8bce4b0148e088b14293ae021f0411e03b1f3bc2
[deliverable/linux.git] / drivers / net / wireless / iwlwifi / dvm / commands.h
1 /******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
23 *
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
26 *
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *
31 * BSD LICENSE
32 *
33 * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 *
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 *****************************************************************************/
63 /*
64 * Please use this file (commands.h) only for uCode API definitions.
65 * Please use iwl-xxxx-hw.h for hardware-related definitions.
66 * Please use dev.h for driver implementation definitions.
67 */
68
69 #ifndef __iwl_commands_h__
70 #define __iwl_commands_h__
71
72 #include <linux/ieee80211.h>
73 #include <linux/types.h>
74
75
76 enum {
77 REPLY_ALIVE = 0x1,
78 REPLY_ERROR = 0x2,
79 REPLY_ECHO = 0x3, /* test command */
80
81 /* RXON and QOS commands */
82 REPLY_RXON = 0x10,
83 REPLY_RXON_ASSOC = 0x11,
84 REPLY_QOS_PARAM = 0x13,
85 REPLY_RXON_TIMING = 0x14,
86
87 /* Multi-Station support */
88 REPLY_ADD_STA = 0x18,
89 REPLY_REMOVE_STA = 0x19,
90 REPLY_REMOVE_ALL_STA = 0x1a, /* not used */
91 REPLY_TXFIFO_FLUSH = 0x1e,
92
93 /* Security */
94 REPLY_WEPKEY = 0x20,
95
96 /* RX, TX, LEDs */
97 REPLY_TX = 0x1c,
98 REPLY_LEDS_CMD = 0x48,
99 REPLY_TX_LINK_QUALITY_CMD = 0x4e,
100
101 /* WiMAX coexistence */
102 COEX_PRIORITY_TABLE_CMD = 0x5a,
103 COEX_MEDIUM_NOTIFICATION = 0x5b,
104 COEX_EVENT_CMD = 0x5c,
105
106 /* Calibration */
107 TEMPERATURE_NOTIFICATION = 0x62,
108 CALIBRATION_CFG_CMD = 0x65,
109 CALIBRATION_RES_NOTIFICATION = 0x66,
110 CALIBRATION_COMPLETE_NOTIFICATION = 0x67,
111
112 /* 802.11h related */
113 REPLY_QUIET_CMD = 0x71, /* not used */
114 REPLY_CHANNEL_SWITCH = 0x72,
115 CHANNEL_SWITCH_NOTIFICATION = 0x73,
116 REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
117 SPECTRUM_MEASURE_NOTIFICATION = 0x75,
118
119 /* Power Management */
120 POWER_TABLE_CMD = 0x77,
121 PM_SLEEP_NOTIFICATION = 0x7A,
122 PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
123
124 /* Scan commands and notifications */
125 REPLY_SCAN_CMD = 0x80,
126 REPLY_SCAN_ABORT_CMD = 0x81,
127 SCAN_START_NOTIFICATION = 0x82,
128 SCAN_RESULTS_NOTIFICATION = 0x83,
129 SCAN_COMPLETE_NOTIFICATION = 0x84,
130
131 /* IBSS/AP commands */
132 BEACON_NOTIFICATION = 0x90,
133 REPLY_TX_BEACON = 0x91,
134 WHO_IS_AWAKE_NOTIFICATION = 0x94, /* not used */
135
136 /* Miscellaneous commands */
137 REPLY_TX_POWER_DBM_CMD = 0x95,
138 QUIET_NOTIFICATION = 0x96, /* not used */
139 REPLY_TX_PWR_TABLE_CMD = 0x97,
140 REPLY_TX_POWER_DBM_CMD_V1 = 0x98, /* old version of API */
141 TX_ANT_CONFIGURATION_CMD = 0x98,
142 MEASURE_ABORT_NOTIFICATION = 0x99, /* not used */
143
144 /* Bluetooth device coexistence config command */
145 REPLY_BT_CONFIG = 0x9b,
146
147 /* Statistics */
148 REPLY_STATISTICS_CMD = 0x9c,
149 STATISTICS_NOTIFICATION = 0x9d,
150
151 /* RF-KILL commands and notifications */
152 REPLY_CARD_STATE_CMD = 0xa0,
153 CARD_STATE_NOTIFICATION = 0xa1,
154
155 /* Missed beacons notification */
156 MISSED_BEACONS_NOTIFICATION = 0xa2,
157
158 REPLY_CT_KILL_CONFIG_CMD = 0xa4,
159 SENSITIVITY_CMD = 0xa8,
160 REPLY_PHY_CALIBRATION_CMD = 0xb0,
161 REPLY_RX_PHY_CMD = 0xc0,
162 REPLY_RX_MPDU_CMD = 0xc1,
163 REPLY_RX = 0xc3,
164 REPLY_COMPRESSED_BA = 0xc5,
165
166 /* BT Coex */
167 REPLY_BT_COEX_PRIO_TABLE = 0xcc,
168 REPLY_BT_COEX_PROT_ENV = 0xcd,
169 REPLY_BT_COEX_PROFILE_NOTIF = 0xce,
170
171 /* PAN commands */
172 REPLY_WIPAN_PARAMS = 0xb2,
173 REPLY_WIPAN_RXON = 0xb3, /* use REPLY_RXON structure */
174 REPLY_WIPAN_RXON_TIMING = 0xb4, /* use REPLY_RXON_TIMING structure */
175 REPLY_WIPAN_RXON_ASSOC = 0xb6, /* use REPLY_RXON_ASSOC structure */
176 REPLY_WIPAN_QOS_PARAM = 0xb7, /* use REPLY_QOS_PARAM structure */
177 REPLY_WIPAN_WEPKEY = 0xb8, /* use REPLY_WEPKEY structure */
178 REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9,
179 REPLY_WIPAN_NOA_NOTIFICATION = 0xbc,
180 REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd,
181
182 REPLY_WOWLAN_PATTERNS = 0xe0,
183 REPLY_WOWLAN_WAKEUP_FILTER = 0xe1,
184 REPLY_WOWLAN_TSC_RSC_PARAMS = 0xe2,
185 REPLY_WOWLAN_TKIP_PARAMS = 0xe3,
186 REPLY_WOWLAN_KEK_KCK_MATERIAL = 0xe4,
187 REPLY_WOWLAN_GET_STATUS = 0xe5,
188 REPLY_D3_CONFIG = 0xd3,
189
190 REPLY_MAX = 0xff
191 };
192
193 /*
194 * Minimum number of queues. MAX_NUM is defined in hw specific files.
195 * Set the minimum to accommodate
196 * - 4 standard TX queues
197 * - the command queue
198 * - 4 PAN TX queues
199 * - the PAN multicast queue, and
200 * - the AUX (TX during scan dwell) queue.
201 */
202 #define IWL_MIN_NUM_QUEUES 11
203
204 /*
205 * Command queue depends on iPAN support.
206 */
207 #define IWL_DEFAULT_CMD_QUEUE_NUM 4
208 #define IWL_IPAN_CMD_QUEUE_NUM 9
209
210 #define IWL_TX_FIFO_BK 0 /* shared */
211 #define IWL_TX_FIFO_BE 1
212 #define IWL_TX_FIFO_VI 2 /* shared */
213 #define IWL_TX_FIFO_VO 3
214 #define IWL_TX_FIFO_BK_IPAN IWL_TX_FIFO_BK
215 #define IWL_TX_FIFO_BE_IPAN 4
216 #define IWL_TX_FIFO_VI_IPAN IWL_TX_FIFO_VI
217 #define IWL_TX_FIFO_VO_IPAN 5
218 /* re-uses the VO FIFO, uCode will properly flush/schedule */
219 #define IWL_TX_FIFO_AUX 5
220 #define IWL_TX_FIFO_UNUSED 255
221
222 #define IWLAGN_CMD_FIFO_NUM 7
223
224 /*
225 * This queue number is required for proper operation
226 * because the ucode will stop/start the scheduler as
227 * required.
228 */
229 #define IWL_IPAN_MCAST_QUEUE 8
230
231 /******************************************************************************
232 * (0)
233 * Commonly used structures and definitions:
234 * Command header, rate_n_flags, txpower
235 *
236 *****************************************************************************/
237
238 /**
239 * iwlagn rate_n_flags bit fields
240 *
241 * rate_n_flags format is used in following iwlagn commands:
242 * REPLY_RX (response only)
243 * REPLY_RX_MPDU (response only)
244 * REPLY_TX (both command and response)
245 * REPLY_TX_LINK_QUALITY_CMD
246 *
247 * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
248 * 2-0: 0) 6 Mbps
249 * 1) 12 Mbps
250 * 2) 18 Mbps
251 * 3) 24 Mbps
252 * 4) 36 Mbps
253 * 5) 48 Mbps
254 * 6) 54 Mbps
255 * 7) 60 Mbps
256 *
257 * 4-3: 0) Single stream (SISO)
258 * 1) Dual stream (MIMO)
259 * 2) Triple stream (MIMO)
260 *
261 * 5: Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data
262 *
263 * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
264 * 3-0: 0xD) 6 Mbps
265 * 0xF) 9 Mbps
266 * 0x5) 12 Mbps
267 * 0x7) 18 Mbps
268 * 0x9) 24 Mbps
269 * 0xB) 36 Mbps
270 * 0x1) 48 Mbps
271 * 0x3) 54 Mbps
272 *
273 * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
274 * 6-0: 10) 1 Mbps
275 * 20) 2 Mbps
276 * 55) 5.5 Mbps
277 * 110) 11 Mbps
278 */
279 #define RATE_MCS_CODE_MSK 0x7
280 #define RATE_MCS_SPATIAL_POS 3
281 #define RATE_MCS_SPATIAL_MSK 0x18
282 #define RATE_MCS_HT_DUP_POS 5
283 #define RATE_MCS_HT_DUP_MSK 0x20
284 /* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */
285 #define RATE_MCS_RATE_MSK 0xff
286
287 /* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
288 #define RATE_MCS_FLAGS_POS 8
289 #define RATE_MCS_HT_POS 8
290 #define RATE_MCS_HT_MSK 0x100
291
292 /* Bit 9: (1) CCK, (0) OFDM. HT (bit 8) must be "0" for this bit to be valid */
293 #define RATE_MCS_CCK_POS 9
294 #define RATE_MCS_CCK_MSK 0x200
295
296 /* Bit 10: (1) Use Green Field preamble */
297 #define RATE_MCS_GF_POS 10
298 #define RATE_MCS_GF_MSK 0x400
299
300 /* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */
301 #define RATE_MCS_HT40_POS 11
302 #define RATE_MCS_HT40_MSK 0x800
303
304 /* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */
305 #define RATE_MCS_DUP_POS 12
306 #define RATE_MCS_DUP_MSK 0x1000
307
308 /* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
309 #define RATE_MCS_SGI_POS 13
310 #define RATE_MCS_SGI_MSK 0x2000
311
312 /**
313 * rate_n_flags Tx antenna masks
314 * 4965 has 2 transmitters
315 * 5100 has 1 transmitter B
316 * 5150 has 1 transmitter A
317 * 5300 has 3 transmitters
318 * 5350 has 3 transmitters
319 * bit14:16
320 */
321 #define RATE_MCS_ANT_POS 14
322 #define RATE_MCS_ANT_A_MSK 0x04000
323 #define RATE_MCS_ANT_B_MSK 0x08000
324 #define RATE_MCS_ANT_C_MSK 0x10000
325 #define RATE_MCS_ANT_AB_MSK (RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK)
326 #define RATE_MCS_ANT_ABC_MSK (RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK)
327 #define RATE_ANT_NUM 3
328
329 #define POWER_TABLE_NUM_ENTRIES 33
330 #define POWER_TABLE_NUM_HT_OFDM_ENTRIES 32
331 #define POWER_TABLE_CCK_ENTRY 32
332
333 #define IWL_PWR_NUM_HT_OFDM_ENTRIES 24
334 #define IWL_PWR_CCK_ENTRIES 2
335
336 /**
337 * struct tx_power_dual_stream
338 *
339 * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
340 *
341 * Same format as iwl_tx_power_dual_stream, but __le32
342 */
343 struct tx_power_dual_stream {
344 __le32 dw;
345 } __packed;
346
347 /**
348 * Command REPLY_TX_POWER_DBM_CMD = 0x98
349 * struct iwlagn_tx_power_dbm_cmd
350 */
351 #define IWLAGN_TX_POWER_AUTO 0x7f
352 #define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6)
353
354 struct iwlagn_tx_power_dbm_cmd {
355 s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
356 u8 flags;
357 s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
358 u8 reserved;
359 } __packed;
360
361 /**
362 * Command TX_ANT_CONFIGURATION_CMD = 0x98
363 * This command is used to configure valid Tx antenna.
364 * By default uCode concludes the valid antenna according to the radio flavor.
365 * This command enables the driver to override/modify this conclusion.
366 */
367 struct iwl_tx_ant_config_cmd {
368 __le32 valid;
369 } __packed;
370
371 /******************************************************************************
372 * (0a)
373 * Alive and Error Commands & Responses:
374 *
375 *****************************************************************************/
376
377 #define UCODE_VALID_OK cpu_to_le32(0x1)
378
379 /**
380 * REPLY_ALIVE = 0x1 (response only, not a command)
381 *
382 * uCode issues this "alive" notification once the runtime image is ready
383 * to receive commands from the driver. This is the *second* "alive"
384 * notification that the driver will receive after rebooting uCode;
385 * this "alive" is indicated by subtype field != 9.
386 *
387 * See comments documenting "BSM" (bootstrap state machine).
388 *
389 * This response includes two pointers to structures within the device's
390 * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
391 *
392 * 1) log_event_table_ptr indicates base of the event log. This traces
393 * a 256-entry history of uCode execution within a circular buffer.
394 * Its header format is:
395 *
396 * __le32 log_size; log capacity (in number of entries)
397 * __le32 type; (1) timestamp with each entry, (0) no timestamp
398 * __le32 wraps; # times uCode has wrapped to top of circular buffer
399 * __le32 write_index; next circular buffer entry that uCode would fill
400 *
401 * The header is followed by the circular buffer of log entries. Entries
402 * with timestamps have the following format:
403 *
404 * __le32 event_id; range 0 - 1500
405 * __le32 timestamp; low 32 bits of TSF (of network, if associated)
406 * __le32 data; event_id-specific data value
407 *
408 * Entries without timestamps contain only event_id and data.
409 *
410 *
411 * 2) error_event_table_ptr indicates base of the error log. This contains
412 * information about any uCode error that occurs. For agn, the format
413 * of the error log is defined by struct iwl_error_event_table.
414 *
415 * The Linux driver can print both logs to the system log when a uCode error
416 * occurs.
417 */
418
419 /*
420 * Note: This structure is read from the device with IO accesses,
421 * and the reading already does the endian conversion. As it is
422 * read with u32-sized accesses, any members with a different size
423 * need to be ordered correctly though!
424 */
425 struct iwl_error_event_table {
426 u32 valid; /* (nonzero) valid, (0) log is empty */
427 u32 error_id; /* type of error */
428 u32 pc; /* program counter */
429 u32 blink1; /* branch link */
430 u32 blink2; /* branch link */
431 u32 ilink1; /* interrupt link */
432 u32 ilink2; /* interrupt link */
433 u32 data1; /* error-specific data */
434 u32 data2; /* error-specific data */
435 u32 line; /* source code line of error */
436 u32 bcon_time; /* beacon timer */
437 u32 tsf_low; /* network timestamp function timer */
438 u32 tsf_hi; /* network timestamp function timer */
439 u32 gp1; /* GP1 timer register */
440 u32 gp2; /* GP2 timer register */
441 u32 gp3; /* GP3 timer register */
442 u32 ucode_ver; /* uCode version */
443 u32 hw_ver; /* HW Silicon version */
444 u32 brd_ver; /* HW board version */
445 u32 log_pc; /* log program counter */
446 u32 frame_ptr; /* frame pointer */
447 u32 stack_ptr; /* stack pointer */
448 u32 hcmd; /* last host command header */
449 u32 isr0; /* isr status register LMPM_NIC_ISR0:
450 * rxtx_flag */
451 u32 isr1; /* isr status register LMPM_NIC_ISR1:
452 * host_flag */
453 u32 isr2; /* isr status register LMPM_NIC_ISR2:
454 * enc_flag */
455 u32 isr3; /* isr status register LMPM_NIC_ISR3:
456 * time_flag */
457 u32 isr4; /* isr status register LMPM_NIC_ISR4:
458 * wico interrupt */
459 u32 isr_pref; /* isr status register LMPM_NIC_PREF_STAT */
460 u32 wait_event; /* wait event() caller address */
461 u32 l2p_control; /* L2pControlField */
462 u32 l2p_duration; /* L2pDurationField */
463 u32 l2p_mhvalid; /* L2pMhValidBits */
464 u32 l2p_addr_match; /* L2pAddrMatchStat */
465 u32 lmpm_pmg_sel; /* indicate which clocks are turned on
466 * (LMPM_PMG_SEL) */
467 u32 u_timestamp; /* indicate when the date and time of the
468 * compilation */
469 u32 flow_handler; /* FH read/write pointers, RX credit */
470 } __packed;
471
472 struct iwl_alive_resp {
473 u8 ucode_minor;
474 u8 ucode_major;
475 __le16 reserved1;
476 u8 sw_rev[8];
477 u8 ver_type;
478 u8 ver_subtype; /* not "9" for runtime alive */
479 __le16 reserved2;
480 __le32 log_event_table_ptr; /* SRAM address for event log */
481 __le32 error_event_table_ptr; /* SRAM address for error log */
482 __le32 timestamp;
483 __le32 is_valid;
484 } __packed;
485
486 /*
487 * REPLY_ERROR = 0x2 (response only, not a command)
488 */
489 struct iwl_error_resp {
490 __le32 error_type;
491 u8 cmd_id;
492 u8 reserved1;
493 __le16 bad_cmd_seq_num;
494 __le32 error_info;
495 __le64 timestamp;
496 } __packed;
497
498 /******************************************************************************
499 * (1)
500 * RXON Commands & Responses:
501 *
502 *****************************************************************************/
503
504 /*
505 * Rx config defines & structure
506 */
507 /* rx_config device types */
508 enum {
509 RXON_DEV_TYPE_AP = 1,
510 RXON_DEV_TYPE_ESS = 3,
511 RXON_DEV_TYPE_IBSS = 4,
512 RXON_DEV_TYPE_SNIFFER = 6,
513 RXON_DEV_TYPE_CP = 7,
514 RXON_DEV_TYPE_2STA = 8,
515 RXON_DEV_TYPE_P2P = 9,
516 };
517
518
519 #define RXON_RX_CHAIN_DRIVER_FORCE_MSK cpu_to_le16(0x1 << 0)
520 #define RXON_RX_CHAIN_DRIVER_FORCE_POS (0)
521 #define RXON_RX_CHAIN_VALID_MSK cpu_to_le16(0x7 << 1)
522 #define RXON_RX_CHAIN_VALID_POS (1)
523 #define RXON_RX_CHAIN_FORCE_SEL_MSK cpu_to_le16(0x7 << 4)
524 #define RXON_RX_CHAIN_FORCE_SEL_POS (4)
525 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK cpu_to_le16(0x7 << 7)
526 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS (7)
527 #define RXON_RX_CHAIN_CNT_MSK cpu_to_le16(0x3 << 10)
528 #define RXON_RX_CHAIN_CNT_POS (10)
529 #define RXON_RX_CHAIN_MIMO_CNT_MSK cpu_to_le16(0x3 << 12)
530 #define RXON_RX_CHAIN_MIMO_CNT_POS (12)
531 #define RXON_RX_CHAIN_MIMO_FORCE_MSK cpu_to_le16(0x1 << 14)
532 #define RXON_RX_CHAIN_MIMO_FORCE_POS (14)
533
534 /* rx_config flags */
535 /* band & modulation selection */
536 #define RXON_FLG_BAND_24G_MSK cpu_to_le32(1 << 0)
537 #define RXON_FLG_CCK_MSK cpu_to_le32(1 << 1)
538 /* auto detection enable */
539 #define RXON_FLG_AUTO_DETECT_MSK cpu_to_le32(1 << 2)
540 /* TGg protection when tx */
541 #define RXON_FLG_TGG_PROTECT_MSK cpu_to_le32(1 << 3)
542 /* cck short slot & preamble */
543 #define RXON_FLG_SHORT_SLOT_MSK cpu_to_le32(1 << 4)
544 #define RXON_FLG_SHORT_PREAMBLE_MSK cpu_to_le32(1 << 5)
545 /* antenna selection */
546 #define RXON_FLG_DIS_DIV_MSK cpu_to_le32(1 << 7)
547 #define RXON_FLG_ANT_SEL_MSK cpu_to_le32(0x0f00)
548 #define RXON_FLG_ANT_A_MSK cpu_to_le32(1 << 8)
549 #define RXON_FLG_ANT_B_MSK cpu_to_le32(1 << 9)
550 /* radar detection enable */
551 #define RXON_FLG_RADAR_DETECT_MSK cpu_to_le32(1 << 12)
552 #define RXON_FLG_TGJ_NARROW_BAND_MSK cpu_to_le32(1 << 13)
553 /* rx response to host with 8-byte TSF
554 * (according to ON_AIR deassertion) */
555 #define RXON_FLG_TSF2HOST_MSK cpu_to_le32(1 << 15)
556
557
558 /* HT flags */
559 #define RXON_FLG_CTRL_CHANNEL_LOC_POS (22)
560 #define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK cpu_to_le32(0x1 << 22)
561
562 #define RXON_FLG_HT_OPERATING_MODE_POS (23)
563
564 #define RXON_FLG_HT_PROT_MSK cpu_to_le32(0x1 << 23)
565 #define RXON_FLG_HT40_PROT_MSK cpu_to_le32(0x2 << 23)
566
567 #define RXON_FLG_CHANNEL_MODE_POS (25)
568 #define RXON_FLG_CHANNEL_MODE_MSK cpu_to_le32(0x3 << 25)
569
570 /* channel mode */
571 enum {
572 CHANNEL_MODE_LEGACY = 0,
573 CHANNEL_MODE_PURE_40 = 1,
574 CHANNEL_MODE_MIXED = 2,
575 CHANNEL_MODE_RESERVED = 3,
576 };
577 #define RXON_FLG_CHANNEL_MODE_LEGACY cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS)
578 #define RXON_FLG_CHANNEL_MODE_PURE_40 cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS)
579 #define RXON_FLG_CHANNEL_MODE_MIXED cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS)
580
581 /* CTS to self (if spec allows) flag */
582 #define RXON_FLG_SELF_CTS_EN cpu_to_le32(0x1<<30)
583
584 /* rx_config filter flags */
585 /* accept all data frames */
586 #define RXON_FILTER_PROMISC_MSK cpu_to_le32(1 << 0)
587 /* pass control & management to host */
588 #define RXON_FILTER_CTL2HOST_MSK cpu_to_le32(1 << 1)
589 /* accept multi-cast */
590 #define RXON_FILTER_ACCEPT_GRP_MSK cpu_to_le32(1 << 2)
591 /* don't decrypt uni-cast frames */
592 #define RXON_FILTER_DIS_DECRYPT_MSK cpu_to_le32(1 << 3)
593 /* don't decrypt multi-cast frames */
594 #define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
595 /* STA is associated */
596 #define RXON_FILTER_ASSOC_MSK cpu_to_le32(1 << 5)
597 /* transfer to host non bssid beacons in associated state */
598 #define RXON_FILTER_BCON_AWARE_MSK cpu_to_le32(1 << 6)
599
600 /**
601 * REPLY_RXON = 0x10 (command, has simple generic response)
602 *
603 * RXON tunes the radio tuner to a service channel, and sets up a number
604 * of parameters that are used primarily for Rx, but also for Tx operations.
