e1000e: don't check for alternate MAC addr on parts that don't support it
[deliverable/linux.git] / drivers / net / wireless / iwlwifi / iwl-agn-calib.c
1 /******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2008 - 2010 Intel Corporation. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
23 *
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
26 *
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *
31 * BSD LICENSE
32 *
33 * Copyright(c) 2005 - 2010 Intel Corporation. All rights reserved.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 *
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *****************************************************************************/
62
63 #include <linux/slab.h>
64 #include <net/mac80211.h>
65
66 #include "iwl-dev.h"
67 #include "iwl-core.h"
68 #include "iwl-calib.h"
69
70 /*****************************************************************************
71 * INIT calibrations framework
72 *****************************************************************************/
73
74 struct statistics_general_data {
75 u32 beacon_silence_rssi_a;
76 u32 beacon_silence_rssi_b;
77 u32 beacon_silence_rssi_c;
78 u32 beacon_energy_a;
79 u32 beacon_energy_b;
80 u32 beacon_energy_c;
81 };
82
83 int iwl_send_calib_results(struct iwl_priv *priv)
84 {
85 int ret = 0;
86 int i = 0;
87
88 struct iwl_host_cmd hcmd = {
89 .id = REPLY_PHY_CALIBRATION_CMD,
90 .flags = CMD_SIZE_HUGE,
91 };
92
93 for (i = 0; i < IWL_CALIB_MAX; i++) {
94 if ((BIT(i) & priv->hw_params.calib_init_cfg) &&
95 priv->calib_results[i].buf) {
96 hcmd.len = priv->calib_results[i].buf_len;
97 hcmd.data = priv->calib_results[i].buf;
98 ret = iwl_send_cmd_sync(priv, &hcmd);
99 if (ret) {
100 IWL_ERR(priv, "Error %d iteration %d\n",
101 ret, i);
102 break;
103 }
104 }
105 }
106
107 return ret;
108 }
109
110 int iwl_calib_set(struct iwl_calib_result *res, const u8 *buf, int len)
111 {
112 if (res->buf_len != len) {
113 kfree(res->buf);
114 res->buf = kzalloc(len, GFP_ATOMIC);
115 }
116 if (unlikely(res->buf == NULL))
117 return -ENOMEM;
118
119 res->buf_len = len;
120 memcpy(res->buf, buf, len);
121 return 0;
122 }
123
124 void iwl_calib_free_results(struct iwl_priv *priv)
125 {
126 int i;
127
128 for (i = 0; i < IWL_CALIB_MAX; i++) {
129 kfree(priv->calib_results[i].buf);
130 priv->calib_results[i].buf = NULL;
131 priv->calib_results[i].buf_len = 0;
132 }
133 }
134
135 /*****************************************************************************
136 * RUNTIME calibrations framework
137 *****************************************************************************/
138
139 /* "false alarms" are signals that our DSP tries to lock onto,
140 * but then determines that they are either noise, or transmissions
141 * from a distant wireless network (also "noise", really) that get
142 * "stepped on" by stronger transmissions within our own network.
143 * This algorithm attempts to set a sensitivity level that is high
144 * enough to receive all of our own network traffic, but not so
145 * high that our DSP gets too busy trying to lock onto non-network
146 * activity/noise. */
147 static int iwl_sens_energy_cck(struct iwl_priv *priv,
148 u32 norm_fa,
149 u32 rx_enable_time,
150 struct statistics_general_data *rx_info)
151 {
152 u32 max_nrg_cck = 0;
153 int i = 0;
154 u8 max_silence_rssi = 0;
155 u32 silence_ref = 0;
156 u8 silence_rssi_a = 0;
157 u8 silence_rssi_b = 0;
158 u8 silence_rssi_c = 0;
159 u32 val;
160
161 /* "false_alarms" values below are cross-multiplications to assess the
162 * numbers of false alarms within the measured period of actual Rx
163 * (Rx is off when we're txing), vs the min/max expected false alarms
164 * (some should be expected if rx is sensitive enough) in a
165 * hypothetical listening period of 200 time units (TU), 204.8 msec:
166 *
167 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
168 *
169 * */
170 u32 false_alarms = norm_fa * 200 * 1024;
171 u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
172 u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
173 struct iwl_sensitivity_data *data = NULL;
174 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
175
176 data = &(priv->sensitivity_data);
177
178 data->nrg_auto_corr_silence_diff = 0;
179
180 /* Find max silence rssi among all 3 receivers.
