dd95f47854d4d6a09b478897b50b494a08080b02
[deliverable/linux.git] / drivers / net / wireless / iwlwifi / iwl-agn-lib.c
1 /******************************************************************************
2 *
3 * GPL LICENSE SUMMARY
4 *
5 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of version 2 of the GNU General Public License as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
19 * USA
20 *
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * Contact Information:
25 * Intel Linux Wireless <ilw@linux.intel.com>
26 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *
28 *****************************************************************************/
29 #include <linux/etherdevice.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/sched.h>
34
35 #include "iwl-dev.h"
36 #include "iwl-core.h"
37 #include "iwl-io.h"
38 #include "iwl-helpers.h"
39 #include "iwl-agn-hw.h"
40 #include "iwl-agn.h"
41 #include "iwl-sta.h"
42 #include "iwl-trans.h"
43 #include "iwl-shared.h"
44
45 static inline u32 iwlagn_get_scd_ssn(struct iwlagn_tx_resp *tx_resp)
46 {
47 return le32_to_cpup((__le32 *)&tx_resp->status +
48 tx_resp->frame_count) & MAX_SN;
49 }
50
51 static void iwlagn_count_tx_err_status(struct iwl_priv *priv, u16 status)
52 {
53 status &= TX_STATUS_MSK;
54
55 switch (status) {
56 case TX_STATUS_POSTPONE_DELAY:
57 priv->reply_tx_stats.pp_delay++;
58 break;
59 case TX_STATUS_POSTPONE_FEW_BYTES:
60 priv->reply_tx_stats.pp_few_bytes++;
61 break;
62 case TX_STATUS_POSTPONE_BT_PRIO:
63 priv->reply_tx_stats.pp_bt_prio++;
64 break;
65 case TX_STATUS_POSTPONE_QUIET_PERIOD:
66 priv->reply_tx_stats.pp_quiet_period++;
67 break;
68 case TX_STATUS_POSTPONE_CALC_TTAK:
69 priv->reply_tx_stats.pp_calc_ttak++;
70 break;
71 case TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY:
72 priv->reply_tx_stats.int_crossed_retry++;
73 break;
74 case TX_STATUS_FAIL_SHORT_LIMIT:
75 priv->reply_tx_stats.short_limit++;
76 break;
77 case TX_STATUS_FAIL_LONG_LIMIT:
78 priv->reply_tx_stats.long_limit++;
79 break;
80 case TX_STATUS_FAIL_FIFO_UNDERRUN:
81 priv->reply_tx_stats.fifo_underrun++;
82 break;
83 case TX_STATUS_FAIL_DRAIN_FLOW:
84 priv->reply_tx_stats.drain_flow++;
85 break;
86 case TX_STATUS_FAIL_RFKILL_FLUSH:
87 priv->reply_tx_stats.rfkill_flush++;
88 break;
89 case TX_STATUS_FAIL_LIFE_EXPIRE:
90 priv->reply_tx_stats.life_expire++;
91 break;
92 case TX_STATUS_FAIL_DEST_PS:
93 priv->reply_tx_stats.dest_ps++;
94 break;
95 case TX_STATUS_FAIL_HOST_ABORTED:
96 priv->reply_tx_stats.host_abort++;
97 break;
98 case TX_STATUS_FAIL_BT_RETRY:
99 priv->reply_tx_stats.bt_retry++;
100 break;
101 case TX_STATUS_FAIL_STA_INVALID:
102 priv->reply_tx_stats.sta_invalid++;
103 break;
104 case TX_STATUS_FAIL_FRAG_DROPPED:
105 priv->reply_tx_stats.frag_drop++;
106 break;
107 case TX_STATUS_FAIL_TID_DISABLE:
108 priv->reply_tx_stats.tid_disable++;
109 break;
110 case TX_STATUS_FAIL_FIFO_FLUSHED:
111 priv->reply_tx_stats.fifo_flush++;
112 break;
113 case TX_STATUS_FAIL_INSUFFICIENT_CF_POLL:
114 priv->reply_tx_stats.insuff_cf_poll++;
115 break;
116 case TX_STATUS_FAIL_PASSIVE_NO_RX:
117 priv->reply_tx_stats.fail_hw_drop++;
118 break;
119 case TX_STATUS_FAIL_NO_BEACON_ON_RADAR:
120 priv->reply_tx_stats.sta_color_mismatch++;
121 break;
122 default:
123 priv->reply_tx_stats.unknown++;
124 break;
125 }
126 }
127
128 static void iwlagn_count_agg_tx_err_status(struct iwl_priv *priv, u16 status)
129 {
130 status &= AGG_TX_STATUS_MSK;
131
132 switch (status) {
133 case AGG_TX_STATE_UNDERRUN_MSK:
134 priv->reply_agg_tx_stats.underrun++;
135 break;
136 case AGG_TX_STATE_BT_PRIO_MSK:
137 priv->reply_agg_tx_stats.bt_prio++;
138 break;
139 case AGG_TX_STATE_FEW_BYTES_MSK:
140 priv->reply_agg_tx_stats.few_bytes++;
141 break;
142 case AGG_TX_STATE_ABORT_MSK:
143 priv->reply_agg_tx_stats.abort++;
144 break;
145 case AGG_TX_STATE_LAST_SENT_TTL_MSK:
146 priv->reply_agg_tx_stats.last_sent_ttl++;
147 break;
148 case AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK:
149 priv->reply_agg_tx_stats.last_sent_try++;
150 break;
151 case AGG_TX_STATE_LAST_SENT_BT_KILL_MSK:
152 priv->reply_agg_tx_stats.last_sent_bt_kill++;
153 break;
154 case AGG_TX_STATE_SCD_QUERY_MSK:
155 priv->reply_agg_tx_stats.scd_query++;
156 break;
157 case AGG_TX_STATE_TEST_BAD_CRC32_MSK:
158 priv->reply_agg_tx_stats.bad_crc32++;
159 break;
160 case AGG_TX_STATE_RESPONSE_MSK:
161 priv->reply_agg_tx_stats.response++;
162 break;
163 case AGG_TX_STATE_DUMP_TX_MSK:
164 priv->reply_agg_tx_stats.dump_tx++;
165 break;
166 case AGG_TX_STATE_DELAY_TX_MSK:
167 priv->reply_agg_tx_stats.delay_tx++;
168 break;
169 default:
170 priv->reply_agg_tx_stats.unknown++;
171 break;
172 }
173 }
174
175 static void iwlagn_set_tx_status(struct iwl_priv *priv,
176 struct ieee80211_tx_info *info,
177 struct iwl_rxon_context *ctx,
178 struct iwlagn_tx_resp *tx_resp,
179 int txq_id, bool is_agg)
180 {
181 u16 status = le16_to_cpu(tx_resp->status.status);
182
183 info->status.rates[0].count = tx_resp->failure_frame + 1;
184 if (is_agg)
185 info->flags &= ~IEEE80211_TX_CTL_AMPDU;
186 info->flags |= iwl_tx_status_to_mac80211(status);
187 iwlagn_hwrate_to_tx_control(priv, le32_to_cpu(tx_resp->rate_n_flags),
188 info);
189 if (!iwl_is_tx_success(status))
190 iwlagn_count_tx_err_status(priv, status);
191
192 if (status == TX_STATUS_FAIL_PASSIVE_NO_RX &&
193 iwl_is_associated_ctx(ctx) && ctx->vif &&
194 ctx->vif->type == NL80211_IFTYPE_STATION) {
195 ctx->last_tx_rejected = true;
196 iwl_stop_queue(priv, &priv->txq[txq_id]);
197 }
198
199 IWL_DEBUG_TX_REPLY(priv, "TXQ %d status %s (0x%08x) rate_n_flags "
200 "0x%x retries %d\n",
201 txq_id,
202 iwl_get_tx_fail_reason(status), status,
203 le32_to_cpu(tx_resp->rate_n_flags),
204 tx_resp->failure_frame);
205 }
206
207 #ifdef CONFIG_IWLWIFI_DEBUG
208 #define AGG_TX_STATE_FAIL(x) case AGG_TX_STATE_ ## x: return #x
209
210 const char *iwl_get_agg_tx_fail_reason(u16 status)
211 {
212 status &= AGG_TX_STATUS_MSK;
213 switch (status) {
214 case AGG_TX_STATE_TRANSMITTED:
215 return "SUCCESS";
216 AGG_TX_STATE_FAIL(UNDERRUN_MSK);
217 AGG_TX_STATE_FAIL(BT_PRIO_MSK);
218 AGG_TX_STATE_FAIL(FEW_BYTES_MSK);
219 AGG_TX_STATE_FAIL(ABORT_MSK);
220 AGG_TX_STATE_FAIL(LAST_SENT_TTL_MSK);
221 AGG_TX_STATE_FAIL(LAST_SENT_TRY_CNT_MSK);
222 AGG_TX_STATE_FAIL(LAST_SENT_BT_KILL_MSK);
223 AGG_TX_STATE_FAIL(SCD_QUERY_MSK);
224 AGG_TX_STATE_FAIL(TEST_BAD_CRC32_MSK);
225 AGG_TX_STATE_FAIL(RESPONSE_MSK);
226 AGG_TX_STATE_FAIL(DUMP_TX_MSK);
227 AGG_TX_STATE_FAIL(DELAY_TX_MSK);
228 }
229
230 return "UNKNOWN";
231 }
232 #endif /* CONFIG_IWLWIFI_DEBUG */
233
234 static int iwlagn_tx_status_reply_tx(struct iwl_priv *priv,
235 struct iwl_ht_agg *agg,
236 struct iwlagn_tx_resp *tx_resp,
237 int txq_id, u16 start_idx)
238 {
239 u16 status;
240 struct agg_tx_status *frame_status = &tx_resp->status;
241 struct ieee80211_hdr *hdr = NULL;
242 int i, sh, idx;
243 u16 seq;
244
245 if (agg->wait_for_ba)
246 IWL_DEBUG_TX_REPLY(priv, "got tx response w/o block-ack\n");
247
248 agg->frame_count = tx_resp->frame_count;
249 agg->start_idx = start_idx;
250 agg->rate_n_flags = le32_to_cpu(tx_resp->rate_n_flags);
251 agg->bitmap = 0;
252
253 /* # frames attempted by Tx command */
254 if (agg->frame_count == 1) {
255 struct iwl_tx_info *txb;
256
257 /* Only one frame was attempted; no block-ack will arrive */
258 idx = start_idx;
259
260 IWL_DEBUG_TX_REPLY(priv, "FrameCnt = %d, StartIdx=%d idx=%d\n",
261 agg->frame_count, agg->start_idx, idx);
262 txb = &priv->txq[txq_id].txb[idx];
263 iwlagn_set_tx_status(priv, IEEE80211_SKB_CB(txb->skb),
264 txb->ctx, tx_resp, txq_id, true);
265 agg->wait_for_ba = 0;
266 } else {
267 /* Two or more frames were attempted; expect block-ack */
268 u64 bitmap = 0;
269
270 /*
271 * Start is the lowest frame sent. It may not be the first
272 * frame in the batch; we figure this out dynamically during
273 * the following loop.
