
6207
6208 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6209 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6210 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6211 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6212 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6213 INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6214 INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6215
6216 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6217 ipw2100_irq_tasklet, (unsigned long)priv);
6218
6219 /* NOTE: We do not start the deferred work for status checks yet */
6220 priv->stop_rf_kill = 1;
6221 priv->stop_hang_check = 1;
6222
6223 return dev;
6224 }
6225
6226 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6227 const struct pci_device_id *ent)
6228 {
6229 void __iomem *ioaddr;
6230 struct net_device *dev = NULL;
6231 struct ipw2100_priv *priv = NULL;
6232 int err = 0;
6233 int registered = 0;
6234 u32 val;
6235
6236 IPW_DEBUG_INFO("enter\n");
6237
6238 if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6239 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6240 err = -ENODEV;
6241 goto out;
6242 }
6243
6244 ioaddr = pci_iomap(pci_dev, 0, 0);
6245 if (!ioaddr) {
6246 printk(KERN_WARNING DRV_NAME
6247 "Error calling ioremap_nocache.\n");
6248 err = -EIO;
6249 goto fail;
6250 }
6251
6252 /* allocate and initialize our net_device */
6253 dev = ipw2100_alloc_device(pci_dev, ioaddr);
6254 if (!dev) {
6255 printk(KERN_WARNING DRV_NAME
6256 "Error calling ipw2100_alloc_device.\n");
6257 err = -ENOMEM;
6258 goto fail;
6259 }
6260
6261 /* set up PCI mappings for device */
6262 err = pci_enable_device(pci_dev);
6263 if (err) {
6264 printk(KERN_WARNING DRV_NAME
6265 "Error calling pci_enable_device.\n");
6266 return err;
6267 }
6268
6269 priv = libipw_priv(dev);
6270
6271 pci_set_master(pci_dev);
6272 pci_set_drvdata(pci_dev, priv);
6273
6274 err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6275 if (err) {
6276 printk(KERN_WARNING DRV_NAME
6277 "Error calling pci_set_dma_mask.\n");
6278 pci_disable_device(pci_dev);
6279 return err;
6280 }
6281
6282 err = pci_request_regions(pci_dev, DRV_NAME);
6283 if (err) {
6284 printk(KERN_WARNING DRV_NAME
6285 "Error calling pci_request_regions.\n");
6286 pci_disable_device(pci_dev);
6287 return err;
6288 }
6289
6290 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6291 * PCI Tx retries from interfering with C3 CPU state */
6292 pci_read_config_dword(pci_dev, 0x40, &val);
6293 if ((val & 0x0000ff00) != 0)
6294 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6295
6296 pci_set_power_state(pci_dev, PCI_D0);
6297
6298 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6299 printk(KERN_WARNING DRV_NAME
6300 "Device not found via register read.\n");
6301 err = -ENODEV;
6302 goto fail;
6303 }
6304
6305 SET_NETDEV_DEV(dev, &pci_dev->dev);
6306
6307 /* Force interrupts to be shut off on the device */
6308 priv->status |= STATUS_INT_ENABLED;
6309 ipw2100_disable_interrupts(priv);
6310
6311 /* Allocate and initialize the Tx/Rx queues and lists */
6312 if (ipw2100_queues_allocate(priv)) {
6313 printk(KERN_WARNING DRV_NAME
6314 "Error calling ipw2100_queues_allocate.\n");
6315 err = -ENOMEM;
6316 goto fail;
6317 }
6318 ipw2100_queues_initialize(priv);
6319
6320 err = request_irq(pci_dev->irq,
6321 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6322 if (err) {
6323 printk(KERN_WARNING DRV_NAME
6324 "Error calling request_irq: %d.\n", pci_dev->irq);
6325 goto fail;
6326 }
6327 dev->irq = pci_dev->irq;
6328
6329 IPW_DEBUG_INFO("Attempting to register device...\n");
6330
6331 printk(KERN_INFO DRV_NAME
6332 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6333
6334 /* Bring up the interface. Pre 0.46, after we registered the
6335 * network device we would call ipw2100_up. This introduced a race
6336 * condition with newer hotplug configurations (network was coming
6337 * up and making calls before the device was initialized).
6338 *
6339 * If we called ipw2100_up before we registered the device, then the
6340 * device name wasn't registered. So, we instead use the net_dev->init
6341 * member to call a function that then just turns and calls ipw2100_up.
6342 * net_dev->init is called after name allocation but before the
6343 * notifier chain is called */
6344 err = register_netdev(dev);
6345 if (err) {
6346 printk(KERN_WARNING DRV_NAME
6347 "Error calling register_netdev.\n");
6348 goto fail;
6349 }
6350 registered = 1;
6351
6352 err = ipw2100_wdev_init(dev);
6353 if (err)
6354 goto fail;
6355
6356 mutex_lock(&priv->action_mutex);
6357
6358 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6359
6360 /* perform this after register_netdev so that dev->name is set */
6361 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6362 if (err)
6363 goto fail_unlock;
6364
6365 /* If the RF Kill switch is disabled, go ahead and complete the
6366 * startup sequence */
6367 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6368 /* Enable the adapter - sends HOST_COMPLETE */
6369 if (ipw2100_enable_adapter(priv)) {
6370 printk(KERN_WARNING DRV_NAME
6371 ": %s: failed in call to enable adapter.\n",
6372 priv->net_dev->name);
6373 ipw2100_hw_stop_adapter(priv);
6374 err = -EIO;
6375 goto fail_unlock;
6376 }
6377
6378 /* Start a scan . . . */
6379 ipw2100_set_scan_options(priv);
6380 ipw2100_start_scan(priv);
6381 }
6382
6383 IPW_DEBUG_INFO("exit\n");
6384
6385 priv->status |= STATUS_INITIALIZED;
6386
6387 mutex_unlock(&priv->action_mutex);
6388 out:
6389 return err;
6390
6391 fail_unlock:
6392 mutex_unlock(&priv->action_mutex);
6393 wiphy_unregister(priv->ieee->wdev.wiphy);
6394 kfree(priv->ieee->bg_band.channels);
6395 fail:
6396 if (dev) {
6397 if (registered)
6398 unregister_netdev(dev);
6399
6400 ipw2100_hw_stop_adapter(priv);
6401
6402 ipw2100_disable_interrupts(priv);
6403
6404 if (dev->irq)
6405 free_irq(dev->irq, priv);
6406
6407 ipw2100_kill_works(priv);
6408
6409 /* These are safe to call even if they weren't allocated */
6410 ipw2100_queues_free(priv);
6411 sysfs_remove_group(&pci_dev->dev.kobj,
6412 &ipw2100_attribute_group);
6413
6414 free_libipw(dev, 0);
6415 pci_set_drvdata(pci_dev, NULL);
6416 }
6417
6418 pci_iounmap(pci_dev, ioaddr);
6419
6420 pci_release_regions(pci_dev);
6421 pci_disable_device(pci_dev);
6422 goto out;
6423 }
6424
6425 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6426 {
6427 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6428 struct net_device *dev = priv->net_dev;
6429
6430 mutex_lock(&priv->action_mutex);
6431
6432 priv->status &= ~STATUS_INITIALIZED;
6433
6434 sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6435
6436 #ifdef CONFIG_PM
6437 if (ipw2100_firmware.version)
6438 ipw2100_release_firmware(priv, &ipw2100_firmware);
6439 #endif
6440 /* Take down the hardware */
6441 ipw2100_down(priv);
6442
6443 /* Release the mutex so that the network subsystem can
6444 * complete any needed calls into the driver... */
6445 mutex_unlock(&priv->action_mutex);
6446
6447 /* Unregister the device first - this results in close()
6448 * being called if the device is open. If we free storage
6449 * first, then close() will crash.
6450 * FIXME: remove the comment above. */
6451 unregister_netdev(dev);
6452
6453 ipw2100_kill_works(priv);
6454
6455 ipw2100_queues_free(priv);
6456
6457 /* Free potential debugging firmware snapshot */
6458 ipw2100_snapshot_free(priv);
6459
6460 free_irq(dev->irq, priv);
6461
6462 pci_iounmap(pci_dev, priv->ioaddr);
6463
6464 /* wiphy_unregister needs to be here, before free_libipw */
6465 wiphy_unregister(priv->ieee->wdev.wiphy);
6466 kfree(priv->ieee->bg_band.channels);
6467 free_libipw(dev, 0);
6468
6469 pci_release_regions(pci_dev);
6470 pci_disable_device(pci_dev);
6471
6472 IPW_DEBUG_INFO("exit\n");
6473 }
6474
6475 #ifdef CONFIG_PM
6476 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6477 {
6478 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6479 struct net_device *dev = priv->net_dev;
6480
6481 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6482
6483 mutex_lock(&priv->action_mutex);
6484 if (priv->status & STATUS_INITIALIZED) {
6485 /* Take down the device; powers it off, etc. */
6486 ipw2100_down(priv);
6487 }
6488
6489 /* Remove the PRESENT state of the device */
6490 netif_device_detach(dev);
6491
6492 pci_save_state(pci_dev);
6493 pci_disable_device(pci_dev);
6494 pci_set_power_state(pci_dev, PCI_D3hot);
6495
6496 priv->suspend_at = get_seconds();
6497
6498 mutex_unlock(&priv->action_mutex);
6499
6500 return 0;
6501 }
6502
6503 static int ipw2100_resume(struct pci_dev *pci_dev)
6504 {
6505 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6506 struct net_device *dev = priv->net_dev;
6507 int err;
6508 u32 val;
6509
6510 if (IPW2100_PM_DISABLED)
6511 return 0;
6512
6513 mutex_lock(&priv->action_mutex);
6514
6515 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6516
6517 pci_set_power_state(pci_dev, PCI_D0);
6518 err = pci_enable_device(pci_dev);
6519 if (err) {
6520 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6521 dev->name);
6522 mutex_unlock(&priv->action_mutex);
6523 return err;
6524 }
6525 pci_restore_state(pci_dev);
6526
6527 /*
6528 * Suspend/Resume resets the PCI configuration space, so we have to
6529 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6530 * from interfering with C3 CPU state. pci_restore_state won't help
6531 * here since it only restores the first 64 bytes pci config header.