181 * This is background noise, which may include transmissions from other
182 * networks, measured during silence before our network's beacon */
183 silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
184 ALL_BAND_FILTER) >> 8);
185 silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
186 ALL_BAND_FILTER) >> 8);
187 silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
188 ALL_BAND_FILTER) >> 8);
189
190 val = max(silence_rssi_b, silence_rssi_c);
191 max_silence_rssi = max(silence_rssi_a, (u8) val);
192
193 /* Store silence rssi in 20-beacon history table */
194 data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
195 data->nrg_silence_idx++;
196 if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
197 data->nrg_silence_idx = 0;
198
199 /* Find max silence rssi across 20 beacon history */
200 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
201 val = data->nrg_silence_rssi[i];
202 silence_ref = max(silence_ref, val);
203 }
204 IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
205 silence_rssi_a, silence_rssi_b, silence_rssi_c,
206 silence_ref);
207
208 /* Find max rx energy (min value!) among all 3 receivers,
209 * measured during beacon frame.
210 * Save it in 10-beacon history table. */
211 i = data->nrg_energy_idx;
212 val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
213 data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
214
215 data->nrg_energy_idx++;
216 if (data->nrg_energy_idx >= 10)
217 data->nrg_energy_idx = 0;
218
219 /* Find min rx energy (max value) across 10 beacon history.
220 * This is the minimum signal level that we want to receive well.
221 * Add backoff (margin so we don't miss slightly lower energy frames).
222 * This establishes an upper bound (min value) for energy threshold. */
223 max_nrg_cck = data->nrg_value[0];
224 for (i = 1; i < 10; i++)
225 max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
226 max_nrg_cck += 6;
227
228 IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
229 rx_info->beacon_energy_a, rx_info->beacon_energy_b,
230 rx_info->beacon_energy_c, max_nrg_cck - 6);
231
232 /* Count number of consecutive beacons with fewer-than-desired
233 * false alarms. */
234 if (false_alarms < min_false_alarms)
235 data->num_in_cck_no_fa++;
236 else
237 data->num_in_cck_no_fa = 0;
238 IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
239 data->num_in_cck_no_fa);
240
241 /* If we got too many false alarms this time, reduce sensitivity */
242 if ((false_alarms > max_false_alarms) &&
243 (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
244 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
245 false_alarms, max_false_alarms);
246 IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
247 data->nrg_curr_state = IWL_FA_TOO_MANY;
248 /* Store for "fewer than desired" on later beacon */
249 data->nrg_silence_ref = silence_ref;
250
251 /* increase energy threshold (reduce nrg value)
252 * to decrease sensitivity */
253 data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
254 /* Else if we got fewer than desired, increase sensitivity */
255 } else if (false_alarms < min_false_alarms) {
256 data->nrg_curr_state = IWL_FA_TOO_FEW;
257
258 /* Compare silence level with silence level for most recent
259 * healthy number or too many false alarms */
260 data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
261 (s32)silence_ref;
262
263 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
264 false_alarms, min_false_alarms,
265 data->nrg_auto_corr_silence_diff);
266
267 /* Increase value to increase sensitivity, but only if:
268 * 1a) previous beacon did *not* have *too many* false alarms
269 * 1b) AND there's a significant difference in Rx levels
270 * from a previous beacon with too many, or healthy # FAs
271 * OR 2) We've seen a lot of beacons (100) with too few
272 * false alarms */
273 if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
274 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
275 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
276
277 IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
278 /* Increase nrg value to increase sensitivity */
279 val = data->nrg_th_cck + NRG_STEP_CCK;
280 data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
281 } else {
282 IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
283 }
284
285 /* Else we got a healthy number of false alarms, keep status quo */
286 } else {
287 IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
288 data->nrg_curr_state = IWL_FA_GOOD_RANGE;
289
290 /* Store for use in "fewer than desired" with later beacon */
291 data->nrg_silence_ref = silence_ref;
292
293 /* If previous beacon had too many false alarms,
294 * give it some extra margin by reducing sensitivity again
295 * (but don't go below measured energy of desired Rx) */
296 if (IWL_FA_TOO_MANY == data->nrg_prev_state) {
297 IWL_DEBUG_CALIB(priv, "... increasing margin\n");
298 if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
299 data->nrg_th_cck -= NRG_MARGIN;
300 else
301 data->nrg_th_cck = max_nrg_cck;
302 }
303 }
304
305 /* Make sure the energy threshold does not go above the measured
306 * energy of the desired Rx signals (reduced by backoff margin),
307 * or else we might start missing Rx frames.