274 */
275 int start = agg->start_idx;
276
277 /* Construct bit-map of pending frames within Tx window */
278 for (i = 0; i < agg->frame_count; i++) {
279 u16 sc;
280 status = le16_to_cpu(frame_status[i].status);
281 seq = le16_to_cpu(frame_status[i].sequence);
282 idx = SEQ_TO_INDEX(seq);
283 txq_id = SEQ_TO_QUEUE(seq);
284
285 if (status & AGG_TX_STATUS_MSK)
286 iwlagn_count_agg_tx_err_status(priv, status);
287
288 if (status & (AGG_TX_STATE_FEW_BYTES_MSK |
289 AGG_TX_STATE_ABORT_MSK))
290 continue;
291
292 IWL_DEBUG_TX_REPLY(priv, "FrameCnt = %d, txq_id=%d idx=%d\n",
293 agg->frame_count, txq_id, idx);
294 IWL_DEBUG_TX_REPLY(priv, "status %s (0x%08x), "
295 "try-count (0x%08x)\n",
296 iwl_get_agg_tx_fail_reason(status),
297 status & AGG_TX_STATUS_MSK,
298 status & AGG_TX_TRY_MSK);
299
300 hdr = iwl_tx_queue_get_hdr(priv, txq_id, idx);
301 if (!hdr) {
302 IWL_ERR(priv,
303 "BUG_ON idx doesn't point to valid skb"
304 " idx=%d, txq_id=%d\n", idx, txq_id);
305 return -1;
306 }
307
308 sc = le16_to_cpu(hdr->seq_ctrl);
309 if (idx != (SEQ_TO_SN(sc) & 0xff)) {
310 IWL_ERR(priv,
311 "BUG_ON idx doesn't match seq control"
312 " idx=%d, seq_idx=%d, seq=%d\n",
313 idx, SEQ_TO_SN(sc),
314 hdr->seq_ctrl);
315 return -1;
316 }
317
318 IWL_DEBUG_TX_REPLY(priv, "AGG Frame i=%d idx %d seq=%d\n",
319 i, idx, SEQ_TO_SN(sc));
320
321 /*
322 * sh -> how many frames ahead of the starting frame is
323 * the current one?
324 *
325 * Note that all frames sent in the batch must be in a
326 * 64-frame window, so this number should be in [0,63].
327 * If outside of this window, then we've found a new
328 * "first" frame in the batch and need to change start.
329 */
330 sh = idx - start;
331
332 /*
333 * If >= 64, out of window. start must be at the front
334 * of the circular buffer, idx must be near the end of
335 * the buffer, and idx is the new "first" frame. Shift
336 * the indices around.
337 */
338 if (sh >= 64) {
339 /* Shift bitmap by start - idx, wrapped */
340 sh = 0x100 - idx + start;
341 bitmap = bitmap << sh;
342 /* Now idx is the new start so sh = 0 */
343 sh = 0;
344 start = idx;
345 /*
346 * If <= -64 then wraps the 256-pkt circular buffer
347 * (e.g., start = 255 and idx = 0, sh should be 1)
348 */
349 } else if (sh <= -64) {
350 sh = 0x100 - start + idx;
351 /*
352 * If < 0 but > -64, out of window. idx is before start
353 * but not wrapped. Shift the indices around.
354 */
355 } else if (sh < 0) {
356 /* Shift by how far start is ahead of idx */
357 sh = start - idx;
358 bitmap = bitmap << sh;
359 /* Now idx is the new start so sh = 0 */
360 start = idx;
361 sh = 0;
362 }
363 /* Sequence number start + sh was sent in this batch */
364 bitmap |= 1ULL << sh;
365 IWL_DEBUG_TX_REPLY(priv, "start=%d bitmap=0x%llx\n",
366 start, (unsigned long long)bitmap);
367 }
368
369 /*
370 * Store the bitmap and possibly the new start, if we wrapped
371 * the buffer above
372 */
373 agg->bitmap = bitmap;
374 agg->start_idx = start;
375 IWL_DEBUG_TX_REPLY(priv, "Frames %d start_idx=%d bitmap=0x%llx\n",
376 agg->frame_count, agg->start_idx,
377 (unsigned long long)agg->bitmap);
378
379 if (bitmap)
380 agg->wait_for_ba = 1;
381 }
382 return 0;
383 }
384
385 void iwl_check_abort_status(struct iwl_priv *priv,
386 u8 frame_count, u32 status)
387 {
388 if (frame_count == 1 && status == TX_STATUS_FAIL_RFKILL_FLUSH) {
389 IWL_ERR(priv, "Tx flush command to flush out all frames\n");
390 if (!test_bit(STATUS_EXIT_PENDING, &priv->status))
391 queue_work(priv->workqueue, &priv->tx_flush);
392 }
393 }
394
395 void iwlagn_rx_reply_tx(struct iwl_priv *priv, struct iwl_rx_mem_buffer *rxb)
396 {
397 struct iwl_rx_packet *pkt = rxb_addr(rxb);
398 u16 sequence = le16_to_cpu(pkt->hdr.sequence);
399 int txq_id = SEQ_TO_QUEUE(sequence);
400 int index = SEQ_TO_INDEX(sequence);
401 struct iwl_tx_queue *txq = &priv->txq[txq_id];
402 struct ieee80211_tx_info *info;
403 struct iwlagn_tx_resp *tx_resp = (void *)&pkt->u.raw[0];
404 struct ieee80211_hdr *hdr;
405 struct iwl_tx_info *txb;
406 u32 status = le16_to_cpu(tx_resp->status.status);
407 int tid;
408 int sta_id;
409 int freed;
410 unsigned long flags;
411
412 if ((index >= txq->q.n_bd) || (iwl_queue_used(&txq->q, index) == 0)) {
413 IWL_ERR(priv, "%s: Read index for DMA queue txq_id (%d) "
414 "index %d is out of range [0-%d] %d %d\n", __func__,
415 txq_id, index, txq->q.n_bd, txq->q.write_ptr,
416 txq->q.read_ptr);
417 return;
418 }
419
420 txq->time_stamp = jiffies;
421 txb = &txq->txb[txq->q.read_ptr];
422 info = IEEE80211_SKB_CB(txb->skb);
423 memset(&info->status, 0, sizeof(info->status));
424
425 tid = (tx_resp->ra_tid & IWLAGN_TX_RES_TID_MSK) >>
426 IWLAGN_TX_RES_TID_POS;
427 sta_id = (tx_resp->ra_tid & IWLAGN_TX_RES_RA_MSK) >>
428 IWLAGN_TX_RES_RA_POS;
429
430 spin_lock_irqsave(&priv->sta_lock, flags);
431
432 hdr = (void *)txb->skb->data;
433 if (!ieee80211_is_data_qos(hdr->frame_control))
434 priv->last_seq_ctl = tx_resp->seq_ctl;
435
436 if (txq->sched_retry) {
437 const u32 scd_ssn = iwlagn_get_scd_ssn(tx_resp);
438 struct iwl_ht_agg *agg;
439
440 agg = &priv->stations[sta_id].tid[tid].agg;
441 /*
442 * If the BT kill count is non-zero, we'll get this
443 * notification again.
444 */
445 if (tx_resp->bt_kill_count && tx_resp->frame_count == 1 &&
446 priv->cfg->bt_params &&
447 priv->cfg->bt_params->advanced_bt_coexist) {
448 IWL_DEBUG_COEX(priv, "receive reply tx with bt_kill\n");
449 }
450 iwlagn_tx_status_reply_tx(priv, agg, tx_resp, txq_id, index);
451
452 /* check if BAR is needed */
453 if ((tx_resp->frame_count == 1) && !iwl_is_tx_success(status))
454 info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
455
456 if (txq->q.read_ptr != (scd_ssn & 0xff)) {
457 index = iwl_queue_dec_wrap(scd_ssn & 0xff, txq->q.n_bd);
458 IWL_DEBUG_TX_REPLY(priv, "Retry scheduler reclaim "
459 "scd_ssn=%d idx=%d txq=%d swq=%d\n",
460 scd_ssn , index, txq_id, txq->swq_id);
461
462 freed = iwlagn_tx_queue_reclaim(priv, txq_id, index);
463 iwl_free_tfds_in_queue(priv, sta_id, tid, freed);
464
465 if (priv->mac80211_registered &&
466 (iwl_queue_space(&txq->q) > txq->q.low_mark) &&
467 (agg->state != IWL_EMPTYING_HW_QUEUE_DELBA))
468 iwl_wake_queue(priv, txq);
469 }
470 } else {
471 iwlagn_set_tx_status(priv, info, txb->ctx, tx_resp,
472 txq_id, false);
473 freed = iwlagn_tx_queue_reclaim(priv, txq_id, index);
474 iwl_free_tfds_in_queue(priv, sta_id, tid, freed);
475
476 if (priv->mac80211_registered &&
477 iwl_queue_space(&txq->q) > txq->q.low_mark &&
478 status != TX_STATUS_FAIL_PASSIVE_NO_RX)
479 iwl_wake_queue(priv, txq);
480 }
481
482 iwlagn_txq_check_empty(priv, sta_id, tid, txq_id);
483
484 iwl_check_abort_status(priv, tx_resp->frame_count, status);
485 spin_unlock_irqrestore(&priv->sta_lock, flags);
486 }
487
488 int iwlagn_hw_valid_rtc_data_addr(u32 addr)
489 {
490 return (addr >= IWLAGN_RTC_DATA_LOWER_BOUND) &&
491 (addr < IWLAGN_RTC_DATA_UPPER_BOUND);
492 }
493
494 int iwlagn_send_tx_power(struct iwl_priv *priv)
495 {
496 struct iwlagn_tx_power_dbm_cmd tx_power_cmd;
497 u8 tx_ant_cfg_cmd;
498
499 if (WARN_ONCE(test_bit(STATUS_SCAN_HW, &priv->status),
500 "TX Power requested while scanning!\n"))
501 return -EAGAIN;
502
503 /* half dBm need to multiply */
504 tx_power_cmd.global_lmt = (s8)(2 * priv->tx_power_user_lmt);
505
506 if (priv->tx_power_lmt_in_half_dbm &&
507 priv->tx_power_lmt_in_half_dbm < tx_power_cmd.global_lmt) {
508 /*
509 * For the newer devices which using enhanced/extend tx power
510 * table in EEPROM, the format is in half dBm. driver need to
511 * convert to dBm format before report to mac80211.
