Merge branch 'irq/threaded' of git://git.kernel.org/pub/scm/linux/kernel/git/tip...
[deliverable/linux.git] / drivers / net / wireless / ipw2x00 / ipw2200.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
10
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
14
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 more details.
19
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23
24 The full GNU General Public License is included in this distribution in the
25 file called LICENSE.
26
27 Contact Information:
28 James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34
35
36 #ifndef KBUILD_EXTMOD
37 #define VK "k"
38 #else
39 #define VK
40 #endif
41
42 #ifdef CONFIG_IPW2200_DEBUG
43 #define VD "d"
44 #else
45 #define VD
46 #endif
47
48 #ifdef CONFIG_IPW2200_MONITOR
49 #define VM "m"
50 #else
51 #define VM
52 #endif
53
54 #ifdef CONFIG_IPW2200_PROMISCUOUS
55 #define VP "p"
56 #else
57 #define VP
58 #endif
59
60 #ifdef CONFIG_IPW2200_RADIOTAP
61 #define VR "r"
62 #else
63 #define VR
64 #endif
65
66 #ifdef CONFIG_IPW2200_QOS
67 #define VQ "q"
68 #else
69 #define VQ
70 #endif
71
72 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
73 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
74 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
75 #define DRV_VERSION IPW2200_VERSION
76
77 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
78
79 MODULE_DESCRIPTION(DRV_DESCRIPTION);
80 MODULE_VERSION(DRV_VERSION);
81 MODULE_AUTHOR(DRV_COPYRIGHT);
82 MODULE_LICENSE("GPL");
83
84 static int cmdlog = 0;
85 static int debug = 0;
86 static int channel = 0;
87 static int mode = 0;
88
89 static u32 ipw_debug_level;
90 static int associate;
91 static int auto_create = 1;
92 static int led = 0;
93 static int disable = 0;
94 static int bt_coexist = 0;
95 static int hwcrypto = 0;
96 static int roaming = 1;
97 static const char ipw_modes[] = {
98 'a', 'b', 'g', '?'
99 };
100 static int antenna = CFG_SYS_ANTENNA_BOTH;
101
102 #ifdef CONFIG_IPW2200_PROMISCUOUS
103 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
104 #endif
105
106
107 #ifdef CONFIG_IPW2200_QOS
108 static int qos_enable = 0;
109 static int qos_burst_enable = 0;
110 static int qos_no_ack_mask = 0;
111 static int burst_duration_CCK = 0;
112 static int burst_duration_OFDM = 0;
113
114 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
115 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
116 QOS_TX3_CW_MIN_OFDM},
117 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
118 QOS_TX3_CW_MAX_OFDM},
119 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
120 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
121 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
122 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
123 };
124
125 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
126 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
127 QOS_TX3_CW_MIN_CCK},
128 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
129 QOS_TX3_CW_MAX_CCK},
130 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
131 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
132 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
133 QOS_TX3_TXOP_LIMIT_CCK}
134 };
135
136 static struct ieee80211_qos_parameters def_parameters_OFDM = {
137 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
138 DEF_TX3_CW_MIN_OFDM},
139 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
140 DEF_TX3_CW_MAX_OFDM},
141 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
142 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
143 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
144 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
145 };
146
147 static struct ieee80211_qos_parameters def_parameters_CCK = {
148 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
149 DEF_TX3_CW_MIN_CCK},
150 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
151 DEF_TX3_CW_MAX_CCK},
152 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
153 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
154 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
155 DEF_TX3_TXOP_LIMIT_CCK}
156 };
157
158 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
159
160 static int from_priority_to_tx_queue[] = {
161 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
162 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
163 };
164
165 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
166
167 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
168 *qos_param);
169 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
170 *qos_param);
171 #endif /* CONFIG_IPW2200_QOS */
172
173 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
174 static void ipw_remove_current_network(struct ipw_priv *priv);
175 static void ipw_rx(struct ipw_priv *priv);
176 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
177 struct clx2_tx_queue *txq, int qindex);
178 static int ipw_queue_reset(struct ipw_priv *priv);
179
180 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
181 int len, int sync);
182
183 static void ipw_tx_queue_free(struct ipw_priv *);
184
185 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
186 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
187 static void ipw_rx_queue_replenish(void *);
188 static int ipw_up(struct ipw_priv *);
189 static void ipw_bg_up(struct work_struct *work);
190 static void ipw_down(struct ipw_priv *);
191 static void ipw_bg_down(struct work_struct *work);
192 static int ipw_config(struct ipw_priv *);
193 static int init_supported_rates(struct ipw_priv *priv,
194 struct ipw_supported_rates *prates);
195 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
196 static void ipw_send_wep_keys(struct ipw_priv *, int);
197
198 static int snprint_line(char *buf, size_t count,
199 const u8 * data, u32 len, u32 ofs)
200 {
201 int out, i, j, l;
202 char c;
203
204 out = snprintf(buf, count, "%08X", ofs);
205
206 for (l = 0, i = 0; i < 2; i++) {
207 out += snprintf(buf + out, count - out, " ");
208 for (j = 0; j < 8 && l < len; j++, l++)
209 out += snprintf(buf + out, count - out, "%02X ",
210 data[(i * 8 + j)]);
211 for (; j < 8; j++)
212 out += snprintf(buf + out, count - out, " ");
213 }
214
215 out += snprintf(buf + out, count - out, " ");
216 for (l = 0, i = 0; i < 2; i++) {
217 out += snprintf(buf + out, count - out, " ");
218 for (j = 0; j < 8 && l < len; j++, l++) {
219 c = data[(i * 8 + j)];
220 if (!isascii(c) || !isprint(c))
221 c = '.';
222
223 out += snprintf(buf + out, count - out, "%c", c);
224 }
225
226 for (; j < 8; j++)
227 out += snprintf(buf + out, count - out, " ");
228 }
229
230 return out;
231 }
232
233 static void printk_buf(int level, const u8 * data, u32 len)
234 {
235 char line[81];
236 u32 ofs = 0;
237 if (!(ipw_debug_level & level))
238 return;
239
240 while (len) {
241 snprint_line(line, sizeof(line), &data[ofs],
242 min(len, 16U), ofs);
243 printk(KERN_DEBUG "%s\n", line);
244 ofs += 16;
245 len -= min(len, 16U);
246 }
247 }
248
249 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
250 {
251 size_t out = size;
252 u32 ofs = 0;
253 int total = 0;
254
255 while (size && len) {
256 out = snprint_line(output, size, &data[ofs],
257 min_t(size_t, len, 16U), ofs);
258
259 ofs += 16;
260 output += out;
261 size -= out;
262 len -= min_t(size_t, len, 16U);
263 total += out;
264 }
265 return total;
266 }
267
268 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
269 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
270 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
271
272 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
273 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
274 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
275
276 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
277 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
278 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
279 {
280 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
281 __LINE__, (u32) (b), (u32) (c));
282 _ipw_write_reg8(a, b, c);
283 }
284
285 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
286 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
287 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
288 {
289 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
290 __LINE__, (u32) (b), (u32) (c));
291 _ipw_write_reg16(a, b, c);
292 }
293
294 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
295 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
296 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
297 {
298 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
299 __LINE__, (u32) (b), (u32) (c));
300 _ipw_write_reg32(a, b, c);
301 }
302
303 /* 8-bit direct write (low 4K) */
304 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
305 u8 val)
306 {
307 writeb(val, ipw->hw_base + ofs);
308 }
309
310 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
311 #define ipw_write8(ipw, ofs, val) do { \
312 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
313 __LINE__, (u32)(ofs), (u32)(val)); \
314 _ipw_write8(ipw, ofs, val); \
315 } while (0)
316
317 /* 16-bit direct write (low 4K) */
318 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
319 u16 val)
320 {
321 writew(val, ipw->hw_base + ofs);
322 }
323
324 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
325 #define ipw_write16(ipw, ofs, val) do { \
326 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
327 __LINE__, (u32)(ofs), (u32)(val)); \
328 _ipw_write16(ipw, ofs, val); \
329 } while (0)
330
331 /* 32-bit direct write (low 4K) */
332 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
333 u32 val)
334 {
335 writel(val, ipw->hw_base + ofs);
336 }
337
338 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
339 #define ipw_write32(ipw, ofs, val) do { \
340 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
341 __LINE__, (u32)(ofs), (u32)(val)); \
342 _ipw_write32(ipw, ofs, val); \
343 } while (0)
344
345 /* 8-bit direct read (low 4K) */
346 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
347 {
348 return readb(ipw->hw_base + ofs);
349 }
350
351 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352 #define ipw_read8(ipw, ofs) ({ \
353 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
354 (u32)(ofs)); \
355 _ipw_read8(ipw, ofs); \
356 })
357
358 /* 16-bit direct read (low 4K) */
359 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
360 {
361 return readw(ipw->hw_base + ofs);
362 }
363
364 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_read16(ipw, ofs) ({ \
366 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
367 (u32)(ofs)); \
368 _ipw_read16(ipw, ofs); \
369 })
370
371 /* 32-bit direct read (low 4K) */
372 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
373 {
374 return readl(ipw->hw_base + ofs);
375 }
376
377 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
378 #define ipw_read32(ipw, ofs) ({ \
379 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
380 (u32)(ofs)); \
381 _ipw_read32(ipw, ofs); \
382 })
383
384 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
385 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
386 #define ipw_read_indirect(a, b, c, d) ({ \
387 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
388 __LINE__, (u32)(b), (u32)(d)); \
389 _ipw_read_indirect(a, b, c, d); \
390 })
391
392 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
393 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
394 int num);
395 #define ipw_write_indirect(a, b, c, d) do { \
396 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
397 __LINE__, (u32)(b), (u32)(d)); \
398 _ipw_write_indirect(a, b, c, d); \
399 } while (0)
400
401 /* 32-bit indirect write (above 4K) */
402 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
403 {
404 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
405 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
406 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
407 }
408
409 /* 8-bit indirect write (above 4K) */
410 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
411 {
412 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
413 u32 dif_len = reg - aligned_addr;
414
415 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
416 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
417 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
418 }
419
420 /* 16-bit indirect write (above 4K) */
421 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
422 {
423 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
424 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
425
426 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
427 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
428 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
429 }
430
431 /* 8-bit indirect read (above 4K) */
432 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
433 {
434 u32 word;
435 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
436 IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
437 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
438 return (word >> ((reg & 0x3) * 8)) & 0xff;
439 }
440
441 /* 32-bit indirect read (above 4K) */
442 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
443 {
444 u32 value;
445
446 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
447
448 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
449 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
450 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
451 return value;
452 }
453
454 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
455 /* for area above 1st 4K of SRAM/reg space */
456 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
457 int num)
458 {
459 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
460 u32 dif_len = addr - aligned_addr;
461 u32 i;
462
463 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
464
465 if (num <= 0) {
466 return;
467 }
468
469 /* Read the first dword (or portion) byte by byte */
470 if (unlikely(dif_len)) {
471 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472 /* Start reading at aligned_addr + dif_len */
473 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
474 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
475 aligned_addr += 4;
476 }
477
478 /* Read all of the middle dwords as dwords, with auto-increment */
479 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
480 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
481 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
482
483 /* Read the last dword (or portion) byte by byte */
484 if (unlikely(num)) {
485 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
486 for (i = 0; num > 0; i++, num--)
487 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
488 }
489 }
490
491 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
492 /* for area above 1st 4K of SRAM/reg space */
493 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
494 int num)
495 {
496 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
497 u32 dif_len = addr - aligned_addr;
498 u32 i;
499
500 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
501
502 if (num <= 0) {
503 return;
504 }
505
506 /* Write the first dword (or portion) byte by byte */
507 if (unlikely(dif_len)) {
508 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509 /* Start writing at aligned_addr + dif_len */
510 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
511 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
512 aligned_addr += 4;
513 }
514
515 /* Write all of the middle dwords as dwords, with auto-increment */
516 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
517 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
518 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
519
520 /* Write the last dword (or portion) byte by byte */
521 if (unlikely(num)) {
522 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
523 for (i = 0; num > 0; i++, num--, buf++)
524 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
525 }
526 }
527
528 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
529 /* for 1st 4K of SRAM/regs space */
530 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
531 int num)
532 {
533 memcpy_toio((priv->hw_base + addr), buf, num);
534 }
535
536 /* Set bit(s) in low 4K of SRAM/regs */
537 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
538 {
539 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
540 }
541
542 /* Clear bit(s) in low 4K of SRAM/regs */
543 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
544 {
545 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
546 }
547
548 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
549 {
550 if (priv->status & STATUS_INT_ENABLED)
551 return;
552 priv->status |= STATUS_INT_ENABLED;
553 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
554 }
555
556 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
557 {
558 if (!(priv->status & STATUS_INT_ENABLED))
559 return;
560 priv->status &= ~STATUS_INT_ENABLED;
561 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
562 }
563
564 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
565 {
566 unsigned long flags;
567
568 spin_lock_irqsave(&priv->irq_lock, flags);
569 __ipw_enable_interrupts(priv);
570 spin_unlock_irqrestore(&priv->irq_lock, flags);
571 }
572
573 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
574 {
575 unsigned long flags;
576
577 spin_lock_irqsave(&priv->irq_lock, flags);
578 __ipw_disable_interrupts(priv);
579 spin_unlock_irqrestore(&priv->irq_lock, flags);
580 }
581
582 static char *ipw_error_desc(u32 val)
583 {
584 switch (val) {
585 case IPW_FW_ERROR_OK:
586 return "ERROR_OK";
587 case IPW_FW_ERROR_FAIL:
588 return "ERROR_FAIL";
589 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
590 return "MEMORY_UNDERFLOW";
591 case IPW_FW_ERROR_MEMORY_OVERFLOW:
592 return "MEMORY_OVERFLOW";
593 case IPW_FW_ERROR_BAD_PARAM:
594 return "BAD_PARAM";
595 case IPW_FW_ERROR_BAD_CHECKSUM:
596 return "BAD_CHECKSUM";
597 case IPW_FW_ERROR_NMI_INTERRUPT:
598 return "NMI_INTERRUPT";
599 case IPW_FW_ERROR_BAD_DATABASE:
600 return "BAD_DATABASE";
601 case IPW_FW_ERROR_ALLOC_FAIL:
602 return "ALLOC_FAIL";
603 case IPW_FW_ERROR_DMA_UNDERRUN:
604 return "DMA_UNDERRUN";
605 case IPW_FW_ERROR_DMA_STATUS:
606 return "DMA_STATUS";
607 case IPW_FW_ERROR_DINO_ERROR:
608 return "DINO_ERROR";
609 case IPW_FW_ERROR_EEPROM_ERROR:
610 return "EEPROM_ERROR";
611 case IPW_FW_ERROR_SYSASSERT:
612 return "SYSASSERT";
613 case IPW_FW_ERROR_FATAL_ERROR:
614 return "FATAL_ERROR";
615 default:
616 return "UNKNOWN_ERROR";
617 }
618 }
619
620 static void ipw_dump_error_log(struct ipw_priv *priv,
621 struct ipw_fw_error *error)
622 {
623 u32 i;
624
625 if (!error) {
626 IPW_ERROR("Error allocating and capturing error log. "
627 "Nothing to dump.\n");
628 return;
629 }
630
631 IPW_ERROR("Start IPW Error Log Dump:\n");
632 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
633 error->status, error->config);
634
635 for (i = 0; i < error->elem_len; i++)
636 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
637 ipw_error_desc(error->elem[i].desc),
638 error->elem[i].time,
639 error->elem[i].blink1,
640 error->elem[i].blink2,
641 error->elem[i].link1,
642 error->elem[i].link2, error->elem[i].data);
643 for (i = 0; i < error->log_len; i++)
644 IPW_ERROR("%i\t0x%08x\t%i\n",
645 error->log[i].time,
646 error->log[i].data, error->log[i].event);
647 }
648
649 static inline int ipw_is_init(struct ipw_priv *priv)
650 {
651 return (priv->status & STATUS_INIT) ? 1 : 0;
652 }
653
654 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
655 {
656 u32 addr, field_info, field_len, field_count, total_len;
657
658 IPW_DEBUG_ORD("ordinal = %i\n", ord);
659
660 if (!priv || !val || !len) {
661 IPW_DEBUG_ORD("Invalid argument\n");
662 return -EINVAL;
663 }
664
665 /* verify device ordinal tables have been initialized */
666 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
667 IPW_DEBUG_ORD("Access ordinals before initialization\n");
668 return -EINVAL;
669 }
670
671 switch (IPW_ORD_TABLE_ID_MASK & ord) {
672 case IPW_ORD_TABLE_0_MASK:
673 /*
674 * TABLE 0: Direct access to a table of 32 bit values
675 *
676 * This is a very simple table with the data directly
677 * read from the table
678 */
679
680 /* remove the table id from the ordinal */
681 ord &= IPW_ORD_TABLE_VALUE_MASK;
682
683 /* boundary check */
684 if (ord > priv->table0_len) {
685 IPW_DEBUG_ORD("ordinal value (%i) longer then "
686 "max (%i)\n", ord, priv->table0_len);
687 return -EINVAL;
688 }
689
690 /* verify we have enough room to store the value */
691 if (*len < sizeof(u32)) {
692 IPW_DEBUG_ORD("ordinal buffer length too small, "
693 "need %zd\n", sizeof(u32));
694 return -EINVAL;
695 }
696
697 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
698 ord, priv->table0_addr + (ord << 2));
699
700 *len = sizeof(u32);
701 ord <<= 2;
702 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
703 break;
704
705 case IPW_ORD_TABLE_1_MASK:
706 /*
707 * TABLE 1: Indirect access to a table of 32 bit values
708 *
709 * This is a fairly large table of u32 values each
710 * representing starting addr for the data (which is
711 * also a u32)
712 */
713
714 /* remove the table id from the ordinal */
715 ord &= IPW_ORD_TABLE_VALUE_MASK;
716
717 /* boundary check */
718 if (ord > priv->table1_len) {
719 IPW_DEBUG_ORD("ordinal value too long\n");
720 return -EINVAL;
721 }
722
723 /* verify we have enough room to store the value */
724 if (*len < sizeof(u32)) {
725 IPW_DEBUG_ORD("ordinal buffer length too small, "
726 "need %zd\n", sizeof(u32));
727 return -EINVAL;
728 }
729
730 *((u32 *) val) =
731 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
732 *len = sizeof(u32);
733 break;
734
735 case IPW_ORD_TABLE_2_MASK:
736 /*
737 * TABLE 2: Indirect access to a table of variable sized values
738 *
739 * This table consist of six values, each containing
740 * - dword containing the starting offset of the data
741 * - dword containing the lengh in the first 16bits
742 * and the count in the second 16bits
743 */
744
745 /* remove the table id from the ordinal */
746 ord &= IPW_ORD_TABLE_VALUE_MASK;
747
748 /* boundary check */
749 if (ord > priv->table2_len) {
750 IPW_DEBUG_ORD("ordinal value too long\n");
751 return -EINVAL;
752 }
753
754 /* get the address of statistic */
755 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
756
757 /* get the second DW of statistics ;
758 * two 16-bit words - first is length, second is count */
759 field_info =
760 ipw_read_reg32(priv,
761 priv->table2_addr + (ord << 3) +
762 sizeof(u32));
763
764 /* get each entry length */
765 field_len = *((u16 *) & field_info);
766
767 /* get number of entries */
768 field_count = *(((u16 *) & field_info) + 1);
769
770 /* abort if not enought memory */
771 total_len = field_len * field_count;
772 if (total_len > *len) {
773 *len = total_len;
774 return -EINVAL;
775 }
776
777 *len = total_len;
778 if (!total_len)
779 return 0;
780
781 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
782 "field_info = 0x%08x\n",
783 addr, total_len, field_info);
784 ipw_read_indirect(priv, addr, val, total_len);
785 break;
786
787 default:
788 IPW_DEBUG_ORD("Invalid ordinal!\n");
789 return -EINVAL;
790
791 }
792
793 return 0;
794 }
795
796 static void ipw_init_ordinals(struct ipw_priv *priv)
797 {
798 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
799 priv->table0_len = ipw_read32(priv, priv->table0_addr);
800
801 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
802 priv->table0_addr, priv->table0_len);
803
804 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
805 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
806
807 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
808 priv->table1_addr, priv->table1_len);
809
810 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
811 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
812 priv->table2_len &= 0x0000ffff; /* use first two bytes */
813
814 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
815 priv->table2_addr, priv->table2_len);
816
817 }
818
819 static u32 ipw_register_toggle(u32 reg)
820 {
821 reg &= ~IPW_START_STANDBY;
822 if (reg & IPW_GATE_ODMA)
823 reg &= ~IPW_GATE_ODMA;
824 if (reg & IPW_GATE_IDMA)
825 reg &= ~IPW_GATE_IDMA;
826 if (reg & IPW_GATE_ADMA)
827 reg &= ~IPW_GATE_ADMA;
828 return reg;
829 }
830
831 /*
832 * LED behavior:
833 * - On radio ON, turn on any LEDs that require to be on during start
834 * - On initialization, start unassociated blink
835 * - On association, disable unassociated blink
836 * - On disassociation, start unassociated blink
837 * - On radio OFF, turn off any LEDs started during radio on
838 *
839 */
840 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
841 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
842 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
843
844 static void ipw_led_link_on(struct ipw_priv *priv)
845 {
846 unsigned long flags;
847 u32 led;
848
849 /* If configured to not use LEDs, or nic_type is 1,
850 * then we don't toggle a LINK led */
851 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
852 return;
853
854 spin_lock_irqsave(&priv->lock, flags);
855
856 if (!(priv->status & STATUS_RF_KILL_MASK) &&
857 !(priv->status & STATUS_LED_LINK_ON)) {
858 IPW_DEBUG_LED("Link LED On\n");
859 led = ipw_read_reg32(priv, IPW_EVENT_REG);
860 led |= priv->led_association_on;
861
862 led = ipw_register_toggle(led);
863
864 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
865 ipw_write_reg32(priv, IPW_EVENT_REG, led);
866
867 priv->status |= STATUS_LED_LINK_ON;
868
869 /* If we aren't associated, schedule turning the LED off */
870 if (!(priv->status & STATUS_ASSOCIATED))
871 queue_delayed_work(priv->workqueue,
872 &priv->led_link_off,
873 LD_TIME_LINK_ON);
874 }
875
876 spin_unlock_irqrestore(&priv->lock, flags);
877 }
878
879 static void ipw_bg_led_link_on(struct work_struct *work)
880 {
881 struct ipw_priv *priv =
882 container_of(work, struct ipw_priv, led_link_on.work);
883 mutex_lock(&priv->mutex);
884 ipw_led_link_on(priv);
885 mutex_unlock(&priv->mutex);
886 }
887
888 static void ipw_led_link_off(struct ipw_priv *priv)
889 {
890 unsigned long flags;
891 u32 led;
892
893 /* If configured not to use LEDs, or nic type is 1,
894 * then we don't goggle the LINK led. */
895 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
896 return;
897
898 spin_lock_irqsave(&priv->lock, flags);
899
900 if (priv->status & STATUS_LED_LINK_ON) {
901 led = ipw_read_reg32(priv, IPW_EVENT_REG);
902 led &= priv->led_association_off;
903 led = ipw_register_toggle(led);
904
905 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
906 ipw_write_reg32(priv, IPW_EVENT_REG, led);
907
908 IPW_DEBUG_LED("Link LED Off\n");
909
910 priv->status &= ~STATUS_LED_LINK_ON;
911
912 /* If we aren't associated and the radio is on, schedule
913 * turning the LED on (blink while unassociated) */
914 if (!(priv->status & STATUS_RF_KILL_MASK) &&
915 !(priv->status & STATUS_ASSOCIATED))
916 queue_delayed_work(priv->workqueue, &priv->led_link_on,
917 LD_TIME_LINK_OFF);
918
919 }
920
921 spin_unlock_irqrestore(&priv->lock, flags);
922 }
923
924 static void ipw_bg_led_link_off(struct work_struct *work)
925 {
926 struct ipw_priv *priv =
927 container_of(work, struct ipw_priv, led_link_off.work);
928 mutex_lock(&priv->mutex);
929 ipw_led_link_off(priv);
930 mutex_unlock(&priv->mutex);
931 }
932
933 static void __ipw_led_activity_on(struct ipw_priv *priv)
934 {
935 u32 led;
936
937 if (priv->config & CFG_NO_LED)
938 return;
939
940 if (priv->status & STATUS_RF_KILL_MASK)
941 return;
942
943 if (!(priv->status & STATUS_LED_ACT_ON)) {
944 led = ipw_read_reg32(priv, IPW_EVENT_REG);
945 led |= priv->led_activity_on;
946
947 led = ipw_register_toggle(led);
948
949 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
950 ipw_write_reg32(priv, IPW_EVENT_REG, led);
951
952 IPW_DEBUG_LED("Activity LED On\n");
953
954 priv->status |= STATUS_LED_ACT_ON;
955
956 cancel_delayed_work(&priv->led_act_off);
957 queue_delayed_work(priv->workqueue, &priv->led_act_off,
958 LD_TIME_ACT_ON);
959 } else {
960 /* Reschedule LED off for full time period */
961 cancel_delayed_work(&priv->led_act_off);
962 queue_delayed_work(priv->workqueue, &priv->led_act_off,
963 LD_TIME_ACT_ON);
964 }
965 }
966
967 #if 0
968 void ipw_led_activity_on(struct ipw_priv *priv)
969 {
970 unsigned long flags;
971 spin_lock_irqsave(&priv->lock, flags);
972 __ipw_led_activity_on(priv);
973 spin_unlock_irqrestore(&priv->lock, flags);
974 }
975 #endif /* 0 */
976
977 static void ipw_led_activity_off(struct ipw_priv *priv)
978 {
979 unsigned long flags;
980 u32 led;
981
982 if (priv->config & CFG_NO_LED)
983 return;
984
985 spin_lock_irqsave(&priv->lock, flags);
986
987 if (priv->status & STATUS_LED_ACT_ON) {
988 led = ipw_read_reg32(priv, IPW_EVENT_REG);
989 led &= priv->led_activity_off;
990
991 led = ipw_register_toggle(led);
992
993 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
994 ipw_write_reg32(priv, IPW_EVENT_REG, led);
995
996 IPW_DEBUG_LED("Activity LED Off\n");
997
998 priv->status &= ~STATUS_LED_ACT_ON;
999 }
1000
1001 spin_unlock_irqrestore(&priv->lock, flags);
1002 }
1003
1004 static void ipw_bg_led_activity_off(struct work_struct *work)
1005 {
1006 struct ipw_priv *priv =
1007 container_of(work, struct ipw_priv, led_act_off.work);
1008 mutex_lock(&priv->mutex);
1009 ipw_led_activity_off(priv);
1010 mutex_unlock(&priv->mutex);
1011 }
1012
1013 static void ipw_led_band_on(struct ipw_priv *priv)
1014 {
1015 unsigned long flags;
1016 u32 led;
1017
1018 /* Only nic type 1 supports mode LEDs */
1019 if (priv->config & CFG_NO_LED ||
1020 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1021 return;
1022
1023 spin_lock_irqsave(&priv->lock, flags);
1024
1025 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1026 if (priv->assoc_network->mode == IEEE_A) {
1027 led |= priv->led_ofdm_on;
1028 led &= priv->led_association_off;
1029 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1030 } else if (priv->assoc_network->mode == IEEE_G) {
1031 led |= priv->led_ofdm_on;
1032 led |= priv->led_association_on;
1033 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1034 } else {
1035 led &= priv->led_ofdm_off;
1036 led |= priv->led_association_on;
1037 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1038 }
1039
1040 led = ipw_register_toggle(led);
1041
1042 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1043 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1044
1045 spin_unlock_irqrestore(&priv->lock, flags);
1046 }
1047
1048 static void ipw_led_band_off(struct ipw_priv *priv)
1049 {
1050 unsigned long flags;
1051 u32 led;
1052
1053 /* Only nic type 1 supports mode LEDs */
1054 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1055 return;
1056
1057 spin_lock_irqsave(&priv->lock, flags);
1058
1059 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1060 led &= priv->led_ofdm_off;
1061 led &= priv->led_association_off;
1062
1063 led = ipw_register_toggle(led);
1064
1065 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1066 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1067
1068 spin_unlock_irqrestore(&priv->lock, flags);
1069 }
1070
1071 static void ipw_led_radio_on(struct ipw_priv *priv)
1072 {
1073 ipw_led_link_on(priv);
1074 }
1075
1076 static void ipw_led_radio_off(struct ipw_priv *priv)
1077 {
1078 ipw_led_activity_off(priv);
1079 ipw_led_link_off(priv);
1080 }
1081
1082 static void ipw_led_link_up(struct ipw_priv *priv)
1083 {
1084 /* Set the Link Led on for all nic types */
1085 ipw_led_link_on(priv);
1086 }
1087
1088 static void ipw_led_link_down(struct ipw_priv *priv)
1089 {
1090 ipw_led_activity_off(priv);
1091 ipw_led_link_off(priv);
1092
1093 if (priv->status & STATUS_RF_KILL_MASK)
1094 ipw_led_radio_off(priv);
1095 }
1096
1097 static void ipw_led_init(struct ipw_priv *priv)
1098 {
1099 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1100
1101 /* Set the default PINs for the link and activity leds */
1102 priv->led_activity_on = IPW_ACTIVITY_LED;
1103 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1104
1105 priv->led_association_on = IPW_ASSOCIATED_LED;
1106 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1107
1108 /* Set the default PINs for the OFDM leds */
1109 priv->led_ofdm_on = IPW_OFDM_LED;
1110 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1111
1112 switch (priv->nic_type) {
1113 case EEPROM_NIC_TYPE_1:
1114 /* In this NIC type, the LEDs are reversed.... */
1115 priv->led_activity_on = IPW_ASSOCIATED_LED;
1116 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1117 priv->led_association_on = IPW_ACTIVITY_LED;
1118 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1119
1120 if (!(priv->config & CFG_NO_LED))
1121 ipw_led_band_on(priv);
1122
1123 /* And we don't blink link LEDs for this nic, so
1124 * just return here */
1125 return;
1126
1127 case EEPROM_NIC_TYPE_3:
1128 case EEPROM_NIC_TYPE_2:
1129 case EEPROM_NIC_TYPE_4:
1130 case EEPROM_NIC_TYPE_0:
1131 break;
1132
1133 default:
1134 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1135 priv->nic_type);
1136 priv->nic_type = EEPROM_NIC_TYPE_0;
1137 break;
1138 }
1139
1140 if (!(priv->config & CFG_NO_LED)) {
1141 if (priv->status & STATUS_ASSOCIATED)
1142 ipw_led_link_on(priv);
1143 else
1144 ipw_led_link_off(priv);
1145 }
1146 }
1147
1148 static void ipw_led_shutdown(struct ipw_priv *priv)
1149 {
1150 ipw_led_activity_off(priv);
1151 ipw_led_link_off(priv);
1152 ipw_led_band_off(priv);
1153 cancel_delayed_work(&priv->led_link_on);
1154 cancel_delayed_work(&priv->led_link_off);
1155 cancel_delayed_work(&priv->led_act_off);
1156 }
1157
1158 /*
1159 * The following adds a new attribute to the sysfs representation
1160 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1161 * used for controling the debug level.
1162 *
1163 * See the level definitions in ipw for details.
1164 */
1165 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1166 {
1167 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1168 }
1169
1170 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1171 size_t count)
1172 {
1173 char *p = (char *)buf;
1174 u32 val;
1175
1176 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1177 p++;
1178 if (p[0] == 'x' || p[0] == 'X')
1179 p++;
1180 val = simple_strtoul(p, &p, 16);
1181 } else
1182 val = simple_strtoul(p, &p, 10);
1183 if (p == buf)
1184 printk(KERN_INFO DRV_NAME
1185 ": %s is not in hex or decimal form.\n", buf);
1186 else
1187 ipw_debug_level = val;
1188
1189 return strnlen(buf, count);
1190 }
1191
1192 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1193 show_debug_level, store_debug_level);
1194
1195 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1196 {
1197 /* length = 1st dword in log */
1198 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1199 }
1200
1201 static void ipw_capture_event_log(struct ipw_priv *priv,
1202 u32 log_len, struct ipw_event *log)
1203 {
1204 u32 base;
1205
1206 if (log_len) {
1207 base = ipw_read32(priv, IPW_EVENT_LOG);
1208 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1209 (u8 *) log, sizeof(*log) * log_len);
1210 }
1211 }
1212
1213 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1214 {
1215 struct ipw_fw_error *error;
1216 u32 log_len = ipw_get_event_log_len(priv);
1217 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1218 u32 elem_len = ipw_read_reg32(priv, base);
1219
1220 error = kmalloc(sizeof(*error) +
1221 sizeof(*error->elem) * elem_len +
1222 sizeof(*error->log) * log_len, GFP_ATOMIC);
1223 if (!error) {
1224 IPW_ERROR("Memory allocation for firmware error log "
1225 "failed.\n");
1226 return NULL;
1227 }
1228 error->jiffies = jiffies;
1229 error->status = priv->status;
1230 error->config = priv->config;
1231 error->elem_len = elem_len;
1232 error->log_len = log_len;
1233 error->elem = (struct ipw_error_elem *)error->payload;
1234 error->log = (struct ipw_event *)(error->elem + elem_len);
1235
1236 ipw_capture_event_log(priv, log_len, error->log);
1237
1238 if (elem_len)
1239 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1240 sizeof(*error->elem) * elem_len);
1241
1242 return error;
1243 }
1244
1245 static ssize_t show_event_log(struct device *d,
1246 struct device_attribute *attr, char *buf)
1247 {
1248 struct ipw_priv *priv = dev_get_drvdata(d);
1249 u32 log_len = ipw_get_event_log_len(priv);
1250 u32 log_size;
1251 struct ipw_event *log;
1252 u32 len = 0, i;
1253
1254 /* not using min() because of its strict type checking */
1255 log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1256 sizeof(*log) * log_len : PAGE_SIZE;
1257 log = kzalloc(log_size, GFP_KERNEL);
1258 if (!log) {
1259 IPW_ERROR("Unable to allocate memory for log\n");
1260 return 0;
1261 }
1262 log_len = log_size / sizeof(*log);
1263 ipw_capture_event_log(priv, log_len, log);
1264
1265 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1266 for (i = 0; i < log_len; i++)
1267 len += snprintf(buf + len, PAGE_SIZE - len,
1268 "\n%08X%08X%08X",
1269 log[i].time, log[i].event, log[i].data);
1270 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1271 kfree(log);
1272 return len;
1273 }
1274
1275 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1276
1277 static ssize_t show_error(struct device *d,
1278 struct device_attribute *attr, char *buf)
1279 {
1280 struct ipw_priv *priv = dev_get_drvdata(d);
1281 u32 len = 0, i;
1282 if (!priv->error)
1283 return 0;
1284 len += snprintf(buf + len, PAGE_SIZE - len,
1285 "%08lX%08X%08X%08X",
1286 priv->error->jiffies,
1287 priv->error->status,
1288 priv->error->config, priv->error->elem_len);
1289 for (i = 0; i < priv->error->elem_len; i++)
1290 len += snprintf(buf + len, PAGE_SIZE - len,
1291 "\n%08X%08X%08X%08X%08X%08X%08X",
1292 priv->error->elem[i].time,
1293 priv->error->elem[i].desc,
1294 priv->error->elem[i].blink1,
1295 priv->error->elem[i].blink2,
1296 priv->error->elem[i].link1,
1297 priv->error->elem[i].link2,
1298 priv->error->elem[i].data);
1299
1300 len += snprintf(buf + len, PAGE_SIZE - len,
1301 "\n%08X", priv->error->log_len);
1302 for (i = 0; i < priv->error->log_len; i++)
1303 len += snprintf(buf + len, PAGE_SIZE - len,
1304 "\n%08X%08X%08X",
1305 priv->error->log[i].time,
1306 priv->error->log[i].event,
1307 priv->error->log[i].data);
1308 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1309 return len;
1310 }
1311
1312 static ssize_t clear_error(struct device *d,
1313 struct device_attribute *attr,
1314 const char *buf, size_t count)
1315 {
1316 struct ipw_priv *priv = dev_get_drvdata(d);
1317
1318 kfree(priv->error);
1319 priv->error = NULL;
1320 return count;
1321 }
1322
1323 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1324
1325 static ssize_t show_cmd_log(struct device *d,
1326 struct device_attribute *attr, char *buf)
1327 {
1328 struct ipw_priv *priv = dev_get_drvdata(d);
1329 u32 len = 0, i;
1330 if (!priv->cmdlog)
1331 return 0;
1332 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1333 (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1334 i = (i + 1) % priv->cmdlog_len) {
1335 len +=
1336 snprintf(buf + len, PAGE_SIZE - len,
1337 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1338 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1339 priv->cmdlog[i].cmd.len);
1340 len +=
1341 snprintk_buf(buf + len, PAGE_SIZE - len,
1342 (u8 *) priv->cmdlog[i].cmd.param,
1343 priv->cmdlog[i].cmd.len);
1344 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1345 }
1346 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1347 return len;
1348 }
1349
1350 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1351
1352 #ifdef CONFIG_IPW2200_PROMISCUOUS
1353 static void ipw_prom_free(struct ipw_priv *priv);
1354 static int ipw_prom_alloc(struct ipw_priv *priv);
1355 static ssize_t store_rtap_iface(struct device *d,
1356 struct device_attribute *attr,
1357 const char *buf, size_t count)
1358 {
1359 struct ipw_priv *priv = dev_get_drvdata(d);
1360 int rc = 0;
1361
1362 if (count < 1)
1363 return -EINVAL;
1364
1365 switch (buf[0]) {
1366 case '0':
1367 if (!rtap_iface)
1368 return count;
1369
1370 if (netif_running(priv->prom_net_dev)) {
1371 IPW_WARNING("Interface is up. Cannot unregister.\n");
1372 return count;
1373 }
1374
1375 ipw_prom_free(priv);
1376 rtap_iface = 0;
1377 break;
1378
1379 case '1':
1380 if (rtap_iface)
1381 return count;
1382
1383 rc = ipw_prom_alloc(priv);
1384 if (!rc)
1385 rtap_iface = 1;
1386 break;
1387
1388 default:
1389 return -EINVAL;
1390 }
1391
1392 if (rc) {
1393 IPW_ERROR("Failed to register promiscuous network "
1394 "device (error %d).\n", rc);
1395 }
1396
1397 return count;
1398 }
1399
1400 static ssize_t show_rtap_iface(struct device *d,
1401 struct device_attribute *attr,
1402 char *buf)
1403 {
1404 struct ipw_priv *priv = dev_get_drvdata(d);
1405 if (rtap_iface)
1406 return sprintf(buf, "%s", priv->prom_net_dev->name);
1407 else {
1408 buf[0] = '-';
1409 buf[1] = '1';
1410 buf[2] = '\0';
1411 return 3;
1412 }
1413 }
1414
1415 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1416 store_rtap_iface);
1417
1418 static ssize_t store_rtap_filter(struct device *d,
1419 struct device_attribute *attr,
1420 const char *buf, size_t count)
1421 {
1422 struct ipw_priv *priv = dev_get_drvdata(d);
1423
1424 if (!priv->prom_priv) {
1425 IPW_ERROR("Attempting to set filter without "
1426 "rtap_iface enabled.\n");
1427 return -EPERM;
1428 }
1429
1430 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1431
1432 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1433 BIT_ARG16(priv->prom_priv->filter));
1434
1435 return count;
1436 }
1437
1438 static ssize_t show_rtap_filter(struct device *d,
1439 struct device_attribute *attr,
1440 char *buf)
1441 {
1442 struct ipw_priv *priv = dev_get_drvdata(d);
1443 return sprintf(buf, "0x%04X",
1444 priv->prom_priv ? priv->prom_priv->filter : 0);
1445 }
1446
1447 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1448 store_rtap_filter);
1449 #endif
1450
1451 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1452 char *buf)
1453 {
1454 struct ipw_priv *priv = dev_get_drvdata(d);
1455 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1456 }
1457
1458 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1459 const char *buf, size_t count)
1460 {
1461 struct ipw_priv *priv = dev_get_drvdata(d);
1462 struct net_device *dev = priv->net_dev;
1463 char buffer[] = "00000000";
1464 unsigned long len =
1465 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1466 unsigned long val;
1467 char *p = buffer;
1468
1469 IPW_DEBUG_INFO("enter\n");
1470
1471 strncpy(buffer, buf, len);
1472 buffer[len] = 0;
1473
1474 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1475 p++;
1476 if (p[0] == 'x' || p[0] == 'X')
1477 p++;
1478 val = simple_strtoul(p, &p, 16);
1479 } else
1480 val = simple_strtoul(p, &p, 10);
1481 if (p == buffer) {
1482 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1483 } else {
1484 priv->ieee->scan_age = val;
1485 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1486 }
1487
1488 IPW_DEBUG_INFO("exit\n");
1489 return len;
1490 }
1491
1492 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1493
1494 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1495 char *buf)
1496 {
1497 struct ipw_priv *priv = dev_get_drvdata(d);
1498 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1499 }
1500
1501 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1502 const char *buf, size_t count)
1503 {
1504 struct ipw_priv *priv = dev_get_drvdata(d);
1505
1506 IPW_DEBUG_INFO("enter\n");
1507
1508 if (count == 0)
1509 return 0;
1510
1511 if (*buf == 0) {
1512 IPW_DEBUG_LED("Disabling LED control.\n");
1513 priv->config |= CFG_NO_LED;
1514 ipw_led_shutdown(priv);
1515 } else {
1516 IPW_DEBUG_LED("Enabling LED control.\n");
1517 priv->config &= ~CFG_NO_LED;
1518 ipw_led_init(priv);
1519 }
1520
1521 IPW_DEBUG_INFO("exit\n");
1522 return count;
1523 }
1524
1525 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1526
1527 static ssize_t show_status(struct device *d,
1528 struct device_attribute *attr, char *buf)
1529 {
1530 struct ipw_priv *p = d->driver_data;
1531 return sprintf(buf, "0x%08x\n", (int)p->status);
1532 }
1533
1534 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1535
1536 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1537 char *buf)
1538 {
1539 struct ipw_priv *p = d->driver_data;
1540 return sprintf(buf, "0x%08x\n", (int)p->config);
1541 }
1542
1543 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1544
1545 static ssize_t show_nic_type(struct device *d,
1546 struct device_attribute *attr, char *buf)
1547 {
1548 struct ipw_priv *priv = d->driver_data;
1549 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1550 }
1551
1552 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1553
1554 static ssize_t show_ucode_version(struct device *d,
1555 struct device_attribute *attr, char *buf)
1556 {
1557 u32 len = sizeof(u32), tmp = 0;
1558 struct ipw_priv *p = d->driver_data;
1559
1560 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1561 return 0;
1562
1563 return sprintf(buf, "0x%08x\n", tmp);
1564 }
1565
1566 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1567
1568 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1569 char *buf)
1570 {
1571 u32 len = sizeof(u32), tmp = 0;
1572 struct ipw_priv *p = d->driver_data;
1573
1574 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1575 return 0;
1576
1577 return sprintf(buf, "0x%08x\n", tmp);
1578 }
1579
1580 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1581
1582 /*
1583 * Add a device attribute to view/control the delay between eeprom
1584 * operations.
