iwlagn: clean up & autodetect statistics
[deliverable/linux.git] / drivers / net / wireless / iwlwifi / iwl-commands.h
1 /******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
23 *
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
26 *
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *
31 * BSD LICENSE
32 *
33 * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 *
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 *****************************************************************************/
63 /*
64 * Please use this file (iwl-commands.h) only for uCode API definitions.
65 * Please use iwl-xxxx-hw.h for hardware-related definitions.
66 * Please use iwl-dev.h for driver implementation definitions.
67 */
68
69 #ifndef __iwl_commands_h__
70 #define __iwl_commands_h__
71
72 struct iwl_priv;
73
74 /* uCode version contains 4 values: Major/Minor/API/Serial */
75 #define IWL_UCODE_MAJOR(ver) (((ver) & 0xFF000000) >> 24)
76 #define IWL_UCODE_MINOR(ver) (((ver) & 0x00FF0000) >> 16)
77 #define IWL_UCODE_API(ver) (((ver) & 0x0000FF00) >> 8)
78 #define IWL_UCODE_SERIAL(ver) ((ver) & 0x000000FF)
79
80
81 /* Tx rates */
82 #define IWL_CCK_RATES 4
83 #define IWL_OFDM_RATES 8
84 #define IWL_MAX_RATES (IWL_CCK_RATES + IWL_OFDM_RATES)
85
86 enum {
87 REPLY_ALIVE = 0x1,
88 REPLY_ERROR = 0x2,
89
90 /* RXON and QOS commands */
91 REPLY_RXON = 0x10,
92 REPLY_RXON_ASSOC = 0x11,
93 REPLY_QOS_PARAM = 0x13,
94 REPLY_RXON_TIMING = 0x14,
95
96 /* Multi-Station support */
97 REPLY_ADD_STA = 0x18,
98 REPLY_REMOVE_STA = 0x19,
99 REPLY_REMOVE_ALL_STA = 0x1a, /* not used */
100 REPLY_TXFIFO_FLUSH = 0x1e,
101
102 /* Security */
103 REPLY_WEPKEY = 0x20,
104
105 /* RX, TX, LEDs */
106 REPLY_TX = 0x1c,
107 REPLY_LEDS_CMD = 0x48,
108 REPLY_TX_LINK_QUALITY_CMD = 0x4e, /* for 4965 and up */
109
110 /* WiMAX coexistence */
111 COEX_PRIORITY_TABLE_CMD = 0x5a, /* for 5000 series and up */
112 COEX_MEDIUM_NOTIFICATION = 0x5b,
113 COEX_EVENT_CMD = 0x5c,
114
115 /* Calibration */
116 TEMPERATURE_NOTIFICATION = 0x62,
117 CALIBRATION_CFG_CMD = 0x65,
118 CALIBRATION_RES_NOTIFICATION = 0x66,
119 CALIBRATION_COMPLETE_NOTIFICATION = 0x67,
120
121 /* 802.11h related */
122 REPLY_QUIET_CMD = 0x71, /* not used */
123 REPLY_CHANNEL_SWITCH = 0x72,
124 CHANNEL_SWITCH_NOTIFICATION = 0x73,
125 REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
126 SPECTRUM_MEASURE_NOTIFICATION = 0x75,
127
128 /* Power Management */
129 POWER_TABLE_CMD = 0x77,
130 PM_SLEEP_NOTIFICATION = 0x7A,
131 PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
132
133 /* Scan commands and notifications */
134 REPLY_SCAN_CMD = 0x80,
135 REPLY_SCAN_ABORT_CMD = 0x81,
136 SCAN_START_NOTIFICATION = 0x82,
137 SCAN_RESULTS_NOTIFICATION = 0x83,
138 SCAN_COMPLETE_NOTIFICATION = 0x84,
139
140 /* IBSS/AP commands */
