Merge tag 'md-3.4-fixes' of git://neil.brown.name/md
[deliverable/linux.git] / drivers / net / wireless / iwlegacy / 4965.h
1 /******************************************************************************
2 *
3 * GPL LICENSE SUMMARY
4 *
5 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of version 2 of the GNU General Public License as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
19 * USA
20 *
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * Contact Information:
25 * Intel Linux Wireless <ilw@linux.intel.com>
26 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *
28 *****************************************************************************/
29
30 #ifndef __il_4965_h__
31 #define __il_4965_h__
32
33 struct il_rx_queue;
34 struct il_rx_buf;
35 struct il_rx_pkt;
36 struct il_tx_queue;
37 struct il_rxon_context;
38
39 /* configuration for the _4965 devices */
40 extern struct il_cfg il4965_cfg;
41 extern const struct il_ops il4965_ops;
42
43 extern struct il_mod_params il4965_mod_params;
44
45 /* tx queue */
46 void il4965_free_tfds_in_queue(struct il_priv *il, int sta_id, int tid,
47 int freed);
48
49 /* RXON */
50 void il4965_set_rxon_chain(struct il_priv *il);
51
52 /* uCode */
53 int il4965_verify_ucode(struct il_priv *il);
54
55 /* lib */
56 void il4965_check_abort_status(struct il_priv *il, u8 frame_count, u32 status);
57
58 void il4965_rx_queue_reset(struct il_priv *il, struct il_rx_queue *rxq);
59 int il4965_rx_init(struct il_priv *il, struct il_rx_queue *rxq);
60 int il4965_hw_nic_init(struct il_priv *il);
61 int il4965_dump_fh(struct il_priv *il, char **buf, bool display);
62
63 void il4965_nic_config(struct il_priv *il);
64
65 /* rx */
66 void il4965_rx_queue_restock(struct il_priv *il);
67 void il4965_rx_replenish(struct il_priv *il);
68 void il4965_rx_replenish_now(struct il_priv *il);
69 void il4965_rx_queue_free(struct il_priv *il, struct il_rx_queue *rxq);
70 int il4965_rxq_stop(struct il_priv *il);
71 int il4965_hwrate_to_mac80211_idx(u32 rate_n_flags, enum ieee80211_band band);
72 void il4965_rx_handle(struct il_priv *il);
73
74 /* tx */
75 void il4965_hw_txq_free_tfd(struct il_priv *il, struct il_tx_queue *txq);
76 int il4965_hw_txq_attach_buf_to_tfd(struct il_priv *il, struct il_tx_queue *txq,
77 dma_addr_t addr, u16 len, u8 reset, u8 pad);
78 int il4965_hw_tx_queue_init(struct il_priv *il, struct il_tx_queue *txq);
79 void il4965_hwrate_to_tx_control(struct il_priv *il, u32 rate_n_flags,
80 struct ieee80211_tx_info *info);
81 int il4965_tx_skb(struct il_priv *il, struct sk_buff *skb);
82 int il4965_tx_agg_start(struct il_priv *il, struct ieee80211_vif *vif,
83 struct ieee80211_sta *sta, u16 tid, u16 * ssn);
84 int il4965_tx_agg_stop(struct il_priv *il, struct ieee80211_vif *vif,
85 struct ieee80211_sta *sta, u16 tid);
86 int il4965_txq_check_empty(struct il_priv *il, int sta_id, u8 tid, int txq_id);
87 int il4965_tx_queue_reclaim(struct il_priv *il, int txq_id, int idx);
88 void il4965_hw_txq_ctx_free(struct il_priv *il);
89 int il4965_txq_ctx_alloc(struct il_priv *il);
90 void il4965_txq_ctx_reset(struct il_priv *il);
91 void il4965_txq_ctx_stop(struct il_priv *il);
92 void il4965_txq_set_sched(struct il_priv *il, u32 mask);
93
94 /*
95 * Acquire il->lock before calling this function !
96 */
97 void il4965_set_wr_ptrs(struct il_priv *il, int txq_id, u32 idx);
98 /**
99 * il4965_tx_queue_set_status - (optionally) start Tx/Cmd queue
100 * @tx_fifo_id: Tx DMA/FIFO channel (range 0-7) that the queue will feed
101 * @scd_retry: (1) Indicates queue will be used in aggregation mode
102 *
103 * NOTE: Acquire il->lock before calling this function !
104 */
105 void il4965_tx_queue_set_status(struct il_priv *il, struct il_tx_queue *txq,
106 int tx_fifo_id, int scd_retry);
107
108 /* scan */
109 int il4965_request_scan(struct il_priv *il, struct ieee80211_vif *vif);
110
111 /* station mgmt */
112 int il4965_manage_ibss_station(struct il_priv *il, struct ieee80211_vif *vif,
113 bool add);
114
115 /* hcmd */
116 int il4965_send_beacon_cmd(struct il_priv *il);
117
118 #ifdef CONFIG_IWLEGACY_DEBUG
119 const char *il4965_get_tx_fail_reason(u32 status);
120 #else
121 static inline const char *
122 il4965_get_tx_fail_reason(u32 status)
123 {
124 return "";
125 }
126 #endif
127
128 /* station management */
129 int il4965_alloc_bcast_station(struct il_priv *il);
130 int il4965_add_bssid_station(struct il_priv *il, const u8 *addr, u8 *sta_id_r);
131 int il4965_remove_default_wep_key(struct il_priv *il,
132 struct ieee80211_key_conf *key);
133 int il4965_set_default_wep_key(struct il_priv *il,
134 struct ieee80211_key_conf *key);
135 int il4965_restore_default_wep_keys(struct il_priv *il);
136 int il4965_set_dynamic_key(struct il_priv *il,
137 struct ieee80211_key_conf *key, u8 sta_id);
138 int il4965_remove_dynamic_key(struct il_priv *il,
139 struct ieee80211_key_conf *key, u8 sta_id);
140 void il4965_update_tkip_key(struct il_priv *il,
141 struct ieee80211_key_conf *keyconf,
142 struct ieee80211_sta *sta, u32 iv32,
143 u16 *phase1key);
144 int il4965_sta_tx_modify_enable_tid(struct il_priv *il, int sta_id, int tid);
145 int il4965_sta_rx_agg_start(struct il_priv *il, struct ieee80211_sta *sta,
146 int tid, u16 ssn);
147 int il4965_sta_rx_agg_stop(struct il_priv *il, struct ieee80211_sta *sta,
148 int tid);
149 void il4965_sta_modify_sleep_tx_count(struct il_priv *il, int sta_id, int cnt);
150 int il4965_update_bcast_stations(struct il_priv *il);
151
152 /* rate */
153 static inline u8
154 il4965_hw_get_rate(__le32 rate_n_flags)
155 {
156 return le32_to_cpu(rate_n_flags) & 0xFF;
157 }
158
159 /* eeprom */
160 void il4965_eeprom_get_mac(const struct il_priv *il, u8 * mac);
161 int il4965_eeprom_acquire_semaphore(struct il_priv *il);
162 void il4965_eeprom_release_semaphore(struct il_priv *il);
163 int il4965_eeprom_check_version(struct il_priv *il);
164
165 /* mac80211 handlers (for 4965) */
166 void il4965_mac_tx(struct ieee80211_hw *hw, struct sk_buff *skb);
167 int il4965_mac_start(struct ieee80211_hw *hw);
168 void il4965_mac_stop(struct ieee80211_hw *hw);
169 void il4965_configure_filter(struct ieee80211_hw *hw,
170 unsigned int changed_flags,
171 unsigned int *total_flags, u64 multicast);
172 int il4965_mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
173 struct ieee80211_vif *vif, struct ieee80211_sta *sta,
174 struct ieee80211_key_conf *key);
175 void il4965_mac_update_tkip_key(struct ieee80211_hw *hw,
176 struct ieee80211_vif *vif,
177 struct ieee80211_key_conf *keyconf,
178 struct ieee80211_sta *sta, u32 iv32,
179 u16 *phase1key);
180 int il4965_mac_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
181 enum ieee80211_ampdu_mlme_action action,
182 struct ieee80211_sta *sta, u16 tid, u16 * ssn,
183 u8 buf_size);
184 int il4965_mac_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
185 struct ieee80211_sta *sta);
186 void il4965_mac_channel_switch(struct ieee80211_hw *hw,
187 struct ieee80211_channel_switch *ch_switch);
188
189 void il4965_led_enable(struct il_priv *il);
190
191 /* EEPROM */
192 #define IL4965_EEPROM_IMG_SIZE 1024
193
194 /*
195 * uCode queue management definitions ...