605 *
606 * NOTE: When tuning to a new channel, driver must set the
607 * RXON_FILTER_ASSOC_MSK to 0. This will clear station-dependent
608 * info within the device, including the station tables, tx retry
609 * rate tables, and txpower tables. Driver must build a new station
610 * table and txpower table before transmitting anything on the RXON
611 * channel.
612 *
613 * NOTE: All RXONs wipe clean the internal txpower table. Driver must
614 * issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
615 * regardless of whether RXON_FILTER_ASSOC_MSK is set.
616 */
617
618 struct iwl_rxon_cmd {
619 u8 node_addr[6];
620 __le16 reserved1;
621 u8 bssid_addr[6];
622 __le16 reserved2;
623 u8 wlap_bssid_addr[6];
624 __le16 reserved3;
625 u8 dev_type;
626 u8 air_propagation;
627 __le16 rx_chain;
628 u8 ofdm_basic_rates;
629 u8 cck_basic_rates;
630 __le16 assoc_id;
631 __le32 flags;
632 __le32 filter_flags;
633 __le16 channel;
634 u8 ofdm_ht_single_stream_basic_rates;
635 u8 ofdm_ht_dual_stream_basic_rates;
636 u8 ofdm_ht_triple_stream_basic_rates;
637 u8 reserved5;
638 __le16 acquisition_data;
639 __le16 reserved6;
640 } __packed;
641
642 /*
643 * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
644 */
645 struct iwl_rxon_assoc_cmd {
646 __le32 flags;
647 __le32 filter_flags;
648 u8 ofdm_basic_rates;
649 u8 cck_basic_rates;
650 __le16 reserved1;
651 u8 ofdm_ht_single_stream_basic_rates;
652 u8 ofdm_ht_dual_stream_basic_rates;
653 u8 ofdm_ht_triple_stream_basic_rates;
654 u8 reserved2;
655 __le16 rx_chain_select_flags;
656 __le16 acquisition_data;
657 __le32 reserved3;
658 } __packed;
659
660 #define IWL_CONN_MAX_LISTEN_INTERVAL 10
661 #define IWL_MAX_UCODE_BEACON_INTERVAL 4 /* 4096 */
662
663 /*
664 * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
665 */
666 struct iwl_rxon_time_cmd {
667 __le64 timestamp;
668 __le16 beacon_interval;
669 __le16 atim_window;
670 __le32 beacon_init_val;
671 __le16 listen_interval;
672 u8 dtim_period;
673 u8 delta_cp_bss_tbtts;
674 } __packed;
675
676 /*
677 * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
678 */
679 /**
680 * struct iwl5000_channel_switch_cmd
681 * @band: 0- 5.2GHz, 1- 2.4GHz
682 * @expect_beacon: 0- resume transmits after channel switch
683 * 1- wait for beacon to resume transmits
684 * @channel: new channel number
685 * @rxon_flags: Rx on flags
686 * @rxon_filter_flags: filtering parameters
687 * @switch_time: switch time in extended beacon format
688 * @reserved: reserved bytes
689 */
690 struct iwl5000_channel_switch_cmd {
691 u8 band;
692 u8 expect_beacon;
693 __le16 channel;
694 __le32 rxon_flags;
695 __le32 rxon_filter_flags;
696 __le32 switch_time;
697 __le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
698 } __packed;
699
700 /**
701 * struct iwl6000_channel_switch_cmd
702 * @band: 0- 5.2GHz, 1- 2.4GHz
703 * @expect_beacon: 0- resume transmits after channel switch
704 * 1- wait for beacon to resume transmits
705 * @channel: new channel number
706 * @rxon_flags: Rx on flags
707 * @rxon_filter_flags: filtering parameters
708 * @switch_time: switch time in extended beacon format
709 * @reserved: reserved bytes
710 */
711 struct iwl6000_channel_switch_cmd {
712 u8 band;
713 u8 expect_beacon;
714 __le16 channel;
715 __le32 rxon_flags;
716 __le32 rxon_filter_flags;
717 __le32 switch_time;
718 __le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
719 } __packed;
720
721 /*
722 * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
723 */
724 struct iwl_csa_notification {
725 __le16 band;
726 __le16 channel;
727 __le32 status; /* 0 - OK, 1 - fail */
728 } __packed;
729
730 /******************************************************************************
731 * (2)
732 * Quality-of-Service (QOS) Commands & Responses:
733 *
734 *****************************************************************************/
735
736 /**
737 * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
738 * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
739 *
740 * @cw_min: Contention window, start value in numbers of slots.
741 * Should be a power-of-2, minus 1. Device's default is 0x0f.
742 * @cw_max: Contention window, max value in numbers of slots.
743 * Should be a power-of-2, minus 1. Device's default is 0x3f.
744 * @aifsn: Number of slots in Arbitration Interframe Space (before
745 * performing random backoff timing prior to Tx). Device default 1.
746 * @edca_txop: Length of Tx opportunity, in uSecs. Device default is 0.
747 *
748 * Device will automatically increase contention window by (2*CW) + 1 for each
749 * transmission retry. Device uses cw_max as a bit mask, ANDed with new CW
750 * value, to cap the CW value.
751 */
752 struct iwl_ac_qos {
753 __le16 cw_min;
754 __le16 cw_max;
755 u8 aifsn;
756 u8 reserved1;
757 __le16 edca_txop;
758 } __packed;
759
760 /* QoS flags defines */
761 #define QOS_PARAM_FLG_UPDATE_EDCA_MSK cpu_to_le32(0x01)
762 #define QOS_PARAM_FLG_TGN_MSK cpu_to_le32(0x02)
763 #define QOS_PARAM_FLG_TXOP_TYPE_MSK cpu_to_le32(0x10)
764
765 /* Number of Access Categories (AC) (EDCA), queues 0..3 */
766 #define AC_NUM 4
767
768 /*
769 * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
770 *
771 * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
772 * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
773 */
774 struct iwl_qosparam_cmd {
775 __le32 qos_flags;
776 struct iwl_ac_qos ac[AC_NUM];
777 } __packed;
778
779 /******************************************************************************
780 * (3)
781 * Add/Modify Stations Commands & Responses:
782 *
783 *****************************************************************************/
784 /*
785 * Multi station support
786 */
787
788 /* Special, dedicated locations within device's station table */
789 #define IWL_AP_ID 0
790 #define IWL_AP_ID_PAN 1
791 #define IWL_STA_ID 2
792 #define IWLAGN_PAN_BCAST_ID 14
793 #define IWLAGN_BROADCAST_ID 15
794 #define IWLAGN_STATION_COUNT 16
795
796 #define IWL_TID_NON_QOS IWL_MAX_TID_COUNT
797
798 #define STA_FLG_TX_RATE_MSK cpu_to_le32(1 << 2)
799 #define STA_FLG_PWR_SAVE_MSK cpu_to_le32(1 << 8)
800 #define STA_FLG_PAN_STATION cpu_to_le32(1 << 13)
801 #define STA_FLG_RTS_MIMO_PROT_MSK cpu_to_le32(1 << 17)
802 #define STA_FLG_AGG_MPDU_8US_MSK cpu_to_le32(1 << 18)
803 #define STA_FLG_MAX_AGG_SIZE_POS (19)
804 #define STA_FLG_MAX_AGG_SIZE_MSK cpu_to_le32(3 << 19)
805 #define STA_FLG_HT40_EN_MSK cpu_to_le32(1 << 21)
806 #define STA_FLG_MIMO_DIS_MSK cpu_to_le32(1 << 22)
807 #define STA_FLG_AGG_MPDU_DENSITY_POS (23)
808 #define STA_FLG_AGG_MPDU_DENSITY_MSK cpu_to_le32(7 << 23)
809
810 /* Use in mode field. 1: modify existing entry, 0: add new station entry */
811 #define STA_CONTROL_MODIFY_MSK 0x01
812
813 /* key flags __le16*/
814 #define STA_KEY_FLG_ENCRYPT_MSK cpu_to_le16(0x0007)
815 #define STA_KEY_FLG_NO_ENC cpu_to_le16(0x0000)
816 #define STA_KEY_FLG_WEP cpu_to_le16(0x0001)
817 #define STA_KEY_FLG_CCMP cpu_to_le16(0x0002)
818 #define STA_KEY_FLG_TKIP cpu_to_le16(0x0003)
819
820 #define STA_KEY_FLG_KEYID_POS 8
821 #define STA_KEY_FLG_INVALID cpu_to_le16(0x0800)
822 /* wep key is either from global key (0) or from station info array (1) */
823 #define STA_KEY_FLG_MAP_KEY_MSK cpu_to_le16(0x0008)
824
825 /* wep key in STA: 5-bytes (0) or 13-bytes (1) */
826 #define STA_KEY_FLG_KEY_SIZE_MSK cpu_to_le16(0x1000)
827 #define STA_KEY_MULTICAST_MSK cpu_to_le16(0x4000)
828 #define STA_KEY_MAX_NUM 8
829 #define STA_KEY_MAX_NUM_PAN 16
830 /* must not match WEP_INVALID_OFFSET */
831 #define IWLAGN_HW_KEY_DEFAULT 0xfe
832
833 /* Flags indicate whether to modify vs. don't change various station params */
834 #define STA_MODIFY_KEY_MASK 0x01
835 #define STA_MODIFY_TID_DISABLE_TX 0x02
836 #define STA_MODIFY_TX_RATE_MSK 0x04
837 #define STA_MODIFY_ADDBA_TID_MSK 0x08
838 #define STA_MODIFY_DELBA_TID_MSK 0x10
839 #define STA_MODIFY_SLEEP_TX_COUNT_MSK 0x20
840
841 /* Receiver address (actually, Rx station's index into station table),
842 * combined with Traffic ID (QOS priority), in format used by Tx Scheduler */
843 #define BUILD_RAxTID(sta_id, tid) (((sta_id) << 4) + (tid))
844
845 /* agn */
846 struct iwl_keyinfo {
847 __le16 key_flags;
848 u8 tkip_rx_tsc_byte2; /* TSC[2] for key mix ph1 detection */
849 u8 reserved1;
850 __le16 tkip_rx_ttak[5]; /* 10-byte unicast TKIP TTAK */
851 u8 key_offset;
852 u8 reserved2;
853 u8 key[16]; /* 16-byte unicast decryption key */
854 __le64 tx_secur_seq_cnt;
855 __le64 hw_tkip_mic_rx_key;
856 __le64 hw_tkip_mic_tx_key;
857 } __packed;
858
859 /**
860 * struct sta_id_modify
861 * @addr[ETH_ALEN]: station's MAC address
862 * @sta_id: index of station in uCode's station table
863 * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
864 *
865 * Driver selects unused table index when adding new station,
866 * or the index to a pre-existing station entry when modifying that station.
867 * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
868 *
869 * modify_mask flags select which parameters to modify vs. leave alone.
870 */
871 struct sta_id_modify {
872 u8 addr[ETH_ALEN];
873 __le16 reserved1;
874 u8 sta_id;
875 u8 modify_mask;
876 __le16 reserved2;
877 } __packed;
878
879 /*
880 * REPLY_ADD_STA = 0x18 (command)
881 *
882 * The device contains an internal table of per-station information,
883 * with info on security keys, aggregation parameters, and Tx rates for
884 * initial Tx attempt and any retries (agn devices uses
885 * REPLY_TX_LINK_QUALITY_CMD,
886 *
887 * REPLY_ADD_STA sets up the table entry for one station, either creating
888 * a new entry, or modifying a pre-existing one.
889 *
890 * NOTE: RXON command (without "associated" bit set) wipes the station table
891 * clean. Moving into RF_KILL state does this also. Driver must set up
892 * new station table before transmitting anything on the RXON channel
893 * (except active scans or active measurements; those commands carry
894 * their own txpower/rate setup data).
895 *
896 * When getting started on a new channel, driver must set up the
897 * IWL_BROADCAST_ID entry (last entry in the table). For a client
898 * station in a BSS, once an AP is selected, driver sets up the AP STA
899 * in the IWL_AP_ID entry (1st entry in the table). BROADCAST and AP
900 * are all that are needed for a BSS client station. If the device is
901 * used as AP, or in an IBSS network, driver must set up station table
902 * entries for all STAs in network, starting with index IWL_STA_ID.
903 */
904
905 struct iwl_addsta_cmd {
906 u8 mode; /* 1: modify existing, 0: add new station */
907 u8 reserved[3];
908 struct sta_id_modify sta;
909 struct iwl_keyinfo key;
910 __le32 station_flags; /* STA_FLG_* */
911 __le32 station_flags_msk; /* STA_FLG_* */
912
913 /* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
914 * corresponding to bit (e.g. bit 5 controls TID 5).
915 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
916 __le16 tid_disable_tx;
917 __le16 legacy_reserved;
918
919 /* TID for which to add block-ack support.
920 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
921 u8 add_immediate_ba_tid;
922
923 /* TID for which to remove block-ack support.
924 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
925 u8 remove_immediate_ba_tid;
926
927 /* Starting Sequence Number for added block-ack support.
928 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
929 __le16 add_immediate_ba_ssn;
930
931 /*
932 * Number of packets OK to transmit to station even though
933 * it is asleep -- used to synchronise PS-poll and u-APSD
934 * responses while ucode keeps track of STA sleep state.
935 */
936 __le16 sleep_tx_count;
937
938 __le16 reserved2;
939 } __packed;
940
941
942 #define ADD_STA_SUCCESS_MSK 0x1
943 #define ADD_STA_NO_ROOM_IN_TABLE 0x2
944 #define ADD_STA_NO_BLOCK_ACK_RESOURCE 0x4
945 #define ADD_STA_MODIFY_NON_EXIST_STA 0x8
946 /*
947 * REPLY_ADD_STA = 0x18 (response)
948 */
949 struct iwl_add_sta_resp {
950 u8 status; /* ADD_STA_* */
951 } __packed;
952
953 #define REM_STA_SUCCESS_MSK 0x1
954 /*
955 * REPLY_REM_STA = 0x19 (response)
956 */
957 struct iwl_rem_sta_resp {
958 u8 status;
959 } __packed;
960
961 /*
962 * REPLY_REM_STA = 0x19 (command)
963 */
964 struct iwl_rem_sta_cmd {
965 u8 num_sta; /* number of removed stations */
966 u8 reserved[3];
967 u8 addr[ETH_ALEN]; /* MAC addr of the first station */
968 u8 reserved2[2];
969 } __packed;
970
971
972 /* WiFi queues mask */
973 #define IWL_SCD_BK_MSK cpu_to_le32(BIT(0))
974 #define IWL_SCD_BE_MSK cpu_to_le32(BIT(1))
975 #define IWL_SCD_VI_MSK cpu_to_le32(BIT(2))
976 #define IWL_SCD_VO_MSK cpu_to_le32(BIT(3))
977 #define IWL_SCD_MGMT_MSK cpu_to_le32(BIT(3))
978
979 /* PAN queues mask */
980 #define IWL_PAN_SCD_BK_MSK cpu_to_le32(BIT(4))
981 #define IWL_PAN_SCD_BE_MSK cpu_to_le32(BIT(5))
982 #define IWL_PAN_SCD_VI_MSK cpu_to_le32(BIT(6))
983 #define IWL_PAN_SCD_VO_MSK cpu_to_le32(BIT(7))
984 #define IWL_PAN_SCD_MGMT_MSK cpu_to_le32(BIT(7))
985 #define IWL_PAN_SCD_MULTICAST_MSK cpu_to_le32(BIT(8))
986
987 #define IWL_AGG_TX_QUEUE_MSK cpu_to_le32(0xffc00)
988
989 #define IWL_DROP_ALL BIT(1)
990
991 /*
992 * REPLY_TXFIFO_FLUSH = 0x1e(command and response)
993 *
994 * When using full FIFO flush this command checks the scheduler HW block WR/RD
995 * pointers to check if all the frames were transferred by DMA into the
996 * relevant TX FIFO queue. Only when the DMA is finished and the queue is
997 * empty the command can finish.
998 * This command is used to flush the TXFIFO from transmit commands, it may
999 * operate on single or multiple queues, the command queue can't be flushed by
1000 * this command. The command response is returned when all the queue flush
1001 * operations are done. Each TX command flushed return response with the FLUSH
1002 * status set in the TX response status. When FIFO flush operation is used,
1003 * the flush operation ends when both the scheduler DMA done and TXFIFO empty
1004 * are set.
1005 *
1006 * @queue_control: bit mask for which queues to flush
1007 * @flush_control: flush controls
1008 * 0: Dump single MSDU
1009 * 1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable.