6532 */
6533 pci_read_config_dword(pci_dev, 0x40, &val);
6534 if ((val & 0x0000ff00) != 0)
6535 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6536
6537 /* Set the device back into the PRESENT state; this will also wake
6538 * the queue of needed */
6539 netif_device_attach(dev);
6540
6541 priv->suspend_time = get_seconds() - priv->suspend_at;
6542
6543 /* Bring the device back up */
6544 if (!(priv->status & STATUS_RF_KILL_SW))
6545 ipw2100_up(priv, 0);
6546
6547 mutex_unlock(&priv->action_mutex);
6548
6549 return 0;
6550 }
6551 #endif
6552
6553 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6554 {
6555 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6556
6557 /* Take down the device; powers it off, etc. */
6558 ipw2100_down(priv);
6559
6560 pci_disable_device(pci_dev);
6561 }
6562
6563 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6564
6565 static DEFINE_PCI_DEVICE_TABLE(ipw2100_pci_id_table) = {
6566 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6567 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6568 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6569 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6570 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6571 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6572 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6573 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6574 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6575 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6576 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6577 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6578 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6579
6580 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6581 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6582 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6583 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6584 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6585
6586 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6587 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6588 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6589 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6590 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6591 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6592 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6593
6594 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6595
6596 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6597 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6598 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6599 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6600 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6601 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6602 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6603
6604 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6605 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6606 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6607 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6608 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6609 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6610
6611 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6612 {0,},
6613 };
6614
6615 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6616
6617 static struct pci_driver ipw2100_pci_driver = {
6618 .name = DRV_NAME,
6619 .id_table = ipw2100_pci_id_table,
6620 .probe = ipw2100_pci_init_one,
6621 .remove = __devexit_p(ipw2100_pci_remove_one),
6622 #ifdef CONFIG_PM
6623 .suspend = ipw2100_suspend,
6624 .resume = ipw2100_resume,
6625 #endif
6626 .shutdown = ipw2100_shutdown,
6627 };
6628
6629 /**
6630 * Initialize the ipw2100 driver/module
6631 *
6632 * @returns 0 if ok, < 0 errno node con error.
6633 *
6634 * Note: we cannot init the /proc stuff until the PCI driver is there,
6635 * or we risk an unlikely race condition on someone accessing
6636 * uninitialized data in the PCI dev struct through /proc.
6637 */
6638 static int __init ipw2100_init(void)
6639 {
6640 int ret;
6641
6642 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6643 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6644
6645 pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6646 PM_QOS_DEFAULT_VALUE);
6647
6648 ret = pci_register_driver(&ipw2100_pci_driver);
6649 if (ret)
6650 goto out;
6651
6652 #ifdef CONFIG_IPW2100_DEBUG
6653 ipw2100_debug_level = debug;
6654 ret = driver_create_file(&ipw2100_pci_driver.driver,
6655 &driver_attr_debug_level);
6656 #endif
6657
6658 out:
6659 return ret;
6660 }
6661
6662 /**
6663 * Cleanup ipw2100 driver registration
6664 */
6665 static void __exit ipw2100_exit(void)
6666 {
6667 /* FIXME: IPG: check that we have no instances of the devices open */
6668 #ifdef CONFIG_IPW2100_DEBUG
6669 driver_remove_file(&ipw2100_pci_driver.driver,
6670 &driver_attr_debug_level);
6671 #endif
6672 pci_unregister_driver(&ipw2100_pci_driver);
6673 pm_qos_remove_request(&ipw2100_pm_qos_req);
6674 }
6675
6676 module_init(ipw2100_init);
6677 module_exit(ipw2100_exit);
6678
6679 static int ipw2100_wx_get_name(struct net_device *dev,
6680 struct iw_request_info *info,
6681 union iwreq_data *wrqu, char *extra)
6682 {
6683 /*
6684 * This can be called at any time. No action lock required
6685 */
6686
6687 struct ipw2100_priv *priv = libipw_priv(dev);
6688 if (!(priv->status & STATUS_ASSOCIATED))
6689 strcpy(wrqu->name, "unassociated");
6690 else
6691 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6692
6693 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6694 return 0;
6695 }
6696
6697 static int ipw2100_wx_set_freq(struct net_device *dev,
6698 struct iw_request_info *info,
6699 union iwreq_data *wrqu, char *extra)
6700 {
6701 struct ipw2100_priv *priv = libipw_priv(dev);
6702 struct iw_freq *fwrq = &wrqu->freq;
6703 int err = 0;
6704
6705 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6706 return -EOPNOTSUPP;
6707
6708 mutex_lock(&priv->action_mutex);
6709 if (!(priv->status & STATUS_INITIALIZED)) {
6710 err = -EIO;
6711 goto done;
6712 }
6713
6714 /* if setting by freq convert to channel */
6715 if (fwrq->e == 1) {
6716 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6717 int f = fwrq->m / 100000;
6718 int c = 0;
6719
6720 while ((c < REG_MAX_CHANNEL) &&
6721 (f != ipw2100_frequencies[c]))
6722 c++;
6723
6724 /* hack to fall through */
6725 fwrq->e = 0;
6726 fwrq->m = c + 1;
6727 }
6728 }
6729
6730 if (fwrq->e > 0 || fwrq->m > 1000) {
6731 err = -EOPNOTSUPP;
6732 goto done;
6733 } else { /* Set the channel */
6734 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6735 err = ipw2100_set_channel(priv, fwrq->m, 0);
6736 }
6737
6738 done:
6739 mutex_unlock(&priv->action_mutex);
6740 return err;
6741 }
6742
6743 static int ipw2100_wx_get_freq(struct net_device *dev,
6744 struct iw_request_info *info,
6745 union iwreq_data *wrqu, char *extra)
6746 {
6747 /*
6748 * This can be called at any time. No action lock required
6749 */
6750
6751 struct ipw2100_priv *priv = libipw_priv(dev);
6752
6753 wrqu->freq.e = 0;
6754
6755 /* If we are associated, trying to associate, or have a statically
6756 * configured CHANNEL then return that; otherwise return ANY */
6757 if (priv->config & CFG_STATIC_CHANNEL ||
6758 priv->status & STATUS_ASSOCIATED)
6759 wrqu->freq.m = priv->channel;
6760 else
6761 wrqu->freq.m = 0;
6762
6763 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6764 return 0;
6765
6766 }
6767
6768 static int ipw2100_wx_set_mode(struct net_device *dev,
6769 struct iw_request_info *info,
6770 union iwreq_data *wrqu, char *extra)
6771 {
6772 struct ipw2100_priv *priv = libipw_priv(dev);
6773 int err = 0;
6774
6775 IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6776
6777 if (wrqu->mode == priv->ieee->iw_mode)
6778 return 0;
6779
6780 mutex_lock(&priv->action_mutex);
6781 if (!(priv->status & STATUS_INITIALIZED)) {
6782 err = -EIO;
6783 goto done;
6784 }
6785
6786 switch (wrqu->mode) {
6787 #ifdef CONFIG_IPW2100_MONITOR
6788 case IW_MODE_MONITOR:
6789 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6790 break;
6791 #endif /* CONFIG_IPW2100_MONITOR */
6792 case IW_MODE_ADHOC:
6793 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6794 break;
6795 case IW_MODE_INFRA:
6796 case IW_MODE_AUTO:
6797 default:
6798 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6799 break;
6800 }
6801
6802 done:
6803 mutex_unlock(&priv->action_mutex);
6804 return err;
6805 }
6806
6807 static int ipw2100_wx_get_mode(struct net_device *dev,
6808 struct iw_request_info *info,
6809 union iwreq_data *wrqu, char *extra)
6810 {
6811 /*
6812 * This can be called at any time. No action lock required
6813 */
6814
6815 struct ipw2100_priv *priv = libipw_priv(dev);
6816
6817 wrqu->mode = priv->ieee->iw_mode;
6818 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6819
6820 return 0;
6821 }
6822
6823 #define POWER_MODES 5
6824
6825 /* Values are in microsecond */
6826 static const s32 timeout_duration[POWER_MODES] = {
6827 350000,
6828 250000,
6829 75000,
6830 37000,
6831 25000,
6832 };
6833
6834 static const s32 period_duration[POWER_MODES] = {
6835 400000,
6836 700000,
6837 1000000,
6838 1000000,
6839 1000000
6840 };
6841
6842 static int ipw2100_wx_get_range(struct net_device *dev,
6843 struct iw_request_info *info,
6844 union iwreq_data *wrqu, char *extra)
6845 {
6846 /*
6847 * This can be called at any time. No action lock required
6848 */
6849
6850 struct ipw2100_priv *priv = libipw_priv(dev);
6851 struct iw_range *range = (struct iw_range *)extra;
6852 u16 val;
6853 int i, level;
6854
6855 wrqu->data.length = sizeof(*range);
6856 memset(range, 0, sizeof(*range));
6857
6858 /* Let's try to keep this struct in the same order as in
6859 * linux/include/wireless.h
6860 */
6861
6862 /* TODO: See what values we can set, and remove the ones we can't
6863 * set, or fill them with some default data.