196 * The first queue used for block-ack aggregation is #7 (4965 only).
197 * All block-ack aggregation queues should map to Tx DMA/FIFO channel 7.
198 */
199 #define IL49_FIRST_AMPDU_QUEUE 7
200
201 /* Sizes and addresses for instruction and data memory (SRAM) in
202 * 4965's embedded processor. Driver access is via HBUS_TARG_MEM_* regs. */
203 #define IL49_RTC_INST_LOWER_BOUND (0x000000)
204 #define IL49_RTC_INST_UPPER_BOUND (0x018000)
205
206 #define IL49_RTC_DATA_LOWER_BOUND (0x800000)
207 #define IL49_RTC_DATA_UPPER_BOUND (0x80A000)
208
209 #define IL49_RTC_INST_SIZE (IL49_RTC_INST_UPPER_BOUND - \
210 IL49_RTC_INST_LOWER_BOUND)
211 #define IL49_RTC_DATA_SIZE (IL49_RTC_DATA_UPPER_BOUND - \
212 IL49_RTC_DATA_LOWER_BOUND)
213
214 #define IL49_MAX_INST_SIZE IL49_RTC_INST_SIZE
215 #define IL49_MAX_DATA_SIZE IL49_RTC_DATA_SIZE
216
217 /* Size of uCode instruction memory in bootstrap state machine */
218 #define IL49_MAX_BSM_SIZE BSM_SRAM_SIZE
219
220 static inline int
221 il4965_hw_valid_rtc_data_addr(u32 addr)
222 {
223 return (addr >= IL49_RTC_DATA_LOWER_BOUND &&
224 addr < IL49_RTC_DATA_UPPER_BOUND);
225 }
226
227 /********************* START TEMPERATURE *************************************/
228
229 /**
230 * 4965 temperature calculation.
231 *
232 * The driver must calculate the device temperature before calculating
233 * a txpower setting (amplifier gain is temperature dependent). The
234 * calculation uses 4 measurements, 3 of which (R1, R2, R3) are calibration
235 * values used for the life of the driver, and one of which (R4) is the
236 * real-time temperature indicator.
237 *
238 * uCode provides all 4 values to the driver via the "initialize alive"
239 * notification (see struct il4965_init_alive_resp). After the runtime uCode
240 * image loads, uCode updates the R4 value via stats notifications
241 * (see N_STATS), which occur after each received beacon
242 * when associated, or can be requested via C_STATS.
243 *
244 * NOTE: uCode provides the R4 value as a 23-bit signed value. Driver
245 * must sign-extend to 32 bits before applying formula below.
246 *
247 * Formula:
248 *
249 * degrees Kelvin = ((97 * 259 * (R4 - R2) / (R3 - R1)) / 100) + 8
250 *
251 * NOTE: The basic formula is 259 * (R4-R2) / (R3-R1). The 97/100 is
252 * an additional correction, which should be centered around 0 degrees
253 * Celsius (273 degrees Kelvin). The 8 (3 percent of 273) compensates for
254 * centering the 97/100 correction around 0 degrees K.
255 *
256 * Add 273 to Kelvin value to find degrees Celsius, for comparing current
257 * temperature with factory-measured temperatures when calculating txpower
258 * settings.
259 */
260 #define TEMPERATURE_CALIB_KELVIN_OFFSET 8
261 #define TEMPERATURE_CALIB_A_VAL 259
262
263 /* Limit range of calculated temperature to be between these Kelvin values */
264 #define IL_TX_POWER_TEMPERATURE_MIN (263)
265 #define IL_TX_POWER_TEMPERATURE_MAX (410)
266
267 #define IL_TX_POWER_TEMPERATURE_OUT_OF_RANGE(t) \
268 ((t) < IL_TX_POWER_TEMPERATURE_MIN || \
269 (t) > IL_TX_POWER_TEMPERATURE_MAX)
270
271 extern void il4965_temperature_calib(struct il_priv *il);
272 /********************* END TEMPERATURE ***************************************/
273
274 /********************* START TXPOWER *****************************************/
275
276 /**
277 * 4965 txpower calculations rely on information from three sources:
278 *
279 * 1) EEPROM
280 * 2) "initialize" alive notification
281 * 3) stats notifications
282 *
283 * EEPROM data consists of:
284 *
285 * 1) Regulatory information (max txpower and channel usage flags) is provided
286 * separately for each channel that can possibly supported by 4965.
287 * 40 MHz wide (.11n HT40) channels are listed separately from 20 MHz
288 * (legacy) channels.
289 *
290 * See struct il4965_eeprom_channel for format, and struct il4965_eeprom
291 * for locations in EEPROM.
292 *
293 * 2) Factory txpower calibration information is provided separately for
294 * sub-bands of contiguous channels. 2.4GHz has just one sub-band,
295 * but 5 GHz has several sub-bands.
296 *
297 * In addition, per-band (2.4 and 5 Ghz) saturation txpowers are provided.
298 *
299 * See struct il4965_eeprom_calib_info (and the tree of structures
300 * contained within it) for format, and struct il4965_eeprom for
301 * locations in EEPROM.
302 *
303 * "Initialization alive" notification (see struct il4965_init_alive_resp)
304 * consists of:
305 *
306 * 1) Temperature calculation parameters.
307 *
308 * 2) Power supply voltage measurement.
309 *
310 * 3) Tx gain compensation to balance 2 transmitters for MIMO use.
311 *
312 * Statistics notifications deliver:
313 *
314 * 1) Current values for temperature param R4.
315 */
316
317 /**
318 * To calculate a txpower setting for a given desired target txpower, channel,
319 * modulation bit rate, and transmitter chain (4965 has 2 transmitters to
320 * support MIMO and transmit diversity), driver must do the following:
321 *
322 * 1) Compare desired txpower vs. (EEPROM) regulatory limit for this channel.
323 * Do not exceed regulatory limit; reduce target txpower if necessary.
324 *
325 * If setting up txpowers for MIMO rates (rate idxes 8-15, 24-31),
326 * 2 transmitters will be used simultaneously; driver must reduce the
327 * regulatory limit by 3 dB (half-power) for each transmitter, so the
328 * combined total output of the 2 transmitters is within regulatory limits.
