iwlwifi: Change define and struct names in iwl-eeprom-parse.h
[deliverable/linux.git] / drivers / net / wireless / iwlwifi / dvm / devices.c
1 /******************************************************************************
2 *
3 * Copyright(c) 2008 - 2012 Intel Corporation. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
20 *
21 * Contact Information:
22 * Intel Linux Wireless <ilw@linux.intel.com>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 *****************************************************************************/
26
27 /*
28 * DVM device-specific data & functions
29 */
30 #include "iwl-io.h"
31 #include "iwl-prph.h"
32 #include "iwl-eeprom-parse.h"
33
34 #include "agn.h"
35 #include "dev.h"
36 #include "commands.h"
37
38
39 /*
40 * 1000 series
41 * ===========
42 */
43
44 /*
45 * For 1000, use advance thermal throttling critical temperature threshold,
46 * but legacy thermal management implementation for now.
47 * This is for the reason of 1000 uCode using advance thermal throttling API
48 * but not implement ct_kill_exit based on ct_kill exit temperature
49 * so the thermal throttling will still based on legacy thermal throttling
50 * management.
51 * The code here need to be modified once 1000 uCode has the advanced thermal
52 * throttling algorithm in place
53 */
54 static void iwl1000_set_ct_threshold(struct iwl_priv *priv)
55 {
56 /* want Celsius */
57 priv->hw_params.ct_kill_threshold = CT_KILL_THRESHOLD_LEGACY;
58 priv->hw_params.ct_kill_exit_threshold = CT_KILL_EXIT_THRESHOLD;
59 }
60
61 /* NIC configuration for 1000 series */
62 static void iwl1000_nic_config(struct iwl_priv *priv)
63 {
64 /* Setting digital SVR for 1000 card to 1.32V */
65 /* locking is acquired in iwl_set_bits_mask_prph() function */
66 iwl_set_bits_mask_prph(priv->trans, APMG_DIGITAL_SVR_REG,
67 APMG_SVR_DIGITAL_VOLTAGE_1_32,
68 ~APMG_SVR_VOLTAGE_CONFIG_BIT_MSK);
69 }
70
71 /**
72 * iwl_beacon_time_mask_low - mask of lower 32 bit of beacon time
73 * @priv -- pointer to iwl_priv data structure
74 * @tsf_bits -- number of bits need to shift for masking)
75 */
76 static inline u32 iwl_beacon_time_mask_low(struct iwl_priv *priv,
77 u16 tsf_bits)
78 {
79 return (1 << tsf_bits) - 1;
80 }
81
82 /**
83 * iwl_beacon_time_mask_high - mask of higher 32 bit of beacon time
84 * @priv -- pointer to iwl_priv data structure
85 * @tsf_bits -- number of bits need to shift for masking)
86 */
87 static inline u32 iwl_beacon_time_mask_high(struct iwl_priv *priv,
88 u16 tsf_bits)
89 {
90 return ((1 << (32 - tsf_bits)) - 1) << tsf_bits;
91 }
92
93 /*
94 * extended beacon time format
95 * time in usec will be changed into a 32-bit value in extended:internal format
96 * the extended part is the beacon counts
97 * the internal part is the time in usec within one beacon interval
98 */
99 static u32 iwl_usecs_to_beacons(struct iwl_priv *priv, u32 usec,
100 u32 beacon_interval)
101 {
102 u32 quot;
103 u32 rem;
104 u32 interval = beacon_interval * TIME_UNIT;
105
106 if (!interval || !usec)