6864 */
6865
6866 /* ~5 Mb/s real (802.11b) */
6867 range->throughput = 5 * 1000 * 1000;
6868
6869 // range->sensitivity; /* signal level threshold range */
6870
6871 range->max_qual.qual = 100;
6872 /* TODO: Find real max RSSI and stick here */
6873 range->max_qual.level = 0;
6874 range->max_qual.noise = 0;
6875 range->max_qual.updated = 7; /* Updated all three */
6876
6877 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6878 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6879 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6880 range->avg_qual.noise = 0;
6881 range->avg_qual.updated = 7; /* Updated all three */
6882
6883 range->num_bitrates = RATE_COUNT;
6884
6885 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6886 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6887 }
6888
6889 range->min_rts = MIN_RTS_THRESHOLD;
6890 range->max_rts = MAX_RTS_THRESHOLD;
6891 range->min_frag = MIN_FRAG_THRESHOLD;
6892 range->max_frag = MAX_FRAG_THRESHOLD;
6893
6894 range->min_pmp = period_duration[0]; /* Minimal PM period */
6895 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6896 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6897 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6898
6899 /* How to decode max/min PM period */
6900 range->pmp_flags = IW_POWER_PERIOD;
6901 /* How to decode max/min PM period */
6902 range->pmt_flags = IW_POWER_TIMEOUT;
6903 /* What PM options are supported */
6904 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6905
6906 range->encoding_size[0] = 5;
6907 range->encoding_size[1] = 13; /* Different token sizes */
6908 range->num_encoding_sizes = 2; /* Number of entry in the list */
6909 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6910 // range->encoding_login_index; /* token index for login token */
6911
6912 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6913 range->txpower_capa = IW_TXPOW_DBM;
6914 range->num_txpower = IW_MAX_TXPOWER;
6915 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6916 i < IW_MAX_TXPOWER;
6917 i++, level -=
6918 ((IPW_TX_POWER_MAX_DBM -
6919 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6920 range->txpower[i] = level / 16;
6921 } else {
6922 range->txpower_capa = 0;
6923 range->num_txpower = 0;
6924 }
6925
6926 /* Set the Wireless Extension versions */
6927 range->we_version_compiled = WIRELESS_EXT;
6928 range->we_version_source = 18;
6929
6930 // range->retry_capa; /* What retry options are supported */
6931 // range->retry_flags; /* How to decode max/min retry limit */
6932 // range->r_time_flags; /* How to decode max/min retry life */
6933 // range->min_retry; /* Minimal number of retries */
6934 // range->max_retry; /* Maximal number of retries */
6935 // range->min_r_time; /* Minimal retry lifetime */
6936 // range->max_r_time; /* Maximal retry lifetime */
6937
6938 range->num_channels = FREQ_COUNT;
6939
6940 val = 0;
6941 for (i = 0; i < FREQ_COUNT; i++) {
6942 // TODO: Include only legal frequencies for some countries
6943 // if (local->channel_mask & (1 << i)) {
6944 range->freq[val].i = i + 1;
6945 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6946 range->freq[val].e = 1;
6947 val++;
6948 // }
6949 if (val == IW_MAX_FREQUENCIES)
6950 break;
6951 }
6952 range->num_frequency = val;
6953
6954 /* Event capability (kernel + driver) */
6955 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6956 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6957 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6958
6959 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6960 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6961
6962 IPW_DEBUG_WX("GET Range\n");
6963
6964 return 0;
6965 }
6966
6967 static int ipw2100_wx_set_wap(struct net_device *dev,
6968 struct iw_request_info *info,
6969 union iwreq_data *wrqu, char *extra)
6970 {
6971 struct ipw2100_priv *priv = libipw_priv(dev);
6972 int err = 0;
6973
6974 static const unsigned char any[] = {
6975 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6976 };
6977 static const unsigned char off[] = {
6978 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6979 };
6980
6981 // sanity checks
6982 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6983 return -EINVAL;
6984
6985 mutex_lock(&priv->action_mutex);
6986 if (!(priv->status & STATUS_INITIALIZED)) {
6987 err = -EIO;
6988 goto done;
6989 }
6990
6991 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6992 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6993 /* we disable mandatory BSSID association */
6994 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6995 priv->config &= ~CFG_STATIC_BSSID;
6996 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6997 goto done;
6998 }
6999
7000 priv->config |= CFG_STATIC_BSSID;
7001 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
7002
7003 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
7004
7005 IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
7006
7007 done:
7008 mutex_unlock(&priv->action_mutex);
7009 return err;
7010 }
7011
7012 static int ipw2100_wx_get_wap(struct net_device *dev,
7013 struct iw_request_info *info,
7014 union iwreq_data *wrqu, char *extra)
7015 {
7016 /*
7017 * This can be called at any time. No action lock required
7018 */
7019
7020 struct ipw2100_priv *priv = libipw_priv(dev);
7021
7022 /* If we are associated, trying to associate, or have a statically
7023 * configured BSSID then return that; otherwise return ANY */
7024 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
7025 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
7026 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
7027 } else
7028 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
7029
7030 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
7031 return 0;
7032 }
7033
7034 static int ipw2100_wx_set_essid(struct net_device *dev,
7035 struct iw_request_info *info,
7036 union iwreq_data *wrqu, char *extra)
7037 {
7038 struct ipw2100_priv *priv = libipw_priv(dev);
7039 char *essid = ""; /* ANY */
7040 int length = 0;
7041 int err = 0;
7042 DECLARE_SSID_BUF(ssid);
7043
7044 mutex_lock(&priv->action_mutex);
7045 if (!(priv->status & STATUS_INITIALIZED)) {
7046 err = -EIO;
7047 goto done;
7048 }
7049
7050 if (wrqu->essid.flags && wrqu->essid.length) {
7051 length = wrqu->essid.length;
7052 essid = extra;
7053 }
7054
7055 if (length == 0) {
7056 IPW_DEBUG_WX("Setting ESSID to ANY\n");
7057 priv->config &= ~CFG_STATIC_ESSID;
7058 err = ipw2100_set_essid(priv, NULL, 0, 0);
7059 goto done;
7060 }
7061
7062 length = min(length, IW_ESSID_MAX_SIZE);
7063
7064 priv->config |= CFG_STATIC_ESSID;
7065
7066 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7067 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7068 err = 0;
7069 goto done;
7070 }
7071
7072 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
7073 print_ssid(ssid, essid, length), length);
7074
7075 priv->essid_len = length;
7076 memcpy(priv->essid, essid, priv->essid_len);
7077
7078 err = ipw2100_set_essid(priv, essid, length, 0);
7079
7080 done:
7081 mutex_unlock(&priv->action_mutex);
7082 return err;
7083 }
7084
7085 static int ipw2100_wx_get_essid(struct net_device *dev,
7086 struct iw_request_info *info,
7087 union iwreq_data *wrqu, char *extra)
7088 {
7089 /*
7090 * This can be called at any time. No action lock required
7091 */
7092
7093 struct ipw2100_priv *priv = libipw_priv(dev);
7094 DECLARE_SSID_BUF(ssid);
7095
7096 /* If we are associated, trying to associate, or have a statically
7097 * configured ESSID then return that; otherwise return ANY */
7098 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7099 IPW_DEBUG_WX("Getting essid: '%s'\n",
7100 print_ssid(ssid, priv->essid, priv->essid_len));
7101 memcpy(extra, priv->essid, priv->essid_len);
7102 wrqu->essid.length = priv->essid_len;
7103 wrqu->essid.flags = 1; /* active */
7104 } else {
7105 IPW_DEBUG_WX("Getting essid: ANY\n");
7106 wrqu->essid.length = 0;
7107 wrqu->essid.flags = 0; /* active */
7108 }
7109
7110 return 0;
7111 }
7112
7113 static int ipw2100_wx_set_nick(struct net_device *dev,
7114 struct iw_request_info *info,
7115 union iwreq_data *wrqu, char *extra)
7116 {
7117 /*
7118 * This can be called at any time. No action lock required
7119 */
7120
7121 struct ipw2100_priv *priv = libipw_priv(dev);
7122
7123 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7124 return -E2BIG;
7125
7126 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7127 memset(priv->nick, 0, sizeof(priv->nick));
7128 memcpy(priv->nick, extra, wrqu->data.length);
7129
7130 IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7131
7132 return 0;
7133 }
7134
7135 static int ipw2100_wx_get_nick(struct net_device *dev,
7136 struct iw_request_info *info,
7137 union iwreq_data *wrqu, char *extra)
7138 {
7139 /*
7140 * This can be called at any time. No action lock required
7141 */
7142
7143 struct ipw2100_priv *priv = libipw_priv(dev);
7144
7145 wrqu->data.length = strlen(priv->nick);
7146 memcpy(extra, priv->nick, wrqu->data.length);
7147 wrqu->data.flags = 1; /* active */
7148