1010 * 2: Dump all FIFO
1011 */
1012 struct iwl_txfifo_flush_cmd {
1013 __le32 queue_control;
1014 __le16 flush_control;
1015 __le16 reserved;
1016 } __packed;
1017
1018 /*
1019 * REPLY_WEP_KEY = 0x20
1020 */
1021 struct iwl_wep_key {
1022 u8 key_index;
1023 u8 key_offset;
1024 u8 reserved1[2];
1025 u8 key_size;
1026 u8 reserved2[3];
1027 u8 key[16];
1028 } __packed;
1029
1030 struct iwl_wep_cmd {
1031 u8 num_keys;
1032 u8 global_key_type;
1033 u8 flags;
1034 u8 reserved;
1035 struct iwl_wep_key key[0];
1036 } __packed;
1037
1038 #define WEP_KEY_WEP_TYPE 1
1039 #define WEP_KEYS_MAX 4
1040 #define WEP_INVALID_OFFSET 0xff
1041 #define WEP_KEY_LEN_64 5
1042 #define WEP_KEY_LEN_128 13
1043
1044 /******************************************************************************
1045 * (4)
1046 * Rx Responses:
1047 *
1048 *****************************************************************************/
1049
1050 #define RX_RES_STATUS_NO_CRC32_ERROR cpu_to_le32(1 << 0)
1051 #define RX_RES_STATUS_NO_RXE_OVERFLOW cpu_to_le32(1 << 1)
1052
1053 #define RX_RES_PHY_FLAGS_BAND_24_MSK cpu_to_le16(1 << 0)
1054 #define RX_RES_PHY_FLAGS_MOD_CCK_MSK cpu_to_le16(1 << 1)
1055 #define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK cpu_to_le16(1 << 2)
1056 #define RX_RES_PHY_FLAGS_NARROW_BAND_MSK cpu_to_le16(1 << 3)
1057 #define RX_RES_PHY_FLAGS_ANTENNA_MSK 0x70
1058 #define RX_RES_PHY_FLAGS_ANTENNA_POS 4
1059 #define RX_RES_PHY_FLAGS_AGG_MSK cpu_to_le16(1 << 7)
1060
1061 #define RX_RES_STATUS_SEC_TYPE_MSK (0x7 << 8)
1062 #define RX_RES_STATUS_SEC_TYPE_NONE (0x0 << 8)
1063 #define RX_RES_STATUS_SEC_TYPE_WEP (0x1 << 8)
1064 #define RX_RES_STATUS_SEC_TYPE_CCMP (0x2 << 8)
1065 #define RX_RES_STATUS_SEC_TYPE_TKIP (0x3 << 8)
1066 #define RX_RES_STATUS_SEC_TYPE_ERR (0x7 << 8)
1067
1068 #define RX_RES_STATUS_STATION_FOUND (1<<6)
1069 #define RX_RES_STATUS_NO_STATION_INFO_MISMATCH (1<<7)
1070
1071 #define RX_RES_STATUS_DECRYPT_TYPE_MSK (0x3 << 11)
1072 #define RX_RES_STATUS_NOT_DECRYPT (0x0 << 11)
1073 #define RX_RES_STATUS_DECRYPT_OK (0x3 << 11)
1074 #define RX_RES_STATUS_BAD_ICV_MIC (0x1 << 11)
1075 #define RX_RES_STATUS_BAD_KEY_TTAK (0x2 << 11)
1076
1077 #define RX_MPDU_RES_STATUS_ICV_OK (0x20)
1078 #define RX_MPDU_RES_STATUS_MIC_OK (0x40)
1079 #define RX_MPDU_RES_STATUS_TTAK_OK (1 << 7)
1080 #define RX_MPDU_RES_STATUS_DEC_DONE_MSK (0x800)
1081
1082
1083 #define IWLAGN_RX_RES_PHY_CNT 8
1084 #define IWLAGN_RX_RES_AGC_IDX 1
1085 #define IWLAGN_RX_RES_RSSI_AB_IDX 2
1086 #define IWLAGN_RX_RES_RSSI_C_IDX 3
1087 #define IWLAGN_OFDM_AGC_MSK 0xfe00
1088 #define IWLAGN_OFDM_AGC_BIT_POS 9
1089 #define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff
1090 #define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00
1091 #define IWLAGN_OFDM_RSSI_A_BIT_POS 0
1092 #define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000
1093 #define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000
1094 #define IWLAGN_OFDM_RSSI_B_BIT_POS 16
1095 #define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff
1096 #define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00
1097 #define IWLAGN_OFDM_RSSI_C_BIT_POS 0
1098
1099 struct iwlagn_non_cfg_phy {
1100 __le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT]; /* up to 8 phy entries */
1101 } __packed;
1102
1103
1104 /*
1105 * REPLY_RX = 0xc3 (response only, not a command)
1106 * Used only for legacy (non 11n) frames.
1107 */
1108 struct iwl_rx_phy_res {
1109 u8 non_cfg_phy_cnt; /* non configurable DSP phy data byte count */
1110 u8 cfg_phy_cnt; /* configurable DSP phy data byte count */
1111 u8 stat_id; /* configurable DSP phy data set ID */
1112 u8 reserved1;
1113 __le64 timestamp; /* TSF at on air rise */
1114 __le32 beacon_time_stamp; /* beacon at on-air rise */
1115 __le16 phy_flags; /* general phy flags: band, modulation, ... */
1116 __le16 channel; /* channel number */
1117 u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
1118 __le32 rate_n_flags; /* RATE_MCS_* */
1119 __le16 byte_count; /* frame's byte-count */
1120 __le16 frame_time; /* frame's time on the air */
1121 } __packed;
1122
1123 struct iwl_rx_mpdu_res_start {
1124 __le16 byte_count;
1125 __le16 reserved;
1126 } __packed;
1127
1128
1129 /******************************************************************************
1130 * (5)
1131 * Tx Commands & Responses:
1132 *
1133 * Driver must place each REPLY_TX command into one of the prioritized Tx
1134 * queues in host DRAM, shared between driver and device (see comments for
1135 * SCD registers and Tx/Rx Queues). When the device's Tx scheduler and uCode
1136 * are preparing to transmit, the device pulls the Tx command over the PCI
1137 * bus via one of the device's Tx DMA channels, to fill an internal FIFO
1138 * from which data will be transmitted.
1139 *
1140 * uCode handles all timing and protocol related to control frames
1141 * (RTS/CTS/ACK), based on flags in the Tx command. uCode and Tx scheduler
1142 * handle reception of block-acks; uCode updates the host driver via
1143 * REPLY_COMPRESSED_BA.
1144 *
1145 * uCode handles retrying Tx when an ACK is expected but not received.
1146 * This includes trying lower data rates than the one requested in the Tx
1147 * command, as set up by the REPLY_TX_LINK_QUALITY_CMD (agn).
1148 *
1149 * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
1150 * This command must be executed after every RXON command, before Tx can occur.
1151 *****************************************************************************/
1152
1153 /* REPLY_TX Tx flags field */
1154
1155 /*
1156 * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
1157 * before this frame. if CTS-to-self required check
1158 * RXON_FLG_SELF_CTS_EN status.
1159 */
1160 #define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0)
1161
1162 /* 1: Expect ACK from receiving station
1163 * 0: Don't expect ACK (MAC header's duration field s/b 0)
1164 * Set this for unicast frames, but not broadcast/multicast. */
1165 #define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
1166
1167 /* For agn devices:
1168 * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
1169 * Tx command's initial_rate_index indicates first rate to try;
1170 * uCode walks through table for additional Tx attempts.
1171 * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
1172 * This rate will be used for all Tx attempts; it will not be scaled. */
1173 #define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
1174
1175 /* 1: Expect immediate block-ack.
1176 * Set when Txing a block-ack request frame. Also set TX_CMD_FLG_ACK_MSK. */
1177 #define TX_CMD_FLG_IMM_BA_RSP_MASK cpu_to_le32(1 << 6)
1178
1179 /* Tx antenna selection field; reserved (0) for agn devices. */
1180 #define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
1181
1182 /* 1: Ignore Bluetooth priority for this frame.
1183 * 0: Delay Tx until Bluetooth device is done (normal usage). */
1184 #define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12)
1185
1186 /* 1: uCode overrides sequence control field in MAC header.
1187 * 0: Driver provides sequence control field in MAC header.
1188 * Set this for management frames, non-QOS data frames, non-unicast frames,
1189 * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
1190 #define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
1191
1192 /* 1: This frame is non-last MPDU; more fragments are coming.
1193 * 0: Last fragment, or not using fragmentation. */
1194 #define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
1195
1196 /* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
1197 * 0: No TSF required in outgoing frame.
1198 * Set this for transmitting beacons and probe responses. */
1199 #define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
1200
1201 /* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
1202 * alignment of frame's payload data field.
1203 * 0: No pad
1204 * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
1205 * field (but not both). Driver must align frame data (i.e. data following
1206 * MAC header) to DWORD boundary. */
1207 #define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
1208
1209 /* accelerate aggregation support
1210 * 0 - no CCMP encryption; 1 - CCMP encryption */
1211 #define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
1212
1213 /* HCCA-AP - disable duration overwriting. */
1214 #define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
1215
1216
1217 /*
1218 * TX command security control
1219 */
1220 #define TX_CMD_SEC_WEP 0x01
1221 #define TX_CMD_SEC_CCM 0x02
1222 #define TX_CMD_SEC_TKIP 0x03
1223 #define TX_CMD_SEC_MSK 0x03
1224 #define TX_CMD_SEC_SHIFT 6
1225 #define TX_CMD_SEC_KEY128 0x08
1226
1227 /*
1228 * security overhead sizes
1229 */
1230 #define WEP_IV_LEN 4
1231 #define WEP_ICV_LEN 4
1232 #define CCMP_MIC_LEN 8
1233 #define TKIP_ICV_LEN 4
1234
1235 /*
1236 * REPLY_TX = 0x1c (command)
1237 */
1238
1239 /*
1240 * 4965 uCode updates these Tx attempt count values in host DRAM.
1241 * Used for managing Tx retries when expecting block-acks.
1242 * Driver should set these fields to 0.
1243 */
1244 struct iwl_dram_scratch {
1245 u8 try_cnt; /* Tx attempts */
1246 u8 bt_kill_cnt; /* Tx attempts blocked by Bluetooth device */
1247 __le16 reserved;
1248 } __packed;
1249
1250 struct iwl_tx_cmd {
1251 /*
1252 * MPDU byte count:
1253 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1254 * + 8 byte IV for CCM or TKIP (not used for WEP)
1255 * + Data payload
1256 * + 8-byte MIC (not used for CCM/WEP)
1257 * NOTE: Does not include Tx command bytes, post-MAC pad bytes,
1258 * MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1259 * Range: 14-2342 bytes.
1260 */
1261 __le16 len;
1262
1263 /*
1264 * MPDU or MSDU byte count for next frame.
1265 * Used for fragmentation and bursting, but not 11n aggregation.
1266 * Same as "len", but for next frame. Set to 0 if not applicable.
1267 */
1268 __le16 next_frame_len;
1269
1270 __le32 tx_flags; /* TX_CMD_FLG_* */
1271
1272 /* uCode may modify this field of the Tx command (in host DRAM!).
1273 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
1274 struct iwl_dram_scratch scratch;
1275
1276 /* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
1277 __le32 rate_n_flags; /* RATE_MCS_* */
1278
1279 /* Index of destination station in uCode's station table */
1280 u8 sta_id;
1281
1282 /* Type of security encryption: CCM or TKIP */
1283 u8 sec_ctl; /* TX_CMD_SEC_* */
1284
1285 /*
1286 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
1287 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set. Normally "0" for
1288 * data frames, this field may be used to selectively reduce initial
1289 * rate (via non-0 value) for special frames (e.g. management), while
1290 * still supporting rate scaling for all frames.
1291 */
1292 u8 initial_rate_index;
1293 u8 reserved;
1294 u8 key[16];
1295 __le16 next_frame_flags;
1296 __le16 reserved2;
1297 union {
1298 __le32 life_time;
1299 __le32 attempt;
1300 } stop_time;
1301
1302 /* Host DRAM physical address pointer to "scratch" in this command.
1303 * Must be dword aligned. "0" in dram_lsb_ptr disables usage. */
1304 __le32 dram_lsb_ptr;
1305 u8 dram_msb_ptr;
1306
1307 u8 rts_retry_limit; /*byte 50 */
1308 u8 data_retry_limit; /*byte 51 */
1309 u8 tid_tspec;
1310 union {
1311 __le16 pm_frame_timeout;
1312 __le16 attempt_duration;
1313 } timeout;
1314
1315 /*
1316 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1317 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1318 */
1319 __le16 driver_txop;
1320
1321 /*
1322 * MAC header goes here, followed by 2 bytes padding if MAC header
1323 * length is 26 or 30 bytes, followed by payload data
1324 */
1325 u8 payload[0];
1326 struct ieee80211_hdr hdr[0];
1327 } __packed;
1328
1329 /*
1330 * TX command response is sent after *agn* transmission attempts.
1331 *
1332 * both postpone and abort status are expected behavior from uCode. there is
1333 * no special operation required from driver; except for RFKILL_FLUSH,
1334 * which required tx flush host command to flush all the tx frames in queues
1335 */
1336 enum {
1337 TX_STATUS_SUCCESS = 0x01,
1338 TX_STATUS_DIRECT_DONE = 0x02,
1339 /* postpone TX */
1340 TX_STATUS_POSTPONE_DELAY = 0x40,
1341 TX_STATUS_POSTPONE_FEW_BYTES = 0x41,
1342 TX_STATUS_POSTPONE_BT_PRIO = 0x42,
1343 TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43,
1344 TX_STATUS_POSTPONE_CALC_TTAK = 0x44,
1345 /* abort TX */
1346 TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81,
1347 TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
1348 TX_STATUS_FAIL_LONG_LIMIT = 0x83,
1349 TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1350 TX_STATUS_FAIL_DRAIN_FLOW = 0x85,
1351 TX_STATUS_FAIL_RFKILL_FLUSH = 0x86,
1352 TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1353 TX_STATUS_FAIL_DEST_PS = 0x88,
1354 TX_STATUS_FAIL_HOST_ABORTED = 0x89,
1355 TX_STATUS_FAIL_BT_RETRY = 0x8a,
1356 TX_STATUS_FAIL_STA_INVALID = 0x8b,
1357 TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1358 TX_STATUS_FAIL_TID_DISABLE = 0x8d,
1359 TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e,
1360 TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1361 TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90,
1362 TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1363 };
1364
1365 #define TX_PACKET_MODE_REGULAR 0x0000
1366 #define TX_PACKET_MODE_BURST_SEQ 0x0100
1367 #define TX_PACKET_MODE_BURST_FIRST 0x0200
1368
1369 enum {
1370 TX_POWER_PA_NOT_ACTIVE = 0x0,
1371 };
1372
1373 enum {
1374 TX_STATUS_MSK = 0x000000ff, /* bits 0:7 */
1375 TX_STATUS_DELAY_MSK = 0x00000040,
1376 TX_STATUS_ABORT_MSK = 0x00000080,
1377 TX_PACKET_MODE_MSK = 0x0000ff00, /* bits 8:15 */
1378 TX_FIFO_NUMBER_MSK = 0x00070000, /* bits 16:18 */
1379 TX_RESERVED = 0x00780000, /* bits 19:22 */
1380 TX_POWER_PA_DETECT_MSK = 0x7f800000, /* bits 23:30 */
1381 TX_ABORT_REQUIRED_MSK = 0x80000000, /* bits 31:31 */
1382 };
1383
1384 /* *******************************
1385 * TX aggregation status
1386 ******************************* */
1387
1388 enum {
1389 AGG_TX_STATE_TRANSMITTED = 0x00,
1390 AGG_TX_STATE_UNDERRUN_MSK = 0x01,
1391 AGG_TX_STATE_BT_PRIO_MSK = 0x02,
1392 AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
1393 AGG_TX_STATE_ABORT_MSK = 0x08,
1394 AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
1395 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
1396 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
1397 AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
1398 AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
1399 AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
1400 AGG_TX_STATE_DUMP_TX_MSK = 0x200,
1401 AGG_TX_STATE_DELAY_TX_MSK = 0x400
1402 };
1403
1404 #define AGG_TX_STATUS_MSK 0x00000fff /* bits 0:11 */
1405 #define AGG_TX_TRY_MSK 0x0000f000 /* bits 12:15 */
1406
1407 #define AGG_TX_STATE_LAST_SENT_MSK (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
1408 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
1409 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
1410
1411 /* # tx attempts for first frame in aggregation */
1412 #define AGG_TX_STATE_TRY_CNT_POS 12
1413 #define AGG_TX_STATE_TRY_CNT_MSK 0xf000
1414
1415 /* Command ID and sequence number of Tx command for this frame */
1416 #define AGG_TX_STATE_SEQ_NUM_POS 16
1417 #define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
1418
1419 /*
1420 * REPLY_TX = 0x1c (response)
1421 *
1422 * This response may be in one of two slightly different formats, indicated
1423 * by the frame_count field:
1424 *
1425 * 1) No aggregation (frame_count == 1). This reports Tx results for
1426 * a single frame. Multiple attempts, at various bit rates, may have
1427 * been made for this frame.
1428 *
1429 * 2) Aggregation (frame_count > 1). This reports Tx results for
1430 * 2 or more frames that used block-acknowledge. All frames were
1431 * transmitted at same rate. Rate scaling may have been used if first
1432 * frame in this new agg block failed in previous agg block(s).
1433 *
1434 * Note that, for aggregation, ACK (block-ack) status is not delivered here;
1435 * block-ack has not been received by the time the agn device records
1436 * this status.
1437 * This status relates to reasons the tx might have been blocked or aborted
1438 * within the sending station (this agn device), rather than whether it was
1439 * received successfully by the destination station.
1440 */
1441 struct agg_tx_status {
1442 __le16 status;
1443 __le16 sequence;
1444 } __packed;
1445
1446 /*
1447 * definitions for initial rate index field
1448 * bits [3:0] initial rate index
1449 * bits [6:4] rate table color, used for the initial rate
1450 * bit-7 invalid rate indication
1451 * i.e. rate was not chosen from rate table
1452 * or rate table color was changed during frame retries
1453 * refer tlc rate info
1454 */
1455
1456 #define IWL50_TX_RES_INIT_RATE_INDEX_POS 0
1457 #define IWL50_TX_RES_INIT_RATE_INDEX_MSK 0x0f
1458 #define IWL50_TX_RES_RATE_TABLE_COLOR_POS 4
1459 #define IWL50_TX_RES_RATE_TABLE_COLOR_MSK 0x70
1460 #define IWL50_TX_RES_INV_RATE_INDEX_MSK 0x80
1461
1462 /* refer to ra_tid */
1463 #define IWLAGN_TX_RES_TID_POS 0
1464 #define IWLAGN_TX_RES_TID_MSK 0x0f
1465 #define IWLAGN_TX_RES_RA_POS 4
1466 #define IWLAGN_TX_RES_RA_MSK 0xf0
1467
1468 struct iwlagn_tx_resp {
1469 u8 frame_count; /* 1 no aggregation, >1 aggregation */
1470 u8 bt_kill_count; /* # blocked by bluetooth (unused for agg) */
1471 u8 failure_rts; /* # failures due to unsuccessful RTS */
1472 u8 failure_frame; /* # failures due to no ACK (unused for agg) */
1473
1474 /* For non-agg: Rate at which frame was successful.
1475 * For agg: Rate at which all frames were transmitted. */
1476 __le32 rate_n_flags; /* RATE_MCS_* */
1477
1478 /* For non-agg: RTS + CTS + frame tx attempts time + ACK.
1479 * For agg: RTS + CTS + aggregation tx time + block-ack time. */
1480 __le16 wireless_media_time; /* uSecs */
1481
1482 u8 pa_status; /* RF power amplifier measurement (not used) */
1483 u8 pa_integ_res_a[3];
1484 u8 pa_integ_res_b[3];
1485 u8 pa_integ_res_C[3];
1486
1487 __le32 tfd_info;
1488 __le16 seq_ctl;
1489 __le16 byte_cnt;
1490 u8 tlc_info;
1491 u8 ra_tid; /* tid (0:3), sta_id (4:7) */
1492 __le16 frame_ctrl;
1493 /*
1494 * For non-agg: frame status TX_STATUS_*
1495 * For agg: status of 1st frame, AGG_TX_STATE_*; other frame status
1496 * fields follow this one, up to frame_count.
1497 * Bit fields:
1498 * 11- 0: AGG_TX_STATE_* status code
1499 * 15-12: Retry count for 1st frame in aggregation (retries
1500 * occur if tx failed for this frame when it was a
1501 * member of a previous aggregation block). If rate
1502 * scaling is used, retry count indicates the rate
1503 * table entry used for all frames in the new agg.
1504 * 31-16: Sequence # for this frame's Tx cmd (not SSN!)