329 *
330 *
331 * 2) Compare target txpower vs. (EEPROM) saturation txpower *reduced by
332 * backoff for this bit rate*. Do not exceed (saturation - backoff[rate]);
333 * reduce target txpower if necessary.
334 *
335 * Backoff values below are in 1/2 dB units (equivalent to steps in
336 * txpower gain tables):
337 *
338 * OFDM 6 - 36 MBit: 10 steps (5 dB)
339 * OFDM 48 MBit: 15 steps (7.5 dB)
340 * OFDM 54 MBit: 17 steps (8.5 dB)
341 * OFDM 60 MBit: 20 steps (10 dB)
342 * CCK all rates: 10 steps (5 dB)
343 *
344 * Backoff values apply to saturation txpower on a per-transmitter basis;
345 * when using MIMO (2 transmitters), each transmitter uses the same
346 * saturation level provided in EEPROM, and the same backoff values;
347 * no reduction (such as with regulatory txpower limits) is required.
348 *
349 * Saturation and Backoff values apply equally to 20 Mhz (legacy) channel
350 * widths and 40 Mhz (.11n HT40) channel widths; there is no separate
351 * factory measurement for ht40 channels.
352 *
353 * The result of this step is the final target txpower. The rest of
354 * the steps figure out the proper settings for the device to achieve
355 * that target txpower.
356 *
357 *
358 * 3) Determine (EEPROM) calibration sub band for the target channel, by
359 * comparing against first and last channels in each sub band
360 * (see struct il4965_eeprom_calib_subband_info).
361 *
362 *
363 * 4) Linearly interpolate (EEPROM) factory calibration measurement sets,
364 * referencing the 2 factory-measured (sample) channels within the sub band.
365 *
366 * Interpolation is based on difference between target channel's frequency
367 * and the sample channels' frequencies. Since channel numbers are based
368 * on frequency (5 MHz between each channel number), this is equivalent
369 * to interpolating based on channel number differences.
370 *
371 * Note that the sample channels may or may not be the channels at the
372 * edges of the sub band. The target channel may be "outside" of the
373 * span of the sampled channels.
374 *
375 * Driver may choose the pair (for 2 Tx chains) of measurements (see
376 * struct il4965_eeprom_calib_ch_info) for which the actual measured
377 * txpower comes closest to the desired txpower. Usually, though,
378 * the middle set of measurements is closest to the regulatory limits,
379 * and is therefore a good choice for all txpower calculations (this
380 * assumes that high accuracy is needed for maximizing legal txpower,
381 * while lower txpower configurations do not need as much accuracy).
382 *
383 * Driver should interpolate both members of the chosen measurement pair,
384 * i.e. for both Tx chains (radio transmitters), unless the driver knows
385 * that only one of the chains will be used (e.g. only one tx antenna
386 * connected, but this should be unusual). The rate scaling algorithm
387 * switches antennas to find best performance, so both Tx chains will
388 * be used (although only one at a time) even for non-MIMO transmissions.
389 *
390 * Driver should interpolate factory values for temperature, gain table
391 * idx, and actual power. The power amplifier detector values are
392 * not used by the driver.
393 *
394 * Sanity check: If the target channel happens to be one of the sample
395 * channels, the results should agree with the sample channel's
396 * measurements!
397 *
398 *
399 * 5) Find difference between desired txpower and (interpolated)
400 * factory-measured txpower. Using (interpolated) factory gain table idx
401 * (shown elsewhere) as a starting point, adjust this idx lower to
402 * increase txpower, or higher to decrease txpower, until the target
403 * txpower is reached. Each step in the gain table is 1/2 dB.
404 *
405 * For example, if factory measured txpower is 16 dBm, and target txpower
406 * is 13 dBm, add 6 steps to the factory gain idx to reduce txpower
407 * by 3 dB.
408 *
409 *
410 * 6) Find difference between current device temperature and (interpolated)
411 * factory-measured temperature for sub-band. Factory values are in
412 * degrees Celsius. To calculate current temperature, see comments for
413 * "4965 temperature calculation".
414 *
415 * If current temperature is higher than factory temperature, driver must
416 * increase gain (lower gain table idx), and vice verse.
417 *
418 * Temperature affects gain differently for different channels:
419 *
420 * 2.4 GHz all channels: 3.5 degrees per half-dB step
421 * 5 GHz channels 34-43: 4.5 degrees per half-dB step
422 * 5 GHz channels >= 44: 4.0 degrees per half-dB step
423 *
424 * NOTE: Temperature can increase rapidly when transmitting, especially
425 * with heavy traffic at high txpowers. Driver should update
426 * temperature calculations often under these conditions to
427 * maintain strong txpower in the face of rising temperature.
428 *
429 *
430 * 7) Find difference between current power supply voltage indicator
431 * (from "initialize alive") and factory-measured power supply voltage
432 * indicator (EEPROM).
433 *
434 * If the current voltage is higher (indicator is lower) than factory
435 * voltage, gain should be reduced (gain table idx increased) by:
436 *
437 * (eeprom - current) / 7
438 *
439 * If the current voltage is lower (indicator is higher) than factory
440 * voltage, gain should be increased (gain table idx decreased) by:
441 *
442 * 2 * (current - eeprom) / 7
443 *
444 * If number of idx steps in either direction turns out to be > 2,
445 * something is wrong ... just use 0.
446 *
447 * NOTE: Voltage compensation is independent of band/channel.
448 *
449 * NOTE: "Initialize" uCode measures current voltage, which is assumed
450 * to be constant after this initial measurement. Voltage
451 * compensation for txpower (number of steps in gain table)
452 * may be calculated once and used until the next uCode bootload.
453 *
454 *
455 * 8) If setting up txpowers for MIMO rates (rate idxes 8-15, 24-31),
456 * adjust txpower for each transmitter chain, so txpower is balanced
457 * between the two chains. There are 5 pairs of tx_atten[group][chain]
458 * values in "initialize alive", one pair for each of 5 channel ranges:
459 *
460 * Group 0: 5 GHz channel 34-43
461 * Group 1: 5 GHz channel 44-70
462 * Group 2: 5 GHz channel 71-124
463 * Group 3: 5 GHz channel 125-200
464 * Group 4: 2.4 GHz all channels
465 *
466 * Add the tx_atten[group][chain] value to the idx for the target chain.
467 * The values are signed, but are in pairs of 0 and a non-negative number,
468 * so as to reduce gain (if necessary) of the "hotter" channel. This
469 * avoids any need to double-check for regulatory compliance after
470 * this step.
471 *
472 *
473 * 9) If setting up for a CCK rate, lower the gain by adding a CCK compensation
474 * value to the idx:
475 *
476 * Hardware rev B: 9 steps (4.5 dB)
477 * Hardware rev C: 5 steps (2.5 dB)
478 *
479 * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG,
480 * bits [3:2], 1 = B, 2 = C.
481 *
482 * NOTE: This compensation is in addition to any saturation backoff that
483 * might have been applied in an earlier step.
484 *
485 *
486 * 10) Select the gain table, based on band (2.4 vs 5 GHz).
487 *
488 * Limit the adjusted idx to stay within the table!
489 *
490 *
491 * 11) Read gain table entries for DSP and radio gain, place into appropriate
492 * location(s) in command (struct il4965_txpowertable_cmd).