308 * Lower value is higher energy, so we use max()!
309 */
310 data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
311 IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
312
313 data->nrg_prev_state = data->nrg_curr_state;
314
315 /* Auto-correlation CCK algorithm */
316 if (false_alarms > min_false_alarms) {
317
318 /* increase auto_corr values to decrease sensitivity
319 * so the DSP won't be disturbed by the noise
320 */
321 if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
322 data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
323 else {
324 val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
325 data->auto_corr_cck =
326 min((u32)ranges->auto_corr_max_cck, val);
327 }
328 val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
329 data->auto_corr_cck_mrc =
330 min((u32)ranges->auto_corr_max_cck_mrc, val);
331 } else if ((false_alarms < min_false_alarms) &&
332 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
333 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
334
335 /* Decrease auto_corr values to increase sensitivity */
336 val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
337 data->auto_corr_cck =
338 max((u32)ranges->auto_corr_min_cck, val);
339 val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
340 data->auto_corr_cck_mrc =
341 max((u32)ranges->auto_corr_min_cck_mrc, val);
342 }
343
344 return 0;
345 }
346
347
348 static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
349 u32 norm_fa,
350 u32 rx_enable_time)
351 {
352 u32 val;
353 u32 false_alarms = norm_fa * 200 * 1024;
354 u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
355 u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
356 struct iwl_sensitivity_data *data = NULL;
357 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
358
359 data = &(priv->sensitivity_data);
360
361 /* If we got too many false alarms this time, reduce sensitivity */
362 if (false_alarms > max_false_alarms) {
363
364 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
365 false_alarms, max_false_alarms);
366
367 val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
368 data->auto_corr_ofdm =
369 min((u32)ranges->auto_corr_max_ofdm, val);
370
371 val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
372 data->auto_corr_ofdm_mrc =
373 min((u32)ranges->auto_corr_max_ofdm_mrc, val);
374
375 val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
376 data->auto_corr_ofdm_x1 =
377 min((u32)ranges->auto_corr_max_ofdm_x1, val);
378
379 val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
380 data->auto_corr_ofdm_mrc_x1 =
381 min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
382 }
383
384 /* Else if we got fewer than desired, increase sensitivity */
385 else if (false_alarms < min_false_alarms) {
386
387 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
388 false_alarms, min_false_alarms);
389
390 val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
391 data->auto_corr_ofdm =
392 max((u32)ranges->auto_corr_min_ofdm, val);
393
394 val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
395 data->auto_corr_ofdm_mrc =
396 max((u32)ranges->auto_corr_min_ofdm_mrc, val);
397
398 val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
399 data->auto_corr_ofdm_x1 =
400 max((u32)ranges->auto_corr_min_ofdm_x1, val);
401
402 val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
403 data->auto_corr_ofdm_mrc_x1 =
404 max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
405 } else {
406 IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
407 min_false_alarms, false_alarms, max_false_alarms);
408 }
409 return 0;
410 }
411
412 static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv,
413 struct iwl_sensitivity_data *data,
414 __le16 *tbl)
415 {
416 tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
417 cpu_to_le16((u16)data->auto_corr_ofdm);
418 tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
419 cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
420 tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