512 * By doing so, there is a possibility of 1/2 dBm resolution
513 * lost. driver will perform "round-up" operation before
514 * reporting, but it will cause 1/2 dBm tx power over the
515 * regulatory limit. Perform the checking here, if the
516 * "tx_power_user_lmt" is higher than EEPROM value (in
517 * half-dBm format), lower the tx power based on EEPROM
518 */
519 tx_power_cmd.global_lmt = priv->tx_power_lmt_in_half_dbm;
520 }
521 tx_power_cmd.flags = IWLAGN_TX_POWER_NO_CLOSED;
522 tx_power_cmd.srv_chan_lmt = IWLAGN_TX_POWER_AUTO;
523
524 if (IWL_UCODE_API(priv->ucode_ver) == 1)
525 tx_ant_cfg_cmd = REPLY_TX_POWER_DBM_CMD_V1;
526 else
527 tx_ant_cfg_cmd = REPLY_TX_POWER_DBM_CMD;
528
529 return trans_send_cmd_pdu(&priv->trans, tx_ant_cfg_cmd, CMD_SYNC,
530 sizeof(tx_power_cmd), &tx_power_cmd);
531 }
532
533 void iwlagn_temperature(struct iwl_priv *priv)
534 {
535 /* store temperature from correct statistics (in Celsius) */
536 priv->temperature = le32_to_cpu(priv->statistics.common.temperature);
537 iwl_tt_handler(priv);
538 }
539
540 u16 iwlagn_eeprom_calib_version(struct iwl_priv *priv)
541 {
542 struct iwl_eeprom_calib_hdr {
543 u8 version;
544 u8 pa_type;
545 u16 voltage;
546 } *hdr;
547
548 hdr = (struct iwl_eeprom_calib_hdr *)iwl_eeprom_query_addr(priv,
549 EEPROM_CALIB_ALL);
550 return hdr->version;
551
552 }
553
554 /*
555 * EEPROM
556 */
557 static u32 eeprom_indirect_address(const struct iwl_priv *priv, u32 address)
558 {
559 u16 offset = 0;
560
561 if ((address & INDIRECT_ADDRESS) == 0)
562 return address;
563
564 switch (address & INDIRECT_TYPE_MSK) {
565 case INDIRECT_HOST:
566 offset = iwl_eeprom_query16(priv, EEPROM_LINK_HOST);
567 break;
568 case INDIRECT_GENERAL:
569 offset = iwl_eeprom_query16(priv, EEPROM_LINK_GENERAL);
570 break;
571 case INDIRECT_REGULATORY:
572 offset = iwl_eeprom_query16(priv, EEPROM_LINK_REGULATORY);
573 break;
574 case INDIRECT_TXP_LIMIT:
575 offset = iwl_eeprom_query16(priv, EEPROM_LINK_TXP_LIMIT);
576 break;
577 case INDIRECT_TXP_LIMIT_SIZE:
578 offset = iwl_eeprom_query16(priv, EEPROM_LINK_TXP_LIMIT_SIZE);
579 break;
580 case INDIRECT_CALIBRATION:
581 offset = iwl_eeprom_query16(priv, EEPROM_LINK_CALIBRATION);
582 break;
583 case INDIRECT_PROCESS_ADJST:
584 offset = iwl_eeprom_query16(priv, EEPROM_LINK_PROCESS_ADJST);
585 break;
586 case INDIRECT_OTHERS:
587 offset = iwl_eeprom_query16(priv, EEPROM_LINK_OTHERS);
588 break;
589 default:
590 IWL_ERR(priv, "illegal indirect type: 0x%X\n",
591 address & INDIRECT_TYPE_MSK);
592 break;
593 }
594
595 /* translate the offset from words to byte */
596 return (address & ADDRESS_MSK) + (offset << 1);
597 }
598
599 const u8 *iwl_eeprom_query_addr(const struct iwl_priv *priv, size_t offset)
600 {
601 u32 address = eeprom_indirect_address(priv, offset);
602 BUG_ON(address >= priv->cfg->base_params->eeprom_size);
603 return &priv->eeprom[address];
604 }
605
606 struct iwl_mod_params iwlagn_mod_params = {
607 .amsdu_size_8K = 1,
608 .restart_fw = 1,
609 .plcp_check = true,
610 .bt_coex_active = true,
611 .no_sleep_autoadjust = true,
612 .power_level = IWL_POWER_INDEX_1,
613 .bt_ch_announce = 1,
614 .wanted_ucode_alternative = 1,
615 /* the rest are 0 by default */
616 };
617
618 int iwlagn_hwrate_to_mac80211_idx(u32 rate_n_flags, enum ieee80211_band band)
619 {
620 int idx = 0;
621 int band_offset = 0;
622
623 /* HT rate format: mac80211 wants an MCS number, which is just LSB */
624 if (rate_n_flags & RATE_MCS_HT_MSK) {
625 idx = (rate_n_flags & 0xff);
626 return idx;
627 /* Legacy rate format, search for match in table */
628 } else {
629 if (band == IEEE80211_BAND_5GHZ)
630 band_offset = IWL_FIRST_OFDM_RATE;
631 for (idx = band_offset; idx < IWL_RATE_COUNT_LEGACY; idx++)
632 if (iwl_rates[idx].plcp == (rate_n_flags & 0xFF))
633 return idx - band_offset;
634 }
635
636 return -1;
637 }
638
639 static int iwl_get_single_channel_for_scan(struct iwl_priv *priv,
640 struct ieee80211_vif *vif,
641 enum ieee80211_band band,
642 struct iwl_scan_channel *scan_ch)
643 {
644 const struct ieee80211_supported_band *sband;
645 u16 passive_dwell = 0;
646 u16 active_dwell = 0;
647 int added = 0;
648 u16 channel = 0;
649
650 sband = iwl_get_hw_mode(priv, band);
651 if (!sband) {
652 IWL_ERR(priv, "invalid band\n");
653 return added;
654 }
655
656 active_dwell = iwl_get_active_dwell_time(priv, band, 0);
657 passive_dwell = iwl_get_passive_dwell_time(priv, band, vif);
658
659 if (passive_dwell <= active_dwell)
660 passive_dwell = active_dwell + 1;
661
662 channel = iwl_get_single_channel_number(priv, band);
663 if (channel) {
664 scan_ch->channel = cpu_to_le16(channel);
665 scan_ch->type = SCAN_CHANNEL_TYPE_PASSIVE;
666 scan_ch->active_dwell = cpu_to_le16(active_dwell);
667 scan_ch->passive_dwell = cpu_to_le16(passive_dwell);
668 /* Set txpower levels to defaults */
669 scan_ch->dsp_atten = 110;
670 if (band == IEEE80211_BAND_5GHZ)
671 scan_ch->tx_gain = ((1 << 5) | (3 << 3)) | 3;
672 else
673 scan_ch->tx_gain = ((1 << 5) | (5 << 3));
674 added++;
675 } else
676 IWL_ERR(priv, "no valid channel found\n");
677 return added;
678 }
679
680 static int iwl_get_channels_for_scan(struct iwl_priv *priv,
681 struct ieee80211_vif *vif,
682 enum ieee80211_band band,
683 u8 is_active, u8 n_probes,
684 struct iwl_scan_channel *scan_ch)
685 {
686 struct ieee80211_channel *chan;
687 const struct ieee80211_supported_band *sband;
688 const struct iwl_channel_info *ch_info;
689 u16 passive_dwell = 0;
690 u16 active_dwell = 0;
691 int added, i;
692 u16 channel;
693
694 sband = iwl_get_hw_mode(priv, band);
695 if (!sband)
696 return 0;
697
698 active_dwell = iwl_get_active_dwell_time(priv, band, n_probes);
699 passive_dwell = iwl_get_passive_dwell_time(priv, band, vif);
700
701 if (passive_dwell <= active_dwell)
702 passive_dwell = active_dwell + 1;
703
704 for (i = 0, added = 0; i < priv->scan_request->n_channels; i++) {
705 chan = priv->scan_request->channels[i];
706
707 if (chan->band != band)
708 continue;
709
710 channel = chan->hw_value;
711 scan_ch->channel = cpu_to_le16(channel);
712
713 ch_info = iwl_get_channel_info(priv, band, channel);
714 if (!is_channel_valid(ch_info)) {
715 IWL_DEBUG_SCAN(priv, "Channel %d is INVALID for this band.\n",
716 channel);
717 continue;
718 }
719
720 if (!is_active || is_channel_passive(ch_info) ||
721 (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN))
722 scan_ch->type = SCAN_CHANNEL_TYPE_PASSIVE;
723 else
724 scan_ch->type = SCAN_CHANNEL_TYPE_ACTIVE;
725
726 if (n_probes)
727 scan_ch->type |= IWL_SCAN_PROBE_MASK(n_probes);
728
729 scan_ch->active_dwell = cpu_to_le16(active_dwell);
730 scan_ch->passive_dwell = cpu_to_le16(passive_dwell);
731
732 /* Set txpower levels to defaults */
733 scan_ch->dsp_atten = 110;
734
735 /* NOTE: if we were doing 6Mb OFDM for scans we'd use
736 * power level:
737 * scan_ch->tx_gain = ((1 << 5) | (2 << 3)) | 3;
738 */
739 if (band == IEEE80211_BAND_5GHZ)
740 scan_ch->tx_gain = ((1 << 5) | (3 << 3)) | 3;
741 else
742 scan_ch->tx_gain = ((1 << 5) | (5 << 3));
743
744 IWL_DEBUG_SCAN(priv, "Scanning ch=%d prob=0x%X [%s %d]\n",
745 channel, le32_to_cpu(scan_ch->type),
746 (scan_ch->type & SCAN_CHANNEL_TYPE_ACTIVE) ?
747 "ACTIVE" : "PASSIVE",
748 (scan_ch->type & SCAN_CHANNEL_TYPE_ACTIVE) ?
749 active_dwell : passive_dwell);
750
751 scan_ch++;
752 added++;
753 }
754
755 IWL_DEBUG_SCAN(priv, "total channels to scan %d\n", added);
756 return added;
757 }
758
759 int iwlagn_request_scan(struct iwl_priv *priv, struct ieee80211_vif *vif)
760 {
761 struct iwl_host_cmd cmd = {
762 .id = REPLY_SCAN_CMD,
763 .len = { sizeof(struct iwl_scan_cmd), },
764 .flags = CMD_SYNC,
765 };
766 struct iwl_scan_cmd *scan;
767 struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
768 u32 rate_flags = 0;
769 u16 cmd_len;
770 u16 rx_chain = 0;
771 enum ieee80211_band band;
772 u8 n_probes = 0;
773 u8 rx_ant = priv->hw_params.valid_rx_ant;
774 u8 rate;
775 bool is_active = false;
776 int chan_mod;
777 u8 active_chains;
778 u8 scan_tx_antennas = priv->hw_params.valid_tx_ant;
779 int ret;
780
781 lockdep_assert_held(&priv->mutex);
782
783 if (vif)
784 ctx = iwl_rxon_ctx_from_vif(vif);
785
786 if (!priv->scan_cmd) {
787 priv->scan_cmd = kmalloc(sizeof(struct iwl_scan_cmd) +
788 IWL_MAX_SCAN_SIZE, GFP_KERNEL);
789 if (!priv->scan_cmd) {
790 IWL_DEBUG_SCAN(priv,
791 "fail to allocate memory for scan\n");
792 return -ENOMEM;
793 }
794 }
795 scan = priv->scan_cmd;
796 memset(scan, 0, sizeof(struct iwl_scan_cmd) + IWL_MAX_SCAN_SIZE);
797
798 scan->quiet_plcp_th = IWL_PLCP_QUIET_THRESH;
799 scan->quiet_time = IWL_ACTIVE_QUIET_TIME;
800
801 if (priv->scan_type != IWL_SCAN_ROC &&
802 iwl_is_any_associated(priv)) {
803 u16 interval = 0;
804 u32 extra;
805 u32 suspend_time = 100;
806 u32 scan_suspend_time = 100;
807
808 IWL_DEBUG_INFO(priv, "Scanning while associated...\n");
809 switch (priv->scan_type) {
810 case IWL_SCAN_ROC:
811 WARN_ON(1);
812 break;
813 case IWL_SCAN_RADIO_RESET:
814 interval = 0;
815 break;
816 case IWL_SCAN_NORMAL:
817 interval = vif->bss_conf.beacon_int;
818 break;
819 }
820
821 scan->suspend_time = 0;
822 scan->max_out_time = cpu_to_le32(200 * 1024);
823 if (!interval)
824 interval = suspend_time;
825
826 extra = (suspend_time / interval) << 22;
827 scan_suspend_time = (extra |
828 ((suspend_time % interval) * 1024));
829 scan->suspend_time = cpu_to_le32(scan_suspend_time);
830 IWL_DEBUG_SCAN(priv, "suspend_time 0x%X beacon interval %d\n",
831 scan_suspend_time, interval);
832 } else if (priv->scan_type == IWL_SCAN_ROC) {
833 scan->suspend_time = 0;
834 scan->max_out_time = 0;
835 scan->quiet_time = 0;
836 scan->quiet_plcp_th = 0;
837 }
838
839 switch (priv->scan_type) {
840 case IWL_SCAN_RADIO_RESET:
841 IWL_DEBUG_SCAN(priv, "Start internal passive scan.\n");
842 break;
843 case IWL_SCAN_NORMAL:
844 if (priv->scan_request->n_ssids) {
845 int i, p = 0;
846 IWL_DEBUG_SCAN(priv, "Kicking off active scan\n");
847 for (i = 0; i < priv->scan_request->n_ssids; i++) {
848 /* always does wildcard anyway */
849 if (!priv->scan_request->ssids[i].ssid_len)
850 continue;
851 scan->direct_scan[p].id = WLAN_EID_SSID;
852 scan->direct_scan[p].len =
853 priv->scan_request->ssids[i].ssid_len;
854 memcpy(scan->direct_scan[p].ssid,
855 priv->scan_request->ssids[i].ssid,
856 priv->scan_request->ssids[i].ssid_len);
857 n_probes++;
858 p++;
859 }
860 is_active = true;
861 } else
862 IWL_DEBUG_SCAN(priv, "Start passive scan.\n");
863 break;
864 case IWL_SCAN_ROC:
865 IWL_DEBUG_SCAN(priv, "Start ROC scan.\n");
866 break;
867 }
868
869 scan->tx_cmd.tx_flags = TX_CMD_FLG_SEQ_CTL_MSK;
870 scan->tx_cmd.sta_id = ctx->bcast_sta_id;
871 scan->tx_cmd.stop_time.life_time = TX_CMD_LIFE_TIME_INFINITE;
872
873 switch (priv->scan_band) {
874 case IEEE80211_BAND_2GHZ:
875 scan->flags = RXON_FLG_BAND_24G_MSK | RXON_FLG_AUTO_DETECT_MSK;
876 chan_mod = le32_to_cpu(
877 priv->contexts[IWL_RXON_CTX_BSS].active.flags &
878 RXON_FLG_CHANNEL_MODE_MSK)
879 >> RXON_FLG_CHANNEL_MODE_POS;
880 if (chan_mod == CHANNEL_MODE_PURE_40) {
881 rate = IWL_RATE_6M_PLCP;
882 } else {
883 rate = IWL_RATE_1M_PLCP;
884 rate_flags = RATE_MCS_CCK_MSK;
885 }
886 /*
887 * Internal scans are passive, so we can indiscriminately set
888 * the BT ignore flag on 2.4 GHz since it applies to TX only.