493 */
494
495 /**
496 * When MIMO is used (2 transmitters operating simultaneously), driver should
497 * limit each transmitter to deliver a max of 3 dB below the regulatory limit
498 * for the device. That is, use half power for each transmitter, so total
499 * txpower is within regulatory limits.
500 *
501 * The value "6" represents number of steps in gain table to reduce power 3 dB.
502 * Each step is 1/2 dB.
503 */
504 #define IL_TX_POWER_MIMO_REGULATORY_COMPENSATION (6)
505
506 /**
507 * CCK gain compensation.
508 *
509 * When calculating txpowers for CCK, after making sure that the target power
510 * is within regulatory and saturation limits, driver must additionally
511 * back off gain by adding these values to the gain table idx.
512 *
513 * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG,
514 * bits [3:2], 1 = B, 2 = C.
515 */
516 #define IL_TX_POWER_CCK_COMPENSATION_B_STEP (9)
517 #define IL_TX_POWER_CCK_COMPENSATION_C_STEP (5)
518
519 /*
520 * 4965 power supply voltage compensation for txpower
521 */
522 #define TX_POWER_IL_VOLTAGE_CODES_PER_03V (7)
523
524 /**
525 * Gain tables.
526 *
527 * The following tables contain pair of values for setting txpower, i.e.
528 * gain settings for the output of the device's digital signal processor (DSP),
529 * and for the analog gain structure of the transmitter.
530 *
531 * Each entry in the gain tables represents a step of 1/2 dB. Note that these
532 * are *relative* steps, not indications of absolute output power. Output
533 * power varies with temperature, voltage, and channel frequency, and also
534 * requires consideration of average power (to satisfy regulatory constraints),
535 * and peak power (to avoid distortion of the output signal).
536 *
537 * Each entry contains two values:
538 * 1) DSP gain (or sometimes called DSP attenuation). This is a fine-grained
539 * linear value that multiplies the output of the digital signal processor,
540 * before being sent to the analog radio.
541 * 2) Radio gain. This sets the analog gain of the radio Tx path.
542 * It is a coarser setting, and behaves in a logarithmic (dB) fashion.
543 *
544 * EEPROM contains factory calibration data for txpower. This maps actual
545 * measured txpower levels to gain settings in the "well known" tables
546 * below ("well-known" means here that both factory calibration *and* the
547 * driver work with the same table).
548 *
549 * There are separate tables for 2.4 GHz and 5 GHz bands. The 5 GHz table
550 * has an extension (into negative idxes), in case the driver needs to
551 * boost power setting for high device temperatures (higher than would be
552 * present during factory calibration). A 5 Ghz EEPROM idx of "40"
553 * corresponds to the 49th entry in the table used by the driver.
554 */
555 #define MIN_TX_GAIN_IDX (0) /* highest gain, lowest idx, 2.4 */
556 #define MIN_TX_GAIN_IDX_52GHZ_EXT (-9) /* highest gain, lowest idx, 5 */
557
558 /**
559 * 2.4 GHz gain table
560 *
561 * Index Dsp gain Radio gain
562 * 0 110 0x3f (highest gain)
563 * 1 104 0x3f
564 * 2 98 0x3f
565 * 3 110 0x3e
566 * 4 104 0x3e
567 * 5 98 0x3e
568 * 6 110 0x3d
569 * 7 104 0x3d
570 * 8 98 0x3d
571 * 9 110 0x3c
572 * 10 104 0x3c
573 * 11 98 0x3c
574 * 12 110 0x3b
575 * 13 104 0x3b
576 * 14 98 0x3b
577 * 15 110 0x3a
578 * 16 104 0x3a
579 * 17 98 0x3a
580 * 18 110 0x39
581 * 19 104 0x39
582 * 20 98 0x39
583 * 21 110 0x38
584 * 22 104 0x38
585 * 23 98 0x38
586 * 24 110 0x37
587 * 25 104 0x37
588 * 26 98 0x37
589 * 27 110 0x36
590 * 28 104 0x36
591 * 29 98 0x36
592 * 30 110 0x35
593 * 31 104 0x35
594 * 32 98 0x35
595 * 33 110 0x34
596 * 34 104 0x34
597 * 35 98 0x34
598 * 36 110 0x33
599 * 37 104 0x33
600 * 38 98 0x33
601 * 39 110 0x32
602 * 40 104 0x32
603 * 41 98 0x32
604 * 42 110 0x31
605 * 43 104 0x31
606 * 44 98 0x31
607 * 45 110 0x30
608 * 46 104 0x30
609 * 47 98 0x30
610 * 48 110 0x6
611 * 49 104 0x6
612 * 50 98 0x6
613 * 51 110 0x5
614 * 52 104 0x5
615 * 53 98 0x5
616 * 54 110 0x4
617 * 55 104 0x4
618 * 56 98 0x4
619 * 57 110 0x3
620 * 58 104 0x3
621 * 59 98 0x3
622 * 60 110 0x2
623 * 61 104 0x2
624 * 62 98 0x2
625 * 63 110 0x1
626 * 64 104 0x1
627 * 65 98 0x1
628 * 66 110 0x0
629 * 67 104 0x0
630 * 68 98 0x0
631 * 69 97 0
632 * 70 96 0
633 * 71 95 0
634 * 72 94 0
635 * 73 93 0
636 * 74 92 0
637 * 75 91 0
638 * 76 90 0
639 * 77 89 0
640 * 78 88 0
641 * 79 87 0
642 * 80 86 0
643 * 81 85 0
644 * 82 84 0
645 * 83 83 0
646 * 84 82 0
647 * 85 81 0
648 * 86 80 0
649 * 87 79 0
650 * 88 78 0
651 * 89 77 0
652 * 90 76 0
653 * 91 75 0
654 * 92 74 0
655 * 93 73 0
656 * 94 72 0
657 * 95 71 0
658 * 96 70 0
659 * 97 69 0
660 * 98 68 0
661 */
662
663 /**
664 * 5 GHz gain table
665 *
666 * Index Dsp gain Radio gain
667 * -9 123 0x3F (highest gain)
668 * -8 117 0x3F
669 * -7 110 0x3F
670 * -6 104 0x3F
671 * -5 98 0x3F
672 * -4 110 0x3E
673 * -3 104 0x3E
674 * -2 98 0x3E
675 * -1 110 0x3D
676 * 0 104 0x3D
677 * 1 98 0x3D
678 * 2 110 0x3C
679 * 3 104 0x3C
680 * 4 98 0x3C
681 * 5 110 0x3B
682 * 6 104 0x3B
683 * 7 98 0x3B
684 * 8 110 0x3A
685 * 9 104 0x3A
686 * 10 98 0x3A
687 * 11 110 0x39
688 * 12 104 0x39
689 * 13 98 0x39
690 * 14 110 0x38
691 * 15 104 0x38
692 * 16 98 0x38
693 * 17 110 0x37
694 * 18 104 0x37
695 * 19 98 0x37
696 * 20 110 0x36
697 * 21 104 0x36
698 * 22 98 0x36
699 * 23 110 0x35
700 * 24 104 0x35
701 * 25 98 0x35
702 * 26 110 0x34
703 * 27 104 0x34
704 * 28 98 0x34
705 * 29 110 0x33
706 * 30 104 0x33
707 * 31 98 0x33
708 * 32 110 0x32
709 * 33 104 0x32
710 * 34 98 0x32
711 * 35 110 0x31
712 * 36 104 0x31
713 * 37 98 0x31
714 * 38 110 0x30
715 * 39 104 0x30
716 * 40 98 0x30
717 * 41 110 0x25
718 * 42 104 0x25
719 * 43 98 0x25
720 * 44 110 0x24
721 * 45 104 0x24
722 * 46 98 0x24
723 * 47 110 0x23
724 * 48 104 0x23
725 * 49 98 0x23
726 * 50 110 0x22
727 * 51 104 0x18
728 * 52 98 0x18
729 * 53 110 0x17
730 * 54 104 0x17
731 * 55 98 0x17
732 * 56 110 0x16
733 * 57 104 0x16
734 * 58 98 0x16
735 * 59 110 0x15
736 * 60 104 0x15
737 * 61 98 0x15
738 * 62 110 0x14
739 * 63 104 0x14
740 * 64 98 0x14
741 * 65 110 0x13
742 * 66 104 0x13
743 * 67 98 0x13
744 * 68 110 0x12
745 * 69 104 0x08
746 * 70 98 0x08
747 * 71 110 0x07
748 * 72 104 0x07
749 * 73 98 0x07
750 * 74 110 0x06
751 * 75 104 0x06
752 * 76 98 0x06
753 * 77 110 0x05
754 * 78 104 0x05
755 * 79 98 0x05
756 * 80 110 0x04
757 * 81 104 0x04
758 * 82 98 0x04
759 * 83 110 0x03
760 * 84 104 0x03
761 * 85 98 0x03
762 * 86 110 0x02
763 * 87 104 0x02
764 * 88 98 0x02
765 * 89 110 0x01
766 * 90 104 0x01
767 * 91 98 0x01
768 * 92 110 0x00
769 * 93 104 0x00
770 * 94 98 0x00
771 * 95 93 0x00
772 * 96 88 0x00
773 * 97 83 0x00
774 * 98 78 0x00
775 */
776
777 /**
778 * Sanity checks and default values for EEPROM regulatory levels.