1585 */
1586 static ssize_t show_eeprom_delay(struct device *d,
1587 struct device_attribute *attr, char *buf)
1588 {
1589 int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1590 return sprintf(buf, "%i\n", n);
1591 }
1592 static ssize_t store_eeprom_delay(struct device *d,
1593 struct device_attribute *attr,
1594 const char *buf, size_t count)
1595 {
1596 struct ipw_priv *p = d->driver_data;
1597 sscanf(buf, "%i", &p->eeprom_delay);
1598 return strnlen(buf, count);
1599 }
1600
1601 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1602 show_eeprom_delay, store_eeprom_delay);
1603
1604 static ssize_t show_command_event_reg(struct device *d,
1605 struct device_attribute *attr, char *buf)
1606 {
1607 u32 reg = 0;
1608 struct ipw_priv *p = d->driver_data;
1609
1610 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1611 return sprintf(buf, "0x%08x\n", reg);
1612 }
1613 static ssize_t store_command_event_reg(struct device *d,
1614 struct device_attribute *attr,
1615 const char *buf, size_t count)
1616 {
1617 u32 reg;
1618 struct ipw_priv *p = d->driver_data;
1619
1620 sscanf(buf, "%x", &reg);
1621 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1622 return strnlen(buf, count);
1623 }
1624
1625 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1626 show_command_event_reg, store_command_event_reg);
1627
1628 static ssize_t show_mem_gpio_reg(struct device *d,
1629 struct device_attribute *attr, char *buf)
1630 {
1631 u32 reg = 0;
1632 struct ipw_priv *p = d->driver_data;
1633
1634 reg = ipw_read_reg32(p, 0x301100);
1635 return sprintf(buf, "0x%08x\n", reg);
1636 }
1637 static ssize_t store_mem_gpio_reg(struct device *d,
1638 struct device_attribute *attr,
1639 const char *buf, size_t count)
1640 {
1641 u32 reg;
1642 struct ipw_priv *p = d->driver_data;
1643
1644 sscanf(buf, "%x", &reg);
1645 ipw_write_reg32(p, 0x301100, reg);
1646 return strnlen(buf, count);
1647 }
1648
1649 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1650 show_mem_gpio_reg, store_mem_gpio_reg);
1651
1652 static ssize_t show_indirect_dword(struct device *d,
1653 struct device_attribute *attr, char *buf)
1654 {
1655 u32 reg = 0;
1656 struct ipw_priv *priv = d->driver_data;
1657
1658 if (priv->status & STATUS_INDIRECT_DWORD)
1659 reg = ipw_read_reg32(priv, priv->indirect_dword);
1660 else
1661 reg = 0;
1662
1663 return sprintf(buf, "0x%08x\n", reg);
1664 }
1665 static ssize_t store_indirect_dword(struct device *d,
1666 struct device_attribute *attr,
1667 const char *buf, size_t count)
1668 {
1669 struct ipw_priv *priv = d->driver_data;
1670
1671 sscanf(buf, "%x", &priv->indirect_dword);
1672 priv->status |= STATUS_INDIRECT_DWORD;
1673 return strnlen(buf, count);
1674 }
1675
1676 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1677 show_indirect_dword, store_indirect_dword);
1678
1679 static ssize_t show_indirect_byte(struct device *d,
1680 struct device_attribute *attr, char *buf)
1681 {
1682 u8 reg = 0;
1683 struct ipw_priv *priv = d->driver_data;
1684
1685 if (priv->status & STATUS_INDIRECT_BYTE)
1686 reg = ipw_read_reg8(priv, priv->indirect_byte);
1687 else
1688 reg = 0;
1689
1690 return sprintf(buf, "0x%02x\n", reg);
1691 }
1692 static ssize_t store_indirect_byte(struct device *d,
1693 struct device_attribute *attr,
1694 const char *buf, size_t count)
1695 {
1696 struct ipw_priv *priv = d->driver_data;
1697
1698 sscanf(buf, "%x", &priv->indirect_byte);
1699 priv->status |= STATUS_INDIRECT_BYTE;
1700 return strnlen(buf, count);
1701 }
1702
1703 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1704 show_indirect_byte, store_indirect_byte);
1705
1706 static ssize_t show_direct_dword(struct device *d,
1707 struct device_attribute *attr, char *buf)
1708 {
1709 u32 reg = 0;
1710 struct ipw_priv *priv = d->driver_data;
1711
1712 if (priv->status & STATUS_DIRECT_DWORD)
1713 reg = ipw_read32(priv, priv->direct_dword);
1714 else
1715 reg = 0;
1716
1717 return sprintf(buf, "0x%08x\n", reg);
1718 }
1719 static ssize_t store_direct_dword(struct device *d,
1720 struct device_attribute *attr,
1721 const char *buf, size_t count)
1722 {
1723 struct ipw_priv *priv = d->driver_data;
1724
1725 sscanf(buf, "%x", &priv->direct_dword);
1726 priv->status |= STATUS_DIRECT_DWORD;
1727 return strnlen(buf, count);
1728 }
1729
1730 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1731 show_direct_dword, store_direct_dword);
1732
1733 static int rf_kill_active(struct ipw_priv *priv)
1734 {
1735 if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1736 priv->status |= STATUS_RF_KILL_HW;
1737 else
1738 priv->status &= ~STATUS_RF_KILL_HW;
1739
1740 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1741 }
1742
1743 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1744 char *buf)
1745 {
1746 /* 0 - RF kill not enabled
1747 1 - SW based RF kill active (sysfs)
1748 2 - HW based RF kill active
1749 3 - Both HW and SW baed RF kill active */
1750 struct ipw_priv *priv = d->driver_data;
1751 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1752 (rf_kill_active(priv) ? 0x2 : 0x0);
1753 return sprintf(buf, "%i\n", val);
1754 }
1755
1756 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1757 {
1758 if ((disable_radio ? 1 : 0) ==
1759 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1760 return 0;
1761
1762 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1763 disable_radio ? "OFF" : "ON");
1764
1765 if (disable_radio) {
1766 priv->status |= STATUS_RF_KILL_SW;
1767
1768 if (priv->workqueue) {
1769 cancel_delayed_work(&priv->request_scan);
1770 cancel_delayed_work(&priv->request_direct_scan);
1771 cancel_delayed_work(&priv->request_passive_scan);
1772 cancel_delayed_work(&priv->scan_event);
1773 }
1774 queue_work(priv->workqueue, &priv->down);
1775 } else {
1776 priv->status &= ~STATUS_RF_KILL_SW;
1777 if (rf_kill_active(priv)) {
1778 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1779 "disabled by HW switch\n");
1780 /* Make sure the RF_KILL check timer is running */
1781 cancel_delayed_work(&priv->rf_kill);
1782 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1783 round_jiffies_relative(2 * HZ));
1784 } else
1785 queue_work(priv->workqueue, &priv->up);
1786 }
1787
1788 return 1;
1789 }
1790
1791 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1792 const char *buf, size_t count)
1793 {
1794 struct ipw_priv *priv = d->driver_data;
1795
1796 ipw_radio_kill_sw(priv, buf[0] == '1');
1797
1798 return count;
1799 }
1800
1801 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1802
1803 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1804 char *buf)
1805 {
1806 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1807 int pos = 0, len = 0;
1808 if (priv->config & CFG_SPEED_SCAN) {
1809 while (priv->speed_scan[pos] != 0)
1810 len += sprintf(&buf[len], "%d ",
1811 priv->speed_scan[pos++]);
1812 return len + sprintf(&buf[len], "\n");
1813 }
1814
1815 return sprintf(buf, "0\n");
1816 }
1817
1818 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1819 const char *buf, size_t count)
1820 {
1821 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1822 int channel, pos = 0;
1823 const char *p = buf;
1824
1825 /* list of space separated channels to scan, optionally ending with 0 */
1826 while ((channel = simple_strtol(p, NULL, 0))) {
1827 if (pos == MAX_SPEED_SCAN - 1) {
1828 priv->speed_scan[pos] = 0;
1829 break;
1830 }
1831
1832 if (ieee80211_is_valid_channel(priv->ieee, channel))
1833 priv->speed_scan[pos++] = channel;
1834 else
1835 IPW_WARNING("Skipping invalid channel request: %d\n",
1836 channel);
1837 p = strchr(p, ' ');
1838 if (!p)
1839 break;
1840 while (*p == ' ' || *p == '\t')
1841 p++;
1842 }
1843
1844 if (pos == 0)
1845 priv->config &= ~CFG_SPEED_SCAN;
1846 else {
1847 priv->speed_scan_pos = 0;
1848 priv->config |= CFG_SPEED_SCAN;
1849 }
1850
1851 return count;
1852 }
1853
1854 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1855 store_speed_scan);
1856
1857 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1858 char *buf)
1859 {
1860 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1861 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1862 }
1863
1864 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1865 const char *buf, size_t count)
1866 {
1867 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1868 if (buf[0] == '1')
1869 priv->config |= CFG_NET_STATS;
1870 else
1871 priv->config &= ~CFG_NET_STATS;
1872
1873 return count;
1874 }
1875
1876 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1877 show_net_stats, store_net_stats);
1878
1879 static ssize_t show_channels(struct device *d,
1880 struct device_attribute *attr,
1881 char *buf)
1882 {
1883 struct ipw_priv *priv = dev_get_drvdata(d);
1884 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1885 int len = 0, i;
1886
1887 len = sprintf(&buf[len],
1888 "Displaying %d channels in 2.4Ghz band "
1889 "(802.11bg):\n", geo->bg_channels);
1890
1891 for (i = 0; i < geo->bg_channels; i++) {
1892 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1893 geo->bg[i].channel,
1894 geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1895 " (radar spectrum)" : "",
1896 ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1897 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1898 ? "" : ", IBSS",
1899 geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1900 "passive only" : "active/passive",
1901 geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1902 "B" : "B/G");
1903 }
1904
1905 len += sprintf(&buf[len],
1906 "Displaying %d channels in 5.2Ghz band "
1907 "(802.11a):\n", geo->a_channels);
1908 for (i = 0; i < geo->a_channels; i++) {
1909 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1910 geo->a[i].channel,
1911 geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1912 " (radar spectrum)" : "",
1913 ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1914 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1915 ? "" : ", IBSS",
1916 geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1917 "passive only" : "active/passive");
1918 }
1919
1920 return len;
1921 }
1922
1923 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1924
1925 static void notify_wx_assoc_event(struct ipw_priv *priv)
1926 {
1927 union iwreq_data wrqu;
1928 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1929 if (priv->status & STATUS_ASSOCIATED)
1930 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1931 else
1932 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1933 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1934 }
1935
1936 static void ipw_irq_tasklet(struct ipw_priv *priv)
1937 {
1938 u32 inta, inta_mask, handled = 0;
1939 unsigned long flags;
1940 int rc = 0;
1941
1942 spin_lock_irqsave(&priv->irq_lock, flags);
1943
1944 inta = ipw_read32(priv, IPW_INTA_RW);
1945 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1946 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1947
1948 /* Add any cached INTA values that need to be handled */
1949 inta |= priv->isr_inta;
1950
1951 spin_unlock_irqrestore(&priv->irq_lock, flags);
1952
1953 spin_lock_irqsave(&priv->lock, flags);
1954
1955 /* handle all the justifications for the interrupt */
1956 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1957 ipw_rx(priv);
1958 handled |= IPW_INTA_BIT_RX_TRANSFER;
1959 }
1960
1961 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1962 IPW_DEBUG_HC("Command completed.\n");
1963 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1964 priv->status &= ~STATUS_HCMD_ACTIVE;
1965 wake_up_interruptible(&priv->wait_command_queue);
1966 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1967 }
1968
1969 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1970 IPW_DEBUG_TX("TX_QUEUE_1\n");
1971 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1972 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1973 }
1974
1975 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1976 IPW_DEBUG_TX("TX_QUEUE_2\n");
1977 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1978 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1979 }
1980
1981 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1982 IPW_DEBUG_TX("TX_QUEUE_3\n");
1983 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1984 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1985 }
1986
1987 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1988 IPW_DEBUG_TX("TX_QUEUE_4\n");
1989 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1990 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1991 }
1992
1993 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1994 IPW_WARNING("STATUS_CHANGE\n");
1995 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1996 }
1997
1998 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1999 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2000 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2001 }
2002
2003 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2004 IPW_WARNING("HOST_CMD_DONE\n");
2005 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2006 }
2007
2008 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2009 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2010 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2011 }
2012
2013 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2014 IPW_WARNING("PHY_OFF_DONE\n");
2015 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2016 }
2017
2018 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2019 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2020 priv->status |= STATUS_RF_KILL_HW;
2021 wake_up_interruptible(&priv->wait_command_queue);
2022 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2023 cancel_delayed_work(&priv->request_scan);
2024 cancel_delayed_work(&priv->request_direct_scan);
2025 cancel_delayed_work(&priv->request_passive_scan);
2026 cancel_delayed_work(&priv->scan_event);
2027 schedule_work(&priv->link_down);
2028 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2029 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2030 }
2031
2032 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2033 IPW_WARNING("Firmware error detected. Restarting.\n");
2034 if (priv->error) {
2035 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2036 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2037 struct ipw_fw_error *error =
2038 ipw_alloc_error_log(priv);
2039 ipw_dump_error_log(priv, error);
2040 kfree(error);
2041 }
2042 } else {
2043 priv->error = ipw_alloc_error_log(priv);
2044 if (priv->error)
2045 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2046 else
2047 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2048 "log.\n");
2049 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2050 ipw_dump_error_log(priv, priv->error);
2051 }
2052
2053 /* XXX: If hardware encryption is for WPA/WPA2,
2054 * we have to notify the supplicant. */
2055 if (priv->ieee->sec.encrypt) {
2056 priv->status &= ~STATUS_ASSOCIATED;
2057 notify_wx_assoc_event(priv);
2058 }
2059
2060 /* Keep the restart process from trying to send host
2061 * commands by clearing the INIT status bit */
2062 priv->status &= ~STATUS_INIT;
2063
2064 /* Cancel currently queued command. */
2065 priv->status &= ~STATUS_HCMD_ACTIVE;
2066 wake_up_interruptible(&priv->wait_command_queue);
2067
2068 queue_work(priv->workqueue, &priv->adapter_restart);
2069 handled |= IPW_INTA_BIT_FATAL_ERROR;
2070 }
2071
2072 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2073 IPW_ERROR("Parity error\n");
2074 handled |= IPW_INTA_BIT_PARITY_ERROR;
2075 }
2076
2077 if (handled != inta) {
2078 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2079 }
2080
2081 spin_unlock_irqrestore(&priv->lock, flags);
2082
2083 /* enable all interrupts */
2084 ipw_enable_interrupts(priv);
2085 }
2086
2087 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2088 static char *get_cmd_string(u8 cmd)
2089 {
2090 switch (cmd) {
2091 IPW_CMD(HOST_COMPLETE);
2092 IPW_CMD(POWER_DOWN);
2093 IPW_CMD(SYSTEM_CONFIG);
2094 IPW_CMD(MULTICAST_ADDRESS);
2095 IPW_CMD(SSID);
2096 IPW_CMD(ADAPTER_ADDRESS);
2097 IPW_CMD(PORT_TYPE);
2098 IPW_CMD(RTS_THRESHOLD);
2099 IPW_CMD(FRAG_THRESHOLD);
2100 IPW_CMD(POWER_MODE);
2101 IPW_CMD(WEP_KEY);
2102 IPW_CMD(TGI_TX_KEY);
2103 IPW_CMD(SCAN_REQUEST);
2104 IPW_CMD(SCAN_REQUEST_EXT);
2105 IPW_CMD(ASSOCIATE);
2106 IPW_CMD(SUPPORTED_RATES);
2107 IPW_CMD(SCAN_ABORT);
2108 IPW_CMD(TX_FLUSH);
2109 IPW_CMD(QOS_PARAMETERS);
2110 IPW_CMD(DINO_CONFIG);
2111 IPW_CMD(RSN_CAPABILITIES);
2112 IPW_CMD(RX_KEY);
2113 IPW_CMD(CARD_DISABLE);
2114 IPW_CMD(SEED_NUMBER);
2115 IPW_CMD(TX_POWER);
2116 IPW_CMD(COUNTRY_INFO);
2117 IPW_CMD(AIRONET_INFO);
2118 IPW_CMD(AP_TX_POWER);
2119 IPW_CMD(CCKM_INFO);
2120 IPW_CMD(CCX_VER_INFO);
2121 IPW_CMD(SET_CALIBRATION);
2122 IPW_CMD(SENSITIVITY_CALIB);
2123 IPW_CMD(RETRY_LIMIT);
2124 IPW_CMD(IPW_PRE_POWER_DOWN);
2125 IPW_CMD(VAP_BEACON_TEMPLATE);
2126 IPW_CMD(VAP_DTIM_PERIOD);
2127 IPW_CMD(EXT_SUPPORTED_RATES);
2128 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2129 IPW_CMD(VAP_QUIET_INTERVALS);
2130 IPW_CMD(VAP_CHANNEL_SWITCH);
2131 IPW_CMD(VAP_MANDATORY_CHANNELS);
2132 IPW_CMD(VAP_CELL_PWR_LIMIT);
2133 IPW_CMD(VAP_CF_PARAM_SET);
2134 IPW_CMD(VAP_SET_BEACONING_STATE);
2135 IPW_CMD(MEASUREMENT);
2136 IPW_CMD(POWER_CAPABILITY);
2137 IPW_CMD(SUPPORTED_CHANNELS);
2138 IPW_CMD(TPC_REPORT);
2139 IPW_CMD(WME_INFO);
2140 IPW_CMD(PRODUCTION_COMMAND);
2141 default:
2142 return "UNKNOWN";
2143 }
2144 }
2145
2146 #define HOST_COMPLETE_TIMEOUT HZ
2147
2148 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2149 {
2150 int rc = 0;
2151 unsigned long flags;
2152
2153 spin_lock_irqsave(&priv->lock, flags);
2154 if (priv->status & STATUS_HCMD_ACTIVE) {
2155 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2156 get_cmd_string(cmd->cmd));
2157 spin_unlock_irqrestore(&priv->lock, flags);
2158 return -EAGAIN;
2159 }
2160
2161 priv->status |= STATUS_HCMD_ACTIVE;
2162
2163 if (priv->cmdlog) {
2164 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2165 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2166 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2167 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2168 cmd->len);
2169 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2170 }
2171
2172 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2173 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2174 priv->status);
2175
2176 #ifndef DEBUG_CMD_WEP_KEY
2177 if (cmd->cmd == IPW_CMD_WEP_KEY)
2178 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2179 else
2180 #endif
2181 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2182
2183 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2184 if (rc) {
2185 priv->status &= ~STATUS_HCMD_ACTIVE;
2186 IPW_ERROR("Failed to send %s: Reason %d\n",
2187 get_cmd_string(cmd->cmd), rc);
2188 spin_unlock_irqrestore(&priv->lock, flags);
2189 goto exit;
2190 }
2191 spin_unlock_irqrestore(&priv->lock, flags);
2192
2193 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2194 !(priv->
2195 status & STATUS_HCMD_ACTIVE),
2196 HOST_COMPLETE_TIMEOUT);
2197 if (rc == 0) {
2198 spin_lock_irqsave(&priv->lock, flags);
2199 if (priv->status & STATUS_HCMD_ACTIVE) {
2200 IPW_ERROR("Failed to send %s: Command timed out.\n",
2201 get_cmd_string(cmd->cmd));
2202 priv->status &= ~STATUS_HCMD_ACTIVE;
2203 spin_unlock_irqrestore(&priv->lock, flags);
2204 rc = -EIO;
2205 goto exit;
2206 }
2207 spin_unlock_irqrestore(&priv->lock, flags);
2208 } else
2209 rc = 0;
2210
2211 if (priv->status & STATUS_RF_KILL_HW) {
2212 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2213 get_cmd_string(cmd->cmd));
2214 rc = -EIO;
2215 goto exit;
2216 }
2217
2218 exit:
2219 if (priv->cmdlog) {
2220 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2221 priv->cmdlog_pos %= priv->cmdlog_len;
2222 }
2223 return rc;
2224 }
2225
2226 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2227 {
2228 struct host_cmd cmd = {
2229 .cmd = command,
2230 };
2231
2232 return __ipw_send_cmd(priv, &cmd);
2233 }
2234
2235 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2236 void *data)
2237 {
2238 struct host_cmd cmd = {
2239 .cmd = command,
2240 .len = len,
2241 .param = data,
2242 };
2243
2244 return __ipw_send_cmd(priv, &cmd);
2245 }
2246
2247 static int ipw_send_host_complete(struct ipw_priv *priv)
2248 {
2249 if (!priv) {
2250 IPW_ERROR("Invalid args\n");
2251 return -1;
2252 }
2253
2254 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2255 }
2256
2257 static int ipw_send_system_config(struct ipw_priv *priv)
2258 {
2259 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2260 sizeof(priv->sys_config),
2261 &priv->sys_config);
2262 }
2263
2264 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2265 {
2266 if (!priv || !ssid) {
2267 IPW_ERROR("Invalid args\n");
2268 return -1;
2269 }
2270
2271 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2272 ssid);
2273 }
2274
2275 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2276 {
2277 if (!priv || !mac) {
2278 IPW_ERROR("Invalid args\n");
2279 return -1;
2280 }
2281
2282 IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2283 priv->net_dev->name, mac);
2284
2285 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2286 }
2287
2288 /*
2289 * NOTE: This must be executed from our workqueue as it results in udelay
2290 * being called which may corrupt the keyboard if executed on default
2291 * workqueue
2292 */
2293 static void ipw_adapter_restart(void *adapter)
2294 {
2295 struct ipw_priv *priv = adapter;
2296
2297 if (priv->status & STATUS_RF_KILL_MASK)
2298 return;
2299
2300 ipw_down(priv);
2301
2302 if (priv->assoc_network &&
2303 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2304 ipw_remove_current_network(priv);
2305
2306 if (ipw_up(priv)) {
2307 IPW_ERROR("Failed to up device\n");
2308 return;
2309 }
2310 }
2311
2312 static void ipw_bg_adapter_restart(struct work_struct *work)
2313 {
2314 struct ipw_priv *priv =
2315 container_of(work, struct ipw_priv, adapter_restart);
2316 mutex_lock(&priv->mutex);
2317 ipw_adapter_restart(priv);
2318 mutex_unlock(&priv->mutex);
2319 }
2320
2321 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2322
2323 static void ipw_scan_check(void *data)
2324 {
2325 struct ipw_priv *priv = data;
2326 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2327 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2328 "adapter after (%dms).\n",
2329 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2330 queue_work(priv->workqueue, &priv->adapter_restart);
2331 }
2332 }
2333
2334 static void ipw_bg_scan_check(struct work_struct *work)
2335 {
2336 struct ipw_priv *priv =
2337 container_of(work, struct ipw_priv, scan_check.work);
2338 mutex_lock(&priv->mutex);
2339 ipw_scan_check(priv);
2340 mutex_unlock(&priv->mutex);
2341 }
2342
2343 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2344 struct ipw_scan_request_ext *request)
2345 {
2346 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2347 sizeof(*request), request);
2348 }
2349
2350 static int ipw_send_scan_abort(struct ipw_priv *priv)
2351 {
2352 if (!priv) {
2353 IPW_ERROR("Invalid args\n");
2354 return -1;
2355 }
2356
2357 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2358 }
2359
2360 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2361 {
2362 struct ipw_sensitivity_calib calib = {
2363 .beacon_rssi_raw = cpu_to_le16(sens),
2364 };
2365
2366 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2367 &calib);
2368 }
2369
2370 static int ipw_send_associate(struct ipw_priv *priv,
2371 struct ipw_associate *associate)
2372 {
2373 if (!priv || !associate) {
2374 IPW_ERROR("Invalid args\n");
2375 return -1;
2376 }
2377
2378 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2379 associate);
2380 }
2381
2382 static int ipw_send_supported_rates(struct ipw_priv *priv,
2383 struct ipw_supported_rates *rates)
2384 {
2385 if (!priv || !rates) {
2386 IPW_ERROR("Invalid args\n");
2387 return -1;
2388 }
2389
2390 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2391 rates);
2392 }
2393
2394 static int ipw_set_random_seed(struct ipw_priv *priv)
2395 {
2396 u32 val;
2397
2398 if (!priv) {
2399 IPW_ERROR("Invalid args\n");
2400 return -1;
2401 }
2402
2403 get_random_bytes(&val, sizeof(val));
2404
2405 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2406 }
2407
2408 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2409 {
2410 __le32 v = cpu_to_le32(phy_off);
2411 if (!priv) {
2412 IPW_ERROR("Invalid args\n");
2413 return -1;
2414 }
2415
2416 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2417 }
2418
2419 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2420 {
2421 if (!priv || !power) {
2422 IPW_ERROR("Invalid args\n");
2423 return -1;
2424 }
2425
2426 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2427 }
2428
2429 static int ipw_set_tx_power(struct ipw_priv *priv)
2430 {
2431 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2432 struct ipw_tx_power tx_power;
2433 s8 max_power;
2434 int i;
2435
2436 memset(&tx_power, 0, sizeof(tx_power));
2437
2438 /* configure device for 'G' band */
2439 tx_power.ieee_mode = IPW_G_MODE;
2440 tx_power.num_channels = geo->bg_channels;
2441 for (i = 0; i < geo->bg_channels; i++) {
2442 max_power = geo->bg[i].max_power;
2443 tx_power.channels_tx_power[i].channel_number =
2444 geo->bg[i].channel;
2445 tx_power.channels_tx_power[i].tx_power = max_power ?
2446 min(max_power, priv->tx_power) : priv->tx_power;
2447 }
2448 if (ipw_send_tx_power(priv, &tx_power))
2449 return -EIO;
2450
2451 /* configure device to also handle 'B' band */
2452 tx_power.ieee_mode = IPW_B_MODE;
2453 if (ipw_send_tx_power(priv, &tx_power))
2454 return -EIO;
2455
2456 /* configure device to also handle 'A' band */
2457 if (priv->ieee->abg_true) {
2458 tx_power.ieee_mode = IPW_A_MODE;
2459 tx_power.num_channels = geo->a_channels;
2460 for (i = 0; i < tx_power.num_channels; i++) {
2461 max_power = geo->a[i].max_power;
2462 tx_power.channels_tx_power[i].channel_number =
2463 geo->a[i].channel;
2464 tx_power.channels_tx_power[i].tx_power = max_power ?
2465 min(max_power, priv->tx_power) : priv->tx_power;
2466 }
2467 if (ipw_send_tx_power(priv, &tx_power))
2468 return -EIO;
2469 }
2470 return 0;
2471 }
2472
2473 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2474 {
2475 struct ipw_rts_threshold rts_threshold = {
2476 .rts_threshold = cpu_to_le16(rts),
2477 };
2478
2479 if (!priv) {
2480 IPW_ERROR("Invalid args\n");
2481 return -1;
2482 }
2483
2484 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2485 sizeof(rts_threshold), &rts_threshold);
2486 }
2487
2488 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2489 {
2490 struct ipw_frag_threshold frag_threshold = {
2491 .frag_threshold = cpu_to_le16(frag),
2492 };
2493
2494 if (!priv) {
2495 IPW_ERROR("Invalid args\n");
2496 return -1;
2497 }
2498
2499 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2500 sizeof(frag_threshold), &frag_threshold);
2501 }
2502
2503 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2504 {
2505 __le32 param;
2506
2507 if (!priv) {
2508 IPW_ERROR("Invalid args\n");
2509 return -1;
2510 }
2511
2512 /* If on battery, set to 3, if AC set to CAM, else user
2513 * level */
2514 switch (mode) {
2515 case IPW_POWER_BATTERY:
2516 param = cpu_to_le32(IPW_POWER_INDEX_3);
2517 break;
2518 case IPW_POWER_AC:
2519 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2520 break;
2521 default:
2522 param = cpu_to_le32(mode);
2523 break;
2524 }
2525
2526 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2527 &param);
2528 }
2529
2530 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2531 {
2532 struct ipw_retry_limit retry_limit = {
2533 .short_retry_limit = slimit,
2534 .long_retry_limit = llimit
2535 };
2536
2537 if (!priv) {
2538 IPW_ERROR("Invalid args\n");
2539 return -1;
2540 }
2541
2542 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2543 &retry_limit);
2544 }
2545
2546 /*
2547 * The IPW device contains a Microwire compatible EEPROM that stores
2548 * various data like the MAC address. Usually the firmware has exclusive
2549 * access to the eeprom, but during device initialization (before the
2550 * device driver has sent the HostComplete command to the firmware) the
2551 * device driver has read access to the EEPROM by way of indirect addressing
2552 * through a couple of memory mapped registers.
2553 *
2554 * The following is a simplified implementation for pulling data out of the
2555 * the eeprom, along with some helper functions to find information in
2556 * the per device private data's copy of the eeprom.
2557 *
2558 * NOTE: To better understand how these functions work (i.e what is a chip
2559 * select and why do have to keep driving the eeprom clock?), read
2560 * just about any data sheet for a Microwire compatible EEPROM.
2561 */
2562
2563 /* write a 32 bit value into the indirect accessor register */
2564 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2565 {
2566 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2567
2568 /* the eeprom requires some time to complete the operation */
2569 udelay(p->eeprom_delay);
2570
2571 return;
2572 }
2573
2574 /* perform a chip select operation */
2575 static void eeprom_cs(struct ipw_priv *priv)
2576 {
2577 eeprom_write_reg(priv, 0);
2578 eeprom_write_reg(priv, EEPROM_BIT_CS);
2579 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2580 eeprom_write_reg(priv, EEPROM_BIT_CS);
2581 }
2582
2583 /* perform a chip select operation */
2584 static void eeprom_disable_cs(struct ipw_priv *priv)
2585 {
2586 eeprom_write_reg(priv, EEPROM_BIT_CS);
2587 eeprom_write_reg(priv, 0);
2588 eeprom_write_reg(priv, EEPROM_BIT_SK);
2589 }
2590
2591 /* push a single bit down to the eeprom */
2592 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2593 {
2594 int d = (bit ? EEPROM_BIT_DI : 0);
2595 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2596 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2597 }
2598
2599 /* push an opcode followed by an address down to the eeprom */
2600 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2601 {
2602 int i;
2603
2604 eeprom_cs(priv);
2605 eeprom_write_bit(priv, 1);
2606 eeprom_write_bit(priv, op & 2);
2607 eeprom_write_bit(priv, op & 1);
2608 for (i = 7; i >= 0; i--) {
2609 eeprom_write_bit(priv, addr & (1 << i));
2610 }
2611 }
2612
2613 /* pull 16 bits off the eeprom, one bit at a time */
2614 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2615 {
2616 int i;
2617 u16 r = 0;
2618
2619 /* Send READ Opcode */
2620 eeprom_op(priv, EEPROM_CMD_READ, addr);
2621
2622 /* Send dummy bit */
2623 eeprom_write_reg(priv, EEPROM_BIT_CS);
2624
2625 /* Read the byte off the eeprom one bit at a time */
2626 for (i = 0; i < 16; i++) {
2627 u32 data = 0;
2628 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2629 eeprom_write_reg(priv, EEPROM_BIT_CS);
2630 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2631 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2632 }
2633
2634 /* Send another dummy bit */
2635 eeprom_write_reg(priv, 0);
2636 eeprom_disable_cs(priv);
2637
2638 return r;
2639 }
2640
2641 /* helper function for pulling the mac address out of the private */
2642 /* data's copy of the eeprom data */
2643 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2644 {
2645 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2646 }
2647
2648 /*
2649 * Either the device driver (i.e. the host) or the firmware can
2650 * load eeprom data into the designated region in SRAM. If neither
2651 * happens then the FW will shutdown with a fatal error.
2652 *
2653 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2654 * bit needs region of shared SRAM needs to be non-zero.
2655 */
2656 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2657 {
2658 int i;
2659 __le16 *eeprom = (__le16 *) priv->eeprom;
2660
2661 IPW_DEBUG_TRACE(">>\n");
2662
2663 /* read entire contents of eeprom into private buffer */
2664 for (i = 0; i < 128; i++)
2665 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2666
2667 /*
2668 If the data looks correct, then copy it to our private
2669 copy. Otherwise let the firmware know to perform the operation
2670 on its own.
2671 */
2672 if (priv->eeprom[EEPROM_VERSION] != 0) {
2673 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2674
2675 /* write the eeprom data to sram */
2676 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2677 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2678
2679 /* Do not load eeprom data on fatal error or suspend */
2680 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2681 } else {
2682 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2683
2684 /* Load eeprom data on fatal error or suspend */
2685 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2686 }
2687
2688 IPW_DEBUG_TRACE("<<\n");
2689 }
2690
2691 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2692 {
2693 count >>= 2;
2694 if (!count)
2695 return;
2696 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2697 while (count--)
2698 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2699 }
2700
2701 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2702 {
2703 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2704 CB_NUMBER_OF_ELEMENTS_SMALL *
2705 sizeof(struct command_block));
2706 }
2707
2708 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2709 { /* start dma engine but no transfers yet */
2710
2711 IPW_DEBUG_FW(">> : \n");
2712
2713 /* Start the dma */
2714 ipw_fw_dma_reset_command_blocks(priv);
2715
2716 /* Write CB base address */
2717 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2718
2719 IPW_DEBUG_FW("<< : \n");
2720 return 0;
2721 }
2722
2723 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2724 {
2725 u32 control = 0;
2726
2727 IPW_DEBUG_FW(">> :\n");
2728
2729 /* set the Stop and Abort bit */
2730 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2731 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2732 priv->sram_desc.last_cb_index = 0;
2733
2734 IPW_DEBUG_FW("<< \n");
2735 }
2736
2737 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2738 struct command_block *cb)
2739 {
2740 u32 address =
2741 IPW_SHARED_SRAM_DMA_CONTROL +
2742 (sizeof(struct command_block) * index);
2743 IPW_DEBUG_FW(">> :\n");
2744
2745 ipw_write_indirect(priv, address, (u8 *) cb,
2746 (int)sizeof(struct command_block));
2747
2748 IPW_DEBUG_FW("<< :\n");
2749 return 0;
2750
2751 }
2752
2753 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2754 {
2755 u32 control = 0;
2756 u32 index = 0;
2757
2758 IPW_DEBUG_FW(">> :\n");
2759
2760 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2761 ipw_fw_dma_write_command_block(priv, index,
2762 &priv->sram_desc.cb_list[index]);
2763
2764 /* Enable the DMA in the CSR register */
2765 ipw_clear_bit(priv, IPW_RESET_REG,
2766 IPW_RESET_REG_MASTER_DISABLED |
2767 IPW_RESET_REG_STOP_MASTER);
2768
2769 /* Set the Start bit. */
2770 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2771 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2772
2773 IPW_DEBUG_FW("<< :\n");
2774 return 0;
2775 }
2776
2777 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2778 {
2779 u32 address;
2780 u32 register_value = 0;
2781 u32 cb_fields_address = 0;
2782
2783 IPW_DEBUG_FW(">> :\n");
2784 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2785 IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2786
2787 /* Read the DMA Controlor register */
2788 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2789 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2790
2791 /* Print the CB values */
2792 cb_fields_address = address;
2793 register_value = ipw_read_reg32(priv, cb_fields_address);
2794 IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2795
2796 cb_fields_address += sizeof(u32);
2797 register_value = ipw_read_reg32(priv, cb_fields_address);
2798 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2799
2800 cb_fields_address += sizeof(u32);
2801 register_value = ipw_read_reg32(priv, cb_fields_address);
2802 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2803 register_value);
2804
2805 cb_fields_address += sizeof(u32);
2806 register_value = ipw_read_reg32(priv, cb_fields_address);
2807 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2808
2809 IPW_DEBUG_FW(">> :\n");
2810 }
2811
2812 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2813 {
2814 u32 current_cb_address = 0;
2815 u32 current_cb_index = 0;
2816
2817 IPW_DEBUG_FW("<< :\n");
2818 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2819
2820 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2821 sizeof(struct command_block);
2822
2823 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2824 current_cb_index, current_cb_address);
2825
2826 IPW_DEBUG_FW(">> :\n");
2827 return current_cb_index;
2828
2829 }
2830
2831 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2832 u32 src_address,
2833 u32 dest_address,
2834 u32 length,
2835 int interrupt_enabled, int is_last)
2836 {
2837
2838 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2839 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2840 CB_DEST_SIZE_LONG;
2841 struct command_block *cb;
2842 u32 last_cb_element = 0;
2843
2844 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2845 src_address, dest_address, length);
2846
2847 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2848 return -1;
2849
2850 last_cb_element = priv->sram_desc.last_cb_index;
2851 cb = &priv->sram_desc.cb_list[last_cb_element];
2852 priv->sram_desc.last_cb_index++;
2853
2854 /* Calculate the new CB control word */
2855 if (interrupt_enabled)
2856 control |= CB_INT_ENABLED;
2857
2858 if (is_last)
2859 control |= CB_LAST_VALID;
2860
2861 control |= length;
2862
2863 /* Calculate the CB Element's checksum value */
2864 cb->status = control ^ src_address ^ dest_address;
2865
2866 /* Copy the Source and Destination addresses */
2867 cb->dest_addr = dest_address;
2868 cb->source_addr = src_address;
2869
2870 /* Copy the Control Word last */
2871 cb->control = control;
2872
2873 return 0;
2874 }
2875
2876 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2877 u32 src_phys, u32 dest_address, u32 length)
2878 {
2879 u32 bytes_left = length;
2880 u32 src_offset = 0;
2881 u32 dest_offset = 0;
2882 int status = 0;
2883 IPW_DEBUG_FW(">> \n");
2884 IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2885 src_phys, dest_address, length);
2886 while (bytes_left > CB_MAX_LENGTH) {
2887 status = ipw_fw_dma_add_command_block(priv,
2888 src_phys + src_offset,
2889 dest_address +
2890 dest_offset,
2891 CB_MAX_LENGTH, 0, 0);
2892 if (status) {
2893 IPW_DEBUG_FW_INFO(": Failed\n");
2894 return -1;
2895 } else
2896 IPW_DEBUG_FW_INFO(": Added new cb\n");
2897
2898 src_offset += CB_MAX_LENGTH;
2899 dest_offset += CB_MAX_LENGTH;
2900 bytes_left -= CB_MAX_LENGTH;
2901 }
2902
2903 /* add the buffer tail */
2904 if (bytes_left > 0) {
2905 status =
2906 ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2907 dest_address + dest_offset,
2908 bytes_left, 0, 0);
2909 if (status) {
2910 IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2911 return -1;
2912 } else
2913 IPW_DEBUG_FW_INFO
2914 (": Adding new cb - the buffer tail\n");
2915 }
2916
2917 IPW_DEBUG_FW("<< \n");
2918 return 0;
2919 }
2920
2921 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2922 {
2923 u32 current_index = 0, previous_index;
2924 u32 watchdog = 0;
2925
2926 IPW_DEBUG_FW(">> : \n");
2927
2928 current_index = ipw_fw_dma_command_block_index(priv);
2929 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2930 (int)priv->sram_desc.last_cb_index);
2931
2932 while (current_index < priv->sram_desc.last_cb_index) {
2933 udelay(50);
2934 previous_index = current_index;
2935 current_index = ipw_fw_dma_command_block_index(priv);
2936
2937 if (previous_index < current_index) {
2938 watchdog = 0;
2939 continue;
2940 }
2941 if (++watchdog > 400) {
2942 IPW_DEBUG_FW_INFO("Timeout\n");
2943 ipw_fw_dma_dump_command_block(priv);
2944 ipw_fw_dma_abort(priv);
2945 return -1;
2946 }
2947 }
2948
2949 ipw_fw_dma_abort(priv);
2950
2951 /*Disable the DMA in the CSR register */
2952 ipw_set_bit(priv, IPW_RESET_REG,
2953 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2954
2955 IPW_DEBUG_FW("<< dmaWaitSync \n");
2956 return 0;
2957 }
2958
2959 static void ipw_remove_current_network(struct ipw_priv *priv)
2960 {
2961 struct list_head *element, *safe;
2962 struct ieee80211_network *network = NULL;
2963 unsigned long flags;
2964
2965 spin_lock_irqsave(&priv->ieee->lock, flags);
2966 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2967 network = list_entry(element, struct ieee80211_network, list);
2968 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2969 list_del(element);
2970 list_add_tail(&network->list,
2971 &priv->ieee->network_free_list);
2972 }
2973 }
2974 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2975 }
2976
2977 /**
2978 * Check that card is still alive.
2979 * Reads debug register from domain0.
2980 * If card is present, pre-defined value should
2981 * be found there.
2982 *
2983 * @param priv
2984 * @return 1 if card is present, 0 otherwise
2985 */
2986 static inline int ipw_alive(struct ipw_priv *priv)
2987 {
2988 return ipw_read32(priv, 0x90) == 0xd55555d5;
2989 }
2990
2991 /* timeout in msec, attempted in 10-msec quanta */
2992 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2993 int timeout)
2994 {
2995 int i = 0;
2996
2997 do {
2998 if ((ipw_read32(priv, addr) & mask) == mask)
2999 return i;
3000 mdelay(10);
3001 i += 10;
3002 } while (i < timeout);
3003
3004 return -ETIME;
3005 }
3006
3007 /* These functions load the firmware and micro code for the operation of
3008 * the ipw hardware. It assumes the buffer has all the bits for the
3009 * image and the caller is handling the memory allocation and clean up.
3010 */
3011
3012 static int ipw_stop_master(struct ipw_priv *priv)
3013 {
3014 int rc;
3015
3016 IPW_DEBUG_TRACE(">> \n");
3017 /* stop master. typical delay - 0 */
3018 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3019
3020 /* timeout is in msec, polled in 10-msec quanta */
3021 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3022 IPW_RESET_REG_MASTER_DISABLED, 100);
3023 if (rc < 0) {
3024 IPW_ERROR("wait for stop master failed after 100ms\n");
3025 return -1;
3026 }
3027
3028 IPW_DEBUG_INFO("stop master %dms\n", rc);
3029
3030 return rc;
3031 }
3032
3033 static void ipw_arc_release(struct ipw_priv *priv)
3034 {
3035 IPW_DEBUG_TRACE(">> \n");
3036 mdelay(5);
3037
3038 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3039
3040 /* no one knows timing, for safety add some delay */
3041 mdelay(5);
3042 }
3043
3044 struct fw_chunk {
3045 __le32 address;
3046 __le32 length;
3047 };
3048
3049 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3050 {
3051 int rc = 0, i, addr;
3052 u8 cr = 0;
3053 __le16 *image;
3054
3055 image = (__le16 *) data;
3056
3057 IPW_DEBUG_TRACE(">> \n");
3058
3059 rc = ipw_stop_master(priv);
3060
3061 if (rc < 0)
3062 return rc;
3063
3064 for (addr = IPW_SHARED_LOWER_BOUND;
3065 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3066 ipw_write32(priv, addr, 0);
3067 }
3068
3069 /* no ucode (yet) */
3070 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3071 /* destroy DMA queues */
3072 /* reset sequence */
3073
3074 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3075 ipw_arc_release(priv);
3076 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3077 mdelay(1);
3078
3079 /* reset PHY */
3080 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3081 mdelay(1);
3082
3083 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3084 mdelay(1);
3085
3086 /* enable ucode store */
3087 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3088 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3089 mdelay(1);
3090
3091 /* write ucode */
3092 /**
3093 * @bug
3094 * Do NOT set indirect address register once and then
3095 * store data to indirect data register in the loop.
3096 * It seems very reasonable, but in this case DINO do not
3097 * accept ucode. It is essential to set address each time.