107 return 0;
108
109 quot = (usec / interval) &
110 (iwl_beacon_time_mask_high(priv, IWLAGN_EXT_BEACON_TIME_POS) >>
111 IWLAGN_EXT_BEACON_TIME_POS);
112 rem = (usec % interval) & iwl_beacon_time_mask_low(priv,
113 IWLAGN_EXT_BEACON_TIME_POS);
114
115 return (quot << IWLAGN_EXT_BEACON_TIME_POS) + rem;
116 }
117
118 /* base is usually what we get from ucode with each received frame,
119 * the same as HW timer counter counting down
120 */
121 static __le32 iwl_add_beacon_time(struct iwl_priv *priv, u32 base,
122 u32 addon, u32 beacon_interval)
123 {
124 u32 base_low = base & iwl_beacon_time_mask_low(priv,
125 IWLAGN_EXT_BEACON_TIME_POS);
126 u32 addon_low = addon & iwl_beacon_time_mask_low(priv,
127 IWLAGN_EXT_BEACON_TIME_POS);
128 u32 interval = beacon_interval * TIME_UNIT;
129 u32 res = (base & iwl_beacon_time_mask_high(priv,
130 IWLAGN_EXT_BEACON_TIME_POS)) +
131 (addon & iwl_beacon_time_mask_high(priv,
132 IWLAGN_EXT_BEACON_TIME_POS));
133
134 if (base_low > addon_low)
135 res += base_low - addon_low;
136 else if (base_low < addon_low) {
137 res += interval + base_low - addon_low;
138 res += (1 << IWLAGN_EXT_BEACON_TIME_POS);
139 } else
140 res += (1 << IWLAGN_EXT_BEACON_TIME_POS);
141
142 return cpu_to_le32(res);
143 }
144
145 static const struct iwl_sensitivity_ranges iwl1000_sensitivity = {
146 .min_nrg_cck = 95,
147 .auto_corr_min_ofdm = 90,
148 .auto_corr_min_ofdm_mrc = 170,
149 .auto_corr_min_ofdm_x1 = 120,
150 .auto_corr_min_ofdm_mrc_x1 = 240,
151
152 .auto_corr_max_ofdm = 120,
153 .auto_corr_max_ofdm_mrc = 210,
154 .auto_corr_max_ofdm_x1 = 155,
155 .auto_corr_max_ofdm_mrc_x1 = 290,
156
157 .auto_corr_min_cck = 125,
158 .auto_corr_max_cck = 200,
159 .auto_corr_min_cck_mrc = 170,
160 .auto_corr_max_cck_mrc = 400,
161 .nrg_th_cck = 95,
162 .nrg_th_ofdm = 95,
163
164 .barker_corr_th_min = 190,
165 .barker_corr_th_min_mrc = 390,
166 .nrg_th_cca = 62,
167 };
168
169 static void iwl1000_hw_set_hw_params(struct iwl_priv *priv)
170 {
171 iwl1000_set_ct_threshold(priv);
172
173 /* Set initial sensitivity parameters */
174 priv->hw_params.sens = &iwl1000_sensitivity;
175 }
176
177 struct iwl_lib_ops iwl1000_lib = {
178 .set_hw_params = iwl1000_hw_set_hw_params,
179 .nic_config = iwl1000_nic_config,
180 .temperature = iwlagn_temperature,
181 };
182
183
184 /*
185 * 2000 series
186 * ===========
187 */
188
189 static void iwl2000_set_ct_threshold(struct iwl_priv *priv)
190 {
191 /* want Celsius */
192 priv->hw_params.ct_kill_threshold = CT_KILL_THRESHOLD;
193 priv->hw_params.ct_kill_exit_threshold = CT_KILL_EXIT_THRESHOLD;
194 }
195
196 /* NIC configuration for 2000 series */
197 static void iwl2000_nic_config(struct iwl_priv *priv)
198 {
199 iwl_set_bit(priv->trans, CSR_GP_DRIVER_REG,
200 CSR_GP_DRIVER_REG_BIT_RADIO_IQ_INVER);
201 }
202
203 static const struct iwl_sensitivity_ranges iwl2000_sensitivity = {
204 .min_nrg_cck = 97,
205 .auto_corr_min_ofdm = 80,
206 .auto_corr_min_ofdm_mrc = 128,
207 .auto_corr_min_ofdm_x1 = 105,