779 * If EEPROM values fall outside MIN/MAX range, use default values.
780 *
781 * Regulatory limits refer to the maximum average txpower allowed by
782 * regulatory agencies in the geographies in which the device is meant
783 * to be operated. These limits are SKU-specific (i.e. geography-specific),
784 * and channel-specific; each channel has an individual regulatory limit
785 * listed in the EEPROM.
786 *
787 * Units are in half-dBm (i.e. "34" means 17 dBm).
788 */
789 #define IL_TX_POWER_DEFAULT_REGULATORY_24 (34)
790 #define IL_TX_POWER_DEFAULT_REGULATORY_52 (34)
791 #define IL_TX_POWER_REGULATORY_MIN (0)
792 #define IL_TX_POWER_REGULATORY_MAX (34)
793
794 /**
795 * Sanity checks and default values for EEPROM saturation levels.
796 * If EEPROM values fall outside MIN/MAX range, use default values.
797 *
798 * Saturation is the highest level that the output power amplifier can produce
799 * without significant clipping distortion. This is a "peak" power level.
800 * Different types of modulation (i.e. various "rates", and OFDM vs. CCK)
801 * require differing amounts of backoff, relative to their average power output,
802 * in order to avoid clipping distortion.
803 *
804 * Driver must make sure that it is violating neither the saturation limit,
805 * nor the regulatory limit, when calculating Tx power settings for various
806 * rates.
807 *
808 * Units are in half-dBm (i.e. "38" means 19 dBm).
809 */
810 #define IL_TX_POWER_DEFAULT_SATURATION_24 (38)
811 #define IL_TX_POWER_DEFAULT_SATURATION_52 (38)
812 #define IL_TX_POWER_SATURATION_MIN (20)
813 #define IL_TX_POWER_SATURATION_MAX (50)
814
815 /**
816 * Channel groups used for Tx Attenuation calibration (MIMO tx channel balance)
817 * and thermal Txpower calibration.
818 *
819 * When calculating txpower, driver must compensate for current device
820 * temperature; higher temperature requires higher gain. Driver must calculate
821 * current temperature (see "4965 temperature calculation"), then compare vs.
822 * factory calibration temperature in EEPROM; if current temperature is higher
823 * than factory temperature, driver must *increase* gain by proportions shown
824 * in table below. If current temperature is lower than factory, driver must
825 * *decrease* gain.
826 *
827 * Different frequency ranges require different compensation, as shown below.
828 */
829 /* Group 0, 5.2 GHz ch 34-43: 4.5 degrees per 1/2 dB. */
830 #define CALIB_IL_TX_ATTEN_GR1_FCH 34
831 #define CALIB_IL_TX_ATTEN_GR1_LCH 43
832
833 /* Group 1, 5.3 GHz ch 44-70: 4.0 degrees per 1/2 dB. */
834 #define CALIB_IL_TX_ATTEN_GR2_FCH 44
835 #define CALIB_IL_TX_ATTEN_GR2_LCH 70
836
837 /* Group 2, 5.5 GHz ch 71-124: 4.0 degrees per 1/2 dB. */
838 #define CALIB_IL_TX_ATTEN_GR3_FCH 71
839 #define CALIB_IL_TX_ATTEN_GR3_LCH 124
840
841 /* Group 3, 5.7 GHz ch 125-200: 4.0 degrees per 1/2 dB. */
842 #define CALIB_IL_TX_ATTEN_GR4_FCH 125
843 #define CALIB_IL_TX_ATTEN_GR4_LCH 200
844
845 /* Group 4, 2.4 GHz all channels: 3.5 degrees per 1/2 dB. */
846 #define CALIB_IL_TX_ATTEN_GR5_FCH 1
847 #define CALIB_IL_TX_ATTEN_GR5_LCH 20
848
849 enum {
850 CALIB_CH_GROUP_1 = 0,
851 CALIB_CH_GROUP_2 = 1,
852 CALIB_CH_GROUP_3 = 2,
853 CALIB_CH_GROUP_4 = 3,
854 CALIB_CH_GROUP_5 = 4,
855 CALIB_CH_GROUP_MAX
856 };
857
858 /********************* END TXPOWER *****************************************/
859
860 /**
861 * Tx/Rx Queues
862 *
863 * Most communication between driver and 4965 is via queues of data buffers.
864 * For example, all commands that the driver issues to device's embedded
865 * controller (uCode) are via the command queue (one of the Tx queues). All
866 * uCode command responses/replies/notifications, including Rx frames, are
867 * conveyed from uCode to driver via the Rx queue.
868 *
869 * Most support for these queues, including handshake support, resides in
870 * structures in host DRAM, shared between the driver and the device. When
871 * allocating this memory, the driver must make sure that data written by
872 * the host CPU updates DRAM immediately (and does not get "stuck" in CPU's
873 * cache memory), so DRAM and cache are consistent, and the device can
874 * immediately see changes made by the driver.
875 *
876 * 4965 supports up to 16 DRAM-based Tx queues, and services these queues via
877 * up to 7 DMA channels (FIFOs). Each Tx queue is supported by a circular array
878 * in DRAM containing 256 Transmit Frame Descriptors (TFDs).