3098 */
3099 /* load new ipw uCode */
3100 for (i = 0; i < len / 2; i++)
3101 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3102 le16_to_cpu(image[i]));
3103
3104 /* enable DINO */
3105 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3106 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3107
3108 /* this is where the igx / win driver deveates from the VAP driver. */
3109
3110 /* wait for alive response */
3111 for (i = 0; i < 100; i++) {
3112 /* poll for incoming data */
3113 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3114 if (cr & DINO_RXFIFO_DATA)
3115 break;
3116 mdelay(1);
3117 }
3118
3119 if (cr & DINO_RXFIFO_DATA) {
3120 /* alive_command_responce size is NOT multiple of 4 */
3121 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3122
3123 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3124 response_buffer[i] =
3125 cpu_to_le32(ipw_read_reg32(priv,
3126 IPW_BASEBAND_RX_FIFO_READ));
3127 memcpy(&priv->dino_alive, response_buffer,
3128 sizeof(priv->dino_alive));
3129 if (priv->dino_alive.alive_command == 1
3130 && priv->dino_alive.ucode_valid == 1) {
3131 rc = 0;
3132 IPW_DEBUG_INFO
3133 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3134 "of %02d/%02d/%02d %02d:%02d\n",
3135 priv->dino_alive.software_revision,
3136 priv->dino_alive.software_revision,
3137 priv->dino_alive.device_identifier,
3138 priv->dino_alive.device_identifier,
3139 priv->dino_alive.time_stamp[0],
3140 priv->dino_alive.time_stamp[1],
3141 priv->dino_alive.time_stamp[2],
3142 priv->dino_alive.time_stamp[3],
3143 priv->dino_alive.time_stamp[4]);
3144 } else {
3145 IPW_DEBUG_INFO("Microcode is not alive\n");
3146 rc = -EINVAL;
3147 }
3148 } else {
3149 IPW_DEBUG_INFO("No alive response from DINO\n");
3150 rc = -ETIME;
3151 }
3152
3153 /* disable DINO, otherwise for some reason
3154 firmware have problem getting alive resp. */
3155 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3156
3157 return rc;
3158 }
3159
3160 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3161 {
3162 int rc = -1;
3163 int offset = 0;
3164 struct fw_chunk *chunk;
3165 dma_addr_t shared_phys;
3166 u8 *shared_virt;
3167
3168 IPW_DEBUG_TRACE("<< : \n");
3169 shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3170
3171 if (!shared_virt)
3172 return -ENOMEM;
3173
3174 memmove(shared_virt, data, len);
3175
3176 /* Start the Dma */
3177 rc = ipw_fw_dma_enable(priv);
3178
3179 if (priv->sram_desc.last_cb_index > 0) {
3180 /* the DMA is already ready this would be a bug. */
3181 BUG();
3182 goto out;
3183 }
3184
3185 do {
3186 chunk = (struct fw_chunk *)(data + offset);
3187 offset += sizeof(struct fw_chunk);
3188 /* build DMA packet and queue up for sending */
3189 /* dma to chunk->address, the chunk->length bytes from data +
3190 * offeset*/
3191 /* Dma loading */
3192 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3193 le32_to_cpu(chunk->address),
3194 le32_to_cpu(chunk->length));
3195 if (rc) {
3196 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3197 goto out;
3198 }
3199
3200 offset += le32_to_cpu(chunk->length);
3201 } while (offset < len);
3202
3203 /* Run the DMA and wait for the answer */
3204 rc = ipw_fw_dma_kick(priv);
3205 if (rc) {
3206 IPW_ERROR("dmaKick Failed\n");
3207 goto out;
3208 }
3209
3210 rc = ipw_fw_dma_wait(priv);
3211 if (rc) {
3212 IPW_ERROR("dmaWaitSync Failed\n");
3213 goto out;
3214 }
3215 out:
3216 pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3217 return rc;
3218 }
3219
3220 /* stop nic */
3221 static int ipw_stop_nic(struct ipw_priv *priv)
3222 {
3223 int rc = 0;
3224
3225 /* stop */
3226 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3227
3228 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3229 IPW_RESET_REG_MASTER_DISABLED, 500);
3230 if (rc < 0) {
3231 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3232 return rc;
3233 }
3234
3235 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3236
3237 return rc;
3238 }
3239
3240 static void ipw_start_nic(struct ipw_priv *priv)
3241 {
3242 IPW_DEBUG_TRACE(">>\n");
3243
3244 /* prvHwStartNic release ARC */
3245 ipw_clear_bit(priv, IPW_RESET_REG,
3246 IPW_RESET_REG_MASTER_DISABLED |
3247 IPW_RESET_REG_STOP_MASTER |
3248 CBD_RESET_REG_PRINCETON_RESET);
3249
3250 /* enable power management */
3251 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3252 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3253
3254 IPW_DEBUG_TRACE("<<\n");
3255 }
3256
3257 static int ipw_init_nic(struct ipw_priv *priv)
3258 {
3259 int rc;
3260
3261 IPW_DEBUG_TRACE(">>\n");
3262 /* reset */
3263 /*prvHwInitNic */
3264 /* set "initialization complete" bit to move adapter to D0 state */
3265 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3266
3267 /* low-level PLL activation */
3268 ipw_write32(priv, IPW_READ_INT_REGISTER,
3269 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3270
3271 /* wait for clock stabilization */
3272 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3273 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3274 if (rc < 0)
3275 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3276
3277 /* assert SW reset */
3278 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3279
3280 udelay(10);
3281
3282 /* set "initialization complete" bit to move adapter to D0 state */
3283 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3284
3285 IPW_DEBUG_TRACE(">>\n");
3286 return 0;
3287 }
3288
3289 /* Call this function from process context, it will sleep in request_firmware.
3290 * Probe is an ok place to call this from.
3291 */
3292 static int ipw_reset_nic(struct ipw_priv *priv)
3293 {
3294 int rc = 0;
3295 unsigned long flags;
3296
3297 IPW_DEBUG_TRACE(">>\n");
3298
3299 rc = ipw_init_nic(priv);
3300
3301 spin_lock_irqsave(&priv->lock, flags);
3302 /* Clear the 'host command active' bit... */
3303 priv->status &= ~STATUS_HCMD_ACTIVE;
3304 wake_up_interruptible(&priv->wait_command_queue);
3305 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3306 wake_up_interruptible(&priv->wait_state);
3307 spin_unlock_irqrestore(&priv->lock, flags);
3308
3309 IPW_DEBUG_TRACE("<<\n");
3310 return rc;
3311 }
3312
3313
3314 struct ipw_fw {
3315 __le32 ver;
3316 __le32 boot_size;
3317 __le32 ucode_size;
3318 __le32 fw_size;
3319 u8 data[0];
3320 };
3321
3322 static int ipw_get_fw(struct ipw_priv *priv,
3323 const struct firmware **raw, const char *name)
3324 {
3325 struct ipw_fw *fw;
3326 int rc;
3327
3328 /* ask firmware_class module to get the boot firmware off disk */
3329 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3330 if (rc < 0) {
3331 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3332 return rc;
3333 }
3334
3335 if ((*raw)->size < sizeof(*fw)) {
3336 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3337 return -EINVAL;
3338 }
3339
3340 fw = (void *)(*raw)->data;
3341
3342 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3343 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3344 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3345 name, (*raw)->size);
3346 return -EINVAL;
3347 }
3348
3349 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3350 name,
3351 le32_to_cpu(fw->ver) >> 16,
3352 le32_to_cpu(fw->ver) & 0xff,
3353 (*raw)->size - sizeof(*fw));
3354 return 0;
3355 }
3356
3357 #define IPW_RX_BUF_SIZE (3000)
3358
3359 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3360 struct ipw_rx_queue *rxq)
3361 {
3362 unsigned long flags;
3363 int i;
3364
3365 spin_lock_irqsave(&rxq->lock, flags);
3366
3367 INIT_LIST_HEAD(&rxq->rx_free);
3368 INIT_LIST_HEAD(&rxq->rx_used);
3369
3370 /* Fill the rx_used queue with _all_ of the Rx buffers */
3371 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3372 /* In the reset function, these buffers may have been allocated
3373 * to an SKB, so we need to unmap and free potential storage */
3374 if (rxq->pool[i].skb != NULL) {
3375 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3376 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3377 dev_kfree_skb(rxq->pool[i].skb);
3378 rxq->pool[i].skb = NULL;
3379 }
3380 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3381 }
3382
3383 /* Set us so that we have processed and used all buffers, but have
3384 * not restocked the Rx queue with fresh buffers */
3385 rxq->read = rxq->write = 0;
3386 rxq->free_count = 0;
3387 spin_unlock_irqrestore(&rxq->lock, flags);
3388 }
3389
3390 #ifdef CONFIG_PM
3391 static int fw_loaded = 0;
3392 static const struct firmware *raw = NULL;
3393
3394 static void free_firmware(void)
3395 {
3396 if (fw_loaded) {
3397 release_firmware(raw);
3398 raw = NULL;
3399 fw_loaded = 0;
3400 }
3401 }
3402 #else
3403 #define free_firmware() do {} while (0)
3404 #endif
3405
3406 static int ipw_load(struct ipw_priv *priv)
3407 {
3408 #ifndef CONFIG_PM
3409 const struct firmware *raw = NULL;
3410 #endif
3411 struct ipw_fw *fw;
3412 u8 *boot_img, *ucode_img, *fw_img;
3413 u8 *name = NULL;
3414 int rc = 0, retries = 3;
3415
3416 switch (priv->ieee->iw_mode) {
3417 case IW_MODE_ADHOC:
3418 name = "ipw2200-ibss.fw";
3419 break;
3420 #ifdef CONFIG_IPW2200_MONITOR
3421 case IW_MODE_MONITOR:
3422 name = "ipw2200-sniffer.fw";
3423 break;
3424 #endif
3425 case IW_MODE_INFRA:
3426 name = "ipw2200-bss.fw";
3427 break;
3428 }
3429
3430 if (!name) {
3431 rc = -EINVAL;
3432 goto error;
3433 }
3434
3435 #ifdef CONFIG_PM
3436 if (!fw_loaded) {
3437 #endif
3438 rc = ipw_get_fw(priv, &raw, name);
3439 if (rc < 0)
3440 goto error;
3441 #ifdef CONFIG_PM
3442 }
3443 #endif
3444
3445 fw = (void *)raw->data;
3446 boot_img = &fw->data[0];
3447 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3448 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3449 le32_to_cpu(fw->ucode_size)];
3450
3451 if (rc < 0)
3452 goto error;
3453
3454 if (!priv->rxq)
3455 priv->rxq = ipw_rx_queue_alloc(priv);
3456 else
3457 ipw_rx_queue_reset(priv, priv->rxq);
3458 if (!priv->rxq) {
3459 IPW_ERROR("Unable to initialize Rx queue\n");
3460 goto error;
3461 }
3462
3463 retry:
3464 /* Ensure interrupts are disabled */
3465 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3466 priv->status &= ~STATUS_INT_ENABLED;
3467
3468 /* ack pending interrupts */
3469 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3470
3471 ipw_stop_nic(priv);
3472
3473 rc = ipw_reset_nic(priv);
3474 if (rc < 0) {
3475 IPW_ERROR("Unable to reset NIC\n");
3476 goto error;
3477 }
3478
3479 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3480 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3481
3482 /* DMA the initial boot firmware into the device */
3483 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3484 if (rc < 0) {
3485 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3486 goto error;
3487 }
3488
3489 /* kick start the device */
3490 ipw_start_nic(priv);
3491
3492 /* wait for the device to finish its initial startup sequence */
3493 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3494 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3495 if (rc < 0) {
3496 IPW_ERROR("device failed to boot initial fw image\n");
3497 goto error;
3498 }
3499 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3500
3501 /* ack fw init done interrupt */
3502 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3503
3504 /* DMA the ucode into the device */
3505 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3506 if (rc < 0) {
3507 IPW_ERROR("Unable to load ucode: %d\n", rc);
3508 goto error;
3509 }
3510
3511 /* stop nic */
3512 ipw_stop_nic(priv);
3513
3514 /* DMA bss firmware into the device */
3515 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3516 if (rc < 0) {
3517 IPW_ERROR("Unable to load firmware: %d\n", rc);
3518 goto error;
3519 }
3520 #ifdef CONFIG_PM
3521 fw_loaded = 1;
3522 #endif
3523
3524 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3525
3526 rc = ipw_queue_reset(priv);
3527 if (rc < 0) {
3528 IPW_ERROR("Unable to initialize queues\n");
3529 goto error;
3530 }
3531
3532 /* Ensure interrupts are disabled */
3533 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3534 /* ack pending interrupts */
3535 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3536
3537 /* kick start the device */
3538 ipw_start_nic(priv);
3539
3540 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3541 if (retries > 0) {
3542 IPW_WARNING("Parity error. Retrying init.\n");
3543 retries--;
3544 goto retry;
3545 }
3546
3547 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3548 rc = -EIO;
3549 goto error;
3550 }
3551
3552 /* wait for the device */
3553 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3554 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3555 if (rc < 0) {
3556 IPW_ERROR("device failed to start within 500ms\n");
3557 goto error;
3558 }
3559 IPW_DEBUG_INFO("device response after %dms\n", rc);
3560
3561 /* ack fw init done interrupt */
3562 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3563
3564 /* read eeprom data and initialize the eeprom region of sram */
3565 priv->eeprom_delay = 1;
3566 ipw_eeprom_init_sram(priv);
3567
3568 /* enable interrupts */
3569 ipw_enable_interrupts(priv);
3570
3571 /* Ensure our queue has valid packets */
3572 ipw_rx_queue_replenish(priv);
3573
3574 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3575
3576 /* ack pending interrupts */
3577 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3578
3579 #ifndef CONFIG_PM
3580 release_firmware(raw);
3581 #endif
3582 return 0;
3583
3584 error:
3585 if (priv->rxq) {
3586 ipw_rx_queue_free(priv, priv->rxq);
3587 priv->rxq = NULL;
3588 }
3589 ipw_tx_queue_free(priv);
3590 if (raw)
3591 release_firmware(raw);
3592 #ifdef CONFIG_PM
3593 fw_loaded = 0;
3594 raw = NULL;
3595 #endif
3596
3597 return rc;
3598 }
3599
3600 /**
3601 * DMA services
3602 *
3603 * Theory of operation
3604 *
3605 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3606 * 2 empty entries always kept in the buffer to protect from overflow.
3607 *
3608 * For Tx queue, there are low mark and high mark limits. If, after queuing
3609 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3610 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3611 * Tx queue resumed.
3612 *
3613 * The IPW operates with six queues, one receive queue in the device's
3614 * sram, one transmit queue for sending commands to the device firmware,
3615 * and four transmit queues for data.
3616 *
3617 * The four transmit queues allow for performing quality of service (qos)
3618 * transmissions as per the 802.11 protocol. Currently Linux does not
3619 * provide a mechanism to the user for utilizing prioritized queues, so
3620 * we only utilize the first data transmit queue (queue1).
3621 */
3622
3623 /**
3624 * Driver allocates buffers of this size for Rx
3625 */
3626
3627 /**
3628 * ipw_rx_queue_space - Return number of free slots available in queue.
3629 */
3630 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3631 {
3632 int s = q->read - q->write;
3633 if (s <= 0)
3634 s += RX_QUEUE_SIZE;
3635 /* keep some buffer to not confuse full and empty queue */
3636 s -= 2;
3637 if (s < 0)
3638 s = 0;
3639 return s;
3640 }
3641
3642 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3643 {
3644 int s = q->last_used - q->first_empty;
3645 if (s <= 0)
3646 s += q->n_bd;
3647 s -= 2; /* keep some reserve to not confuse empty and full situations */
3648 if (s < 0)
3649 s = 0;
3650 return s;
3651 }
3652
3653 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3654 {
3655 return (++index == n_bd) ? 0 : index;
3656 }
3657
3658 /**
3659 * Initialize common DMA queue structure
3660 *
3661 * @param q queue to init
3662 * @param count Number of BD's to allocate. Should be power of 2
3663 * @param read_register Address for 'read' register
3664 * (not offset within BAR, full address)
3665 * @param write_register Address for 'write' register
3666 * (not offset within BAR, full address)
3667 * @param base_register Address for 'base' register
3668 * (not offset within BAR, full address)
3669 * @param size Address for 'size' register
3670 * (not offset within BAR, full address)
3671 */
3672 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3673 int count, u32 read, u32 write, u32 base, u32 size)
3674 {
3675 q->n_bd = count;
3676
3677 q->low_mark = q->n_bd / 4;
3678 if (q->low_mark < 4)
3679 q->low_mark = 4;
3680
3681 q->high_mark = q->n_bd / 8;
3682 if (q->high_mark < 2)
3683 q->high_mark = 2;
3684
3685 q->first_empty = q->last_used = 0;
3686 q->reg_r = read;
3687 q->reg_w = write;
3688
3689 ipw_write32(priv, base, q->dma_addr);
3690 ipw_write32(priv, size, count);
3691 ipw_write32(priv, read, 0);
3692 ipw_write32(priv, write, 0);
3693
3694 _ipw_read32(priv, 0x90);
3695 }
3696
3697 static int ipw_queue_tx_init(struct ipw_priv *priv,
3698 struct clx2_tx_queue *q,
3699 int count, u32 read, u32 write, u32 base, u32 size)
3700 {
3701 struct pci_dev *dev = priv->pci_dev;
3702
3703 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3704 if (!q->txb) {
3705 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3706 return -ENOMEM;
3707 }
3708
3709 q->bd =
3710 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3711 if (!q->bd) {
3712 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3713 sizeof(q->bd[0]) * count);
3714 kfree(q->txb);
3715 q->txb = NULL;
3716 return -ENOMEM;
3717 }
3718
3719 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3720 return 0;
3721 }
3722
3723 /**
3724 * Free one TFD, those at index [txq->q.last_used].
3725 * Do NOT advance any indexes
3726 *
3727 * @param dev
3728 * @param txq
3729 */
3730 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3731 struct clx2_tx_queue *txq)
3732 {
3733 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3734 struct pci_dev *dev = priv->pci_dev;
3735 int i;
3736
3737 /* classify bd */
3738 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3739 /* nothing to cleanup after for host commands */
3740 return;
3741
3742 /* sanity check */
3743 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3744 IPW_ERROR("Too many chunks: %i\n",
3745 le32_to_cpu(bd->u.data.num_chunks));
3746 /** @todo issue fatal error, it is quite serious situation */
3747 return;
3748 }
3749
3750 /* unmap chunks if any */
3751 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3752 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3753 le16_to_cpu(bd->u.data.chunk_len[i]),
3754 PCI_DMA_TODEVICE);
3755 if (txq->txb[txq->q.last_used]) {
3756 ieee80211_txb_free(txq->txb[txq->q.last_used]);
3757 txq->txb[txq->q.last_used] = NULL;
3758 }
3759 }
3760 }
3761
3762 /**
3763 * Deallocate DMA queue.
3764 *
3765 * Empty queue by removing and destroying all BD's.
3766 * Free all buffers.
3767 *
3768 * @param dev
3769 * @param q
3770 */
3771 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3772 {
3773 struct clx2_queue *q = &txq->q;
3774 struct pci_dev *dev = priv->pci_dev;
3775
3776 if (q->n_bd == 0)
3777 return;
3778
3779 /* first, empty all BD's */
3780 for (; q->first_empty != q->last_used;
3781 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3782 ipw_queue_tx_free_tfd(priv, txq);
3783 }
3784
3785 /* free buffers belonging to queue itself */
3786 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3787 q->dma_addr);
3788 kfree(txq->txb);
3789
3790 /* 0 fill whole structure */
3791 memset(txq, 0, sizeof(*txq));
3792 }
3793
3794 /**
3795 * Destroy all DMA queues and structures
3796 *
3797 * @param priv
3798 */
3799 static void ipw_tx_queue_free(struct ipw_priv *priv)
3800 {
3801 /* Tx CMD queue */
3802 ipw_queue_tx_free(priv, &priv->txq_cmd);
3803
3804 /* Tx queues */
3805 ipw_queue_tx_free(priv, &priv->txq[0]);
3806 ipw_queue_tx_free(priv, &priv->txq[1]);
3807 ipw_queue_tx_free(priv, &priv->txq[2]);
3808 ipw_queue_tx_free(priv, &priv->txq[3]);
3809 }
3810
3811 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3812 {
3813 /* First 3 bytes are manufacturer */
3814 bssid[0] = priv->mac_addr[0];
3815 bssid[1] = priv->mac_addr[1];
3816 bssid[2] = priv->mac_addr[2];
3817
3818 /* Last bytes are random */
3819 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3820
3821 bssid[0] &= 0xfe; /* clear multicast bit */
3822 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3823 }
3824
3825 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3826 {
3827 struct ipw_station_entry entry;
3828 int i;
3829
3830 for (i = 0; i < priv->num_stations; i++) {
3831 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3832 /* Another node is active in network */
3833 priv->missed_adhoc_beacons = 0;
3834 if (!(priv->config & CFG_STATIC_CHANNEL))
3835 /* when other nodes drop out, we drop out */
3836 priv->config &= ~CFG_ADHOC_PERSIST;
3837
3838 return i;
3839 }
3840 }
3841
3842 if (i == MAX_STATIONS)
3843 return IPW_INVALID_STATION;
3844
3845 IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3846
3847 entry.reserved = 0;
3848 entry.support_mode = 0;
3849 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3850 memcpy(priv->stations[i], bssid, ETH_ALEN);
3851 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3852 &entry, sizeof(entry));
3853 priv->num_stations++;
3854
3855 return i;
3856 }
3857
3858 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3859 {
3860 int i;
3861
3862 for (i = 0; i < priv->num_stations; i++)
3863 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3864 return i;
3865
3866 return IPW_INVALID_STATION;
3867 }
3868
3869 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3870 {
3871 int err;
3872
3873 if (priv->status & STATUS_ASSOCIATING) {
3874 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3875 queue_work(priv->workqueue, &priv->disassociate);
3876 return;
3877 }
3878
3879 if (!(priv->status & STATUS_ASSOCIATED)) {
3880 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3881 return;
3882 }
3883
3884 IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3885 "on channel %d.\n",
3886 priv->assoc_request.bssid,
3887 priv->assoc_request.channel);
3888
3889 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3890 priv->status |= STATUS_DISASSOCIATING;
3891
3892 if (quiet)
3893 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3894 else
3895 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3896
3897 err = ipw_send_associate(priv, &priv->assoc_request);
3898 if (err) {
3899 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3900 "failed.\n");
3901 return;
3902 }
3903
3904 }
3905
3906 static int ipw_disassociate(void *data)
3907 {
3908 struct ipw_priv *priv = data;
3909 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3910 return 0;
3911 ipw_send_disassociate(data, 0);
3912 netif_carrier_off(priv->net_dev);
3913 return 1;
3914 }
3915
3916 static void ipw_bg_disassociate(struct work_struct *work)
3917 {
3918 struct ipw_priv *priv =
3919 container_of(work, struct ipw_priv, disassociate);
3920 mutex_lock(&priv->mutex);
3921 ipw_disassociate(priv);
3922 mutex_unlock(&priv->mutex);
3923 }
3924
3925 static void ipw_system_config(struct work_struct *work)
3926 {
3927 struct ipw_priv *priv =
3928 container_of(work, struct ipw_priv, system_config);
3929
3930 #ifdef CONFIG_IPW2200_PROMISCUOUS
3931 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3932 priv->sys_config.accept_all_data_frames = 1;
3933 priv->sys_config.accept_non_directed_frames = 1;
3934 priv->sys_config.accept_all_mgmt_bcpr = 1;
3935 priv->sys_config.accept_all_mgmt_frames = 1;
3936 }
3937 #endif
3938
3939 ipw_send_system_config(priv);
3940 }
3941
3942 struct ipw_status_code {
3943 u16 status;
3944 const char *reason;
3945 };
3946
3947 static const struct ipw_status_code ipw_status_codes[] = {
3948 {0x00, "Successful"},
3949 {0x01, "Unspecified failure"},
3950 {0x0A, "Cannot support all requested capabilities in the "
3951 "Capability information field"},
3952 {0x0B, "Reassociation denied due to inability to confirm that "
3953 "association exists"},
3954 {0x0C, "Association denied due to reason outside the scope of this "
3955 "standard"},
3956 {0x0D,
3957 "Responding station does not support the specified authentication "
3958 "algorithm"},
3959 {0x0E,
3960 "Received an Authentication frame with authentication sequence "
3961 "transaction sequence number out of expected sequence"},
3962 {0x0F, "Authentication rejected because of challenge failure"},
3963 {0x10, "Authentication rejected due to timeout waiting for next "
3964 "frame in sequence"},
3965 {0x11, "Association denied because AP is unable to handle additional "
3966 "associated stations"},
3967 {0x12,
3968 "Association denied due to requesting station not supporting all "
3969 "of the datarates in the BSSBasicServiceSet Parameter"},
3970 {0x13,
3971 "Association denied due to requesting station not supporting "
3972 "short preamble operation"},
3973 {0x14,
3974 "Association denied due to requesting station not supporting "
3975 "PBCC encoding"},
3976 {0x15,
3977 "Association denied due to requesting station not supporting "
3978 "channel agility"},
3979 {0x19,
3980 "Association denied due to requesting station not supporting "
3981 "short slot operation"},
3982 {0x1A,
3983 "Association denied due to requesting station not supporting "
3984 "DSSS-OFDM operation"},
3985 {0x28, "Invalid Information Element"},
3986 {0x29, "Group Cipher is not valid"},
3987 {0x2A, "Pairwise Cipher is not valid"},
3988 {0x2B, "AKMP is not valid"},
3989 {0x2C, "Unsupported RSN IE version"},
3990 {0x2D, "Invalid RSN IE Capabilities"},
3991 {0x2E, "Cipher suite is rejected per security policy"},
3992 };
3993
3994 static const char *ipw_get_status_code(u16 status)
3995 {
3996 int i;
3997 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3998 if (ipw_status_codes[i].status == (status & 0xff))
3999 return ipw_status_codes[i].reason;
4000 return "Unknown status value.";
4001 }
4002
4003 static void inline average_init(struct average *avg)
4004 {
4005 memset(avg, 0, sizeof(*avg));
4006 }
4007
4008 #define DEPTH_RSSI 8
4009 #define DEPTH_NOISE 16
4010 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4011 {
4012 return ((depth-1)*prev_avg + val)/depth;
4013 }
4014
4015 static void average_add(struct average *avg, s16 val)
4016 {
4017 avg->sum -= avg->entries[avg->pos];
4018 avg->sum += val;
4019 avg->entries[avg->pos++] = val;
4020 if (unlikely(avg->pos == AVG_ENTRIES)) {
4021 avg->init = 1;
4022 avg->pos = 0;
4023 }
4024 }
4025
4026 static s16 average_value(struct average *avg)
4027 {
4028 if (!unlikely(avg->init)) {
4029 if (avg->pos)
4030 return avg->sum / avg->pos;
4031 return 0;
4032 }
4033
4034 return avg->sum / AVG_ENTRIES;
4035 }
4036
4037 static void ipw_reset_stats(struct ipw_priv *priv)
4038 {
4039 u32 len = sizeof(u32);
4040
4041 priv->quality = 0;
4042
4043 average_init(&priv->average_missed_beacons);
4044 priv->exp_avg_rssi = -60;
4045 priv->exp_avg_noise = -85 + 0x100;
4046
4047 priv->last_rate = 0;
4048 priv->last_missed_beacons = 0;
4049 priv->last_rx_packets = 0;
4050 priv->last_tx_packets = 0;
4051 priv->last_tx_failures = 0;
4052
4053 /* Firmware managed, reset only when NIC is restarted, so we have to
4054 * normalize on the current value */
4055 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4056 &priv->last_rx_err, &len);
4057 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4058 &priv->last_tx_failures, &len);
4059
4060 /* Driver managed, reset with each association */
4061 priv->missed_adhoc_beacons = 0;
4062 priv->missed_beacons = 0;
4063 priv->tx_packets = 0;
4064 priv->rx_packets = 0;
4065
4066 }
4067
4068 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4069 {
4070 u32 i = 0x80000000;
4071 u32 mask = priv->rates_mask;
4072 /* If currently associated in B mode, restrict the maximum
4073 * rate match to B rates */
4074 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4075 mask &= IEEE80211_CCK_RATES_MASK;
4076
4077 /* TODO: Verify that the rate is supported by the current rates
4078 * list. */
4079
4080 while (i && !(mask & i))
4081 i >>= 1;
4082 switch (i) {
4083 case IEEE80211_CCK_RATE_1MB_MASK:
4084 return 1000000;
4085 case IEEE80211_CCK_RATE_2MB_MASK:
4086 return 2000000;
4087 case IEEE80211_CCK_RATE_5MB_MASK:
4088 return 5500000;
4089 case IEEE80211_OFDM_RATE_6MB_MASK:
4090 return 6000000;
4091 case IEEE80211_OFDM_RATE_9MB_MASK:
4092 return 9000000;
4093 case IEEE80211_CCK_RATE_11MB_MASK:
4094 return 11000000;
4095 case IEEE80211_OFDM_RATE_12MB_MASK:
4096 return 12000000;
4097 case IEEE80211_OFDM_RATE_18MB_MASK:
4098 return 18000000;
4099 case IEEE80211_OFDM_RATE_24MB_MASK:
4100 return 24000000;
4101 case IEEE80211_OFDM_RATE_36MB_MASK:
4102 return 36000000;
4103 case IEEE80211_OFDM_RATE_48MB_MASK:
4104 return 48000000;
4105 case IEEE80211_OFDM_RATE_54MB_MASK:
4106 return 54000000;
4107 }
4108
4109 if (priv->ieee->mode == IEEE_B)
4110 return 11000000;
4111 else
4112 return 54000000;
4113 }
4114
4115 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4116 {
4117 u32 rate, len = sizeof(rate);
4118 int err;
4119
4120 if (!(priv->status & STATUS_ASSOCIATED))
4121 return 0;
4122
4123 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4124 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4125 &len);
4126 if (err) {
4127 IPW_DEBUG_INFO("failed querying ordinals.\n");
4128 return 0;
4129 }
4130 } else
4131 return ipw_get_max_rate(priv);
4132
4133 switch (rate) {
4134 case IPW_TX_RATE_1MB:
4135 return 1000000;
4136 case IPW_TX_RATE_2MB:
4137 return 2000000;
4138 case IPW_TX_RATE_5MB:
4139 return 5500000;
4140 case IPW_TX_RATE_6MB:
4141 return 6000000;
4142 case IPW_TX_RATE_9MB:
4143 return 9000000;
4144 case IPW_TX_RATE_11MB:
4145 return 11000000;
4146 case IPW_TX_RATE_12MB:
4147 return 12000000;
4148 case IPW_TX_RATE_18MB:
4149 return 18000000;
4150 case IPW_TX_RATE_24MB:
4151 return 24000000;
4152 case IPW_TX_RATE_36MB:
4153 return 36000000;
4154 case IPW_TX_RATE_48MB:
4155 return 48000000;
4156 case IPW_TX_RATE_54MB:
4157 return 54000000;
4158 }
4159
4160 return 0;
4161 }
4162
4163 #define IPW_STATS_INTERVAL (2 * HZ)
4164 static void ipw_gather_stats(struct ipw_priv *priv)
4165 {
4166 u32 rx_err, rx_err_delta, rx_packets_delta;
4167 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4168 u32 missed_beacons_percent, missed_beacons_delta;
4169 u32 quality = 0;
4170 u32 len = sizeof(u32);
4171 s16 rssi;
4172 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4173 rate_quality;
4174 u32 max_rate;
4175
4176 if (!(priv->status & STATUS_ASSOCIATED)) {
4177 priv->quality = 0;
4178 return;
4179 }
4180
4181 /* Update the statistics */
4182 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4183 &priv->missed_beacons, &len);
4184 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4185 priv->last_missed_beacons = priv->missed_beacons;
4186 if (priv->assoc_request.beacon_interval) {
4187 missed_beacons_percent = missed_beacons_delta *
4188 (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4189 (IPW_STATS_INTERVAL * 10);
4190 } else {
4191 missed_beacons_percent = 0;
4192 }
4193 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4194
4195 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4196 rx_err_delta = rx_err - priv->last_rx_err;
4197 priv->last_rx_err = rx_err;
4198
4199 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4200 tx_failures_delta = tx_failures - priv->last_tx_failures;
4201 priv->last_tx_failures = tx_failures;
4202
4203 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4204 priv->last_rx_packets = priv->rx_packets;
4205
4206 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4207 priv->last_tx_packets = priv->tx_packets;
4208
4209 /* Calculate quality based on the following:
4210 *
4211 * Missed beacon: 100% = 0, 0% = 70% missed
4212 * Rate: 60% = 1Mbs, 100% = Max
4213 * Rx and Tx errors represent a straight % of total Rx/Tx
4214 * RSSI: 100% = > -50, 0% = < -80
4215 * Rx errors: 100% = 0, 0% = 50% missed
4216 *
4217 * The lowest computed quality is used.
4218 *
4219 */
4220 #define BEACON_THRESHOLD 5
4221 beacon_quality = 100 - missed_beacons_percent;
4222 if (beacon_quality < BEACON_THRESHOLD)
4223 beacon_quality = 0;
4224 else
4225 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4226 (100 - BEACON_THRESHOLD);
4227 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4228 beacon_quality, missed_beacons_percent);
4229
4230 priv->last_rate = ipw_get_current_rate(priv);
4231 max_rate = ipw_get_max_rate(priv);
4232 rate_quality = priv->last_rate * 40 / max_rate + 60;
4233 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4234 rate_quality, priv->last_rate / 1000000);
4235
4236 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4237 rx_quality = 100 - (rx_err_delta * 100) /
4238 (rx_packets_delta + rx_err_delta);
4239 else
4240 rx_quality = 100;
4241 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4242 rx_quality, rx_err_delta, rx_packets_delta);
4243
4244 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4245 tx_quality = 100 - (tx_failures_delta * 100) /
4246 (tx_packets_delta + tx_failures_delta);
4247 else
4248 tx_quality = 100;
4249 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4250 tx_quality, tx_failures_delta, tx_packets_delta);
4251
4252 rssi = priv->exp_avg_rssi;
4253 signal_quality =
4254 (100 *
4255 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4256 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4257 (priv->ieee->perfect_rssi - rssi) *
4258 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4259 62 * (priv->ieee->perfect_rssi - rssi))) /
4260 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4261 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4262 if (signal_quality > 100)
4263 signal_quality = 100;
4264 else if (signal_quality < 1)
4265 signal_quality = 0;
4266
4267 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4268 signal_quality, rssi);
4269
4270 quality = min(beacon_quality,
4271 min(rate_quality,
4272 min(tx_quality, min(rx_quality, signal_quality))));
4273 if (quality == beacon_quality)
4274 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4275 quality);
4276 if (quality == rate_quality)
4277 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4278 quality);
4279 if (quality == tx_quality)
4280 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4281 quality);
4282 if (quality == rx_quality)
4283 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4284 quality);
4285 if (quality == signal_quality)
4286 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4287 quality);
4288
4289 priv->quality = quality;
4290
4291 queue_delayed_work(priv->workqueue, &priv->gather_stats,
4292 IPW_STATS_INTERVAL);
4293 }
4294
4295 static void ipw_bg_gather_stats(struct work_struct *work)
4296 {
4297 struct ipw_priv *priv =
4298 container_of(work, struct ipw_priv, gather_stats.work);
4299 mutex_lock(&priv->mutex);
4300 ipw_gather_stats(priv);
4301 mutex_unlock(&priv->mutex);
4302 }
4303
4304 /* Missed beacon behavior:
4305 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4306 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4307 * Above disassociate threshold, give up and stop scanning.
4308 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4309 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4310 int missed_count)
4311 {
4312 priv->notif_missed_beacons = missed_count;
4313
4314 if (missed_count > priv->disassociate_threshold &&
4315 priv->status & STATUS_ASSOCIATED) {
4316 /* If associated and we've hit the missed
4317 * beacon threshold, disassociate, turn
4318 * off roaming, and abort any active scans */
4319 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4320 IPW_DL_STATE | IPW_DL_ASSOC,
4321 "Missed beacon: %d - disassociate\n", missed_count);
4322 priv->status &= ~STATUS_ROAMING;
4323 if (priv->status & STATUS_SCANNING) {
4324 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4325 IPW_DL_STATE,
4326 "Aborting scan with missed beacon.\n");
4327 queue_work(priv->workqueue, &priv->abort_scan);
4328 }
4329
4330 queue_work(priv->workqueue, &priv->disassociate);
4331 return;
4332 }
4333
4334 if (priv->status & STATUS_ROAMING) {
4335 /* If we are currently roaming, then just
4336 * print a debug statement... */
4337 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4338 "Missed beacon: %d - roam in progress\n",
4339 missed_count);
4340 return;
4341 }
4342
4343 if (roaming &&
4344 (missed_count > priv->roaming_threshold &&
4345 missed_count <= priv->disassociate_threshold)) {
4346 /* If we are not already roaming, set the ROAM
4347 * bit in the status and kick off a scan.
4348 * This can happen several times before we reach
4349 * disassociate_threshold. */
4350 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4351 "Missed beacon: %d - initiate "
4352 "roaming\n", missed_count);
4353 if (!(priv->status & STATUS_ROAMING)) {
4354 priv->status |= STATUS_ROAMING;
4355 if (!(priv->status & STATUS_SCANNING))
4356 queue_delayed_work(priv->workqueue,
4357 &priv->request_scan, 0);
4358 }
4359 return;
4360 }
4361
4362 if (priv->status & STATUS_SCANNING &&
4363 missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4364 /* Stop scan to keep fw from getting
4365 * stuck (only if we aren't roaming --
4366 * otherwise we'll never scan more than 2 or 3
4367 * channels..) */
4368 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4369 "Aborting scan with missed beacon.\n");
4370 queue_work(priv->workqueue, &priv->abort_scan);
4371 }
4372
4373 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4374 }
4375
4376 static void ipw_scan_event(struct work_struct *work)
4377 {
4378 union iwreq_data wrqu;
4379
4380 struct ipw_priv *priv =
4381 container_of(work, struct ipw_priv, scan_event.work);
4382
4383 wrqu.data.length = 0;
4384 wrqu.data.flags = 0;
4385 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4386 }
4387
4388 static void handle_scan_event(struct ipw_priv *priv)
4389 {
4390 /* Only userspace-requested scan completion events go out immediately */
4391 if (!priv->user_requested_scan) {
4392 if (!delayed_work_pending(&priv->scan_event))
4393 queue_delayed_work(priv->workqueue, &priv->scan_event,
4394 round_jiffies_relative(msecs_to_jiffies(4000)));
4395 } else {
4396 union iwreq_data wrqu;
4397
4398 priv->user_requested_scan = 0;
4399 cancel_delayed_work(&priv->scan_event);
4400
4401 wrqu.data.length = 0;
4402 wrqu.data.flags = 0;
4403 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4404 }
4405 }
4406
4407 /**
4408 * Handle host notification packet.
4409 * Called from interrupt routine
4410 */
4411 static void ipw_rx_notification(struct ipw_priv *priv,
4412 struct ipw_rx_notification *notif)
4413 {
4414 DECLARE_SSID_BUF(ssid);
4415 u16 size = le16_to_cpu(notif->size);
4416 notif->size = le16_to_cpu(notif->size);
4417
4418 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4419
4420 switch (notif->subtype) {
4421 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4422 struct notif_association *assoc = &notif->u.assoc;
4423
4424 switch (assoc->state) {
4425 case CMAS_ASSOCIATED:{
4426 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4427 IPW_DL_ASSOC,
4428 "associated: '%s' %pM \n",
4429 print_ssid(ssid, priv->essid,
4430 priv->essid_len),
4431 priv->bssid);
4432
4433 switch (priv->ieee->iw_mode) {
4434 case IW_MODE_INFRA:
4435 memcpy(priv->ieee->bssid,
4436 priv->bssid, ETH_ALEN);
4437 break;
4438
4439 case IW_MODE_ADHOC:
4440 memcpy(priv->ieee->bssid,
4441 priv->bssid, ETH_ALEN);
4442
4443 /* clear out the station table */
4444 priv->num_stations = 0;
4445
4446 IPW_DEBUG_ASSOC
4447 ("queueing adhoc check\n");
4448 queue_delayed_work(priv->
4449 workqueue,
4450 &priv->
4451 adhoc_check,
4452 le16_to_cpu(priv->
4453 assoc_request.
4454 beacon_interval));
4455 break;
4456 }
4457
4458 priv->status &= ~STATUS_ASSOCIATING;
4459 priv->status |= STATUS_ASSOCIATED;
4460 queue_work(priv->workqueue,
4461 &priv->system_config);
4462
4463 #ifdef CONFIG_IPW2200_QOS
4464 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4465 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4466 if ((priv->status & STATUS_AUTH) &&
4467 (IPW_GET_PACKET_STYPE(&notif->u.raw)
4468 == IEEE80211_STYPE_ASSOC_RESP)) {
4469 if ((sizeof
4470 (struct
4471 ieee80211_assoc_response)
4472 <= size)
4473 && (size <= 2314)) {
4474 struct
4475 ieee80211_rx_stats
4476 stats = {
4477 .len = size - 1,
4478 };
4479
4480 IPW_DEBUG_QOS
4481 ("QoS Associate "
4482 "size %d\n", size);
4483 ieee80211_rx_mgt(priv->
4484 ieee,
4485 (struct
4486 ieee80211_hdr_4addr
4487 *)
4488 &notif->u.raw, &stats);
4489 }
4490 }
4491 #endif
4492
4493 schedule_work(&priv->link_up);
4494
4495 break;
4496 }
4497
4498 case CMAS_AUTHENTICATED:{
4499 if (priv->
4500 status & (STATUS_ASSOCIATED |
4501 STATUS_AUTH)) {
4502 struct notif_authenticate *auth
4503 = &notif->u.auth;
4504 IPW_DEBUG(IPW_DL_NOTIF |
4505 IPW_DL_STATE |
4506 IPW_DL_ASSOC,
4507 "deauthenticated: '%s' "
4508 "%pM"
4509 ": (0x%04X) - %s \n",
4510 print_ssid(ssid,
4511 priv->
4512 essid,
4513 priv->
4514 essid_len),
4515 priv->bssid,
4516 le16_to_cpu(auth->status),
4517 ipw_get_status_code
4518 (le16_to_cpu
4519 (auth->status)));
4520
4521 priv->status &=
4522 ~(STATUS_ASSOCIATING |
4523 STATUS_AUTH |
4524 STATUS_ASSOCIATED);
4525
4526 schedule_work(&priv->link_down);
4527 break;
4528 }
4529
4530 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4531 IPW_DL_ASSOC,
4532 "authenticated: '%s' %pM\n",
4533 print_ssid(ssid, priv->essid,
4534 priv->essid_len),
4535 priv->bssid);
4536 break;
4537 }
4538
4539 case CMAS_INIT:{
4540 if (priv->status & STATUS_AUTH) {
4541 struct
4542 ieee80211_assoc_response
4543 *resp;
4544 resp =
4545 (struct
4546 ieee80211_assoc_response
4547 *)&notif->u.raw;
4548 IPW_DEBUG(IPW_DL_NOTIF |
4549 IPW_DL_STATE |
4550 IPW_DL_ASSOC,
4551 "association failed (0x%04X): %s\n",
4552 le16_to_cpu(resp->status),
4553 ipw_get_status_code
4554 (le16_to_cpu
4555 (resp->status)));
4556 }
4557
4558 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4559 IPW_DL_ASSOC,
4560 "disassociated: '%s' %pM \n",
4561 print_ssid(ssid, priv->essid,
4562 priv->essid_len),
4563 priv->bssid);
4564
4565 priv->status &=
4566 ~(STATUS_DISASSOCIATING |
4567 STATUS_ASSOCIATING |
4568 STATUS_ASSOCIATED | STATUS_AUTH);
4569 if (priv->assoc_network
4570 && (priv->assoc_network->
4571 capability &
4572 WLAN_CAPABILITY_IBSS))
4573 ipw_remove_current_network
4574 (priv);
4575
4576 schedule_work(&priv->link_down);
4577
4578 break;
4579 }
4580
4581 case CMAS_RX_ASSOC_RESP:
4582 break;
4583
4584 default:
4585 IPW_ERROR("assoc: unknown (%d)\n",
4586 assoc->state);
4587 break;
4588 }
4589
4590 break;
4591 }
4592
4593 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4594 struct notif_authenticate *auth = &notif->u.auth;
4595 switch (auth->state) {
4596 case CMAS_AUTHENTICATED:
4597 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4598 "authenticated: '%s' %pM \n",
4599 print_ssid(ssid, priv->essid,
4600 priv->essid_len),
4601 priv->bssid);
4602 priv->status |= STATUS_AUTH;
4603 break;
4604
4605 case CMAS_INIT:
4606 if (priv->status & STATUS_AUTH) {
4607 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4608 IPW_DL_ASSOC,
4609 "authentication failed (0x%04X): %s\n",
4610 le16_to_cpu(auth->status),
4611 ipw_get_status_code(le16_to_cpu
4612 (auth->
4613 status)));
4614 }
4615 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4616 IPW_DL_ASSOC,
4617 "deauthenticated: '%s' %pM\n",
4618 print_ssid(ssid, priv->essid,
4619 priv->essid_len),
4620 priv->bssid);
4621
4622 priv->status &= ~(STATUS_ASSOCIATING |
4623 STATUS_AUTH |
4624 STATUS_ASSOCIATED);
4625
4626 schedule_work(&priv->link_down);
4627 break;
4628
4629 case CMAS_TX_AUTH_SEQ_1:
4630 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4631 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4632 break;
4633 case CMAS_RX_AUTH_SEQ_2:
4634 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4635 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4636 break;
4637 case CMAS_AUTH_SEQ_1_PASS:
4638 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4639 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4640 break;
4641 case CMAS_AUTH_SEQ_1_FAIL:
4642 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4643 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4644 break;
4645 case CMAS_TX_AUTH_SEQ_3:
4646 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4647 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4648 break;
4649 case CMAS_RX_AUTH_SEQ_4:
4650 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4651 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4652 break;
4653 case CMAS_AUTH_SEQ_2_PASS:
4654 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4655 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4656 break;
4657 case CMAS_AUTH_SEQ_2_FAIL:
4658 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4659 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4660 break;
4661 case CMAS_TX_ASSOC:
4662 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4663 IPW_DL_ASSOC, "TX_ASSOC\n");
4664 break;
4665 case CMAS_RX_ASSOC_RESP:
4666 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4667 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4668
4669 break;
4670 case CMAS_ASSOCIATED:
4671 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4672 IPW_DL_ASSOC, "ASSOCIATED\n");
4673 break;
4674 default:
4675 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4676 auth->state);
4677 break;
4678 }
4679 break;
4680 }
4681
4682 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4683 struct notif_channel_result *x =
4684 &notif->u.channel_result;
4685
4686 if (size == sizeof(*x)) {
4687 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4688 x->channel_num);
4689 } else {
4690 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4691 "(should be %zd)\n",
4692 size, sizeof(*x));
4693 }
4694 break;
4695 }
4696
4697 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4698 struct notif_scan_complete *x = &notif->u.scan_complete;
4699 if (size == sizeof(*x)) {
4700 IPW_DEBUG_SCAN
4701 ("Scan completed: type %d, %d channels, "
4702 "%d status\n", x->scan_type,
4703 x->num_channels, x->status);
4704 } else {
4705 IPW_ERROR("Scan completed of wrong size %d "
4706 "(should be %zd)\n",
4707 size, sizeof(*x));
4708 }
4709
4710 priv->status &=
4711 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4712
4713 wake_up_interruptible(&priv->wait_state);
4714 cancel_delayed_work(&priv->scan_check);
4715
4716 if (priv->status & STATUS_EXIT_PENDING)
4717 break;
4718
4719 priv->ieee->scans++;
4720
4721 #ifdef CONFIG_IPW2200_MONITOR
4722 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4723 priv->status |= STATUS_SCAN_FORCED;
4724 queue_delayed_work(priv->workqueue,
4725 &priv->request_scan, 0);
4726 break;
4727 }
4728 priv->status &= ~STATUS_SCAN_FORCED;
4729 #endif /* CONFIG_IPW2200_MONITOR */
4730
4731 /* Do queued direct scans first */
4732 if (priv->status & STATUS_DIRECT_SCAN_PENDING) {
4733 queue_delayed_work(priv->workqueue,
4734 &priv->request_direct_scan, 0);
4735 }
4736
4737 if (!(priv->status & (STATUS_ASSOCIATED |
4738 STATUS_ASSOCIATING |
4739 STATUS_ROAMING |
4740 STATUS_DISASSOCIATING)))
4741 queue_work(priv->workqueue, &priv->associate);
4742 else if (priv->status & STATUS_ROAMING) {
4743 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4744 /* If a scan completed and we are in roam mode, then
4745 * the scan that completed was the one requested as a
4746 * result of entering roam... so, schedule the
4747 * roam work */
4748 queue_work(priv->workqueue,
4749 &priv->roam);
4750 else
4751 /* Don't schedule if we aborted the scan */
4752 priv->status &= ~STATUS_ROAMING;
4753 } else if (priv->status & STATUS_SCAN_PENDING)
4754 queue_delayed_work(priv->workqueue,
4755 &priv->request_scan, 0);
4756 else if (priv->config & CFG_BACKGROUND_SCAN
4757 && priv->status & STATUS_ASSOCIATED)
4758 queue_delayed_work(priv->workqueue,
4759 &priv->request_scan,
4760 round_jiffies_relative(HZ));
4761
4762 /* Send an empty event to user space.