208 .auto_corr_min_ofdm_mrc_x1 = 192,
209
210 .auto_corr_max_ofdm = 145,
211 .auto_corr_max_ofdm_mrc = 232,
212 .auto_corr_max_ofdm_x1 = 110,
213 .auto_corr_max_ofdm_mrc_x1 = 232,
214
215 .auto_corr_min_cck = 125,
216 .auto_corr_max_cck = 175,
217 .auto_corr_min_cck_mrc = 160,
218 .auto_corr_max_cck_mrc = 310,
219 .nrg_th_cck = 97,
220 .nrg_th_ofdm = 100,
221
222 .barker_corr_th_min = 190,
223 .barker_corr_th_min_mrc = 390,
224 .nrg_th_cca = 62,
225 };
226
227 static void iwl2000_hw_set_hw_params(struct iwl_priv *priv)
228 {
229 iwl2000_set_ct_threshold(priv);
230
231 /* Set initial sensitivity parameters */
232 priv->hw_params.sens = &iwl2000_sensitivity;
233 }
234
235 struct iwl_lib_ops iwl2000_lib = {
236 .set_hw_params = iwl2000_hw_set_hw_params,
237 .nic_config = iwl2000_nic_config,
238 .temperature = iwlagn_temperature,
239 };
240
241 struct iwl_lib_ops iwl2030_lib = {
242 .set_hw_params = iwl2000_hw_set_hw_params,
243 .nic_config = iwl2000_nic_config,
244 .temperature = iwlagn_temperature,
245 };
246
247 /*
248 * 5000 series
249 * ===========
250 */
251
252 /* NIC configuration for 5000 series */
253 static const struct iwl_sensitivity_ranges iwl5000_sensitivity = {
254 .min_nrg_cck = 100,
255 .auto_corr_min_ofdm = 90,
256 .auto_corr_min_ofdm_mrc = 170,
257 .auto_corr_min_ofdm_x1 = 105,
258 .auto_corr_min_ofdm_mrc_x1 = 220,
259
260 .auto_corr_max_ofdm = 120,
261 .auto_corr_max_ofdm_mrc = 210,
262 .auto_corr_max_ofdm_x1 = 120,
263 .auto_corr_max_ofdm_mrc_x1 = 240,
264
265 .auto_corr_min_cck = 125,
266 .auto_corr_max_cck = 200,
267 .auto_corr_min_cck_mrc = 200,
268 .auto_corr_max_cck_mrc = 400,
269 .nrg_th_cck = 100,
270 .nrg_th_ofdm = 100,
271
272 .barker_corr_th_min = 190,
273 .barker_corr_th_min_mrc = 390,
274 .nrg_th_cca = 62,
275 };
276
277 static struct iwl_sensitivity_ranges iwl5150_sensitivity = {
278 .min_nrg_cck = 95,
279 .auto_corr_min_ofdm = 90,
280 .auto_corr_min_ofdm_mrc = 170,
281 .auto_corr_min_ofdm_x1 = 105,
282 .auto_corr_min_ofdm_mrc_x1 = 220,
283
284 .auto_corr_max_ofdm = 120,
285 .auto_corr_max_ofdm_mrc = 210,
286 /* max = min for performance bug in 5150 DSP */
287 .auto_corr_max_ofdm_x1 = 105,
288 .auto_corr_max_ofdm_mrc_x1 = 220,
289
290 .auto_corr_min_cck = 125,
291 .auto_corr_max_cck = 200,
292 .auto_corr_min_cck_mrc = 170,
293 .auto_corr_max_cck_mrc = 400,
294 .nrg_th_cck = 95,
295 .nrg_th_ofdm = 95,
296
297 .barker_corr_th_min = 190,
298 .barker_corr_th_min_mrc = 390,
299 .nrg_th_cca = 62,
300 };
301
302 #define IWL_5150_VOLTAGE_TO_TEMPERATURE_COEFF (-5)
303
304 static s32 iwl_temp_calib_to_offset(struct iwl_priv *priv)
305 {
306 u16 temperature, voltage;
307
308 temperature = le16_to_cpu(priv->nvm_data->kelvin_temperature);
309 voltage = le16_to_cpu(priv->nvm_data->kelvin_voltage);
310
311 /* offset = temp - volt / coeff */
312 return (s32)(temperature -
313 voltage / IWL_5150_VOLTAGE_TO_TEMPERATURE_COEFF);
314 }
315
316 static void iwl5150_set_ct_threshold(struct iwl_priv *priv)
317 {