7149 IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7150
7151 return 0;
7152 }
7153
7154 static int ipw2100_wx_set_rate(struct net_device *dev,
7155 struct iw_request_info *info,
7156 union iwreq_data *wrqu, char *extra)
7157 {
7158 struct ipw2100_priv *priv = libipw_priv(dev);
7159 u32 target_rate = wrqu->bitrate.value;
7160 u32 rate;
7161 int err = 0;
7162
7163 mutex_lock(&priv->action_mutex);
7164 if (!(priv->status & STATUS_INITIALIZED)) {
7165 err = -EIO;
7166 goto done;
7167 }
7168
7169 rate = 0;
7170
7171 if (target_rate == 1000000 ||
7172 (!wrqu->bitrate.fixed && target_rate > 1000000))
7173 rate |= TX_RATE_1_MBIT;
7174 if (target_rate == 2000000 ||
7175 (!wrqu->bitrate.fixed && target_rate > 2000000))
7176 rate |= TX_RATE_2_MBIT;
7177 if (target_rate == 5500000 ||
7178 (!wrqu->bitrate.fixed && target_rate > 5500000))
7179 rate |= TX_RATE_5_5_MBIT;
7180 if (target_rate == 11000000 ||
7181 (!wrqu->bitrate.fixed && target_rate > 11000000))
7182 rate |= TX_RATE_11_MBIT;
7183 if (rate == 0)
7184 rate = DEFAULT_TX_RATES;
7185
7186 err = ipw2100_set_tx_rates(priv, rate, 0);
7187
7188 IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7189 done:
7190 mutex_unlock(&priv->action_mutex);
7191 return err;
7192 }
7193
7194 static int ipw2100_wx_get_rate(struct net_device *dev,
7195 struct iw_request_info *info,
7196 union iwreq_data *wrqu, char *extra)
7197 {
7198 struct ipw2100_priv *priv = libipw_priv(dev);
7199 int val;
7200 unsigned int len = sizeof(val);
7201 int err = 0;
7202
7203 if (!(priv->status & STATUS_ENABLED) ||
7204 priv->status & STATUS_RF_KILL_MASK ||
7205 !(priv->status & STATUS_ASSOCIATED)) {
7206 wrqu->bitrate.value = 0;
7207 return 0;
7208 }
7209
7210 mutex_lock(&priv->action_mutex);
7211 if (!(priv->status & STATUS_INITIALIZED)) {
7212 err = -EIO;
7213 goto done;
7214 }
7215
7216 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7217 if (err) {
7218 IPW_DEBUG_WX("failed querying ordinals.\n");
7219 goto done;
7220 }
7221
7222 switch (val & TX_RATE_MASK) {
7223 case TX_RATE_1_MBIT:
7224 wrqu->bitrate.value = 1000000;
7225 break;
7226 case TX_RATE_2_MBIT:
7227 wrqu->bitrate.value = 2000000;
7228 break;
7229 case TX_RATE_5_5_MBIT:
7230 wrqu->bitrate.value = 5500000;
7231 break;
7232 case TX_RATE_11_MBIT:
7233 wrqu->bitrate.value = 11000000;
7234 break;
7235 default:
7236 wrqu->bitrate.value = 0;
7237 }
7238
7239 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7240
7241 done:
7242 mutex_unlock(&priv->action_mutex);
7243 return err;
7244 }
7245
7246 static int ipw2100_wx_set_rts(struct net_device *dev,
7247 struct iw_request_info *info,
7248 union iwreq_data *wrqu, char *extra)
7249 {
7250 struct ipw2100_priv *priv = libipw_priv(dev);
7251 int value, err;
7252
7253 /* Auto RTS not yet supported */
7254 if (wrqu->rts.fixed == 0)
7255 return -EINVAL;
7256
7257 mutex_lock(&priv->action_mutex);
7258 if (!(priv->status & STATUS_INITIALIZED)) {
7259 err = -EIO;
7260 goto done;
7261 }
7262
7263 if (wrqu->rts.disabled)
7264 value = priv->rts_threshold | RTS_DISABLED;
7265 else {
7266 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7267 err = -EINVAL;
7268 goto done;
7269 }
7270 value = wrqu->rts.value;
7271 }
7272
7273 err = ipw2100_set_rts_threshold(priv, value);
7274
7275 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7276 done:
7277 mutex_unlock(&priv->action_mutex);
7278 return err;
7279 }
7280
7281 static int ipw2100_wx_get_rts(struct net_device *dev,
7282 struct iw_request_info *info,
7283 union iwreq_data *wrqu, char *extra)
7284 {
7285 /*
7286 * This can be called at any time. No action lock required
7287 */
7288
7289 struct ipw2100_priv *priv = libipw_priv(dev);
7290
7291 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7292 wrqu->rts.fixed = 1; /* no auto select */
7293
7294 /* If RTS is set to the default value, then it is disabled */
7295 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7296
7297 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7298
7299 return 0;
7300 }
7301
7302 static int ipw2100_wx_set_txpow(struct net_device *dev,
7303 struct iw_request_info *info,
7304 union iwreq_data *wrqu, char *extra)
7305 {
7306 struct ipw2100_priv *priv = libipw_priv(dev);
7307 int err = 0, value;
7308
7309 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7310 return -EINPROGRESS;
7311
7312 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7313 return 0;
7314
7315 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7316 return -EINVAL;
7317
7318 if (wrqu->txpower.fixed == 0)
7319 value = IPW_TX_POWER_DEFAULT;
7320 else {
7321 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7322 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7323 return -EINVAL;
7324
7325 value = wrqu->txpower.value;
7326 }
7327
7328 mutex_lock(&priv->action_mutex);
7329 if (!(priv->status & STATUS_INITIALIZED)) {
7330 err = -EIO;
7331 goto done;
7332 }
7333
7334 err = ipw2100_set_tx_power(priv, value);
7335
7336 IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7337
7338 done:
7339 mutex_unlock(&priv->action_mutex);
7340 return err;
7341 }
7342
7343 static int ipw2100_wx_get_txpow(struct net_device *dev,
7344 struct iw_request_info *info,
7345 union iwreq_data *wrqu, char *extra)
7346 {
7347 /*
7348 * This can be called at any time. No action lock required
7349 */
7350
7351 struct ipw2100_priv *priv = libipw_priv(dev);
7352
7353 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7354
7355 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7356 wrqu->txpower.fixed = 0;
7357 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7358 } else {
7359 wrqu->txpower.fixed = 1;
7360 wrqu->txpower.value = priv->tx_power;
7361 }
7362
7363 wrqu->txpower.flags = IW_TXPOW_DBM;
7364
7365 IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7366
7367 return 0;
7368 }
7369
7370 static int ipw2100_wx_set_frag(struct net_device *dev,
7371 struct iw_request_info *info,
7372 union iwreq_data *wrqu, char *extra)
7373 {
7374 /*
7375 * This can be called at any time. No action lock required
7376 */
7377
7378 struct ipw2100_priv *priv = libipw_priv(dev);
7379
7380 if (!wrqu->frag.fixed)
7381 return -EINVAL;
7382
7383 if (wrqu->frag.disabled) {
7384 priv->frag_threshold |= FRAG_DISABLED;
7385 priv->ieee->fts = DEFAULT_FTS;
7386 } else {
7387 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7388 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7389 return -EINVAL;
7390
7391 priv->ieee->fts = wrqu->frag.value & ~0x1;
7392 priv->frag_threshold = priv->ieee->fts;
7393 }
7394
7395 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7396
7397 return 0;
7398 }
7399
7400 static int ipw2100_wx_get_frag(struct net_device *dev,
7401 struct iw_request_info *info,
7402 union iwreq_data *wrqu, char *extra)
7403 {
7404 /*
7405 * This can be called at any time. No action lock required
7406 */
7407
7408 struct ipw2100_priv *priv = libipw_priv(dev);
7409 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7410 wrqu->frag.fixed = 0; /* no auto select */
7411 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7412
7413 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7414
7415 return 0;
7416 }
7417
7418 static int ipw2100_wx_set_retry(struct net_device *dev,
7419 struct iw_request_info *info,
7420 union iwreq_data *wrqu, char *extra)
7421 {
7422 struct ipw2100_priv *priv = libipw_priv(dev);
7423 int err = 0;
7424
7425 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7426 return -EINVAL;
7427
7428 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7429 return 0;
7430
7431 mutex_lock(&priv->action_mutex);
7432 if (!(priv->status & STATUS_INITIALIZED)) {
7433 err = -EIO;
7434 goto done;
7435 }
7436
7437 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7438 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7439 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7440 wrqu->retry.value);
7441 goto done;
7442 }
7443
7444 if (wrqu->retry.flags & IW_RETRY_LONG) {
7445 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7446 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7447 wrqu->retry.value);
7448 goto done;
7449 }
7450
7451 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7452 if (!err)
7453 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7454
7455 IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7456
7457 done:
7458 mutex_unlock(&priv->action_mutex);
7459 return err;
7460 }
7461
7462 static int ipw2100_wx_get_retry(struct net_device *dev,
7463 struct iw_request_info *info,
7464 union iwreq_data *wrqu, char *extra)
7465 {
7466 /*
7467 * This can be called at any time. No action lock required
7468 */
7469
7470 struct ipw2100_priv *priv = libipw_priv(dev);
7471
7472 wrqu->retry.disabled = 0; /* can't be disabled */
7473
7474 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7475 return -EINVAL;
7476
7477 if (wrqu->retry.flags & IW_RETRY_LONG) {
7478 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7479 wrqu->retry.value = priv->long_retry_limit;
7480 } else {
7481 wrqu->retry.flags =
7482 (priv->short_retry_limit !=
7483 priv->long_retry_limit) ?