4763 * We don't send the received data on the event because
4764 * it would require us to do complex transcoding, and
4765 * we want to minimise the work done in the irq handler
4766 * Use a request to extract the data.
4767 * Also, we generate this even for any scan, regardless
4768 * on how the scan was initiated. User space can just
4769 * sync on periodic scan to get fresh data...
4770 * Jean II */
4771 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4772 handle_scan_event(priv);
4773 break;
4774 }
4775
4776 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4777 struct notif_frag_length *x = &notif->u.frag_len;
4778
4779 if (size == sizeof(*x))
4780 IPW_ERROR("Frag length: %d\n",
4781 le16_to_cpu(x->frag_length));
4782 else
4783 IPW_ERROR("Frag length of wrong size %d "
4784 "(should be %zd)\n",
4785 size, sizeof(*x));
4786 break;
4787 }
4788
4789 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4790 struct notif_link_deterioration *x =
4791 &notif->u.link_deterioration;
4792
4793 if (size == sizeof(*x)) {
4794 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4795 "link deterioration: type %d, cnt %d\n",
4796 x->silence_notification_type,
4797 x->silence_count);
4798 memcpy(&priv->last_link_deterioration, x,
4799 sizeof(*x));
4800 } else {
4801 IPW_ERROR("Link Deterioration of wrong size %d "
4802 "(should be %zd)\n",
4803 size, sizeof(*x));
4804 }
4805 break;
4806 }
4807
4808 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4809 IPW_ERROR("Dino config\n");
4810 if (priv->hcmd
4811 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4812 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4813
4814 break;
4815 }
4816
4817 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4818 struct notif_beacon_state *x = &notif->u.beacon_state;
4819 if (size != sizeof(*x)) {
4820 IPW_ERROR
4821 ("Beacon state of wrong size %d (should "
4822 "be %zd)\n", size, sizeof(*x));
4823 break;
4824 }
4825
4826 if (le32_to_cpu(x->state) ==
4827 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4828 ipw_handle_missed_beacon(priv,
4829 le32_to_cpu(x->
4830 number));
4831
4832 break;
4833 }
4834
4835 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4836 struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4837 if (size == sizeof(*x)) {
4838 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4839 "0x%02x station %d\n",
4840 x->key_state, x->security_type,
4841 x->station_index);
4842 break;
4843 }
4844
4845 IPW_ERROR
4846 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4847 size, sizeof(*x));
4848 break;
4849 }
4850
4851 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4852 struct notif_calibration *x = &notif->u.calibration;
4853
4854 if (size == sizeof(*x)) {
4855 memcpy(&priv->calib, x, sizeof(*x));
4856 IPW_DEBUG_INFO("TODO: Calibration\n");
4857 break;
4858 }
4859
4860 IPW_ERROR
4861 ("Calibration of wrong size %d (should be %zd)\n",
4862 size, sizeof(*x));
4863 break;
4864 }
4865
4866 case HOST_NOTIFICATION_NOISE_STATS:{
4867 if (size == sizeof(u32)) {
4868 priv->exp_avg_noise =
4869 exponential_average(priv->exp_avg_noise,
4870 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4871 DEPTH_NOISE);
4872 break;
4873 }
4874
4875 IPW_ERROR
4876 ("Noise stat is wrong size %d (should be %zd)\n",
4877 size, sizeof(u32));
4878 break;
4879 }
4880
4881 default:
4882 IPW_DEBUG_NOTIF("Unknown notification: "
4883 "subtype=%d,flags=0x%2x,size=%d\n",
4884 notif->subtype, notif->flags, size);
4885 }
4886 }
4887
4888 /**
4889 * Destroys all DMA structures and initialise them again
4890 *
4891 * @param priv
4892 * @return error code
4893 */
4894 static int ipw_queue_reset(struct ipw_priv *priv)
4895 {
4896 int rc = 0;
4897 /** @todo customize queue sizes */
4898 int nTx = 64, nTxCmd = 8;
4899 ipw_tx_queue_free(priv);
4900 /* Tx CMD queue */
4901 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4902 IPW_TX_CMD_QUEUE_READ_INDEX,
4903 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4904 IPW_TX_CMD_QUEUE_BD_BASE,
4905 IPW_TX_CMD_QUEUE_BD_SIZE);
4906 if (rc) {
4907 IPW_ERROR("Tx Cmd queue init failed\n");
4908 goto error;
4909 }
4910 /* Tx queue(s) */
4911 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4912 IPW_TX_QUEUE_0_READ_INDEX,
4913 IPW_TX_QUEUE_0_WRITE_INDEX,
4914 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4915 if (rc) {
4916 IPW_ERROR("Tx 0 queue init failed\n");
4917 goto error;
4918 }
4919 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4920 IPW_TX_QUEUE_1_READ_INDEX,
4921 IPW_TX_QUEUE_1_WRITE_INDEX,
4922 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4923 if (rc) {
4924 IPW_ERROR("Tx 1 queue init failed\n");
4925 goto error;
4926 }
4927 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4928 IPW_TX_QUEUE_2_READ_INDEX,
4929 IPW_TX_QUEUE_2_WRITE_INDEX,
4930 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4931 if (rc) {
4932 IPW_ERROR("Tx 2 queue init failed\n");
4933 goto error;
4934 }
4935 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4936 IPW_TX_QUEUE_3_READ_INDEX,
4937 IPW_TX_QUEUE_3_WRITE_INDEX,
4938 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4939 if (rc) {
4940 IPW_ERROR("Tx 3 queue init failed\n");
4941 goto error;
4942 }
4943 /* statistics */
4944 priv->rx_bufs_min = 0;
4945 priv->rx_pend_max = 0;
4946 return rc;
4947
4948 error:
4949 ipw_tx_queue_free(priv);
4950 return rc;
4951 }
4952
4953 /**
4954 * Reclaim Tx queue entries no more used by NIC.
4955 *
4956 * When FW advances 'R' index, all entries between old and
4957 * new 'R' index need to be reclaimed. As result, some free space
4958 * forms. If there is enough free space (> low mark), wake Tx queue.
4959 *
4960 * @note Need to protect against garbage in 'R' index
4961 * @param priv
4962 * @param txq
4963 * @param qindex
4964 * @return Number of used entries remains in the queue
4965 */
4966 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4967 struct clx2_tx_queue *txq, int qindex)
4968 {
4969 u32 hw_tail;
4970 int used;
4971 struct clx2_queue *q = &txq->q;
4972
4973 hw_tail = ipw_read32(priv, q->reg_r);
4974 if (hw_tail >= q->n_bd) {
4975 IPW_ERROR
4976 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4977 hw_tail, q->n_bd);
4978 goto done;
4979 }
4980 for (; q->last_used != hw_tail;
4981 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4982 ipw_queue_tx_free_tfd(priv, txq);
4983 priv->tx_packets++;
4984 }
4985 done:
4986 if ((ipw_tx_queue_space(q) > q->low_mark) &&
4987 (qindex >= 0))
4988 netif_wake_queue(priv->net_dev);
4989 used = q->first_empty - q->last_used;
4990 if (used < 0)
4991 used += q->n_bd;
4992
4993 return used;
4994 }
4995
4996 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4997 int len, int sync)
4998 {
4999 struct clx2_tx_queue *txq = &priv->txq_cmd;
5000 struct clx2_queue *q = &txq->q;
5001 struct tfd_frame *tfd;
5002
5003 if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5004 IPW_ERROR("No space for Tx\n");
5005 return -EBUSY;
5006 }
5007
5008 tfd = &txq->bd[q->first_empty];
5009 txq->txb[q->first_empty] = NULL;
5010
5011 memset(tfd, 0, sizeof(*tfd));
5012 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5013 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5014 priv->hcmd_seq++;
5015 tfd->u.cmd.index = hcmd;
5016 tfd->u.cmd.length = len;
5017 memcpy(tfd->u.cmd.payload, buf, len);
5018 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5019 ipw_write32(priv, q->reg_w, q->first_empty);
5020 _ipw_read32(priv, 0x90);
5021
5022 return 0;
5023 }
5024
5025 /*
5026 * Rx theory of operation
5027 *
5028 * The host allocates 32 DMA target addresses and passes the host address
5029 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5030 * 0 to 31
5031 *
5032 * Rx Queue Indexes
5033 * The host/firmware share two index registers for managing the Rx buffers.
5034 *
5035 * The READ index maps to the first position that the firmware may be writing
5036 * to -- the driver can read up to (but not including) this position and get
5037 * good data.
5038 * The READ index is managed by the firmware once the card is enabled.
5039 *
5040 * The WRITE index maps to the last position the driver has read from -- the
5041 * position preceding WRITE is the last slot the firmware can place a packet.
5042 *
5043 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5044 * WRITE = READ.
5045 *
5046 * During initialization the host sets up the READ queue position to the first
5047 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5048 *
5049 * When the firmware places a packet in a buffer it will advance the READ index
5050 * and fire the RX interrupt. The driver can then query the READ index and
5051 * process as many packets as possible, moving the WRITE index forward as it
5052 * resets the Rx queue buffers with new memory.
5053 *
5054 * The management in the driver is as follows:
5055 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5056 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5057 * to replensish the ipw->rxq->rx_free.
5058 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5059 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5060 * 'processed' and 'read' driver indexes as well)
5061 * + A received packet is processed and handed to the kernel network stack,
5062 * detached from the ipw->rxq. The driver 'processed' index is updated.
5063 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5064 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5065 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5066 * were enough free buffers and RX_STALLED is set it is cleared.
5067 *
5068 *
5069 * Driver sequence:
5070 *
5071 * ipw_rx_queue_alloc() Allocates rx_free
5072 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5073 * ipw_rx_queue_restock
5074 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5075 * queue, updates firmware pointers, and updates
5076 * the WRITE index. If insufficient rx_free buffers
5077 * are available, schedules ipw_rx_queue_replenish
5078 *
5079 * -- enable interrupts --
5080 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5081 * READ INDEX, detaching the SKB from the pool.
5082 * Moves the packet buffer from queue to rx_used.
5083 * Calls ipw_rx_queue_restock to refill any empty
5084 * slots.
5085 * ...
5086 *
5087 */
5088
5089 /*
5090 * If there are slots in the RX queue that need to be restocked,
5091 * and we have free pre-allocated buffers, fill the ranks as much
5092 * as we can pulling from rx_free.
5093 *
5094 * This moves the 'write' index forward to catch up with 'processed', and
5095 * also updates the memory address in the firmware to reference the new
5096 * target buffer.
5097 */
5098 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5099 {
5100 struct ipw_rx_queue *rxq = priv->rxq;
5101 struct list_head *element;
5102 struct ipw_rx_mem_buffer *rxb;
5103 unsigned long flags;
5104 int write;
5105
5106 spin_lock_irqsave(&rxq->lock, flags);
5107 write = rxq->write;
5108 while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5109 element = rxq->rx_free.next;
5110 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5111 list_del(element);
5112
5113 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5114 rxb->dma_addr);
5115 rxq->queue[rxq->write] = rxb;
5116 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5117 rxq->free_count--;
5118 }
5119 spin_unlock_irqrestore(&rxq->lock, flags);
5120
5121 /* If the pre-allocated buffer pool is dropping low, schedule to
5122 * refill it */
5123 if (rxq->free_count <= RX_LOW_WATERMARK)
5124 queue_work(priv->workqueue, &priv->rx_replenish);
5125
5126 /* If we've added more space for the firmware to place data, tell it */
5127 if (write != rxq->write)
5128 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5129 }
5130
5131 /*
5132 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5133 * Also restock the Rx queue via ipw_rx_queue_restock.
5134 *
5135 * This is called as a scheduled work item (except for during intialization)
5136 */
5137 static void ipw_rx_queue_replenish(void *data)
5138 {
5139 struct ipw_priv *priv = data;
5140 struct ipw_rx_queue *rxq = priv->rxq;
5141 struct list_head *element;
5142 struct ipw_rx_mem_buffer *rxb;
5143 unsigned long flags;
5144
5145 spin_lock_irqsave(&rxq->lock, flags);
5146 while (!list_empty(&rxq->rx_used)) {
5147 element = rxq->rx_used.next;
5148 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5149 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5150 if (!rxb->skb) {
5151 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5152 priv->net_dev->name);
5153 /* We don't reschedule replenish work here -- we will
5154 * call the restock method and if it still needs
5155 * more buffers it will schedule replenish */
5156 break;
5157 }
5158 list_del(element);
5159
5160 rxb->dma_addr =
5161 pci_map_single(priv->pci_dev, rxb->skb->data,
5162 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5163
5164 list_add_tail(&rxb->list, &rxq->rx_free);
5165 rxq->free_count++;
5166 }
5167 spin_unlock_irqrestore(&rxq->lock, flags);
5168
5169 ipw_rx_queue_restock(priv);
5170 }
5171
5172 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5173 {
5174 struct ipw_priv *priv =
5175 container_of(work, struct ipw_priv, rx_replenish);
5176 mutex_lock(&priv->mutex);
5177 ipw_rx_queue_replenish(priv);
5178 mutex_unlock(&priv->mutex);
5179 }
5180
5181 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5182 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5183 * This free routine walks the list of POOL entries and if SKB is set to
5184 * non NULL it is unmapped and freed
5185 */
5186 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5187 {
5188 int i;
5189
5190 if (!rxq)
5191 return;
5192
5193 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5194 if (rxq->pool[i].skb != NULL) {
5195 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5196 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5197 dev_kfree_skb(rxq->pool[i].skb);
5198 }
5199 }
5200
5201 kfree(rxq);
5202 }
5203
5204 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5205 {
5206 struct ipw_rx_queue *rxq;
5207 int i;
5208
5209 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5210 if (unlikely(!rxq)) {
5211 IPW_ERROR("memory allocation failed\n");
5212 return NULL;
5213 }
5214 spin_lock_init(&rxq->lock);
5215 INIT_LIST_HEAD(&rxq->rx_free);
5216 INIT_LIST_HEAD(&rxq->rx_used);
5217
5218 /* Fill the rx_used queue with _all_ of the Rx buffers */
5219 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5220 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5221
5222 /* Set us so that we have processed and used all buffers, but have
5223 * not restocked the Rx queue with fresh buffers */
5224 rxq->read = rxq->write = 0;
5225 rxq->free_count = 0;
5226
5227 return rxq;
5228 }
5229
5230 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5231 {
5232 rate &= ~IEEE80211_BASIC_RATE_MASK;
5233 if (ieee_mode == IEEE_A) {
5234 switch (rate) {
5235 case IEEE80211_OFDM_RATE_6MB:
5236 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5237 1 : 0;
5238 case IEEE80211_OFDM_RATE_9MB:
5239 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5240 1 : 0;
5241 case IEEE80211_OFDM_RATE_12MB:
5242 return priv->
5243 rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5244 case IEEE80211_OFDM_RATE_18MB:
5245 return priv->
5246 rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5247 case IEEE80211_OFDM_RATE_24MB:
5248 return priv->
5249 rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5250 case IEEE80211_OFDM_RATE_36MB:
5251 return priv->
5252 rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5253 case IEEE80211_OFDM_RATE_48MB:
5254 return priv->
5255 rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5256 case IEEE80211_OFDM_RATE_54MB:
5257 return priv->
5258 rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5259 default:
5260 return 0;
5261 }
5262 }
5263
5264 /* B and G mixed */
5265 switch (rate) {
5266 case IEEE80211_CCK_RATE_1MB:
5267 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5268 case IEEE80211_CCK_RATE_2MB:
5269 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5270 case IEEE80211_CCK_RATE_5MB:
5271 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5272 case IEEE80211_CCK_RATE_11MB:
5273 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5274 }
5275
5276 /* If we are limited to B modulations, bail at this point */
5277 if (ieee_mode == IEEE_B)
5278 return 0;
5279
5280 /* G */
5281 switch (rate) {
5282 case IEEE80211_OFDM_RATE_6MB:
5283 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5284 case IEEE80211_OFDM_RATE_9MB:
5285 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5286 case IEEE80211_OFDM_RATE_12MB:
5287 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5288 case IEEE80211_OFDM_RATE_18MB:
5289 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5290 case IEEE80211_OFDM_RATE_24MB:
5291 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5292 case IEEE80211_OFDM_RATE_36MB:
5293 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5294 case IEEE80211_OFDM_RATE_48MB:
5295 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5296 case IEEE80211_OFDM_RATE_54MB:
5297 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5298 }
5299
5300 return 0;
5301 }
5302
5303 static int ipw_compatible_rates(struct ipw_priv *priv,
5304 const struct ieee80211_network *network,
5305 struct ipw_supported_rates *rates)
5306 {
5307 int num_rates, i;
5308
5309 memset(rates, 0, sizeof(*rates));
5310 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5311 rates->num_rates = 0;
5312 for (i = 0; i < num_rates; i++) {
5313 if (!ipw_is_rate_in_mask(priv, network->mode,
5314 network->rates[i])) {
5315
5316 if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5317 IPW_DEBUG_SCAN("Adding masked mandatory "
5318 "rate %02X\n",
5319 network->rates[i]);
5320 rates->supported_rates[rates->num_rates++] =
5321 network->rates[i];
5322 continue;
5323 }
5324
5325 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5326 network->rates[i], priv->rates_mask);
5327 continue;
5328 }
5329
5330 rates->supported_rates[rates->num_rates++] = network->rates[i];
5331 }
5332
5333 num_rates = min(network->rates_ex_len,
5334 (u8) (IPW_MAX_RATES - num_rates));
5335 for (i = 0; i < num_rates; i++) {
5336 if (!ipw_is_rate_in_mask(priv, network->mode,
5337 network->rates_ex[i])) {
5338 if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5339 IPW_DEBUG_SCAN("Adding masked mandatory "
5340 "rate %02X\n",
5341 network->rates_ex[i]);
5342 rates->supported_rates[rates->num_rates++] =
5343 network->rates[i];
5344 continue;
5345 }
5346
5347 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5348 network->rates_ex[i], priv->rates_mask);
5349 continue;
5350 }
5351
5352 rates->supported_rates[rates->num_rates++] =
5353 network->rates_ex[i];
5354 }
5355
5356 return 1;
5357 }
5358
5359 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5360 const struct ipw_supported_rates *src)
5361 {
5362 u8 i;
5363 for (i = 0; i < src->num_rates; i++)
5364 dest->supported_rates[i] = src->supported_rates[i];
5365 dest->num_rates = src->num_rates;
5366 }
5367
5368 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5369 * mask should ever be used -- right now all callers to add the scan rates are
5370 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5371 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5372 u8 modulation, u32 rate_mask)
5373 {
5374 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5375 IEEE80211_BASIC_RATE_MASK : 0;
5376
5377 if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5378 rates->supported_rates[rates->num_rates++] =
5379 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5380
5381 if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5382 rates->supported_rates[rates->num_rates++] =
5383 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5384
5385 if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5386 rates->supported_rates[rates->num_rates++] = basic_mask |
5387 IEEE80211_CCK_RATE_5MB;
5388
5389 if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5390 rates->supported_rates[rates->num_rates++] = basic_mask |
5391 IEEE80211_CCK_RATE_11MB;
5392 }
5393
5394 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5395 u8 modulation, u32 rate_mask)
5396 {
5397 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5398 IEEE80211_BASIC_RATE_MASK : 0;
5399
5400 if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5401 rates->supported_rates[rates->num_rates++] = basic_mask |
5402 IEEE80211_OFDM_RATE_6MB;
5403
5404 if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5405 rates->supported_rates[rates->num_rates++] =
5406 IEEE80211_OFDM_RATE_9MB;
5407
5408 if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5409 rates->supported_rates[rates->num_rates++] = basic_mask |
5410 IEEE80211_OFDM_RATE_12MB;
5411
5412 if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5413 rates->supported_rates[rates->num_rates++] =
5414 IEEE80211_OFDM_RATE_18MB;
5415
5416 if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5417 rates->supported_rates[rates->num_rates++] = basic_mask |
5418 IEEE80211_OFDM_RATE_24MB;
5419
5420 if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5421 rates->supported_rates[rates->num_rates++] =
5422 IEEE80211_OFDM_RATE_36MB;
5423
5424 if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5425 rates->supported_rates[rates->num_rates++] =
5426 IEEE80211_OFDM_RATE_48MB;
5427
5428 if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5429 rates->supported_rates[rates->num_rates++] =
5430 IEEE80211_OFDM_RATE_54MB;
5431 }
5432
5433 struct ipw_network_match {
5434 struct ieee80211_network *network;
5435 struct ipw_supported_rates rates;
5436 };
5437
5438 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5439 struct ipw_network_match *match,
5440 struct ieee80211_network *network,
5441 int roaming)
5442 {
5443 struct ipw_supported_rates rates;
5444 DECLARE_SSID_BUF(ssid);
5445
5446 /* Verify that this network's capability is compatible with the
5447 * current mode (AdHoc or Infrastructure) */
5448 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5449 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5450 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to "
5451 "capability mismatch.\n",
5452 print_ssid(ssid, network->ssid,
5453 network->ssid_len),
5454 network->bssid);
5455 return 0;
5456 }
5457
5458 if (unlikely(roaming)) {
5459 /* If we are roaming, then ensure check if this is a valid
5460 * network to try and roam to */
5461 if ((network->ssid_len != match->network->ssid_len) ||
5462 memcmp(network->ssid, match->network->ssid,
5463 network->ssid_len)) {
5464 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5465 "because of non-network ESSID.\n",
5466 print_ssid(ssid, network->ssid,
5467 network->ssid_len),
5468 network->bssid);
5469 return 0;
5470 }
5471 } else {
5472 /* If an ESSID has been configured then compare the broadcast
5473 * ESSID to ours */
5474 if ((priv->config & CFG_STATIC_ESSID) &&
5475 ((network->ssid_len != priv->essid_len) ||
5476 memcmp(network->ssid, priv->essid,
5477 min(network->ssid_len, priv->essid_len)))) {
5478 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5479
5480 strncpy(escaped,
5481 print_ssid(ssid, network->ssid,
5482 network->ssid_len),
5483 sizeof(escaped));
5484 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5485 "because of ESSID mismatch: '%s'.\n",
5486 escaped, network->bssid,
5487 print_ssid(ssid, priv->essid,
5488 priv->essid_len));
5489 return 0;
5490 }
5491 }
5492
5493 /* If the old network rate is better than this one, don't bother
5494 * testing everything else. */
5495
5496 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5497 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5498 "current network.\n",
5499 print_ssid(ssid, match->network->ssid,
5500 match->network->ssid_len));
5501 return 0;
5502 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5503 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5504 "current network.\n",
5505 print_ssid(ssid, match->network->ssid,
5506 match->network->ssid_len));
5507 return 0;
5508 }
5509
5510 /* Now go through and see if the requested network is valid... */
5511 if (priv->ieee->scan_age != 0 &&
5512 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5513 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5514 "because of age: %ums.\n",
5515 print_ssid(ssid, network->ssid,
5516 network->ssid_len),
5517 network->bssid,
5518 jiffies_to_msecs(jiffies -
5519 network->last_scanned));
5520 return 0;
5521 }
5522
5523 if ((priv->config & CFG_STATIC_CHANNEL) &&
5524 (network->channel != priv->channel)) {
5525 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5526 "because of channel mismatch: %d != %d.\n",
5527 print_ssid(ssid, network->ssid,
5528 network->ssid_len),
5529 network->bssid,
5530 network->channel, priv->channel);
5531 return 0;
5532 }
5533
5534 /* Verify privacy compatability */
5535 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5536 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5537 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5538 "because of privacy mismatch: %s != %s.\n",
5539 print_ssid(ssid, network->ssid,
5540 network->ssid_len),
5541 network->bssid,
5542 priv->
5543 capability & CAP_PRIVACY_ON ? "on" : "off",
5544 network->
5545 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5546 "off");
5547 return 0;
5548 }
5549
5550 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5551 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5552 "because of the same BSSID match: %pM"
5553 ".\n", print_ssid(ssid, network->ssid,
5554 network->ssid_len),
5555 network->bssid,
5556 priv->bssid);
5557 return 0;
5558 }
5559
5560 /* Filter out any incompatible freq / mode combinations */
5561 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5562 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5563 "because of invalid frequency/mode "
5564 "combination.\n",
5565 print_ssid(ssid, network->ssid,
5566 network->ssid_len),
5567 network->bssid);
5568 return 0;
5569 }
5570
5571 /* Ensure that the rates supported by the driver are compatible with
5572 * this AP, including verification of basic rates (mandatory) */
5573 if (!ipw_compatible_rates(priv, network, &rates)) {
5574 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5575 "because configured rate mask excludes "
5576 "AP mandatory rate.\n",
5577 print_ssid(ssid, network->ssid,
5578 network->ssid_len),
5579 network->bssid);
5580 return 0;
5581 }
5582
5583 if (rates.num_rates == 0) {
5584 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5585 "because of no compatible rates.\n",
5586 print_ssid(ssid, network->ssid,
5587 network->ssid_len),
5588 network->bssid);
5589 return 0;
5590 }
5591
5592 /* TODO: Perform any further minimal comparititive tests. We do not
5593 * want to put too much policy logic here; intelligent scan selection
5594 * should occur within a generic IEEE 802.11 user space tool. */
5595
5596 /* Set up 'new' AP to this network */
5597 ipw_copy_rates(&match->rates, &rates);
5598 match->network = network;
5599 IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n",
5600 print_ssid(ssid, network->ssid, network->ssid_len),
5601 network->bssid);
5602
5603 return 1;
5604 }
5605
5606 static void ipw_merge_adhoc_network(struct work_struct *work)
5607 {
5608 DECLARE_SSID_BUF(ssid);
5609 struct ipw_priv *priv =
5610 container_of(work, struct ipw_priv, merge_networks);
5611 struct ieee80211_network *network = NULL;
5612 struct ipw_network_match match = {
5613 .network = priv->assoc_network
5614 };
5615
5616 if ((priv->status & STATUS_ASSOCIATED) &&
5617 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5618 /* First pass through ROAM process -- look for a better
5619 * network */
5620 unsigned long flags;
5621
5622 spin_lock_irqsave(&priv->ieee->lock, flags);
5623 list_for_each_entry(network, &priv->ieee->network_list, list) {
5624 if (network != priv->assoc_network)
5625 ipw_find_adhoc_network(priv, &match, network,
5626 1);
5627 }
5628 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5629
5630 if (match.network == priv->assoc_network) {
5631 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5632 "merge to.\n");
5633 return;
5634 }
5635
5636 mutex_lock(&priv->mutex);
5637 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5638 IPW_DEBUG_MERGE("remove network %s\n",
5639 print_ssid(ssid, priv->essid,
5640 priv->essid_len));
5641 ipw_remove_current_network(priv);
5642 }
5643
5644 ipw_disassociate(priv);
5645 priv->assoc_network = match.network;
5646 mutex_unlock(&priv->mutex);
5647 return;
5648 }
5649 }
5650
5651 static int ipw_best_network(struct ipw_priv *priv,
5652 struct ipw_network_match *match,
5653 struct ieee80211_network *network, int roaming)
5654 {
5655 struct ipw_supported_rates rates;
5656 DECLARE_SSID_BUF(ssid);
5657
5658 /* Verify that this network's capability is compatible with the
5659 * current mode (AdHoc or Infrastructure) */
5660 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5661 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5662 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5663 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5664 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to "
5665 "capability mismatch.\n",
5666 print_ssid(ssid, network->ssid,
5667 network->ssid_len),
5668 network->bssid);
5669 return 0;
5670 }
5671
5672 if (unlikely(roaming)) {
5673 /* If we are roaming, then ensure check if this is a valid
5674 * network to try and roam to */
5675 if ((network->ssid_len != match->network->ssid_len) ||
5676 memcmp(network->ssid, match->network->ssid,
5677 network->ssid_len)) {
5678 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5679 "because of non-network ESSID.\n",
5680 print_ssid(ssid, network->ssid,
5681 network->ssid_len),
5682 network->bssid);
5683 return 0;
5684 }
5685 } else {
5686 /* If an ESSID has been configured then compare the broadcast
5687 * ESSID to ours */
5688 if ((priv->config & CFG_STATIC_ESSID) &&
5689 ((network->ssid_len != priv->essid_len) ||
5690 memcmp(network->ssid, priv->essid,
5691 min(network->ssid_len, priv->essid_len)))) {
5692 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5693 strncpy(escaped,
5694 print_ssid(ssid, network->ssid,
5695 network->ssid_len),
5696 sizeof(escaped));
5697 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5698 "because of ESSID mismatch: '%s'.\n",
5699 escaped, network->bssid,
5700 print_ssid(ssid, priv->essid,
5701 priv->essid_len));
5702 return 0;
5703 }
5704 }
5705
5706 /* If the old network rate is better than this one, don't bother
5707 * testing everything else. */
5708 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5709 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5710 strncpy(escaped,
5711 print_ssid(ssid, network->ssid, network->ssid_len),
5712 sizeof(escaped));
5713 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because "
5714 "'%s (%pM)' has a stronger signal.\n",
5715 escaped, network->bssid,
5716 print_ssid(ssid, match->network->ssid,
5717 match->network->ssid_len),
5718 match->network->bssid);
5719 return 0;
5720 }
5721
5722 /* If this network has already had an association attempt within the
5723 * last 3 seconds, do not try and associate again... */
5724 if (network->last_associate &&
5725 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5726 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5727 "because of storming (%ums since last "
5728 "assoc attempt).\n",
5729 print_ssid(ssid, network->ssid,
5730 network->ssid_len),
5731 network->bssid,
5732 jiffies_to_msecs(jiffies -
5733 network->last_associate));
5734 return 0;
5735 }
5736
5737 /* Now go through and see if the requested network is valid... */
5738 if (priv->ieee->scan_age != 0 &&
5739 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5740 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5741 "because of age: %ums.\n",
5742 print_ssid(ssid, network->ssid,
5743 network->ssid_len),
5744 network->bssid,
5745 jiffies_to_msecs(jiffies -
5746 network->last_scanned));
5747 return 0;
5748 }
5749
5750 if ((priv->config & CFG_STATIC_CHANNEL) &&
5751 (network->channel != priv->channel)) {
5752 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5753 "because of channel mismatch: %d != %d.\n",
5754 print_ssid(ssid, network->ssid,
5755 network->ssid_len),
5756 network->bssid,
5757 network->channel, priv->channel);
5758 return 0;
5759 }
5760
5761 /* Verify privacy compatability */
5762 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5763 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5764 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5765 "because of privacy mismatch: %s != %s.\n",
5766 print_ssid(ssid, network->ssid,
5767 network->ssid_len),
5768 network->bssid,
5769 priv->capability & CAP_PRIVACY_ON ? "on" :
5770 "off",
5771 network->capability &
5772 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5773 return 0;
5774 }
5775
5776 if ((priv->config & CFG_STATIC_BSSID) &&
5777 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5778 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5779 "because of BSSID mismatch: %pM.\n",
5780 print_ssid(ssid, network->ssid,
5781 network->ssid_len),
5782 network->bssid, priv->bssid);
5783 return 0;
5784 }
5785
5786 /* Filter out any incompatible freq / mode combinations */
5787 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5788 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5789 "because of invalid frequency/mode "
5790 "combination.\n",
5791 print_ssid(ssid, network->ssid,
5792 network->ssid_len),
5793 network->bssid);
5794 return 0;
5795 }
5796
5797 /* Filter out invalid channel in current GEO */
5798 if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5799 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5800 "because of invalid channel in current GEO\n",
5801 print_ssid(ssid, network->ssid,
5802 network->ssid_len),
5803 network->bssid);
5804 return 0;
5805 }
5806
5807 /* Ensure that the rates supported by the driver are compatible with
5808 * this AP, including verification of basic rates (mandatory) */
5809 if (!ipw_compatible_rates(priv, network, &rates)) {
5810 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5811 "because configured rate mask excludes "
5812 "AP mandatory rate.\n",
5813 print_ssid(ssid, network->ssid,
5814 network->ssid_len),
5815 network->bssid);
5816 return 0;
5817 }
5818
5819 if (rates.num_rates == 0) {
5820 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5821 "because of no compatible rates.\n",
5822 print_ssid(ssid, network->ssid,
5823 network->ssid_len),
5824 network->bssid);
5825 return 0;
5826 }
5827
5828 /* TODO: Perform any further minimal comparititive tests. We do not
5829 * want to put too much policy logic here; intelligent scan selection
5830 * should occur within a generic IEEE 802.11 user space tool. */
5831
5832 /* Set up 'new' AP to this network */
5833 ipw_copy_rates(&match->rates, &rates);
5834 match->network = network;
5835
5836 IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n",
5837 print_ssid(ssid, network->ssid, network->ssid_len),
5838 network->bssid);
5839
5840 return 1;
5841 }
5842
5843 static void ipw_adhoc_create(struct ipw_priv *priv,
5844 struct ieee80211_network *network)
5845 {
5846 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5847 int i;
5848
5849 /*
5850 * For the purposes of scanning, we can set our wireless mode
5851 * to trigger scans across combinations of bands, but when it
5852 * comes to creating a new ad-hoc network, we have tell the FW
5853 * exactly which band to use.
5854 *
5855 * We also have the possibility of an invalid channel for the
5856 * chossen band. Attempting to create a new ad-hoc network
5857 * with an invalid channel for wireless mode will trigger a
5858 * FW fatal error.
5859 *
5860 */
5861 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5862 case IEEE80211_52GHZ_BAND:
5863 network->mode = IEEE_A;
5864 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5865 BUG_ON(i == -1);
5866 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5867 IPW_WARNING("Overriding invalid channel\n");
5868 priv->channel = geo->a[0].channel;
5869 }
5870 break;
5871
5872 case IEEE80211_24GHZ_BAND:
5873 if (priv->ieee->mode & IEEE_G)
5874 network->mode = IEEE_G;
5875 else
5876 network->mode = IEEE_B;
5877 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5878 BUG_ON(i == -1);
5879 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5880 IPW_WARNING("Overriding invalid channel\n");
5881 priv->channel = geo->bg[0].channel;
5882 }
5883 break;
5884
5885 default:
5886 IPW_WARNING("Overriding invalid channel\n");
5887 if (priv->ieee->mode & IEEE_A) {
5888 network->mode = IEEE_A;
5889 priv->channel = geo->a[0].channel;
5890 } else if (priv->ieee->mode & IEEE_G) {
5891 network->mode = IEEE_G;
5892 priv->channel = geo->bg[0].channel;
5893 } else {
5894 network->mode = IEEE_B;
5895 priv->channel = geo->bg[0].channel;
5896 }
5897 break;
5898 }
5899
5900 network->channel = priv->channel;
5901 priv->config |= CFG_ADHOC_PERSIST;
5902 ipw_create_bssid(priv, network->bssid);
5903 network->ssid_len = priv->essid_len;
5904 memcpy(network->ssid, priv->essid, priv->essid_len);
5905 memset(&network->stats, 0, sizeof(network->stats));
5906 network->capability = WLAN_CAPABILITY_IBSS;
5907 if (!(priv->config & CFG_PREAMBLE_LONG))
5908 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5909 if (priv->capability & CAP_PRIVACY_ON)
5910 network->capability |= WLAN_CAPABILITY_PRIVACY;
5911 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5912 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5913 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5914 memcpy(network->rates_ex,
5915 &priv->rates.supported_rates[network->rates_len],
5916 network->rates_ex_len);
5917 network->last_scanned = 0;
5918 network->flags = 0;
5919 network->last_associate = 0;
5920 network->time_stamp[0] = 0;
5921 network->time_stamp[1] = 0;
5922 network->beacon_interval = 100; /* Default */
5923 network->listen_interval = 10; /* Default */
5924 network->atim_window = 0; /* Default */
5925 network->wpa_ie_len = 0;
5926 network->rsn_ie_len = 0;
5927 }
5928
5929 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5930 {
5931 struct ipw_tgi_tx_key key;
5932
5933 if (!(priv->ieee->sec.flags & (1 << index)))
5934 return;
5935
5936 key.key_id = index;
5937 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5938 key.security_type = type;
5939 key.station_index = 0; /* always 0 for BSS */
5940 key.flags = 0;
5941 /* 0 for new key; previous value of counter (after fatal error) */
5942 key.tx_counter[0] = cpu_to_le32(0);
5943 key.tx_counter[1] = cpu_to_le32(0);
5944
5945 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5946 }
5947
5948 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5949 {
5950 struct ipw_wep_key key;
5951 int i;
5952
5953 key.cmd_id = DINO_CMD_WEP_KEY;
5954 key.seq_num = 0;
5955
5956 /* Note: AES keys cannot be set for multiple times.
5957 * Only set it at the first time. */
5958 for (i = 0; i < 4; i++) {
5959 key.key_index = i | type;
5960 if (!(priv->ieee->sec.flags & (1 << i))) {
5961 key.key_size = 0;
5962 continue;
5963 }
5964
5965 key.key_size = priv->ieee->sec.key_sizes[i];
5966 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5967
5968 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5969 }
5970 }
5971
5972 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5973 {
5974 if (priv->ieee->host_encrypt)
5975 return;
5976
5977 switch (level) {
5978 case SEC_LEVEL_3:
5979 priv->sys_config.disable_unicast_decryption = 0;
5980 priv->ieee->host_decrypt = 0;
5981 break;
5982 case SEC_LEVEL_2:
5983 priv->sys_config.disable_unicast_decryption = 1;
5984 priv->ieee->host_decrypt = 1;
5985 break;
5986 case SEC_LEVEL_1:
5987 priv->sys_config.disable_unicast_decryption = 0;
5988 priv->ieee->host_decrypt = 0;
5989 break;
5990 case SEC_LEVEL_0:
5991 priv->sys_config.disable_unicast_decryption = 1;
5992 break;
5993 default:
5994 break;
5995 }
5996 }
5997
5998 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5999 {
6000 if (priv->ieee->host_encrypt)
6001 return;
6002
6003 switch (level) {
6004 case SEC_LEVEL_3:
6005 priv->sys_config.disable_multicast_decryption = 0;
6006 break;
6007 case SEC_LEVEL_2:
6008 priv->sys_config.disable_multicast_decryption = 1;
6009 break;
6010 case SEC_LEVEL_1:
6011 priv->sys_config.disable_multicast_decryption = 0;
6012 break;
6013 case SEC_LEVEL_0:
6014 priv->sys_config.disable_multicast_decryption = 1;
6015 break;
6016 default:
6017 break;
6018 }
6019 }
6020
6021 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6022 {
6023 switch (priv->ieee->sec.level) {
6024 case SEC_LEVEL_3:
6025 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6026 ipw_send_tgi_tx_key(priv,
6027 DCT_FLAG_EXT_SECURITY_CCM,
6028 priv->ieee->sec.active_key);
6029
6030 if (!priv->ieee->host_mc_decrypt)
6031 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6032 break;
6033 case SEC_LEVEL_2:
6034 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6035 ipw_send_tgi_tx_key(priv,
6036 DCT_FLAG_EXT_SECURITY_TKIP,
6037 priv->ieee->sec.active_key);
6038 break;
6039 case SEC_LEVEL_1:
6040 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6041 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6042 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6043 break;
6044 case SEC_LEVEL_0:
6045 default:
6046 break;
6047 }
6048 }
6049
6050 static void ipw_adhoc_check(void *data)
6051 {
6052 struct ipw_priv *priv = data;
6053
6054 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6055 !(priv->config & CFG_ADHOC_PERSIST)) {
6056 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6057 IPW_DL_STATE | IPW_DL_ASSOC,
6058 "Missed beacon: %d - disassociate\n",
6059 priv->missed_adhoc_beacons);
6060 ipw_remove_current_network(priv);
6061 ipw_disassociate(priv);
6062 return;
6063 }
6064
6065 queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6066 le16_to_cpu(priv->assoc_request.beacon_interval));
6067 }
6068
6069 static void ipw_bg_adhoc_check(struct work_struct *work)
6070 {
6071 struct ipw_priv *priv =
6072 container_of(work, struct ipw_priv, adhoc_check.work);
6073 mutex_lock(&priv->mutex);
6074 ipw_adhoc_check(priv);
6075 mutex_unlock(&priv->mutex);
6076 }
6077
6078 static void ipw_debug_config(struct ipw_priv *priv)
6079 {
6080 DECLARE_SSID_BUF(ssid);
6081 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6082 "[CFG 0x%08X]\n", priv->config);
6083 if (priv->config & CFG_STATIC_CHANNEL)
6084 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6085 else
6086 IPW_DEBUG_INFO("Channel unlocked.\n");
6087 if (priv->config & CFG_STATIC_ESSID)
6088 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6089 print_ssid(ssid, priv->essid, priv->essid_len));
6090 else
6091 IPW_DEBUG_INFO("ESSID unlocked.\n");
6092 if (priv->config & CFG_STATIC_BSSID)
6093 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6094 else
6095 IPW_DEBUG_INFO("BSSID unlocked.\n");
6096 if (priv->capability & CAP_PRIVACY_ON)
6097 IPW_DEBUG_INFO("PRIVACY on\n");
6098 else
6099 IPW_DEBUG_INFO("PRIVACY off\n");
6100 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6101 }
6102
6103 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6104 {
6105 /* TODO: Verify that this works... */
6106 struct ipw_fixed_rate fr = {
6107 .tx_rates = priv->rates_mask
6108 };
6109 u32 reg;
6110 u16 mask = 0;
6111
6112 /* Identify 'current FW band' and match it with the fixed
6113 * Tx rates */
6114
6115 switch (priv->ieee->freq_band) {
6116 case IEEE80211_52GHZ_BAND: /* A only */
6117 /* IEEE_A */
6118 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6119 /* Invalid fixed rate mask */
6120 IPW_DEBUG_WX
6121 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6122 fr.tx_rates = 0;
6123 break;
6124 }
6125
6126 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6127 break;
6128
6129 default: /* 2.4Ghz or Mixed */
6130 /* IEEE_B */
6131 if (mode == IEEE_B) {
6132 if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6133 /* Invalid fixed rate mask */
6134 IPW_DEBUG_WX
6135 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6136 fr.tx_rates = 0;
6137 }
6138 break;
6139 }
6140
6141 /* IEEE_G */
6142 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6143 IEEE80211_OFDM_RATES_MASK)) {
6144 /* Invalid fixed rate mask */
6145 IPW_DEBUG_WX
6146 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6147 fr.tx_rates = 0;
6148 break;
6149 }
6150
6151 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6152 mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6153 fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6154 }
6155
6156 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6157 mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6158 fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6159 }
6160
6161 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6162 mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6163 fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6164 }
6165
6166 fr.tx_rates |= mask;
6167 break;
6168 }
6169
6170 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6171 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6172 }
6173
6174 static void ipw_abort_scan(struct ipw_priv *priv)
6175 {
6176 int err;
6177
6178 if (priv->status & STATUS_SCAN_ABORTING) {
6179 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6180 return;
6181 }
6182 priv->status |= STATUS_SCAN_ABORTING;
6183
6184 err = ipw_send_scan_abort(priv);
6185 if (err)
6186 IPW_DEBUG_HC("Request to abort scan failed.\n");
6187 }
6188
6189 static void ipw_add_scan_channels(struct ipw_priv *priv,
6190 struct ipw_scan_request_ext *scan,
6191 int scan_type)
6192 {
6193 int channel_index = 0;
6194 const struct ieee80211_geo *geo;
6195 int i;
6196
6197 geo = ieee80211_get_geo(priv->ieee);
6198
6199 if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6200 int start = channel_index;
6201 for (i = 0; i < geo->a_channels; i++) {
6202 if ((priv->status & STATUS_ASSOCIATED) &&
6203 geo->a[i].channel == priv->channel)
6204 continue;
6205 channel_index++;
6206 scan->channels_list[channel_index] = geo->a[i].channel;
6207 ipw_set_scan_type(scan, channel_index,
6208 geo->a[i].