421 cpu_to_le16((u16)data->auto_corr_ofdm_x1);
422 tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
423 cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
424
425 tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
426 cpu_to_le16((u16)data->auto_corr_cck);
427 tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
428 cpu_to_le16((u16)data->auto_corr_cck_mrc);
429
430 tbl[HD_MIN_ENERGY_CCK_DET_INDEX] =
431 cpu_to_le16((u16)data->nrg_th_cck);
432 tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] =
433 cpu_to_le16((u16)data->nrg_th_ofdm);
434
435 tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
436 cpu_to_le16(data->barker_corr_th_min);
437 tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
438 cpu_to_le16(data->barker_corr_th_min_mrc);
439 tbl[HD_OFDM_ENERGY_TH_IN_INDEX] =
440 cpu_to_le16(data->nrg_th_cca);
441
442 IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
443 data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
444 data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
445 data->nrg_th_ofdm);
446
447 IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
448 data->auto_corr_cck, data->auto_corr_cck_mrc,
449 data->nrg_th_cck);
450 }
451
452 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
453 static int iwl_sensitivity_write(struct iwl_priv *priv)
454 {
455 struct iwl_sensitivity_cmd cmd;
456 struct iwl_sensitivity_data *data = NULL;
457 struct iwl_host_cmd cmd_out = {
458 .id = SENSITIVITY_CMD,
459 .len = sizeof(struct iwl_sensitivity_cmd),
460 .flags = CMD_ASYNC,
461 .data = &cmd,
462 };
463
464 data = &(priv->sensitivity_data);
465
466 memset(&cmd, 0, sizeof(cmd));
467
468 iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]);
469
470 /* Update uCode's "work" table, and copy it to DSP */
471 cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
472
473 /* Don't send command to uCode if nothing has changed */
474 if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
475 sizeof(u16)*HD_TABLE_SIZE)) {
476 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
477 return 0;
478 }
479
480 /* Copy table for comparison next time */
481 memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
482 sizeof(u16)*HD_TABLE_SIZE);
483
484 return iwl_send_cmd(priv, &cmd_out);
485 }
486
487 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
488 static int iwl_enhance_sensitivity_write(struct iwl_priv *priv)
489 {
490 struct iwl_enhance_sensitivity_cmd cmd;
491 struct iwl_sensitivity_data *data = NULL;
492 struct iwl_host_cmd cmd_out = {
493 .id = SENSITIVITY_CMD,
494 .len = sizeof(struct iwl_enhance_sensitivity_cmd),
495 .flags = CMD_ASYNC,
496 .data = &cmd,
497 };
498
499 data = &(priv->sensitivity_data);
500
501 memset(&cmd, 0, sizeof(cmd));
502
503 iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]);
504
505 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
506 HD_INA_NON_SQUARE_DET_OFDM_DATA;
507 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
508 HD_INA_NON_SQUARE_DET_CCK_DATA;
509 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
510 HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA;
511 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
512 HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA;
513 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
514 HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA;
515 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
516 HD_OFDM_NON_SQUARE_DET_SLOPE_DATA;
517 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
518 HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA;
519 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
520 HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA;
521 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
522 HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA;
523 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
524 HD_CCK_NON_SQUARE_DET_SLOPE_DATA;
525 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
526 HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA;
527
528 /* Update uCode's "work" table, and copy it to DSP */