141 BEACON_NOTIFICATION = 0x90,
142 REPLY_TX_BEACON = 0x91,
143 WHO_IS_AWAKE_NOTIFICATION = 0x94, /* not used */
144
145 /* Miscellaneous commands */
146 REPLY_TX_POWER_DBM_CMD = 0x95,
147 QUIET_NOTIFICATION = 0x96, /* not used */
148 REPLY_TX_PWR_TABLE_CMD = 0x97,
149 REPLY_TX_POWER_DBM_CMD_V1 = 0x98, /* old version of API */
150 TX_ANT_CONFIGURATION_CMD = 0x98,
151 MEASURE_ABORT_NOTIFICATION = 0x99, /* not used */
152
153 /* Bluetooth device coexistence config command */
154 REPLY_BT_CONFIG = 0x9b,
155
156 /* Statistics */
157 REPLY_STATISTICS_CMD = 0x9c,
158 STATISTICS_NOTIFICATION = 0x9d,
159
160 /* RF-KILL commands and notifications */
161 REPLY_CARD_STATE_CMD = 0xa0,
162 CARD_STATE_NOTIFICATION = 0xa1,
163
164 /* Missed beacons notification */
165 MISSED_BEACONS_NOTIFICATION = 0xa2,
166
167 REPLY_CT_KILL_CONFIG_CMD = 0xa4,
168 SENSITIVITY_CMD = 0xa8,
169 REPLY_PHY_CALIBRATION_CMD = 0xb0,
170 REPLY_RX_PHY_CMD = 0xc0,
171 REPLY_RX_MPDU_CMD = 0xc1,
172 REPLY_RX = 0xc3,
173 REPLY_COMPRESSED_BA = 0xc5,
174
175 /* BT Coex */
176 REPLY_BT_COEX_PRIO_TABLE = 0xcc,
177 REPLY_BT_COEX_PROT_ENV = 0xcd,
178 REPLY_BT_COEX_PROFILE_NOTIF = 0xce,
179
180 /* PAN commands */
181 REPLY_WIPAN_PARAMS = 0xb2,
182 REPLY_WIPAN_RXON = 0xb3, /* use REPLY_RXON structure */
183 REPLY_WIPAN_RXON_TIMING = 0xb4, /* use REPLY_RXON_TIMING structure */
184 REPLY_WIPAN_RXON_ASSOC = 0xb6, /* use REPLY_RXON_ASSOC structure */
185 REPLY_WIPAN_QOS_PARAM = 0xb7, /* use REPLY_QOS_PARAM structure */
186 REPLY_WIPAN_WEPKEY = 0xb8, /* use REPLY_WEPKEY structure */
187 REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9,
188 REPLY_WIPAN_NOA_NOTIFICATION = 0xbc,
189 REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd,
190
191 REPLY_MAX = 0xff
192 };
193
194 /******************************************************************************
195 * (0)
196 * Commonly used structures and definitions:
197 * Command header, rate_n_flags, txpower
198 *
199 *****************************************************************************/
200
201 /* iwl_cmd_header flags value */
202 #define IWL_CMD_FAILED_MSK 0x40
203
204 #define SEQ_TO_QUEUE(s) (((s) >> 8) & 0x1f)
205 #define QUEUE_TO_SEQ(q) (((q) & 0x1f) << 8)
206 #define SEQ_TO_INDEX(s) ((s) & 0xff)
207 #define INDEX_TO_SEQ(i) ((i) & 0xff)
208 #define SEQ_HUGE_FRAME cpu_to_le16(0x4000)
209 #define SEQ_RX_FRAME cpu_to_le16(0x8000)
210
211 /**
212 * struct iwl_cmd_header
213 *
214 * This header format appears in the beginning of each command sent from the
215 * driver, and each response/notification received from uCode.
216 */
217 struct iwl_cmd_header {
218 u8 cmd; /* Command ID: REPLY_RXON, etc. */
219 u8 flags; /* 0:5 reserved, 6 abort, 7 internal */
220 /*
221 * The driver sets up the sequence number to values of its choosing.