6209 flags & IEEE80211_CH_PASSIVE_ONLY ?
6210 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6211 scan_type);
6212 }
6213
6214 if (start != channel_index) {
6215 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6216 (channel_index - start);
6217 channel_index++;
6218 }
6219 }
6220
6221 if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6222 int start = channel_index;
6223 if (priv->config & CFG_SPEED_SCAN) {
6224 int index;
6225 u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6226 /* nop out the list */
6227 [0] = 0
6228 };
6229
6230 u8 channel;
6231 while (channel_index < IPW_SCAN_CHANNELS) {
6232 channel =
6233 priv->speed_scan[priv->speed_scan_pos];
6234 if (channel == 0) {
6235 priv->speed_scan_pos = 0;
6236 channel = priv->speed_scan[0];
6237 }
6238 if ((priv->status & STATUS_ASSOCIATED) &&
6239 channel == priv->channel) {
6240 priv->speed_scan_pos++;
6241 continue;
6242 }
6243
6244 /* If this channel has already been
6245 * added in scan, break from loop
6246 * and this will be the first channel
6247 * in the next scan.
6248 */
6249 if (channels[channel - 1] != 0)
6250 break;
6251
6252 channels[channel - 1] = 1;
6253 priv->speed_scan_pos++;
6254 channel_index++;
6255 scan->channels_list[channel_index] = channel;
6256 index =
6257 ieee80211_channel_to_index(priv->ieee, channel);
6258 ipw_set_scan_type(scan, channel_index,
6259 geo->bg[index].
6260 flags &
6261 IEEE80211_CH_PASSIVE_ONLY ?
6262 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6263 : scan_type);
6264 }
6265 } else {
6266 for (i = 0; i < geo->bg_channels; i++) {
6267 if ((priv->status & STATUS_ASSOCIATED) &&
6268 geo->bg[i].channel == priv->channel)
6269 continue;
6270 channel_index++;
6271 scan->channels_list[channel_index] =
6272 geo->bg[i].channel;
6273 ipw_set_scan_type(scan, channel_index,
6274 geo->bg[i].
6275 flags &
6276 IEEE80211_CH_PASSIVE_ONLY ?
6277 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6278 : scan_type);
6279 }
6280 }
6281
6282 if (start != channel_index) {
6283 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6284 (channel_index - start);
6285 }
6286 }
6287 }
6288
6289 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6290 {
6291 /* staying on passive channels longer than the DTIM interval during a
6292 * scan, while associated, causes the firmware to cancel the scan
6293 * without notification. Hence, don't stay on passive channels longer
6294 * than the beacon interval.
6295 */
6296 if (priv->status & STATUS_ASSOCIATED
6297 && priv->assoc_network->beacon_interval > 10)
6298 return priv->assoc_network->beacon_interval - 10;
6299 else
6300 return 120;
6301 }
6302
6303 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6304 {
6305 struct ipw_scan_request_ext scan;
6306 int err = 0, scan_type;
6307
6308 if (!(priv->status & STATUS_INIT) ||
6309 (priv->status & STATUS_EXIT_PENDING))
6310 return 0;
6311
6312 mutex_lock(&priv->mutex);
6313
6314 if (direct && (priv->direct_scan_ssid_len == 0)) {
6315 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6316 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6317 goto done;
6318 }
6319
6320 if (priv->status & STATUS_SCANNING) {
6321 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n");
6322 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6323 STATUS_SCAN_PENDING;
6324 goto done;
6325 }
6326
6327 if (!(priv->status & STATUS_SCAN_FORCED) &&
6328 priv->status & STATUS_SCAN_ABORTING) {
6329 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6330 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6331 STATUS_SCAN_PENDING;
6332 goto done;
6333 }
6334
6335 if (priv->status & STATUS_RF_KILL_MASK) {
6336 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6337 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6338 STATUS_SCAN_PENDING;
6339 goto done;
6340 }
6341
6342 memset(&scan, 0, sizeof(scan));
6343 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6344
6345 if (type == IW_SCAN_TYPE_PASSIVE) {
6346 IPW_DEBUG_WX("use passive scanning\n");
6347 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6348 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6349 cpu_to_le16(ipw_passive_dwell_time(priv));
6350 ipw_add_scan_channels(priv, &scan, scan_type);
6351 goto send_request;
6352 }
6353
6354 /* Use active scan by default. */
6355 if (priv->config & CFG_SPEED_SCAN)
6356 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6357 cpu_to_le16(30);
6358 else
6359 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6360 cpu_to_le16(20);
6361
6362 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6363 cpu_to_le16(20);
6364
6365 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6366 cpu_to_le16(ipw_passive_dwell_time(priv));
6367 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6368
6369 #ifdef CONFIG_IPW2200_MONITOR
6370 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6371 u8 channel;
6372 u8 band = 0;
6373
6374 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6375 case IEEE80211_52GHZ_BAND:
6376 band = (u8) (IPW_A_MODE << 6) | 1;
6377 channel = priv->channel;
6378 break;
6379
6380 case IEEE80211_24GHZ_BAND:
6381 band = (u8) (IPW_B_MODE << 6) | 1;
6382 channel = priv->channel;
6383 break;
6384
6385 default:
6386 band = (u8) (IPW_B_MODE << 6) | 1;
6387 channel = 9;
6388 break;
6389 }
6390
6391 scan.channels_list[0] = band;
6392 scan.channels_list[1] = channel;
6393 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6394
6395 /* NOTE: The card will sit on this channel for this time
6396 * period. Scan aborts are timing sensitive and frequently
6397 * result in firmware restarts. As such, it is best to
6398 * set a small dwell_time here and just keep re-issuing
6399 * scans. Otherwise fast channel hopping will not actually
6400 * hop channels.
6401 *
6402 * TODO: Move SPEED SCAN support to all modes and bands */
6403 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6404 cpu_to_le16(2000);
6405 } else {
6406 #endif /* CONFIG_IPW2200_MONITOR */
6407 /* Honor direct scans first, otherwise if we are roaming make
6408 * this a direct scan for the current network. Finally,
6409 * ensure that every other scan is a fast channel hop scan */
6410 if (direct) {
6411 err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6412 priv->direct_scan_ssid_len);
6413 if (err) {
6414 IPW_DEBUG_HC("Attempt to send SSID command "
6415 "failed\n");
6416 goto done;
6417 }
6418
6419 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6420 } else if ((priv->status & STATUS_ROAMING)
6421 || (!(priv->status & STATUS_ASSOCIATED)
6422 && (priv->config & CFG_STATIC_ESSID)
6423 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6424 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6425 if (err) {
6426 IPW_DEBUG_HC("Attempt to send SSID command "
6427 "failed.\n");
6428 goto done;
6429 }
6430
6431 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6432 } else
6433 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6434
6435 ipw_add_scan_channels(priv, &scan, scan_type);
6436 #ifdef CONFIG_IPW2200_MONITOR
6437 }
6438 #endif
6439
6440 send_request:
6441 err = ipw_send_scan_request_ext(priv, &scan);
6442 if (err) {
6443 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6444 goto done;
6445 }
6446
6447 priv->status |= STATUS_SCANNING;
6448 if (direct) {
6449 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6450 priv->direct_scan_ssid_len = 0;
6451 } else
6452 priv->status &= ~STATUS_SCAN_PENDING;
6453
6454 queue_delayed_work(priv->workqueue, &priv->scan_check,
6455 IPW_SCAN_CHECK_WATCHDOG);
6456 done:
6457 mutex_unlock(&priv->mutex);
6458 return err;
6459 }
6460
6461 static void ipw_request_passive_scan(struct work_struct *work)
6462 {
6463 struct ipw_priv *priv =
6464 container_of(work, struct ipw_priv, request_passive_scan.work);
6465 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6466 }
6467
6468 static void ipw_request_scan(struct work_struct *work)
6469 {
6470 struct ipw_priv *priv =
6471 container_of(work, struct ipw_priv, request_scan.work);
6472 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6473 }
6474
6475 static void ipw_request_direct_scan(struct work_struct *work)
6476 {
6477 struct ipw_priv *priv =
6478 container_of(work, struct ipw_priv, request_direct_scan.work);
6479 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6480 }
6481
6482 static void ipw_bg_abort_scan(struct work_struct *work)
6483 {
6484 struct ipw_priv *priv =
6485 container_of(work, struct ipw_priv, abort_scan);
6486 mutex_lock(&priv->mutex);
6487 ipw_abort_scan(priv);
6488 mutex_unlock(&priv->mutex);
6489 }
6490
6491 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6492 {
6493 /* This is called when wpa_supplicant loads and closes the driver
6494 * interface. */
6495 priv->ieee->wpa_enabled = value;
6496 return 0;
6497 }
6498
6499 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6500 {
6501 struct ieee80211_device *ieee = priv->ieee;
6502 struct ieee80211_security sec = {
6503 .flags = SEC_AUTH_MODE,
6504 };
6505 int ret = 0;
6506
6507 if (value & IW_AUTH_ALG_SHARED_KEY) {
6508 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6509 ieee->open_wep = 0;
6510 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6511 sec.auth_mode = WLAN_AUTH_OPEN;
6512 ieee->open_wep = 1;
6513 } else if (value & IW_AUTH_ALG_LEAP) {
6514 sec.auth_mode = WLAN_AUTH_LEAP;
6515 ieee->open_wep = 1;
6516 } else
6517 return -EINVAL;
6518
6519 if (ieee->set_security)
6520 ieee->set_security(ieee->dev, &sec);
6521 else
6522 ret = -EOPNOTSUPP;
6523
6524 return ret;
6525 }
6526
6527 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6528 int wpa_ie_len)
6529 {
6530 /* make sure WPA is enabled */
6531 ipw_wpa_enable(priv, 1);
6532 }
6533
6534 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6535 char *capabilities, int length)
6536 {
6537 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6538
6539 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6540 capabilities);
6541 }
6542
6543 /*
6544 * WE-18 support
6545 */
6546
6547 /* SIOCSIWGENIE */
6548 static int ipw_wx_set_genie(struct net_device *dev,
6549 struct iw_request_info *info,
6550 union iwreq_data *wrqu, char *extra)
6551 {
6552 struct ipw_priv *priv = ieee80211_priv(dev);
6553 struct ieee80211_device *ieee = priv->ieee;
6554 u8 *buf;
6555 int err = 0;
6556
6557 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6558 (wrqu->data.length && extra == NULL))
6559 return -EINVAL;
6560
6561 if (wrqu->data.length) {
6562 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6563 if (buf == NULL) {
6564 err = -ENOMEM;
6565 goto out;
6566 }
6567
6568 memcpy(buf, extra, wrqu->data.length);
6569 kfree(ieee->wpa_ie);
6570 ieee->wpa_ie = buf;
6571 ieee->wpa_ie_len = wrqu->data.length;
6572 } else {
6573 kfree(ieee->wpa_ie);
6574 ieee->wpa_ie = NULL;
6575 ieee->wpa_ie_len = 0;
6576 }
6577
6578 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6579 out:
6580 return err;
6581 }
6582
6583 /* SIOCGIWGENIE */
6584 static int ipw_wx_get_genie(struct net_device *dev,
6585 struct iw_request_info *info,
6586 union iwreq_data *wrqu, char *extra)
6587 {
6588 struct ipw_priv *priv = ieee80211_priv(dev);
6589 struct ieee80211_device *ieee = priv->ieee;
6590 int err = 0;
6591
6592 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6593 wrqu->data.length = 0;
6594 goto out;
6595 }
6596
6597 if (wrqu->data.length < ieee->wpa_ie_len) {
6598 err = -E2BIG;
6599 goto out;
6600 }
6601
6602 wrqu->data.length = ieee->wpa_ie_len;
6603 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6604
6605 out:
6606 return err;
6607 }
6608
6609 static int wext_cipher2level(int cipher)
6610 {
6611 switch (cipher) {
6612 case IW_AUTH_CIPHER_NONE:
6613 return SEC_LEVEL_0;
6614 case IW_AUTH_CIPHER_WEP40:
6615 case IW_AUTH_CIPHER_WEP104:
6616 return SEC_LEVEL_1;
6617 case IW_AUTH_CIPHER_TKIP:
6618 return SEC_LEVEL_2;
6619 case IW_AUTH_CIPHER_CCMP:
6620 return SEC_LEVEL_3;
6621 default:
6622 return -1;
6623 }
6624 }
6625
6626 /* SIOCSIWAUTH */
6627 static int ipw_wx_set_auth(struct net_device *dev,
6628 struct iw_request_info *info,
6629 union iwreq_data *wrqu, char *extra)
6630 {
6631 struct ipw_priv *priv = ieee80211_priv(dev);
6632 struct ieee80211_device *ieee = priv->ieee;
6633 struct iw_param *param = &wrqu->param;
6634 struct lib80211_crypt_data *crypt;
6635 unsigned long flags;
6636 int ret = 0;
6637
6638 switch (param->flags & IW_AUTH_INDEX) {
6639 case IW_AUTH_WPA_VERSION:
6640 break;
6641 case IW_AUTH_CIPHER_PAIRWISE:
6642 ipw_set_hw_decrypt_unicast(priv,
6643 wext_cipher2level(param->value));
6644 break;
6645 case IW_AUTH_CIPHER_GROUP:
6646 ipw_set_hw_decrypt_multicast(priv,
6647 wext_cipher2level(param->value));
6648 break;
6649 case IW_AUTH_KEY_MGMT:
6650 /*
6651 * ipw2200 does not use these parameters
6652 */
6653 break;
6654
6655 case IW_AUTH_TKIP_COUNTERMEASURES:
6656 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6657 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6658 break;
6659
6660 flags = crypt->ops->get_flags(crypt->priv);
6661
6662 if (param->value)
6663 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6664 else
6665 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6666
6667 crypt->ops->set_flags(flags, crypt->priv);
6668
6669 break;
6670
6671 case IW_AUTH_DROP_UNENCRYPTED:{
6672 /* HACK:
6673 *
6674 * wpa_supplicant calls set_wpa_enabled when the driver
6675 * is loaded and unloaded, regardless of if WPA is being
6676 * used. No other calls are made which can be used to
6677 * determine if encryption will be used or not prior to
6678 * association being expected. If encryption is not being
6679 * used, drop_unencrypted is set to false, else true -- we
6680 * can use this to determine if the CAP_PRIVACY_ON bit should
6681 * be set.
6682 */
6683 struct ieee80211_security sec = {
6684 .flags = SEC_ENABLED,
6685 .enabled = param->value,
6686 };
6687 priv->ieee->drop_unencrypted = param->value;
6688 /* We only change SEC_LEVEL for open mode. Others
6689 * are set by ipw_wpa_set_encryption.
6690 */
6691 if (!param->value) {
6692 sec.flags |= SEC_LEVEL;
6693 sec.level = SEC_LEVEL_0;
6694 } else {
6695 sec.flags |= SEC_LEVEL;
6696 sec.level = SEC_LEVEL_1;
6697 }
6698 if (priv->ieee->set_security)
6699 priv->ieee->set_security(priv->ieee->dev, &sec);
6700 break;
6701 }
6702
6703 case IW_AUTH_80211_AUTH_ALG:
6704 ret = ipw_wpa_set_auth_algs(priv, param->value);
6705 break;
6706
6707 case IW_AUTH_WPA_ENABLED:
6708 ret = ipw_wpa_enable(priv, param->value);
6709 ipw_disassociate(priv);
6710 break;
6711
6712 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6713 ieee->ieee802_1x = param->value;
6714 break;
6715
6716 case IW_AUTH_PRIVACY_INVOKED:
6717 ieee->privacy_invoked = param->value;
6718 break;
6719
6720 default:
6721 return -EOPNOTSUPP;
6722 }
6723 return ret;
6724 }
6725
6726 /* SIOCGIWAUTH */
6727 static int ipw_wx_get_auth(struct net_device *dev,
6728 struct iw_request_info *info,
6729 union iwreq_data *wrqu, char *extra)
6730 {
6731 struct ipw_priv *priv = ieee80211_priv(dev);
6732 struct ieee80211_device *ieee = priv->ieee;
6733 struct lib80211_crypt_data *crypt;
6734 struct iw_param *param = &wrqu->param;
6735 int ret = 0;
6736
6737 switch (param->flags & IW_AUTH_INDEX) {
6738 case IW_AUTH_WPA_VERSION:
6739 case IW_AUTH_CIPHER_PAIRWISE:
6740 case IW_AUTH_CIPHER_GROUP:
6741 case IW_AUTH_KEY_MGMT:
6742 /*
6743 * wpa_supplicant will control these internally
6744 */
6745 ret = -EOPNOTSUPP;
6746 break;
6747
6748 case IW_AUTH_TKIP_COUNTERMEASURES:
6749 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6750 if (!crypt || !crypt->ops->get_flags)
6751 break;
6752
6753 param->value = (crypt->ops->get_flags(crypt->priv) &
6754 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6755
6756 break;
6757
6758 case IW_AUTH_DROP_UNENCRYPTED:
6759 param->value = ieee->drop_unencrypted;
6760 break;
6761
6762 case IW_AUTH_80211_AUTH_ALG:
6763 param->value = ieee->sec.auth_mode;
6764 break;
6765
6766 case IW_AUTH_WPA_ENABLED:
6767 param->value = ieee->wpa_enabled;
6768 break;
6769
6770 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6771 param->value = ieee->ieee802_1x;
6772 break;
6773
6774 case IW_AUTH_ROAMING_CONTROL:
6775 case IW_AUTH_PRIVACY_INVOKED:
6776 param->value = ieee->privacy_invoked;
6777 break;
6778
6779 default:
6780 return -EOPNOTSUPP;
6781 }
6782 return 0;
6783 }
6784
6785 /* SIOCSIWENCODEEXT */
6786 static int ipw_wx_set_encodeext(struct net_device *dev,
6787 struct iw_request_info *info,
6788 union iwreq_data *wrqu, char *extra)
6789 {
6790 struct ipw_priv *priv = ieee80211_priv(dev);
6791 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6792
6793 if (hwcrypto) {
6794 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6795 /* IPW HW can't build TKIP MIC,
6796 host decryption still needed */
6797 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6798 priv->ieee->host_mc_decrypt = 1;
6799 else {
6800 priv->ieee->host_encrypt = 0;
6801 priv->ieee->host_encrypt_msdu = 1;
6802 priv->ieee->host_decrypt = 1;
6803 }
6804 } else {
6805 priv->ieee->host_encrypt = 0;
6806 priv->ieee->host_encrypt_msdu = 0;
6807 priv->ieee->host_decrypt = 0;
6808 priv->ieee->host_mc_decrypt = 0;
6809 }
6810 }
6811
6812 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6813 }
6814
6815 /* SIOCGIWENCODEEXT */
6816 static int ipw_wx_get_encodeext(struct net_device *dev,
6817 struct iw_request_info *info,
6818 union iwreq_data *wrqu, char *extra)
6819 {
6820 struct ipw_priv *priv = ieee80211_priv(dev);
6821 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6822 }
6823
6824 /* SIOCSIWMLME */
6825 static int ipw_wx_set_mlme(struct net_device *dev,
6826 struct iw_request_info *info,
6827 union iwreq_data *wrqu, char *extra)
6828 {
6829 struct ipw_priv *priv = ieee80211_priv(dev);
6830 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6831 __le16 reason;
6832
6833 reason = cpu_to_le16(mlme->reason_code);
6834
6835 switch (mlme->cmd) {
6836 case IW_MLME_DEAUTH:
6837 /* silently ignore */
6838 break;
6839
6840 case IW_MLME_DISASSOC:
6841 ipw_disassociate(priv);
6842 break;
6843
6844 default:
6845 return -EOPNOTSUPP;
6846 }
6847 return 0;
6848 }
6849
6850 #ifdef CONFIG_IPW2200_QOS
6851
6852 /* QoS */
6853 /*
6854 * get the modulation type of the current network or
6855 * the card current mode
6856 */
6857 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6858 {
6859 u8 mode = 0;
6860
6861 if (priv->status & STATUS_ASSOCIATED) {
6862 unsigned long flags;
6863
6864 spin_lock_irqsave(&priv->ieee->lock, flags);
6865 mode = priv->assoc_network->mode;
6866 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6867 } else {
6868 mode = priv->ieee->mode;
6869 }
6870 IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6871 return mode;
6872 }
6873
6874 /*
6875 * Handle management frame beacon and probe response
6876 */
6877 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6878 int active_network,
6879 struct ieee80211_network *network)
6880 {
6881 u32 size = sizeof(struct ieee80211_qos_parameters);
6882
6883 if (network->capability & WLAN_CAPABILITY_IBSS)
6884 network->qos_data.active = network->qos_data.supported;
6885
6886 if (network->flags & NETWORK_HAS_QOS_MASK) {
6887 if (active_network &&
6888 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6889 network->qos_data.active = network->qos_data.supported;
6890
6891 if ((network->qos_data.active == 1) && (active_network == 1) &&
6892 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6893 (network->qos_data.old_param_count !=
6894 network->qos_data.param_count)) {
6895 network->qos_data.old_param_count =
6896 network->qos_data.param_count;
6897 schedule_work(&priv->qos_activate);
6898 IPW_DEBUG_QOS("QoS parameters change call "
6899 "qos_activate\n");
6900 }
6901 } else {
6902 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6903 memcpy(&network->qos_data.parameters,
6904 &def_parameters_CCK, size);
6905 else
6906 memcpy(&network->qos_data.parameters,
6907 &def_parameters_OFDM, size);
6908
6909 if ((network->qos_data.active == 1) && (active_network == 1)) {
6910 IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6911 schedule_work(&priv->qos_activate);
6912 }
6913
6914 network->qos_data.active = 0;
6915 network->qos_data.supported = 0;
6916 }
6917 if ((priv->status & STATUS_ASSOCIATED) &&
6918 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6919 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6920 if (network->capability & WLAN_CAPABILITY_IBSS)
6921 if ((network->ssid_len ==
6922 priv->assoc_network->ssid_len) &&
6923 !memcmp(network->ssid,
6924 priv->assoc_network->ssid,
6925 network->ssid_len)) {
6926 queue_work(priv->workqueue,
6927 &priv->merge_networks);
6928 }
6929 }
6930
6931 return 0;
6932 }
6933
6934 /*
6935 * This function set up the firmware to support QoS. It sends
6936 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6937 */
6938 static int ipw_qos_activate(struct ipw_priv *priv,
6939 struct ieee80211_qos_data *qos_network_data)
6940 {
6941 int err;
6942 struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6943 struct ieee80211_qos_parameters *active_one = NULL;
6944 u32 size = sizeof(struct ieee80211_qos_parameters);
6945 u32 burst_duration;
6946 int i;
6947 u8 type;
6948
6949 type = ipw_qos_current_mode(priv);
6950
6951 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6952 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6953 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6954 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6955
6956 if (qos_network_data == NULL) {
6957 if (type == IEEE_B) {
6958 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6959 active_one = &def_parameters_CCK;
6960 } else
6961 active_one = &def_parameters_OFDM;
6962
6963 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6964 burst_duration = ipw_qos_get_burst_duration(priv);
6965 for (i = 0; i < QOS_QUEUE_NUM; i++)
6966 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6967 cpu_to_le16(burst_duration);
6968 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6969 if (type == IEEE_B) {
6970 IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6971 type);
6972 if (priv->qos_data.qos_enable == 0)
6973 active_one = &def_parameters_CCK;
6974 else
6975 active_one = priv->qos_data.def_qos_parm_CCK;
6976 } else {
6977 if (priv->qos_data.qos_enable == 0)
6978 active_one = &def_parameters_OFDM;
6979 else
6980 active_one = priv->qos_data.def_qos_parm_OFDM;
6981 }
6982 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6983 } else {
6984 unsigned long flags;
6985 int active;
6986
6987 spin_lock_irqsave(&priv->ieee->lock, flags);
6988 active_one = &(qos_network_data->parameters);
6989 qos_network_data->old_param_count =
6990 qos_network_data->param_count;
6991 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6992 active = qos_network_data->supported;
6993 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6994
6995 if (active == 0) {
6996 burst_duration = ipw_qos_get_burst_duration(priv);
6997 for (i = 0; i < QOS_QUEUE_NUM; i++)
6998 qos_parameters[QOS_PARAM_SET_ACTIVE].
6999 tx_op_limit[i] = cpu_to_le16(burst_duration);
7000 }
7001 }
7002
7003 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
7004 err = ipw_send_qos_params_command(priv,
7005 (struct ieee80211_qos_parameters *)
7006 &(qos_parameters[0]));
7007 if (err)
7008 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
7009
7010 return err;
7011 }
7012
7013 /*
7014 * send IPW_CMD_WME_INFO to the firmware
7015 */
7016 static int ipw_qos_set_info_element(struct ipw_priv *priv)
7017 {
7018 int ret = 0;
7019 struct ieee80211_qos_information_element qos_info;
7020
7021 if (priv == NULL)
7022 return -1;
7023
7024 qos_info.elementID = QOS_ELEMENT_ID;
7025 qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
7026
7027 qos_info.version = QOS_VERSION_1;
7028 qos_info.ac_info = 0;
7029
7030 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7031 qos_info.qui_type = QOS_OUI_TYPE;
7032 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7033
7034 ret = ipw_send_qos_info_command(priv, &qos_info);
7035 if (ret != 0) {
7036 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7037 }
7038 return ret;
7039 }
7040
7041 /*
7042 * Set the QoS parameter with the association request structure
7043 */
7044 static int ipw_qos_association(struct ipw_priv *priv,
7045 struct ieee80211_network *network)
7046 {
7047 int err = 0;
7048 struct ieee80211_qos_data *qos_data = NULL;
7049 struct ieee80211_qos_data ibss_data = {
7050 .supported = 1,
7051 .active = 1,
7052 };
7053
7054 switch (priv->ieee->iw_mode) {
7055 case IW_MODE_ADHOC:
7056 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7057
7058 qos_data = &ibss_data;
7059 break;
7060
7061 case IW_MODE_INFRA:
7062 qos_data = &network->qos_data;
7063 break;
7064
7065 default:
7066 BUG();
7067 break;
7068 }
7069
7070 err = ipw_qos_activate(priv, qos_data);
7071 if (err) {
7072 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7073 return err;
7074 }
7075
7076 if (priv->qos_data.qos_enable && qos_data->supported) {
7077 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7078 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7079 return ipw_qos_set_info_element(priv);
7080 }
7081
7082 return 0;
7083 }
7084
7085 /*
7086 * handling the beaconing responses. if we get different QoS setting
7087 * off the network from the associated setting, adjust the QoS
7088 * setting
7089 */
7090 static int ipw_qos_association_resp(struct ipw_priv *priv,
7091 struct ieee80211_network *network)
7092 {
7093 int ret = 0;
7094 unsigned long flags;
7095 u32 size = sizeof(struct ieee80211_qos_parameters);
7096 int set_qos_param = 0;
7097
7098 if ((priv == NULL) || (network == NULL) ||
7099 (priv->assoc_network == NULL))
7100 return ret;
7101
7102 if (!(priv->status & STATUS_ASSOCIATED))
7103 return ret;
7104
7105 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7106 return ret;
7107
7108 spin_lock_irqsave(&priv->ieee->lock, flags);
7109 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7110 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7111 sizeof(struct ieee80211_qos_data));
7112 priv->assoc_network->qos_data.active = 1;
7113 if ((network->qos_data.old_param_count !=
7114 network->qos_data.param_count)) {
7115 set_qos_param = 1;
7116 network->qos_data.old_param_count =
7117 network->qos_data.param_count;
7118 }
7119
7120 } else {
7121 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7122 memcpy(&priv->assoc_network->qos_data.parameters,
7123 &def_parameters_CCK, size);
7124 else
7125 memcpy(&priv->assoc_network->qos_data.parameters,
7126 &def_parameters_OFDM, size);
7127 priv->assoc_network->qos_data.active = 0;
7128 priv->assoc_network->qos_data.supported = 0;
7129 set_qos_param = 1;
7130 }
7131
7132 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7133
7134 if (set_qos_param == 1)
7135 schedule_work(&priv->qos_activate);
7136
7137 return ret;
7138 }
7139
7140 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7141 {
7142 u32 ret = 0;
7143
7144 if ((priv == NULL))
7145 return 0;
7146
7147 if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7148 ret = priv->qos_data.burst_duration_CCK;
7149 else
7150 ret = priv->qos_data.burst_duration_OFDM;
7151
7152 return ret;
7153 }
7154
7155 /*
7156 * Initialize the setting of QoS global
7157 */
7158 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7159 int burst_enable, u32 burst_duration_CCK,
7160 u32 burst_duration_OFDM)
7161 {
7162 priv->qos_data.qos_enable = enable;
7163
7164 if (priv->qos_data.qos_enable) {
7165 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7166 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7167 IPW_DEBUG_QOS("QoS is enabled\n");
7168 } else {
7169 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7170 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7171 IPW_DEBUG_QOS("QoS is not enabled\n");
7172 }
7173
7174 priv->qos_data.burst_enable = burst_enable;
7175
7176 if (burst_enable) {
7177 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7178 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7179 } else {
7180 priv->qos_data.burst_duration_CCK = 0;
7181 priv->qos_data.burst_duration_OFDM = 0;
7182 }
7183 }
7184
7185 /*
7186 * map the packet priority to the right TX Queue
7187 */
7188 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7189 {
7190 if (priority > 7 || !priv->qos_data.qos_enable)
7191 priority = 0;
7192
7193 return from_priority_to_tx_queue[priority] - 1;
7194 }
7195
7196 static int ipw_is_qos_active(struct net_device *dev,
7197 struct sk_buff *skb)
7198 {
7199 struct ipw_priv *priv = ieee80211_priv(dev);
7200 struct ieee80211_qos_data *qos_data = NULL;
7201 int active, supported;
7202 u8 *daddr = skb->data + ETH_ALEN;
7203 int unicast = !is_multicast_ether_addr(daddr);
7204
7205 if (!(priv->status & STATUS_ASSOCIATED))
7206 return 0;
7207
7208 qos_data = &priv->assoc_network->qos_data;
7209
7210 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7211 if (unicast == 0)
7212 qos_data->active = 0;
7213 else
7214 qos_data->active = qos_data->supported;
7215 }
7216 active = qos_data->active;
7217 supported = qos_data->supported;
7218 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7219 "unicast %d\n",
7220 priv->qos_data.qos_enable, active, supported, unicast);
7221 if (active && priv->qos_data.qos_enable)
7222 return 1;
7223
7224 return 0;
7225
7226 }
7227 /*
7228 * add QoS parameter to the TX command
7229 */
7230 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7231 u16 priority,
7232 struct tfd_data *tfd)
7233 {
7234 int tx_queue_id = 0;
7235
7236
7237 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7238 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7239
7240 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7241 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7242 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7243 }
7244 return 0;
7245 }
7246
7247 /*
7248 * background support to run QoS activate functionality
7249 */
7250 static void ipw_bg_qos_activate(struct work_struct *work)
7251 {
7252 struct ipw_priv *priv =
7253 container_of(work, struct ipw_priv, qos_activate);
7254
7255 if (priv == NULL)
7256 return;
7257
7258 mutex_lock(&priv->mutex);
7259
7260 if (priv->status & STATUS_ASSOCIATED)
7261 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7262
7263 mutex_unlock(&priv->mutex);
7264 }
7265
7266 static int ipw_handle_probe_response(struct net_device *dev,
7267 struct ieee80211_probe_response *resp,
7268 struct ieee80211_network *network)
7269 {
7270 struct ipw_priv *priv = ieee80211_priv(dev);
7271 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7272 (network == priv->assoc_network));
7273
7274 ipw_qos_handle_probe_response(priv, active_network, network);
7275
7276 return 0;
7277 }
7278
7279 static int ipw_handle_beacon(struct net_device *dev,
7280 struct ieee80211_beacon *resp,
7281 struct ieee80211_network *network)
7282 {
7283 struct ipw_priv *priv = ieee80211_priv(dev);
7284 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7285 (network == priv->assoc_network));
7286
7287 ipw_qos_handle_probe_response(priv, active_network, network);
7288
7289 return 0;
7290 }
7291
7292 static int ipw_handle_assoc_response(struct net_device *dev,
7293 struct ieee80211_assoc_response *resp,
7294 struct ieee80211_network *network)
7295 {
7296 struct ipw_priv *priv = ieee80211_priv(dev);
7297 ipw_qos_association_resp(priv, network);
7298 return 0;
7299 }
7300
7301 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7302 *qos_param)
7303 {
7304 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7305 sizeof(*qos_param) * 3, qos_param);
7306 }
7307
7308 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7309 *qos_param)
7310 {
7311 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7312 qos_param);
7313 }
7314
7315 #endif /* CONFIG_IPW2200_QOS */
7316
7317 static int ipw_associate_network(struct ipw_priv *priv,
7318 struct ieee80211_network *network,
7319 struct ipw_supported_rates *rates, int roaming)
7320 {
7321 int err;
7322 DECLARE_SSID_BUF(ssid);
7323
7324 if (priv->config & CFG_FIXED_RATE)
7325 ipw_set_fixed_rate(priv, network->mode);
7326
7327 if (!(priv->config & CFG_STATIC_ESSID)) {
7328 priv->essid_len = min(network->ssid_len,
7329 (u8) IW_ESSID_MAX_SIZE);
7330 memcpy(priv->essid, network->ssid, priv->essid_len);
7331 }
7332
7333 network->last_associate = jiffies;
7334
7335 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7336 priv->assoc_request.channel = network->channel;
7337 priv->assoc_request.auth_key = 0;
7338
7339 if ((priv->capability & CAP_PRIVACY_ON) &&
7340 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7341 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7342 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7343
7344 if (priv->ieee->sec.level == SEC_LEVEL_1)
7345 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7346
7347 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7348 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7349 priv->assoc_request.auth_type = AUTH_LEAP;
7350 else
7351 priv->assoc_request.auth_type = AUTH_OPEN;
7352
7353 if (priv->ieee->wpa_ie_len) {
7354 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7355 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7356 priv->ieee->wpa_ie_len);
7357 }
7358
7359 /*
7360 * It is valid for our ieee device to support multiple modes, but
7361 * when it comes to associating to a given network we have to choose
7362 * just one mode.
7363 */
7364 if (network->mode & priv->ieee->mode & IEEE_A)
7365 priv->assoc_request.ieee_mode = IPW_A_MODE;
7366 else if (network->mode & priv->ieee->mode & IEEE_G)
7367 priv->assoc_request.ieee_mode = IPW_G_MODE;
7368 else if (network->mode & priv->ieee->mode & IEEE_B)
7369 priv->assoc_request.ieee_mode = IPW_B_MODE;
7370
7371 priv->assoc_request.capability = cpu_to_le16(network->capability);
7372 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7373 && !(priv->config & CFG_PREAMBLE_LONG)) {
7374 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7375 } else {
7376 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7377
7378 /* Clear the short preamble if we won't be supporting it */
7379 priv->assoc_request.capability &=
7380 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7381 }
7382
7383 /* Clear capability bits that aren't used in Ad Hoc */
7384 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7385 priv->assoc_request.capability &=
7386 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7387
7388 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7389 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7390 roaming ? "Rea" : "A",
7391 print_ssid(ssid, priv->essid, priv->essid_len),
7392 network->channel,
7393 ipw_modes[priv->assoc_request.ieee_mode],
7394 rates->num_rates,
7395 (priv->assoc_request.preamble_length ==
7396 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7397 network->capability &
7398 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7399 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7400 priv->capability & CAP_PRIVACY_ON ?
7401 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7402 "(open)") : "",
7403 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7404 priv->capability & CAP_PRIVACY_ON ?
7405 '1' + priv->ieee->sec.active_key : '.',
7406 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7407
7408 priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7409 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7410 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7411 priv->assoc_request.assoc_type = HC_IBSS_START;
7412 priv->assoc_request.assoc_tsf_msw = 0;
7413 priv->assoc_request.assoc_tsf_lsw = 0;
7414 } else {
7415 if (unlikely(roaming))
7416 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7417 else
7418 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7419 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7420 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7421 }
7422
7423 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7424
7425 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7426 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7427 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7428 } else {
7429 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7430 priv->assoc_request.atim_window = 0;
7431 }
7432
7433 priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7434
7435 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7436 if (err) {
7437 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7438 return err;
7439 }
7440
7441 rates->ieee_mode = priv->assoc_request.ieee_mode;
7442 rates->purpose = IPW_RATE_CONNECT;
7443 ipw_send_supported_rates(priv, rates);
7444
7445 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7446 priv->sys_config.dot11g_auto_detection = 1;
7447 else
7448 priv->sys_config.dot11g_auto_detection = 0;
7449
7450 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7451 priv->sys_config.answer_broadcast_ssid_probe = 1;
7452 else
7453 priv->sys_config.answer_broadcast_ssid_probe = 0;
7454
7455 err = ipw_send_system_config(priv);
7456 if (err) {
7457 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7458 return err;
7459 }
7460
7461 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7462 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7463 if (err) {
7464 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7465 return err;
7466 }
7467
7468 /*
7469 * If preemption is enabled, it is possible for the association
7470 * to complete before we return from ipw_send_associate. Therefore
7471 * we have to be sure and update our priviate data first.
7472 */
7473 priv->channel = network->channel;
7474 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7475 priv->status |= STATUS_ASSOCIATING;
7476 priv->status &= ~STATUS_SECURITY_UPDATED;
7477
7478 priv->assoc_network = network;
7479
7480 #ifdef CONFIG_IPW2200_QOS
7481 ipw_qos_association(priv, network);
7482 #endif
7483
7484 err = ipw_send_associate(priv, &priv->assoc_request);
7485 if (err) {
7486 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7487 return err;
7488 }
7489
7490 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %pM \n",
7491 print_ssid(ssid, priv->essid, priv->essid_len),
7492 priv->bssid);
7493
7494 return 0;
7495 }
7496
7497 static void ipw_roam(void *data)
7498 {
7499 struct ipw_priv *priv = data;
7500 struct ieee80211_network *network = NULL;
7501 struct ipw_network_match match = {
7502 .network = priv->assoc_network
7503 };
7504
7505 /* The roaming process is as follows:
7506 *
7507 * 1. Missed beacon threshold triggers the roaming process by
7508 * setting the status ROAM bit and requesting a scan.
7509 * 2. When the scan completes, it schedules the ROAM work
7510 * 3. The ROAM work looks at all of the known networks for one that
7511 * is a better network than the currently associated. If none
7512 * found, the ROAM process is over (ROAM bit cleared)
7513 * 4. If a better network is found, a disassociation request is
7514 * sent.
7515 * 5. When the disassociation completes, the roam work is again
7516 * scheduled. The second time through, the driver is no longer
7517 * associated, and the newly selected network is sent an
7518 * association request.
7519 * 6. At this point ,the roaming process is complete and the ROAM
7520 * status bit is cleared.