889 */
890 if (priv->cfg->bt_params &&
891 priv->cfg->bt_params->advanced_bt_coexist)
892 scan->tx_cmd.tx_flags |= TX_CMD_FLG_IGNORE_BT;
893 break;
894 case IEEE80211_BAND_5GHZ:
895 rate = IWL_RATE_6M_PLCP;
896 break;
897 default:
898 IWL_WARN(priv, "Invalid scan band\n");
899 return -EIO;
900 }
901
902 /*
903 * If active scanning is requested but a certain channel is
904 * marked passive, we can do active scanning if we detect
905 * transmissions.
906 *
907 * There is an issue with some firmware versions that triggers
908 * a sysassert on a "good CRC threshold" of zero (== disabled),
909 * on a radar channel even though this means that we should NOT
910 * send probes.
911 *
912 * The "good CRC threshold" is the number of frames that we
913 * need to receive during our dwell time on a channel before
914 * sending out probes -- setting this to a huge value will
915 * mean we never reach it, but at the same time work around
916 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER
917 * here instead of IWL_GOOD_CRC_TH_DISABLED.
918 *
919 * This was fixed in later versions along with some other
920 * scan changes, and the threshold behaves as a flag in those
921 * versions.
922 */
923 if (priv->new_scan_threshold_behaviour)
924 scan->good_CRC_th = is_active ? IWL_GOOD_CRC_TH_DEFAULT :
925 IWL_GOOD_CRC_TH_DISABLED;
926 else
927 scan->good_CRC_th = is_active ? IWL_GOOD_CRC_TH_DEFAULT :
928 IWL_GOOD_CRC_TH_NEVER;
929
930 band = priv->scan_band;
931
932 if (priv->cfg->scan_rx_antennas[band])
933 rx_ant = priv->cfg->scan_rx_antennas[band];
934
935 if (band == IEEE80211_BAND_2GHZ &&
936 priv->cfg->bt_params &&
937 priv->cfg->bt_params->advanced_bt_coexist) {
938 /* transmit 2.4 GHz probes only on first antenna */
939 scan_tx_antennas = first_antenna(scan_tx_antennas);
940 }
941
942 priv->scan_tx_ant[band] = iwl_toggle_tx_ant(priv, priv->scan_tx_ant[band],
943 scan_tx_antennas);
944 rate_flags |= iwl_ant_idx_to_flags(priv->scan_tx_ant[band]);
945 scan->tx_cmd.rate_n_flags = iwl_hw_set_rate_n_flags(rate, rate_flags);
946
947 /* In power save mode use one chain, otherwise use all chains */
948 if (test_bit(STATUS_POWER_PMI, &priv->status)) {
949 /* rx_ant has been set to all valid chains previously */
950 active_chains = rx_ant &
951 ((u8)(priv->chain_noise_data.active_chains));
952 if (!active_chains)
953 active_chains = rx_ant;
954
955 IWL_DEBUG_SCAN(priv, "chain_noise_data.active_chains: %u\n",
956 priv->chain_noise_data.active_chains);
957
958 rx_ant = first_antenna(active_chains);
959 }
960 if (priv->cfg->bt_params &&
961 priv->cfg->bt_params->advanced_bt_coexist &&
962 priv->bt_full_concurrent) {
963 /* operated as 1x1 in full concurrency mode */
964 rx_ant = first_antenna(rx_ant);
965 }
966
967 /* MIMO is not used here, but value is required */
968 rx_chain |= priv->hw_params.valid_rx_ant << RXON_RX_CHAIN_VALID_POS;
969 rx_chain |= rx_ant << RXON_RX_CHAIN_FORCE_MIMO_SEL_POS;
970 rx_chain |= rx_ant << RXON_RX_CHAIN_FORCE_SEL_POS;
971 rx_chain |= 0x1 << RXON_RX_CHAIN_DRIVER_FORCE_POS;
972 scan->rx_chain = cpu_to_le16(rx_chain);
973 switch (priv->scan_type) {
974 case IWL_SCAN_NORMAL:
975 cmd_len = iwl_fill_probe_req(priv,
976 (struct ieee80211_mgmt *)scan->data,
977 vif->addr,
978 priv->scan_request->ie,
979 priv->scan_request->ie_len,
980 IWL_MAX_SCAN_SIZE - sizeof(*scan));
981 break;
982 case IWL_SCAN_RADIO_RESET:
983 case IWL_SCAN_ROC:
984 /* use bcast addr, will not be transmitted but must be valid */
985 cmd_len = iwl_fill_probe_req(priv,
986 (struct ieee80211_mgmt *)scan->data,
987 iwl_bcast_addr, NULL, 0,
988 IWL_MAX_SCAN_SIZE - sizeof(*scan));
989 break;
990 default:
991 BUG();
992 }
993 scan->tx_cmd.len = cpu_to_le16(cmd_len);
994
995 scan->filter_flags |= (RXON_FILTER_ACCEPT_GRP_MSK |
996 RXON_FILTER_BCON_AWARE_MSK);
997
998 switch (priv->scan_type) {
999 case IWL_SCAN_RADIO_RESET:
1000 scan->channel_count =
1001 iwl_get_single_channel_for_scan(priv, vif, band,
1002 (void *)&scan->data[cmd_len]);
1003 break;
1004 case IWL_SCAN_NORMAL:
1005 scan->channel_count =
1006 iwl_get_channels_for_scan(priv, vif, band,
1007 is_active, n_probes,
1008 (void *)&scan->data[cmd_len]);
1009 break;
1010 case IWL_SCAN_ROC: {
1011 struct iwl_scan_channel *scan_ch;
1012
1013 scan->channel_count = 1;
1014
1015 scan_ch = (void *)&scan->data[cmd_len];
1016 scan_ch->type = SCAN_CHANNEL_TYPE_PASSIVE;
1017 scan_ch->channel =
1018 cpu_to_le16(priv->hw_roc_channel->hw_value);
1019 scan_ch->active_dwell =
1020 scan_ch->passive_dwell =
1021 cpu_to_le16(priv->hw_roc_duration);
1022
1023 /* Set txpower levels to defaults */
1024 scan_ch->dsp_atten = 110;
1025
1026 /* NOTE: if we were doing 6Mb OFDM for scans we'd use
1027 * power level:
1028 * scan_ch->tx_gain = ((1 << 5) | (2 << 3)) | 3;
1029 */
1030 if (priv->hw_roc_channel->band == IEEE80211_BAND_5GHZ)
1031 scan_ch->tx_gain = ((1 << 5) | (3 << 3)) | 3;
1032 else
1033 scan_ch->tx_gain = ((1 << 5) | (5 << 3));
1034 }
1035 break;
1036 }
1037
1038 if (scan->channel_count == 0) {
1039 IWL_DEBUG_SCAN(priv, "channel count %d\n", scan->channel_count);
1040 return -EIO;
1041 }
1042
1043 cmd.len[0] += le16_to_cpu(scan->tx_cmd.len) +
1044 scan->channel_count * sizeof(struct iwl_scan_channel);
1045 cmd.data[0] = scan;
1046 cmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
1047 scan->len = cpu_to_le16(cmd.len[0]);
1048
1049 /* set scan bit here for PAN params */
1050 set_bit(STATUS_SCAN_HW, &priv->status);
1051
1052 ret = iwlagn_set_pan_params(priv);
1053 if (ret)
1054 return ret;
1055
1056 ret = trans_send_cmd(&priv->trans, &cmd);
1057 if (ret) {
1058 clear_bit(STATUS_SCAN_HW, &priv->status);
1059 iwlagn_set_pan_params(priv);
1060 }
1061
1062 return ret;
1063 }
1064
1065 int iwlagn_manage_ibss_station(struct iwl_priv *priv,
1066 struct ieee80211_vif *vif, bool add)
1067 {
1068 struct iwl_vif_priv *vif_priv = (void *)vif->drv_priv;
1069
1070 if (add)
1071 return iwlagn_add_bssid_station(priv, vif_priv->ctx,
1072 vif->bss_conf.bssid,
1073 &vif_priv->ibss_bssid_sta_id);
1074 return iwl_remove_station(priv, vif_priv->ibss_bssid_sta_id,
1075 vif->bss_conf.bssid);
1076 }
1077
1078 void iwl_free_tfds_in_queue(struct iwl_priv *priv,
1079 int sta_id, int tid, int freed)
1080 {
1081 lockdep_assert_held(&priv->sta_lock);
1082
1083 if (priv->stations[sta_id].tid[tid].tfds_in_queue >= freed)
1084 priv->stations[sta_id].tid[tid].tfds_in_queue -= freed;
1085 else {
1086 IWL_DEBUG_TX(priv, "free more than tfds_in_queue (%u:%d)\n",
1087 priv->stations[sta_id].tid[tid].tfds_in_queue,
1088 freed);
1089 priv->stations[sta_id].tid[tid].tfds_in_queue = 0;
1090 }
1091 }
1092
1093 #define IWL_FLUSH_WAIT_MS 2000
1094
1095 int iwlagn_wait_tx_queue_empty(struct iwl_priv *priv)
1096 {
1097 struct iwl_tx_queue *txq;
1098 struct iwl_queue *q;
1099 int cnt;
1100 unsigned long now = jiffies;
1101 int ret = 0;
1102
1103 /* waiting for all the tx frames complete might take a while */
1104 for (cnt = 0; cnt < priv->hw_params.max_txq_num; cnt++) {
1105 if (cnt == priv->cmd_queue)
1106 continue;
1107 txq = &priv->txq[cnt];
1108 q = &txq->q;
1109 while (q->read_ptr != q->write_ptr && !time_after(jiffies,
1110 now + msecs_to_jiffies(IWL_FLUSH_WAIT_MS)))
1111 msleep(1);
1112
1113 if (q->read_ptr != q->write_ptr) {
1114 IWL_ERR(priv, "fail to flush all tx fifo queues\n");
1115 ret = -ETIMEDOUT;
1116 break;
1117 }
1118 }
1119 return ret;
1120 }
1121
1122 #define IWL_TX_QUEUE_MSK 0xfffff
1123
1124 /**
1125 * iwlagn_txfifo_flush: send REPLY_TXFIFO_FLUSH command to uCode
1126 *
1127 * pre-requirements:
1128 * 1. acquire mutex before calling