222 * uCode does not use this value, but passes it back to the driver
223 * when sending the response to each driver-originated command, so
224 * the driver can match the response to the command. Since the values
225 * don't get used by uCode, the driver may set up an arbitrary format.
226 *
227 * There is one exception: uCode sets bit 15 when it originates
228 * the response/notification, i.e. when the response/notification
229 * is not a direct response to a command sent by the driver. For
230 * example, uCode issues REPLY_RX when it sends a received frame
231 * to the driver; it is not a direct response to any driver command.
232 *
233 * The Linux driver uses the following format:
234 *
235 * 0:7 tfd index - position within TX queue
236 * 8:12 TX queue id
237 * 13 reserved
238 * 14 huge - driver sets this to indicate command is in the
239 * 'huge' storage at the end of the command buffers
240 * 15 unsolicited RX or uCode-originated notification
241 */
242 __le16 sequence;
243
244 /* command or response/notification data follows immediately */
245 u8 data[0];
246 } __packed;
247
248
249 /**
250 * iwlagn rate_n_flags bit fields
251 *
252 * rate_n_flags format is used in following iwlagn commands:
253 * REPLY_RX (response only)
254 * REPLY_RX_MPDU (response only)
255 * REPLY_TX (both command and response)
256 * REPLY_TX_LINK_QUALITY_CMD
257 *
258 * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
259 * 2-0: 0) 6 Mbps
260 * 1) 12 Mbps
261 * 2) 18 Mbps
262 * 3) 24 Mbps
263 * 4) 36 Mbps
264 * 5) 48 Mbps
265 * 6) 54 Mbps
266 * 7) 60 Mbps
267 *
268 * 4-3: 0) Single stream (SISO)
269 * 1) Dual stream (MIMO)
270 * 2) Triple stream (MIMO)
271 *
272 * 5: Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data
273 *
274 * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
275 * 3-0: 0xD) 6 Mbps
276 * 0xF) 9 Mbps
277 * 0x5) 12 Mbps
278 * 0x7) 18 Mbps
279 * 0x9) 24 Mbps
280 * 0xB) 36 Mbps
281 * 0x1) 48 Mbps
282 * 0x3) 54 Mbps
283 *
284 * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
285 * 6-0: 10) 1 Mbps
286 * 20) 2 Mbps
287 * 55) 5.5 Mbps
288 * 110) 11 Mbps
289 */
290 #define RATE_MCS_CODE_MSK 0x7
291 #define RATE_MCS_SPATIAL_POS 3
292 #define RATE_MCS_SPATIAL_MSK 0x18
293 #define RATE_MCS_HT_DUP_POS 5
294 #define RATE_MCS_HT_DUP_MSK 0x20
295 /* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */
296 #define RATE_MCS_RATE_MSK 0xff
297
298 /* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
299 #define RATE_MCS_FLAGS_POS 8
300 #define RATE_MCS_HT_POS 8
301 #define RATE_MCS_HT_MSK 0x100
302
303 /* Bit 9: (1) CCK, (0) OFDM. HT (bit 8) must be "0" for this bit to be valid */
304 #define RATE_MCS_CCK_POS 9
305 #define RATE_MCS_CCK_MSK 0x200
306
307 /* Bit 10: (1) Use Green Field preamble */
308 #define RATE_MCS_GF_POS 10
309 #define RATE_MCS_GF_MSK 0x400
310
311 /* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */
312 #define RATE_MCS_HT40_POS 11
313 #define RATE_MCS_HT40_MSK 0x800
314
315 /* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */
316 #define RATE_MCS_DUP_POS 12
317 #define RATE_MCS_DUP_MSK 0x1000
318
319 /* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
320 #define RATE_MCS_SGI_POS 13
321 #define RATE_MCS_SGI_MSK 0x2000
322
323 /**
324 * rate_n_flags Tx antenna masks
325 * 4965 has 2 transmitters
326 * 5100 has 1 transmitter B
327 * 5150 has 1 transmitter A