7521 */
7522
7523 /* If we are no longer associated, and the roaming bit is no longer
7524 * set, then we are not actively roaming, so just return */
7525 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7526 return;
7527
7528 if (priv->status & STATUS_ASSOCIATED) {
7529 /* First pass through ROAM process -- look for a better
7530 * network */
7531 unsigned long flags;
7532 u8 rssi = priv->assoc_network->stats.rssi;
7533 priv->assoc_network->stats.rssi = -128;
7534 spin_lock_irqsave(&priv->ieee->lock, flags);
7535 list_for_each_entry(network, &priv->ieee->network_list, list) {
7536 if (network != priv->assoc_network)
7537 ipw_best_network(priv, &match, network, 1);
7538 }
7539 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7540 priv->assoc_network->stats.rssi = rssi;
7541
7542 if (match.network == priv->assoc_network) {
7543 IPW_DEBUG_ASSOC("No better APs in this network to "
7544 "roam to.\n");
7545 priv->status &= ~STATUS_ROAMING;
7546 ipw_debug_config(priv);
7547 return;
7548 }
7549
7550 ipw_send_disassociate(priv, 1);
7551 priv->assoc_network = match.network;
7552
7553 return;
7554 }
7555
7556 /* Second pass through ROAM process -- request association */
7557 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7558 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7559 priv->status &= ~STATUS_ROAMING;
7560 }
7561
7562 static void ipw_bg_roam(struct work_struct *work)
7563 {
7564 struct ipw_priv *priv =
7565 container_of(work, struct ipw_priv, roam);
7566 mutex_lock(&priv->mutex);
7567 ipw_roam(priv);
7568 mutex_unlock(&priv->mutex);
7569 }
7570
7571 static int ipw_associate(void *data)
7572 {
7573 struct ipw_priv *priv = data;
7574
7575 struct ieee80211_network *network = NULL;
7576 struct ipw_network_match match = {
7577 .network = NULL
7578 };
7579 struct ipw_supported_rates *rates;
7580 struct list_head *element;
7581 unsigned long flags;
7582 DECLARE_SSID_BUF(ssid);
7583
7584 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7585 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7586 return 0;
7587 }
7588
7589 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7590 IPW_DEBUG_ASSOC("Not attempting association (already in "
7591 "progress)\n");
7592 return 0;
7593 }
7594
7595 if (priv->status & STATUS_DISASSOCIATING) {
7596 IPW_DEBUG_ASSOC("Not attempting association (in "
7597 "disassociating)\n ");
7598 queue_work(priv->workqueue, &priv->associate);
7599 return 0;
7600 }
7601
7602 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7603 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7604 "initialized)\n");
7605 return 0;
7606 }
7607
7608 if (!(priv->config & CFG_ASSOCIATE) &&
7609 !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7610 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7611 return 0;
7612 }
7613
7614 /* Protect our use of the network_list */
7615 spin_lock_irqsave(&priv->ieee->lock, flags);
7616 list_for_each_entry(network, &priv->ieee->network_list, list)
7617 ipw_best_network(priv, &match, network, 0);
7618
7619 network = match.network;
7620 rates = &match.rates;
7621
7622 if (network == NULL &&
7623 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7624 priv->config & CFG_ADHOC_CREATE &&
7625 priv->config & CFG_STATIC_ESSID &&
7626 priv->config & CFG_STATIC_CHANNEL) {
7627 /* Use oldest network if the free list is empty */
7628 if (list_empty(&priv->ieee->network_free_list)) {
7629 struct ieee80211_network *oldest = NULL;
7630 struct ieee80211_network *target;
7631
7632 list_for_each_entry(target, &priv->ieee->network_list, list) {
7633 if ((oldest == NULL) ||
7634 (target->last_scanned < oldest->last_scanned))
7635 oldest = target;
7636 }
7637
7638 /* If there are no more slots, expire the oldest */
7639 list_del(&oldest->list);
7640 target = oldest;
7641 IPW_DEBUG_ASSOC("Expired '%s' (%pM) from "
7642 "network list.\n",
7643 print_ssid(ssid, target->ssid,
7644 target->ssid_len),
7645 target->bssid);
7646 list_add_tail(&target->list,
7647 &priv->ieee->network_free_list);
7648 }
7649
7650 element = priv->ieee->network_free_list.next;
7651 network = list_entry(element, struct ieee80211_network, list);
7652 ipw_adhoc_create(priv, network);
7653 rates = &priv->rates;
7654 list_del(element);
7655 list_add_tail(&network->list, &priv->ieee->network_list);
7656 }
7657 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7658
7659 /* If we reached the end of the list, then we don't have any valid
7660 * matching APs */
7661 if (!network) {
7662 ipw_debug_config(priv);
7663
7664 if (!(priv->status & STATUS_SCANNING)) {
7665 if (!(priv->config & CFG_SPEED_SCAN))
7666 queue_delayed_work(priv->workqueue,
7667 &priv->request_scan,
7668 SCAN_INTERVAL);
7669 else
7670 queue_delayed_work(priv->workqueue,
7671 &priv->request_scan, 0);
7672 }
7673
7674 return 0;
7675 }
7676
7677 ipw_associate_network(priv, network, rates, 0);
7678
7679 return 1;
7680 }
7681
7682 static void ipw_bg_associate(struct work_struct *work)
7683 {
7684 struct ipw_priv *priv =
7685 container_of(work, struct ipw_priv, associate);
7686 mutex_lock(&priv->mutex);
7687 ipw_associate(priv);
7688 mutex_unlock(&priv->mutex);
7689 }
7690
7691 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7692 struct sk_buff *skb)
7693 {
7694 struct ieee80211_hdr *hdr;
7695 u16 fc;
7696
7697 hdr = (struct ieee80211_hdr *)skb->data;
7698 fc = le16_to_cpu(hdr->frame_control);
7699 if (!(fc & IEEE80211_FCTL_PROTECTED))
7700 return;
7701
7702 fc &= ~IEEE80211_FCTL_PROTECTED;
7703 hdr->frame_control = cpu_to_le16(fc);
7704 switch (priv->ieee->sec.level) {
7705 case SEC_LEVEL_3:
7706 /* Remove CCMP HDR */
7707 memmove(skb->data + IEEE80211_3ADDR_LEN,
7708 skb->data + IEEE80211_3ADDR_LEN + 8,
7709 skb->len - IEEE80211_3ADDR_LEN - 8);
7710 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7711 break;
7712 case SEC_LEVEL_2:
7713 break;
7714 case SEC_LEVEL_1:
7715 /* Remove IV */
7716 memmove(skb->data + IEEE80211_3ADDR_LEN,
7717 skb->data + IEEE80211_3ADDR_LEN + 4,
7718 skb->len - IEEE80211_3ADDR_LEN - 4);
7719 skb_trim(skb, skb->len - 8); /* IV + ICV */
7720 break;
7721 case SEC_LEVEL_0:
7722 break;
7723 default:
7724 printk(KERN_ERR "Unknow security level %d\n",
7725 priv->ieee->sec.level);
7726 break;
7727 }
7728 }
7729
7730 static void ipw_handle_data_packet(struct ipw_priv *priv,
7731 struct ipw_rx_mem_buffer *rxb,
7732 struct ieee80211_rx_stats *stats)
7733 {
7734 struct net_device *dev = priv->net_dev;
7735 struct ieee80211_hdr_4addr *hdr;
7736 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7737
7738 /* We received data from the HW, so stop the watchdog */
7739 dev->trans_start = jiffies;
7740
7741 /* We only process data packets if the
7742 * interface is open */
7743 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7744 skb_tailroom(rxb->skb))) {
7745 dev->stats.rx_errors++;
7746 priv->wstats.discard.misc++;
7747 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7748 return;
7749 } else if (unlikely(!netif_running(priv->net_dev))) {
7750 dev->stats.rx_dropped++;
7751 priv->wstats.discard.misc++;
7752 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7753 return;
7754 }
7755
7756 /* Advance skb->data to the start of the actual payload */
7757 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7758
7759 /* Set the size of the skb to the size of the frame */
7760 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7761
7762 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7763
7764 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7765 hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7766 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7767 (is_multicast_ether_addr(hdr->addr1) ?
7768 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7769 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7770
7771 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7772 dev->stats.rx_errors++;
7773 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7774 rxb->skb = NULL;
7775 __ipw_led_activity_on(priv);
7776 }
7777 }
7778
7779 #ifdef CONFIG_IPW2200_RADIOTAP
7780 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7781 struct ipw_rx_mem_buffer *rxb,
7782 struct ieee80211_rx_stats *stats)
7783 {
7784 struct net_device *dev = priv->net_dev;
7785 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7786 struct ipw_rx_frame *frame = &pkt->u.frame;
7787
7788 /* initial pull of some data */
7789 u16 received_channel = frame->received_channel;
7790 u8 antennaAndPhy = frame->antennaAndPhy;
7791 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7792 u16 pktrate = frame->rate;
7793
7794 /* Magic struct that slots into the radiotap header -- no reason
7795 * to build this manually element by element, we can write it much
7796 * more efficiently than we can parse it. ORDER MATTERS HERE */
7797 struct ipw_rt_hdr *ipw_rt;
7798
7799 short len = le16_to_cpu(pkt->u.frame.length);
7800
7801 /* We received data from the HW, so stop the watchdog */
7802 dev->trans_start = jiffies;
7803
7804 /* We only process data packets if the
7805 * interface is open */
7806 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7807 skb_tailroom(rxb->skb))) {
7808 dev->stats.rx_errors++;
7809 priv->wstats.discard.misc++;
7810 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7811 return;
7812 } else if (unlikely(!netif_running(priv->net_dev))) {
7813 dev->stats.rx_dropped++;
7814 priv->wstats.discard.misc++;
7815 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7816 return;
7817 }
7818
7819 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7820 * that now */
7821 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7822 /* FIXME: Should alloc bigger skb instead */
7823 dev->stats.rx_dropped++;
7824 priv->wstats.discard.misc++;
7825 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7826 return;
7827 }
7828
7829 /* copy the frame itself */
7830 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7831 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7832
7833 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7834
7835 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7836 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7837 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7838
7839 /* Big bitfield of all the fields we provide in radiotap */
7840 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7841 (1 << IEEE80211_RADIOTAP_TSFT) |
7842 (1 << IEEE80211_RADIOTAP_FLAGS) |
7843 (1 << IEEE80211_RADIOTAP_RATE) |
7844 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7845 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7846 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7847 (1 << IEEE80211_RADIOTAP_ANTENNA));
7848
7849 /* Zero the flags, we'll add to them as we go */
7850 ipw_rt->rt_flags = 0;
7851 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7852 frame->parent_tsf[2] << 16 |
7853 frame->parent_tsf[1] << 8 |
7854 frame->parent_tsf[0]);
7855
7856 /* Convert signal to DBM */
7857 ipw_rt->rt_dbmsignal = antsignal;
7858 ipw_rt->rt_dbmnoise = frame->noise;
7859
7860 /* Convert the channel data and set the flags */
7861 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7862 if (received_channel > 14) { /* 802.11a */
7863 ipw_rt->rt_chbitmask =
7864 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7865 } else if (antennaAndPhy & 32) { /* 802.11b */
7866 ipw_rt->rt_chbitmask =
7867 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7868 } else { /* 802.11g */
7869 ipw_rt->rt_chbitmask =
7870 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7871 }
7872
7873 /* set the rate in multiples of 500k/s */
7874 switch (pktrate) {
7875 case IPW_TX_RATE_1MB:
7876 ipw_rt->rt_rate = 2;
7877 break;
7878 case IPW_TX_RATE_2MB:
7879 ipw_rt->rt_rate = 4;
7880 break;
7881 case IPW_TX_RATE_5MB:
7882 ipw_rt->rt_rate = 10;
7883 break;
7884 case IPW_TX_RATE_6MB:
7885 ipw_rt->rt_rate = 12;
7886 break;
7887 case IPW_TX_RATE_9MB:
7888 ipw_rt->rt_rate = 18;
7889 break;
7890 case IPW_TX_RATE_11MB:
7891 ipw_rt->rt_rate = 22;
7892 break;
7893 case IPW_TX_RATE_12MB:
7894 ipw_rt->rt_rate = 24;
7895 break;
7896 case IPW_TX_RATE_18MB:
7897 ipw_rt->rt_rate = 36;
7898 break;
7899 case IPW_TX_RATE_24MB:
7900 ipw_rt->rt_rate = 48;
7901 break;
7902 case IPW_TX_RATE_36MB:
7903 ipw_rt->rt_rate = 72;
7904 break;
7905 case IPW_TX_RATE_48MB:
7906 ipw_rt->rt_rate = 96;
7907 break;
7908 case IPW_TX_RATE_54MB:
7909 ipw_rt->rt_rate = 108;
7910 break;
7911 default:
7912 ipw_rt->rt_rate = 0;
7913 break;
7914 }
7915
7916 /* antenna number */
7917 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7918
7919 /* set the preamble flag if we have it */
7920 if ((antennaAndPhy & 64))
7921 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7922
7923 /* Set the size of the skb to the size of the frame */
7924 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7925
7926 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7927
7928 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7929 dev->stats.rx_errors++;
7930 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7931 rxb->skb = NULL;
7932 /* no LED during capture */
7933 }
7934 }
7935 #endif
7936
7937 #ifdef CONFIG_IPW2200_PROMISCUOUS
7938 #define ieee80211_is_probe_response(fc) \
7939 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7940 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7941
7942 #define ieee80211_is_management(fc) \
7943 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7944
7945 #define ieee80211_is_control(fc) \
7946 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7947
7948 #define ieee80211_is_data(fc) \
7949 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7950
7951 #define ieee80211_is_assoc_request(fc) \
7952 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7953
7954 #define ieee80211_is_reassoc_request(fc) \
7955 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7956
7957 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7958 struct ipw_rx_mem_buffer *rxb,
7959 struct ieee80211_rx_stats *stats)
7960 {
7961 struct net_device *dev = priv->prom_net_dev;
7962 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7963 struct ipw_rx_frame *frame = &pkt->u.frame;
7964 struct ipw_rt_hdr *ipw_rt;
7965
7966 /* First cache any information we need before we overwrite
7967 * the information provided in the skb from the hardware */
7968 struct ieee80211_hdr *hdr;
7969 u16 channel = frame->received_channel;
7970 u8 phy_flags = frame->antennaAndPhy;
7971 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7972 s8 noise = frame->noise;
7973 u8 rate = frame->rate;
7974 short len = le16_to_cpu(pkt->u.frame.length);
7975 struct sk_buff *skb;
7976 int hdr_only = 0;
7977 u16 filter = priv->prom_priv->filter;
7978
7979 /* If the filter is set to not include Rx frames then return */
7980 if (filter & IPW_PROM_NO_RX)
7981 return;
7982
7983 /* We received data from the HW, so stop the watchdog */
7984 dev->trans_start = jiffies;
7985
7986 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7987 dev->stats.rx_errors++;
7988 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7989 return;
7990 }
7991
7992 /* We only process data packets if the interface is open */
7993 if (unlikely(!netif_running(dev))) {
7994 dev->stats.rx_dropped++;
7995 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7996 return;
7997 }
7998
7999 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
8000 * that now */
8001 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
8002 /* FIXME: Should alloc bigger skb instead */
8003 dev->stats.rx_dropped++;
8004 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
8005 return;
8006 }
8007
8008 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
8009 if (ieee80211_is_management(le16_to_cpu(hdr->frame_control))) {
8010 if (filter & IPW_PROM_NO_MGMT)
8011 return;
8012 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
8013 hdr_only = 1;
8014 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_control))) {
8015 if (filter & IPW_PROM_NO_CTL)
8016 return;
8017 if (filter & IPW_PROM_CTL_HEADER_ONLY)
8018 hdr_only = 1;
8019 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_control))) {
8020 if (filter & IPW_PROM_NO_DATA)
8021 return;
8022 if (filter & IPW_PROM_DATA_HEADER_ONLY)
8023 hdr_only = 1;
8024 }
8025
8026 /* Copy the SKB since this is for the promiscuous side */
8027 skb = skb_copy(rxb->skb, GFP_ATOMIC);
8028 if (skb == NULL) {
8029 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8030 return;
8031 }
8032
8033 /* copy the frame data to write after where the radiotap header goes */
8034 ipw_rt = (void *)skb->data;
8035
8036 if (hdr_only)
8037 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
8038
8039 memcpy(ipw_rt->payload, hdr, len);
8040
8041 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8042 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
8043 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */
8044
8045 /* Set the size of the skb to the size of the frame */
8046 skb_put(skb, sizeof(*ipw_rt) + len);
8047
8048 /* Big bitfield of all the fields we provide in radiotap */
8049 ipw_rt->rt_hdr.it_present = cpu_to_le32(
8050 (1 << IEEE80211_RADIOTAP_TSFT) |
8051 (1 << IEEE80211_RADIOTAP_FLAGS) |
8052 (1 << IEEE80211_RADIOTAP_RATE) |
8053 (1 << IEEE80211_RADIOTAP_CHANNEL) |
8054 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8055 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8056 (1 << IEEE80211_RADIOTAP_ANTENNA));
8057
8058 /* Zero the flags, we'll add to them as we go */
8059 ipw_rt->rt_flags = 0;
8060 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8061 frame->parent_tsf[2] << 16 |
8062 frame->parent_tsf[1] << 8 |
8063 frame->parent_tsf[0]);
8064
8065 /* Convert to DBM */
8066 ipw_rt->rt_dbmsignal = signal;
8067 ipw_rt->rt_dbmnoise = noise;
8068
8069 /* Convert the channel data and set the flags */
8070 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8071 if (channel > 14) { /* 802.11a */
8072 ipw_rt->rt_chbitmask =
8073 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8074 } else if (phy_flags & (1 << 5)) { /* 802.11b */
8075 ipw_rt->rt_chbitmask =
8076 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8077 } else { /* 802.11g */
8078 ipw_rt->rt_chbitmask =
8079 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8080 }
8081
8082 /* set the rate in multiples of 500k/s */
8083 switch (rate) {
8084 case IPW_TX_RATE_1MB:
8085 ipw_rt->rt_rate = 2;
8086 break;
8087 case IPW_TX_RATE_2MB:
8088 ipw_rt->rt_rate = 4;
8089 break;
8090 case IPW_TX_RATE_5MB:
8091 ipw_rt->rt_rate = 10;
8092 break;
8093 case IPW_TX_RATE_6MB:
8094 ipw_rt->rt_rate = 12;
8095 break;
8096 case IPW_TX_RATE_9MB:
8097 ipw_rt->rt_rate = 18;
8098 break;
8099 case IPW_TX_RATE_11MB:
8100 ipw_rt->rt_rate = 22;
8101 break;
8102 case IPW_TX_RATE_12MB:
8103 ipw_rt->rt_rate = 24;
8104 break;
8105 case IPW_TX_RATE_18MB:
8106 ipw_rt->rt_rate = 36;
8107 break;
8108 case IPW_TX_RATE_24MB:
8109 ipw_rt->rt_rate = 48;
8110 break;
8111 case IPW_TX_RATE_36MB:
8112 ipw_rt->rt_rate = 72;
8113 break;
8114 case IPW_TX_RATE_48MB:
8115 ipw_rt->rt_rate = 96;
8116 break;
8117 case IPW_TX_RATE_54MB:
8118 ipw_rt->rt_rate = 108;
8119 break;
8120 default:
8121 ipw_rt->rt_rate = 0;
8122 break;
8123 }
8124
8125 /* antenna number */
8126 ipw_rt->rt_antenna = (phy_flags & 3);
8127
8128 /* set the preamble flag if we have it */
8129 if (phy_flags & (1 << 6))
8130 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8131
8132 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8133
8134 if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
8135 dev->stats.rx_errors++;
8136 dev_kfree_skb_any(skb);
8137 }
8138 }
8139 #endif
8140
8141 static int is_network_packet(struct ipw_priv *priv,
8142 struct ieee80211_hdr_4addr *header)
8143 {
8144 /* Filter incoming packets to determine if they are targetted toward
8145 * this network, discarding packets coming from ourselves */
8146 switch (priv->ieee->iw_mode) {
8147 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8148 /* packets from our adapter are dropped (echo) */
8149 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8150 return 0;
8151
8152 /* {broad,multi}cast packets to our BSSID go through */
8153 if (is_multicast_ether_addr(header->addr1))
8154 return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8155
8156 /* packets to our adapter go through */
8157 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8158 ETH_ALEN);
8159
8160 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8161 /* packets from our adapter are dropped (echo) */
8162 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8163 return 0;
8164
8165 /* {broad,multi}cast packets to our BSS go through */
8166 if (is_multicast_ether_addr(header->addr1))
8167 return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8168
8169 /* packets to our adapter go through */
8170 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8171 ETH_ALEN);
8172 }
8173
8174 return 1;
8175 }
8176
8177 #define IPW_PACKET_RETRY_TIME HZ
8178
8179 static int is_duplicate_packet(struct ipw_priv *priv,
8180 struct ieee80211_hdr_4addr *header)
8181 {
8182 u16 sc = le16_to_cpu(header->seq_ctl);
8183 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8184 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8185 u16 *last_seq, *last_frag;
8186 unsigned long *last_time;
8187
8188 switch (priv->ieee->iw_mode) {
8189 case IW_MODE_ADHOC:
8190 {
8191 struct list_head *p;
8192 struct ipw_ibss_seq *entry = NULL;
8193 u8 *mac = header->addr2;
8194 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8195
8196 __list_for_each(p, &priv->ibss_mac_hash[index]) {
8197 entry =
8198 list_entry(p, struct ipw_ibss_seq, list);
8199 if (!memcmp(entry->mac, mac, ETH_ALEN))
8200 break;
8201 }
8202 if (p == &priv->ibss_mac_hash[index]) {
8203 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8204 if (!entry) {
8205 IPW_ERROR
8206 ("Cannot malloc new mac entry\n");
8207 return 0;
8208 }
8209 memcpy(entry->mac, mac, ETH_ALEN);
8210 entry->seq_num = seq;
8211 entry->frag_num = frag;
8212 entry->packet_time = jiffies;
8213 list_add(&entry->list,
8214 &priv->ibss_mac_hash[index]);
8215 return 0;
8216 }
8217 last_seq = &entry->seq_num;
8218 last_frag = &entry->frag_num;
8219 last_time = &entry->packet_time;
8220 break;
8221 }
8222 case IW_MODE_INFRA:
8223 last_seq = &priv->last_seq_num;
8224 last_frag = &priv->last_frag_num;
8225 last_time = &priv->last_packet_time;
8226 break;
8227 default:
8228 return 0;
8229 }
8230 if ((*last_seq == seq) &&
8231 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8232 if (*last_frag == frag)
8233 goto drop;
8234 if (*last_frag + 1 != frag)
8235 /* out-of-order fragment */
8236 goto drop;
8237 } else
8238 *last_seq = seq;
8239
8240 *last_frag = frag;
8241 *last_time = jiffies;
8242 return 0;
8243
8244 drop:
8245 /* Comment this line now since we observed the card receives
8246 * duplicate packets but the FCTL_RETRY bit is not set in the
8247 * IBSS mode with fragmentation enabled.
8248 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8249 return 1;
8250 }
8251
8252 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8253 struct ipw_rx_mem_buffer *rxb,
8254 struct ieee80211_rx_stats *stats)
8255 {
8256 struct sk_buff *skb = rxb->skb;
8257 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8258 struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8259 (skb->data + IPW_RX_FRAME_SIZE);
8260
8261 ieee80211_rx_mgt(priv->ieee, header, stats);
8262
8263 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8264 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8265 IEEE80211_STYPE_PROBE_RESP) ||
8266 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8267 IEEE80211_STYPE_BEACON))) {
8268 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8269 ipw_add_station(priv, header->addr2);
8270 }
8271
8272 if (priv->config & CFG_NET_STATS) {
8273 IPW_DEBUG_HC("sending stat packet\n");
8274
8275 /* Set the size of the skb to the size of the full
8276 * ipw header and 802.11 frame */
8277 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8278 IPW_RX_FRAME_SIZE);
8279
8280 /* Advance past the ipw packet header to the 802.11 frame */
8281 skb_pull(skb, IPW_RX_FRAME_SIZE);
8282
8283 /* Push the ieee80211_rx_stats before the 802.11 frame */
8284 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8285
8286 skb->dev = priv->ieee->dev;
8287
8288 /* Point raw at the ieee80211_stats */
8289 skb_reset_mac_header(skb);
8290
8291 skb->pkt_type = PACKET_OTHERHOST;
8292 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8293 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8294 netif_rx(skb);
8295 rxb->skb = NULL;
8296 }
8297 }
8298
8299 /*
8300 * Main entry function for recieving a packet with 80211 headers. This
8301 * should be called when ever the FW has notified us that there is a new
8302 * skb in the recieve queue.
8303 */
8304 static void ipw_rx(struct ipw_priv *priv)
8305 {
8306 struct ipw_rx_mem_buffer *rxb;
8307 struct ipw_rx_packet *pkt;
8308 struct ieee80211_hdr_4addr *header;
8309 u32 r, w, i;
8310 u8 network_packet;
8311 u8 fill_rx = 0;
8312
8313 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8314 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8315 i = priv->rxq->read;
8316
8317 if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8318 fill_rx = 1;
8319
8320 while (i != r) {
8321 rxb = priv->rxq->queue[i];
8322 if (unlikely(rxb == NULL)) {
8323 printk(KERN_CRIT "Queue not allocated!\n");
8324 break;
8325 }
8326 priv->rxq->queue[i] = NULL;
8327
8328 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8329 IPW_RX_BUF_SIZE,
8330 PCI_DMA_FROMDEVICE);
8331
8332 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8333 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8334 pkt->header.message_type,
8335 pkt->header.rx_seq_num, pkt->header.control_bits);
8336
8337 switch (pkt->header.message_type) {
8338 case RX_FRAME_TYPE: /* 802.11 frame */ {
8339 struct ieee80211_rx_stats stats = {
8340 .rssi = pkt->u.frame.rssi_dbm -
8341 IPW_RSSI_TO_DBM,
8342 .signal =
8343 le16_to_cpu(pkt->u.frame.rssi_dbm) -
8344 IPW_RSSI_TO_DBM + 0x100,
8345 .noise =
8346 le16_to_cpu(pkt->u.frame.noise),
8347 .rate = pkt->u.frame.rate,
8348 .mac_time = jiffies,
8349 .received_channel =
8350 pkt->u.frame.received_channel,
8351 .freq =
8352 (pkt->u.frame.
8353 control & (1 << 0)) ?
8354 IEEE80211_24GHZ_BAND :
8355 IEEE80211_52GHZ_BAND,
8356 .len = le16_to_cpu(pkt->u.frame.length),
8357 };
8358
8359 if (stats.rssi != 0)
8360 stats.mask |= IEEE80211_STATMASK_RSSI;
8361 if (stats.signal != 0)
8362 stats.mask |= IEEE80211_STATMASK_SIGNAL;
8363 if (stats.noise != 0)
8364 stats.mask |= IEEE80211_STATMASK_NOISE;
8365 if (stats.rate != 0)
8366 stats.mask |= IEEE80211_STATMASK_RATE;
8367
8368 priv->rx_packets++;
8369
8370 #ifdef CONFIG_IPW2200_PROMISCUOUS
8371 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8372 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8373 #endif
8374
8375 #ifdef CONFIG_IPW2200_MONITOR
8376 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8377 #ifdef CONFIG_IPW2200_RADIOTAP
8378
8379 ipw_handle_data_packet_monitor(priv,
8380 rxb,
8381 &stats);
8382 #else
8383 ipw_handle_data_packet(priv, rxb,
8384 &stats);
8385 #endif
8386 break;
8387 }
8388 #endif
8389
8390 header =
8391 (struct ieee80211_hdr_4addr *)(rxb->skb->
8392 data +
8393 IPW_RX_FRAME_SIZE);
8394 /* TODO: Check Ad-Hoc dest/source and make sure
8395 * that we are actually parsing these packets
8396 * correctly -- we should probably use the
8397 * frame control of the packet and disregard
8398 * the current iw_mode */
8399
8400 network_packet =
8401 is_network_packet(priv, header);
8402 if (network_packet && priv->assoc_network) {
8403 priv->assoc_network->stats.rssi =
8404 stats.rssi;
8405 priv->exp_avg_rssi =
8406 exponential_average(priv->exp_avg_rssi,
8407 stats.rssi, DEPTH_RSSI);
8408 }
8409
8410 IPW_DEBUG_RX("Frame: len=%u\n",
8411 le16_to_cpu(pkt->u.frame.length));
8412
8413 if (le16_to_cpu(pkt->u.frame.length) <
8414 ieee80211_get_hdrlen(le16_to_cpu(
8415 header->frame_ctl))) {
8416 IPW_DEBUG_DROP
8417 ("Received packet is too small. "
8418 "Dropping.\n");
8419 priv->net_dev->stats.rx_errors++;
8420 priv->wstats.discard.misc++;
8421 break;
8422 }
8423
8424 switch (WLAN_FC_GET_TYPE
8425 (le16_to_cpu(header->frame_ctl))) {
8426
8427 case IEEE80211_FTYPE_MGMT:
8428 ipw_handle_mgmt_packet(priv, rxb,
8429 &stats);
8430 break;
8431
8432 case IEEE80211_FTYPE_CTL:
8433 break;
8434
8435 case IEEE80211_FTYPE_DATA:
8436 if (unlikely(!network_packet ||
8437 is_duplicate_packet(priv,
8438 header)))
8439 {
8440 IPW_DEBUG_DROP("Dropping: "
8441 "%pM, "
8442 "%pM, "
8443 "%pM\n",
8444 header->addr1,
8445 header->addr2,
8446 header->addr3);
8447 break;
8448 }
8449
8450 ipw_handle_data_packet(priv, rxb,
8451 &stats);
8452
8453 break;
8454 }
8455 break;
8456 }
8457
8458 case RX_HOST_NOTIFICATION_TYPE:{
8459 IPW_DEBUG_RX
8460 ("Notification: subtype=%02X flags=%02X size=%d\n",
8461 pkt->u.notification.subtype,
8462 pkt->u.notification.flags,
8463 le16_to_cpu(pkt->u.notification.size));
8464 ipw_rx_notification(priv, &pkt->u.notification);
8465 break;
8466 }
8467
8468 default:
8469 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8470 pkt->header.message_type);
8471 break;
8472 }
8473
8474 /* For now we just don't re-use anything. We can tweak this
8475 * later to try and re-use notification packets and SKBs that
8476 * fail to Rx correctly */
8477 if (rxb->skb != NULL) {
8478 dev_kfree_skb_any(rxb->skb);
8479 rxb->skb = NULL;
8480 }
8481
8482 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8483 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8484 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8485
8486 i = (i + 1) % RX_QUEUE_SIZE;
8487
8488 /* If there are a lot of unsued frames, restock the Rx queue
8489 * so the ucode won't assert */
8490 if (fill_rx) {
8491 priv->rxq->read = i;
8492 ipw_rx_queue_replenish(priv);
8493 }
8494 }
8495
8496 /* Backtrack one entry */
8497 priv->rxq->read = i;
8498 ipw_rx_queue_restock(priv);
8499 }
8500
8501 #define DEFAULT_RTS_THRESHOLD 2304U
8502 #define MIN_RTS_THRESHOLD 1U
8503 #define MAX_RTS_THRESHOLD 2304U
8504 #define DEFAULT_BEACON_INTERVAL 100U
8505 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8506 #define DEFAULT_LONG_RETRY_LIMIT 4U
8507
8508 /**
8509 * ipw_sw_reset
8510 * @option: options to control different reset behaviour
8511 * 0 = reset everything except the 'disable' module_param
8512 * 1 = reset everything and print out driver info (for probe only)
8513 * 2 = reset everything
8514 */
8515 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8516 {
8517 int band, modulation;
8518 int old_mode = priv->ieee->iw_mode;
8519
8520 /* Initialize module parameter values here */
8521 priv->config = 0;
8522
8523 /* We default to disabling the LED code as right now it causes
8524 * too many systems to lock up... */
8525 if (!led)
8526 priv->config |= CFG_NO_LED;
8527
8528 if (associate)
8529 priv->config |= CFG_ASSOCIATE;
8530 else
8531 IPW_DEBUG_INFO("Auto associate disabled.\n");
8532
8533 if (auto_create)
8534 priv->config |= CFG_ADHOC_CREATE;
8535 else
8536 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8537
8538 priv->config &= ~CFG_STATIC_ESSID;
8539 priv->essid_len = 0;
8540 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8541
8542 if (disable && option) {
8543 priv->status |= STATUS_RF_KILL_SW;
8544 IPW_DEBUG_INFO("Radio disabled.\n");
8545 }
8546
8547 if (channel != 0) {
8548 priv->config |= CFG_STATIC_CHANNEL;
8549 priv->channel = channel;
8550 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8551 /* TODO: Validate that provided channel is in range */
8552 }
8553 #ifdef CONFIG_IPW2200_QOS
8554 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8555 burst_duration_CCK, burst_duration_OFDM);
8556 #endif /* CONFIG_IPW2200_QOS */
8557
8558 switch (mode) {
8559 case 1:
8560 priv->ieee->iw_mode = IW_MODE_ADHOC;
8561 priv->net_dev->type = ARPHRD_ETHER;
8562
8563 break;
8564 #ifdef CONFIG_IPW2200_MONITOR
8565 case 2:
8566 priv->ieee->iw_mode = IW_MODE_MONITOR;
8567 #ifdef CONFIG_IPW2200_RADIOTAP
8568 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8569 #else
8570 priv->net_dev->type = ARPHRD_IEEE80211;
8571 #endif
8572 break;
8573 #endif
8574 default:
8575 case 0:
8576 priv->net_dev->type = ARPHRD_ETHER;
8577 priv->ieee->iw_mode = IW_MODE_INFRA;
8578 break;
8579 }
8580
8581 if (hwcrypto) {
8582 priv->ieee->host_encrypt = 0;
8583 priv->ieee->host_encrypt_msdu = 0;
8584 priv->ieee->host_decrypt = 0;
8585 priv->ieee->host_mc_decrypt = 0;
8586 }
8587 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8588
8589 /* IPW2200/2915 is abled to do hardware fragmentation. */
8590 priv->ieee->host_open_frag = 0;
8591
8592 if ((priv->pci_dev->device == 0x4223) ||
8593 (priv->pci_dev->device == 0x4224)) {
8594 if (option == 1)
8595 printk(KERN_INFO DRV_NAME
8596 ": Detected Intel PRO/Wireless 2915ABG Network "
8597 "Connection\n");
8598 priv->ieee->abg_true = 1;
8599 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8600 modulation = IEEE80211_OFDM_MODULATION |
8601 IEEE80211_CCK_MODULATION;
8602 priv->adapter = IPW_2915ABG;
8603 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8604 } else {
8605 if (option == 1)
8606 printk(KERN_INFO DRV_NAME
8607 ": Detected Intel PRO/Wireless 2200BG Network "
8608 "Connection\n");
8609
8610 priv->ieee->abg_true = 0;
8611 band = IEEE80211_24GHZ_BAND;
8612 modulation = IEEE80211_OFDM_MODULATION |
8613 IEEE80211_CCK_MODULATION;
8614 priv->adapter = IPW_2200BG;
8615 priv->ieee->mode = IEEE_G | IEEE_B;
8616 }
8617
8618 priv->ieee->freq_band = band;
8619 priv->ieee->modulation = modulation;
8620
8621 priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8622
8623 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8624 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8625
8626 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8627 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8628 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8629
8630 /* If power management is turned on, default to AC mode */
8631 priv->power_mode = IPW_POWER_AC;
8632 priv->tx_power = IPW_TX_POWER_DEFAULT;
8633
8634 return old_mode == priv->ieee->iw_mode;
8635 }
8636
8637 /*
8638 * This file defines the Wireless Extension handlers. It does not
8639 * define any methods of hardware manipulation and relies on the
8640 * functions defined in ipw_main to provide the HW interaction.
8641 *
8642 * The exception to this is the use of the ipw_get_ordinal()
8643 * function used to poll the hardware vs. making unecessary calls.
8644 *
8645 */
8646
8647 static int ipw_wx_get_name(struct net_device *dev,
8648 struct iw_request_info *info,
8649 union iwreq_data *wrqu, char *extra)
8650 {
8651 struct ipw_priv *priv = ieee80211_priv(dev);
8652 mutex_lock(&priv->mutex);
8653 if (priv->status & STATUS_RF_KILL_MASK)
8654 strcpy(wrqu->name, "radio off");
8655 else if (!(priv->status & STATUS_ASSOCIATED))
8656 strcpy(wrqu->name, "unassociated");
8657 else
8658 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8659 ipw_modes[priv->assoc_request.ieee_mode]);
8660 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8661 mutex_unlock(&priv->mutex);
8662 return 0;
8663 }
8664
8665 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8666 {
8667 if (channel == 0) {
8668 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8669 priv->config &= ~CFG_STATIC_CHANNEL;
8670 IPW_DEBUG_ASSOC("Attempting to associate with new "
8671 "parameters.\n");
8672 ipw_associate(priv);
8673 return 0;
8674 }
8675
8676 priv->config |= CFG_STATIC_CHANNEL;
8677
8678 if (priv->channel == channel) {
8679 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8680 channel);
8681 return 0;
8682 }
8683
8684 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8685 priv->channel = channel;
8686
8687 #ifdef CONFIG_IPW2200_MONITOR
8688 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8689 int i;
8690 if (priv->status & STATUS_SCANNING) {
8691 IPW_DEBUG_SCAN("Scan abort triggered due to "
8692 "channel change.\n");
8693 ipw_abort_scan(priv);
8694 }
8695
8696 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8697 udelay(10);
8698
8699 if (priv->status & STATUS_SCANNING)
8700 IPW_DEBUG_SCAN("Still scanning...\n");
8701 else
8702 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8703 1000 - i);
8704
8705 return 0;
8706 }
8707 #endif /* CONFIG_IPW2200_MONITOR */
8708
8709 /* Network configuration changed -- force [re]association */
8710 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8711 if (!ipw_disassociate(priv))
8712 ipw_associate(priv);
8713
8714 return 0;
8715 }
8716
8717 static int ipw_wx_set_freq(struct net_device *dev,
8718 struct iw_request_info *info,
8719 union iwreq_data *wrqu, char *extra)
8720 {
8721 struct ipw_priv *priv = ieee80211_priv(dev);
8722 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8723 struct iw_freq *fwrq = &wrqu->freq;
8724 int ret = 0, i;
8725 u8 channel, flags;
8726 int band;
8727
8728 if (fwrq->m == 0) {
8729 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8730 mutex_lock(&priv->mutex);
8731 ret = ipw_set_channel(priv, 0);
8732 mutex_unlock(&priv->mutex);
8733 return ret;
8734 }
8735 /* if setting by freq convert to channel */
8736 if (fwrq->e == 1) {
8737 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8738 if (channel == 0)
8739 return -EINVAL;
8740 } else
8741 channel = fwrq->m;
8742
8743 if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8744 return -EINVAL;
8745
8746 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8747 i = ieee80211_channel_to_index(priv->ieee, channel);
8748 if (i == -1)
8749 return -EINVAL;
8750
8751 flags = (band == IEEE80211_24GHZ_BAND) ?