1129 * 2. make sure rf is on and not in exit state
1130 */
1131 int iwlagn_txfifo_flush(struct iwl_priv *priv, u16 flush_control)
1132 {
1133 struct iwl_txfifo_flush_cmd flush_cmd;
1134 struct iwl_host_cmd cmd = {
1135 .id = REPLY_TXFIFO_FLUSH,
1136 .len = { sizeof(struct iwl_txfifo_flush_cmd), },
1137 .flags = CMD_SYNC,
1138 .data = { &flush_cmd, },
1139 };
1140
1141 might_sleep();
1142
1143 memset(&flush_cmd, 0, sizeof(flush_cmd));
1144 if (flush_control & BIT(IWL_RXON_CTX_BSS))
1145 flush_cmd.fifo_control = IWL_SCD_VO_MSK | IWL_SCD_VI_MSK |
1146 IWL_SCD_BE_MSK | IWL_SCD_BK_MSK |
1147 IWL_SCD_MGMT_MSK;
1148 if ((flush_control & BIT(IWL_RXON_CTX_PAN)) &&
1149 (priv->valid_contexts != BIT(IWL_RXON_CTX_BSS)))
1150 flush_cmd.fifo_control |= IWL_PAN_SCD_VO_MSK |
1151 IWL_PAN_SCD_VI_MSK | IWL_PAN_SCD_BE_MSK |
1152 IWL_PAN_SCD_BK_MSK | IWL_PAN_SCD_MGMT_MSK |
1153 IWL_PAN_SCD_MULTICAST_MSK;
1154
1155 if (priv->cfg->sku & EEPROM_SKU_CAP_11N_ENABLE)
1156 flush_cmd.fifo_control |= IWL_AGG_TX_QUEUE_MSK;
1157
1158 IWL_DEBUG_INFO(priv, "fifo queue control: 0X%x\n",
1159 flush_cmd.fifo_control);
1160 flush_cmd.flush_control = cpu_to_le16(flush_control);
1161
1162 return trans_send_cmd(&priv->trans, &cmd);
1163 }
1164
1165 void iwlagn_dev_txfifo_flush(struct iwl_priv *priv, u16 flush_control)
1166 {
1167 mutex_lock(&priv->mutex);
1168 ieee80211_stop_queues(priv->hw);
1169 if (iwlagn_txfifo_flush(priv, IWL_DROP_ALL)) {
1170 IWL_ERR(priv, "flush request fail\n");
1171 goto done;
1172 }
1173 IWL_DEBUG_INFO(priv, "wait transmit/flush all frames\n");
1174 iwlagn_wait_tx_queue_empty(priv);
1175 done:
1176 ieee80211_wake_queues(priv->hw);
1177 mutex_unlock(&priv->mutex);
1178 }
1179
1180 /*
1181 * BT coex
1182 */
1183 /*
1184 * Macros to access the lookup table.
1185 *
1186 * The lookup table has 7 inputs: bt3_prio, bt3_txrx, bt_rf_act, wifi_req,
1187 * wifi_prio, wifi_txrx and wifi_sh_ant_req.
1188 *
1189 * It has three outputs: WLAN_ACTIVE, WLAN_KILL and ANT_SWITCH
1190 *
1191 * The format is that "registers" 8 through 11 contain the WLAN_ACTIVE bits
1192 * one after another in 32-bit registers, and "registers" 0 through 7 contain
1193 * the WLAN_KILL and ANT_SWITCH bits interleaved (in that order).
1194 *
1195 * These macros encode that format.
1196 */
1197 #define LUT_VALUE(bt3_prio, bt3_txrx, bt_rf_act, wifi_req, wifi_prio, \
1198 wifi_txrx, wifi_sh_ant_req) \
1199 (bt3_prio | (bt3_txrx << 1) | (bt_rf_act << 2) | (wifi_req << 3) | \
1200 (wifi_prio << 4) | (wifi_txrx << 5) | (wifi_sh_ant_req << 6))
1201
1202 #define LUT_PTA_WLAN_ACTIVE_OP(lut, op, val) \
1203 lut[8 + ((val) >> 5)] op (cpu_to_le32(BIT((val) & 0x1f)))
1204 #define LUT_TEST_PTA_WLAN_ACTIVE(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \
1205 wifi_prio, wifi_txrx, wifi_sh_ant_req) \
1206 (!!(LUT_PTA_WLAN_ACTIVE_OP(lut, &, LUT_VALUE(bt3_prio, bt3_txrx, \
1207 bt_rf_act, wifi_req, wifi_prio, wifi_txrx, \
1208 wifi_sh_ant_req))))
1209 #define LUT_SET_PTA_WLAN_ACTIVE(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \
1210 wifi_prio, wifi_txrx, wifi_sh_ant_req) \
1211 LUT_PTA_WLAN_ACTIVE_OP(lut, |=, LUT_VALUE(bt3_prio, bt3_txrx, \
1212 bt_rf_act, wifi_req, wifi_prio, wifi_txrx, \
1213 wifi_sh_ant_req))
1214 #define LUT_CLEAR_PTA_WLAN_ACTIVE(lut, bt3_prio, bt3_txrx, bt_rf_act, \
1215 wifi_req, wifi_prio, wifi_txrx, \
1216 wifi_sh_ant_req) \
1217 LUT_PTA_WLAN_ACTIVE_OP(lut, &= ~, LUT_VALUE(bt3_prio, bt3_txrx, \
1218 bt_rf_act, wifi_req, wifi_prio, wifi_txrx, \
1219 wifi_sh_ant_req))
1220
1221 #define LUT_WLAN_KILL_OP(lut, op, val) \
1222 lut[(val) >> 4] op (cpu_to_le32(BIT(((val) << 1) & 0x1e)))
1223 #define LUT_TEST_WLAN_KILL(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \
1224 wifi_prio, wifi_txrx, wifi_sh_ant_req) \
1225 (!!(LUT_WLAN_KILL_OP(lut, &, LUT_VALUE(bt3_prio, bt3_txrx, bt_rf_act, \
1226 wifi_req, wifi_prio, wifi_txrx, wifi_sh_ant_req))))
1227 #define LUT_SET_WLAN_KILL(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \
1228 wifi_prio, wifi_txrx, wifi_sh_ant_req) \
1229 LUT_WLAN_KILL_OP(lut, |=, LUT_VALUE(bt3_prio, bt3_txrx, bt_rf_act, \
1230 wifi_req, wifi_prio, wifi_txrx, wifi_sh_ant_req))
1231 #define LUT_CLEAR_WLAN_KILL(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \
1232 wifi_prio, wifi_txrx, wifi_sh_ant_req) \
1233 LUT_WLAN_KILL_OP(lut, &= ~, LUT_VALUE(bt3_prio, bt3_txrx, bt_rf_act, \
1234 wifi_req, wifi_prio, wifi_txrx, wifi_sh_ant_req))
1235
1236 #define LUT_ANT_SWITCH_OP(lut, op, val) \
1237 lut[(val) >> 4] op (cpu_to_le32(BIT((((val) << 1) & 0x1e) + 1)))
1238 #define LUT_TEST_ANT_SWITCH(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \
1239 wifi_prio, wifi_txrx, wifi_sh_ant_req) \
1240 (!!(LUT_ANT_SWITCH_OP(lut, &, LUT_VALUE(bt3_prio, bt3_txrx, bt_rf_act, \
1241 wifi_req, wifi_prio, wifi_txrx, \
1242 wifi_sh_ant_req))))
1243 #define LUT_SET_ANT_SWITCH(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \
1244 wifi_prio, wifi_txrx, wifi_sh_ant_req) \
1245 LUT_ANT_SWITCH_OP(lut, |=, LUT_VALUE(bt3_prio, bt3_txrx, bt_rf_act, \
1246 wifi_req, wifi_prio, wifi_txrx, wifi_sh_ant_req))
1247 #define LUT_CLEAR_ANT_SWITCH(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \
1248 wifi_prio, wifi_txrx, wifi_sh_ant_req) \
1249 LUT_ANT_SWITCH_OP(lut, &= ~, LUT_VALUE(bt3_prio, bt3_txrx, bt_rf_act, \
1250 wifi_req, wifi_prio, wifi_txrx, wifi_sh_ant_req))
1251
1252 static const __le32 iwlagn_def_3w_lookup[12] = {
1253 cpu_to_le32(0xaaaaaaaa),
1254 cpu_to_le32(0xaaaaaaaa),
1255 cpu_to_le32(0xaeaaaaaa),
1256 cpu_to_le32(0xaaaaaaaa),
1257 cpu_to_le32(0xcc00ff28),
1258 cpu_to_le32(0x0000aaaa),
1259 cpu_to_le32(0xcc00aaaa),
1260 cpu_to_le32(0x0000aaaa),
1261 cpu_to_le32(0xc0004000),
1262 cpu_to_le32(0x00004000),
1263 cpu_to_le32(0xf0005000),
1264 cpu_to_le32(0xf0005000),
1265 };
1266
1267 static const __le32 iwlagn_concurrent_lookup[12] = {
1268 cpu_to_le32(0xaaaaaaaa),
1269 cpu_to_le32(0xaaaaaaaa),
1270 cpu_to_le32(0xaaaaaaaa),
1271 cpu_to_le32(0xaaaaaaaa),
1272 cpu_to_le32(0xaaaaaaaa),
1273 cpu_to_le32(0xaaaaaaaa),
1274 cpu_to_le32(0xaaaaaaaa),
1275 cpu_to_le32(0xaaaaaaaa),
1276 cpu_to_le32(0x00000000),
1277 cpu_to_le32(0x00000000),
1278 cpu_to_le32(0x00000000),
1279 cpu_to_le32(0x00000000),
1280 };
1281
1282 void iwlagn_send_advance_bt_config(struct iwl_priv *priv)
1283 {
1284 struct iwl_basic_bt_cmd basic = {
1285 .max_kill = IWLAGN_BT_MAX_KILL_DEFAULT,
1286 .bt3_timer_t7_value = IWLAGN_BT3_T7_DEFAULT,
1287 .bt3_prio_sample_time = IWLAGN_BT3_PRIO_SAMPLE_DEFAULT,
1288 .bt3_timer_t2_value = IWLAGN_BT3_T2_DEFAULT,
1289 };
1290 struct iwl6000_bt_cmd bt_cmd_6000;
1291 struct iwl2000_bt_cmd bt_cmd_2000;
1292 int ret;
1293
1294 BUILD_BUG_ON(sizeof(iwlagn_def_3w_lookup) !=
1295 sizeof(basic.bt3_lookup_table));
1296
1297 if (priv->cfg->bt_params) {
1298 if (priv->cfg->bt_params->bt_session_2) {
1299 bt_cmd_2000.prio_boost = cpu_to_le32(
1300 priv->cfg->bt_params->bt_prio_boost);
1301 bt_cmd_2000.tx_prio_boost = 0;
1302 bt_cmd_2000.rx_prio_boost = 0;
1303 } else {
1304 bt_cmd_6000.prio_boost =
1305 priv->cfg->bt_params->bt_prio_boost;
1306 bt_cmd_6000.tx_prio_boost = 0;
1307 bt_cmd_6000.rx_prio_boost = 0;
1308 }
1309 } else {
1310 IWL_ERR(priv, "failed to construct BT Coex Config\n");
1311 return;
1312 }
1313
1314 basic.kill_ack_mask = priv->kill_ack_mask;
1315 basic.kill_cts_mask = priv->kill_cts_mask;
1316 basic.valid = priv->bt_valid;
1317
1318 /*
1319 * Configure BT coex mode to "no coexistence" when the
1320 * user disabled BT coexistence, we have no interface
1321 * (might be in monitor mode), or the interface is in
1322 * IBSS mode (no proper uCode support for coex then).