7484 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7485
7486 wrqu->retry.value = priv->short_retry_limit;
7487 }
7488
7489 IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7490
7491 return 0;
7492 }
7493
7494 static int ipw2100_wx_set_scan(struct net_device *dev,
7495 struct iw_request_info *info,
7496 union iwreq_data *wrqu, char *extra)
7497 {
7498 struct ipw2100_priv *priv = libipw_priv(dev);
7499 int err = 0;
7500
7501 mutex_lock(&priv->action_mutex);
7502 if (!(priv->status & STATUS_INITIALIZED)) {
7503 err = -EIO;
7504 goto done;
7505 }
7506
7507 IPW_DEBUG_WX("Initiating scan...\n");
7508
7509 priv->user_requested_scan = 1;
7510 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7511 IPW_DEBUG_WX("Start scan failed.\n");
7512
7513 /* TODO: Mark a scan as pending so when hardware initialized
7514 * a scan starts */
7515 }
7516
7517 done:
7518 mutex_unlock(&priv->action_mutex);
7519 return err;
7520 }
7521
7522 static int ipw2100_wx_get_scan(struct net_device *dev,
7523 struct iw_request_info *info,
7524 union iwreq_data *wrqu, char *extra)
7525 {
7526 /*
7527 * This can be called at any time. No action lock required
7528 */
7529
7530 struct ipw2100_priv *priv = libipw_priv(dev);
7531 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7532 }
7533
7534 /*
7535 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7536 */
7537 static int ipw2100_wx_set_encode(struct net_device *dev,
7538 struct iw_request_info *info,
7539 union iwreq_data *wrqu, char *key)
7540 {
7541 /*
7542 * No check of STATUS_INITIALIZED required
7543 */
7544
7545 struct ipw2100_priv *priv = libipw_priv(dev);
7546 return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7547 }
7548
7549 static int ipw2100_wx_get_encode(struct net_device *dev,
7550 struct iw_request_info *info,
7551 union iwreq_data *wrqu, char *key)
7552 {
7553 /*
7554 * This can be called at any time. No action lock required
7555 */
7556
7557 struct ipw2100_priv *priv = libipw_priv(dev);
7558 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7559 }
7560
7561 static int ipw2100_wx_set_power(struct net_device *dev,
7562 struct iw_request_info *info,
7563 union iwreq_data *wrqu, char *extra)
7564 {
7565 struct ipw2100_priv *priv = libipw_priv(dev);
7566 int err = 0;
7567
7568 mutex_lock(&priv->action_mutex);
7569 if (!(priv->status & STATUS_INITIALIZED)) {
7570 err = -EIO;
7571 goto done;
7572 }
7573
7574 if (wrqu->power.disabled) {
7575 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7576 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7577 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7578 goto done;
7579 }
7580
7581 switch (wrqu->power.flags & IW_POWER_MODE) {
7582 case IW_POWER_ON: /* If not specified */
7583 case IW_POWER_MODE: /* If set all mask */
7584 case IW_POWER_ALL_R: /* If explicitly state all */
7585 break;
7586 default: /* Otherwise we don't support it */
7587 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7588 wrqu->power.flags);
7589 err = -EOPNOTSUPP;
7590 goto done;
7591 }
7592
7593 /* If the user hasn't specified a power management mode yet, default
7594 * to BATTERY */
7595 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7596 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7597
7598 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7599
7600 done:
7601 mutex_unlock(&priv->action_mutex);
7602 return err;
7603
7604 }
7605
7606 static int ipw2100_wx_get_power(struct net_device *dev,
7607 struct iw_request_info *info,
7608 union iwreq_data *wrqu, char *extra)
7609 {
7610 /*
7611 * This can be called at any time. No action lock required
7612 */
7613
7614 struct ipw2100_priv *priv = libipw_priv(dev);
7615
7616 if (!(priv->power_mode & IPW_POWER_ENABLED))
7617 wrqu->power.disabled = 1;
7618 else {
7619 wrqu->power.disabled = 0;
7620 wrqu->power.flags = 0;
7621 }
7622
7623 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7624
7625 return 0;
7626 }
7627
7628 /*
7629 * WE-18 WPA support
7630 */
7631
7632 /* SIOCSIWGENIE */
7633 static int ipw2100_wx_set_genie(struct net_device *dev,
7634 struct iw_request_info *info,
7635 union iwreq_data *wrqu, char *extra)
7636 {
7637
7638 struct ipw2100_priv *priv = libipw_priv(dev);
7639 struct libipw_device *ieee = priv->ieee;
7640 u8 *buf;
7641
7642 if (!ieee->wpa_enabled)
7643 return -EOPNOTSUPP;
7644
7645 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7646 (wrqu->data.length && extra == NULL))
7647 return -EINVAL;
7648
7649 if (wrqu->data.length) {
7650 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7651 if (buf == NULL)
7652 return -ENOMEM;
7653
7654 kfree(ieee->wpa_ie);
7655 ieee->wpa_ie = buf;
7656 ieee->wpa_ie_len = wrqu->data.length;
7657 } else {
7658 kfree(ieee->wpa_ie);
7659 ieee->wpa_ie = NULL;
7660 ieee->wpa_ie_len = 0;
7661 }
7662
7663 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7664
7665 return 0;
7666 }
7667
7668 /* SIOCGIWGENIE */
7669 static int ipw2100_wx_get_genie(struct net_device *dev,
7670 struct iw_request_info *info,
7671 union iwreq_data *wrqu, char *extra)
7672 {
7673 struct ipw2100_priv *priv = libipw_priv(dev);
7674 struct libipw_device *ieee = priv->ieee;
7675
7676 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7677 wrqu->data.length = 0;
7678 return 0;
7679 }
7680
7681 if (wrqu->data.length < ieee->wpa_ie_len)
7682 return -E2BIG;
7683
7684 wrqu->data.length = ieee->wpa_ie_len;
7685 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7686
7687 return 0;
7688 }
7689
7690 /* SIOCSIWAUTH */
7691 static int ipw2100_wx_set_auth(struct net_device *dev,
7692 struct iw_request_info *info,
7693 union iwreq_data *wrqu, char *extra)
7694 {
7695 struct ipw2100_priv *priv = libipw_priv(dev);
7696 struct libipw_device *ieee = priv->ieee;
7697 struct iw_param *param = &wrqu->param;
7698 struct lib80211_crypt_data *crypt;
7699 unsigned long flags;
7700 int ret = 0;
7701
7702 switch (param->flags & IW_AUTH_INDEX) {
7703 case IW_AUTH_WPA_VERSION:
7704 case IW_AUTH_CIPHER_PAIRWISE:
7705 case IW_AUTH_CIPHER_GROUP:
7706 case IW_AUTH_KEY_MGMT:
7707 /*
7708 * ipw2200 does not use these parameters
7709 */
7710 break;
7711
7712 case IW_AUTH_TKIP_COUNTERMEASURES:
7713 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7714 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7715 break;
7716
7717 flags = crypt->ops->get_flags(crypt->priv);
7718
7719 if (param->value)
7720 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7721 else
7722 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7723
7724 crypt->ops->set_flags(flags, crypt->priv);
7725
7726 break;
7727
7728 case IW_AUTH_DROP_UNENCRYPTED:{
7729 /* HACK:
7730 *
7731 * wpa_supplicant calls set_wpa_enabled when the driver
7732 * is loaded and unloaded, regardless of if WPA is being
7733 * used. No other calls are made which can be used to
7734 * determine if encryption will be used or not prior to
7735 * association being expected. If encryption is not being
7736 * used, drop_unencrypted is set to false, else true -- we
7737 * can use this to determine if the CAP_PRIVACY_ON bit should
7738 * be set.
7739 */
7740 struct libipw_security sec = {
7741 .flags = SEC_ENABLED,
7742 .enabled = param->value,
7743 };
7744 priv->ieee->drop_unencrypted = param->value;
7745 /* We only change SEC_LEVEL for open mode. Others
7746 * are set by ipw_wpa_set_encryption.