8752 geo->bg[i].flags : geo->a[i].flags;
8753 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8754 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8755 return -EINVAL;
8756 }
8757 }
8758
8759 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8760 mutex_lock(&priv->mutex);
8761 ret = ipw_set_channel(priv, channel);
8762 mutex_unlock(&priv->mutex);
8763 return ret;
8764 }
8765
8766 static int ipw_wx_get_freq(struct net_device *dev,
8767 struct iw_request_info *info,
8768 union iwreq_data *wrqu, char *extra)
8769 {
8770 struct ipw_priv *priv = ieee80211_priv(dev);
8771
8772 wrqu->freq.e = 0;
8773
8774 /* If we are associated, trying to associate, or have a statically
8775 * configured CHANNEL then return that; otherwise return ANY */
8776 mutex_lock(&priv->mutex);
8777 if (priv->config & CFG_STATIC_CHANNEL ||
8778 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8779 int i;
8780
8781 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8782 BUG_ON(i == -1);
8783 wrqu->freq.e = 1;
8784
8785 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8786 case IEEE80211_52GHZ_BAND:
8787 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8788 break;
8789
8790 case IEEE80211_24GHZ_BAND:
8791 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8792 break;
8793
8794 default:
8795 BUG();
8796 }
8797 } else
8798 wrqu->freq.m = 0;
8799
8800 mutex_unlock(&priv->mutex);
8801 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8802 return 0;
8803 }
8804
8805 static int ipw_wx_set_mode(struct net_device *dev,
8806 struct iw_request_info *info,
8807 union iwreq_data *wrqu, char *extra)
8808 {
8809 struct ipw_priv *priv = ieee80211_priv(dev);
8810 int err = 0;
8811
8812 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8813
8814 switch (wrqu->mode) {
8815 #ifdef CONFIG_IPW2200_MONITOR
8816 case IW_MODE_MONITOR:
8817 #endif
8818 case IW_MODE_ADHOC:
8819 case IW_MODE_INFRA:
8820 break;
8821 case IW_MODE_AUTO:
8822 wrqu->mode = IW_MODE_INFRA;
8823 break;
8824 default:
8825 return -EINVAL;
8826 }
8827 if (wrqu->mode == priv->ieee->iw_mode)
8828 return 0;
8829
8830 mutex_lock(&priv->mutex);
8831
8832 ipw_sw_reset(priv, 0);
8833
8834 #ifdef CONFIG_IPW2200_MONITOR
8835 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8836 priv->net_dev->type = ARPHRD_ETHER;
8837
8838 if (wrqu->mode == IW_MODE_MONITOR)
8839 #ifdef CONFIG_IPW2200_RADIOTAP
8840 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8841 #else
8842 priv->net_dev->type = ARPHRD_IEEE80211;
8843 #endif
8844 #endif /* CONFIG_IPW2200_MONITOR */
8845
8846 /* Free the existing firmware and reset the fw_loaded
8847 * flag so ipw_load() will bring in the new firmware */
8848 free_firmware();
8849
8850 priv->ieee->iw_mode = wrqu->mode;
8851
8852 queue_work(priv->workqueue, &priv->adapter_restart);
8853 mutex_unlock(&priv->mutex);
8854 return err;
8855 }
8856
8857 static int ipw_wx_get_mode(struct net_device *dev,
8858 struct iw_request_info *info,
8859 union iwreq_data *wrqu, char *extra)
8860 {
8861 struct ipw_priv *priv = ieee80211_priv(dev);
8862 mutex_lock(&priv->mutex);
8863 wrqu->mode = priv->ieee->iw_mode;
8864 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8865 mutex_unlock(&priv->mutex);
8866 return 0;
8867 }
8868
8869 /* Values are in microsecond */
8870 static const s32 timeout_duration[] = {
8871 350000,
8872 250000,
8873 75000,
8874 37000,
8875 25000,
8876 };
8877
8878 static const s32 period_duration[] = {
8879 400000,
8880 700000,
8881 1000000,
8882 1000000,
8883 1000000
8884 };
8885
8886 static int ipw_wx_get_range(struct net_device *dev,
8887 struct iw_request_info *info,
8888 union iwreq_data *wrqu, char *extra)
8889 {
8890 struct ipw_priv *priv = ieee80211_priv(dev);
8891 struct iw_range *range = (struct iw_range *)extra;
8892 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8893 int i = 0, j;
8894
8895 wrqu->data.length = sizeof(*range);
8896 memset(range, 0, sizeof(*range));
8897
8898 /* 54Mbs == ~27 Mb/s real (802.11g) */
8899 range->throughput = 27 * 1000 * 1000;
8900
8901 range->max_qual.qual = 100;
8902 /* TODO: Find real max RSSI and stick here */
8903 range->max_qual.level = 0;
8904 range->max_qual.noise = 0;
8905 range->max_qual.updated = 7; /* Updated all three */
8906
8907 range->avg_qual.qual = 70;
8908 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8909 range->avg_qual.level = 0; /* FIXME to real average level */
8910 range->avg_qual.noise = 0;
8911 range->avg_qual.updated = 7; /* Updated all three */
8912 mutex_lock(&priv->mutex);
8913 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8914
8915 for (i = 0; i < range->num_bitrates; i++)
8916 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8917 500000;
8918
8919 range->max_rts = DEFAULT_RTS_THRESHOLD;
8920 range->min_frag = MIN_FRAG_THRESHOLD;
8921 range->max_frag = MAX_FRAG_THRESHOLD;
8922
8923 range->encoding_size[0] = 5;
8924 range->encoding_size[1] = 13;
8925 range->num_encoding_sizes = 2;
8926 range->max_encoding_tokens = WEP_KEYS;
8927
8928 /* Set the Wireless Extension versions */
8929 range->we_version_compiled = WIRELESS_EXT;
8930 range->we_version_source = 18;
8931
8932 i = 0;
8933 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8934 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8935 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8936 (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8937 continue;
8938
8939 range->freq[i].i = geo->bg[j].channel;
8940 range->freq[i].m = geo->bg[j].freq * 100000;
8941 range->freq[i].e = 1;
8942 i++;
8943 }
8944 }
8945
8946 if (priv->ieee->mode & IEEE_A) {
8947 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8948 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8949 (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8950 continue;
8951
8952 range->freq[i].i = geo->a[j].channel;
8953 range->freq[i].m = geo->a[j].freq * 100000;
8954 range->freq[i].e = 1;
8955 i++;
8956 }
8957 }
8958
8959 range->num_channels = i;
8960 range->num_frequency = i;
8961
8962 mutex_unlock(&priv->mutex);
8963
8964 /* Event capability (kernel + driver) */
8965 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8966 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8967 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8968 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8969 range->event_capa[1] = IW_EVENT_CAPA_K_1;
8970
8971 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8972 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8973
8974 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8975
8976 IPW_DEBUG_WX("GET Range\n");
8977 return 0;
8978 }
8979
8980 static int ipw_wx_set_wap(struct net_device *dev,
8981 struct iw_request_info *info,
8982 union iwreq_data *wrqu, char *extra)
8983 {
8984 struct ipw_priv *priv = ieee80211_priv(dev);
8985
8986 static const unsigned char any[] = {
8987 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8988 };
8989 static const unsigned char off[] = {
8990 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8991 };
8992
8993 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8994 return -EINVAL;
8995 mutex_lock(&priv->mutex);
8996 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8997 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8998 /* we disable mandatory BSSID association */
8999 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
9000 priv->config &= ~CFG_STATIC_BSSID;
9001 IPW_DEBUG_ASSOC("Attempting to associate with new "
9002 "parameters.\n");
9003 ipw_associate(priv);
9004 mutex_unlock(&priv->mutex);
9005 return 0;
9006 }
9007
9008 priv->config |= CFG_STATIC_BSSID;
9009 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9010 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9011 mutex_unlock(&priv->mutex);
9012 return 0;
9013 }
9014
9015 IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
9016 wrqu->ap_addr.sa_data);
9017
9018 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9019
9020 /* Network configuration changed -- force [re]association */
9021 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9022 if (!ipw_disassociate(priv))
9023 ipw_associate(priv);
9024
9025 mutex_unlock(&priv->mutex);
9026 return 0;
9027 }
9028
9029 static int ipw_wx_get_wap(struct net_device *dev,
9030 struct iw_request_info *info,
9031 union iwreq_data *wrqu, char *extra)
9032 {
9033 struct ipw_priv *priv = ieee80211_priv(dev);
9034
9035 /* If we are associated, trying to associate, or have a statically
9036 * configured BSSID then return that; otherwise return ANY */
9037 mutex_lock(&priv->mutex);
9038 if (priv->config & CFG_STATIC_BSSID ||
9039 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9040 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9041 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9042 } else
9043 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9044
9045 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
9046 wrqu->ap_addr.sa_data);
9047 mutex_unlock(&priv->mutex);
9048 return 0;
9049 }
9050
9051 static int ipw_wx_set_essid(struct net_device *dev,
9052 struct iw_request_info *info,
9053 union iwreq_data *wrqu, char *extra)
9054 {
9055 struct ipw_priv *priv = ieee80211_priv(dev);
9056 int length;
9057 DECLARE_SSID_BUF(ssid);
9058
9059 mutex_lock(&priv->mutex);
9060
9061 if (!wrqu->essid.flags)
9062 {
9063 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9064 ipw_disassociate(priv);
9065 priv->config &= ~CFG_STATIC_ESSID;
9066 ipw_associate(priv);
9067 mutex_unlock(&priv->mutex);
9068 return 0;
9069 }
9070
9071 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9072
9073 priv->config |= CFG_STATIC_ESSID;
9074
9075 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9076 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9077 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9078 mutex_unlock(&priv->mutex);
9079 return 0;
9080 }
9081
9082 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
9083 print_ssid(ssid, extra, length), length);
9084
9085 priv->essid_len = length;
9086 memcpy(priv->essid, extra, priv->essid_len);
9087
9088 /* Network configuration changed -- force [re]association */
9089 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9090 if (!ipw_disassociate(priv))
9091 ipw_associate(priv);
9092
9093 mutex_unlock(&priv->mutex);
9094 return 0;
9095 }
9096
9097 static int ipw_wx_get_essid(struct net_device *dev,
9098 struct iw_request_info *info,
9099 union iwreq_data *wrqu, char *extra)
9100 {
9101 struct ipw_priv *priv = ieee80211_priv(dev);
9102 DECLARE_SSID_BUF(ssid);
9103
9104 /* If we are associated, trying to associate, or have a statically
9105 * configured ESSID then return that; otherwise return ANY */
9106 mutex_lock(&priv->mutex);
9107 if (priv->config & CFG_STATIC_ESSID ||
9108 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9109 IPW_DEBUG_WX("Getting essid: '%s'\n",
9110 print_ssid(ssid, priv->essid, priv->essid_len));
9111 memcpy(extra, priv->essid, priv->essid_len);
9112 wrqu->essid.length = priv->essid_len;
9113 wrqu->essid.flags = 1; /* active */
9114 } else {
9115 IPW_DEBUG_WX("Getting essid: ANY\n");
9116 wrqu->essid.length = 0;
9117 wrqu->essid.flags = 0; /* active */
9118 }
9119 mutex_unlock(&priv->mutex);
9120 return 0;
9121 }
9122
9123 static int ipw_wx_set_nick(struct net_device *dev,
9124 struct iw_request_info *info,
9125 union iwreq_data *wrqu, char *extra)
9126 {
9127 struct ipw_priv *priv = ieee80211_priv(dev);
9128
9129 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9130 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9131 return -E2BIG;
9132 mutex_lock(&priv->mutex);
9133 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9134 memset(priv->nick, 0, sizeof(priv->nick));
9135 memcpy(priv->nick, extra, wrqu->data.length);
9136 IPW_DEBUG_TRACE("<<\n");
9137 mutex_unlock(&priv->mutex);
9138 return 0;
9139
9140 }
9141
9142 static int ipw_wx_get_nick(struct net_device *dev,
9143 struct iw_request_info *info,
9144 union iwreq_data *wrqu, char *extra)
9145 {
9146 struct ipw_priv *priv = ieee80211_priv(dev);
9147 IPW_DEBUG_WX("Getting nick\n");
9148 mutex_lock(&priv->mutex);
9149 wrqu->data.length = strlen(priv->nick);
9150 memcpy(extra, priv->nick, wrqu->data.length);
9151 wrqu->data.flags = 1; /* active */
9152 mutex_unlock(&priv->mutex);
9153 return 0;
9154 }
9155
9156 static int ipw_wx_set_sens(struct net_device *dev,
9157 struct iw_request_info *info,
9158 union iwreq_data *wrqu, char *extra)
9159 {
9160 struct ipw_priv *priv = ieee80211_priv(dev);
9161 int err = 0;
9162
9163 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9164 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9165 mutex_lock(&priv->mutex);
9166
9167 if (wrqu->sens.fixed == 0)
9168 {
9169 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9170 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9171 goto out;
9172 }
9173 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9174 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9175 err = -EINVAL;
9176 goto out;
9177 }
9178
9179 priv->roaming_threshold = wrqu->sens.value;
9180 priv->disassociate_threshold = 3*wrqu->sens.value;
9181 out:
9182 mutex_unlock(&priv->mutex);
9183 return err;
9184 }
9185
9186 static int ipw_wx_get_sens(struct net_device *dev,
9187 struct iw_request_info *info,
9188 union iwreq_data *wrqu, char *extra)
9189 {
9190 struct ipw_priv *priv = ieee80211_priv(dev);
9191 mutex_lock(&priv->mutex);
9192 wrqu->sens.fixed = 1;
9193 wrqu->sens.value = priv->roaming_threshold;
9194 mutex_unlock(&priv->mutex);
9195
9196 IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9197 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9198
9199 return 0;
9200 }
9201
9202 static int ipw_wx_set_rate(struct net_device *dev,
9203 struct iw_request_info *info,
9204 union iwreq_data *wrqu, char *extra)
9205 {
9206 /* TODO: We should use semaphores or locks for access to priv */
9207 struct ipw_priv *priv = ieee80211_priv(dev);
9208 u32 target_rate = wrqu->bitrate.value;
9209 u32 fixed, mask;
9210
9211 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9212 /* value = X, fixed = 1 means only rate X */
9213 /* value = X, fixed = 0 means all rates lower equal X */
9214
9215 if (target_rate == -1) {
9216 fixed = 0;
9217 mask = IEEE80211_DEFAULT_RATES_MASK;
9218 /* Now we should reassociate */
9219 goto apply;
9220 }
9221
9222 mask = 0;
9223 fixed = wrqu->bitrate.fixed;
9224
9225 if (target_rate == 1000000 || !fixed)
9226 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9227 if (target_rate == 1000000)
9228 goto apply;
9229
9230 if (target_rate == 2000000 || !fixed)
9231 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9232 if (target_rate == 2000000)
9233 goto apply;
9234
9235 if (target_rate == 5500000 || !fixed)
9236 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9237 if (target_rate == 5500000)
9238 goto apply;
9239
9240 if (target_rate == 6000000 || !fixed)
9241 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9242 if (target_rate == 6000000)
9243 goto apply;
9244
9245 if (target_rate == 9000000 || !fixed)
9246 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9247 if (target_rate == 9000000)
9248 goto apply;
9249
9250 if (target_rate == 11000000 || !fixed)
9251 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9252 if (target_rate == 11000000)
9253 goto apply;
9254
9255 if (target_rate == 12000000 || !fixed)
9256 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9257 if (target_rate == 12000000)
9258 goto apply;
9259
9260 if (target_rate == 18000000 || !fixed)
9261 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9262 if (target_rate == 18000000)
9263 goto apply;
9264
9265 if (target_rate == 24000000 || !fixed)
9266 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9267 if (target_rate == 24000000)
9268 goto apply;
9269
9270 if (target_rate == 36000000 || !fixed)
9271 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9272 if (target_rate == 36000000)
9273 goto apply;
9274
9275 if (target_rate == 48000000 || !fixed)
9276 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9277 if (target_rate == 48000000)
9278 goto apply;
9279
9280 if (target_rate == 54000000 || !fixed)
9281 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9282 if (target_rate == 54000000)
9283 goto apply;
9284
9285 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9286 return -EINVAL;
9287
9288 apply:
9289 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9290 mask, fixed ? "fixed" : "sub-rates");
9291 mutex_lock(&priv->mutex);
9292 if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9293 priv->config &= ~CFG_FIXED_RATE;
9294 ipw_set_fixed_rate(priv, priv->ieee->mode);
9295 } else
9296 priv->config |= CFG_FIXED_RATE;
9297
9298 if (priv->rates_mask == mask) {
9299 IPW_DEBUG_WX("Mask set to current mask.\n");
9300 mutex_unlock(&priv->mutex);
9301 return 0;
9302 }
9303
9304 priv->rates_mask = mask;
9305
9306 /* Network configuration changed -- force [re]association */
9307 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9308 if (!ipw_disassociate(priv))
9309 ipw_associate(priv);
9310
9311 mutex_unlock(&priv->mutex);
9312 return 0;
9313 }
9314
9315 static int ipw_wx_get_rate(struct net_device *dev,
9316 struct iw_request_info *info,
9317 union iwreq_data *wrqu, char *extra)
9318 {
9319 struct ipw_priv *priv = ieee80211_priv(dev);
9320 mutex_lock(&priv->mutex);
9321 wrqu->bitrate.value = priv->last_rate;
9322 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9323 mutex_unlock(&priv->mutex);
9324 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9325 return 0;
9326 }
9327
9328 static int ipw_wx_set_rts(struct net_device *dev,
9329 struct iw_request_info *info,
9330 union iwreq_data *wrqu, char *extra)
9331 {
9332 struct ipw_priv *priv = ieee80211_priv(dev);
9333 mutex_lock(&priv->mutex);
9334 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9335 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9336 else {
9337 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9338 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9339 mutex_unlock(&priv->mutex);
9340 return -EINVAL;
9341 }
9342 priv->rts_threshold = wrqu->rts.value;
9343 }
9344
9345 ipw_send_rts_threshold(priv, priv->rts_threshold);
9346 mutex_unlock(&priv->mutex);
9347 IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9348 return 0;
9349 }
9350
9351 static int ipw_wx_get_rts(struct net_device *dev,
9352 struct iw_request_info *info,
9353 union iwreq_data *wrqu, char *extra)
9354 {
9355 struct ipw_priv *priv = ieee80211_priv(dev);
9356 mutex_lock(&priv->mutex);
9357 wrqu->rts.value = priv->rts_threshold;
9358 wrqu->rts.fixed = 0; /* no auto select */
9359 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9360 mutex_unlock(&priv->mutex);
9361 IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9362 return 0;
9363 }
9364
9365 static int ipw_wx_set_txpow(struct net_device *dev,
9366 struct iw_request_info *info,
9367 union iwreq_data *wrqu, char *extra)
9368 {
9369 struct ipw_priv *priv = ieee80211_priv(dev);
9370 int err = 0;
9371
9372 mutex_lock(&priv->mutex);
9373 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9374 err = -EINPROGRESS;
9375 goto out;
9376 }
9377
9378 if (!wrqu->power.fixed)
9379 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9380
9381 if (wrqu->power.flags != IW_TXPOW_DBM) {
9382 err = -EINVAL;
9383 goto out;
9384 }
9385
9386 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9387 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9388 err = -EINVAL;
9389 goto out;
9390 }
9391
9392 priv->tx_power = wrqu->power.value;
9393 err = ipw_set_tx_power(priv);
9394 out:
9395 mutex_unlock(&priv->mutex);
9396 return err;
9397 }
9398
9399 static int ipw_wx_get_txpow(struct net_device *dev,
9400 struct iw_request_info *info,
9401 union iwreq_data *wrqu, char *extra)
9402 {
9403 struct ipw_priv *priv = ieee80211_priv(dev);
9404 mutex_lock(&priv->mutex);
9405 wrqu->power.value = priv->tx_power;
9406 wrqu->power.fixed = 1;
9407 wrqu->power.flags = IW_TXPOW_DBM;
9408 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9409 mutex_unlock(&priv->mutex);
9410
9411 IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9412 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9413
9414 return 0;
9415 }
9416
9417 static int ipw_wx_set_frag(struct net_device *dev,
9418 struct iw_request_info *info,
9419 union iwreq_data *wrqu, char *extra)
9420 {
9421 struct ipw_priv *priv = ieee80211_priv(dev);
9422 mutex_lock(&priv->mutex);
9423 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9424 priv->ieee->fts = DEFAULT_FTS;
9425 else {
9426 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9427 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9428 mutex_unlock(&priv->mutex);
9429 return -EINVAL;
9430 }
9431
9432 priv->ieee->fts = wrqu->frag.value & ~0x1;
9433 }
9434
9435 ipw_send_frag_threshold(priv, wrqu->frag.value);
9436 mutex_unlock(&priv->mutex);
9437 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9438 return 0;
9439 }
9440
9441 static int ipw_wx_get_frag(struct net_device *dev,
9442 struct iw_request_info *info,
9443 union iwreq_data *wrqu, char *extra)
9444 {
9445 struct ipw_priv *priv = ieee80211_priv(dev);
9446 mutex_lock(&priv->mutex);
9447 wrqu->frag.value = priv->ieee->fts;
9448 wrqu->frag.fixed = 0; /* no auto select */
9449 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9450 mutex_unlock(&priv->mutex);
9451 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9452
9453 return 0;
9454 }
9455
9456 static int ipw_wx_set_retry(struct net_device *dev,
9457 struct iw_request_info *info,
9458 union iwreq_data *wrqu, char *extra)
9459 {
9460 struct ipw_priv *priv = ieee80211_priv(dev);
9461
9462 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9463 return -EINVAL;
9464
9465 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9466 return 0;
9467
9468 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9469 return -EINVAL;
9470
9471 mutex_lock(&priv->mutex);
9472 if (wrqu->retry.flags & IW_RETRY_SHORT)
9473 priv->short_retry_limit = (u8) wrqu->retry.value;
9474 else if (wrqu->retry.flags & IW_RETRY_LONG)
9475 priv->long_retry_limit = (u8) wrqu->retry.value;
9476 else {
9477 priv->short_retry_limit = (u8) wrqu->retry.value;
9478 priv->long_retry_limit = (u8) wrqu->retry.value;
9479 }
9480
9481 ipw_send_retry_limit(priv, priv->short_retry_limit,
9482 priv->long_retry_limit);
9483 mutex_unlock(&priv->mutex);
9484 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9485 priv->short_retry_limit, priv->long_retry_limit);
9486 return 0;
9487 }
9488
9489 static int ipw_wx_get_retry(struct net_device *dev,
9490 struct iw_request_info *info,
9491 union iwreq_data *wrqu, char *extra)
9492 {
9493 struct ipw_priv *priv = ieee80211_priv(dev);
9494
9495 mutex_lock(&priv->mutex);
9496 wrqu->retry.disabled = 0;
9497
9498 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9499 mutex_unlock(&priv->mutex);
9500 return -EINVAL;
9501 }
9502
9503 if (wrqu->retry.flags & IW_RETRY_LONG) {
9504 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9505 wrqu->retry.value = priv->long_retry_limit;
9506 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9507 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9508 wrqu->retry.value = priv->short_retry_limit;
9509 } else {
9510 wrqu->retry.flags = IW_RETRY_LIMIT;
9511 wrqu->retry.value = priv->short_retry_limit;
9512 }
9513 mutex_unlock(&priv->mutex);
9514
9515 IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9516
9517 return 0;
9518 }
9519
9520 static int ipw_wx_set_scan(struct net_device *dev,
9521 struct iw_request_info *info,
9522 union iwreq_data *wrqu, char *extra)
9523 {
9524 struct ipw_priv *priv = ieee80211_priv(dev);
9525 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9526 struct delayed_work *work = NULL;
9527
9528 mutex_lock(&priv->mutex);
9529
9530 priv->user_requested_scan = 1;
9531
9532 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9533 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9534 int len = min((int)req->essid_len,
9535 (int)sizeof(priv->direct_scan_ssid));
9536 memcpy(priv->direct_scan_ssid, req->essid, len);
9537 priv->direct_scan_ssid_len = len;
9538 work = &priv->request_direct_scan;
9539 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9540 work = &priv->request_passive_scan;
9541 }
9542 } else {
9543 /* Normal active broadcast scan */
9544 work = &priv->request_scan;
9545 }
9546
9547 mutex_unlock(&priv->mutex);
9548
9549 IPW_DEBUG_WX("Start scan\n");
9550
9551 queue_delayed_work(priv->workqueue, work, 0);
9552
9553 return 0;
9554 }
9555
9556 static int ipw_wx_get_scan(struct net_device *dev,
9557 struct iw_request_info *info,
9558 union iwreq_data *wrqu, char *extra)
9559 {
9560 struct ipw_priv *priv = ieee80211_priv(dev);
9561 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9562 }
9563
9564 static int ipw_wx_set_encode(struct net_device *dev,
9565 struct iw_request_info *info,
9566 union iwreq_data *wrqu, char *key)
9567 {
9568 struct ipw_priv *priv = ieee80211_priv(dev);
9569 int ret;
9570 u32 cap = priv->capability;
9571
9572 mutex_lock(&priv->mutex);
9573 ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9574
9575 /* In IBSS mode, we need to notify the firmware to update
9576 * the beacon info after we changed the capability. */
9577 if (cap != priv->capability &&
9578 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9579 priv->status & STATUS_ASSOCIATED)
9580 ipw_disassociate(priv);
9581
9582 mutex_unlock(&priv->mutex);
9583 return ret;
9584 }
9585
9586 static int ipw_wx_get_encode(struct net_device *dev,
9587 struct iw_request_info *info,
9588 union iwreq_data *wrqu, char *key)
9589 {
9590 struct ipw_priv *priv = ieee80211_priv(dev);
9591 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9592 }
9593
9594 static int ipw_wx_set_power(struct net_device *dev,
9595 struct iw_request_info *info,
9596 union iwreq_data *wrqu, char *extra)
9597 {
9598 struct ipw_priv *priv = ieee80211_priv(dev);
9599 int err;
9600 mutex_lock(&priv->mutex);
9601 if (wrqu->power.disabled) {
9602 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9603 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9604 if (err) {
9605 IPW_DEBUG_WX("failed setting power mode.\n");
9606 mutex_unlock(&priv->mutex);
9607 return err;
9608 }
9609 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9610 mutex_unlock(&priv->mutex);
9611 return 0;
9612 }
9613
9614 switch (wrqu->power.flags & IW_POWER_MODE) {
9615 case IW_POWER_ON: /* If not specified */
9616 case IW_POWER_MODE: /* If set all mask */
9617 case IW_POWER_ALL_R: /* If explicitly state all */
9618 break;
9619 default: /* Otherwise we don't support it */
9620 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9621 wrqu->power.flags);
9622 mutex_unlock(&priv->mutex);
9623 return -EOPNOTSUPP;
9624 }
9625
9626 /* If the user hasn't specified a power management mode yet, default
9627 * to BATTERY */
9628 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9629 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9630 else
9631 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9632
9633 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9634 if (err) {
9635 IPW_DEBUG_WX("failed setting power mode.\n");
9636 mutex_unlock(&priv->mutex);
9637 return err;
9638 }
9639
9640 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9641 mutex_unlock(&priv->mutex);
9642 return 0;
9643 }
9644
9645 static int ipw_wx_get_power(struct net_device *dev,
9646 struct iw_request_info *info,
9647 union iwreq_data *wrqu, char *extra)
9648 {
9649 struct ipw_priv *priv = ieee80211_priv(dev);
9650 mutex_lock(&priv->mutex);
9651 if (!(priv->power_mode & IPW_POWER_ENABLED))
9652 wrqu->power.disabled = 1;
9653 else
9654 wrqu->power.disabled = 0;
9655
9656 mutex_unlock(&priv->mutex);
9657 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9658
9659 return 0;
9660 }
9661
9662 static int ipw_wx_set_powermode(struct net_device *dev,
9663 struct iw_request_info *info,
9664 union iwreq_data *wrqu, char *extra)
9665 {
9666 struct ipw_priv *priv = ieee80211_priv(dev);
9667 int mode = *(int *)extra;
9668 int err;
9669
9670 mutex_lock(&priv->mutex);
9671 if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9672 mode = IPW_POWER_AC;
9673
9674 if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9675 err = ipw_send_power_mode(priv, mode);
9676 if (err) {
9677 IPW_DEBUG_WX("failed setting power mode.\n");
9678 mutex_unlock(&priv->mutex);
9679 return err;
9680 }
9681 priv->power_mode = IPW_POWER_ENABLED | mode;
9682 }
9683 mutex_unlock(&priv->mutex);
9684 return 0;
9685 }
9686
9687 #define MAX_WX_STRING 80
9688 static int ipw_wx_get_powermode(struct net_device *dev,
9689 struct iw_request_info *info,
9690 union iwreq_data *wrqu, char *extra)
9691 {
9692 struct ipw_priv *priv = ieee80211_priv(dev);
9693 int level = IPW_POWER_LEVEL(priv->power_mode);
9694 char *p = extra;
9695
9696 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9697
9698 switch (level) {
9699 case IPW_POWER_AC:
9700 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9701 break;
9702 case IPW_POWER_BATTERY:
9703 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9704 break;
9705 default:
9706 p += snprintf(p, MAX_WX_STRING - (p - extra),
9707 "(Timeout %dms, Period %dms)",
9708 timeout_duration[level - 1] / 1000,
9709 period_duration[level - 1] / 1000);
9710 }
9711
9712 if (!(priv->power_mode & IPW_POWER_ENABLED))
9713 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9714
9715 wrqu->data.length = p - extra + 1;
9716
9717 return 0;
9718 }
9719
9720 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9721 struct iw_request_info *info,
9722 union iwreq_data *wrqu, char *extra)
9723 {
9724 struct ipw_priv *priv = ieee80211_priv(dev);
9725 int mode = *(int *)extra;
9726 u8 band = 0, modulation = 0;
9727
9728 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9729 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9730 return -EINVAL;
9731 }
9732 mutex_lock(&priv->mutex);
9733 if (priv->adapter == IPW_2915ABG) {
9734 priv->ieee->abg_true = 1;
9735 if (mode & IEEE_A) {
9736 band |= IEEE80211_52GHZ_BAND;
9737 modulation |= IEEE80211_OFDM_MODULATION;
9738 } else
9739 priv->ieee->abg_true = 0;
9740 } else {
9741 if (mode & IEEE_A) {
9742 IPW_WARNING("Attempt to set 2200BG into "
9743 "802.11a mode\n");
9744 mutex_unlock(&priv->mutex);
9745 return -EINVAL;
9746 }
9747
9748 priv->ieee->abg_true = 0;
9749 }
9750
9751 if (mode & IEEE_B) {
9752 band |= IEEE80211_24GHZ_BAND;
9753 modulation |= IEEE80211_CCK_MODULATION;
9754 } else
9755 priv->ieee->abg_true = 0;
9756
9757 if (mode & IEEE_G) {
9758 band |= IEEE80211_24GHZ_BAND;
9759 modulation |= IEEE80211_OFDM_MODULATION;
9760 } else
9761 priv->ieee->abg_true = 0;
9762
9763 priv->ieee->mode = mode;
9764 priv->ieee->freq_band = band;
9765 priv->ieee->modulation = modulation;
9766 init_supported_rates(priv, &priv->rates);
9767
9768 /* Network configuration changed -- force [re]association */
9769 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9770 if (!ipw_disassociate(priv)) {
9771 ipw_send_supported_rates(priv, &priv->rates);
9772 ipw_associate(priv);
9773 }
9774
9775 /* Update the band LEDs */
9776 ipw_led_band_on(priv);
9777
9778 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9779 mode & IEEE_A ? 'a' : '.',
9780 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9781 mutex_unlock(&priv->mutex);
9782 return 0;
9783 }
9784
9785 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9786 struct iw_request_info *info,
9787 union iwreq_data *wrqu, char *extra)
9788 {
9789 struct ipw_priv *priv = ieee80211_priv(dev);
9790 mutex_lock(&priv->mutex);
9791 switch (priv->ieee->mode) {
9792 case IEEE_A:
9793 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9794 break;
9795 case IEEE_B:
9796 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9797 break;
9798 case IEEE_A | IEEE_B:
9799 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9800 break;
9801 case IEEE_G:
9802 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9803 break;
9804 case IEEE_A | IEEE_G:
9805 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9806 break;
9807 case IEEE_B | IEEE_G:
9808 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9809 break;
9810 case IEEE_A | IEEE_B | IEEE_G:
9811 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9812 break;
9813 default:
9814 strncpy(extra, "unknown", MAX_WX_STRING);
9815 break;
9816 }
9817
9818 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9819
9820 wrqu->data.length = strlen(extra) + 1;
9821 mutex_unlock(&priv->mutex);
9822
9823 return 0;
9824 }
9825
9826 static int ipw_wx_set_preamble(struct net_device *dev,
9827 struct iw_request_info *info,
9828 union iwreq_data *wrqu, char *extra)
9829 {
9830 struct ipw_priv *priv = ieee80211_priv(dev);
9831 int mode = *(int *)extra;
9832 mutex_lock(&priv->mutex);
9833 /* Switching from SHORT -> LONG requires a disassociation */
9834 if (mode == 1) {
9835 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9836 priv->config |= CFG_PREAMBLE_LONG;
9837
9838 /* Network configuration changed -- force [re]association */
9839 IPW_DEBUG_ASSOC
9840 ("[re]association triggered due to preamble change.\n");
9841 if (!ipw_disassociate(priv))
9842 ipw_associate(priv);
9843 }
9844 goto done;
9845 }
9846
9847 if (mode == 0) {
9848 priv->config &= ~CFG_PREAMBLE_LONG;
9849 goto done;
9850 }
9851 mutex_unlock(&priv->mutex);
9852 return -EINVAL;
9853
9854 done:
9855 mutex_unlock(&priv->mutex);
9856 return 0;
9857 }
9858
9859 static int ipw_wx_get_preamble(struct net_device *dev,
9860 struct iw_request_info *info,
9861 union iwreq_data *wrqu, char *extra)
9862 {
9863 struct ipw_priv *priv = ieee80211_priv(dev);
9864 mutex_lock(&priv->mutex);
9865 if (priv->config & CFG_PREAMBLE_LONG)
9866 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9867 else
9868 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9869 mutex_unlock(&priv->mutex);
9870 return 0;
9871 }
9872
9873 #ifdef CONFIG_IPW2200_MONITOR
9874 static int ipw_wx_set_monitor(struct net_device *dev,
9875 struct iw_request_info *info,
9876 union iwreq_data *wrqu, char *extra)
9877 {
9878 struct ipw_priv *priv = ieee80211_priv(dev);
9879 int *parms = (int *)extra;
9880 int enable = (parms[0] > 0);
9881 mutex_lock(&priv->mutex);
9882 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9883 if (enable) {
9884 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9885 #ifdef CONFIG_IPW2200_RADIOTAP
9886 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9887 #else
9888 priv->net_dev->type = ARPHRD_IEEE80211;
9889 #endif
9890 queue_work(priv->workqueue, &priv->adapter_restart);
9891 }
9892
9893 ipw_set_channel(priv, parms[1]);
9894 } else {
9895 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9896 mutex_unlock(&priv->mutex);
9897 return 0;
9898 }
9899 priv->net_dev->type = ARPHRD_ETHER;
9900 queue_work(priv->workqueue, &priv->adapter_restart);
9901 }
9902 mutex_unlock(&priv->mutex);
9903 return 0;
9904 }
9905
9906 #endif /* CONFIG_IPW2200_MONITOR */
9907
9908 static int ipw_wx_reset(struct net_device *dev,
9909 struct iw_request_info *info,
9910 union iwreq_data *wrqu, char *extra)
9911 {
9912 struct ipw_priv *priv = ieee80211_priv(dev);
9913 IPW_DEBUG_WX("RESET\n");
9914 queue_work(priv->workqueue, &priv->adapter_restart);
9915 return 0;
9916 }
9917
9918 static int ipw_wx_sw_reset(struct net_device *dev,
9919 struct iw_request_info *info,
9920 union iwreq_data *wrqu, char *extra)
9921 {
9922 struct ipw_priv *priv = ieee80211_priv(dev);
9923 union iwreq_data wrqu_sec = {
9924 .encoding = {
9925 .flags = IW_ENCODE_DISABLED,
9926 },
9927 };
9928 int ret;
9929
9930 IPW_DEBUG_WX("SW_RESET\n");
9931
9932 mutex_lock(&priv->mutex);
9933
9934 ret = ipw_sw_reset(priv, 2);
9935 if (!ret) {
9936 free_firmware();
9937 ipw_adapter_restart(priv);
9938 }
9939
9940 /* The SW reset bit might have been toggled on by the 'disable'
9941 * module parameter, so take appropriate action */
9942 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9943
9944 mutex_unlock(&priv->mutex);
9945 ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9946 mutex_lock(&priv->mutex);
9947
9948 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9949 /* Configuration likely changed -- force [re]association */
9950 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9951 "reset.\n");
9952 if (!ipw_disassociate(priv))
9953 ipw_associate(priv);
9954 }
9955
9956 mutex_unlock(&priv->mutex);
9957
9958 return 0;
9959 }
9960
9961 /* Rebase the WE IOCTLs to zero for the handler array */
9962 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9963 static iw_handler ipw_wx_handlers[] = {
9964 IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9965 IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9966 IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9967 IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9968 IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9969 IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9970 IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9971 IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9972 IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9973 IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9974 IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9975 IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9976 IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9977 IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9978 IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9979 IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9980 IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9981 IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9982 IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9983 IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9984 IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9985 IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9986 IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9987 IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9988 IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9989 IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9990 IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9991 IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9992 IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9993 IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9994 IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9995 IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9996 IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9997 IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9998 IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9999 IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
10000 IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
10001 IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
10002 IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
10003 IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
10004 IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
10005 };
10006
10007 enum {
10008 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10009 IPW_PRIV_GET_POWER,
10010 IPW_PRIV_SET_MODE,
10011 IPW_PRIV_GET_MODE,
10012 IPW_PRIV_SET_PREAMBLE,
10013 IPW_PRIV_GET_PREAMBLE,
10014 IPW_PRIV_RESET,
10015 IPW_PRIV_SW_RESET,
10016 #ifdef CONFIG_IPW2200_MONITOR
10017 IPW_PRIV_SET_MONITOR,
10018 #endif
10019 };
10020
10021 static struct iw_priv_args ipw_priv_args[] = {
10022 {
10023 .cmd = IPW_PRIV_SET_POWER,
10024 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10025 .name = "set_power"},
10026 {
10027 .cmd = IPW_PRIV_GET_POWER,
10028 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10029 .name = "get_power"},
10030 {
10031 .cmd = IPW_PRIV_SET_MODE,
10032 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10033 .name = "set_mode"},
10034 {
10035 .cmd = IPW_PRIV_GET_MODE,
10036 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10037 .name = "get_mode"},
10038 {
10039 .cmd = IPW_PRIV_SET_PREAMBLE,
10040 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10041 .name = "set_preamble"},
10042 {
10043 .cmd = IPW_PRIV_GET_PREAMBLE,
10044 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10045 .name = "get_preamble"},
10046 {
10047 IPW_PRIV_RESET,
10048 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10049 {
10050 IPW_PRIV_SW_RESET,
10051 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10052 #ifdef CONFIG_IPW2200_MONITOR
10053 {
10054 IPW_PRIV_SET_MONITOR,
10055 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10056 #endif /* CONFIG_IPW2200_MONITOR */
10057 };
10058
10059 static iw_handler ipw_priv_handler[] = {
10060 ipw_wx_set_powermode,
10061 ipw_wx_get_powermode,
10062 ipw_wx_set_wireless_mode,
10063 ipw_wx_get_wireless_mode,
10064 ipw_wx_set_preamble,
10065 ipw_wx_get_preamble,
10066 ipw_wx_reset,
10067 ipw_wx_sw_reset,
10068 #ifdef CONFIG_IPW2200_MONITOR
10069 ipw_wx_set_monitor,
10070 #endif
10071 };
10072
10073 static struct iw_handler_def ipw_wx_handler_def = {
10074 .standard = ipw_wx_handlers,
10075 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10076 .num_private = ARRAY_SIZE(ipw_priv_handler),
10077 .num_private_args = ARRAY_SIZE(ipw_priv_args),
10078 .private = ipw_priv_handler,
10079 .private_args = ipw_priv_args,
10080 .get_wireless_stats = ipw_get_wireless_stats,
10081 };
10082
10083 /*
10084 * Get wireless statistics.
10085 * Called by /proc/net/wireless
10086 * Also called by SIOCGIWSTATS
10087 */
10088 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10089 {
10090 struct ipw_priv *priv = ieee80211_priv(dev);
10091 struct iw_statistics *wstats;
10092
10093 wstats = &priv->wstats;
10094
10095 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10096 * netdev->get_wireless_stats seems to be called before fw is
10097 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10098 * and associated; if not associcated, the values are all meaningless
10099 * anyway, so set them all to NULL and INVALID */
10100 if (!(priv->status & STATUS_ASSOCIATED)) {
10101 wstats->miss.beacon = 0;
10102 wstats->discard.retries = 0;
10103 wstats->qual.qual = 0;
10104 wstats->qual.level = 0;
10105 wstats->qual.noise = 0;
10106 wstats->qual.updated = 7;
10107 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10108 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10109 return wstats;
10110 }
10111
10112 wstats->qual.qual = priv->quality;
10113 wstats->qual.level = priv->exp_avg_rssi;
10114 wstats->qual.noise = priv->exp_avg_noise;
10115 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10116 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10117
10118 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10119 wstats->discard.retries = priv->last_tx_failures;
10120 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10121
10122 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10123 goto fail_get_ordinal;
10124 wstats->discard.retries += tx_retry; */
10125
10126 return wstats;
10127 }
10128
10129 /* net device stuff */
10130
10131 static void init_sys_config(struct ipw_sys_config *sys_config)
10132 {
10133 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10134 sys_config->bt_coexistence = 0;
10135 sys_config->answer_broadcast_ssid_probe = 0;
10136 sys_config->accept_all_data_frames = 0;
10137 sys_config->accept_non_directed_frames = 1;
10138 sys_config->exclude_unicast_unencrypted = 0;
10139 sys_config->disable_unicast_decryption = 1;
10140 sys_config->exclude_multicast_unencrypted = 0;
10141 sys_config->disable_multicast_decryption = 1;
10142 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10143 antenna = CFG_SYS_ANTENNA_BOTH;
10144 sys_config->antenna_diversity = antenna;
10145 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10146 sys_config->dot11g_auto_detection = 0;
10147 sys_config->enable_cts_to_self = 0;
10148 sys_config->bt_coexist_collision_thr = 0;
10149 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10150 sys_config->silence_threshold = 0x1e;
10151 }
10152
10153 static int ipw_net_open(struct net_device *dev)
10154 {
10155 IPW_DEBUG_INFO("dev->open\n");
10156 netif_start_queue(dev);
10157 return 0;
10158 }
10159
10160 static int ipw_net_stop(struct net_device *dev)
10161 {
10162 IPW_DEBUG_INFO("dev->close\n");
10163 netif_stop_queue(dev);
10164 return 0;
10165 }
10166
10167 /*
10168 todo:
10169
10170 modify to send one tfd per fragment instead of using chunking. otherwise
10171 we need to heavily modify the ieee80211_skb_to_txb.