529 cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
530
531 /* Don't send command to uCode if nothing has changed */
532 if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]),
533 sizeof(u16)*HD_TABLE_SIZE) &&
534 !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX],
535 &(priv->enhance_sensitivity_tbl[0]),
536 sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) {
537 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
538 return 0;
539 }
540
541 /* Copy table for comparison next time */
542 memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]),
543 sizeof(u16)*HD_TABLE_SIZE);
544 memcpy(&(priv->enhance_sensitivity_tbl[0]),
545 &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]),
546 sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES);
547
548 return iwl_send_cmd(priv, &cmd_out);
549 }
550
551 void iwl_init_sensitivity(struct iwl_priv *priv)
552 {
553 int ret = 0;
554 int i;
555 struct iwl_sensitivity_data *data = NULL;
556 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
557
558 if (priv->disable_sens_cal)
559 return;
560
561 IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
562
563 /* Clear driver's sensitivity algo data */
564 data = &(priv->sensitivity_data);
565
566 if (ranges == NULL)
567 return;
568
569 memset(data, 0, sizeof(struct iwl_sensitivity_data));
570
571 data->num_in_cck_no_fa = 0;
572 data->nrg_curr_state = IWL_FA_TOO_MANY;
573 data->nrg_prev_state = IWL_FA_TOO_MANY;
574 data->nrg_silence_ref = 0;
575 data->nrg_silence_idx = 0;
576 data->nrg_energy_idx = 0;
577
578 for (i = 0; i < 10; i++)
579 data->nrg_value[i] = 0;
580
581 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
582 data->nrg_silence_rssi[i] = 0;
583
584 data->auto_corr_ofdm = ranges->auto_corr_min_ofdm;
585 data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
586 data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1;
587 data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
588 data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
589 data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
590 data->nrg_th_cck = ranges->nrg_th_cck;
591 data->nrg_th_ofdm = ranges->nrg_th_ofdm;
592 data->barker_corr_th_min = ranges->barker_corr_th_min;
593 data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
594 data->nrg_th_cca = ranges->nrg_th_cca;
595
596 data->last_bad_plcp_cnt_ofdm = 0;
597 data->last_fa_cnt_ofdm = 0;
598 data->last_bad_plcp_cnt_cck = 0;
599 data->last_fa_cnt_cck = 0;
600
601 if (priv->enhance_sensitivity_table)
602 ret |= iwl_enhance_sensitivity_write(priv);
603 else
604 ret |= iwl_sensitivity_write(priv);
605 IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
606 }
607
608 void iwl_sensitivity_calibration(struct iwl_priv *priv, void *resp)
609 {
610 u32 rx_enable_time;
611 u32 fa_cck;
612 u32 fa_ofdm;
613 u32 bad_plcp_cck;
614 u32 bad_plcp_ofdm;
615 u32 norm_fa_ofdm;
616 u32 norm_fa_cck;
617 struct iwl_sensitivity_data *data = NULL;
618 struct statistics_rx_non_phy *rx_info;
619 struct statistics_rx_phy *ofdm, *cck;
620 unsigned long flags;
621 struct statistics_general_data statis;
622
623 if (priv->disable_sens_cal)
624 return;
625
626 data = &(priv->sensitivity_data);
627
628 if (!iwl_is_associated(priv)) {
629 IWL_DEBUG_CALIB(priv, "<< - not associated\n");
630 return;
631 }
632
633 spin_lock_irqsave(&priv->lock, flags);
634 if (priv->cfg->bt_statistics) {
635 rx_info = &(((struct iwl_bt_notif_statistics *)resp)->
636 rx.general.common);
637 ofdm = &(((struct iwl_bt_notif_statistics *)resp)->rx.ofdm);
638 cck = &(((struct iwl_bt_notif_statistics *)resp)->rx.cck);
639 } else {
640 rx_info = &(((struct iwl_notif_statistics *)resp)->rx.general);
641 ofdm = &(((struct iwl_notif_statistics *)resp)->rx.ofdm);
642 cck = &(((struct iwl_notif_statistics *)resp)->rx.cck);
643 }
644 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
645 IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
646 spin_unlock_irqrestore(&priv->lock, flags);
647 return;
648 }
649
650 /* Extract Statistics: */