879 */
880 #define IL49_NUM_FIFOS 7
881 #define IL49_CMD_FIFO_NUM 4
882 #define IL49_NUM_QUEUES 16
883 #define IL49_NUM_AMPDU_QUEUES 8
884
885 /**
886 * struct il4965_schedq_bc_tbl
887 *
888 * Byte Count table
889 *
890 * Each Tx queue uses a byte-count table containing 320 entries:
891 * one 16-bit entry for each of 256 TFDs, plus an additional 64 entries that
892 * duplicate the first 64 entries (to avoid wrap-around within a Tx win;
893 * max Tx win is 64 TFDs).
894 *
895 * When driver sets up a new TFD, it must also enter the total byte count
896 * of the frame to be transmitted into the corresponding entry in the byte
897 * count table for the chosen Tx queue. If the TFD idx is 0-63, the driver
898 * must duplicate the byte count entry in corresponding idx 256-319.
899 *
900 * padding puts each byte count table on a 1024-byte boundary;
901 * 4965 assumes tables are separated by 1024 bytes.
902 */
903 struct il4965_scd_bc_tbl {
904 __le16 tfd_offset[TFD_QUEUE_BC_SIZE];
905 u8 pad[1024 - (TFD_QUEUE_BC_SIZE) * sizeof(__le16)];
906 } __packed;
907
908 #define IL4965_RTC_INST_LOWER_BOUND (0x000000)
909
910 /* RSSI to dBm */
911 #define IL4965_RSSI_OFFSET 44
912
913 /* PCI registers */
914 #define PCI_CFG_RETRY_TIMEOUT 0x041
915
916 /* PCI register values */
917 #define PCI_CFG_LINK_CTRL_VAL_L0S_EN 0x01
918 #define PCI_CFG_LINK_CTRL_VAL_L1_EN 0x02
919
920 #define IL4965_DEFAULT_TX_RETRY 15
921
922 /* EEPROM */
923 #define IL4965_FIRST_AMPDU_QUEUE 10
924
925 /* Calibration */
926 void il4965_chain_noise_calibration(struct il_priv *il, void *stat_resp);
927 void il4965_sensitivity_calibration(struct il_priv *il, void *resp);
928 void il4965_init_sensitivity(struct il_priv *il);
929 void il4965_reset_run_time_calib(struct il_priv *il);
930
931 /* Debug */
932 #ifdef CONFIG_IWLEGACY_DEBUGFS
933 extern const struct il_debugfs_ops il4965_debugfs_ops;
934 #endif
935
936 /****************************/
937 /* Flow Handler Definitions */
938 /****************************/
939
940 /**
941 * This I/O area is directly read/writable by driver (e.g. Linux uses writel())
942 * Addresses are offsets from device's PCI hardware base address.
943 */
944 #define FH49_MEM_LOWER_BOUND (0x1000)
945 #define FH49_MEM_UPPER_BOUND (0x2000)
946
947 /**
948 * Keep-Warm (KW) buffer base address.
949 *
950 * Driver must allocate a 4KByte buffer that is used by 4965 for keeping the
951 * host DRAM powered on (via dummy accesses to DRAM) to maintain low-latency
952 * DRAM access when 4965 is Txing or Rxing. The dummy accesses prevent host
953 * from going into a power-savings mode that would cause higher DRAM latency,
954 * and possible data over/under-runs, before all Tx/Rx is complete.
955 *
956 * Driver loads FH49_KW_MEM_ADDR_REG with the physical address (bits 35:4)
957 * of the buffer, which must be 4K aligned. Once this is set up, the 4965
958 * automatically invokes keep-warm accesses when normal accesses might not
959 * be sufficient to maintain fast DRAM response.
960 *
961 * Bit fields:
962 * 31-0: Keep-warm buffer physical base address [35:4], must be 4K aligned
963 */
964 #define FH49_KW_MEM_ADDR_REG (FH49_MEM_LOWER_BOUND + 0x97C)
965
966 /**
967 * TFD Circular Buffers Base (CBBC) addresses
968 *
969 * 4965 has 16 base pointer registers, one for each of 16 host-DRAM-resident
970 * circular buffers (CBs/queues) containing Transmit Frame Descriptors (TFDs)
971 * (see struct il_tfd_frame). These 16 pointer registers are offset by 0x04
972 * bytes from one another. Each TFD circular buffer in DRAM must be 256-byte
973 * aligned (address bits 0-7 must be 0).
974 *
975 * Bit fields in each pointer register:
976 * 27-0: TFD CB physical base address [35:8], must be 256-byte aligned
977 */
978 #define FH49_MEM_CBBC_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0x9D0)
979 #define FH49_MEM_CBBC_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0xA10)
980
981 /* Find TFD CB base pointer for given queue (range 0-15). */
982 #define FH49_MEM_CBBC_QUEUE(x) (FH49_MEM_CBBC_LOWER_BOUND + (x) * 0x4)
983
984 /**
985 * Rx SRAM Control and Status Registers (RSCSR)
986 *
987 * These registers provide handshake between driver and 4965 for the Rx queue
988 * (this queue handles *all* command responses, notifications, Rx data, etc.
989 * sent from 4965 uCode to host driver). Unlike Tx, there is only one Rx
990 * queue, and only one Rx DMA/FIFO channel. Also unlike Tx, which can
991 * concatenate up to 20 DRAM buffers to form a Tx frame, each Receive Buffer
992 * Descriptor (RBD) points to only one Rx Buffer (RB); there is a 1:1
993 * mapping between RBDs and RBs.
994 *
995 * Driver must allocate host DRAM memory for the following, and set the
996 * physical address of each into 4965 registers:
997 *
998 * 1) Receive Buffer Descriptor (RBD) circular buffer (CB), typically with 256
999 * entries (although any power of 2, up to 4096, is selectable by driver).
1000 * Each entry (1 dword) points to a receive buffer (RB) of consistent size
1001 * (typically 4K, although 8K or 16K are also selectable by driver).
1002 * Driver sets up RB size and number of RBDs in the CB via Rx config
1003 * register FH49_MEM_RCSR_CHNL0_CONFIG_REG.
1004 *
1005 * Bit fields within one RBD:
1006 * 27-0: Receive Buffer physical address bits [35:8], 256-byte aligned
1007 *
1008 * Driver sets physical address [35:8] of base of RBD circular buffer
1009 * into FH49_RSCSR_CHNL0_RBDCB_BASE_REG [27:0].
1010 *
1011 * 2) Rx status buffer, 8 bytes, in which 4965 indicates which Rx Buffers
1012 * (RBs) have been filled, via a "write pointer", actually the idx of
1013 * the RB's corresponding RBD within the circular buffer. Driver sets
1014 * physical address [35:4] into FH49_RSCSR_CHNL0_STTS_WPTR_REG [31:0].
1015 *
1016 * Bit fields in lower dword of Rx status buffer (upper dword not used
1017 * by driver; see struct il4965_shared, val0):
1018 * 31-12: Not used by driver
1019 * 11- 0: Index of last filled Rx buffer descriptor
1020 * (4965 writes, driver reads this value)
1021 *
1022 * As the driver prepares Receive Buffers (RBs) for 4965 to fill, driver must
1023 * enter pointers to these RBs into contiguous RBD circular buffer entries,
1024 * and update the 4965's "write" idx register,
1025 * FH49_RSCSR_CHNL0_RBDCB_WPTR_REG.