1323 */
1324 if (!iwlagn_mod_params.bt_coex_active ||
1325 priv->iw_mode == NL80211_IFTYPE_ADHOC) {
1326 basic.flags = IWLAGN_BT_FLAG_COEX_MODE_DISABLED;
1327 } else {
1328 basic.flags = IWLAGN_BT_FLAG_COEX_MODE_3W <<
1329 IWLAGN_BT_FLAG_COEX_MODE_SHIFT;
1330
1331 if (!priv->bt_enable_pspoll)
1332 basic.flags |= IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE;
1333 else
1334 basic.flags &= ~IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE;
1335
1336 if (priv->bt_ch_announce)
1337 basic.flags |= IWLAGN_BT_FLAG_CHANNEL_INHIBITION;
1338 IWL_DEBUG_COEX(priv, "BT coex flag: 0X%x\n", basic.flags);
1339 }
1340 priv->bt_enable_flag = basic.flags;
1341 if (priv->bt_full_concurrent)
1342 memcpy(basic.bt3_lookup_table, iwlagn_concurrent_lookup,
1343 sizeof(iwlagn_concurrent_lookup));
1344 else
1345 memcpy(basic.bt3_lookup_table, iwlagn_def_3w_lookup,
1346 sizeof(iwlagn_def_3w_lookup));
1347
1348 IWL_DEBUG_COEX(priv, "BT coex %s in %s mode\n",
1349 basic.flags ? "active" : "disabled",
1350 priv->bt_full_concurrent ?
1351 "full concurrency" : "3-wire");
1352
1353 if (priv->cfg->bt_params->bt_session_2) {
1354 memcpy(&bt_cmd_2000.basic, &basic,
1355 sizeof(basic));
1356 ret = trans_send_cmd_pdu(&priv->trans, REPLY_BT_CONFIG,
1357 CMD_SYNC, sizeof(bt_cmd_2000), &bt_cmd_2000);
1358 } else {
1359 memcpy(&bt_cmd_6000.basic, &basic,
1360 sizeof(basic));
1361 ret = trans_send_cmd_pdu(&priv->trans, REPLY_BT_CONFIG,
1362 CMD_SYNC, sizeof(bt_cmd_6000), &bt_cmd_6000);
1363 }
1364 if (ret)
1365 IWL_ERR(priv, "failed to send BT Coex Config\n");
1366
1367 }
1368
1369 void iwlagn_bt_adjust_rssi_monitor(struct iwl_priv *priv, bool rssi_ena)
1370 {
1371 struct iwl_rxon_context *ctx, *found_ctx = NULL;
1372 bool found_ap = false;
1373
1374 lockdep_assert_held(&priv->mutex);
1375
1376 /* Check whether AP or GO mode is active. */
1377 if (rssi_ena) {
1378 for_each_context(priv, ctx) {
1379 if (ctx->vif && ctx->vif->type == NL80211_IFTYPE_AP &&
1380 iwl_is_associated_ctx(ctx)) {
1381 found_ap = true;
1382 break;
1383 }
1384 }
1385 }
1386
1387 /*
1388 * If disable was received or If GO/AP mode, disable RSSI
1389 * measurements.
1390 */
1391 if (!rssi_ena || found_ap) {
1392 if (priv->cur_rssi_ctx) {
1393 ctx = priv->cur_rssi_ctx;
1394 ieee80211_disable_rssi_reports(ctx->vif);
1395 priv->cur_rssi_ctx = NULL;
1396 }
1397 return;
1398 }
1399
1400 /*
1401 * If rssi measurements need to be enabled, consider all cases now.
1402 * Figure out how many contexts are active.
1403 */
1404 for_each_context(priv, ctx) {
1405 if (ctx->vif && ctx->vif->type == NL80211_IFTYPE_STATION &&
1406 iwl_is_associated_ctx(ctx)) {
1407 found_ctx = ctx;
1408 break;
1409 }
1410 }
1411
1412 /*
1413 * rssi monitor already enabled for the correct interface...nothing
1414 * to do.
1415 */
1416 if (found_ctx == priv->cur_rssi_ctx)
1417 return;
1418
1419 /*
1420 * Figure out if rssi monitor is currently enabled, and needs
1421 * to be changed. If rssi monitor is already enabled, disable
1422 * it first else just enable rssi measurements on the
1423 * interface found above.
1424 */
1425 if (priv->cur_rssi_ctx) {
1426 ctx = priv->cur_rssi_ctx;
1427 if (ctx->vif)
1428 ieee80211_disable_rssi_reports(ctx->vif);
1429 }
1430
1431 priv->cur_rssi_ctx = found_ctx;
1432
1433 if (!found_ctx)
1434 return;
1435
1436 ieee80211_enable_rssi_reports(found_ctx->vif,
1437 IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD,
1438 IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD);
1439 }
1440
1441 static bool iwlagn_bt_traffic_is_sco(struct iwl_bt_uart_msg *uart_msg)
1442 {
1443 return BT_UART_MSG_FRAME3SCOESCO_MSK & uart_msg->frame3 >>
1444 BT_UART_MSG_FRAME3SCOESCO_POS;
1445 }
1446
1447 static void iwlagn_bt_traffic_change_work(struct work_struct *work)
1448 {
1449 struct iwl_priv *priv =
1450 container_of(work, struct iwl_priv, bt_traffic_change_work);
1451 struct iwl_rxon_context *ctx;
1452 int smps_request = -1;
1453
1454 if (priv->bt_enable_flag == IWLAGN_BT_FLAG_COEX_MODE_DISABLED) {
1455 /* bt coex disabled */
1456 return;
1457 }
1458
1459 /*
1460 * Note: bt_traffic_load can be overridden by scan complete and
1461 * coex profile notifications. Ignore that since only bad consequence
1462 * can be not matching debug print with actual state.
1463 */
1464 IWL_DEBUG_COEX(priv, "BT traffic load changes: %d\n",
1465 priv->bt_traffic_load);
1466
1467 switch (priv->bt_traffic_load) {
1468 case IWL_BT_COEX_TRAFFIC_LOAD_NONE:
1469 if (priv->bt_status)
1470 smps_request = IEEE80211_SMPS_DYNAMIC;
1471 else
1472 smps_request = IEEE80211_SMPS_AUTOMATIC;
1473 break;
1474 case IWL_BT_COEX_TRAFFIC_LOAD_LOW:
1475 smps_request = IEEE80211_SMPS_DYNAMIC;
1476 break;
1477 case IWL_BT_COEX_TRAFFIC_LOAD_HIGH:
1478 case IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS:
1479 smps_request = IEEE80211_SMPS_STATIC;
1480 break;
1481 default:
1482 IWL_ERR(priv, "Invalid BT traffic load: %d\n",
1483 priv->bt_traffic_load);
1484 break;
1485 }
1486
1487 mutex_lock(&priv->mutex);
1488
1489 /*
1490 * We can not send command to firmware while scanning. When the scan
1491 * complete we will schedule this work again. We do check with mutex
1492 * locked to prevent new scan request to arrive. We do not check
1493 * STATUS_SCANNING to avoid race when queue_work two times from
1494 * different notifications, but quit and not perform any work at all.
1495 */
1496 if (test_bit(STATUS_SCAN_HW, &priv->status))
1497 goto out;
1498
1499 iwl_update_chain_flags(priv);
1500
1501 if (smps_request != -1) {
1502 priv->current_ht_config.smps = smps_request;
1503 for_each_context(priv, ctx) {
1504 if (ctx->vif && ctx->vif->type == NL80211_IFTYPE_STATION)
1505 ieee80211_request_smps(ctx->vif, smps_request);
1506 }
1507 }
1508
1509 /*
1510 * Dynamic PS poll related functionality. Adjust RSSI measurements if
1511 * necessary.
1512 */
1513 iwlagn_bt_coex_rssi_monitor(priv);
1514 out:
1515 mutex_unlock(&priv->mutex);
1516 }
1517
1518 /*
1519 * If BT sco traffic, and RSSI monitor is enabled, move measurements to the
1520 * correct interface or disable it if this is the last interface to be
1521 * removed.