1505 */
1506 struct agg_tx_status status; /* TX status (in aggregation -
1507 * status of 1st frame) */
1508 } __packed;
1509 /*
1510 * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
1511 *
1512 * Reports Block-Acknowledge from recipient station
1513 */
1514 struct iwl_compressed_ba_resp {
1515 __le32 sta_addr_lo32;
1516 __le16 sta_addr_hi16;
1517 __le16 reserved;
1518
1519 /* Index of recipient (BA-sending) station in uCode's station table */
1520 u8 sta_id;
1521 u8 tid;
1522 __le16 seq_ctl;
1523 __le64 bitmap;
1524 __le16 scd_flow;
1525 __le16 scd_ssn;
1526 u8 txed; /* number of frames sent */
1527 u8 txed_2_done; /* number of frames acked */
1528 } __packed;
1529
1530 /*
1531 * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
1532 *
1533 */
1534
1535 /*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
1536 #define LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK (1 << 0)
1537
1538 /* # of EDCA prioritized tx fifos */
1539 #define LINK_QUAL_AC_NUM AC_NUM
1540
1541 /* # entries in rate scale table to support Tx retries */
1542 #define LINK_QUAL_MAX_RETRY_NUM 16
1543
1544 /* Tx antenna selection values */
1545 #define LINK_QUAL_ANT_A_MSK (1 << 0)
1546 #define LINK_QUAL_ANT_B_MSK (1 << 1)
1547 #define LINK_QUAL_ANT_MSK (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
1548
1549
1550 /**
1551 * struct iwl_link_qual_general_params
1552 *
1553 * Used in REPLY_TX_LINK_QUALITY_CMD
1554 */
1555 struct iwl_link_qual_general_params {
1556 u8 flags;
1557
1558 /* No entries at or above this (driver chosen) index contain MIMO */
1559 u8 mimo_delimiter;
1560
1561 /* Best single antenna to use for single stream (legacy, SISO). */
1562 u8 single_stream_ant_msk; /* LINK_QUAL_ANT_* */
1563
1564 /* Best antennas to use for MIMO (unused for 4965, assumes both). */
1565 u8 dual_stream_ant_msk; /* LINK_QUAL_ANT_* */
1566
1567 /*
1568 * If driver needs to use different initial rates for different
1569 * EDCA QOS access categories (as implemented by tx fifos 0-3),
1570 * this table will set that up, by indicating the indexes in the
1571 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
1572 * Otherwise, driver should set all entries to 0.
1573 *
1574 * Entry usage:
1575 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
1576 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
1577 */
1578 u8 start_rate_index[LINK_QUAL_AC_NUM];
1579 } __packed;
1580
1581 #define LINK_QUAL_AGG_TIME_LIMIT_DEF (4000) /* 4 milliseconds */
1582 #define LINK_QUAL_AGG_TIME_LIMIT_MAX (8000)
1583 #define LINK_QUAL_AGG_TIME_LIMIT_MIN (100)
1584
1585 #define LINK_QUAL_AGG_DISABLE_START_DEF (3)
1586 #define LINK_QUAL_AGG_DISABLE_START_MAX (255)
1587 #define LINK_QUAL_AGG_DISABLE_START_MIN (0)
1588
1589 #define LINK_QUAL_AGG_FRAME_LIMIT_DEF (63)
1590 #define LINK_QUAL_AGG_FRAME_LIMIT_MAX (63)
1591 #define LINK_QUAL_AGG_FRAME_LIMIT_MIN (0)
1592
1593 /**
1594 * struct iwl_link_qual_agg_params
1595 *
1596 * Used in REPLY_TX_LINK_QUALITY_CMD
1597 */
1598 struct iwl_link_qual_agg_params {
1599
1600 /*
1601 *Maximum number of uSec in aggregation.
1602 * default set to 4000 (4 milliseconds) if not configured in .cfg
1603 */
1604 __le16 agg_time_limit;
1605
1606 /*
1607 * Number of Tx retries allowed for a frame, before that frame will
1608 * no longer be considered for the start of an aggregation sequence
1609 * (scheduler will then try to tx it as single frame).
1610 * Driver should set this to 3.
1611 */
1612 u8 agg_dis_start_th;
1613
1614 /*
1615 * Maximum number of frames in aggregation.
1616 * 0 = no limit (default). 1 = no aggregation.
1617 * Other values = max # frames in aggregation.
1618 */
1619 u8 agg_frame_cnt_limit;
1620
1621 __le32 reserved;
1622 } __packed;
1623
1624 /*
1625 * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
1626 *
1627 * For agn devices
1628 *
1629 * Each station in the agn device's internal station table has its own table
1630 * of 16
1631 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
1632 * an ACK is not received. This command replaces the entire table for
1633 * one station.
1634 *
1635 * NOTE: Station must already be in agn device's station table.
1636 * Use REPLY_ADD_STA.
1637 *
1638 * The rate scaling procedures described below work well. Of course, other
1639 * procedures are possible, and may work better for particular environments.
1640 *
1641 *
1642 * FILLING THE RATE TABLE
1643 *
1644 * Given a particular initial rate and mode, as determined by the rate
1645 * scaling algorithm described below, the Linux driver uses the following
1646 * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
1647 * Link Quality command:
1648 *
1649 *
1650 * 1) If using High-throughput (HT) (SISO or MIMO) initial rate:
1651 * a) Use this same initial rate for first 3 entries.
1652 * b) Find next lower available rate using same mode (SISO or MIMO),
1653 * use for next 3 entries. If no lower rate available, switch to
1654 * legacy mode (no HT40 channel, no MIMO, no short guard interval).
1655 * c) If using MIMO, set command's mimo_delimiter to number of entries
1656 * using MIMO (3 or 6).
1657 * d) After trying 2 HT rates, switch to legacy mode (no HT40 channel,
1658 * no MIMO, no short guard interval), at the next lower bit rate
1659 * (e.g. if second HT bit rate was 54, try 48 legacy), and follow
1660 * legacy procedure for remaining table entries.
1661 *
1662 * 2) If using legacy initial rate:
1663 * a) Use the initial rate for only one entry.
1664 * b) For each following entry, reduce the rate to next lower available
1665 * rate, until reaching the lowest available rate.
1666 * c) When reducing rate, also switch antenna selection.
1667 * d) Once lowest available rate is reached, repeat this rate until
1668 * rate table is filled (16 entries), switching antenna each entry.
1669 *
1670 *
1671 * ACCUMULATING HISTORY
1672 *
1673 * The rate scaling algorithm for agn devices, as implemented in Linux driver,
1674 * uses two sets of frame Tx success history: One for the current/active
1675 * modulation mode, and one for a speculative/search mode that is being
1676 * attempted. If the speculative mode turns out to be more effective (i.e.
1677 * actual transfer rate is better), then the driver continues to use the
1678 * speculative mode as the new current active mode.
1679 *
1680 * Each history set contains, separately for each possible rate, data for a
1681 * sliding window of the 62 most recent tx attempts at that rate. The data
1682 * includes a shifting bitmap of success(1)/failure(0), and sums of successful
1683 * and attempted frames, from which the driver can additionally calculate a
1684 * success ratio (success / attempted) and number of failures
1685 * (attempted - success), and control the size of the window (attempted).
1686 * The driver uses the bit map to remove successes from the success sum, as
1687 * the oldest tx attempts fall out of the window.
1688 *
1689 * When the agn device makes multiple tx attempts for a given frame, each
1690 * attempt might be at a different rate, and have different modulation
1691 * characteristics (e.g. antenna, fat channel, short guard interval), as set
1692 * up in the rate scaling table in the Link Quality command. The driver must
1693 * determine which rate table entry was used for each tx attempt, to determine
1694 * which rate-specific history to update, and record only those attempts that
1695 * match the modulation characteristics of the history set.
1696 *
1697 * When using block-ack (aggregation), all frames are transmitted at the same
1698 * rate, since there is no per-attempt acknowledgment from the destination
1699 * station. The Tx response struct iwl_tx_resp indicates the Tx rate in
1700 * rate_n_flags field. After receiving a block-ack, the driver can update
1701 * history for the entire block all at once.
1702 *
1703 *
1704 * FINDING BEST STARTING RATE:
1705 *
1706 * When working with a selected initial modulation mode (see below), the
1707 * driver attempts to find a best initial rate. The initial rate is the
1708 * first entry in the Link Quality command's rate table.
1709 *
1710 * 1) Calculate actual throughput (success ratio * expected throughput, see
1711 * table below) for current initial rate. Do this only if enough frames
1712 * have been attempted to make the value meaningful: at least 6 failed
1713 * tx attempts, or at least 8 successes. If not enough, don't try rate
1714 * scaling yet.
1715 *
1716 * 2) Find available rates adjacent to current initial rate. Available means:
1717 * a) supported by hardware &&
1718 * b) supported by association &&
1719 * c) within any constraints selected by user
1720 *
1721 * 3) Gather measured throughputs for adjacent rates. These might not have
1722 * enough history to calculate a throughput. That's okay, we might try
1723 * using one of them anyway!
1724 *
1725 * 4) Try decreasing rate if, for current rate:
1726 * a) success ratio is < 15% ||
1727 * b) lower adjacent rate has better measured throughput ||
1728 * c) higher adjacent rate has worse throughput, and lower is unmeasured
1729 *
1730 * As a sanity check, if decrease was determined above, leave rate
1731 * unchanged if:
1732 * a) lower rate unavailable
1733 * b) success ratio at current rate > 85% (very good)
1734 * c) current measured throughput is better than expected throughput
1735 * of lower rate (under perfect 100% tx conditions, see table below)
1736 *
1737 * 5) Try increasing rate if, for current rate:
1738 * a) success ratio is < 15% ||
1739 * b) both adjacent rates' throughputs are unmeasured (try it!) ||
1740 * b) higher adjacent rate has better measured throughput ||
1741 * c) lower adjacent rate has worse throughput, and higher is unmeasured
1742 *
1743 * As a sanity check, if increase was determined above, leave rate
1744 * unchanged if:
1745 * a) success ratio at current rate < 70%. This is not particularly
1746 * good performance; higher rate is sure to have poorer success.
1747 *
1748 * 6) Re-evaluate the rate after each tx frame. If working with block-
1749 * acknowledge, history and statistics may be calculated for the entire
1750 * block (including prior history that fits within the history windows),
1751 * before re-evaluation.
1752 *
1753 * FINDING BEST STARTING MODULATION MODE:
1754 *
1755 * After working with a modulation mode for a "while" (and doing rate scaling),
1756 * the driver searches for a new initial mode in an attempt to improve
1757 * throughput. The "while" is measured by numbers of attempted frames:
1758 *
1759 * For legacy mode, search for new mode after:
1760 * 480 successful frames, or 160 failed frames
1761 * For high-throughput modes (SISO or MIMO), search for new mode after:
1762 * 4500 successful frames, or 400 failed frames
1763 *
1764 * Mode switch possibilities are (3 for each mode):
1765 *
1766 * For legacy:
1767 * Change antenna, try SISO (if HT association), try MIMO (if HT association)
1768 * For SISO:
1769 * Change antenna, try MIMO, try shortened guard interval (SGI)
1770 * For MIMO:
1771 * Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
1772 *
1773 * When trying a new mode, use the same bit rate as the old/current mode when
1774 * trying antenna switches and shortened guard interval. When switching to
1775 * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
1776 * for which the expected throughput (under perfect conditions) is about the
1777 * same or slightly better than the actual measured throughput delivered by
1778 * the old/current mode.
1779 *
1780 * Actual throughput can be estimated by multiplying the expected throughput
1781 * by the success ratio (successful / attempted tx frames). Frame size is
1782 * not considered in this calculation; it assumes that frame size will average
1783 * out to be fairly consistent over several samples. The following are
1784 * metric values for expected throughput assuming 100% success ratio.
1785 * Only G band has support for CCK rates:
1786 *
1787 * RATE: 1 2 5 11 6 9 12 18 24 36 48 54 60
1788 *
1789 * G: 7 13 35 58 40 57 72 98 121 154 177 186 186
1790 * A: 0 0 0 0 40 57 72 98 121 154 177 186 186
1791 * SISO 20MHz: 0 0 0 0 42 42 76 102 124 159 183 193 202
1792 * SGI SISO 20MHz: 0 0 0 0 46 46 82 110 132 168 192 202 211
1793 * MIMO 20MHz: 0 0 0 0 74 74 123 155 179 214 236 244 251
1794 * SGI MIMO 20MHz: 0 0 0 0 81 81 131 164 188 222 243 251 257
1795 * SISO 40MHz: 0 0 0 0 77 77 127 160 184 220 242 250 257
1796 * SGI SISO 40MHz: 0 0 0 0 83 83 135 169 193 229 250 257 264
1797 * MIMO 40MHz: 0 0 0 0 123 123 182 214 235 264 279 285 289
1798 * SGI MIMO 40MHz: 0 0 0 0 131 131 191 222 242 270 284 289 293
1799 *
1800 * After the new mode has been tried for a short while (minimum of 6 failed
1801 * frames or 8 successful frames), compare success ratio and actual throughput
1802 * estimate of the new mode with the old. If either is better with the new
1803 * mode, continue to use the new mode.
1804 *
1805 * Continue comparing modes until all 3 possibilities have been tried.
1806 * If moving from legacy to HT, try all 3 possibilities from the new HT
1807 * mode. After trying all 3, a best mode is found. Continue to use this mode
1808 * for the longer "while" described above (e.g. 480 successful frames for
1809 * legacy), and then repeat the search process.
1810 *
1811 */
1812 struct iwl_link_quality_cmd {
1813
1814 /* Index of destination/recipient station in uCode's station table */
1815 u8 sta_id;
1816 u8 reserved1;
1817 __le16 control; /* not used */
1818 struct iwl_link_qual_general_params general_params;
1819 struct iwl_link_qual_agg_params agg_params;
1820
1821 /*
1822 * Rate info; when using rate-scaling, Tx command's initial_rate_index
1823 * specifies 1st Tx rate attempted, via index into this table.
1824 * agn devices works its way through table when retrying Tx.
1825 */
1826 struct {
1827 __le32 rate_n_flags; /* RATE_MCS_*, IWL_RATE_* */
1828 } rs_table[LINK_QUAL_MAX_RETRY_NUM];
1829 __le32 reserved2;
1830 } __packed;
1831
1832 /*
1833 * BT configuration enable flags:
1834 * bit 0 - 1: BT channel announcement enabled
1835 * 0: disable
1836 * bit 1 - 1: priority of BT device enabled
1837 * 0: disable
1838 * bit 2 - 1: BT 2 wire support enabled
1839 * 0: disable
1840 */
1841 #define BT_COEX_DISABLE (0x0)
1842 #define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0)
1843 #define BT_ENABLE_PRIORITY BIT(1)
1844 #define BT_ENABLE_2_WIRE BIT(2)
1845
1846 #define BT_COEX_DISABLE (0x0)
1847 #define BT_COEX_ENABLE (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY)
1848
1849 #define BT_LEAD_TIME_MIN (0x0)
1850 #define BT_LEAD_TIME_DEF (0x1E)
1851 #define BT_LEAD_TIME_MAX (0xFF)
1852
1853 #define BT_MAX_KILL_MIN (0x1)
1854 #define BT_MAX_KILL_DEF (0x5)
1855 #define BT_MAX_KILL_MAX (0xFF)
1856
1857 #define BT_DURATION_LIMIT_DEF 625
1858 #define BT_DURATION_LIMIT_MAX 1250
1859 #define BT_DURATION_LIMIT_MIN 625
1860
1861 #define BT_ON_THRESHOLD_DEF 4
1862 #define BT_ON_THRESHOLD_MAX 1000
1863 #define BT_ON_THRESHOLD_MIN 1
1864
1865 #define BT_FRAG_THRESHOLD_DEF 0
1866 #define BT_FRAG_THRESHOLD_MAX 0
1867 #define BT_FRAG_THRESHOLD_MIN 0
1868
1869 #define BT_AGG_THRESHOLD_DEF 1200
1870 #define BT_AGG_THRESHOLD_MAX 8000
1871 #define BT_AGG_THRESHOLD_MIN 400
1872
1873 /*
1874 * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
1875 *
1876 * agn devices support hardware handshake with Bluetooth device on
1877 * same platform. Bluetooth device alerts wireless device when it will Tx;
1878 * wireless device can delay or kill its own Tx to accommodate.