328 * 5300 has 3 transmitters
329 * 5350 has 3 transmitters
330 * bit14:16
331 */
332 #define RATE_MCS_ANT_POS 14
333 #define RATE_MCS_ANT_A_MSK 0x04000
334 #define RATE_MCS_ANT_B_MSK 0x08000
335 #define RATE_MCS_ANT_C_MSK 0x10000
336 #define RATE_MCS_ANT_AB_MSK (RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK)
337 #define RATE_MCS_ANT_ABC_MSK (RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK)
338 #define RATE_ANT_NUM 3
339
340 #define POWER_TABLE_NUM_ENTRIES 33
341 #define POWER_TABLE_NUM_HT_OFDM_ENTRIES 32
342 #define POWER_TABLE_CCK_ENTRY 32
343
344 #define IWL_PWR_NUM_HT_OFDM_ENTRIES 24
345 #define IWL_PWR_CCK_ENTRIES 2
346
347 /**
348 * struct tx_power_dual_stream
349 *
350 * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
351 *
352 * Same format as iwl_tx_power_dual_stream, but __le32
353 */
354 struct tx_power_dual_stream {
355 __le32 dw;
356 } __packed;
357
358 /**
359 * Command REPLY_TX_POWER_DBM_CMD = 0x98
360 * struct iwlagn_tx_power_dbm_cmd
361 */
362 #define IWLAGN_TX_POWER_AUTO 0x7f
363 #define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6)
364
365 struct iwlagn_tx_power_dbm_cmd {
366 s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
367 u8 flags;
368 s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
369 u8 reserved;
370 } __packed;
371
372 /**
373 * Command TX_ANT_CONFIGURATION_CMD = 0x98
374 * This command is used to configure valid Tx antenna.
375 * By default uCode concludes the valid antenna according to the radio flavor.
376 * This command enables the driver to override/modify this conclusion.
377 */
378 struct iwl_tx_ant_config_cmd {
379 __le32 valid;
380 } __packed;
381
382 /******************************************************************************
383 * (0a)
384 * Alive and Error Commands & Responses:
385 *
386 *****************************************************************************/
387
388 #define UCODE_VALID_OK cpu_to_le32(0x1)
389 #define INITIALIZE_SUBTYPE (9)
390
391 /**
392 * REPLY_ALIVE = 0x1 (response only, not a command)
393 *
394 * uCode issues this "alive" notification once the runtime image is ready
395 * to receive commands from the driver. This is the *second* "alive"
396 * notification that the driver will receive after rebooting uCode;
397 * this "alive" is indicated by subtype field != 9.
398 *
399 * See comments documenting "BSM" (bootstrap state machine).
400 *
401 * This response includes two pointers to structures within the device's
402 * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
403 *
404 * 1) log_event_table_ptr indicates base of the event log. This traces
405 * a 256-entry history of uCode execution within a circular buffer.
406 * Its header format is:
407 *
408 * __le32 log_size; log capacity (in number of entries)
409 * __le32 type; (1) timestamp with each entry, (0) no timestamp
410 * __le32 wraps; # times uCode has wrapped to top of circular buffer
411 * __le32 write_index; next circular buffer entry that uCode would fill
412 *
413 * The header is followed by the circular buffer of log entries. Entries
414 * with timestamps have the following format:
415 *
416 * __le32 event_id; range 0 - 1500
417 * __le32 timestamp; low 32 bits of TSF (of network, if associated)
418 * __le32 data; event_id-specific data value
419 *
420 * Entries without timestamps contain only event_id and data.