1522 */
1523 void iwlagn_bt_coex_rssi_monitor(struct iwl_priv *priv)
1524 {
1525 if (priv->bt_is_sco &&
1526 priv->bt_traffic_load == IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS)
1527 iwlagn_bt_adjust_rssi_monitor(priv, true);
1528 else
1529 iwlagn_bt_adjust_rssi_monitor(priv, false);
1530 }
1531
1532 static void iwlagn_print_uartmsg(struct iwl_priv *priv,
1533 struct iwl_bt_uart_msg *uart_msg)
1534 {
1535 IWL_DEBUG_COEX(priv, "Message Type = 0x%X, SSN = 0x%X, "
1536 "Update Req = 0x%X",
1537 (BT_UART_MSG_FRAME1MSGTYPE_MSK & uart_msg->frame1) >>
1538 BT_UART_MSG_FRAME1MSGTYPE_POS,
1539 (BT_UART_MSG_FRAME1SSN_MSK & uart_msg->frame1) >>
1540 BT_UART_MSG_FRAME1SSN_POS,
1541 (BT_UART_MSG_FRAME1UPDATEREQ_MSK & uart_msg->frame1) >>
1542 BT_UART_MSG_FRAME1UPDATEREQ_POS);
1543
1544 IWL_DEBUG_COEX(priv, "Open connections = 0x%X, Traffic load = 0x%X, "
1545 "Chl_SeqN = 0x%X, In band = 0x%X",
1546 (BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK & uart_msg->frame2) >>
1547 BT_UART_MSG_FRAME2OPENCONNECTIONS_POS,
1548 (BT_UART_MSG_FRAME2TRAFFICLOAD_MSK & uart_msg->frame2) >>
1549 BT_UART_MSG_FRAME2TRAFFICLOAD_POS,
1550 (BT_UART_MSG_FRAME2CHLSEQN_MSK & uart_msg->frame2) >>
1551 BT_UART_MSG_FRAME2CHLSEQN_POS,
1552 (BT_UART_MSG_FRAME2INBAND_MSK & uart_msg->frame2) >>
1553 BT_UART_MSG_FRAME2INBAND_POS);
1554
1555 IWL_DEBUG_COEX(priv, "SCO/eSCO = 0x%X, Sniff = 0x%X, A2DP = 0x%X, "
1556 "ACL = 0x%X, Master = 0x%X, OBEX = 0x%X",
1557 (BT_UART_MSG_FRAME3SCOESCO_MSK & uart_msg->frame3) >>
1558 BT_UART_MSG_FRAME3SCOESCO_POS,
1559 (BT_UART_MSG_FRAME3SNIFF_MSK & uart_msg->frame3) >>
1560 BT_UART_MSG_FRAME3SNIFF_POS,
1561 (BT_UART_MSG_FRAME3A2DP_MSK & uart_msg->frame3) >>
1562 BT_UART_MSG_FRAME3A2DP_POS,
1563 (BT_UART_MSG_FRAME3ACL_MSK & uart_msg->frame3) >>
1564 BT_UART_MSG_FRAME3ACL_POS,
1565 (BT_UART_MSG_FRAME3MASTER_MSK & uart_msg->frame3) >>
1566 BT_UART_MSG_FRAME3MASTER_POS,
1567 (BT_UART_MSG_FRAME3OBEX_MSK & uart_msg->frame3) >>
1568 BT_UART_MSG_FRAME3OBEX_POS);
1569
1570 IWL_DEBUG_COEX(priv, "Idle duration = 0x%X",
1571 (BT_UART_MSG_FRAME4IDLEDURATION_MSK & uart_msg->frame4) >>
1572 BT_UART_MSG_FRAME4IDLEDURATION_POS);
1573
1574 IWL_DEBUG_COEX(priv, "Tx Activity = 0x%X, Rx Activity = 0x%X, "
1575 "eSCO Retransmissions = 0x%X",
1576 (BT_UART_MSG_FRAME5TXACTIVITY_MSK & uart_msg->frame5) >>
1577 BT_UART_MSG_FRAME5TXACTIVITY_POS,
1578 (BT_UART_MSG_FRAME5RXACTIVITY_MSK & uart_msg->frame5) >>
1579 BT_UART_MSG_FRAME5RXACTIVITY_POS,
1580 (BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK & uart_msg->frame5) >>
1581 BT_UART_MSG_FRAME5ESCORETRANSMIT_POS);
1582
1583 IWL_DEBUG_COEX(priv, "Sniff Interval = 0x%X, Discoverable = 0x%X",
1584 (BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK & uart_msg->frame6) >>
1585 BT_UART_MSG_FRAME6SNIFFINTERVAL_POS,
1586 (BT_UART_MSG_FRAME6DISCOVERABLE_MSK & uart_msg->frame6) >>
1587 BT_UART_MSG_FRAME6DISCOVERABLE_POS);
1588
1589 IWL_DEBUG_COEX(priv, "Sniff Activity = 0x%X, Page = "
1590 "0x%X, Inquiry = 0x%X, Connectable = 0x%X",
1591 (BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK & uart_msg->frame7) >>
1592 BT_UART_MSG_FRAME7SNIFFACTIVITY_POS,
1593 (BT_UART_MSG_FRAME7PAGE_MSK & uart_msg->frame7) >>
1594 BT_UART_MSG_FRAME7PAGE_POS,
1595 (BT_UART_MSG_FRAME7INQUIRY_MSK & uart_msg->frame7) >>
1596 BT_UART_MSG_FRAME7INQUIRY_POS,
1597 (BT_UART_MSG_FRAME7CONNECTABLE_MSK & uart_msg->frame7) >>
1598 BT_UART_MSG_FRAME7CONNECTABLE_POS);
1599 }
1600
1601 static void iwlagn_set_kill_msk(struct iwl_priv *priv,
1602 struct iwl_bt_uart_msg *uart_msg)
1603 {
1604 u8 kill_msk;
1605 static const __le32 bt_kill_ack_msg[2] = {
1606 IWLAGN_BT_KILL_ACK_MASK_DEFAULT,
1607 IWLAGN_BT_KILL_ACK_CTS_MASK_SCO };
1608 static const __le32 bt_kill_cts_msg[2] = {
1609 IWLAGN_BT_KILL_CTS_MASK_DEFAULT,
1610 IWLAGN_BT_KILL_ACK_CTS_MASK_SCO };
1611
1612 kill_msk = (BT_UART_MSG_FRAME3SCOESCO_MSK & uart_msg->frame3)
1613 ? 1 : 0;
1614 if (priv->kill_ack_mask != bt_kill_ack_msg[kill_msk] ||
1615 priv->kill_cts_mask != bt_kill_cts_msg[kill_msk]) {
1616 priv->bt_valid |= IWLAGN_BT_VALID_KILL_ACK_MASK;
1617 priv->kill_ack_mask = bt_kill_ack_msg[kill_msk];
1618 priv->bt_valid |= IWLAGN_BT_VALID_KILL_CTS_MASK;
1619 priv->kill_cts_mask = bt_kill_cts_msg[kill_msk];
1620
1621 /* schedule to send runtime bt_config */
1622 queue_work(priv->workqueue, &priv->bt_runtime_config);
1623 }
1624 }
1625
1626 void iwlagn_bt_coex_profile_notif(struct iwl_priv *priv,
1627 struct iwl_rx_mem_buffer *rxb)
1628 {
1629 unsigned long flags;
1630 struct iwl_rx_packet *pkt = rxb_addr(rxb);
1631 struct iwl_bt_coex_profile_notif *coex = &pkt->u.bt_coex_profile_notif;
1632 struct iwl_bt_uart_msg *uart_msg = &coex->last_bt_uart_msg;
1633
1634 if (priv->bt_enable_flag == IWLAGN_BT_FLAG_COEX_MODE_DISABLED) {
1635 /* bt coex disabled */
1636 return;
1637 }
1638
1639 IWL_DEBUG_COEX(priv, "BT Coex notification:\n");
1640 IWL_DEBUG_COEX(priv, " status: %d\n", coex->bt_status);
1641 IWL_DEBUG_COEX(priv, " traffic load: %d\n", coex->bt_traffic_load);
1642 IWL_DEBUG_COEX(priv, " CI compliance: %d\n",
1643 coex->bt_ci_compliance);
1644 iwlagn_print_uartmsg(priv, uart_msg);
1645
1646 priv->last_bt_traffic_load = priv->bt_traffic_load;
1647 priv->bt_is_sco = iwlagn_bt_traffic_is_sco(uart_msg);
1648
1649 if (priv->iw_mode != NL80211_IFTYPE_ADHOC) {
1650 if (priv->bt_status != coex->bt_status ||
1651 priv->last_bt_traffic_load != coex->bt_traffic_load) {
1652 if (coex->bt_status) {
1653 /* BT on */
1654 if (!priv->bt_ch_announce)
1655 priv->bt_traffic_load =
1656 IWL_BT_COEX_TRAFFIC_LOAD_HIGH;
1657 else
1658 priv->bt_traffic_load =
1659 coex->bt_traffic_load;
1660 } else {
1661 /* BT off */
1662 priv->bt_traffic_load =
1663 IWL_BT_COEX_TRAFFIC_LOAD_NONE;
1664 }
1665 priv->bt_status = coex->bt_status;
1666 queue_work(priv->workqueue,
1667 &priv->bt_traffic_change_work);
1668 }
1669 }
1670
1671 iwlagn_set_kill_msk(priv, uart_msg);
1672
1673 /* FIXME: based on notification, adjust the prio_boost */
1674
1675 spin_lock_irqsave(&priv->lock, flags);
1676 priv->bt_ci_compliance = coex->bt_ci_compliance;
1677 spin_unlock_irqrestore(&priv->lock, flags);
1678 }
1679
1680 void iwlagn_bt_rx_handler_setup(struct iwl_priv *priv)
1681 {
1682 priv->rx_handlers[REPLY_BT_COEX_PROFILE_NOTIF] =
1683 iwlagn_bt_coex_profile_notif;
1684 }
1685
1686 void iwlagn_bt_setup_deferred_work(struct iwl_priv *priv)
1687 {
1688 INIT_WORK(&priv->bt_traffic_change_work,
1689 iwlagn_bt_traffic_change_work);
1690 }
1691
1692 void iwlagn_bt_cancel_deferred_work(struct iwl_priv *priv)
1693 {
1694 cancel_work_sync(&priv->bt_traffic_change_work);
1695 }
1696
1697 static bool is_single_rx_stream(struct iwl_priv *priv)
1698 {
1699 return priv->current_ht_config.smps == IEEE80211_SMPS_STATIC ||
1700 priv->current_ht_config.single_chain_sufficient;
1701 }
1702
1703 #define IWL_NUM_RX_CHAINS_MULTIPLE 3
1704 #define IWL_NUM_RX_CHAINS_SINGLE 2
1705 #define IWL_NUM_IDLE_CHAINS_DUAL 2
1706 #define IWL_NUM_IDLE_CHAINS_SINGLE 1
1707
1708 /*
1709 * Determine how many receiver/antenna chains to use.
1710 *
1711 * More provides better reception via diversity. Fewer saves power
1712 * at the expense of throughput, but only when not in powersave to
1713 * start with.
1714 *
1715 * MIMO (dual stream) requires at least 2, but works better with 3.
1716 * This does not determine *which* chains to use, just how many.
1717 */
1718 static int iwl_get_active_rx_chain_count(struct iwl_priv *priv)
1719 {
1720 if (priv->cfg->bt_params &&
1721 priv->cfg->bt_params->advanced_bt_coexist &&
1722 (priv->bt_full_concurrent ||
1723 priv->bt_traffic_load >= IWL_BT_COEX_TRAFFIC_LOAD_HIGH)) {
1724 /*
1725 * only use chain 'A' in bt high traffic load or
1726 * full concurrency mode
1727 */
1728 return IWL_NUM_RX_CHAINS_SINGLE;
1729 }
1730 /* # of Rx chains to use when expecting MIMO. */
1731 if (is_single_rx_stream(priv))
1732 return IWL_NUM_RX_CHAINS_SINGLE;
1733 else
1734 return IWL_NUM_RX_CHAINS_MULTIPLE;
1735 }
1736
1737 /*
1738 * When we are in power saving mode, unless device support spatial
1739 * multiplexing power save, use the active count for rx chain count.
1740 */
1741 static int iwl_get_idle_rx_chain_count(struct iwl_priv *priv, int active_cnt)
1742 {
1743 /* # Rx chains when idling, depending on SMPS mode */
1744 switch (priv->current_ht_config.smps) {
1745 case IEEE80211_SMPS_STATIC:
1746 case IEEE80211_SMPS_DYNAMIC:
1747 return IWL_NUM_IDLE_CHAINS_SINGLE;
1748 case IEEE80211_SMPS_OFF:
1749 return active_cnt;
1750 default:
1751 WARN(1, "invalid SMPS mode %d",
1752 priv->current_ht_config.smps);
1753 return active_cnt;
1754 }
1755 }
1756
1757 /* up to 4 chains */
1758 static u8 iwl_count_chain_bitmap(u32 chain_bitmap)
1759 {
1760 u8 res;
1761 res = (chain_bitmap & BIT(0)) >> 0;
1762 res += (chain_bitmap & BIT(1)) >> 1;
1763 res += (chain_bitmap & BIT(2)) >> 2;
1764 res += (chain_bitmap & BIT(3)) >> 3;
1765 return res;
1766 }
1767
1768 /**
1769 * iwlagn_set_rxon_chain - Set up Rx chain usage in "staging" RXON image
1770 *
1771 * Selects how many and which Rx receivers/antennas/chains to use.
1772 * This should not be used for scan command ... it puts data in wrong place.
1773 */
1774 void iwlagn_set_rxon_chain(struct iwl_priv *priv, struct iwl_rxon_context *ctx)
1775 {
1776 bool is_single = is_single_rx_stream(priv);
1777 bool is_cam = !test_bit(STATUS_POWER_PMI, &priv->status);
1778 u8 idle_rx_cnt, active_rx_cnt, valid_rx_cnt;
1779 u32 active_chains;
1780 u16 rx_chain;
1781
1782 /* Tell uCode which antennas are actually connected.
1783 * Before first association, we assume all antennas are connected.