1026 *
1027 * This "write" idx corresponds to the *next* RBD that the driver will make
1028 * available, i.e. one RBD past the tail of the ready-to-fill RBDs within
1029 * the circular buffer. This value should initially be 0 (before preparing any
1030 * RBs), should be 8 after preparing the first 8 RBs (for example), and must
1031 * wrap back to 0 at the end of the circular buffer (but don't wrap before
1032 * "read" idx has advanced past 1! See below).
1033 * NOTE: 4965 EXPECTS THE WRITE IDX TO BE INCREMENTED IN MULTIPLES OF 8.
1034 *
1035 * As the 4965 fills RBs (referenced from contiguous RBDs within the circular
1036 * buffer), it updates the Rx status buffer in host DRAM, 2) described above,
1037 * to tell the driver the idx of the latest filled RBD. The driver must
1038 * read this "read" idx from DRAM after receiving an Rx interrupt from 4965.
1039 *
1040 * The driver must also internally keep track of a third idx, which is the
1041 * next RBD to process. When receiving an Rx interrupt, driver should process
1042 * all filled but unprocessed RBs up to, but not including, the RB
1043 * corresponding to the "read" idx. For example, if "read" idx becomes "1",
1044 * driver may process the RB pointed to by RBD 0. Depending on volume of
1045 * traffic, there may be many RBs to process.
1046 *
1047 * If read idx == write idx, 4965 thinks there is no room to put new data.
1048 * Due to this, the maximum number of filled RBs is 255, instead of 256. To
1049 * be safe, make sure that there is a gap of at least 2 RBDs between "write"
1050 * and "read" idxes; that is, make sure that there are no more than 254
1051 * buffers waiting to be filled.
1052 */
1053 #define FH49_MEM_RSCSR_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0xBC0)
1054 #define FH49_MEM_RSCSR_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0xC00)
1055 #define FH49_MEM_RSCSR_CHNL0 (FH49_MEM_RSCSR_LOWER_BOUND)
1056
1057 /**
1058 * Physical base address of 8-byte Rx Status buffer.
1059 * Bit fields:
1060 * 31-0: Rx status buffer physical base address [35:4], must 16-byte aligned.
1061 */
1062 #define FH49_RSCSR_CHNL0_STTS_WPTR_REG (FH49_MEM_RSCSR_CHNL0)
1063
1064 /**
1065 * Physical base address of Rx Buffer Descriptor Circular Buffer.
1066 * Bit fields:
1067 * 27-0: RBD CD physical base address [35:8], must be 256-byte aligned.
1068 */
1069 #define FH49_RSCSR_CHNL0_RBDCB_BASE_REG (FH49_MEM_RSCSR_CHNL0 + 0x004)
1070
1071 /**
1072 * Rx write pointer (idx, really!).
1073 * Bit fields:
1074 * 11-0: Index of driver's most recent prepared-to-be-filled RBD, + 1.
1075 * NOTE: For 256-entry circular buffer, use only bits [7:0].
1076 */
1077 #define FH49_RSCSR_CHNL0_RBDCB_WPTR_REG (FH49_MEM_RSCSR_CHNL0 + 0x008)
1078 #define FH49_RSCSR_CHNL0_WPTR (FH49_RSCSR_CHNL0_RBDCB_WPTR_REG)
1079
1080 /**
1081 * Rx Config/Status Registers (RCSR)
1082 * Rx Config Reg for channel 0 (only channel used)
1083 *
1084 * Driver must initialize FH49_MEM_RCSR_CHNL0_CONFIG_REG as follows for
1085 * normal operation (see bit fields).
1086 *
1087 * Clearing FH49_MEM_RCSR_CHNL0_CONFIG_REG to 0 turns off Rx DMA.
1088 * Driver should poll FH49_MEM_RSSR_RX_STATUS_REG for
1089 * FH49_RSSR_CHNL0_RX_STATUS_CHNL_IDLE (bit 24) before continuing.
1090 *
1091 * Bit fields:
1092 * 31-30: Rx DMA channel enable: '00' off/pause, '01' pause at end of frame,
1093 * '10' operate normally
1094 * 29-24: reserved
1095 * 23-20: # RBDs in circular buffer = 2^value; use "8" for 256 RBDs (normal),
1096 * min "5" for 32 RBDs, max "12" for 4096 RBDs.
1097 * 19-18: reserved
1098 * 17-16: size of each receive buffer; '00' 4K (normal), '01' 8K,
1099 * '10' 12K, '11' 16K.
1100 * 15-14: reserved
1101 * 13-12: IRQ destination; '00' none, '01' host driver (normal operation)
1102 * 11- 4: timeout for closing Rx buffer and interrupting host (units 32 usec)
1103 * typical value 0x10 (about 1/2 msec)
1104 * 3- 0: reserved
1105 */
1106 #define FH49_MEM_RCSR_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0xC00)
1107 #define FH49_MEM_RCSR_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0xCC0)
1108 #define FH49_MEM_RCSR_CHNL0 (FH49_MEM_RCSR_LOWER_BOUND)
1109
1110 #define FH49_MEM_RCSR_CHNL0_CONFIG_REG (FH49_MEM_RCSR_CHNL0)
1111
1112 #define FH49_RCSR_CHNL0_RX_CONFIG_RB_TIMEOUT_MSK (0x00000FF0) /* bits 4-11 */
1113 #define FH49_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_MSK (0x00001000) /* bits 12 */
1114 #define FH49_RCSR_CHNL0_RX_CONFIG_SINGLE_FRAME_MSK (0x00008000) /* bit 15 */
1115 #define FH49_RCSR_CHNL0_RX_CONFIG_RB_SIZE_MSK (0x00030000) /* bits 16-17 */
1116 #define FH49_RCSR_CHNL0_RX_CONFIG_RBDBC_SIZE_MSK (0x00F00000) /* bits 20-23 */
1117 #define FH49_RCSR_CHNL0_RX_CONFIG_DMA_CHNL_EN_MSK (0xC0000000) /* bits 30-31 */
1118
1119 #define FH49_RCSR_RX_CONFIG_RBDCB_SIZE_POS (20)
1120 #define FH49_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS (4)
1121 #define RX_RB_TIMEOUT (0x10)
1122
1123 #define FH49_RCSR_RX_CONFIG_CHNL_EN_PAUSE_VAL (0x00000000)
1124 #define FH49_RCSR_RX_CONFIG_CHNL_EN_PAUSE_EOF_VAL (0x40000000)
1125 #define FH49_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL (0x80000000)
1126
1127 #define FH49_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K (0x00000000)
1128 #define FH49_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K (0x00010000)
1129 #define FH49_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K (0x00020000)
1130 #define FH49_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_16K (0x00030000)
1131
1132 #define FH49_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY (0x00000004)
1133 #define FH49_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_NO_INT_VAL (0x00000000)
1134 #define FH49_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL (0x00001000)
1135
1136 /**
1137 * Rx Shared Status Registers (RSSR)
1138 *
1139 * After stopping Rx DMA channel (writing 0 to
1140 * FH49_MEM_RCSR_CHNL0_CONFIG_REG), driver must poll
1141 * FH49_MEM_RSSR_RX_STATUS_REG until Rx channel is idle.
1142 *
1143 * Bit fields:
1144 * 24: 1 = Channel 0 is idle
1145 *
1146 * FH49_MEM_RSSR_SHARED_CTRL_REG and FH49_MEM_RSSR_RX_ENABLE_ERR_IRQ2DRV
1147 * contain default values that should not be altered by the driver.