421 *
422 *
423 * 2) error_event_table_ptr indicates base of the error log. This contains
424 * information about any uCode error that occurs. For agn, the format
425 * of the error log is:
426 *
427 * __le32 valid; (nonzero) valid, (0) log is empty
428 * __le32 error_id; type of error
429 * __le32 pc; program counter
430 * __le32 blink1; branch link
431 * __le32 blink2; branch link
432 * __le32 ilink1; interrupt link
433 * __le32 ilink2; interrupt link
434 * __le32 data1; error-specific data
435 * __le32 data2; error-specific data
436 * __le32 line; source code line of error
437 * __le32 bcon_time; beacon timer
438 * __le32 tsf_low; network timestamp function timer
439 * __le32 tsf_hi; network timestamp function timer
440 * __le32 gp1; GP1 timer register
441 * __le32 gp2; GP2 timer register
442 * __le32 gp3; GP3 timer register
443 * __le32 ucode_ver; uCode version
444 * __le32 hw_ver; HW Silicon version
445 * __le32 brd_ver; HW board version
446 * __le32 log_pc; log program counter
447 * __le32 frame_ptr; frame pointer
448 * __le32 stack_ptr; stack pointer
449 * __le32 hcmd; last host command
450 * __le32 isr0; isr status register LMPM_NIC_ISR0: rxtx_flag
451 * __le32 isr1; isr status register LMPM_NIC_ISR1: host_flag
452 * __le32 isr2; isr status register LMPM_NIC_ISR2: enc_flag
453 * __le32 isr3; isr status register LMPM_NIC_ISR3: time_flag
454 * __le32 isr4; isr status register LMPM_NIC_ISR4: wico interrupt
455 * __le32 isr_pref; isr status register LMPM_NIC_PREF_STAT
456 * __le32 wait_event; wait event() caller address
457 * __le32 l2p_control; L2pControlField
458 * __le32 l2p_duration; L2pDurationField
459 * __le32 l2p_mhvalid; L2pMhValidBits
460 * __le32 l2p_addr_match; L2pAddrMatchStat
461 * __le32 lmpm_pmg_sel; indicate which clocks are turned on (LMPM_PMG_SEL)
462 * __le32 u_timestamp; indicate when the date and time of the compilation
463 * __le32 reserved;
464 *
465 * The Linux driver can print both logs to the system log when a uCode error
466 * occurs.
467 */
468 struct iwl_alive_resp {
469 u8 ucode_minor;
470 u8 ucode_major;
471 __le16 reserved1;
472 u8 sw_rev[8];
473 u8 ver_type;
474 u8 ver_subtype; /* not "9" for runtime alive */
475 __le16 reserved2;
476 __le32 log_event_table_ptr; /* SRAM address for event log */
477 __le32 error_event_table_ptr; /* SRAM address for error log */
478 __le32 timestamp;
479 __le32 is_valid;
480 } __packed;
481
482 /*
483 * REPLY_ERROR = 0x2 (response only, not a command)
484 */
485 struct iwl_error_resp {
486 __le32 error_type;
487 u8 cmd_id;
488 u8 reserved1;
489 __le16 bad_cmd_seq_num;
490 __le32 error_info;
491 __le64 timestamp;
492 } __packed;
493
494 /******************************************************************************
495 * (1)
496 * RXON Commands & Responses:
497 *
498 *****************************************************************************/
499
500 /*
501 * Rx config defines & structure
502 */
503 /* rx_config device types */
504 enum {
505 RXON_DEV_TYPE_AP = 1,
506 RXON_DEV_TYPE_ESS = 3,
507 RXON_DEV_TYPE_IBSS = 4,
508 RXON_DEV_TYPE_SNIFFER = 6,
509 RXON_DEV_TYPE_CP = 7,
510 RXON_DEV_TYPE_2STA = 8,
511 RXON_DEV_TYPE_P2P = 9,
512 };
513
514