318 const s32 volt2temp_coef = IWL_5150_VOLTAGE_TO_TEMPERATURE_COEFF;
319 s32 threshold = (s32)CELSIUS_TO_KELVIN(CT_KILL_THRESHOLD_LEGACY) -
320 iwl_temp_calib_to_offset(priv);
321
322 priv->hw_params.ct_kill_threshold = threshold * volt2temp_coef;
323 }
324
325 static void iwl5000_set_ct_threshold(struct iwl_priv *priv)
326 {
327 /* want Celsius */
328 priv->hw_params.ct_kill_threshold = CT_KILL_THRESHOLD_LEGACY;
329 }
330
331 static void iwl5000_hw_set_hw_params(struct iwl_priv *priv)
332 {
333 iwl5000_set_ct_threshold(priv);
334
335 /* Set initial sensitivity parameters */
336 priv->hw_params.sens = &iwl5000_sensitivity;
337 }
338
339 static void iwl5150_hw_set_hw_params(struct iwl_priv *priv)
340 {
341 iwl5150_set_ct_threshold(priv);
342
343 /* Set initial sensitivity parameters */
344 priv->hw_params.sens = &iwl5150_sensitivity;
345 }
346
347 static void iwl5150_temperature(struct iwl_priv *priv)
348 {
349 u32 vt = 0;
350 s32 offset = iwl_temp_calib_to_offset(priv);
351
352 vt = le32_to_cpu(priv->statistics.common.temperature);
353 vt = vt / IWL_5150_VOLTAGE_TO_TEMPERATURE_COEFF + offset;
354 /* now vt hold the temperature in Kelvin */
355 priv->temperature = KELVIN_TO_CELSIUS(vt);
356 iwl_tt_handler(priv);
357 }
358
359 static int iwl5000_hw_channel_switch(struct iwl_priv *priv,
360 struct ieee80211_channel_switch *ch_switch)
361 {
362 /*
363 * MULTI-FIXME
364 * See iwlagn_mac_channel_switch.
365 */
366 struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
367 struct iwl5000_channel_switch_cmd cmd;
368 u32 switch_time_in_usec, ucode_switch_time;
369 u16 ch;
370 u32 tsf_low;
371 u8 switch_count;
372 u16 beacon_interval = le16_to_cpu(ctx->timing.beacon_interval);
373 struct ieee80211_vif *vif = ctx->vif;
374 struct iwl_host_cmd hcmd = {
375 .id = REPLY_CHANNEL_SWITCH,
376 .len = { sizeof(cmd), },
377 .flags = CMD_SYNC,
378 .data = { &cmd, },
379 };
380
381 cmd.band = priv->band == IEEE80211_BAND_2GHZ;
382 ch = ch_switch->channel->hw_value;
383 IWL_DEBUG_11H(priv, "channel switch from %d to %d\n",
384 ctx->active.channel, ch);
385 cmd.channel = cpu_to_le16(ch);
386 cmd.rxon_flags = ctx->staging.flags;
387 cmd.rxon_filter_flags = ctx->staging.filter_flags;
388 switch_count = ch_switch->count;
389 tsf_low = ch_switch->timestamp & 0x0ffffffff;
390 /*
391 * calculate the ucode channel switch time
392 * adding TSF as one of the factor for when to switch
393 */
394 if ((priv->ucode_beacon_time > tsf_low) && beacon_interval) {
395 if (switch_count > ((priv->ucode_beacon_time - tsf_low) /
396 beacon_interval)) {
397 switch_count -= (priv->ucode_beacon_time -
398 tsf_low) / beacon_interval;
399 } else
400 switch_count = 0;
401 }
402 if (switch_count <= 1)
403 cmd.switch_time = cpu_to_le32(priv->ucode_beacon_time);
404 else {
405 switch_time_in_usec =
406 vif->bss_conf.beacon_int * switch_count * TIME_UNIT;
407 ucode_switch_time = iwl_usecs_to_beacons(priv,
408 switch_time_in_usec,
409 beacon_interval);
410 cmd.switch_time = iwl_add_beacon_time(priv,
411 priv->ucode_beacon_time,