1148 */
1149 #define FH49_MEM_RSSR_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0xC40)
1150 #define FH49_MEM_RSSR_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0xD00)
1151
1152 #define FH49_MEM_RSSR_SHARED_CTRL_REG (FH49_MEM_RSSR_LOWER_BOUND)
1153 #define FH49_MEM_RSSR_RX_STATUS_REG (FH49_MEM_RSSR_LOWER_BOUND + 0x004)
1154 #define FH49_MEM_RSSR_RX_ENABLE_ERR_IRQ2DRV\
1155 (FH49_MEM_RSSR_LOWER_BOUND + 0x008)
1156
1157 #define FH49_RSSR_CHNL0_RX_STATUS_CHNL_IDLE (0x01000000)
1158
1159 #define FH49_MEM_TFDIB_REG1_ADDR_BITSHIFT 28
1160
1161 /* TFDB Area - TFDs buffer table */
1162 #define FH49_MEM_TFDIB_DRAM_ADDR_LSB_MSK (0xFFFFFFFF)
1163 #define FH49_TFDIB_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0x900)
1164 #define FH49_TFDIB_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0x958)
1165 #define FH49_TFDIB_CTRL0_REG(_chnl) (FH49_TFDIB_LOWER_BOUND + 0x8 * (_chnl))
1166 #define FH49_TFDIB_CTRL1_REG(_chnl) (FH49_TFDIB_LOWER_BOUND + 0x8 * (_chnl) + 0x4)
1167
1168 /**
1169 * Transmit DMA Channel Control/Status Registers (TCSR)
1170 *
1171 * 4965 has one configuration register for each of 8 Tx DMA/FIFO channels
1172 * supported in hardware (don't confuse these with the 16 Tx queues in DRAM,
1173 * which feed the DMA/FIFO channels); config regs are separated by 0x20 bytes.
1174 *
1175 * To use a Tx DMA channel, driver must initialize its
1176 * FH49_TCSR_CHNL_TX_CONFIG_REG(chnl) with:
1177 *
1178 * FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
1179 * FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE_VAL
1180 *
1181 * All other bits should be 0.
1182 *
1183 * Bit fields:
1184 * 31-30: Tx DMA channel enable: '00' off/pause, '01' pause at end of frame,
1185 * '10' operate normally
1186 * 29- 4: Reserved, set to "0"
1187 * 3: Enable internal DMA requests (1, normal operation), disable (0)
1188 * 2- 0: Reserved, set to "0"
1189 */
1190 #define FH49_TCSR_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0xD00)
1191 #define FH49_TCSR_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0xE60)
1192
1193 /* Find Control/Status reg for given Tx DMA/FIFO channel */
1194 #define FH49_TCSR_CHNL_NUM (7)
1195 #define FH50_TCSR_CHNL_NUM (8)
1196
1197 /* TCSR: tx_config register values */
1198 #define FH49_TCSR_CHNL_TX_CONFIG_REG(_chnl) \
1199 (FH49_TCSR_LOWER_BOUND + 0x20 * (_chnl))
1200 #define FH49_TCSR_CHNL_TX_CREDIT_REG(_chnl) \
1201 (FH49_TCSR_LOWER_BOUND + 0x20 * (_chnl) + 0x4)
1202 #define FH49_TCSR_CHNL_TX_BUF_STS_REG(_chnl) \
1203 (FH49_TCSR_LOWER_BOUND + 0x20 * (_chnl) + 0x8)
1204
1205 #define FH49_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_TXF (0x00000000)
1206 #define FH49_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_DRV (0x00000001)
1207
1208 #define FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE (0x00000000)
1209 #define FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE (0x00000008)
1210
1211 #define FH49_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_NOINT (0x00000000)
1212 #define FH49_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD (0x00100000)
1213 #define FH49_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_IFTFD (0x00200000)
1214
1215 #define FH49_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_NOINT (0x00000000)
1216 #define FH49_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_ENDTFD (0x00400000)
1217 #define FH49_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_IFTFD (0x00800000)
1218
1219 #define FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE (0x00000000)
1220 #define FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE_EOF (0x40000000)
1221 #define FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE (0x80000000)
1222
1223 #define FH49_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_EMPTY (0x00000000)
1224 #define FH49_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_WAIT (0x00002000)
1225 #define FH49_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID (0x00000003)
1226
1227 #define FH49_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM (20)
1228 #define FH49_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX (12)
1229
1230 /**
1231 * Tx Shared Status Registers (TSSR)
1232 *
1233 * After stopping Tx DMA channel (writing 0 to
1234 * FH49_TCSR_CHNL_TX_CONFIG_REG(chnl)), driver must poll
1235 * FH49_TSSR_TX_STATUS_REG until selected Tx channel is idle
1236 * (channel's buffers empty | no pending requests).
1237 *
1238 * Bit fields:
1239 * 31-24: 1 = Channel buffers empty (channel 7:0)
1240 * 23-16: 1 = No pending requests (channel 7:0)
1241 */
1242 #define FH49_TSSR_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0xEA0)
1243 #define FH49_TSSR_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0xEC0)
1244
1245 #define FH49_TSSR_TX_STATUS_REG (FH49_TSSR_LOWER_BOUND + 0x010)
1246
1247 /**
1248 * Bit fields for TSSR(Tx Shared Status & Control) error status register:
1249 * 31: Indicates an address error when accessed to internal memory
1250 * uCode/driver must write "1" in order to clear this flag
1251 * 30: Indicates that Host did not send the expected number of dwords to FH
1252 * uCode/driver must write "1" in order to clear this flag
1253 * 16-9:Each status bit is for one channel. Indicates that an (Error) ActDMA
1254 * command was received from the scheduler while the TRB was already full
1255 * with previous command
1256 * uCode/driver must write "1" in order to clear this flag
1257 * 7-0: Each status bit indicates a channel's TxCredit error. When an error
1258 * bit is set, it indicates that the FH has received a full indication
1259 * from the RTC TxFIFO and the current value of the TxCredit counter was
1260 * not equal to zero. This mean that the credit mechanism was not
1261 * synchronized to the TxFIFO status
1262 * uCode/driver must write "1" in order to clear this flag
1263 */
1264 #define FH49_TSSR_TX_ERROR_REG (FH49_TSSR_LOWER_BOUND + 0x018)
1265
1266 #define FH49_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(_chnl) ((1 << (_chnl)) << 16)
1267
1268 /* Tx service channels */
1269 #define FH49_SRVC_CHNL (9)
1270 #define FH49_SRVC_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0x9C8)
1271 #define FH49_SRVC_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0x9D0)
1272 #define FH49_SRVC_CHNL_SRAM_ADDR_REG(_chnl) \
1273 (FH49_SRVC_LOWER_BOUND + ((_chnl) - 9) * 0x4)
1274
1275 #define FH49_TX_CHICKEN_BITS_REG (FH49_MEM_LOWER_BOUND + 0xE98)
1276 /* Instruct FH to increment the retry count of a packet when
1277 * it is brought from the memory to TX-FIFO
1278 */
1279 #define FH49_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN (0x00000002)
1280
1281 /* Keep Warm Size */
1282 #define IL_KW_SIZE 0x1000 /* 4k */
1283
1284 #endif /* __il_4965_h__ */
This page took 0.062698 seconds and 5 git commands to generate.