515 #define RXON_RX_CHAIN_DRIVER_FORCE_MSK cpu_to_le16(0x1 << 0)
516 #define RXON_RX_CHAIN_DRIVER_FORCE_POS (0)
517 #define RXON_RX_CHAIN_VALID_MSK cpu_to_le16(0x7 << 1)
518 #define RXON_RX_CHAIN_VALID_POS (1)
519 #define RXON_RX_CHAIN_FORCE_SEL_MSK cpu_to_le16(0x7 << 4)
520 #define RXON_RX_CHAIN_FORCE_SEL_POS (4)
521 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK cpu_to_le16(0x7 << 7)
522 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS (7)
523 #define RXON_RX_CHAIN_CNT_MSK cpu_to_le16(0x3 << 10)
524 #define RXON_RX_CHAIN_CNT_POS (10)
525 #define RXON_RX_CHAIN_MIMO_CNT_MSK cpu_to_le16(0x3 << 12)
526 #define RXON_RX_CHAIN_MIMO_CNT_POS (12)
527 #define RXON_RX_CHAIN_MIMO_FORCE_MSK cpu_to_le16(0x1 << 14)
528 #define RXON_RX_CHAIN_MIMO_FORCE_POS (14)
529
530 /* rx_config flags */
531 /* band & modulation selection */
532 #define RXON_FLG_BAND_24G_MSK cpu_to_le32(1 << 0)
533 #define RXON_FLG_CCK_MSK cpu_to_le32(1 << 1)
534 /* auto detection enable */
535 #define RXON_FLG_AUTO_DETECT_MSK cpu_to_le32(1 << 2)
536 /* TGg protection when tx */
537 #define RXON_FLG_TGG_PROTECT_MSK cpu_to_le32(1 << 3)
538 /* cck short slot & preamble */
539 #define RXON_FLG_SHORT_SLOT_MSK cpu_to_le32(1 << 4)
540 #define RXON_FLG_SHORT_PREAMBLE_MSK cpu_to_le32(1 << 5)
541 /* antenna selection */
542 #define RXON_FLG_DIS_DIV_MSK cpu_to_le32(1 << 7)
543 #define RXON_FLG_ANT_SEL_MSK cpu_to_le32(0x0f00)
544 #define RXON_FLG_ANT_A_MSK cpu_to_le32(1 << 8)
545 #define RXON_FLG_ANT_B_MSK cpu_to_le32(1 << 9)
546 /* radar detection enable */
547 #define RXON_FLG_RADAR_DETECT_MSK cpu_to_le32(1 << 12)
548 #define RXON_FLG_TGJ_NARROW_BAND_MSK cpu_to_le32(1 << 13)
549 /* rx response to host with 8-byte TSF
550 * (according to ON_AIR deassertion) */
551 #define RXON_FLG_TSF2HOST_MSK cpu_to_le32(1 << 15)
552
553
554 /* HT flags */
555 #define RXON_FLG_CTRL_CHANNEL_LOC_POS (22)
556 #define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK cpu_to_le32(0x1 << 22)
557
558 #define RXON_FLG_HT_OPERATING_MODE_POS (23)
559
560 #define RXON_FLG_HT_PROT_MSK cpu_to_le32(0x1 << 23)
561 #define RXON_FLG_HT40_PROT_MSK cpu_to_le32(0x2 << 23)
562
563 #define RXON_FLG_CHANNEL_MODE_POS (25)
564 #define RXON_FLG_CHANNEL_MODE_MSK cpu_to_le32(0x3 << 25)
565
566 /* channel mode */
567 enum {
568 CHANNEL_MODE_LEGACY = 0,
569 CHANNEL_MODE_PURE_40 = 1,
570 CHANNEL_MODE_MIXED = 2,
571 CHANNEL_MODE_RESERVED = 3,
572 };
573 #define RXON_FLG_CHANNEL_MODE_LEGACY cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS)
574 #define RXON_FLG_CHANNEL_MODE_PURE_40 cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS)
575 #define RXON_FLG_CHANNEL_MODE_MIXED cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS)
576
577 /* CTS to self (if spec allows) flag */
578 #define RXON_FLG_SELF_CTS_EN cpu_to_le32(0x1<<30)
579
580 /* rx_config filter flags */
581 /* accept all data frames */
582 #define RXON_FILTER_PROMISC_MSK cpu_to_le32(1 << 0)
583 /* pass control & management to host */
584 #define RXON_FILTER_CTL2HOST_MSK cpu_to_le32(1 << 1)
585 /* accept multi-cast */
586 #define RXON_FILTER_ACCEPT_GRP_MSK cpu_to_le32(1 << 2)
587 /* don't decrypt uni-cast frames */
588 #define RXON_FILTER_DIS_DECRYPT_MSK cpu_to_le32(1 << 3)