1879 */
1880 struct iwl_bt_cmd {
1881 u8 flags;
1882 u8 lead_time;
1883 u8 max_kill;
1884 u8 reserved;
1885 __le32 kill_ack_mask;
1886 __le32 kill_cts_mask;
1887 } __packed;
1888
1889 #define IWLAGN_BT_FLAG_CHANNEL_INHIBITION BIT(0)
1890
1891 #define IWLAGN_BT_FLAG_COEX_MODE_MASK (BIT(3)|BIT(4)|BIT(5))
1892 #define IWLAGN_BT_FLAG_COEX_MODE_SHIFT 3
1893 #define IWLAGN_BT_FLAG_COEX_MODE_DISABLED 0
1894 #define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W 1
1895 #define IWLAGN_BT_FLAG_COEX_MODE_3W 2
1896 #define IWLAGN_BT_FLAG_COEX_MODE_4W 3
1897
1898 #define IWLAGN_BT_FLAG_UCODE_DEFAULT BIT(6)
1899 /* Disable Sync PSPoll on SCO/eSCO */
1900 #define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE BIT(7)
1901
1902 #define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD -75 /* dBm */
1903 #define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD -65 /* dBm */
1904
1905 #define IWLAGN_BT_PRIO_BOOST_MAX 0xFF
1906 #define IWLAGN_BT_PRIO_BOOST_MIN 0x00
1907 #define IWLAGN_BT_PRIO_BOOST_DEFAULT 0xF0
1908 #define IWLAGN_BT_PRIO_BOOST_DEFAULT32 0xF0F0F0F0
1909
1910 #define IWLAGN_BT_MAX_KILL_DEFAULT 5
1911
1912 #define IWLAGN_BT3_T7_DEFAULT 1
1913
1914 enum iwl_bt_kill_idx {
1915 IWL_BT_KILL_DEFAULT = 0,
1916 IWL_BT_KILL_OVERRIDE = 1,
1917 IWL_BT_KILL_REDUCE = 2,
1918 };
1919
1920 #define IWLAGN_BT_KILL_ACK_MASK_DEFAULT cpu_to_le32(0xffff0000)
1921 #define IWLAGN_BT_KILL_CTS_MASK_DEFAULT cpu_to_le32(0xffff0000)
1922 #define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO cpu_to_le32(0xffffffff)
1923 #define IWLAGN_BT_KILL_ACK_CTS_MASK_REDUCE cpu_to_le32(0)
1924
1925 #define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT 2
1926
1927 #define IWLAGN_BT3_T2_DEFAULT 0xc
1928
1929 #define IWLAGN_BT_VALID_ENABLE_FLAGS cpu_to_le16(BIT(0))
1930 #define IWLAGN_BT_VALID_BOOST cpu_to_le16(BIT(1))
1931 #define IWLAGN_BT_VALID_MAX_KILL cpu_to_le16(BIT(2))
1932 #define IWLAGN_BT_VALID_3W_TIMERS cpu_to_le16(BIT(3))
1933 #define IWLAGN_BT_VALID_KILL_ACK_MASK cpu_to_le16(BIT(4))
1934 #define IWLAGN_BT_VALID_KILL_CTS_MASK cpu_to_le16(BIT(5))
1935 #define IWLAGN_BT_VALID_REDUCED_TX_PWR cpu_to_le16(BIT(6))
1936 #define IWLAGN_BT_VALID_3W_LUT cpu_to_le16(BIT(7))
1937
1938 #define IWLAGN_BT_ALL_VALID_MSK (IWLAGN_BT_VALID_ENABLE_FLAGS | \
1939 IWLAGN_BT_VALID_BOOST | \
1940 IWLAGN_BT_VALID_MAX_KILL | \
1941 IWLAGN_BT_VALID_3W_TIMERS | \
1942 IWLAGN_BT_VALID_KILL_ACK_MASK | \
1943 IWLAGN_BT_VALID_KILL_CTS_MASK | \
1944 IWLAGN_BT_VALID_REDUCED_TX_PWR | \
1945 IWLAGN_BT_VALID_3W_LUT)
1946
1947 #define IWLAGN_BT_REDUCED_TX_PWR BIT(0)
1948
1949 #define IWLAGN_BT_DECISION_LUT_SIZE 12
1950
1951 struct iwl_basic_bt_cmd {
1952 u8 flags;
1953 u8 ledtime; /* unused */
1954 u8 max_kill;
1955 u8 bt3_timer_t7_value;
1956 __le32 kill_ack_mask;
1957 __le32 kill_cts_mask;
1958 u8 bt3_prio_sample_time;
1959 u8 bt3_timer_t2_value;
1960 __le16 bt4_reaction_time; /* unused */
1961 __le32 bt3_lookup_table[IWLAGN_BT_DECISION_LUT_SIZE];
1962 /*
1963 * bit 0: use reduced tx power for control frame
1964 * bit 1 - 7: reserved
1965 */
1966 u8 reduce_txpower;
1967 u8 reserved;
1968 __le16 valid;
1969 };
1970
1971 struct iwl_bt_cmd_v1 {
1972 struct iwl_basic_bt_cmd basic;
1973 u8 prio_boost;
1974 /*
1975 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1976 * if configure the following patterns
1977 */
1978 u8 tx_prio_boost; /* SW boost of WiFi tx priority */
1979 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */
1980 };
1981
1982 struct iwl_bt_cmd_v2 {
1983 struct iwl_basic_bt_cmd basic;
1984 __le32 prio_boost;
1985 /*
1986 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1987 * if configure the following patterns
1988 */
1989 u8 reserved;
1990 u8 tx_prio_boost; /* SW boost of WiFi tx priority */
1991 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */
1992 };
1993
1994 #define IWLAGN_BT_SCO_ACTIVE cpu_to_le32(BIT(0))
1995
1996 struct iwlagn_bt_sco_cmd {
1997 __le32 flags;
1998 };
1999
2000 /******************************************************************************
2001 * (6)
2002 * Spectrum Management (802.11h) Commands, Responses, Notifications:
2003 *
2004 *****************************************************************************/
2005
2006 /*
2007 * Spectrum Management
2008 */
2009 #define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK | \
2010 RXON_FILTER_CTL2HOST_MSK | \
2011 RXON_FILTER_ACCEPT_GRP_MSK | \
2012 RXON_FILTER_DIS_DECRYPT_MSK | \
2013 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
2014 RXON_FILTER_ASSOC_MSK | \
2015 RXON_FILTER_BCON_AWARE_MSK)
2016
2017 struct iwl_measure_channel {
2018 __le32 duration; /* measurement duration in extended beacon
2019 * format */
2020 u8 channel; /* channel to measure */
2021 u8 type; /* see enum iwl_measure_type */
2022 __le16 reserved;
2023 } __packed;
2024
2025 /*
2026 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
2027 */
2028 struct iwl_spectrum_cmd {
2029 __le16 len; /* number of bytes starting from token */
2030 u8 token; /* token id */
2031 u8 id; /* measurement id -- 0 or 1 */
2032 u8 origin; /* 0 = TGh, 1 = other, 2 = TGk */
2033 u8 periodic; /* 1 = periodic */
2034 __le16 path_loss_timeout;
2035 __le32 start_time; /* start time in extended beacon format */
2036 __le32 reserved2;
2037 __le32 flags; /* rxon flags */
2038 __le32 filter_flags; /* rxon filter flags */
2039 __le16 channel_count; /* minimum 1, maximum 10 */
2040 __le16 reserved3;
2041 struct iwl_measure_channel channels[10];
2042 } __packed;
2043
2044 /*
2045 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
2046 */
2047 struct iwl_spectrum_resp {
2048 u8 token;
2049 u8 id; /* id of the prior command replaced, or 0xff */
2050 __le16 status; /* 0 - command will be handled
2051 * 1 - cannot handle (conflicts with another
2052 * measurement) */
2053 } __packed;
2054
2055 enum iwl_measurement_state {
2056 IWL_MEASUREMENT_START = 0,
2057 IWL_MEASUREMENT_STOP = 1,
2058 };
2059
2060 enum iwl_measurement_status {
2061 IWL_MEASUREMENT_OK = 0,
2062 IWL_MEASUREMENT_CONCURRENT = 1,
2063 IWL_MEASUREMENT_CSA_CONFLICT = 2,
2064 IWL_MEASUREMENT_TGH_CONFLICT = 3,
2065 /* 4-5 reserved */
2066 IWL_MEASUREMENT_STOPPED = 6,
2067 IWL_MEASUREMENT_TIMEOUT = 7,
2068 IWL_MEASUREMENT_PERIODIC_FAILED = 8,
2069 };
2070
2071 #define NUM_ELEMENTS_IN_HISTOGRAM 8
2072
2073 struct iwl_measurement_histogram {
2074 __le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 0.8usec counts */
2075 __le32 cck[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 1usec counts */
2076 } __packed;
2077
2078 /* clear channel availability counters */
2079 struct iwl_measurement_cca_counters {
2080 __le32 ofdm;
2081 __le32 cck;
2082 } __packed;
2083
2084 enum iwl_measure_type {
2085 IWL_MEASURE_BASIC = (1 << 0),
2086 IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
2087 IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
2088 IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
2089 IWL_MEASURE_FRAME = (1 << 4),
2090 /* bits 5:6 are reserved */
2091 IWL_MEASURE_IDLE = (1 << 7),
2092 };
2093
2094 /*
2095 * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
2096 */
2097 struct iwl_spectrum_notification {
2098 u8 id; /* measurement id -- 0 or 1 */
2099 u8 token;
2100 u8 channel_index; /* index in measurement channel list */
2101 u8 state; /* 0 - start, 1 - stop */
2102 __le32 start_time; /* lower 32-bits of TSF */
2103 u8 band; /* 0 - 5.2GHz, 1 - 2.4GHz */
2104 u8 channel;
2105 u8 type; /* see enum iwl_measurement_type */
2106 u8 reserved1;
2107 /* NOTE: cca_ofdm, cca_cck, basic_type, and histogram are only only
2108 * valid if applicable for measurement type requested. */
2109 __le32 cca_ofdm; /* cca fraction time in 40Mhz clock periods */
2110 __le32 cca_cck; /* cca fraction time in 44Mhz clock periods */
2111 __le32 cca_time; /* channel load time in usecs */
2112 u8 basic_type; /* 0 - bss, 1 - ofdm preamble, 2 -
2113 * unidentified */
2114 u8 reserved2[3];
2115 struct iwl_measurement_histogram histogram;
2116 __le32 stop_time; /* lower 32-bits of TSF */
2117 __le32 status; /* see iwl_measurement_status */
2118 } __packed;
2119
2120 /******************************************************************************
2121 * (7)
2122 * Power Management Commands, Responses, Notifications:
2123 *
2124 *****************************************************************************/
2125
2126 /**
2127 * struct iwl_powertable_cmd - Power Table Command
2128 * @flags: See below:
2129 *
2130 * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
2131 *
2132 * PM allow:
2133 * bit 0 - '0' Driver not allow power management
2134 * '1' Driver allow PM (use rest of parameters)
2135 *
2136 * uCode send sleep notifications:
2137 * bit 1 - '0' Don't send sleep notification
2138 * '1' send sleep notification (SEND_PM_NOTIFICATION)
2139 *
2140 * Sleep over DTIM
2141 * bit 2 - '0' PM have to walk up every DTIM
2142 * '1' PM could sleep over DTIM till listen Interval.
2143 *
2144 * PCI power managed
2145 * bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
2146 * '1' !(PCI_CFG_LINK_CTRL & 0x1)
2147 *
2148 * Fast PD
2149 * bit 4 - '1' Put radio to sleep when receiving frame for others
2150 *
2151 * Force sleep Modes
2152 * bit 31/30- '00' use both mac/xtal sleeps
2153 * '01' force Mac sleep
2154 * '10' force xtal sleep
2155 * '11' Illegal set
2156 *
2157 * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
2158 * ucode assume sleep over DTIM is allowed and we don't need to wake up
2159 * for every DTIM.
2160 */
2161 #define IWL_POWER_VEC_SIZE 5
2162
2163 #define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK cpu_to_le16(BIT(0))
2164 #define IWL_POWER_POWER_SAVE_ENA_MSK cpu_to_le16(BIT(0))
2165 #define IWL_POWER_POWER_MANAGEMENT_ENA_MSK cpu_to_le16(BIT(1))
2166 #define IWL_POWER_SLEEP_OVER_DTIM_MSK cpu_to_le16(BIT(2))
2167 #define IWL_POWER_PCI_PM_MSK cpu_to_le16(BIT(3))
2168 #define IWL_POWER_FAST_PD cpu_to_le16(BIT(4))
2169 #define IWL_POWER_BEACON_FILTERING cpu_to_le16(BIT(5))
2170 #define IWL_POWER_SHADOW_REG_ENA cpu_to_le16(BIT(6))
2171 #define IWL_POWER_CT_KILL_SET cpu_to_le16(BIT(7))
2172 #define IWL_POWER_BT_SCO_ENA cpu_to_le16(BIT(8))
2173 #define IWL_POWER_ADVANCE_PM_ENA_MSK cpu_to_le16(BIT(9))
2174
2175 struct iwl_powertable_cmd {
2176 __le16 flags;
2177 u8 keep_alive_seconds;
2178 u8 debug_flags;
2179 __le32 rx_data_timeout;
2180 __le32 tx_data_timeout;
2181 __le32 sleep_interval[IWL_POWER_VEC_SIZE];
2182 __le32 keep_alive_beacons;
2183 } __packed;
2184
2185 /*
2186 * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
2187 * all devices identical.
2188 */
2189 struct iwl_sleep_notification {
2190 u8 pm_sleep_mode;
2191 u8 pm_wakeup_src;
2192 __le16 reserved;
2193 __le32 sleep_time;
2194 __le32 tsf_low;
2195 __le32 bcon_timer;
2196 } __packed;
2197
2198 /* Sleep states. all devices identical. */
2199 enum {
2200 IWL_PM_NO_SLEEP = 0,
2201 IWL_PM_SLP_MAC = 1,
2202 IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
2203 IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
2204 IWL_PM_SLP_PHY = 4,
2205 IWL_PM_SLP_REPENT = 5,
2206 IWL_PM_WAKEUP_BY_TIMER = 6,
2207 IWL_PM_WAKEUP_BY_DRIVER = 7,
2208 IWL_PM_WAKEUP_BY_RFKILL = 8,
2209 /* 3 reserved */
2210 IWL_PM_NUM_OF_MODES = 12,
2211 };
2212
2213 /*
2214 * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
2215 */
2216 #define CARD_STATE_CMD_DISABLE 0x00 /* Put card to sleep */
2217 #define CARD_STATE_CMD_ENABLE 0x01 /* Wake up card */
2218 #define CARD_STATE_CMD_HALT 0x02 /* Power down permanently */
2219 struct iwl_card_state_cmd {
2220 __le32 status; /* CARD_STATE_CMD_* request new power state */
2221 } __packed;
2222
2223 /*
2224 * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
2225 */
2226 struct iwl_card_state_notif {
2227 __le32 flags;
2228 } __packed;
2229
2230 #define HW_CARD_DISABLED 0x01
2231 #define SW_CARD_DISABLED 0x02
2232 #define CT_CARD_DISABLED 0x04
2233 #define RXON_CARD_DISABLED 0x10
2234
2235 struct iwl_ct_kill_config {
2236 __le32 reserved;
2237 __le32 critical_temperature_M;
2238 __le32 critical_temperature_R;
2239 } __packed;
2240
2241 /* 1000, and 6x00 */
2242 struct iwl_ct_kill_throttling_config {
2243 __le32 critical_temperature_exit;
2244 __le32 reserved;
2245 __le32 critical_temperature_enter;
2246 } __packed;
2247
2248 /******************************************************************************
2249 * (8)
2250 * Scan Commands, Responses, Notifications:
2251 *
2252 *****************************************************************************/
2253
2254 #define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
2255 #define SCAN_CHANNEL_TYPE_ACTIVE cpu_to_le32(1)
2256
2257 /**
2258 * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
2259 *
2260 * One for each channel in the scan list.
2261 * Each channel can independently select:
2262 * 1) SSID for directed active scans
2263 * 2) Txpower setting (for rate specified within Tx command)
2264 * 3) How long to stay on-channel (behavior may be modified by quiet_time,
2265 * quiet_plcp_th, good_CRC_th)
2266 *
2267 * To avoid uCode errors, make sure the following are true (see comments
2268 * under struct iwl_scan_cmd about max_out_time and quiet_time):
2269 * 1) If using passive_dwell (i.e. passive_dwell != 0):
2270 * active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
2271 * 2) quiet_time <= active_dwell
2272 * 3) If restricting off-channel time (i.e. max_out_time !=0):
2273 * passive_dwell < max_out_time
2274 * active_dwell < max_out_time
2275 */
2276
2277 struct iwl_scan_channel {
2278 /*
2279 * type is defined as:
2280 * 0:0 1 = active, 0 = passive
2281 * 1:20 SSID direct bit map; if a bit is set, then corresponding
2282 * SSID IE is transmitted in probe request.
2283 * 21:31 reserved
2284 */
2285 __le32 type;
2286 __le16 channel; /* band is selected by iwl_scan_cmd "flags" field */
2287 u8 tx_gain; /* gain for analog radio */
2288 u8 dsp_atten; /* gain for DSP */
2289 __le16 active_dwell; /* in 1024-uSec TU (time units), typ 5-50 */
2290 __le16 passive_dwell; /* in 1024-uSec TU (time units), typ 20-500 */
2291 } __packed;
2292
2293 /* set number of direct probes __le32 type */
2294 #define IWL_SCAN_PROBE_MASK(n) cpu_to_le32((BIT(n) | (BIT(n) - BIT(1))))
2295
2296 /**
2297 * struct iwl_ssid_ie - directed scan network information element
2298 *
2299 * Up to 20 of these may appear in REPLY_SCAN_CMD,
2300 * selected by "type" bit field in struct iwl_scan_channel;
2301 * each channel may select different ssids from among the 20 entries.
2302 * SSID IEs get transmitted in reverse order of entry.
2303 */
2304 struct iwl_ssid_ie {
2305 u8 id;
2306 u8 len;
2307 u8 ssid[32];
2308 } __packed;
2309
2310 #define PROBE_OPTION_MAX 20
2311 #define TX_CMD_LIFE_TIME_INFINITE cpu_to_le32(0xFFFFFFFF)
2312 #define IWL_GOOD_CRC_TH_DISABLED 0
2313 #define IWL_GOOD_CRC_TH_DEFAULT cpu_to_le16(1)
2314 #define IWL_GOOD_CRC_TH_NEVER cpu_to_le16(0xffff)
2315 #define IWL_MAX_CMD_SIZE 4096
2316
2317 /*
2318 * REPLY_SCAN_CMD = 0x80 (command)
2319 *
2320 * The hardware scan command is very powerful; the driver can set it up to
2321 * maintain (relatively) normal network traffic while doing a scan in the
2322 * background. The max_out_time and suspend_time control the ratio of how
2323 * long the device stays on an associated network channel ("service channel")
2324 * vs. how long it's away from the service channel, i.e. tuned to other channels
2325 * for scanning.
2326 *
2327 * max_out_time is the max time off-channel (in usec), and suspend_time
2328 * is how long (in "extended beacon" format) that the scan is "suspended"
2329 * after returning to the service channel. That is, suspend_time is the
2330 * time that we stay on the service channel, doing normal work, between
2331 * scan segments. The driver may set these parameters differently to support
2332 * scanning when associated vs. not associated, and light vs. heavy traffic
2333 * loads when associated.
2334 *
2335 * After receiving this command, the device's scan engine does the following;
2336 *
2337 * 1) Sends SCAN_START notification to driver
2338 * 2) Checks to see if it has time to do scan for one channel
2339 * 3) Sends NULL packet, with power-save (PS) bit set to 1,
2340 * to tell AP that we're going off-channel
2341 * 4) Tunes to first channel in scan list, does active or passive scan
2342 * 5) Sends SCAN_RESULT notification to driver
2343 * 6) Checks to see if it has time to do scan on *next* channel in list
2344 * 7) Repeats 4-6 until it no longer has time to scan the next channel
2345 * before max_out_time expires
2346 * 8) Returns to service channel
2347 * 9) Sends NULL packet with PS=0 to tell AP that we're back
2348 * 10) Stays on service channel until suspend_time expires
2349 * 11) Repeats entire process 2-10 until list is complete
2350 * 12) Sends SCAN_COMPLETE notification
2351 *
2352 * For fast, efficient scans, the scan command also has support for staying on
2353 * a channel for just a short time, if doing active scanning and getting no
2354 * responses to the transmitted probe request. This time is controlled by
2355 * quiet_time, and the number of received packets below which a channel is
2356 * considered "quiet" is controlled by quiet_plcp_threshold.
2357 *
2358 * For active scanning on channels that have regulatory restrictions against
2359 * blindly transmitting, the scan can listen before transmitting, to make sure
2360 * that there is already legitimate activity on the channel. If enough
2361 * packets are cleanly received on the channel (controlled by good_CRC_th,
2362 * typical value 1), the scan engine starts transmitting probe requests.
2363 *
2364 * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
2365 *
2366 * To avoid uCode errors, see timing restrictions described under
2367 * struct iwl_scan_channel.
2368 */
2369
2370 enum iwl_scan_flags {
2371 /* BIT(0) currently unused */
2372 IWL_SCAN_FLAGS_ACTION_FRAME_TX = BIT(1),
2373 /* bits 2-7 reserved */
2374 };
2375
2376 struct iwl_scan_cmd {
2377 __le16 len;
2378 u8 scan_flags; /* scan flags: see enum iwl_scan_flags */
2379 u8 channel_count; /* # channels in channel list */
2380 __le16 quiet_time; /* dwell only this # millisecs on quiet channel
2381 * (only for active scan) */
2382 __le16 quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */
2383 __le16 good_CRC_th; /* passive -> active promotion threshold */
2384 __le16 rx_chain; /* RXON_RX_CHAIN_* */
2385 __le32 max_out_time; /* max usec to be away from associated (service)
2386 * channel */
2387 __le32 suspend_time; /* pause scan this long (in "extended beacon
2388 * format") when returning to service chnl:
2389 */
2390 __le32 flags; /* RXON_FLG_* */
2391 __le32 filter_flags; /* RXON_FILTER_* */
2392
2393 /* For active scans (set to all-0s for passive scans).
2394 * Does not include payload. Must specify Tx rate; no rate scaling. */
2395 struct iwl_tx_cmd tx_cmd;
2396
2397 /* For directed active scans (set to all-0s otherwise) */
2398 struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
2399
2400 /*
2401 * Probe request frame, followed by channel list.
2402 *
2403 * Size of probe request frame is specified by byte count in tx_cmd.
2404 * Channel list follows immediately after probe request frame.
2405 * Number of channels in list is specified by channel_count.
2406 * Each channel in list is of type:
2407 *
2408 * struct iwl_scan_channel channels[0];
2409 *
2410 * NOTE: Only one band of channels can be scanned per pass. You
2411 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2412 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2413 * before requesting another scan.