7747 */
7748 if (!param->value) {
7749 sec.flags |= SEC_LEVEL;
7750 sec.level = SEC_LEVEL_0;
7751 } else {
7752 sec.flags |= SEC_LEVEL;
7753 sec.level = SEC_LEVEL_1;
7754 }
7755 if (priv->ieee->set_security)
7756 priv->ieee->set_security(priv->ieee->dev, &sec);
7757 break;
7758 }
7759
7760 case IW_AUTH_80211_AUTH_ALG:
7761 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7762 break;
7763
7764 case IW_AUTH_WPA_ENABLED:
7765 ret = ipw2100_wpa_enable(priv, param->value);
7766 break;
7767
7768 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7769 ieee->ieee802_1x = param->value;
7770 break;
7771
7772 //case IW_AUTH_ROAMING_CONTROL:
7773 case IW_AUTH_PRIVACY_INVOKED:
7774 ieee->privacy_invoked = param->value;
7775 break;
7776
7777 default:
7778 return -EOPNOTSUPP;
7779 }
7780 return ret;
7781 }
7782
7783 /* SIOCGIWAUTH */
7784 static int ipw2100_wx_get_auth(struct net_device *dev,
7785 struct iw_request_info *info,
7786 union iwreq_data *wrqu, char *extra)
7787 {
7788 struct ipw2100_priv *priv = libipw_priv(dev);
7789 struct libipw_device *ieee = priv->ieee;
7790 struct lib80211_crypt_data *crypt;
7791 struct iw_param *param = &wrqu->param;
7792 int ret = 0;
7793
7794 switch (param->flags & IW_AUTH_INDEX) {
7795 case IW_AUTH_WPA_VERSION:
7796 case IW_AUTH_CIPHER_PAIRWISE:
7797 case IW_AUTH_CIPHER_GROUP:
7798 case IW_AUTH_KEY_MGMT:
7799 /*
7800 * wpa_supplicant will control these internally
7801 */
7802 ret = -EOPNOTSUPP;
7803 break;
7804
7805 case IW_AUTH_TKIP_COUNTERMEASURES:
7806 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7807 if (!crypt || !crypt->ops->get_flags) {
7808 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7809 "crypt not set!\n");
7810 break;
7811 }
7812
7813 param->value = (crypt->ops->get_flags(crypt->priv) &
7814 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7815
7816 break;
7817
7818 case IW_AUTH_DROP_UNENCRYPTED:
7819 param->value = ieee->drop_unencrypted;
7820 break;
7821
7822 case IW_AUTH_80211_AUTH_ALG:
7823 param->value = priv->ieee->sec.auth_mode;
7824 break;
7825
7826 case IW_AUTH_WPA_ENABLED:
7827 param->value = ieee->wpa_enabled;
7828 break;
7829
7830 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7831 param->value = ieee->ieee802_1x;
7832 break;
7833
7834 case IW_AUTH_ROAMING_CONTROL:
7835 case IW_AUTH_PRIVACY_INVOKED:
7836 param->value = ieee->privacy_invoked;
7837 break;
7838
7839 default:
7840 return -EOPNOTSUPP;
7841 }
7842 return 0;
7843 }
7844
7845 /* SIOCSIWENCODEEXT */
7846 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7847 struct iw_request_info *info,
7848 union iwreq_data *wrqu, char *extra)
7849 {
7850 struct ipw2100_priv *priv = libipw_priv(dev);
7851 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7852 }
7853
7854 /* SIOCGIWENCODEEXT */
7855 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7856 struct iw_request_info *info,
7857 union iwreq_data *wrqu, char *extra)
7858 {
7859 struct ipw2100_priv *priv = libipw_priv(dev);
7860 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7861 }
7862
7863 /* SIOCSIWMLME */
7864 static int ipw2100_wx_set_mlme(struct net_device *dev,
7865 struct iw_request_info *info,
7866 union iwreq_data *wrqu, char *extra)
7867 {
7868 struct ipw2100_priv *priv = libipw_priv(dev);
7869 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7870 __le16 reason;
7871
7872 reason = cpu_to_le16(mlme->reason_code);
7873
7874 switch (mlme->cmd) {
7875 case IW_MLME_DEAUTH:
7876 // silently ignore
7877 break;
7878
7879 case IW_MLME_DISASSOC:
7880 ipw2100_disassociate_bssid(priv);
7881 break;
7882
7883 default:
7884 return -EOPNOTSUPP;
7885 }
7886 return 0;
7887 }
7888
7889 /*
7890 *
7891 * IWPRIV handlers
7892 *
7893 */
7894 #ifdef CONFIG_IPW2100_MONITOR
7895 static int ipw2100_wx_set_promisc(struct net_device *dev,
7896 struct iw_request_info *info,
7897 union iwreq_data *wrqu, char *extra)
7898 {
7899 struct ipw2100_priv *priv = libipw_priv(dev);
7900 int *parms = (int *)extra;
7901 int enable = (parms[0] > 0);
7902 int err = 0;
7903
7904 mutex_lock(&priv->action_mutex);
7905 if (!(priv->status & STATUS_INITIALIZED)) {
7906 err = -EIO;
7907 goto done;
7908 }
7909
7910 if (enable) {
7911 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7912 err = ipw2100_set_channel(priv, parms[1], 0);
7913 goto done;
7914 }
7915 priv->channel = parms[1];
7916 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7917 } else {
7918 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7919 err = ipw2100_switch_mode(priv, priv->last_mode);
7920 }
7921 done:
7922 mutex_unlock(&priv->action_mutex);
7923 return err;
7924 }
7925
7926 static int ipw2100_wx_reset(struct net_device *dev,
7927 struct iw_request_info *info,
7928 union iwreq_data *wrqu, char *extra)
7929 {
7930 struct ipw2100_priv *priv = libipw_priv(dev);
7931 if (priv->status & STATUS_INITIALIZED)
7932 schedule_reset(priv);
7933 return 0;
7934 }
7935
7936 #endif
7937
7938 static int ipw2100_wx_set_powermode(struct net_device *dev,
7939 struct iw_request_info *info,
7940 union iwreq_data *wrqu, char *extra)
7941 {
7942 struct ipw2100_priv *priv = libipw_priv(dev);
7943 int err = 0, mode = *(int *)extra;
7944
7945 mutex_lock(&priv->action_mutex);
7946 if (!(priv->status & STATUS_INITIALIZED)) {
7947 err = -EIO;
7948 goto done;
7949 }
7950
7951 if ((mode < 0) || (mode > POWER_MODES))
7952 mode = IPW_POWER_AUTO;
7953
7954 if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7955 err = ipw2100_set_power_mode(priv, mode);
7956 done:
7957 mutex_unlock(&priv->action_mutex);
7958 return err;
7959 }
7960
7961 #define MAX_POWER_STRING 80
7962 static int ipw2100_wx_get_powermode(struct net_device *dev,
7963 struct iw_request_info *info,
7964 union iwreq_data *wrqu, char *extra)
7965 {
7966 /*
7967 * This can be called at any time. No action lock required
7968 */
7969
7970 struct ipw2100_priv *priv = libipw_priv(dev);
7971 int level = IPW_POWER_LEVEL(priv->power_mode);
7972 s32 timeout, period;
7973
7974 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7975 snprintf(extra, MAX_POWER_STRING,
7976 "Power save level: %d (Off)", level);
7977 } else {
7978 switch (level) {
7979 case IPW_POWER_MODE_CAM:
7980 snprintf(extra, MAX_POWER_STRING,
7981 "Power save level: %d (None)", level);
7982 break;
7983 case IPW_POWER_AUTO:
7984 snprintf(extra, MAX_POWER_STRING,
7985 "Power save level: %d (Auto)", level);
7986 break;
7987 default:
7988 timeout = timeout_duration[level - 1] / 1000;
7989 period = period_duration[level - 1] / 1000;
7990 snprintf(extra, MAX_POWER_STRING,
7991 "Power save level: %d "
7992 "(Timeout %dms, Period %dms)",
7993 level, timeout, period);
7994 }
7995 }
7996
7997 wrqu->data.length = strlen(extra) + 1;
7998
7999 return 0;
8000 }
8001
8002 static int ipw2100_wx_set_preamble(struct net_device *dev,
8003 struct iw_request_info *info,
8004 union iwreq_data *wrqu, char *extra)
8005 {
8006 struct ipw2100_priv *priv = libipw_priv(dev);
8007 int err, mode = *(int *)extra;
8008
8009 mutex_lock(&priv->action_mutex);
8010 if (!(priv->status & STATUS_INITIALIZED)) {
8011 err = -EIO;
8012 goto done;
8013 }
8014
8015 if (mode == 1)
8016 priv->config |= CFG_LONG_PREAMBLE;
8017 else if (mode == 0)
8018 priv->config &= ~CFG_LONG_PREAMBLE;
8019 else {
8020 err = -EINVAL;
8021 goto done;
8022 }
8023
8024 err = ipw2100_system_config(priv, 0);
8025
8026 done:
8027 mutex_unlock(&priv->action_mutex);
8028 return err;
8029 }
8030
8031 static int ipw2100_wx_get_preamble(struct net_device *dev,
8032 struct iw_request_info *info,
8033 union iwreq_data *wrqu, char *extra)
8034 {
8035 /*
8036 * This can be called at any time. No action lock required
8037 */
8038
8039 struct ipw2100_priv *priv = libipw_priv(dev);
8040
8041 if (priv->config & CFG_LONG_PREAMBLE)
8042 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
8043 else
8044 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
8045
8046 return 0;
8047 }
8048
8049 #ifdef CONFIG_IPW2100_MONITOR
8050 static int ipw2100_wx_set_crc_check(struct net_device *dev,
8051 struct iw_request_info *info,
8052 union iwreq_data *wrqu, char *extra)
8053 {
8054 struct ipw2100_priv *priv = libipw_priv(dev);
8055 int err, mode = *(int *)extra;
8056
8057 mutex_lock(&priv->action_mutex);
8058 if (!(priv->status & STATUS_INITIALIZED)) {
8059 err = -EIO;
8060 goto done;
8061 }
8062
8063 if (mode == 1)
8064 priv->config |= CFG_CRC_CHECK;
8065 else if (mode == 0)
8066 priv->config &= ~CFG_CRC_CHECK;
8067 else {
8068 err = -EINVAL;
8069 goto done;
8070 }
8071 err = 0;
8072
8073 done:
8074 mutex_unlock(&priv->action_mutex);
8075 return err;
8076 }
8077
8078 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8079 struct iw_request_info *info,
8080 union iwreq_data *wrqu, char *extra)
8081 {
8082 /*
8083 * This can be called at any time. No action lock required
8084 */
8085
8086 struct ipw2100_priv *priv = libipw_priv(dev);
8087
8088 if (priv->config & CFG_CRC_CHECK)
8089 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8090 else
8091 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8092
8093 return 0;
8094 }
8095 #endif /* CONFIG_IPW2100_MONITOR */
8096
8097 static iw_handler ipw2100_wx_handlers[] = {