589 /* don't decrypt multi-cast frames */
590 #define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
591 /* STA is associated */
592 #define RXON_FILTER_ASSOC_MSK cpu_to_le32(1 << 5)
593 /* transfer to host non bssid beacons in associated state */
594 #define RXON_FILTER_BCON_AWARE_MSK cpu_to_le32(1 << 6)
595
596 /**
597 * REPLY_RXON = 0x10 (command, has simple generic response)
598 *
599 * RXON tunes the radio tuner to a service channel, and sets up a number
600 * of parameters that are used primarily for Rx, but also for Tx operations.
601 *
602 * NOTE: When tuning to a new channel, driver must set the
603 * RXON_FILTER_ASSOC_MSK to 0. This will clear station-dependent
604 * info within the device, including the station tables, tx retry
605 * rate tables, and txpower tables. Driver must build a new station
606 * table and txpower table before transmitting anything on the RXON
607 * channel.
608 *
609 * NOTE: All RXONs wipe clean the internal txpower table. Driver must
610 * issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
611 * regardless of whether RXON_FILTER_ASSOC_MSK is set.
612 */
613
614 struct iwl_rxon_cmd {
615 u8 node_addr[6];
616 __le16 reserved1;
617 u8 bssid_addr[6];
618 __le16 reserved2;
619 u8 wlap_bssid_addr[6];
620 __le16 reserved3;
621 u8 dev_type;
622 u8 air_propagation;
623 __le16 rx_chain;
624 u8 ofdm_basic_rates;
625 u8 cck_basic_rates;
626 __le16 assoc_id;
627 __le32 flags;
628 __le32 filter_flags;
629 __le16 channel;
630 u8 ofdm_ht_single_stream_basic_rates;
631 u8 ofdm_ht_dual_stream_basic_rates;
632 u8 ofdm_ht_triple_stream_basic_rates;
633 u8 reserved5;
634 __le16 acquisition_data;
635 __le16 reserved6;
636 } __packed;
637
638 /*
639 * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
640 */
641 struct iwl5000_rxon_assoc_cmd {
642 __le32 flags;
643 __le32 filter_flags;
644 u8 ofdm_basic_rates;
645 u8 cck_basic_rates;
646 __le16 reserved1;
647 u8 ofdm_ht_single_stream_basic_rates;
648 u8 ofdm_ht_dual_stream_basic_rates;
649 u8 ofdm_ht_triple_stream_basic_rates;
650 u8 reserved2;
651 __le16 rx_chain_select_flags;
652 __le16 acquisition_data;
653 __le32 reserved3;
654 } __packed;
655
656 #define IWL_CONN_MAX_LISTEN_INTERVAL 10
657 #define IWL_MAX_UCODE_BEACON_INTERVAL 4 /* 4096 */
658 #define IWL39_MAX_UCODE_BEACON_INTERVAL 1 /* 1024 */
659
660 /*
661 * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
662 */
663 struct iwl_rxon_time_cmd {
664 __le64 timestamp;
665 __le16 beacon_interval;
666 __le16 atim_window;
667 __le32 beacon_init_val;
668 __le16 listen_interval;
669 u8 dtim_period;
670 u8 delta_cp_bss_tbtts;
671 } __packed;
672
673 /*
674 * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
675 */
676 /**
677 * struct iwl5000_channel_switch_cmd
678 * @band: 0- 5.2GHz, 1- 2.4GHz
679 * @expect_beacon: 0- resume transmits after channel switch
680 * 1- wait for beacon to resume transmits
681 * @channel: new channel number
682 * @rxon_flags: Rx on flags
683 * @rxon_filter_flags: filtering parameters
684 * @switch_time: switch time in extended beacon format
685 * @reserved: reserved bytes
686 */
687 struct iwl5000_channel_switch_cmd {
688 u8 band;
689 u8 expect_beacon;