412 ucode_switch_time,
413 beacon_interval);
414 }
415 IWL_DEBUG_11H(priv, "uCode time for the switch is 0x%x\n",
416 cmd.switch_time);
417 cmd.expect_beacon = ch_switch->channel->flags & IEEE80211_CHAN_RADAR;
418
419 return iwl_dvm_send_cmd(priv, &hcmd);
420 }
421
422 struct iwl_lib_ops iwl5000_lib = {
423 .set_hw_params = iwl5000_hw_set_hw_params,
424 .set_channel_switch = iwl5000_hw_channel_switch,
425 .temperature = iwlagn_temperature,
426 };
427
428 struct iwl_lib_ops iwl5150_lib = {
429 .set_hw_params = iwl5150_hw_set_hw_params,
430 .set_channel_switch = iwl5000_hw_channel_switch,
431 .temperature = iwl5150_temperature,
432 };
433
434
435
436 /*
437 * 6000 series
438 * ===========
439 */
440
441 static void iwl6000_set_ct_threshold(struct iwl_priv *priv)
442 {
443 /* want Celsius */
444 priv->hw_params.ct_kill_threshold = CT_KILL_THRESHOLD;
445 priv->hw_params.ct_kill_exit_threshold = CT_KILL_EXIT_THRESHOLD;
446 }
447
448 /* NIC configuration for 6000 series */
449 static void iwl6000_nic_config(struct iwl_priv *priv)
450 {
451 switch (priv->cfg->device_family) {
452 case IWL_DEVICE_FAMILY_6005:
453 case IWL_DEVICE_FAMILY_6030:
454 case IWL_DEVICE_FAMILY_6000:
455 break;
456 case IWL_DEVICE_FAMILY_6000i:
457 /* 2x2 IPA phy type */
458 iwl_write32(priv->trans, CSR_GP_DRIVER_REG,
459 CSR_GP_DRIVER_REG_BIT_RADIO_SKU_2x2_IPA);
460 break;
461 case IWL_DEVICE_FAMILY_6050:
462 /* Indicate calibration version to uCode. */
463 if (priv->nvm_data->calib_version >= 6)
464 iwl_set_bit(priv->trans, CSR_GP_DRIVER_REG,
465 CSR_GP_DRIVER_REG_BIT_CALIB_VERSION6);
466 break;
467 case IWL_DEVICE_FAMILY_6150:
468 /* Indicate calibration version to uCode. */
469 if (priv->nvm_data->calib_version >= 6)
470 iwl_set_bit(priv->trans, CSR_GP_DRIVER_REG,
471 CSR_GP_DRIVER_REG_BIT_CALIB_VERSION6);
472 iwl_set_bit(priv->trans, CSR_GP_DRIVER_REG,
473 CSR_GP_DRIVER_REG_BIT_6050_1x2);
474 break;
475 default:
476 WARN_ON(1);
477 }
478 }
479
480 static const struct iwl_sensitivity_ranges iwl6000_sensitivity = {
481 .min_nrg_cck = 110,
482 .auto_corr_min_ofdm = 80,
483 .auto_corr_min_ofdm_mrc = 128,
484 .auto_corr_min_ofdm_x1 = 105,
485 .auto_corr_min_ofdm_mrc_x1 = 192,
486
487 .auto_corr_max_ofdm = 145,
488 .auto_corr_max_ofdm_mrc = 232,
489 .auto_corr_max_ofdm_x1 = 110,
490 .auto_corr_max_ofdm_mrc_x1 = 232,
491
492 .auto_corr_min_cck = 125,
493 .auto_corr_max_cck = 175,
494 .auto_corr_min_cck_mrc = 160,
495 .auto_corr_max_cck_mrc = 310,
496 .nrg_th_cck = 110,
497 .nrg_th_ofdm = 110,
498
499 .barker_corr_th_min = 190,
500 .barker_corr_th_min_mrc = 336,
501 .nrg_th_cca = 62,
502 };
503
504 static void iwl6000_hw_set_hw_params(struct iwl_priv *priv)
505 {
506 iwl6000_set_ct_threshold(priv);
507
508 /* Set initial sensitivity parameters */
509 priv->hw_params.sens = &iwl6000_sensitivity;
510
511 }
512
513 static int iwl6000_hw_channel_switch(struct iwl_priv *priv,
514 struct ieee80211_channel_switch *ch_switch)
515 {
516 /*
517 * MULTI-FIXME
518 * See iwlagn_mac_channel_switch.