8098 IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8099 IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8100 IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8101 IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8102 IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8103 IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8104 IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8105 IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8106 IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8107 IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8108 IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8109 IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8110 IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8111 IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8112 IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8113 IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8114 IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8115 IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8116 IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8117 IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8118 IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8119 IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8120 IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8121 IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8122 IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8123 IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8124 IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8125 IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8126 IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8127 IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8128 IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8129 IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8130 IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8131 IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8132 IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8133 };
8134
8135 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8136 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8137 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8138 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8139 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8140 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8141 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8142 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8143
8144 static const struct iw_priv_args ipw2100_private_args[] = {
8145
8146 #ifdef CONFIG_IPW2100_MONITOR
8147 {
8148 IPW2100_PRIV_SET_MONITOR,
8149 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8150 {
8151 IPW2100_PRIV_RESET,
8152 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8153 #endif /* CONFIG_IPW2100_MONITOR */
8154
8155 {
8156 IPW2100_PRIV_SET_POWER,
8157 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8158 {
8159 IPW2100_PRIV_GET_POWER,
8160 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8161 "get_power"},
8162 {
8163 IPW2100_PRIV_SET_LONGPREAMBLE,
8164 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8165 {
8166 IPW2100_PRIV_GET_LONGPREAMBLE,
8167 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8168 #ifdef CONFIG_IPW2100_MONITOR
8169 {
8170 IPW2100_PRIV_SET_CRC_CHECK,
8171 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8172 {
8173 IPW2100_PRIV_GET_CRC_CHECK,
8174 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8175 #endif /* CONFIG_IPW2100_MONITOR */
8176 };
8177
8178 static iw_handler ipw2100_private_handler[] = {
8179 #ifdef CONFIG_IPW2100_MONITOR
8180 ipw2100_wx_set_promisc,
8181 ipw2100_wx_reset,
8182 #else /* CONFIG_IPW2100_MONITOR */
8183 NULL,
8184 NULL,
8185 #endif /* CONFIG_IPW2100_MONITOR */
8186 ipw2100_wx_set_powermode,
8187 ipw2100_wx_get_powermode,
8188 ipw2100_wx_set_preamble,
8189 ipw2100_wx_get_preamble,
8190 #ifdef CONFIG_IPW2100_MONITOR
8191 ipw2100_wx_set_crc_check,
8192 ipw2100_wx_get_crc_check,
8193 #else /* CONFIG_IPW2100_MONITOR */
8194 NULL,
8195 NULL,
8196 #endif /* CONFIG_IPW2100_MONITOR */
8197 };
8198
8199 /*
8200 * Get wireless statistics.
8201 * Called by /proc/net/wireless
8202 * Also called by SIOCGIWSTATS
8203 */
8204 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8205 {
8206 enum {
8207 POOR = 30,
8208 FAIR = 60,
8209 GOOD = 80,
8210 VERY_GOOD = 90,
8211 EXCELLENT = 95,
8212 PERFECT = 100
8213 };
8214 int rssi_qual;
8215 int tx_qual;
8216 int beacon_qual;
8217 int quality;
8218
8219 struct ipw2100_priv *priv = libipw_priv(dev);
8220 struct iw_statistics *wstats;
8221 u32 rssi, tx_retries, missed_beacons, tx_failures;
8222 u32 ord_len = sizeof(u32);
8223
8224 if (!priv)
8225 return (struct iw_statistics *)NULL;
8226
8227 wstats = &priv->wstats;
8228
8229 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8230 * ipw2100_wx_wireless_stats seems to be called before fw is
8231 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8232 * and associated; if not associcated, the values are all meaningless
8233 * anyway, so set them all to NULL and INVALID */
8234 if (!(priv->status & STATUS_ASSOCIATED)) {
8235 wstats->miss.beacon = 0;
8236 wstats->discard.retries = 0;
8237 wstats->qual.qual = 0;
8238 wstats->qual.level = 0;
8239 wstats->qual.noise = 0;
8240 wstats->qual.updated = 7;
8241 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8242 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8243 return wstats;
8244 }
8245
8246 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8247 &missed_beacons, &ord_len))
8248 goto fail_get_ordinal;
8249
8250 /* If we don't have a connection the quality and level is 0 */
8251 if (!(priv->status & STATUS_ASSOCIATED)) {
8252 wstats->qual.qual = 0;
8253 wstats->qual.level = 0;
8254 } else {
8255 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8256 &rssi, &ord_len))
8257 goto fail_get_ordinal;
8258 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8259 if (rssi < 10)
8260 rssi_qual = rssi * POOR / 10;
8261 else if (rssi < 15)
8262 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8263 else if (rssi < 20)
8264 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8265 else if (rssi < 30)
8266 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8267 10 + GOOD;
8268 else
8269 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8270 10 + VERY_GOOD;
8271
8272 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8273 &tx_retries, &ord_len))
8274 goto fail_get_ordinal;
8275
8276 if (tx_retries > 75)
8277 tx_qual = (90 - tx_retries) * POOR / 15;
8278 else if (tx_retries > 70)
8279 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8280 else if (tx_retries > 65)
8281 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8282 else if (tx_retries > 50)
8283 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8284 15 + GOOD;
8285 else
8286 tx_qual = (50 - tx_retries) *
8287 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8288
8289 if (missed_beacons > 50)
8290 beacon_qual = (60 - missed_beacons) * POOR / 10;
8291 else if (missed_beacons > 40)
8292 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8293 10 + POOR;
8294 else if (missed_beacons > 32)
8295 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8296 18 + FAIR;
8297 else if (missed_beacons > 20)
8298 beacon_qual = (32 - missed_beacons) *
8299 (VERY_GOOD - GOOD) / 20 + GOOD;
8300 else
8301 beacon_qual = (20 - missed_beacons) *
8302 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8303
8304 quality = min(tx_qual, rssi_qual);
8305 quality = min(beacon_qual, quality);
8306
8307 #ifdef CONFIG_IPW2100_DEBUG
8308 if (beacon_qual == quality)
8309 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8310 else if (tx_qual == quality)
8311 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8312 else if (quality != 100)
8313 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8314 else
8315 IPW_DEBUG_WX("Quality not clamped.\n");
8316 #endif
8317
8318 wstats->qual.qual = quality;
8319 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8320 }
8321
8322 wstats->qual.noise = 0;
8323 wstats->qual.updated = 7;
8324 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8325
8326 /* FIXME: this is percent and not a # */
8327 wstats->miss.beacon = missed_beacons;
8328
8329 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8330 &tx_failures, &ord_len))
8331 goto fail_get_ordinal;
8332 wstats->discard.retries = tx_failures;
8333
8334 return wstats;
8335
8336 fail_get_ordinal:
8337 IPW_DEBUG_WX("failed querying ordinals.\n");
8338
8339 return (struct iw_statistics *)NULL;
8340 }
8341
8342 static struct iw_handler_def ipw2100_wx_handler_def = {
8343 .standard = ipw2100_wx_handlers,
8344 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8345 .num_private = ARRAY_SIZE(ipw2100_private_handler),
8346 .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8347 .private = (iw_handler *) ipw2100_private_handler,
8348 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8349 .get_wireless_stats = ipw2100_wx_wireless_stats,
8350 };
8351
8352 static void ipw2100_wx_event_work(struct work_struct *work)
8353 {
8354 struct ipw2100_priv *priv =
8355 container_of(work, struct ipw2100_priv, wx_event_work.work);
8356 union iwreq_data wrqu;
8357 unsigned int len = ETH_ALEN;
8358
8359 if (priv->status & STATUS_STOPPING)
8360 return;
8361
8362 mutex_lock(&priv->action_mutex);
8363
8364 IPW_DEBUG_WX("enter\n");
8365
8366 mutex_unlock(&priv->action_mutex);
8367
8368 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8369
8370 /* Fetch BSSID from the hardware */
8371 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8372 priv->status & STATUS_RF_KILL_MASK ||