651 rx_enable_time = le32_to_cpu(rx_info->channel_load);
652 fa_cck = le32_to_cpu(cck->false_alarm_cnt);
653 fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
654 bad_plcp_cck = le32_to_cpu(cck->plcp_err);
655 bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
656
657 statis.beacon_silence_rssi_a =
658 le32_to_cpu(rx_info->beacon_silence_rssi_a);
659 statis.beacon_silence_rssi_b =
660 le32_to_cpu(rx_info->beacon_silence_rssi_b);
661 statis.beacon_silence_rssi_c =
662 le32_to_cpu(rx_info->beacon_silence_rssi_c);
663 statis.beacon_energy_a =
664 le32_to_cpu(rx_info->beacon_energy_a);
665 statis.beacon_energy_b =
666 le32_to_cpu(rx_info->beacon_energy_b);
667 statis.beacon_energy_c =
668 le32_to_cpu(rx_info->beacon_energy_c);
669
670 spin_unlock_irqrestore(&priv->lock, flags);
671
672 IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
673
674 if (!rx_enable_time) {
675 IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n");
676 return;
677 }
678
679 /* These statistics increase monotonically, and do not reset
680 * at each beacon. Calculate difference from last value, or just
681 * use the new statistics value if it has reset or wrapped around. */
682 if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
683 data->last_bad_plcp_cnt_cck = bad_plcp_cck;
684 else {
685 bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
686 data->last_bad_plcp_cnt_cck += bad_plcp_cck;
687 }
688
689 if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
690 data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
691 else {
692 bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
693 data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
694 }
695
696 if (data->last_fa_cnt_ofdm > fa_ofdm)
697 data->last_fa_cnt_ofdm = fa_ofdm;
698 else {
699 fa_ofdm -= data->last_fa_cnt_ofdm;
700 data->last_fa_cnt_ofdm += fa_ofdm;
701 }
702
703 if (data->last_fa_cnt_cck > fa_cck)
704 data->last_fa_cnt_cck = fa_cck;
705 else {
706 fa_cck -= data->last_fa_cnt_cck;
707 data->last_fa_cnt_cck += fa_cck;
708 }
709
710 /* Total aborted signal locks */
711 norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
712 norm_fa_cck = fa_cck + bad_plcp_cck;
713
714 IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck,
715 bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
716
717 iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
718 iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
719 if (priv->enhance_sensitivity_table)
720 iwl_enhance_sensitivity_write(priv);
721 else
722 iwl_sensitivity_write(priv);
723 }
724
725 static inline u8 find_first_chain(u8 mask)
726 {
727 if (mask & ANT_A)
728 return CHAIN_A;
729 if (mask & ANT_B)
730 return CHAIN_B;
731 return CHAIN_C;
732 }
733
734 /*
735 * Accumulate 20 beacons of signal and noise statistics for each of
736 * 3 receivers/antennas/rx-chains, then figure out:
737 * 1) Which antennas are connected.
738 * 2) Differential rx gain settings to balance the 3 receivers.
739 */
740 void iwl_chain_noise_calibration(struct iwl_priv *priv, void *stat_resp)
741 {
742 struct iwl_chain_noise_data *data = NULL;
743
744 u32 chain_noise_a;
745 u32 chain_noise_b;
746 u32 chain_noise_c;
747 u32 chain_sig_a;
748 u32 chain_sig_b;
749 u32 chain_sig_c;
750 u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
751 u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
752 u32 max_average_sig;
753 u16 max_average_sig_antenna_i;
754 u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
755 u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
756 u16 i = 0;
757 u16 rxon_chnum = INITIALIZATION_VALUE;
758 u16 stat_chnum = INITIALIZATION_VALUE;
759 u8 rxon_band24;
760 u8 stat_band24;
761 u32 active_chains = 0;
762 u8 num_tx_chains;
763 unsigned long flags;
764 struct statistics_rx_non_phy *rx_info;
765 u8 first_chain;
766
767 if (priv->disable_chain_noise_cal)
768 return;
769
770 data = &(priv->chain_noise_data);
771
772 /*
773 * Accumulate just the first "chain_noise_num_beacons" after
774 * the first association, then we're done forever.