519 */
520 struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
521 struct iwl6000_channel_switch_cmd cmd;
522 u32 switch_time_in_usec, ucode_switch_time;
523 u16 ch;
524 u32 tsf_low;
525 u8 switch_count;
526 u16 beacon_interval = le16_to_cpu(ctx->timing.beacon_interval);
527 struct ieee80211_vif *vif = ctx->vif;
528 struct iwl_host_cmd hcmd = {
529 .id = REPLY_CHANNEL_SWITCH,
530 .len = { sizeof(cmd), },
531 .flags = CMD_SYNC,
532 .data = { &cmd, },
533 };
534
535 cmd.band = priv->band == IEEE80211_BAND_2GHZ;
536 ch = ch_switch->channel->hw_value;
537 IWL_DEBUG_11H(priv, "channel switch from %u to %u\n",
538 ctx->active.channel, ch);
539 cmd.channel = cpu_to_le16(ch);
540 cmd.rxon_flags = ctx->staging.flags;
541 cmd.rxon_filter_flags = ctx->staging.filter_flags;
542 switch_count = ch_switch->count;
543 tsf_low = ch_switch->timestamp & 0x0ffffffff;
544 /*
545 * calculate the ucode channel switch time
546 * adding TSF as one of the factor for when to switch
547 */
548 if ((priv->ucode_beacon_time > tsf_low) && beacon_interval) {
549 if (switch_count > ((priv->ucode_beacon_time - tsf_low) /
550 beacon_interval)) {
551 switch_count -= (priv->ucode_beacon_time -
552 tsf_low) / beacon_interval;
553 } else
554 switch_count = 0;
555 }
556 if (switch_count <= 1)
557 cmd.switch_time = cpu_to_le32(priv->ucode_beacon_time);
558 else {
559 switch_time_in_usec =
560 vif->bss_conf.beacon_int * switch_count * TIME_UNIT;
561 ucode_switch_time = iwl_usecs_to_beacons(priv,
562 switch_time_in_usec,
563 beacon_interval);
564 cmd.switch_time = iwl_add_beacon_time(priv,
565 priv->ucode_beacon_time,
566 ucode_switch_time,
567 beacon_interval);
568 }
569 IWL_DEBUG_11H(priv, "uCode time for the switch is 0x%x\n",
570 cmd.switch_time);
571 cmd.expect_beacon = ch_switch->channel->flags & IEEE80211_CHAN_RADAR;
572
573 return iwl_dvm_send_cmd(priv, &hcmd);
574 }
575
576 struct iwl_lib_ops iwl6000_lib = {
577 .set_hw_params = iwl6000_hw_set_hw_params,
578 .set_channel_switch = iwl6000_hw_channel_switch,
579 .nic_config = iwl6000_nic_config,
580 .temperature = iwlagn_temperature,
581 };
582
583 struct iwl_lib_ops iwl6030_lib = {
584 .set_hw_params = iwl6000_hw_set_hw_params,
585 .set_channel_switch = iwl6000_hw_channel_switch,
586 .nic_config = iwl6000_nic_config,
587 .temperature = iwlagn_temperature,
588 };
This page took 0.09746 seconds and 5 git commands to generate.