2414 */
2415 u8 data[0];
2416 } __packed;
2417
2418 /* Can abort will notify by complete notification with abort status. */
2419 #define CAN_ABORT_STATUS cpu_to_le32(0x1)
2420 /* complete notification statuses */
2421 #define ABORT_STATUS 0x2
2422
2423 /*
2424 * REPLY_SCAN_CMD = 0x80 (response)
2425 */
2426 struct iwl_scanreq_notification {
2427 __le32 status; /* 1: okay, 2: cannot fulfill request */
2428 } __packed;
2429
2430 /*
2431 * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
2432 */
2433 struct iwl_scanstart_notification {
2434 __le32 tsf_low;
2435 __le32 tsf_high;
2436 __le32 beacon_timer;
2437 u8 channel;
2438 u8 band;
2439 u8 reserved[2];
2440 __le32 status;
2441 } __packed;
2442
2443 #define SCAN_OWNER_STATUS 0x1
2444 #define MEASURE_OWNER_STATUS 0x2
2445
2446 #define IWL_PROBE_STATUS_OK 0
2447 #define IWL_PROBE_STATUS_TX_FAILED BIT(0)
2448 /* error statuses combined with TX_FAILED */
2449 #define IWL_PROBE_STATUS_FAIL_TTL BIT(1)
2450 #define IWL_PROBE_STATUS_FAIL_BT BIT(2)
2451
2452 #define NUMBER_OF_STATISTICS 1 /* first __le32 is good CRC */
2453 /*
2454 * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
2455 */
2456 struct iwl_scanresults_notification {
2457 u8 channel;
2458 u8 band;
2459 u8 probe_status;
2460 u8 num_probe_not_sent; /* not enough time to send */
2461 __le32 tsf_low;
2462 __le32 tsf_high;
2463 __le32 statistics[NUMBER_OF_STATISTICS];
2464 } __packed;
2465
2466 /*
2467 * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
2468 */
2469 struct iwl_scancomplete_notification {
2470 u8 scanned_channels;
2471 u8 status;
2472 u8 bt_status; /* BT On/Off status */
2473 u8 last_channel;
2474 __le32 tsf_low;
2475 __le32 tsf_high;
2476 } __packed;
2477
2478
2479 /******************************************************************************
2480 * (9)
2481 * IBSS/AP Commands and Notifications:
2482 *
2483 *****************************************************************************/
2484
2485 enum iwl_ibss_manager {
2486 IWL_NOT_IBSS_MANAGER = 0,
2487 IWL_IBSS_MANAGER = 1,
2488 };
2489
2490 /*
2491 * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
2492 */
2493
2494 struct iwlagn_beacon_notif {
2495 struct iwlagn_tx_resp beacon_notify_hdr;
2496 __le32 low_tsf;
2497 __le32 high_tsf;
2498 __le32 ibss_mgr_status;
2499 } __packed;
2500
2501 /*
2502 * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
2503 */
2504
2505 struct iwl_tx_beacon_cmd {
2506 struct iwl_tx_cmd tx;
2507 __le16 tim_idx;
2508 u8 tim_size;
2509 u8 reserved1;
2510 struct ieee80211_hdr frame[0]; /* beacon frame */
2511 } __packed;
2512
2513 /******************************************************************************
2514 * (10)
2515 * Statistics Commands and Notifications:
2516 *
2517 *****************************************************************************/
2518
2519 #define IWL_TEMP_CONVERT 260
2520
2521 #define SUP_RATE_11A_MAX_NUM_CHANNELS 8
2522 #define SUP_RATE_11B_MAX_NUM_CHANNELS 4
2523 #define SUP_RATE_11G_MAX_NUM_CHANNELS 12
2524
2525 /* Used for passing to driver number of successes and failures per rate */
2526 struct rate_histogram {
2527 union {
2528 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2529 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2530 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2531 } success;
2532 union {
2533 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2534 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2535 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2536 } failed;
2537 } __packed;
2538
2539 /* statistics command response */
2540
2541 struct statistics_dbg {
2542 __le32 burst_check;
2543 __le32 burst_count;
2544 __le32 wait_for_silence_timeout_cnt;
2545 __le32 reserved[3];
2546 } __packed;
2547
2548 struct statistics_rx_phy {
2549 __le32 ina_cnt;
2550 __le32 fina_cnt;
2551 __le32 plcp_err;
2552 __le32 crc32_err;
2553 __le32 overrun_err;
2554 __le32 early_overrun_err;
2555 __le32 crc32_good;
2556 __le32 false_alarm_cnt;
2557 __le32 fina_sync_err_cnt;
2558 __le32 sfd_timeout;
2559 __le32 fina_timeout;
2560 __le32 unresponded_rts;
2561 __le32 rxe_frame_limit_overrun;
2562 __le32 sent_ack_cnt;
2563 __le32 sent_cts_cnt;
2564 __le32 sent_ba_rsp_cnt;
2565 __le32 dsp_self_kill;
2566 __le32 mh_format_err;
2567 __le32 re_acq_main_rssi_sum;
2568 __le32 reserved3;
2569 } __packed;
2570
2571 struct statistics_rx_ht_phy {
2572 __le32 plcp_err;
2573 __le32 overrun_err;
2574 __le32 early_overrun_err;
2575 __le32 crc32_good;
2576 __le32 crc32_err;
2577 __le32 mh_format_err;
2578 __le32 agg_crc32_good;
2579 __le32 agg_mpdu_cnt;
2580 __le32 agg_cnt;
2581 __le32 unsupport_mcs;
2582 } __packed;
2583
2584 #define INTERFERENCE_DATA_AVAILABLE cpu_to_le32(1)
2585
2586 struct statistics_rx_non_phy {
2587 __le32 bogus_cts; /* CTS received when not expecting CTS */
2588 __le32 bogus_ack; /* ACK received when not expecting ACK */
2589 __le32 non_bssid_frames; /* number of frames with BSSID that
2590 * doesn't belong to the STA BSSID */
2591 __le32 filtered_frames; /* count frames that were dumped in the
2592 * filtering process */
2593 __le32 non_channel_beacons; /* beacons with our bss id but not on
2594 * our serving channel */
2595 __le32 channel_beacons; /* beacons with our bss id and in our
2596 * serving channel */
2597 __le32 num_missed_bcon; /* number of missed beacons */
2598 __le32 adc_rx_saturation_time; /* count in 0.8us units the time the
2599 * ADC was in saturation */
2600 __le32 ina_detection_search_time;/* total time (in 0.8us) searched
2601 * for INA */
2602 __le32 beacon_silence_rssi_a; /* RSSI silence after beacon frame */
2603 __le32 beacon_silence_rssi_b; /* RSSI silence after beacon frame */
2604 __le32 beacon_silence_rssi_c; /* RSSI silence after beacon frame */
2605 __le32 interference_data_flag; /* flag for interference data
2606 * availability. 1 when data is
2607 * available. */
2608 __le32 channel_load; /* counts RX Enable time in uSec */
2609 __le32 dsp_false_alarms; /* DSP false alarm (both OFDM
2610 * and CCK) counter */
2611 __le32 beacon_rssi_a;
2612 __le32 beacon_rssi_b;
2613 __le32 beacon_rssi_c;
2614 __le32 beacon_energy_a;
2615 __le32 beacon_energy_b;
2616 __le32 beacon_energy_c;
2617 } __packed;
2618
2619 struct statistics_rx_non_phy_bt {
2620 struct statistics_rx_non_phy common;
2621 /* additional stats for bt */
2622 __le32 num_bt_kills;
2623 __le32 reserved[2];
2624 } __packed;
2625
2626 struct statistics_rx {
2627 struct statistics_rx_phy ofdm;
2628 struct statistics_rx_phy cck;
2629 struct statistics_rx_non_phy general;
2630 struct statistics_rx_ht_phy ofdm_ht;
2631 } __packed;
2632
2633 struct statistics_rx_bt {
2634 struct statistics_rx_phy ofdm;
2635 struct statistics_rx_phy cck;
2636 struct statistics_rx_non_phy_bt general;
2637 struct statistics_rx_ht_phy ofdm_ht;
2638 } __packed;
2639
2640 /**
2641 * struct statistics_tx_power - current tx power
2642 *
2643 * @ant_a: current tx power on chain a in 1/2 dB step
2644 * @ant_b: current tx power on chain b in 1/2 dB step
2645 * @ant_c: current tx power on chain c in 1/2 dB step
2646 */
2647 struct statistics_tx_power {
2648 u8 ant_a;
2649 u8 ant_b;
2650 u8 ant_c;
2651 u8 reserved;
2652 } __packed;
2653
2654 struct statistics_tx_non_phy_agg {
2655 __le32 ba_timeout;
2656 __le32 ba_reschedule_frames;
2657 __le32 scd_query_agg_frame_cnt;
2658 __le32 scd_query_no_agg;
2659 __le32 scd_query_agg;
2660 __le32 scd_query_mismatch;
2661 __le32 frame_not_ready;
2662 __le32 underrun;
2663 __le32 bt_prio_kill;
2664 __le32 rx_ba_rsp_cnt;
2665 } __packed;
2666
2667 struct statistics_tx {
2668 __le32 preamble_cnt;
2669 __le32 rx_detected_cnt;
2670 __le32 bt_prio_defer_cnt;
2671 __le32 bt_prio_kill_cnt;
2672 __le32 few_bytes_cnt;
2673 __le32 cts_timeout;
2674 __le32 ack_timeout;
2675 __le32 expected_ack_cnt;
2676 __le32 actual_ack_cnt;
2677 __le32 dump_msdu_cnt;
2678 __le32 burst_abort_next_frame_mismatch_cnt;
2679 __le32 burst_abort_missing_next_frame_cnt;
2680 __le32 cts_timeout_collision;
2681 __le32 ack_or_ba_timeout_collision;
2682 struct statistics_tx_non_phy_agg agg;
2683 /*
2684 * "tx_power" are optional parameters provided by uCode,
2685 * 6000 series is the only device provide the information,
2686 * Those are reserved fields for all the other devices
2687 */
2688 struct statistics_tx_power tx_power;
2689 __le32 reserved1;
2690 } __packed;
2691
2692
2693 struct statistics_div {
2694 __le32 tx_on_a;
2695 __le32 tx_on_b;
2696 __le32 exec_time;
2697 __le32 probe_time;
2698 __le32 reserved1;
2699 __le32 reserved2;
2700 } __packed;
2701
2702 struct statistics_general_common {
2703 __le32 temperature; /* radio temperature */
2704 __le32 temperature_m; /* radio voltage */
2705 struct statistics_dbg dbg;
2706 __le32 sleep_time;
2707 __le32 slots_out;
2708 __le32 slots_idle;
2709 __le32 ttl_timestamp;
2710 struct statistics_div div;
2711 __le32 rx_enable_counter;
2712 /*
2713 * num_of_sos_states:
2714 * count the number of times we have to re-tune
2715 * in order to get out of bad PHY status
2716 */
2717 __le32 num_of_sos_states;
2718 } __packed;
2719
2720 struct statistics_bt_activity {
2721 /* Tx statistics */
2722 __le32 hi_priority_tx_req_cnt;
2723 __le32 hi_priority_tx_denied_cnt;
2724 __le32 lo_priority_tx_req_cnt;
2725 __le32 lo_priority_tx_denied_cnt;
2726 /* Rx statistics */
2727 __le32 hi_priority_rx_req_cnt;
2728 __le32 hi_priority_rx_denied_cnt;
2729 __le32 lo_priority_rx_req_cnt;
2730 __le32 lo_priority_rx_denied_cnt;
2731 } __packed;
2732
2733 struct statistics_general {
2734 struct statistics_general_common common;
2735 __le32 reserved2;
2736 __le32 reserved3;
2737 } __packed;
2738
2739 struct statistics_general_bt {
2740 struct statistics_general_common common;
2741 struct statistics_bt_activity activity;
2742 __le32 reserved2;
2743 __le32 reserved3;
2744 } __packed;
2745
2746 #define UCODE_STATISTICS_CLEAR_MSK (0x1 << 0)
2747 #define UCODE_STATISTICS_FREQUENCY_MSK (0x1 << 1)
2748 #define UCODE_STATISTICS_NARROW_BAND_MSK (0x1 << 2)
2749
2750 /*
2751 * REPLY_STATISTICS_CMD = 0x9c,
2752 * all devices identical.
2753 *
2754 * This command triggers an immediate response containing uCode statistics.
2755 * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
2756 *
2757 * If the CLEAR_STATS configuration flag is set, uCode will clear its
2758 * internal copy of the statistics (counters) after issuing the response.
2759 * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
2760 *
2761 * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
2762 * STATISTICS_NOTIFICATIONs after received beacons (see below). This flag
2763 * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
2764 */
2765 #define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1) /* see above */
2766 #define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */
2767 struct iwl_statistics_cmd {
2768 __le32 configuration_flags; /* IWL_STATS_CONF_* */
2769 } __packed;
2770
2771 /*
2772 * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
2773 *
2774 * By default, uCode issues this notification after receiving a beacon
2775 * while associated. To disable this behavior, set DISABLE_NOTIF flag in the
2776 * REPLY_STATISTICS_CMD 0x9c, above.
2777 *
2778 * Statistics counters continue to increment beacon after beacon, but are
2779 * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
2780 * 0x9c with CLEAR_STATS bit set (see above).
2781 *
2782 * uCode also issues this notification during scans. uCode clears statistics
2783 * appropriately so that each notification contains statistics for only the
2784 * one channel that has just been scanned.
2785 */
2786 #define STATISTICS_REPLY_FLG_BAND_24G_MSK cpu_to_le32(0x2)
2787 #define STATISTICS_REPLY_FLG_HT40_MODE_MSK cpu_to_le32(0x8)
2788
2789 struct iwl_notif_statistics {
2790 __le32 flag;
2791 struct statistics_rx rx;
2792 struct statistics_tx tx;
2793 struct statistics_general general;
2794 } __packed;
2795
2796 struct iwl_bt_notif_statistics {
2797 __le32 flag;
2798 struct statistics_rx_bt rx;
2799 struct statistics_tx tx;
2800 struct statistics_general_bt general;
2801 } __packed;
2802
2803 /*
2804 * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
2805 *
2806 * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed
2807 * in regardless of how many missed beacons, which mean when driver receive the
2808 * notification, inside the command, it can find all the beacons information
2809 * which include number of total missed beacons, number of consecutive missed
2810 * beacons, number of beacons received and number of beacons expected to
2811 * receive.
2812 *
2813 * If uCode detected consecutive_missed_beacons > 5, it will reset the radio
2814 * in order to bring the radio/PHY back to working state; which has no relation
2815 * to when driver will perform sensitivity calibration.
2816 *
2817 * Driver should set it own missed_beacon_threshold to decide when to perform
2818 * sensitivity calibration based on number of consecutive missed beacons in
2819 * order to improve overall performance, especially in noisy environment.
2820 *
2821 */
2822
2823 #define IWL_MISSED_BEACON_THRESHOLD_MIN (1)
2824 #define IWL_MISSED_BEACON_THRESHOLD_DEF (5)
2825 #define IWL_MISSED_BEACON_THRESHOLD_MAX IWL_MISSED_BEACON_THRESHOLD_DEF
2826
2827 struct iwl_missed_beacon_notif {
2828 __le32 consecutive_missed_beacons;
2829 __le32 total_missed_becons;
2830 __le32 num_expected_beacons;
2831 __le32 num_recvd_beacons;
2832 } __packed;
2833
2834
2835 /******************************************************************************
2836 * (11)
2837 * Rx Calibration Commands:
2838 *
2839 * With the uCode used for open source drivers, most Tx calibration (except
2840 * for Tx Power) and most Rx calibration is done by uCode during the
2841 * "initialize" phase of uCode boot. Driver must calibrate only:
2842 *
2843 * 1) Tx power (depends on temperature), described elsewhere
2844 * 2) Receiver gain balance (optimize MIMO, and detect disconnected antennas)
2845 * 3) Receiver sensitivity (to optimize signal detection)
2846 *
2847 *****************************************************************************/
2848
2849 /**
2850 * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
2851 *
2852 * This command sets up the Rx signal detector for a sensitivity level that
2853 * is high enough to lock onto all signals within the associated network,
2854 * but low enough to ignore signals that are below a certain threshold, so as
2855 * not to have too many "false alarms". False alarms are signals that the
2856 * Rx DSP tries to lock onto, but then discards after determining that they
2857 * are noise.
2858 *
2859 * The optimum number of false alarms is between 5 and 50 per 200 TUs
2860 * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
2861 * time listening, not transmitting). Driver must adjust sensitivity so that
2862 * the ratio of actual false alarms to actual Rx time falls within this range.
2863 *
2864 * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
2865 * received beacon. These provide information to the driver to analyze the
2866 * sensitivity. Don't analyze statistics that come in from scanning, or any
2867 * other non-associated-network source. Pertinent statistics include:
2868 *
2869 * From "general" statistics (struct statistics_rx_non_phy):
2870 *
2871 * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
2872 * Measure of energy of desired signal. Used for establishing a level
2873 * below which the device does not detect signals.
2874 *
2875 * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
2876 * Measure of background noise in silent period after beacon.
2877 *
2878 * channel_load
2879 * uSecs of actual Rx time during beacon period (varies according to
2880 * how much time was spent transmitting).
2881 *
2882 * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
2883 *
2884 * false_alarm_cnt
2885 * Signal locks abandoned early (before phy-level header).
2886 *
2887 * plcp_err
2888 * Signal locks abandoned late (during phy-level header).
2889 *
2890 * NOTE: Both false_alarm_cnt and plcp_err increment monotonically from
2891 * beacon to beacon, i.e. each value is an accumulation of all errors
2892 * before and including the latest beacon. Values will wrap around to 0
2893 * after counting up to 2^32 - 1. Driver must differentiate vs.
2894 * previous beacon's values to determine # false alarms in the current
2895 * beacon period.
2896 *
2897 * Total number of false alarms = false_alarms + plcp_errs
2898 *
2899 * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
2900 * (notice that the start points for OFDM are at or close to settings for
2901 * maximum sensitivity):
2902 *
2903 * START / MIN / MAX
2904 * HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX 90 / 85 / 120
2905 * HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX 170 / 170 / 210
2906 * HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX 105 / 105 / 140
2907 * HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX 220 / 220 / 270
2908 *
2909 * If actual rate of OFDM false alarms (+ plcp_errors) is too high
2910 * (greater than 50 for each 204.8 msecs listening), reduce sensitivity
2911 * by *adding* 1 to all 4 of the table entries above, up to the max for
2912 * each entry. Conversely, if false alarm rate is too low (less than 5
2913 * for each 204.8 msecs listening), *subtract* 1 from each entry to
2914 * increase sensitivity.
2915 *
2916 * For CCK sensitivity, keep track of the following:
2917 *
2918 * 1). 20-beacon history of maximum background noise, indicated by
2919 * (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
2920 * 3 receivers. For any given beacon, the "silence reference" is
2921 * the maximum of last 60 samples (20 beacons * 3 receivers).
2922 *
2923 * 2). 10-beacon history of strongest signal level, as indicated
2924 * by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
2925 * i.e. the strength of the signal through the best receiver at the
2926 * moment. These measurements are "upside down", with lower values
2927 * for stronger signals, so max energy will be *minimum* value.
2928 *
2929 * Then for any given beacon, the driver must determine the *weakest*
2930 * of the strongest signals; this is the minimum level that needs to be
2931 * successfully detected, when using the best receiver at the moment.
2932 * "Max cck energy" is the maximum (higher value means lower energy!)
2933 * of the last 10 minima. Once this is determined, driver must add
2934 * a little margin by adding "6" to it.
2935 *
2936 * 3). Number of consecutive beacon periods with too few false alarms.
2937 * Reset this to 0 at the first beacon period that falls within the
2938 * "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
2939 *
2940 * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
2941 * (notice that the start points for CCK are at maximum sensitivity):
2942 *
2943 * START / MIN / MAX
2944 * HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX 125 / 125 / 200
2945 * HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX 200 / 200 / 400
2946 * HD_MIN_ENERGY_CCK_DET_INDEX 100 / 0 / 100
2947 *
2948 * If actual rate of CCK false alarms (+ plcp_errors) is too high
2949 * (greater than 50 for each 204.8 msecs listening), method for reducing
2950 * sensitivity is:
2951 *
2952 * 1) *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2953 * up to max 400.
2954 *
2955 * 2) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
2956 * sensitivity has been reduced a significant amount; bring it up to
2957 * a moderate 161. Otherwise, *add* 3, up to max 200.
2958 *
2959 * 3) a) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
2960 * sensitivity has been reduced only a moderate or small amount;
2961 * *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
2962 * down to min 0. Otherwise (if gain has been significantly reduced),
2963 * don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
2964 *
2965 * b) Save a snapshot of the "silence reference".
2966 *
2967 * If actual rate of CCK false alarms (+ plcp_errors) is too low
2968 * (less than 5 for each 204.8 msecs listening), method for increasing
2969 * sensitivity is used only if:
2970 *
2971 * 1a) Previous beacon did not have too many false alarms
2972 * 1b) AND difference between previous "silence reference" and current
2973 * "silence reference" (prev - current) is 2 or more,
2974 * OR 2) 100 or more consecutive beacon periods have had rate of
2975 * less than 5 false alarms per 204.8 milliseconds rx time.
2976 *
2977 * Method for increasing sensitivity:
2978 *
2979 * 1) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
2980 * down to min 125.
2981 *
2982 * 2) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2983 * down to min 200.
2984 *
2985 * 3) *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
2986 *
2987 * If actual rate of CCK false alarms (+ plcp_errors) is within good range
2988 * (between 5 and 50 for each 204.8 msecs listening):
2989 *
2990 * 1) Save a snapshot of the silence reference.
2991 *
2992 * 2) If previous beacon had too many CCK false alarms (+ plcp_errors),
2993 * give some extra margin to energy threshold by *subtracting* 8
2994 * from value in HD_MIN_ENERGY_CCK_DET_INDEX.
2995 *
2996 * For all cases (too few, too many, good range), make sure that the CCK
2997 * detection threshold (energy) is below the energy level for robust
2998 * detection over the past 10 beacon periods, the "Max cck energy".