8373 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8374 &priv->bssid, &len)) {
8375 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8376 } else {
8377 /* We now have the BSSID, so can finish setting to the full
8378 * associated state */
8379 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8380 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8381 priv->status &= ~STATUS_ASSOCIATING;
8382 priv->status |= STATUS_ASSOCIATED;
8383 netif_carrier_on(priv->net_dev);
8384 netif_wake_queue(priv->net_dev);
8385 }
8386
8387 if (!(priv->status & STATUS_ASSOCIATED)) {
8388 IPW_DEBUG_WX("Configuring ESSID\n");
8389 mutex_lock(&priv->action_mutex);
8390 /* This is a disassociation event, so kick the firmware to
8391 * look for another AP */
8392 if (priv->config & CFG_STATIC_ESSID)
8393 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8394 0);
8395 else
8396 ipw2100_set_essid(priv, NULL, 0, 0);
8397 mutex_unlock(&priv->action_mutex);
8398 }
8399
8400 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8401 }
8402
8403 #define IPW2100_FW_MAJOR_VERSION 1
8404 #define IPW2100_FW_MINOR_VERSION 3
8405
8406 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8407 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8408
8409 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8410 IPW2100_FW_MAJOR_VERSION)
8411
8412 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8413 "." __stringify(IPW2100_FW_MINOR_VERSION)
8414
8415 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8416
8417 /*
8418
8419 BINARY FIRMWARE HEADER FORMAT
8420
8421 offset length desc
8422 0 2 version
8423 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8424 4 4 fw_len
8425 8 4 uc_len
8426 C fw_len firmware data
8427 12 + fw_len uc_len microcode data
8428
8429 */
8430
8431 struct ipw2100_fw_header {
8432 short version;
8433 short mode;
8434 unsigned int fw_size;
8435 unsigned int uc_size;
8436 } __packed;
8437
8438 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8439 {
8440 struct ipw2100_fw_header *h =
8441 (struct ipw2100_fw_header *)fw->fw_entry->data;
8442
8443 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8444 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8445 "(detected version id of %u). "
8446 "See Documentation/networking/README.ipw2100\n",
8447 h->version);
8448 return 1;
8449 }
8450
8451 fw->version = h->version;
8452 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8453 fw->fw.size = h->fw_size;
8454 fw->uc.data = fw->fw.data + h->fw_size;
8455 fw->uc.size = h->uc_size;
8456
8457 return 0;
8458 }
8459
8460 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8461 struct ipw2100_fw *fw)
8462 {
8463 char *fw_name;
8464 int rc;
8465
8466 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8467 priv->net_dev->name);
8468
8469 switch (priv->ieee->iw_mode) {
8470 case IW_MODE_ADHOC:
8471 fw_name = IPW2100_FW_NAME("-i");
8472 break;
8473 #ifdef CONFIG_IPW2100_MONITOR
8474 case IW_MODE_MONITOR:
8475 fw_name = IPW2100_FW_NAME("-p");
8476 break;
8477 #endif
8478 case IW_MODE_INFRA:
8479 default:
8480 fw_name = IPW2100_FW_NAME("");
8481 break;
8482 }
8483
8484 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8485
8486 if (rc < 0) {
8487 printk(KERN_ERR DRV_NAME ": "
8488 "%s: Firmware '%s' not available or load failed.\n",
8489 priv->net_dev->name, fw_name);
8490 return rc;
8491 }
8492 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8493 fw->fw_entry->size);
8494
8495 ipw2100_mod_firmware_load(fw);
8496
8497 return 0;
8498 }
8499
8500 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8501 #ifdef CONFIG_IPW2100_MONITOR
8502 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8503 #endif
8504 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8505
8506 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8507 struct ipw2100_fw *fw)
8508 {
8509 fw->version = 0;
8510 release_firmware(fw->fw_entry);
8511 fw->fw_entry = NULL;
8512 }
8513
8514 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8515 size_t max)
8516 {
8517 char ver[MAX_FW_VERSION_LEN];
8518 u32 len = MAX_FW_VERSION_LEN;
8519 u32 tmp;
8520 int i;
8521 /* firmware version is an ascii string (max len of 14) */
8522 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8523 return -EIO;
8524 tmp = max;
8525 if (len >= max)
8526 len = max - 1;
8527 for (i = 0; i < len; i++)
8528 buf[i] = ver[i];
8529 buf[i] = '\0';
8530 return tmp;
8531 }
8532
8533 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8534 size_t max)
8535 {
8536 u32 ver;
8537 u32 len = sizeof(ver);
8538 /* microcode version is a 32 bit integer */
8539 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8540 return -EIO;
8541 return snprintf(buf, max, "%08X", ver);
8542 }
8543
8544 /*
8545 * On exit, the firmware will have been freed from the fw list
8546 */
8547 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8548 {
8549 /* firmware is constructed of N contiguous entries, each entry is
8550 * structured as:
8551 *
8552 * offset sie desc
8553 * 0 4 address to write to
8554 * 4 2 length of data run
8555 * 6 length data
8556 */
8557 unsigned int addr;
8558 unsigned short len;
8559
8560 const unsigned char *firmware_data = fw->fw.data;
8561 unsigned int firmware_data_left = fw->fw.size;
8562
8563 while (firmware_data_left > 0) {
8564 addr = *(u32 *) (firmware_data);
8565 firmware_data += 4;
8566 firmware_data_left -= 4;
8567
8568 len = *(u16 *) (firmware_data);
8569 firmware_data += 2;
8570 firmware_data_left -= 2;
8571
8572 if (len > 32) {
8573 printk(KERN_ERR DRV_NAME ": "
8574 "Invalid firmware run-length of %d bytes\n",
8575 len);
8576 return -EINVAL;
8577 }
8578
8579 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8580 firmware_data += len;
8581 firmware_data_left -= len;
8582 }
8583
8584 return 0;
8585 }
8586
8587 struct symbol_alive_response {
8588 u8 cmd_id;
8589 u8 seq_num;
8590 u8 ucode_rev;
8591 u8 eeprom_valid;
8592 u16 valid_flags;
8593 u8 IEEE_addr[6];
8594 u16 flags;
8595 u16 pcb_rev;
8596 u16 clock_settle_time; // 1us LSB
8597 u16 powerup_settle_time; // 1us LSB
8598 u16 hop_settle_time; // 1us LSB
8599 u8 date[3]; // month, day, year
8600 u8 time[2]; // hours, minutes
8601 u8 ucode_valid;
8602 };
8603
8604 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8605 struct ipw2100_fw *fw)
8606 {
8607 struct net_device *dev = priv->net_dev;
8608 const unsigned char *microcode_data = fw->uc.data;
8609 unsigned int microcode_data_left = fw->uc.size;
8610 void __iomem *reg = priv->ioaddr;
8611
8612 struct symbol_alive_response response;
8613 int i, j;
8614 u8 data;
8615
8616 /* Symbol control */
8617 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8618 readl(reg);
8619 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8620 readl(reg);
8621
8622 /* HW config */
8623 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8624 readl(reg);
8625 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8626 readl(reg);
8627
8628 /* EN_CS_ACCESS bit to reset control store pointer */
8629 write_nic_byte(dev, 0x210000, 0x40);
8630 readl(reg);
8631 write_nic_byte(dev, 0x210000, 0x0);
8632 readl(reg);
8633 write_nic_byte(dev, 0x210000, 0x40);
8634 readl(reg);
8635
8636 /* copy microcode from buffer into Symbol */
8637
8638 while (microcode_data_left > 0) {
8639 write_nic_byte(dev, 0x210010, *microcode_data++);
8640 write_nic_byte(dev, 0x210010, *microcode_data++);
8641 microcode_data_left -= 2;
8642 }
8643
8644 /* EN_CS_ACCESS bit to reset the control store pointer */
8645 write_nic_byte(dev, 0x210000, 0x0);
8646 readl(reg);
8647
8648 /* Enable System (Reg 0)
8649 * first enable causes garbage in RX FIFO */
8650 write_nic_byte(dev, 0x210000, 0x0);
8651 readl(reg);
8652 write_nic_byte(dev, 0x210000, 0x80);
8653 readl(reg);
8654
8655 /* Reset External Baseband Reg */
8656 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8657 readl(reg);
8658 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8659 readl(reg);
8660
8661 /* HW Config (Reg 5) */
8662 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8663 readl(reg);
8664 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8665 readl(reg);
8666
8667 /* Enable System (Reg 0)
8668 * second enable should be OK */
8669 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8670 readl(reg);
8671 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8672
8673 /* check Symbol is enabled - upped this from 5 as it wasn't always
8674 * catching the update */
8675 for (i = 0; i < 10; i++) {
8676 udelay(10);
8677
8678 /* check Dino is enabled bit */
8679 read_nic_byte(dev, 0x210000, &data);
8680 if (data & 0x1)
8681 break;
8682 }
8683
8684 if (i == 10) {
8685 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8686 dev->name);
8687 return -EIO;
8688 }
8689
8690 /* Get Symbol alive response */
8691 for (i = 0; i < 30; i++) {
8692 /* Read alive response structure */
8693 for (j = 0;
8694 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8695 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8696
8697 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8698 break;
8699 udelay(10);
8700 }
8701
8702 if (i == 30) {
8703 printk(KERN_ERR DRV_NAME
8704 ": %s: No response from Symbol - hw not alive\n",
8705 dev->name);
8706 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8707 return -EIO;
8708 }
8709
8710 return 0;
8711 }
This page took 0.358512 seconds and 5 git commands to generate.