775 */
776 if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
777 if (data->state == IWL_CHAIN_NOISE_ALIVE)
778 IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
779 return;
780 }
781
782 spin_lock_irqsave(&priv->lock, flags);
783 if (priv->cfg->bt_statistics) {
784 rx_info = &(((struct iwl_bt_notif_statistics *)stat_resp)->
785 rx.general.common);
786 } else {
787 rx_info = &(((struct iwl_notif_statistics *)stat_resp)->
788 rx.general);
789 }
790 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
791 IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
792 spin_unlock_irqrestore(&priv->lock, flags);
793 return;
794 }
795
796 rxon_band24 = !!(priv->staging_rxon.flags & RXON_FLG_BAND_24G_MSK);
797 rxon_chnum = le16_to_cpu(priv->staging_rxon.channel);
798 if (priv->cfg->bt_statistics) {
799 stat_band24 = !!(((struct iwl_bt_notif_statistics *)
800 stat_resp)->flag &
801 STATISTICS_REPLY_FLG_BAND_24G_MSK);
802 stat_chnum = le32_to_cpu(((struct iwl_bt_notif_statistics *)
803 stat_resp)->flag) >> 16;
804 } else {
805 stat_band24 = !!(((struct iwl_notif_statistics *)
806 stat_resp)->flag &
807 STATISTICS_REPLY_FLG_BAND_24G_MSK);
808 stat_chnum = le32_to_cpu(((struct iwl_notif_statistics *)
809 stat_resp)->flag) >> 16;
810 }
811
812 /* Make sure we accumulate data for just the associated channel
813 * (even if scanning). */
814 if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
815 IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
816 rxon_chnum, rxon_band24);
817 spin_unlock_irqrestore(&priv->lock, flags);
818 return;
819 }
820
821 /*
822 * Accumulate beacon statistics values across
823 * "chain_noise_num_beacons"
824 */
825 chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
826 IN_BAND_FILTER;
827 chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
828 IN_BAND_FILTER;
829 chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
830 IN_BAND_FILTER;
831
832 chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
833 chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
834 chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
835
836 spin_unlock_irqrestore(&priv->lock, flags);
837
838 data->beacon_count++;
839
840 data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
841 data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
842 data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
843
844 data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
845 data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
846 data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
847
848 IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
849 rxon_chnum, rxon_band24, data->beacon_count);
850 IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
851 chain_sig_a, chain_sig_b, chain_sig_c);
852 IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
853 chain_noise_a, chain_noise_b, chain_noise_c);
854
855 /* If this is the "chain_noise_num_beacons", determine:
856 * 1) Disconnected antennas (using signal strengths)
857 * 2) Differential gain (using silence noise) to balance receivers */
858 if (data->beacon_count != priv->cfg->chain_noise_num_beacons)
859 return;
860
861 /* Analyze signal for disconnected antenna */
862 average_sig[0] =
863 (data->chain_signal_a) / priv->cfg->chain_noise_num_beacons;
864 average_sig[1] =
865 (data->chain_signal_b) / priv->cfg->chain_noise_num_beacons;
866 average_sig[2] =
867 (data->chain_signal_c) / priv->cfg->chain_noise_num_beacons;
868
869 if (average_sig[0] >= average_sig[1]) {
870 max_average_sig = average_sig[0];
871 max_average_sig_antenna_i = 0;
872 active_chains = (1 << max_average_sig_antenna_i);
873 } else {
874 max_average_sig = average_sig[1];
875 max_average_sig_antenna_i = 1;
876 active_chains = (1 << max_average_sig_antenna_i);
877 }
878
879 if (average_sig[2] >= max_average_sig) {
880 max_average_sig = average_sig[2];
881 max_average_sig_antenna_i = 2;
882 active_chains = (1 << max_average_sig_antenna_i);
883 }
884
885 IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
886 average_sig[0], average_sig[1], average_sig[2]);
887 IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
888 max_average_sig, max_average_sig_antenna_i);
889
890 /* Compare signal strengths for all 3 receivers. */
891 for (i = 0; i < NUM_RX_CHAINS; i++) {
892 if (i != max_average_sig_antenna_i) {
893 s32 rssi_delta = (max_average_sig - average_sig[i]);
894
895 /* If signal is very weak, compared with
896 * strongest, mark it as disconnected. */
897 if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
898 data->disconn_array[i] = 1;
899 else
900 active_chains |= (1 << i);
901 IWL_DEBUG_CALIB(priv, "i = %d rssiDelta = %d "
902 "disconn_array[i] = %d\n",
903 i, rssi_delta, data->disconn_array[i]);
904 }
905 }
906
907 /*
908 * The above algorithm sometimes fails when the ucode
909 * reports 0 for all chains. It's not clear why that
910 * happens to start with, but it is then causing trouble
911 * because this can make us enable more chains than the
912 * hardware really has.