2999 * Lower values mean higher energy; this means making sure that the value
3000 * in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
3001 *
3002 */
3003
3004 /*
3005 * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
3006 */
3007 #define HD_TABLE_SIZE (11) /* number of entries */
3008 #define HD_MIN_ENERGY_CCK_DET_INDEX (0) /* table indexes */
3009 #define HD_MIN_ENERGY_OFDM_DET_INDEX (1)
3010 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX (2)
3011 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX (3)
3012 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX (4)
3013 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX (5)
3014 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX (6)
3015 #define HD_BARKER_CORR_TH_ADD_MIN_INDEX (7)
3016 #define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX (8)
3017 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX (9)
3018 #define HD_OFDM_ENERGY_TH_IN_INDEX (10)
3019
3020 /*
3021 * Additional table entries in enhance SENSITIVITY_CMD
3022 */
3023 #define HD_INA_NON_SQUARE_DET_OFDM_INDEX (11)
3024 #define HD_INA_NON_SQUARE_DET_CCK_INDEX (12)
3025 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX (13)
3026 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX (14)
3027 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (15)
3028 #define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX (16)
3029 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX (17)
3030 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX (18)
3031 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (19)
3032 #define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX (20)
3033 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX (21)
3034 #define HD_RESERVED (22)
3035
3036 /* number of entries for enhanced tbl */
3037 #define ENHANCE_HD_TABLE_SIZE (23)
3038
3039 /* number of additional entries for enhanced tbl */
3040 #define ENHANCE_HD_TABLE_ENTRIES (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE)
3041
3042 #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1 cpu_to_le16(0)
3043 #define HD_INA_NON_SQUARE_DET_CCK_DATA_V1 cpu_to_le16(0)
3044 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1 cpu_to_le16(0)
3045 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(668)
3046 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4)
3047 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(486)
3048 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(37)
3049 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(853)
3050 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4)
3051 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(476)
3052 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(99)
3053
3054 #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2 cpu_to_le16(1)
3055 #define HD_INA_NON_SQUARE_DET_CCK_DATA_V2 cpu_to_le16(1)
3056 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2 cpu_to_le16(1)
3057 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(600)
3058 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(40)
3059 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(486)
3060 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(45)
3061 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(853)
3062 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(60)
3063 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(476)
3064 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(99)
3065
3066
3067 /* Control field in struct iwl_sensitivity_cmd */
3068 #define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE cpu_to_le16(0)
3069 #define SENSITIVITY_CMD_CONTROL_WORK_TABLE cpu_to_le16(1)
3070
3071 /**
3072 * struct iwl_sensitivity_cmd
3073 * @control: (1) updates working table, (0) updates default table
3074 * @table: energy threshold values, use HD_* as index into table
3075 *
3076 * Always use "1" in "control" to update uCode's working table and DSP.
3077 */
3078 struct iwl_sensitivity_cmd {
3079 __le16 control; /* always use "1" */
3080 __le16 table[HD_TABLE_SIZE]; /* use HD_* as index */
3081 } __packed;
3082
3083 /*
3084 *
3085 */
3086 struct iwl_enhance_sensitivity_cmd {
3087 __le16 control; /* always use "1" */
3088 __le16 enhance_table[ENHANCE_HD_TABLE_SIZE]; /* use HD_* as index */
3089 } __packed;
3090
3091
3092 /**
3093 * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
3094 *
3095 * This command sets the relative gains of agn device's 3 radio receiver chains.
3096 *
3097 * After the first association, driver should accumulate signal and noise
3098 * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
3099 * beacons from the associated network (don't collect statistics that come
3100 * in from scanning, or any other non-network source).
3101 *
3102 * DISCONNECTED ANTENNA:
3103 *
3104 * Driver should determine which antennas are actually connected, by comparing
3105 * average beacon signal levels for the 3 Rx chains. Accumulate (add) the
3106 * following values over 20 beacons, one accumulator for each of the chains
3107 * a/b/c, from struct statistics_rx_non_phy:
3108 *
3109 * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
3110 *
3111 * Find the strongest signal from among a/b/c. Compare the other two to the
3112 * strongest. If any signal is more than 15 dB (times 20, unless you
3113 * divide the accumulated values by 20) below the strongest, the driver
3114 * considers that antenna to be disconnected, and should not try to use that
3115 * antenna/chain for Rx or Tx. If both A and B seem to be disconnected,
3116 * driver should declare the stronger one as connected, and attempt to use it
3117 * (A and B are the only 2 Tx chains!).
3118 *
3119 *
3120 * RX BALANCE:
3121 *
3122 * Driver should balance the 3 receivers (but just the ones that are connected
3123 * to antennas, see above) for gain, by comparing the average signal levels
3124 * detected during the silence after each beacon (background noise).
3125 * Accumulate (add) the following values over 20 beacons, one accumulator for
3126 * each of the chains a/b/c, from struct statistics_rx_non_phy:
3127 *
3128 * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
3129 *
3130 * Find the weakest background noise level from among a/b/c. This Rx chain
3131 * will be the reference, with 0 gain adjustment. Attenuate other channels by
3132 * finding noise difference:
3133 *
3134 * (accum_noise[i] - accum_noise[reference]) / 30
3135 *
3136 * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
3137 * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
3138 * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
3139 * and set bit 2 to indicate "reduce gain". The value for the reference
3140 * (weakest) chain should be "0".
3141 *
3142 * diff_gain_[abc] bit fields:
3143 * 2: (1) reduce gain, (0) increase gain
3144 * 1-0: amount of gain, units of 1.5 dB
3145 */
3146
3147 /* Phy calibration command for series */
3148 enum {
3149 IWL_PHY_CALIBRATE_DC_CMD = 8,
3150 IWL_PHY_CALIBRATE_LO_CMD = 9,
3151 IWL_PHY_CALIBRATE_TX_IQ_CMD = 11,
3152 IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD = 15,
3153 IWL_PHY_CALIBRATE_BASE_BAND_CMD = 16,
3154 IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD = 17,
3155 IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD = 18,
3156 };
3157
3158 /* This enum defines the bitmap of various calibrations to enable in both
3159 * init ucode and runtime ucode through CALIBRATION_CFG_CMD.
3160 */
3161 enum iwl_ucode_calib_cfg {
3162 IWL_CALIB_CFG_RX_BB_IDX = BIT(0),
3163 IWL_CALIB_CFG_DC_IDX = BIT(1),
3164 IWL_CALIB_CFG_LO_IDX = BIT(2),
3165 IWL_CALIB_CFG_TX_IQ_IDX = BIT(3),
3166 IWL_CALIB_CFG_RX_IQ_IDX = BIT(4),
3167 IWL_CALIB_CFG_NOISE_IDX = BIT(5),
3168 IWL_CALIB_CFG_CRYSTAL_IDX = BIT(6),
3169 IWL_CALIB_CFG_TEMPERATURE_IDX = BIT(7),
3170 IWL_CALIB_CFG_PAPD_IDX = BIT(8),
3171 IWL_CALIB_CFG_SENSITIVITY_IDX = BIT(9),
3172 IWL_CALIB_CFG_TX_PWR_IDX = BIT(10),
3173 };
3174
3175 #define IWL_CALIB_INIT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \
3176 IWL_CALIB_CFG_DC_IDX | \
3177 IWL_CALIB_CFG_LO_IDX | \
3178 IWL_CALIB_CFG_TX_IQ_IDX | \
3179 IWL_CALIB_CFG_RX_IQ_IDX | \
3180 IWL_CALIB_CFG_CRYSTAL_IDX)
3181
3182 #define IWL_CALIB_RT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \
3183 IWL_CALIB_CFG_DC_IDX | \
3184 IWL_CALIB_CFG_LO_IDX | \
3185 IWL_CALIB_CFG_TX_IQ_IDX | \
3186 IWL_CALIB_CFG_RX_IQ_IDX | \
3187 IWL_CALIB_CFG_TEMPERATURE_IDX | \
3188 IWL_CALIB_CFG_PAPD_IDX | \
3189 IWL_CALIB_CFG_TX_PWR_IDX | \
3190 IWL_CALIB_CFG_CRYSTAL_IDX)
3191
3192 #define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK cpu_to_le32(BIT(0))
3193
3194 struct iwl_calib_cfg_elmnt_s {
3195 __le32 is_enable;
3196 __le32 start;
3197 __le32 send_res;
3198 __le32 apply_res;
3199 __le32 reserved;
3200 } __packed;
3201
3202 struct iwl_calib_cfg_status_s {
3203 struct iwl_calib_cfg_elmnt_s once;
3204 struct iwl_calib_cfg_elmnt_s perd;
3205 __le32 flags;
3206 } __packed;
3207
3208 struct iwl_calib_cfg_cmd {
3209 struct iwl_calib_cfg_status_s ucd_calib_cfg;
3210 struct iwl_calib_cfg_status_s drv_calib_cfg;
3211 __le32 reserved1;
3212 } __packed;
3213
3214 struct iwl_calib_hdr {
3215 u8 op_code;
3216 u8 first_group;
3217 u8 groups_num;
3218 u8 data_valid;
3219 } __packed;
3220
3221 struct iwl_calib_cmd {
3222 struct iwl_calib_hdr hdr;
3223 u8 data[0];
3224 } __packed;
3225
3226 struct iwl_calib_xtal_freq_cmd {
3227 struct iwl_calib_hdr hdr;
3228 u8 cap_pin1;
3229 u8 cap_pin2;
3230 u8 pad[2];
3231 } __packed;
3232
3233 #define DEFAULT_RADIO_SENSOR_OFFSET cpu_to_le16(2700)
3234 struct iwl_calib_temperature_offset_cmd {
3235 struct iwl_calib_hdr hdr;
3236 __le16 radio_sensor_offset;
3237 __le16 reserved;
3238 } __packed;
3239
3240 struct iwl_calib_temperature_offset_v2_cmd {
3241 struct iwl_calib_hdr hdr;
3242 __le16 radio_sensor_offset_high;
3243 __le16 radio_sensor_offset_low;
3244 __le16 burntVoltageRef;
3245 __le16 reserved;
3246 } __packed;
3247
3248 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
3249 struct iwl_calib_chain_noise_reset_cmd {
3250 struct iwl_calib_hdr hdr;
3251 u8 data[0];
3252 };
3253
3254 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
3255 struct iwl_calib_chain_noise_gain_cmd {
3256 struct iwl_calib_hdr hdr;
3257 u8 delta_gain_1;
3258 u8 delta_gain_2;
3259 u8 pad[2];
3260 } __packed;
3261
3262 /******************************************************************************
3263 * (12)
3264 * Miscellaneous Commands:
3265 *
3266 *****************************************************************************/
3267
3268 /*
3269 * LEDs Command & Response
3270 * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
3271 *
3272 * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
3273 * this command turns it on or off, or sets up a periodic blinking cycle.
3274 */
3275 struct iwl_led_cmd {
3276 __le32 interval; /* "interval" in uSec */
3277 u8 id; /* 1: Activity, 2: Link, 3: Tech */
3278 u8 off; /* # intervals off while blinking;
3279 * "0", with >0 "on" value, turns LED on */
3280 u8 on; /* # intervals on while blinking;
3281 * "0", regardless of "off", turns LED off */
3282 u8 reserved;
3283 } __packed;
3284
3285 /*
3286 * station priority table entries
3287 * also used as potential "events" value for both
3288 * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD
3289 */
3290
3291 /*
3292 * COEX events entry flag masks
3293 * RP - Requested Priority
3294 * WP - Win Medium Priority: priority assigned when the contention has been won
3295 */
3296 #define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG (0x1)
3297 #define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG (0x2)
3298 #define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG (0x4)
3299
3300 #define COEX_CU_UNASSOC_IDLE_RP 4
3301 #define COEX_CU_UNASSOC_MANUAL_SCAN_RP 4
3302 #define COEX_CU_UNASSOC_AUTO_SCAN_RP 4
3303 #define COEX_CU_CALIBRATION_RP 4
3304 #define COEX_CU_PERIODIC_CALIBRATION_RP 4
3305 #define COEX_CU_CONNECTION_ESTAB_RP 4
3306 #define COEX_CU_ASSOCIATED_IDLE_RP 4
3307 #define COEX_CU_ASSOC_MANUAL_SCAN_RP 4
3308 #define COEX_CU_ASSOC_AUTO_SCAN_RP 4
3309 #define COEX_CU_ASSOC_ACTIVE_LEVEL_RP 4
3310 #define COEX_CU_RF_ON_RP 6
3311 #define COEX_CU_RF_OFF_RP 4
3312 #define COEX_CU_STAND_ALONE_DEBUG_RP 6
3313 #define COEX_CU_IPAN_ASSOC_LEVEL_RP 4
3314 #define COEX_CU_RSRVD1_RP 4
3315 #define COEX_CU_RSRVD2_RP 4
3316
3317 #define COEX_CU_UNASSOC_IDLE_WP 3
3318 #define COEX_CU_UNASSOC_MANUAL_SCAN_WP 3
3319 #define COEX_CU_UNASSOC_AUTO_SCAN_WP 3
3320 #define COEX_CU_CALIBRATION_WP 3
3321 #define COEX_CU_PERIODIC_CALIBRATION_WP 3
3322 #define COEX_CU_CONNECTION_ESTAB_WP 3
3323 #define COEX_CU_ASSOCIATED_IDLE_WP 3
3324 #define COEX_CU_ASSOC_MANUAL_SCAN_WP 3
3325 #define COEX_CU_ASSOC_AUTO_SCAN_WP 3
3326 #define COEX_CU_ASSOC_ACTIVE_LEVEL_WP 3
3327 #define COEX_CU_RF_ON_WP 3
3328 #define COEX_CU_RF_OFF_WP 3
3329 #define COEX_CU_STAND_ALONE_DEBUG_WP 6
3330 #define COEX_CU_IPAN_ASSOC_LEVEL_WP 3
3331 #define COEX_CU_RSRVD1_WP 3
3332 #define COEX_CU_RSRVD2_WP 3
3333
3334 #define COEX_UNASSOC_IDLE_FLAGS 0
3335 #define COEX_UNASSOC_MANUAL_SCAN_FLAGS \
3336 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3337 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3338 #define COEX_UNASSOC_AUTO_SCAN_FLAGS \
3339 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3340 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3341 #define COEX_CALIBRATION_FLAGS \
3342 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3343 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3344 #define COEX_PERIODIC_CALIBRATION_FLAGS 0
3345 /*
3346 * COEX_CONNECTION_ESTAB:
3347 * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3348 */
3349 #define COEX_CONNECTION_ESTAB_FLAGS \
3350 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3351 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3352 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3353 #define COEX_ASSOCIATED_IDLE_FLAGS 0
3354 #define COEX_ASSOC_MANUAL_SCAN_FLAGS \
3355 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3356 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3357 #define COEX_ASSOC_AUTO_SCAN_FLAGS \
3358 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3359 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3360 #define COEX_ASSOC_ACTIVE_LEVEL_FLAGS 0
3361 #define COEX_RF_ON_FLAGS 0
3362 #define COEX_RF_OFF_FLAGS 0
3363 #define COEX_STAND_ALONE_DEBUG_FLAGS \
3364 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3365 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3366 #define COEX_IPAN_ASSOC_LEVEL_FLAGS \
3367 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3368 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3369 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3370 #define COEX_RSRVD1_FLAGS 0
3371 #define COEX_RSRVD2_FLAGS 0
3372 /*
3373 * COEX_CU_RF_ON is the event wrapping all radio ownership.
3374 * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3375 */
3376 #define COEX_CU_RF_ON_FLAGS \
3377 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3378 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3379 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3380
3381
3382 enum {
3383 /* un-association part */
3384 COEX_UNASSOC_IDLE = 0,
3385 COEX_UNASSOC_MANUAL_SCAN = 1,
3386 COEX_UNASSOC_AUTO_SCAN = 2,
3387 /* calibration */
3388 COEX_CALIBRATION = 3,
3389 COEX_PERIODIC_CALIBRATION = 4,
3390 /* connection */
3391 COEX_CONNECTION_ESTAB = 5,
3392 /* association part */
3393 COEX_ASSOCIATED_IDLE = 6,
3394 COEX_ASSOC_MANUAL_SCAN = 7,
3395 COEX_ASSOC_AUTO_SCAN = 8,
3396 COEX_ASSOC_ACTIVE_LEVEL = 9,
3397 /* RF ON/OFF */
3398 COEX_RF_ON = 10,
3399 COEX_RF_OFF = 11,
3400 COEX_STAND_ALONE_DEBUG = 12,
3401 /* IPAN */
3402 COEX_IPAN_ASSOC_LEVEL = 13,
3403 /* reserved */
3404 COEX_RSRVD1 = 14,
3405 COEX_RSRVD2 = 15,
3406 COEX_NUM_OF_EVENTS = 16
3407 };
3408
3409 /*
3410 * Coexistence WIFI/WIMAX Command
3411 * COEX_PRIORITY_TABLE_CMD = 0x5a
3412 *
3413 */
3414 struct iwl_wimax_coex_event_entry {
3415 u8 request_prio;
3416 u8 win_medium_prio;
3417 u8 reserved;
3418 u8 flags;
3419 } __packed;
3420
3421 /* COEX flag masks */
3422
3423 /* Station table is valid */
3424 #define COEX_FLAGS_STA_TABLE_VALID_MSK (0x1)
3425 /* UnMask wake up src at unassociated sleep */
3426 #define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK (0x4)
3427 /* UnMask wake up src at associated sleep */
3428 #define COEX_FLAGS_ASSOC_WA_UNMASK_MSK (0x8)
3429 /* Enable CoEx feature. */
3430 #define COEX_FLAGS_COEX_ENABLE_MSK (0x80)
3431
3432 struct iwl_wimax_coex_cmd {
3433 u8 flags;
3434 u8 reserved[3];
3435 struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
3436 } __packed;
3437
3438 /*
3439 * Coexistence MEDIUM NOTIFICATION
3440 * COEX_MEDIUM_NOTIFICATION = 0x5b
3441 *
3442 * notification from uCode to host to indicate medium changes
3443 *
3444 */
3445 /*
3446 * status field
3447 * bit 0 - 2: medium status
3448 * bit 3: medium change indication
3449 * bit 4 - 31: reserved
3450 */
3451 /* status option values, (0 - 2 bits) */
3452 #define COEX_MEDIUM_BUSY (0x0) /* radio belongs to WiMAX */
3453 #define COEX_MEDIUM_ACTIVE (0x1) /* radio belongs to WiFi */
3454 #define COEX_MEDIUM_PRE_RELEASE (0x2) /* received radio release */
3455 #define COEX_MEDIUM_MSK (0x7)
3456
3457 /* send notification status (1 bit) */
3458 #define COEX_MEDIUM_CHANGED (0x8)
3459 #define COEX_MEDIUM_CHANGED_MSK (0x8)
3460 #define COEX_MEDIUM_SHIFT (3)
3461
3462 struct iwl_coex_medium_notification {
3463 __le32 status;
3464 __le32 events;
3465 } __packed;
3466
3467 /*
3468 * Coexistence EVENT Command
3469 * COEX_EVENT_CMD = 0x5c
3470 *
3471 * send from host to uCode for coex event request.
3472 */
3473 /* flags options */
3474 #define COEX_EVENT_REQUEST_MSK (0x1)
3475
3476 struct iwl_coex_event_cmd {
3477 u8 flags;
3478 u8 event;
3479 __le16 reserved;
3480 } __packed;
3481
3482 struct iwl_coex_event_resp {
3483 __le32 status;
3484 } __packed;
3485
3486
3487 /******************************************************************************
3488 * Bluetooth Coexistence commands
3489 *
3490 *****************************************************************************/
3491
3492 /*
3493 * BT Status notification
3494 * REPLY_BT_COEX_PROFILE_NOTIF = 0xce
3495 */
3496 enum iwl_bt_coex_profile_traffic_load {
3497 IWL_BT_COEX_TRAFFIC_LOAD_NONE = 0,
3498 IWL_BT_COEX_TRAFFIC_LOAD_LOW = 1,
3499 IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 2,
3500 IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS = 3,
3501 /*
3502 * There are no more even though below is a u8, the
3503 * indication from the BT device only has two bits.