10172 */
10173
10174 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10175 int pri)
10176 {
10177 struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10178 txb->fragments[0]->data;
10179 int i = 0;
10180 struct tfd_frame *tfd;
10181 #ifdef CONFIG_IPW2200_QOS
10182 int tx_id = ipw_get_tx_queue_number(priv, pri);
10183 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10184 #else
10185 struct clx2_tx_queue *txq = &priv->txq[0];
10186 #endif
10187 struct clx2_queue *q = &txq->q;
10188 u8 id, hdr_len, unicast;
10189 u16 remaining_bytes;
10190 int fc;
10191
10192 if (!(priv->status & STATUS_ASSOCIATED))
10193 goto drop;
10194
10195 hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10196 switch (priv->ieee->iw_mode) {
10197 case IW_MODE_ADHOC:
10198 unicast = !is_multicast_ether_addr(hdr->addr1);
10199 id = ipw_find_station(priv, hdr->addr1);
10200 if (id == IPW_INVALID_STATION) {
10201 id = ipw_add_station(priv, hdr->addr1);
10202 if (id == IPW_INVALID_STATION) {
10203 IPW_WARNING("Attempt to send data to "
10204 "invalid cell: %pM\n",
10205 hdr->addr1);
10206 goto drop;
10207 }
10208 }
10209 break;
10210
10211 case IW_MODE_INFRA:
10212 default:
10213 unicast = !is_multicast_ether_addr(hdr->addr3);
10214 id = 0;
10215 break;
10216 }
10217
10218 tfd = &txq->bd[q->first_empty];
10219 txq->txb[q->first_empty] = txb;
10220 memset(tfd, 0, sizeof(*tfd));
10221 tfd->u.data.station_number = id;
10222
10223 tfd->control_flags.message_type = TX_FRAME_TYPE;
10224 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10225
10226 tfd->u.data.cmd_id = DINO_CMD_TX;
10227 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10228 remaining_bytes = txb->payload_size;
10229
10230 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10231 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10232 else
10233 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10234
10235 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10236 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10237
10238 fc = le16_to_cpu(hdr->frame_ctl);
10239 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10240
10241 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10242
10243 if (likely(unicast))
10244 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10245
10246 if (txb->encrypted && !priv->ieee->host_encrypt) {
10247 switch (priv->ieee->sec.level) {
10248 case SEC_LEVEL_3:
10249 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10250 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10251 /* XXX: ACK flag must be set for CCMP even if it
10252 * is a multicast/broadcast packet, because CCMP
10253 * group communication encrypted by GTK is
10254 * actually done by the AP. */
10255 if (!unicast)
10256 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10257
10258 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10259 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10260 tfd->u.data.key_index = 0;
10261 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10262 break;
10263 case SEC_LEVEL_2:
10264 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10265 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10266 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10267 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10268 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10269 break;
10270 case SEC_LEVEL_1:
10271 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10272 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10273 tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10274 if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10275 40)
10276 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10277 else
10278 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10279 break;
10280 case SEC_LEVEL_0:
10281 break;
10282 default:
10283 printk(KERN_ERR "Unknow security level %d\n",
10284 priv->ieee->sec.level);
10285 break;
10286 }
10287 } else
10288 /* No hardware encryption */
10289 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10290
10291 #ifdef CONFIG_IPW2200_QOS
10292 if (fc & IEEE80211_STYPE_QOS_DATA)
10293 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10294 #endif /* CONFIG_IPW2200_QOS */
10295
10296 /* payload */
10297 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10298 txb->nr_frags));
10299 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10300 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10301 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10302 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10303 i, le32_to_cpu(tfd->u.data.num_chunks),
10304 txb->fragments[i]->len - hdr_len);
10305 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10306 i, tfd->u.data.num_chunks,
10307 txb->fragments[i]->len - hdr_len);
10308 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10309 txb->fragments[i]->len - hdr_len);
10310
10311 tfd->u.data.chunk_ptr[i] =
10312 cpu_to_le32(pci_map_single
10313 (priv->pci_dev,
10314 txb->fragments[i]->data + hdr_len,
10315 txb->fragments[i]->len - hdr_len,
10316 PCI_DMA_TODEVICE));
10317 tfd->u.data.chunk_len[i] =
10318 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10319 }
10320
10321 if (i != txb->nr_frags) {
10322 struct sk_buff *skb;
10323 u16 remaining_bytes = 0;
10324 int j;
10325
10326 for (j = i; j < txb->nr_frags; j++)
10327 remaining_bytes += txb->fragments[j]->len - hdr_len;
10328
10329 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10330 remaining_bytes);
10331 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10332 if (skb != NULL) {
10333 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10334 for (j = i; j < txb->nr_frags; j++) {
10335 int size = txb->fragments[j]->len - hdr_len;
10336
10337 printk(KERN_INFO "Adding frag %d %d...\n",
10338 j, size);
10339 memcpy(skb_put(skb, size),
10340 txb->fragments[j]->data + hdr_len, size);
10341 }
10342 dev_kfree_skb_any(txb->fragments[i]);
10343 txb->fragments[i] = skb;
10344 tfd->u.data.chunk_ptr[i] =
10345 cpu_to_le32(pci_map_single
10346 (priv->pci_dev, skb->data,
10347 remaining_bytes,
10348 PCI_DMA_TODEVICE));
10349
10350 le32_add_cpu(&tfd->u.data.num_chunks, 1);
10351 }
10352 }
10353
10354 /* kick DMA */
10355 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10356 ipw_write32(priv, q->reg_w, q->first_empty);
10357
10358 if (ipw_tx_queue_space(q) < q->high_mark)
10359 netif_stop_queue(priv->net_dev);
10360
10361 return NETDEV_TX_OK;
10362
10363 drop:
10364 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10365 ieee80211_txb_free(txb);
10366 return NETDEV_TX_OK;
10367 }
10368
10369 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10370 {
10371 struct ipw_priv *priv = ieee80211_priv(dev);
10372 #ifdef CONFIG_IPW2200_QOS
10373 int tx_id = ipw_get_tx_queue_number(priv, pri);
10374 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10375 #else
10376 struct clx2_tx_queue *txq = &priv->txq[0];
10377 #endif /* CONFIG_IPW2200_QOS */
10378
10379 if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10380 return 1;
10381
10382 return 0;
10383 }
10384
10385 #ifdef CONFIG_IPW2200_PROMISCUOUS
10386 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10387 struct ieee80211_txb *txb)
10388 {
10389 struct ieee80211_rx_stats dummystats;
10390 struct ieee80211_hdr *hdr;
10391 u8 n;
10392 u16 filter = priv->prom_priv->filter;
10393 int hdr_only = 0;
10394
10395 if (filter & IPW_PROM_NO_TX)
10396 return;
10397
10398 memset(&dummystats, 0, sizeof(dummystats));
10399
10400 /* Filtering of fragment chains is done agains the first fragment */
10401 hdr = (void *)txb->fragments[0]->data;
10402 if (ieee80211_is_management(le16_to_cpu(hdr->frame_control))) {
10403 if (filter & IPW_PROM_NO_MGMT)
10404 return;
10405 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10406 hdr_only = 1;
10407 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_control))) {
10408 if (filter & IPW_PROM_NO_CTL)
10409 return;
10410 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10411 hdr_only = 1;
10412 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_control))) {
10413 if (filter & IPW_PROM_NO_DATA)
10414 return;
10415 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10416 hdr_only = 1;
10417 }
10418
10419 for(n=0; n<txb->nr_frags; ++n) {
10420 struct sk_buff *src = txb->fragments[n];
10421 struct sk_buff *dst;
10422 struct ieee80211_radiotap_header *rt_hdr;
10423 int len;
10424
10425 if (hdr_only) {
10426 hdr = (void *)src->data;
10427 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
10428 } else
10429 len = src->len;
10430
10431 dst = alloc_skb(len + sizeof(*rt_hdr), GFP_ATOMIC);
10432 if (!dst)
10433 continue;
10434
10435 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10436
10437 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10438 rt_hdr->it_pad = 0;
10439 rt_hdr->it_present = 0; /* after all, it's just an idea */
10440 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10441
10442 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10443 ieee80211chan2mhz(priv->channel));
10444 if (priv->channel > 14) /* 802.11a */
10445 *(__le16*)skb_put(dst, sizeof(u16)) =
10446 cpu_to_le16(IEEE80211_CHAN_OFDM |
10447 IEEE80211_CHAN_5GHZ);
10448 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10449 *(__le16*)skb_put(dst, sizeof(u16)) =
10450 cpu_to_le16(IEEE80211_CHAN_CCK |
10451 IEEE80211_CHAN_2GHZ);
10452 else /* 802.11g */
10453 *(__le16*)skb_put(dst, sizeof(u16)) =
10454 cpu_to_le16(IEEE80211_CHAN_OFDM |
10455 IEEE80211_CHAN_2GHZ);
10456
10457 rt_hdr->it_len = cpu_to_le16(dst->len);
10458
10459 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10460
10461 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10462 dev_kfree_skb_any(dst);
10463 }
10464 }
10465 #endif
10466
10467 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10468 struct net_device *dev, int pri)
10469 {
10470 struct ipw_priv *priv = ieee80211_priv(dev);
10471 unsigned long flags;
10472 int ret;
10473
10474 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10475 spin_lock_irqsave(&priv->lock, flags);
10476
10477 #ifdef CONFIG_IPW2200_PROMISCUOUS
10478 if (rtap_iface && netif_running(priv->prom_net_dev))
10479 ipw_handle_promiscuous_tx(priv, txb);
10480 #endif
10481
10482 ret = ipw_tx_skb(priv, txb, pri);
10483 if (ret == NETDEV_TX_OK)
10484 __ipw_led_activity_on(priv);
10485 spin_unlock_irqrestore(&priv->lock, flags);
10486
10487 return ret;
10488 }
10489
10490 static void ipw_net_set_multicast_list(struct net_device *dev)
10491 {
10492
10493 }
10494
10495 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10496 {
10497 struct ipw_priv *priv = ieee80211_priv(dev);
10498 struct sockaddr *addr = p;
10499
10500 if (!is_valid_ether_addr(addr->sa_data))
10501 return -EADDRNOTAVAIL;
10502 mutex_lock(&priv->mutex);
10503 priv->config |= CFG_CUSTOM_MAC;
10504 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10505 printk(KERN_INFO "%s: Setting MAC to %pM\n",
10506 priv->net_dev->name, priv->mac_addr);
10507 queue_work(priv->workqueue, &priv->adapter_restart);
10508 mutex_unlock(&priv->mutex);
10509 return 0;
10510 }
10511
10512 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10513 struct ethtool_drvinfo *info)
10514 {
10515 struct ipw_priv *p = ieee80211_priv(dev);
10516 char vers[64];
10517 char date[32];
10518 u32 len;
10519
10520 strcpy(info->driver, DRV_NAME);
10521 strcpy(info->version, DRV_VERSION);
10522
10523 len = sizeof(vers);
10524 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10525 len = sizeof(date);
10526 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10527
10528 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10529 vers, date);
10530 strcpy(info->bus_info, pci_name(p->pci_dev));
10531 info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10532 }
10533
10534 static u32 ipw_ethtool_get_link(struct net_device *dev)
10535 {
10536 struct ipw_priv *priv = ieee80211_priv(dev);
10537 return (priv->status & STATUS_ASSOCIATED) != 0;
10538 }
10539
10540 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10541 {
10542 return IPW_EEPROM_IMAGE_SIZE;
10543 }
10544
10545 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10546 struct ethtool_eeprom *eeprom, u8 * bytes)
10547 {
10548 struct ipw_priv *p = ieee80211_priv(dev);
10549
10550 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10551 return -EINVAL;
10552 mutex_lock(&p->mutex);
10553 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10554 mutex_unlock(&p->mutex);
10555 return 0;
10556 }
10557
10558 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10559 struct ethtool_eeprom *eeprom, u8 * bytes)
10560 {
10561 struct ipw_priv *p = ieee80211_priv(dev);
10562 int i;
10563
10564 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10565 return -EINVAL;
10566 mutex_lock(&p->mutex);
10567 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10568 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10569 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10570 mutex_unlock(&p->mutex);
10571 return 0;
10572 }
10573
10574 static const struct ethtool_ops ipw_ethtool_ops = {
10575 .get_link = ipw_ethtool_get_link,
10576 .get_drvinfo = ipw_ethtool_get_drvinfo,
10577 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10578 .get_eeprom = ipw_ethtool_get_eeprom,
10579 .set_eeprom = ipw_ethtool_set_eeprom,
10580 };
10581
10582 static irqreturn_t ipw_isr(int irq, void *data)
10583 {
10584 struct ipw_priv *priv = data;
10585 u32 inta, inta_mask;
10586
10587 if (!priv)
10588 return IRQ_NONE;
10589
10590 spin_lock(&priv->irq_lock);
10591
10592 if (!(priv->status & STATUS_INT_ENABLED)) {
10593 /* IRQ is disabled */
10594 goto none;
10595 }
10596
10597 inta = ipw_read32(priv, IPW_INTA_RW);
10598 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10599
10600 if (inta == 0xFFFFFFFF) {
10601 /* Hardware disappeared */
10602 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10603 goto none;
10604 }
10605
10606 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10607 /* Shared interrupt */
10608 goto none;
10609 }
10610
10611 /* tell the device to stop sending interrupts */
10612 __ipw_disable_interrupts(priv);
10613
10614 /* ack current interrupts */
10615 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10616 ipw_write32(priv, IPW_INTA_RW, inta);
10617
10618 /* Cache INTA value for our tasklet */
10619 priv->isr_inta = inta;
10620
10621 tasklet_schedule(&priv->irq_tasklet);
10622
10623 spin_unlock(&priv->irq_lock);
10624
10625 return IRQ_HANDLED;
10626 none:
10627 spin_unlock(&priv->irq_lock);
10628 return IRQ_NONE;
10629 }
10630
10631 static void ipw_rf_kill(void *adapter)
10632 {
10633 struct ipw_priv *priv = adapter;
10634 unsigned long flags;
10635
10636 spin_lock_irqsave(&priv->lock, flags);
10637
10638 if (rf_kill_active(priv)) {
10639 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10640 if (priv->workqueue)
10641 queue_delayed_work(priv->workqueue,
10642 &priv->rf_kill, 2 * HZ);
10643 goto exit_unlock;
10644 }
10645
10646 /* RF Kill is now disabled, so bring the device back up */
10647
10648 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10649 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10650 "device\n");
10651
10652 /* we can not do an adapter restart while inside an irq lock */
10653 queue_work(priv->workqueue, &priv->adapter_restart);
10654 } else
10655 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10656 "enabled\n");
10657
10658 exit_unlock:
10659 spin_unlock_irqrestore(&priv->lock, flags);
10660 }
10661
10662 static void ipw_bg_rf_kill(struct work_struct *work)
10663 {
10664 struct ipw_priv *priv =
10665 container_of(work, struct ipw_priv, rf_kill.work);
10666 mutex_lock(&priv->mutex);
10667 ipw_rf_kill(priv);
10668 mutex_unlock(&priv->mutex);
10669 }
10670
10671 static void ipw_link_up(struct ipw_priv *priv)
10672 {
10673 priv->last_seq_num = -1;
10674 priv->last_frag_num = -1;
10675 priv->last_packet_time = 0;
10676
10677 netif_carrier_on(priv->net_dev);
10678
10679 cancel_delayed_work(&priv->request_scan);
10680 cancel_delayed_work(&priv->request_direct_scan);
10681 cancel_delayed_work(&priv->request_passive_scan);
10682 cancel_delayed_work(&priv->scan_event);
10683 ipw_reset_stats(priv);
10684 /* Ensure the rate is updated immediately */
10685 priv->last_rate = ipw_get_current_rate(priv);
10686 ipw_gather_stats(priv);
10687 ipw_led_link_up(priv);
10688 notify_wx_assoc_event(priv);
10689
10690 if (priv->config & CFG_BACKGROUND_SCAN)
10691 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10692 }
10693
10694 static void ipw_bg_link_up(struct work_struct *work)
10695 {
10696 struct ipw_priv *priv =
10697 container_of(work, struct ipw_priv, link_up);
10698 mutex_lock(&priv->mutex);
10699 ipw_link_up(priv);
10700 mutex_unlock(&priv->mutex);
10701 }
10702
10703 static void ipw_link_down(struct ipw_priv *priv)
10704 {
10705 ipw_led_link_down(priv);
10706 netif_carrier_off(priv->net_dev);
10707 notify_wx_assoc_event(priv);
10708
10709 /* Cancel any queued work ... */
10710 cancel_delayed_work(&priv->request_scan);
10711 cancel_delayed_work(&priv->request_direct_scan);
10712 cancel_delayed_work(&priv->request_passive_scan);
10713 cancel_delayed_work(&priv->adhoc_check);
10714 cancel_delayed_work(&priv->gather_stats);
10715
10716 ipw_reset_stats(priv);
10717
10718 if (!(priv->status & STATUS_EXIT_PENDING)) {
10719 /* Queue up another scan... */
10720 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10721 } else
10722 cancel_delayed_work(&priv->scan_event);
10723 }
10724
10725 static void ipw_bg_link_down(struct work_struct *work)
10726 {
10727 struct ipw_priv *priv =
10728 container_of(work, struct ipw_priv, link_down);
10729 mutex_lock(&priv->mutex);
10730 ipw_link_down(priv);
10731 mutex_unlock(&priv->mutex);
10732 }
10733
10734 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10735 {
10736 int ret = 0;
10737
10738 priv->workqueue = create_workqueue(DRV_NAME);
10739 init_waitqueue_head(&priv->wait_command_queue);
10740 init_waitqueue_head(&priv->wait_state);
10741
10742 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10743 INIT_WORK(&priv->associate, ipw_bg_associate);
10744 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10745 INIT_WORK(&priv->system_config, ipw_system_config);
10746 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10747 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10748 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10749 INIT_WORK(&priv->up, ipw_bg_up);
10750 INIT_WORK(&priv->down, ipw_bg_down);
10751 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10752 INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10753 INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10754 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10755 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10756 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10757 INIT_WORK(&priv->roam, ipw_bg_roam);
10758 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10759 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10760 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10761 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10762 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10763 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10764 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10765
10766 #ifdef CONFIG_IPW2200_QOS
10767 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10768 #endif /* CONFIG_IPW2200_QOS */
10769
10770 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10771 ipw_irq_tasklet, (unsigned long)priv);
10772
10773 return ret;
10774 }
10775
10776 static void shim__set_security(struct net_device *dev,
10777 struct ieee80211_security *sec)
10778 {
10779 struct ipw_priv *priv = ieee80211_priv(dev);
10780 int i;
10781 for (i = 0; i < 4; i++) {
10782 if (sec->flags & (1 << i)) {
10783 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10784 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10785 if (sec->key_sizes[i] == 0)
10786 priv->ieee->sec.flags &= ~(1 << i);
10787 else {
10788 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10789 sec->key_sizes[i]);
10790 priv->ieee->sec.flags |= (1 << i);
10791 }
10792 priv->status |= STATUS_SECURITY_UPDATED;
10793 } else if (sec->level != SEC_LEVEL_1)
10794 priv->ieee->sec.flags &= ~(1 << i);
10795 }
10796
10797 if (sec->flags & SEC_ACTIVE_KEY) {
10798 if (sec->active_key <= 3) {
10799 priv->ieee->sec.active_key = sec->active_key;
10800 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10801 } else
10802 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10803 priv->status |= STATUS_SECURITY_UPDATED;
10804 } else
10805 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10806
10807 if ((sec->flags & SEC_AUTH_MODE) &&
10808 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10809 priv->ieee->sec.auth_mode = sec->auth_mode;
10810 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10811 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10812 priv->capability |= CAP_SHARED_KEY;
10813 else
10814 priv->capability &= ~CAP_SHARED_KEY;
10815 priv->status |= STATUS_SECURITY_UPDATED;
10816 }
10817
10818 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10819 priv->ieee->sec.flags |= SEC_ENABLED;
10820 priv->ieee->sec.enabled = sec->enabled;
10821 priv->status |= STATUS_SECURITY_UPDATED;
10822 if (sec->enabled)
10823 priv->capability |= CAP_PRIVACY_ON;
10824 else
10825 priv->capability &= ~CAP_PRIVACY_ON;
10826 }
10827
10828 if (sec->flags & SEC_ENCRYPT)
10829 priv->ieee->sec.encrypt = sec->encrypt;
10830
10831 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10832 priv->ieee->sec.level = sec->level;
10833 priv->ieee->sec.flags |= SEC_LEVEL;
10834 priv->status |= STATUS_SECURITY_UPDATED;
10835 }
10836
10837 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10838 ipw_set_hwcrypto_keys(priv);
10839
10840 /* To match current functionality of ipw2100 (which works well w/
10841 * various supplicants, we don't force a disassociate if the
10842 * privacy capability changes ... */
10843 #if 0
10844 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10845 (((priv->assoc_request.capability &
10846 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10847 (!(priv->assoc_request.capability &
10848 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10849 IPW_DEBUG_ASSOC("Disassociating due to capability "
10850 "change.\n");
10851 ipw_disassociate(priv);
10852 }
10853 #endif
10854 }
10855
10856 static int init_supported_rates(struct ipw_priv *priv,
10857 struct ipw_supported_rates *rates)
10858 {
10859 /* TODO: Mask out rates based on priv->rates_mask */
10860
10861 memset(rates, 0, sizeof(*rates));
10862 /* configure supported rates */
10863 switch (priv->ieee->freq_band) {
10864 case IEEE80211_52GHZ_BAND:
10865 rates->ieee_mode = IPW_A_MODE;
10866 rates->purpose = IPW_RATE_CAPABILITIES;
10867 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10868 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10869 break;
10870
10871 default: /* Mixed or 2.4Ghz */
10872 rates->ieee_mode = IPW_G_MODE;
10873 rates->purpose = IPW_RATE_CAPABILITIES;
10874 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10875 IEEE80211_CCK_DEFAULT_RATES_MASK);
10876 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10877 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10878 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10879 }
10880 break;
10881 }
10882
10883 return 0;
10884 }
10885
10886 static int ipw_config(struct ipw_priv *priv)
10887 {
10888 /* This is only called from ipw_up, which resets/reloads the firmware
10889 so, we don't need to first disable the card before we configure
10890 it */
10891 if (ipw_set_tx_power(priv))
10892 goto error;
10893
10894 /* initialize adapter address */
10895 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10896 goto error;
10897
10898 /* set basic system config settings */
10899 init_sys_config(&priv->sys_config);
10900
10901 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10902 * Does not support BT priority yet (don't abort or defer our Tx) */
10903 if (bt_coexist) {
10904 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10905
10906 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10907 priv->sys_config.bt_coexistence
10908 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10909 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10910 priv->sys_config.bt_coexistence
10911 |= CFG_BT_COEXISTENCE_OOB;
10912 }
10913
10914 #ifdef CONFIG_IPW2200_PROMISCUOUS
10915 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10916 priv->sys_config.accept_all_data_frames = 1;
10917 priv->sys_config.accept_non_directed_frames = 1;
10918 priv->sys_config.accept_all_mgmt_bcpr = 1;
10919 priv->sys_config.accept_all_mgmt_frames = 1;
10920 }
10921 #endif
10922
10923 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10924 priv->sys_config.answer_broadcast_ssid_probe = 1;
10925 else
10926 priv->sys_config.answer_broadcast_ssid_probe = 0;
10927
10928 if (ipw_send_system_config(priv))
10929 goto error;
10930
10931 init_supported_rates(priv, &priv->rates);
10932 if (ipw_send_supported_rates(priv, &priv->rates))
10933 goto error;
10934
10935 /* Set request-to-send threshold */
10936 if (priv->rts_threshold) {
10937 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10938 goto error;
10939 }
10940 #ifdef CONFIG_IPW2200_QOS
10941 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10942 ipw_qos_activate(priv, NULL);
10943 #endif /* CONFIG_IPW2200_QOS */
10944
10945 if (ipw_set_random_seed(priv))
10946 goto error;
10947
10948 /* final state transition to the RUN state */
10949 if (ipw_send_host_complete(priv))
10950 goto error;
10951
10952 priv->status |= STATUS_INIT;
10953
10954 ipw_led_init(priv);
10955 ipw_led_radio_on(priv);
10956 priv->notif_missed_beacons = 0;
10957
10958 /* Set hardware WEP key if it is configured. */
10959 if ((priv->capability & CAP_PRIVACY_ON) &&
10960 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10961 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10962 ipw_set_hwcrypto_keys(priv);
10963
10964 return 0;
10965
10966 error:
10967 return -EIO;
10968 }
10969
10970 /*
10971 * NOTE:
10972 *
10973 * These tables have been tested in conjunction with the
10974 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10975 *
10976 * Altering this values, using it on other hardware, or in geographies
10977 * not intended for resale of the above mentioned Intel adapters has
10978 * not been tested.
10979 *
10980 * Remember to update the table in README.ipw2200 when changing this
10981 * table.
10982 *
10983 */
10984 static const struct ieee80211_geo ipw_geos[] = {
10985 { /* Restricted */
10986 "---",
10987 .bg_channels = 11,
10988 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10989 {2427, 4}, {2432, 5}, {2437, 6},
10990 {2442, 7}, {2447, 8}, {2452, 9},
10991 {2457, 10}, {2462, 11}},
10992 },
10993
10994 { /* Custom US/Canada */
10995 "ZZF",
10996 .bg_channels = 11,
10997 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10998 {2427, 4}, {2432, 5}, {2437, 6},
10999 {2442, 7}, {2447, 8}, {2452, 9},
11000 {2457, 10}, {2462, 11}},
11001 .a_channels = 8,
11002 .a = {{5180, 36},
11003 {5200, 40},
11004 {5220, 44},
11005 {5240, 48},
11006 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11007 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11008 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11009 {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
11010 },
11011
11012 { /* Rest of World */
11013 "ZZD",
11014 .bg_channels = 13,
11015 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11016 {2427, 4}, {2432, 5}, {2437, 6},
11017 {2442, 7}, {2447, 8}, {2452, 9},
11018 {2457, 10}, {2462, 11}, {2467, 12},
11019 {2472, 13}},
11020 },
11021
11022 { /* Custom USA & Europe & High */
11023 "ZZA",
11024 .bg_channels = 11,
11025 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11026 {2427, 4}, {2432, 5}, {2437, 6},
11027 {2442, 7}, {2447, 8}, {2452, 9},
11028 {2457, 10}, {2462, 11}},
11029 .a_channels = 13,
11030 .a = {{5180, 36},
11031 {5200, 40},
11032 {5220, 44},
11033 {5240, 48},
11034 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11035 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11036 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11037 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11038 {5745, 149},
11039 {5765, 153},
11040 {5785, 157},
11041 {5805, 161},
11042 {5825, 165}},
11043 },
11044
11045 { /* Custom NA & Europe */
11046 "ZZB",
11047 .bg_channels = 11,
11048 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11049 {2427, 4}, {2432, 5}, {2437, 6},
11050 {2442, 7}, {2447, 8}, {2452, 9},
11051 {2457, 10}, {2462, 11}},
11052 .a_channels = 13,
11053 .a = {{5180, 36},
11054 {5200, 40},
11055 {5220, 44},
11056 {5240, 48},
11057 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11058 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11059 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11060 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11061 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11062 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11063 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11064 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11065 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11066 },
11067
11068 { /* Custom Japan */
11069 "ZZC",
11070 .bg_channels = 11,
11071 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11072 {2427, 4}, {2432, 5}, {2437, 6},
11073 {2442, 7}, {2447, 8}, {2452, 9},
11074 {2457, 10}, {2462, 11}},
11075 .a_channels = 4,
11076 .a = {{5170, 34}, {5190, 38},
11077 {5210, 42}, {5230, 46}},
11078 },
11079
11080 { /* Custom */
11081 "ZZM",
11082 .bg_channels = 11,
11083 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11084 {2427, 4}, {2432, 5}, {2437, 6},
11085 {2442, 7}, {2447, 8}, {2452, 9},
11086 {2457, 10}, {2462, 11}},
11087 },
11088
11089 { /* Europe */
11090 "ZZE",
11091 .bg_channels = 13,
11092 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11093 {2427, 4}, {2432, 5}, {2437, 6},
11094 {2442, 7}, {2447, 8}, {2452, 9},
11095 {2457, 10}, {2462, 11}, {2467, 12},
11096 {2472, 13}},
11097 .a_channels = 19,
11098 .a = {{5180, 36},
11099 {5200, 40},
11100 {5220, 44},
11101 {5240, 48},
11102 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11103 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11104 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11105 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11106 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11107 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11108 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11109 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11110 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11111 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11112 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11113 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11114 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11115 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11116 {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11117 },
11118
11119 { /* Custom Japan */
11120 "ZZJ",
11121 .bg_channels = 14,
11122 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11123 {2427, 4}, {2432, 5}, {2437, 6},
11124 {2442, 7}, {2447, 8}, {2452, 9},
11125 {2457, 10}, {2462, 11}, {2467, 12},
11126 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11127 .a_channels = 4,
11128 .a = {{5170, 34}, {5190, 38},
11129 {5210, 42}, {5230, 46}},
11130 },
11131
11132 { /* Rest of World */
11133 "ZZR",
11134 .bg_channels = 14,
11135 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11136 {2427, 4}, {2432, 5}, {2437, 6},
11137 {2442, 7}, {2447, 8}, {2452, 9},
11138 {2457, 10}, {2462, 11}, {2467, 12},
11139 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11140 IEEE80211_CH_PASSIVE_ONLY}},
11141 },
11142
11143 { /* High Band */
11144 "ZZH",
11145 .bg_channels = 13,
11146 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11147 {2427, 4}, {2432, 5}, {2437, 6},
11148 {2442, 7}, {2447, 8}, {2452, 9},
11149 {2457, 10}, {2462, 11},
11150 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11151 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11152 .a_channels = 4,
11153 .a = {{5745, 149}, {5765, 153},
11154 {5785, 157}, {5805, 161}},
11155 },
11156
11157 { /* Custom Europe */
11158 "ZZG",
11159 .bg_channels = 13,
11160 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11161 {2427, 4}, {2432, 5}, {2437, 6},
11162 {2442, 7}, {2447, 8}, {2452, 9},
11163 {2457, 10}, {2462, 11},
11164 {2467, 12}, {2472, 13}},
11165 .a_channels = 4,
11166 .a = {{5180, 36}, {5200, 40},
11167 {5220, 44}, {5240, 48}},
11168 },
11169
11170 { /* Europe */
11171 "ZZK",
11172 .bg_channels = 13,
11173 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11174 {2427, 4}, {2432, 5}, {2437, 6},
11175 {2442, 7}, {2447, 8}, {2452, 9},
11176 {2457, 10}, {2462, 11},
11177 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11178 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11179 .a_channels = 24,
11180 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11181 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11182 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11183 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11184 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11185 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11186 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11187 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11188 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11189 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11190 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11191 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11192 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11193 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11194 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11195 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11196 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11197 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11198 {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11199 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11200 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11201 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11202 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11203 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11204 },
11205
11206 { /* Europe */
11207 "ZZL",
11208 .bg_channels = 11,
11209 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11210 {2427, 4}, {2432, 5}, {2437, 6},
11211 {2442, 7}, {2447, 8}, {2452, 9},
11212 {2457, 10}, {2462, 11}},
11213 .a_channels = 13,
11214 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11215 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11216 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11217 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11218 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11219 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11220 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11221 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11222 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11223 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11224 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11225 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11226 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11227 }
11228 };
11229
11230 #define MAX_HW_RESTARTS 5
11231 static int ipw_up(struct ipw_priv *priv)
11232 {
11233 int rc, i, j;
11234
11235 /* Age scan list entries found before suspend */
11236 if (priv->suspend_time) {
11237 ieee80211_networks_age(priv->ieee, priv->suspend_time);
11238 priv->suspend_time = 0;
11239 }
11240
11241 if (priv->status & STATUS_EXIT_PENDING)
11242 return -EIO;
11243
11244 if (cmdlog && !priv->cmdlog) {
11245 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11246 GFP_KERNEL);
11247 if (priv->cmdlog == NULL) {
11248 IPW_ERROR("Error allocating %d command log entries.\n",
11249 cmdlog);
11250 return -ENOMEM;
11251 } else {
11252 priv->cmdlog_len = cmdlog;
11253 }
11254 }
11255
11256 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11257 /* Load the microcode, firmware, and eeprom.
11258 * Also start the clocks. */
11259 rc = ipw_load(priv);
11260 if (rc) {
11261 IPW_ERROR("Unable to load firmware: %d\n", rc);
11262 return rc;
11263 }
11264
11265 ipw_init_ordinals(priv);
11266 if (!(priv->config & CFG_CUSTOM_MAC))
11267 eeprom_parse_mac(priv, priv->mac_addr);
11268 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11269
11270 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11271 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11272 ipw_geos[j].name, 3))
11273 break;
11274 }
11275 if (j == ARRAY_SIZE(ipw_geos)) {
11276 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11277 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11278 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11279 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11280 j = 0;
11281 }
11282 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11283 IPW_WARNING("Could not set geography.");
11284 return 0;
11285 }
11286
11287 if (priv->status & STATUS_RF_KILL_SW) {
11288 IPW_WARNING("Radio disabled by module parameter.\n");
11289 return 0;
11290 } else if (rf_kill_active(priv)) {
11291 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11292 "Kill switch must be turned off for "
11293 "wireless networking to work.\n");
11294 queue_delayed_work(priv->workqueue, &priv->rf_kill,
11295 2 * HZ);
11296 return 0;
11297 }
11298
11299 rc = ipw_config(priv);
11300 if (!rc) {
11301 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11302
11303 /* If configure to try and auto-associate, kick
11304 * off a scan. */
11305 queue_delayed_work(priv->workqueue,
11306 &priv->request_scan, 0);
11307
11308 return 0;
11309 }
11310
11311 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11312 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11313 i, MAX_HW_RESTARTS);
11314
11315 /* We had an error bringing up the hardware, so take it
11316 * all the way back down so we can try again */
11317 ipw_down(priv);
11318 }
11319
11320 /* tried to restart and config the device for as long as our
11321 * patience could withstand */
11322 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11323
11324 return -EIO;
11325 }
11326
11327 static void ipw_bg_up(struct work_struct *work)
11328 {
11329 struct ipw_priv *priv =
11330 container_of(work, struct ipw_priv, up);
11331 mutex_lock(&priv->mutex);
11332 ipw_up(priv);
11333 mutex_unlock(&priv->mutex);
11334 }
11335
11336 static void ipw_deinit(struct ipw_priv *priv)
11337 {
11338 int i;
11339
11340 if (priv->status & STATUS_SCANNING) {
11341 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11342 ipw_abort_scan(priv);
11343 }
11344
11345 if (priv->status & STATUS_ASSOCIATED) {
11346 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11347 ipw_disassociate(priv);
11348 }
11349
11350 ipw_led_shutdown(priv);
11351
11352 /* Wait up to 1s for status to change to not scanning and not
11353 * associated (disassociation can take a while for a ful 802.11
11354 * exchange */
11355 for (i = 1000; i && (priv->status &
11356 (STATUS_DISASSOCIATING |
11357 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11358 udelay(10);
11359
11360 if (priv->status & (STATUS_DISASSOCIATING |
11361 STATUS_ASSOCIATED | STATUS_SCANNING))
11362 IPW_DEBUG_INFO("Still associated or scanning...\n");
11363 else
11364 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11365
11366 /* Attempt to disable the card */
11367 ipw_send_card_disable(priv, 0);
11368
11369 priv->status &= ~STATUS_INIT;
11370 }
11371
11372 static void ipw_down(struct ipw_priv *priv)
11373 {
11374 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11375
11376 priv->status |= STATUS_EXIT_PENDING;
11377
11378 if (ipw_is_init(priv))
11379 ipw_deinit(priv);
11380
11381 /* Wipe out the EXIT_PENDING status bit if we are not actually
11382 * exiting the module */
11383 if (!exit_pending)
11384 priv->status &= ~STATUS_EXIT_PENDING;
11385
11386 /* tell the device to stop sending interrupts */
11387 ipw_disable_interrupts(priv);
11388
11389 /* Clear all bits but the RF Kill */
11390 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11391 netif_carrier_off(priv->net_dev);
11392
11393 ipw_stop_nic(priv);
11394
11395 ipw_led_radio_off(priv);
11396 }
11397
11398 static void ipw_bg_down(struct work_struct *work)
11399 {
11400 struct ipw_priv *priv =
11401 container_of(work, struct ipw_priv, down);
11402 mutex_lock(&priv->mutex);
11403 ipw_down(priv);
11404 mutex_unlock(&priv->mutex);
11405 }
11406
11407 /* Called by register_netdev() */
11408 static int ipw_net_init(struct net_device *dev)
11409 {
11410 struct ipw_priv *priv = ieee80211_priv(dev);
11411 mutex_lock(&priv->mutex);
11412
11413 if (ipw_up(priv)) {
11414 mutex_unlock(&priv->mutex);
11415 return -EIO;
11416 }
11417
11418 mutex_unlock(&priv->mutex);
11419 return 0;
11420 }
11421
11422 /* PCI driver stuff */
11423 static struct pci_device_id card_ids[] = {
11424 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11425 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11426 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11427 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11428 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11429 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11430 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11431 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11432 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11433 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11434 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11435 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11436 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11437 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11438 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11439 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11440 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11441 {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11442 {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11443 {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11444 {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11445 {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11446
11447 /* required last entry */
11448 {0,}
11449 };
11450
11451 MODULE_DEVICE_TABLE(pci, card_ids);
11452
11453 static struct attribute *ipw_sysfs_entries[] = {
11454 &dev_attr_rf_kill.attr,
11455 &dev_attr_direct_dword.attr,
11456 &dev_attr_indirect_byte.attr,
11457 &dev_attr_indirect_dword.attr,
11458 &dev_attr_mem_gpio_reg.attr,
11459 &dev_attr_command_event_reg.attr,
11460 &dev_attr_nic_type.attr,
11461 &dev_attr_status.attr,
11462 &dev_attr_cfg.attr,
11463 &dev_attr_error.attr,
11464 &dev_attr_event_log.attr,
11465 &dev_attr_cmd_log.attr,
11466 &dev_attr_eeprom_delay.attr,
11467 &dev_attr_ucode_version.attr,
11468 &dev_attr_rtc.attr,
11469 &dev_attr_scan_age.attr,
11470 &dev_attr_led.attr,
11471 &dev_attr_speed_scan.attr,
11472 &dev_attr_net_stats.attr,
11473 &dev_attr_channels.attr,
11474 #ifdef CONFIG_IPW2200_PROMISCUOUS
11475 &dev_attr_rtap_iface.attr,
11476 &dev_attr_rtap_filter.attr,
11477 #endif
11478 NULL
11479 };
11480
11481 static struct attribute_group ipw_attribute_group = {
11482 .name = NULL, /* put in device directory */
11483 .attrs = ipw_sysfs_entries,
11484 };
11485
11486 #ifdef CONFIG_IPW2200_PROMISCUOUS
11487 static int ipw_prom_open(struct net_device *dev)
11488 {
11489 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11490 struct ipw_priv *priv = prom_priv->priv;
11491
11492 IPW_DEBUG_INFO("prom dev->open\n");
11493 netif_carrier_off(dev);
11494
11495 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11496 priv->sys_config.accept_all_data_frames = 1;
11497 priv->sys_config.accept_non_directed_frames = 1;
11498 priv->sys_config.accept_all_mgmt_bcpr = 1;
11499 priv->sys_config.accept_all_mgmt_frames = 1;
11500
11501 ipw_send_system_config(priv);
11502 }
11503
11504 return 0;
11505 }
11506
11507 static int ipw_prom_stop(struct net_device *dev)
11508 {
11509 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11510 struct ipw_priv *priv = prom_priv->priv;
11511
11512 IPW_DEBUG_INFO("prom dev->stop\n");
11513
11514 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11515 priv->sys_config.accept_all_data_frames = 0;
11516 priv->sys_config.accept_non_directed_frames = 0;
11517 priv->sys_config.accept_all_mgmt_bcpr = 0;
11518 priv->sys_config.accept_all_mgmt_frames = 0;
11519
11520 ipw_send_system_config(priv);
11521 }
11522
11523 return 0;
11524 }
11525
11526 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11527 {
11528 IPW_DEBUG_INFO("prom dev->xmit\n");
11529 return -EOPNOTSUPP;
11530 }
11531
11532 static const struct net_device_ops ipw_prom_netdev_ops = {
11533 .ndo_open = ipw_prom_open,
11534 .ndo_stop = ipw_prom_stop,
11535 .ndo_start_xmit = ipw_prom_hard_start_xmit,
11536 .ndo_change_mtu = ieee80211_change_mtu,
11537 .ndo_set_mac_address = eth_mac_addr,
11538 .ndo_validate_addr = eth_validate_addr,
11539 };
11540
11541 static int ipw_prom_alloc(struct ipw_priv *priv)
11542 {
11543 int rc = 0;
11544
11545 if (priv->prom_net_dev)
11546 return -EPERM;
11547
11548 priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11549 if (priv->prom_net_dev == NULL)
11550 return -ENOMEM;
11551
11552 priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11553 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11554 priv->prom_priv->priv = priv;
11555
11556 strcpy(priv->prom_net_dev->name, "rtap%d");
11557 memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11558
11559 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11560 priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11561
11562 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11563 SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11564
11565 rc = register_netdev(priv->prom_net_dev);
11566 if (rc) {
11567 free_ieee80211(priv->prom_net_dev);
11568 priv->prom_net_dev = NULL;
11569 return rc;
11570 }
11571
11572 return 0;
11573 }
11574
11575 static void ipw_prom_free(struct ipw_priv *priv)
11576 {
11577 if (!priv->prom_net_dev)
11578 return;
11579
11580 unregister_netdev(priv->prom_net_dev);
11581 free_ieee80211(priv->prom_net_dev);
11582
11583 priv->prom_net_dev = NULL;
11584 }
11585
11586 #endif
11587
11588 static const struct net_device_ops ipw_netdev_ops = {
11589 .ndo_init = ipw_net_init,
11590 .ndo_open = ipw_net_open,
11591 .ndo_stop = ipw_net_stop,
11592 .ndo_set_multicast_list = ipw_net_set_multicast_list,
11593 .ndo_set_mac_address = ipw_net_set_mac_address,
11594 .ndo_start_xmit = ieee80211_xmit,
11595 .ndo_change_mtu = ieee80211_change_mtu,
11596 .ndo_validate_addr = eth_validate_addr,
11597 };
11598
11599 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11600 const struct pci_device_id *ent)
11601 {
11602 int err = 0;
11603 struct net_device *net_dev;
11604 void __iomem *base;
11605 u32 length, val;
11606 struct ipw_priv *priv;
11607 int i;
11608
11609 net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11610 if (net_dev == NULL) {
11611 err = -ENOMEM;
11612 goto out;
11613 }
11614
11615 priv = ieee80211_priv(net_dev);
11616 priv->ieee = netdev_priv(net_dev);
11617
11618 priv->net_dev = net_dev;
11619 priv->pci_dev = pdev;
11620 ipw_debug_level = debug;
11621 spin_lock_init(&priv->irq_lock);
11622 spin_lock_init(&priv->lock);
11623 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11624 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11625
11626 mutex_init(&priv->mutex);
11627 if (pci_enable_device(pdev)) {
11628 err = -ENODEV;
11629 goto out_free_ieee80211;
11630 }
11631
11632 pci_set_master(pdev);
11633
11634 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11635 if (!err)
11636 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11637 if (err) {
11638 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11639 goto out_pci_disable_device;
11640 }
11641
11642 pci_set_drvdata(pdev, priv);
11643
11644 err = pci_request_regions(pdev, DRV_NAME);
11645 if (err)
11646 goto out_pci_disable_device;
11647
11648 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11649 * PCI Tx retries from interfering with C3 CPU state */
11650 pci_read_config_dword(pdev, 0x40, &val);
11651 if ((val & 0x0000ff00) != 0)
11652 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11653
11654 length = pci_resource_len(pdev, 0);
11655 priv->hw_len = length;
11656
11657 base = pci_ioremap_bar(pdev, 0);
11658 if (!base) {
11659 err = -ENODEV;
11660 goto out_pci_release_regions;
11661 }
11662
11663 priv->hw_base = base;
11664 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11665 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11666
11667 err = ipw_setup_deferred_work(priv);
11668 if (err) {
11669 IPW_ERROR("Unable to setup deferred work\n");
11670 goto out_iounmap;
11671 }
11672
11673 ipw_sw_reset(priv, 1);
11674
11675 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11676 if (err) {
11677 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11678 goto out_destroy_workqueue;
11679 }
11680
11681 SET_NETDEV_DEV(net_dev, &pdev->dev);
11682
11683 mutex_lock(&priv->mutex);
11684
11685 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11686 priv->ieee->set_security = shim__set_security;
11687 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11688
11689 #ifdef CONFIG_IPW2200_QOS
11690 priv->ieee->is_qos_active = ipw_is_qos_active;
11691 priv->ieee->handle_probe_response = ipw_handle_beacon;
11692 priv->ieee->handle_beacon = ipw_handle_probe_response;
11693 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11694 #endif /* CONFIG_IPW2200_QOS */
11695
11696 priv->ieee->perfect_rssi = -20;
11697 priv->ieee->worst_rssi = -85;
11698
11699 net_dev->netdev_ops = &ipw_netdev_ops;
11700 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11701 net_dev->wireless_data = &priv->wireless_data;
11702 net_dev->wireless_handlers = &ipw_wx_handler_def;
11703 net_dev->ethtool_ops = &ipw_ethtool_ops;
11704 net_dev->irq = pdev->irq;
11705 net_dev->base_addr = (unsigned long)priv->hw_base;
11706 net_dev->mem_start = pci_resource_start(pdev, 0);
11707 net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11708
11709 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11710 if (err) {
11711 IPW_ERROR("failed to create sysfs device attributes\n");
11712 mutex_unlock(&priv->mutex);
11713 goto out_release_irq;
11714 }
11715
11716 mutex_unlock(&priv->mutex);
11717 err = register_netdev(net_dev);
11718 if (err) {
11719 IPW_ERROR("failed to register network device\n");
11720 goto out_remove_sysfs;
11721 }
11722
11723 #ifdef CONFIG_IPW2200_PROMISCUOUS
11724 if (rtap_iface) {
11725 err = ipw_prom_alloc(priv);
11726 if (err) {
11727 IPW_ERROR("Failed to register promiscuous network "
11728 "device (error %d).\n", err);
11729 unregister_netdev(priv->net_dev);
11730 goto out_remove_sysfs;
11731 }
11732 }
11733 #endif
11734
11735 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11736 "channels, %d 802.11a channels)\n",
11737 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11738 priv->ieee->geo.a_channels);
11739
11740 return 0;
11741
11742 out_remove_sysfs:
11743 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11744 out_release_irq:
11745 free_irq(pdev->irq, priv);
11746 out_destroy_workqueue:
11747 destroy_workqueue(priv->workqueue);
11748 priv->workqueue = NULL;
11749 out_iounmap:
11750 iounmap(priv->hw_base);
11751 out_pci_release_regions:
11752 pci_release_regions(pdev);
11753 out_pci_disable_device:
11754 pci_disable_device(pdev);
11755 pci_set_drvdata(pdev, NULL);
11756 out_free_ieee80211:
11757 free_ieee80211(priv->net_dev);
11758 out:
11759 return err;
11760 }
11761
11762 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11763 {
11764 struct ipw_priv *priv = pci_get_drvdata(pdev);
11765 struct list_head *p, *q;
11766 int i;
11767
11768 if (!priv)
11769 return;
11770
11771 mutex_lock(&priv->mutex);
11772
11773 priv->status |= STATUS_EXIT_PENDING;
11774 ipw_down(priv);
11775 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11776
11777 mutex_unlock(&priv->mutex);
11778
11779 unregister_netdev(priv->net_dev);
11780
11781 if (priv->rxq) {
11782 ipw_rx_queue_free(priv, priv->rxq);
11783 priv->rxq = NULL;
11784 }
11785 ipw_tx_queue_free(priv);
11786
11787 if (priv->cmdlog) {
11788 kfree(priv->cmdlog);
11789 priv->cmdlog = NULL;
11790 }
11791 /* ipw_down will ensure that there is no more pending work
11792 * in the workqueue's, so we can safely remove them now. */
11793 cancel_delayed_work(&priv->adhoc_check);
11794 cancel_delayed_work(&priv->gather_stats);
11795 cancel_delayed_work(&priv->request_scan);
11796 cancel_delayed_work(&priv->request_direct_scan);
11797 cancel_delayed_work(&priv->request_passive_scan);
11798 cancel_delayed_work(&priv->scan_event);
11799 cancel_delayed_work(&priv->rf_kill);
11800 cancel_delayed_work(&priv->scan_check);
11801 destroy_workqueue(priv->workqueue);
11802 priv->workqueue = NULL;
11803
11804 /* Free MAC hash list for ADHOC */
11805 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11806 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11807 list_del(p);
11808 kfree(list_entry(p, struct ipw_ibss_seq, list));
11809 }
11810 }
11811
11812 kfree(priv->error);
11813 priv->error = NULL;
11814
11815 #ifdef CONFIG_IPW2200_PROMISCUOUS
11816 ipw_prom_free(priv);
11817 #endif
11818
11819 free_irq(pdev->irq, priv);
11820 iounmap(priv->hw_base);
11821 pci_release_regions(pdev);
11822 pci_disable_device(pdev);
11823 pci_set_drvdata(pdev, NULL);
11824 free_ieee80211(priv->net_dev);
11825 free_firmware();
11826 }
11827
11828 #ifdef CONFIG_PM
11829 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11830 {
11831 struct ipw_priv *priv = pci_get_drvdata(pdev);
11832 struct net_device *dev = priv->net_dev;
11833
11834 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11835
11836 /* Take down the device; powers it off, etc. */
11837 ipw_down(priv);
11838
11839 /* Remove the PRESENT state of the device */
11840 netif_device_detach(dev);
11841
11842 pci_save_state(pdev);
11843 pci_disable_device(pdev);
11844 pci_set_power_state(pdev, pci_choose_state(pdev, state));
11845
11846 priv->suspend_at = get_seconds();
11847
11848 return 0;
11849 }
11850
11851 static int ipw_pci_resume(struct pci_dev *pdev)
11852 {
11853 struct ipw_priv *priv = pci_get_drvdata(pdev);
11854 struct net_device *dev = priv->net_dev;
11855 int err;
11856 u32 val;
11857
11858 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11859
11860 pci_set_power_state(pdev, PCI_D0);
11861 err = pci_enable_device(pdev);
11862 if (err) {
11863 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11864 dev->name);
11865 return err;
11866 }
11867 pci_restore_state(pdev);
11868
11869 /*
11870 * Suspend/Resume resets the PCI configuration space, so we have to
11871 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11872 * from interfering with C3 CPU state. pci_restore_state won't help
11873 * here since it only restores the first 64 bytes pci config header.
11874 */
11875 pci_read_config_dword(pdev, 0x40, &val);
11876 if ((val & 0x0000ff00) != 0)
11877 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11878
11879 /* Set the device back into the PRESENT state; this will also wake
11880 * the queue of needed */
11881 netif_device_attach(dev);
11882
11883 priv->suspend_time = get_seconds() - priv->suspend_at;
11884
11885 /* Bring the device back up */
11886 queue_work(priv->workqueue, &priv->up);
11887
11888 return 0;
11889 }
11890 #endif
11891
11892 static void ipw_pci_shutdown(struct pci_dev *pdev)
11893 {
11894 struct ipw_priv *priv = pci_get_drvdata(pdev);
11895
11896 /* Take down the device; powers it off, etc. */
11897 ipw_down(priv);
11898
11899 pci_disable_device(pdev);
11900 }
11901
11902 /* driver initialization stuff */
11903 static struct pci_driver ipw_driver = {
11904 .name = DRV_NAME,
11905 .id_table = card_ids,
11906 .probe = ipw_pci_probe,
11907 .remove = __devexit_p(ipw_pci_remove),
11908 #ifdef CONFIG_PM
11909 .suspend = ipw_pci_suspend,
11910 .resume = ipw_pci_resume,
11911 #endif
11912 .shutdown = ipw_pci_shutdown,
11913 };
11914
11915 static int __init ipw_init(void)
11916 {
11917 int ret;
11918
11919 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11920 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11921
11922 ret = pci_register_driver(&ipw_driver);
11923 if (ret) {
11924 IPW_ERROR("Unable to initialize PCI module\n");
11925 return ret;
11926 }
11927
11928 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11929 if (ret) {
11930 IPW_ERROR("Unable to create driver sysfs file\n");
11931 pci_unregister_driver(&ipw_driver);
11932 return ret;
11933 }
11934
11935 return ret;
11936 }
11937
11938 static void __exit ipw_exit(void)
11939 {
11940 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11941 pci_unregister_driver(&ipw_driver);
11942 }
11943
11944 module_param(disable, int, 0444);
11945 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11946
11947 module_param(associate, int, 0444);
11948 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
11949
11950 module_param(auto_create, int, 0444);
11951 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11952
11953 module_param(led, int, 0444);
11954 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)");
11955
11956 module_param(debug, int, 0444);
11957 MODULE_PARM_DESC(debug, "debug output mask");
11958
11959 module_param(channel, int, 0444);
11960 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11961
11962 #ifdef CONFIG_IPW2200_PROMISCUOUS
11963 module_param(rtap_iface, int, 0444);
11964 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11965 #endif
11966
11967 #ifdef CONFIG_IPW2200_QOS
11968 module_param(qos_enable, int, 0444);
11969 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11970
11971 module_param(qos_burst_enable, int, 0444);
11972 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11973
11974 module_param(qos_no_ack_mask, int, 0444);
11975 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11976
11977 module_param(burst_duration_CCK, int, 0444);
11978 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11979
11980 module_param(burst_duration_OFDM, int, 0444);
11981 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11982 #endif /* CONFIG_IPW2200_QOS */
11983
11984 #ifdef CONFIG_IPW2200_MONITOR
11985 module_param(mode, int, 0444);
11986 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11987 #else
11988 module_param(mode, int, 0444);
11989 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11990 #endif
11991
11992 module_param(bt_coexist, int, 0444);
11993 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11994
11995 module_param(hwcrypto, int, 0444);
11996 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11997
11998 module_param(cmdlog, int, 0444);
11999 MODULE_PARM_DESC(cmdlog,
12000 "allocate a ring buffer for logging firmware commands");
12001
12002 module_param(roaming, int, 0444);
12003 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12004
12005 module_param(antenna, int, 0444);
12006 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12007
12008 module_exit(ipw_exit);
12009 module_init(ipw_init);
This page took 0.291606 seconds and 6 git commands to generate.