913 *
914 * To be safe, simply mask out any chains that we know
915 * are not on the device.
916 */
917 active_chains &= priv->hw_params.valid_rx_ant;
918
919 num_tx_chains = 0;
920 for (i = 0; i < NUM_RX_CHAINS; i++) {
921 /* loops on all the bits of
922 * priv->hw_setting.valid_tx_ant */
923 u8 ant_msk = (1 << i);
924 if (!(priv->hw_params.valid_tx_ant & ant_msk))
925 continue;
926
927 num_tx_chains++;
928 if (data->disconn_array[i] == 0)
929 /* there is a Tx antenna connected */
930 break;
931 if (num_tx_chains == priv->hw_params.tx_chains_num &&
932 data->disconn_array[i]) {
933 /*
934 * If all chains are disconnected
935 * connect the first valid tx chain
936 */
937 first_chain =
938 find_first_chain(priv->cfg->valid_tx_ant);
939 data->disconn_array[first_chain] = 0;
940 active_chains |= BIT(first_chain);
941 IWL_DEBUG_CALIB(priv, "All Tx chains are disconnected W/A - declare %d as connected\n",
942 first_chain);
943 break;
944 }
945 }
946
947 if (active_chains != priv->hw_params.valid_rx_ant &&
948 active_chains != priv->chain_noise_data.active_chains)
949 IWL_DEBUG_CALIB(priv,
950 "Detected that not all antennas are connected! "
951 "Connected: %#x, valid: %#x.\n",
952 active_chains, priv->hw_params.valid_rx_ant);
953
954 /* Save for use within RXON, TX, SCAN commands, etc. */
955 priv->chain_noise_data.active_chains = active_chains;
956 IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
957 active_chains);
958
959 /* Analyze noise for rx balance */
960 average_noise[0] =
961 ((data->chain_noise_a) / priv->cfg->chain_noise_num_beacons);
962 average_noise[1] =
963 ((data->chain_noise_b) / priv->cfg->chain_noise_num_beacons);
964 average_noise[2] =
965 ((data->chain_noise_c) / priv->cfg->chain_noise_num_beacons);
966
967 for (i = 0; i < NUM_RX_CHAINS; i++) {
968 if (!(data->disconn_array[i]) &&
969 (average_noise[i] <= min_average_noise)) {
970 /* This means that chain i is active and has
971 * lower noise values so far: */
972 min_average_noise = average_noise[i];
973 min_average_noise_antenna_i = i;
974 }
975 }
976
977 IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
978 average_noise[0], average_noise[1],
979 average_noise[2]);
980
981 IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
982 min_average_noise, min_average_noise_antenna_i);
983
984 if (priv->cfg->ops->utils->gain_computation)
985 priv->cfg->ops->utils->gain_computation(priv, average_noise,
986 min_average_noise_antenna_i, min_average_noise,
987 find_first_chain(priv->cfg->valid_rx_ant));
988
989 /* Some power changes may have been made during the calibration.
990 * Update and commit the RXON
991 */
992 if (priv->cfg->ops->lib->update_chain_flags)
993 priv->cfg->ops->lib->update_chain_flags(priv);
994
995 data->state = IWL_CHAIN_NOISE_DONE;
996 iwl_power_update_mode(priv, false);
997 }
998
999 void iwl_reset_run_time_calib(struct iwl_priv *priv)
1000 {
1001 int i;
1002 memset(&(priv->sensitivity_data), 0,
1003 sizeof(struct iwl_sensitivity_data));
1004 memset(&(priv->chain_noise_data), 0,
1005 sizeof(struct iwl_chain_noise_data));
1006 for (i = 0; i < NUM_RX_CHAINS; i++)
1007 priv->chain_noise_data.delta_gain_code[i] =
1008 CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
1009
1010 /* Ask for statistics now, the uCode will send notification
1011 * periodically after association */
1012 iwl_send_statistics_request(priv, CMD_ASYNC, true);
1013 }
This page took 0.068523 seconds and 5 git commands to generate.