3504 */
3505 };
3506
3507 #define BT_SESSION_ACTIVITY_1_UART_MSG 0x1
3508 #define BT_SESSION_ACTIVITY_2_UART_MSG 0x2
3509
3510 /* BT UART message - Share Part (BT -> WiFi) */
3511 #define BT_UART_MSG_FRAME1MSGTYPE_POS (0)
3512 #define BT_UART_MSG_FRAME1MSGTYPE_MSK \
3513 (0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS)
3514 #define BT_UART_MSG_FRAME1SSN_POS (3)
3515 #define BT_UART_MSG_FRAME1SSN_MSK \
3516 (0x3 << BT_UART_MSG_FRAME1SSN_POS)
3517 #define BT_UART_MSG_FRAME1UPDATEREQ_POS (5)
3518 #define BT_UART_MSG_FRAME1UPDATEREQ_MSK \
3519 (0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS)
3520 #define BT_UART_MSG_FRAME1RESERVED_POS (6)
3521 #define BT_UART_MSG_FRAME1RESERVED_MSK \
3522 (0x3 << BT_UART_MSG_FRAME1RESERVED_POS)
3523
3524 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS (0)
3525 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK \
3526 (0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS)
3527 #define BT_UART_MSG_FRAME2TRAFFICLOAD_POS (2)
3528 #define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK \
3529 (0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS)
3530 #define BT_UART_MSG_FRAME2CHLSEQN_POS (4)
3531 #define BT_UART_MSG_FRAME2CHLSEQN_MSK \
3532 (0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS)
3533 #define BT_UART_MSG_FRAME2INBAND_POS (5)
3534 #define BT_UART_MSG_FRAME2INBAND_MSK \
3535 (0x1 << BT_UART_MSG_FRAME2INBAND_POS)
3536 #define BT_UART_MSG_FRAME2RESERVED_POS (6)
3537 #define BT_UART_MSG_FRAME2RESERVED_MSK \
3538 (0x3 << BT_UART_MSG_FRAME2RESERVED_POS)
3539
3540 #define BT_UART_MSG_FRAME3SCOESCO_POS (0)
3541 #define BT_UART_MSG_FRAME3SCOESCO_MSK \
3542 (0x1 << BT_UART_MSG_FRAME3SCOESCO_POS)
3543 #define BT_UART_MSG_FRAME3SNIFF_POS (1)
3544 #define BT_UART_MSG_FRAME3SNIFF_MSK \
3545 (0x1 << BT_UART_MSG_FRAME3SNIFF_POS)
3546 #define BT_UART_MSG_FRAME3A2DP_POS (2)
3547 #define BT_UART_MSG_FRAME3A2DP_MSK \
3548 (0x1 << BT_UART_MSG_FRAME3A2DP_POS)
3549 #define BT_UART_MSG_FRAME3ACL_POS (3)
3550 #define BT_UART_MSG_FRAME3ACL_MSK \
3551 (0x1 << BT_UART_MSG_FRAME3ACL_POS)
3552 #define BT_UART_MSG_FRAME3MASTER_POS (4)
3553 #define BT_UART_MSG_FRAME3MASTER_MSK \
3554 (0x1 << BT_UART_MSG_FRAME3MASTER_POS)
3555 #define BT_UART_MSG_FRAME3OBEX_POS (5)
3556 #define BT_UART_MSG_FRAME3OBEX_MSK \
3557 (0x1 << BT_UART_MSG_FRAME3OBEX_POS)
3558 #define BT_UART_MSG_FRAME3RESERVED_POS (6)
3559 #define BT_UART_MSG_FRAME3RESERVED_MSK \
3560 (0x3 << BT_UART_MSG_FRAME3RESERVED_POS)
3561
3562 #define BT_UART_MSG_FRAME4IDLEDURATION_POS (0)
3563 #define BT_UART_MSG_FRAME4IDLEDURATION_MSK \
3564 (0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS)
3565 #define BT_UART_MSG_FRAME4RESERVED_POS (6)
3566 #define BT_UART_MSG_FRAME4RESERVED_MSK \
3567 (0x3 << BT_UART_MSG_FRAME4RESERVED_POS)
3568
3569 #define BT_UART_MSG_FRAME5TXACTIVITY_POS (0)
3570 #define BT_UART_MSG_FRAME5TXACTIVITY_MSK \
3571 (0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS)
3572 #define BT_UART_MSG_FRAME5RXACTIVITY_POS (2)
3573 #define BT_UART_MSG_FRAME5RXACTIVITY_MSK \
3574 (0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS)
3575 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS (4)
3576 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK \
3577 (0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS)
3578 #define BT_UART_MSG_FRAME5RESERVED_POS (6)
3579 #define BT_UART_MSG_FRAME5RESERVED_MSK \
3580 (0x3 << BT_UART_MSG_FRAME5RESERVED_POS)
3581
3582 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS (0)
3583 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK \
3584 (0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS)
3585 #define BT_UART_MSG_FRAME6DISCOVERABLE_POS (5)
3586 #define BT_UART_MSG_FRAME6DISCOVERABLE_MSK \
3587 (0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS)
3588 #define BT_UART_MSG_FRAME6RESERVED_POS (6)
3589 #define BT_UART_MSG_FRAME6RESERVED_MSK \
3590 (0x3 << BT_UART_MSG_FRAME6RESERVED_POS)
3591
3592 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS (0)
3593 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK \
3594 (0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS)
3595 #define BT_UART_MSG_FRAME7PAGE_POS (3)
3596 #define BT_UART_MSG_FRAME7PAGE_MSK \
3597 (0x1 << BT_UART_MSG_FRAME7PAGE_POS)
3598 #define BT_UART_MSG_FRAME7INQUIRY_POS (4)
3599 #define BT_UART_MSG_FRAME7INQUIRY_MSK \
3600 (0x1 << BT_UART_MSG_FRAME7INQUIRY_POS)
3601 #define BT_UART_MSG_FRAME7CONNECTABLE_POS (5)
3602 #define BT_UART_MSG_FRAME7CONNECTABLE_MSK \
3603 (0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS)
3604 #define BT_UART_MSG_FRAME7RESERVED_POS (6)
3605 #define BT_UART_MSG_FRAME7RESERVED_MSK \
3606 (0x3 << BT_UART_MSG_FRAME7RESERVED_POS)
3607
3608 /* BT Session Activity 2 UART message (BT -> WiFi) */
3609 #define BT_UART_MSG_2_FRAME1RESERVED1_POS (5)
3610 #define BT_UART_MSG_2_FRAME1RESERVED1_MSK \
3611 (0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS)
3612 #define BT_UART_MSG_2_FRAME1RESERVED2_POS (6)
3613 #define BT_UART_MSG_2_FRAME1RESERVED2_MSK \
3614 (0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS)
3615
3616 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS (0)
3617 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK \
3618 (0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS)
3619 #define BT_UART_MSG_2_FRAME2RESERVED_POS (6)
3620 #define BT_UART_MSG_2_FRAME2RESERVED_MSK \
3621 (0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS)
3622
3623 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS (0)
3624 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK \
3625 (0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS)
3626 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS (4)
3627 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK \
3628 (0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS)
3629 #define BT_UART_MSG_2_FRAME3LEMASTER_POS (5)
3630 #define BT_UART_MSG_2_FRAME3LEMASTER_MSK \
3631 (0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS)
3632 #define BT_UART_MSG_2_FRAME3RESERVED_POS (6)
3633 #define BT_UART_MSG_2_FRAME3RESERVED_MSK \
3634 (0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS)
3635
3636 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS (0)
3637 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK \
3638 (0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS)
3639 #define BT_UART_MSG_2_FRAME4NUMLECONN_POS (4)
3640 #define BT_UART_MSG_2_FRAME4NUMLECONN_MSK \
3641 (0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS)
3642 #define BT_UART_MSG_2_FRAME4RESERVED_POS (6)
3643 #define BT_UART_MSG_2_FRAME4RESERVED_MSK \
3644 (0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS)
3645
3646 #define BT_UART_MSG_2_FRAME5BTMINRSSI_POS (0)
3647 #define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK \
3648 (0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS)
3649 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS (4)
3650 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK \
3651 (0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS)
3652 #define BT_UART_MSG_2_FRAME5LEADVERMODE_POS (5)
3653 #define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK \
3654 (0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS)
3655 #define BT_UART_MSG_2_FRAME5RESERVED_POS (6)
3656 #define BT_UART_MSG_2_FRAME5RESERVED_MSK \
3657 (0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS)
3658
3659 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS (0)
3660 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK \
3661 (0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS)
3662 #define BT_UART_MSG_2_FRAME6RFU_POS (5)
3663 #define BT_UART_MSG_2_FRAME6RFU_MSK \
3664 (0x1<<BT_UART_MSG_2_FRAME6RFU_POS)
3665 #define BT_UART_MSG_2_FRAME6RESERVED_POS (6)
3666 #define BT_UART_MSG_2_FRAME6RESERVED_MSK \
3667 (0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS)
3668
3669 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS (0)
3670 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK \
3671 (0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS)
3672 #define BT_UART_MSG_2_FRAME7LEPROFILE1_POS (3)
3673 #define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK \
3674 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS)
3675 #define BT_UART_MSG_2_FRAME7LEPROFILE2_POS (4)
3676 #define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK \
3677 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS)
3678 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS (5)
3679 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK \
3680 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS)
3681 #define BT_UART_MSG_2_FRAME7RESERVED_POS (6)
3682 #define BT_UART_MSG_2_FRAME7RESERVED_MSK \
3683 (0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS)
3684
3685
3686 #define BT_ENABLE_REDUCED_TXPOWER_THRESHOLD (-62)
3687 #define BT_DISABLE_REDUCED_TXPOWER_THRESHOLD (-65)
3688
3689 struct iwl_bt_uart_msg {
3690 u8 header;
3691 u8 frame1;
3692 u8 frame2;
3693 u8 frame3;
3694 u8 frame4;
3695 u8 frame5;
3696 u8 frame6;
3697 u8 frame7;
3698 } __packed;
3699
3700 struct iwl_bt_coex_profile_notif {
3701 struct iwl_bt_uart_msg last_bt_uart_msg;
3702 u8 bt_status; /* 0 - off, 1 - on */
3703 u8 bt_traffic_load; /* 0 .. 3? */
3704 u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */
3705 u8 reserved;
3706 } __packed;
3707
3708 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS 0
3709 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK 0x1
3710 #define IWL_BT_COEX_PRIO_TBL_PRIO_POS 1
3711 #define IWL_BT_COEX_PRIO_TBL_PRIO_MASK 0x0e
3712 #define IWL_BT_COEX_PRIO_TBL_RESERVED_POS 4
3713 #define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK 0xf0
3714 #define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT 1
3715
3716 /*
3717 * BT Coexistence Priority table
3718 * REPLY_BT_COEX_PRIO_TABLE = 0xcc
3719 */
3720 enum bt_coex_prio_table_events {
3721 BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0,
3722 BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1,
3723 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2,
3724 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */
3725 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4,
3726 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5,
3727 BT_COEX_PRIO_TBL_EVT_DTIM = 6,
3728 BT_COEX_PRIO_TBL_EVT_SCAN52 = 7,
3729 BT_COEX_PRIO_TBL_EVT_SCAN24 = 8,
3730 BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9,
3731 BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10,
3732 BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11,
3733 BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12,
3734 BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13,
3735 BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14,
3736 BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15,
3737 /* BT_COEX_PRIO_TBL_EVT_MAX should always be last */
3738 BT_COEX_PRIO_TBL_EVT_MAX,
3739 };
3740
3741 enum bt_coex_prio_table_priorities {
3742 BT_COEX_PRIO_TBL_DISABLED = 0,
3743 BT_COEX_PRIO_TBL_PRIO_LOW = 1,
3744 BT_COEX_PRIO_TBL_PRIO_HIGH = 2,
3745 BT_COEX_PRIO_TBL_PRIO_BYPASS = 3,
3746 BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4,
3747 BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5,
3748 BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6,
3749 BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7,
3750 BT_COEX_PRIO_TBL_MAX,
3751 };
3752
3753 struct iwl_bt_coex_prio_table_cmd {
3754 u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX];
3755 } __packed;
3756
3757 #define IWL_BT_COEX_ENV_CLOSE 0
3758 #define IWL_BT_COEX_ENV_OPEN 1
3759 /*
3760 * BT Protection Envelope
3761 * REPLY_BT_COEX_PROT_ENV = 0xcd
3762 */
3763 struct iwl_bt_coex_prot_env_cmd {
3764 u8 action; /* 0 = closed, 1 = open */
3765 u8 type; /* 0 .. 15 */
3766 u8 reserved[2];
3767 } __packed;
3768
3769 /*
3770 * REPLY_D3_CONFIG
3771 */
3772 enum iwlagn_d3_wakeup_filters {
3773 IWLAGN_D3_WAKEUP_RFKILL = BIT(0),
3774 IWLAGN_D3_WAKEUP_SYSASSERT = BIT(1),
3775 };
3776
3777 struct iwlagn_d3_config_cmd {
3778 __le32 min_sleep_time;
3779 __le32 wakeup_flags;
3780 } __packed;
3781
3782 /*
3783 * REPLY_WOWLAN_PATTERNS
3784 */
3785 #define IWLAGN_WOWLAN_MIN_PATTERN_LEN 16
3786 #define IWLAGN_WOWLAN_MAX_PATTERN_LEN 128
3787
3788 struct iwlagn_wowlan_pattern {
3789 u8 mask[IWLAGN_WOWLAN_MAX_PATTERN_LEN / 8];
3790 u8 pattern[IWLAGN_WOWLAN_MAX_PATTERN_LEN];
3791 u8 mask_size;
3792 u8 pattern_size;
3793 __le16 reserved;
3794 } __packed;
3795
3796 #define IWLAGN_WOWLAN_MAX_PATTERNS 20
3797
3798 struct iwlagn_wowlan_patterns_cmd {
3799 __le32 n_patterns;
3800 struct iwlagn_wowlan_pattern patterns[];
3801 } __packed;
3802
3803 /*
3804 * REPLY_WOWLAN_WAKEUP_FILTER
3805 */
3806 enum iwlagn_wowlan_wakeup_filters {
3807 IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET = BIT(0),
3808 IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH = BIT(1),
3809 IWLAGN_WOWLAN_WAKEUP_BEACON_MISS = BIT(2),
3810 IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE = BIT(3),
3811 IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL = BIT(4),
3812 IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ = BIT(5),
3813 IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE = BIT(6),
3814 IWLAGN_WOWLAN_WAKEUP_ALWAYS = BIT(7),
3815 IWLAGN_WOWLAN_WAKEUP_ENABLE_NET_DETECT = BIT(8),
3816 };
3817
3818 struct iwlagn_wowlan_wakeup_filter_cmd {
3819 __le32 enabled;
3820 __le16 non_qos_seq;
3821 __le16 reserved;
3822 __le16 qos_seq[8];
3823 };
3824
3825 /*
3826 * REPLY_WOWLAN_TSC_RSC_PARAMS
3827 */
3828 #define IWLAGN_NUM_RSC 16
3829
3830 struct tkip_sc {
3831 __le16 iv16;
3832 __le16 pad;
3833 __le32 iv32;
3834 } __packed;
3835
3836 struct iwlagn_tkip_rsc_tsc {
3837 struct tkip_sc unicast_rsc[IWLAGN_NUM_RSC];
3838 struct tkip_sc multicast_rsc[IWLAGN_NUM_RSC];
3839 struct tkip_sc tsc;
3840 } __packed;
3841
3842 struct aes_sc {
3843 __le64 pn;
3844 } __packed;
3845
3846 struct iwlagn_aes_rsc_tsc {
3847 struct aes_sc unicast_rsc[IWLAGN_NUM_RSC];
3848 struct aes_sc multicast_rsc[IWLAGN_NUM_RSC];
3849 struct aes_sc tsc;
3850 } __packed;
3851
3852 union iwlagn_all_tsc_rsc {
3853 struct iwlagn_tkip_rsc_tsc tkip;
3854 struct iwlagn_aes_rsc_tsc aes;
3855 };
3856
3857 struct iwlagn_wowlan_rsc_tsc_params_cmd {
3858 union iwlagn_all_tsc_rsc all_tsc_rsc;
3859 } __packed;
3860
3861 /*
3862 * REPLY_WOWLAN_TKIP_PARAMS
3863 */
3864 #define IWLAGN_MIC_KEY_SIZE 8
3865 #define IWLAGN_P1K_SIZE 5
3866 struct iwlagn_mic_keys {
3867 u8 tx[IWLAGN_MIC_KEY_SIZE];
3868 u8 rx_unicast[IWLAGN_MIC_KEY_SIZE];
3869 u8 rx_mcast[IWLAGN_MIC_KEY_SIZE];
3870 } __packed;
3871
3872 struct iwlagn_p1k_cache {
3873 __le16 p1k[IWLAGN_P1K_SIZE];
3874 } __packed;
3875
3876 #define IWLAGN_NUM_RX_P1K_CACHE 2
3877
3878 struct iwlagn_wowlan_tkip_params_cmd {
3879 struct iwlagn_mic_keys mic_keys;
3880 struct iwlagn_p1k_cache tx;
3881 struct iwlagn_p1k_cache rx_uni[IWLAGN_NUM_RX_P1K_CACHE];
3882 struct iwlagn_p1k_cache rx_multi[IWLAGN_NUM_RX_P1K_CACHE];
3883 } __packed;
3884
3885 /*
3886 * REPLY_WOWLAN_KEK_KCK_MATERIAL
3887 */
3888
3889 #define IWLAGN_KCK_MAX_SIZE 32
3890 #define IWLAGN_KEK_MAX_SIZE 32
3891
3892 struct iwlagn_wowlan_kek_kck_material_cmd {
3893 u8 kck[IWLAGN_KCK_MAX_SIZE];
3894 u8 kek[IWLAGN_KEK_MAX_SIZE];
3895 __le16 kck_len;
3896 __le16 kek_len;
3897 __le64 replay_ctr;
3898 } __packed;
3899
3900 /*
3901 * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification)
3902 */
3903
3904 /*
3905 * Minimum slot time in TU
3906 */
3907 #define IWL_MIN_SLOT_TIME 20
3908
3909 /**
3910 * struct iwl_wipan_slot
3911 * @width: Time in TU
3912 * @type:
3913 * 0 - BSS
3914 * 1 - PAN
3915 */
3916 struct iwl_wipan_slot {
3917 __le16 width;
3918 u8 type;
3919 u8 reserved;
3920 } __packed;
3921
3922 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS BIT(1) /* reserved */
3923 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET BIT(2) /* reserved */
3924 #define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE BIT(3) /* reserved */
3925 #define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF BIT(4)
3926 #define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE BIT(5)
3927
3928 /**
3929 * struct iwl_wipan_params_cmd
3930 * @flags:
3931 * bit0: reserved
3932 * bit1: CP leave channel with CTS
3933 * bit2: CP leave channel qith Quiet
3934 * bit3: slotted mode
3935 * 1 - work in slotted mode
3936 * 0 - work in non slotted mode
3937 * bit4: filter beacon notification
3938 * bit5: full tx slotted mode. if this flag is set,
3939 * uCode will perform leaving channel methods in context switch
3940 * also when working in same channel mode
3941 * @num_slots: 1 - 10
3942 */
3943 struct iwl_wipan_params_cmd {
3944 __le16 flags;
3945 u8 reserved;
3946 u8 num_slots;
3947 struct iwl_wipan_slot slots[10];
3948 } __packed;
3949
3950 /*
3951 * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9
3952 *
3953 * TODO: Figure out what this is used for,
3954 * it can only switch between 2.4 GHz
3955 * channels!!
3956 */
3957
3958 struct iwl_wipan_p2p_channel_switch_cmd {
3959 __le16 channel;
3960 __le16 reserved;
3961 };
3962
3963 /*
3964 * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc
3965 *
3966 * This is used by the device to notify us of the
3967 * NoA schedule it determined so we can forward it
3968 * to userspace for inclusion in probe responses.
3969 *
3970 * In beacons, the NoA schedule is simply appended
3971 * to the frame we give the device.
3972 */
3973
3974 struct iwl_wipan_noa_descriptor {
3975 u8 count;
3976 __le32 duration;
3977 __le32 interval;
3978 __le32 starttime;
3979 } __packed;
3980
3981 struct iwl_wipan_noa_attribute {
3982 u8 id;
3983 __le16 length;
3984 u8 index;
3985 u8 ct_window;
3986 struct iwl_wipan_noa_descriptor descr0, descr1;
3987 u8 reserved;
3988 } __packed;
3989
3990 struct iwl_wipan_noa_notification {
3991 u32 noa_active;
3992 struct iwl_wipan_noa_attribute noa_attribute;
3993 } __packed;
3994
3995 #endif /* __iwl_commands_h__ */
This page took 0.146493 seconds and 4 git commands to generate.