1784 * Just after first association, iwl_chain_noise_calibration()
1785 * checks which antennas actually *are* connected. */
1786 if (priv->chain_noise_data.active_chains)
1787 active_chains = priv->chain_noise_data.active_chains;
1788 else
1789 active_chains = priv->hw_params.valid_rx_ant;
1790
1791 if (priv->cfg->bt_params &&
1792 priv->cfg->bt_params->advanced_bt_coexist &&
1793 (priv->bt_full_concurrent ||
1794 priv->bt_traffic_load >= IWL_BT_COEX_TRAFFIC_LOAD_HIGH)) {
1795 /*
1796 * only use chain 'A' in bt high traffic load or
1797 * full concurrency mode
1798 */
1799 active_chains = first_antenna(active_chains);
1800 }
1801
1802 rx_chain = active_chains << RXON_RX_CHAIN_VALID_POS;
1803
1804 /* How many receivers should we use? */
1805 active_rx_cnt = iwl_get_active_rx_chain_count(priv);
1806 idle_rx_cnt = iwl_get_idle_rx_chain_count(priv, active_rx_cnt);
1807
1808
1809 /* correct rx chain count according hw settings
1810 * and chain noise calibration
1811 */
1812 valid_rx_cnt = iwl_count_chain_bitmap(active_chains);
1813 if (valid_rx_cnt < active_rx_cnt)
1814 active_rx_cnt = valid_rx_cnt;
1815
1816 if (valid_rx_cnt < idle_rx_cnt)
1817 idle_rx_cnt = valid_rx_cnt;
1818
1819 rx_chain |= active_rx_cnt << RXON_RX_CHAIN_MIMO_CNT_POS;
1820 rx_chain |= idle_rx_cnt << RXON_RX_CHAIN_CNT_POS;
1821
1822 ctx->staging.rx_chain = cpu_to_le16(rx_chain);
1823
1824 if (!is_single && (active_rx_cnt >= IWL_NUM_RX_CHAINS_SINGLE) && is_cam)
1825 ctx->staging.rx_chain |= RXON_RX_CHAIN_MIMO_FORCE_MSK;
1826 else
1827 ctx->staging.rx_chain &= ~RXON_RX_CHAIN_MIMO_FORCE_MSK;
1828
1829 IWL_DEBUG_ASSOC(priv, "rx_chain=0x%X active=%d idle=%d\n",
1830 ctx->staging.rx_chain,
1831 active_rx_cnt, idle_rx_cnt);
1832
1833 WARN_ON(active_rx_cnt == 0 || idle_rx_cnt == 0 ||
1834 active_rx_cnt < idle_rx_cnt);
1835 }
1836
1837 u8 iwl_toggle_tx_ant(struct iwl_priv *priv, u8 ant, u8 valid)
1838 {
1839 int i;
1840 u8 ind = ant;
1841
1842 if (priv->band == IEEE80211_BAND_2GHZ &&
1843 priv->bt_traffic_load >= IWL_BT_COEX_TRAFFIC_LOAD_HIGH)
1844 return 0;
1845
1846 for (i = 0; i < RATE_ANT_NUM - 1; i++) {
1847 ind = (ind + 1) < RATE_ANT_NUM ? ind + 1 : 0;
1848 if (valid & BIT(ind))
1849 return ind;
1850 }
1851 return ant;
1852 }
1853
1854 static const char *get_csr_string(int cmd)
1855 {
1856 switch (cmd) {
1857 IWL_CMD(CSR_HW_IF_CONFIG_REG);
1858 IWL_CMD(CSR_INT_COALESCING);
1859 IWL_CMD(CSR_INT);
1860 IWL_CMD(CSR_INT_MASK);
1861 IWL_CMD(CSR_FH_INT_STATUS);
1862 IWL_CMD(CSR_GPIO_IN);
1863 IWL_CMD(CSR_RESET);
1864 IWL_CMD(CSR_GP_CNTRL);
1865 IWL_CMD(CSR_HW_REV);
1866 IWL_CMD(CSR_EEPROM_REG);
1867 IWL_CMD(CSR_EEPROM_GP);
1868 IWL_CMD(CSR_OTP_GP_REG);
1869 IWL_CMD(CSR_GIO_REG);
1870 IWL_CMD(CSR_GP_UCODE_REG);
1871 IWL_CMD(CSR_GP_DRIVER_REG);
1872 IWL_CMD(CSR_UCODE_DRV_GP1);
1873 IWL_CMD(CSR_UCODE_DRV_GP2);
1874 IWL_CMD(CSR_LED_REG);
1875 IWL_CMD(CSR_DRAM_INT_TBL_REG);
1876 IWL_CMD(CSR_GIO_CHICKEN_BITS);
1877 IWL_CMD(CSR_ANA_PLL_CFG);
1878 IWL_CMD(CSR_HW_REV_WA_REG);
1879 IWL_CMD(CSR_DBG_HPET_MEM_REG);
1880 default:
1881 return "UNKNOWN";
1882 }
1883 }
1884
1885 void iwl_dump_csr(struct iwl_priv *priv)
1886 {
1887 int i;
1888 static const u32 csr_tbl[] = {
1889 CSR_HW_IF_CONFIG_REG,
1890 CSR_INT_COALESCING,
1891 CSR_INT,
1892 CSR_INT_MASK,
1893 CSR_FH_INT_STATUS,
1894 CSR_GPIO_IN,
1895 CSR_RESET,
1896 CSR_GP_CNTRL,
1897 CSR_HW_REV,
1898 CSR_EEPROM_REG,
1899 CSR_EEPROM_GP,
1900 CSR_OTP_GP_REG,
1901 CSR_GIO_REG,
1902 CSR_GP_UCODE_REG,
1903 CSR_GP_DRIVER_REG,
1904 CSR_UCODE_DRV_GP1,
1905 CSR_UCODE_DRV_GP2,
1906 CSR_LED_REG,
1907 CSR_DRAM_INT_TBL_REG,
1908 CSR_GIO_CHICKEN_BITS,
1909 CSR_ANA_PLL_CFG,
1910 CSR_HW_REV_WA_REG,
1911 CSR_DBG_HPET_MEM_REG
1912 };
1913 IWL_ERR(priv, "CSR values:\n");
1914 IWL_ERR(priv, "(2nd byte of CSR_INT_COALESCING is "
1915 "CSR_INT_PERIODIC_REG)\n");
1916 for (i = 0; i < ARRAY_SIZE(csr_tbl); i++) {
1917 IWL_ERR(priv, " %25s: 0X%08x\n",
1918 get_csr_string(csr_tbl[i]),
1919 iwl_read32(priv, csr_tbl[i]));
1920 }
1921 }
1922
1923 static const char *get_fh_string(int cmd)
1924 {
1925 switch (cmd) {
1926 IWL_CMD(FH_RSCSR_CHNL0_STTS_WPTR_REG);
1927 IWL_CMD(FH_RSCSR_CHNL0_RBDCB_BASE_REG);
1928 IWL_CMD(FH_RSCSR_CHNL0_WPTR);
1929 IWL_CMD(FH_MEM_RCSR_CHNL0_CONFIG_REG);
1930 IWL_CMD(FH_MEM_RSSR_SHARED_CTRL_REG);
1931 IWL_CMD(FH_MEM_RSSR_RX_STATUS_REG);
1932 IWL_CMD(FH_MEM_RSSR_RX_ENABLE_ERR_IRQ2DRV);
1933 IWL_CMD(FH_TSSR_TX_STATUS_REG);
1934 IWL_CMD(FH_TSSR_TX_ERROR_REG);
1935 default:
1936 return "UNKNOWN";
1937 }
1938 }
1939
1940 int iwl_dump_fh(struct iwl_priv *priv, char **buf, bool display)
1941 {
1942 int i;
1943 #ifdef CONFIG_IWLWIFI_DEBUG
1944 int pos = 0;
1945 size_t bufsz = 0;
1946 #endif
1947 static const u32 fh_tbl[] = {
1948 FH_RSCSR_CHNL0_STTS_WPTR_REG,
1949 FH_RSCSR_CHNL0_RBDCB_BASE_REG,
1950 FH_RSCSR_CHNL0_WPTR,
1951 FH_MEM_RCSR_CHNL0_CONFIG_REG,
1952 FH_MEM_RSSR_SHARED_CTRL_REG,
1953 FH_MEM_RSSR_RX_STATUS_REG,
1954 FH_MEM_RSSR_RX_ENABLE_ERR_IRQ2DRV,
1955 FH_TSSR_TX_STATUS_REG,
1956 FH_TSSR_TX_ERROR_REG
1957 };
1958 #ifdef CONFIG_IWLWIFI_DEBUG
1959 if (display) {
1960 bufsz = ARRAY_SIZE(fh_tbl) * 48 + 40;
1961 *buf = kmalloc(bufsz, GFP_KERNEL);
1962 if (!*buf)
1963 return -ENOMEM;
1964 pos += scnprintf(*buf + pos, bufsz - pos,
1965 "FH register values:\n");
1966 for (i = 0; i < ARRAY_SIZE(fh_tbl); i++) {
1967 pos += scnprintf(*buf + pos, bufsz - pos,
1968 " %34s: 0X%08x\n",
1969 get_fh_string(fh_tbl[i]),
1970 iwl_read_direct32(priv, fh_tbl[i]));
1971 }
1972 return pos;
1973 }
1974 #endif
1975 IWL_ERR(priv, "FH register values:\n");
1976 for (i = 0; i < ARRAY_SIZE(fh_tbl); i++) {
1977 IWL_ERR(priv, " %34s: 0X%08x\n",
1978 get_fh_string(fh_tbl[i]),
1979 iwl_read_direct32(priv, fh_tbl[i]));
1980 }
1981 return 0;
1982 }
1983
1984 /* notification wait support */
1985 void iwlagn_init_notification_wait(struct iwl_priv *priv,
1986 struct iwl_notification_wait *wait_entry,
1987 u8 cmd,
1988 void (*fn)(struct iwl_priv *priv,
1989 struct iwl_rx_packet *pkt,
1990 void *data),
1991 void *fn_data)
1992 {
1993 wait_entry->fn = fn;
1994 wait_entry->fn_data = fn_data;
1995 wait_entry->cmd = cmd;
1996 wait_entry->triggered = false;
1997 wait_entry->aborted = false;
1998
1999 spin_lock_bh(&priv->notif_wait_lock);
2000 list_add(&wait_entry->list, &priv->notif_waits);
2001 spin_unlock_bh(&priv->notif_wait_lock);
2002 }
2003
2004 int iwlagn_wait_notification(struct iwl_priv *priv,
2005 struct iwl_notification_wait *wait_entry,
2006 unsigned long timeout)
2007 {
2008 int ret;
2009
2010 ret = wait_event_timeout(priv->notif_waitq,
2011 wait_entry->triggered || wait_entry->aborted,
2012 timeout);
2013
2014 spin_lock_bh(&priv->notif_wait_lock);
2015 list_del(&wait_entry->list);
2016 spin_unlock_bh(&priv->notif_wait_lock);
2017
2018 if (wait_entry->aborted)
2019 return -EIO;
2020
2021 /* return value is always >= 0 */
2022 if (ret <= 0)
2023 return -ETIMEDOUT;
2024 return 0;
2025 }
2026
2027 void iwlagn_remove_notification(struct iwl_priv *priv,
2028 struct iwl_notification_wait *wait_entry)
2029 {
2030 spin_lock_bh(&priv->notif_wait_lock);
2031 list_del(&wait_entry->list);
2032 spin_unlock_bh(&priv->notif_wait_lock);
2033 }
This page took 0.073744 seconds and 5 git commands to generate.