690 __le16 channel;
691 __le32 rxon_flags;
692 __le32 rxon_filter_flags;
693 __le32 switch_time;
694 __le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
695 } __packed;
696
697 /**
698 * struct iwl6000_channel_switch_cmd
699 * @band: 0- 5.2GHz, 1- 2.4GHz
700 * @expect_beacon: 0- resume transmits after channel switch
701 * 1- wait for beacon to resume transmits
702 * @channel: new channel number
703 * @rxon_flags: Rx on flags
704 * @rxon_filter_flags: filtering parameters
705 * @switch_time: switch time in extended beacon format
706 * @reserved: reserved bytes
707 */
708 struct iwl6000_channel_switch_cmd {
709 u8 band;
710 u8 expect_beacon;
711 __le16 channel;
712 __le32 rxon_flags;
713 __le32 rxon_filter_flags;
714 __le32 switch_time;
715 __le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
716 } __packed;
717
718 /*
719 * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
720 */
721 struct iwl_csa_notification {
722 __le16 band;
723 __le16 channel;
724 __le32 status; /* 0 - OK, 1 - fail */
725 } __packed;
726
727 /******************************************************************************
728 * (2)
729 * Quality-of-Service (QOS) Commands & Responses:
730 *
731 *****************************************************************************/
732
733 /**
734 * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
735 * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
736 *
737 * @cw_min: Contention window, start value in numbers of slots.
738 * Should be a power-of-2, minus 1. Device's default is 0x0f.
739 * @cw_max: Contention window, max value in numbers of slots.
740 * Should be a power-of-2, minus 1. Device's default is 0x3f.
741 * @aifsn: Number of slots in Arbitration Interframe Space (before
742 * performing random backoff timing prior to Tx). Device default 1.
743 * @edca_txop: Length of Tx opportunity, in uSecs. Device default is 0.
744 *
745 * Device will automatically increase contention window by (2*CW) + 1 for each
746 * transmission retry. Device uses cw_max as a bit mask, ANDed with new CW
747 * value, to cap the CW value.
748 */
749 struct iwl_ac_qos {
750 __le16 cw_min;
751 __le16 cw_max;
752 u8 aifsn;
753 u8 reserved1;
754 __le16 edca_txop;
755 } __packed;
756
757 /* QoS flags defines */
758 #define QOS_PARAM_FLG_UPDATE_EDCA_MSK cpu_to_le32(0x01)
759 #define QOS_PARAM_FLG_TGN_MSK cpu_to_le32(0x02)
760 #define QOS_PARAM_FLG_TXOP_TYPE_MSK cpu_to_le32(0x10)
761
762 /* Number of Access Categories (AC) (EDCA), queues 0..3 */
763 #define AC_NUM 4
764
765 /*
766 * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
767 *
768 * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
769 * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
770 */
771 struct iwl_qosparam_cmd {
772 __le32 qos_flags;
773 struct iwl_ac_qos ac[AC_NUM];
774 } __packed;
775
776 /******************************************************************************
777 * (3)
778 * Add/Modify Stations Commands & Responses:
779 *
780 *****************************************************************************/
781 /*
782 * Multi station support
783 */
784
785 /* Special, dedicated locations within device's station table */
786 #define IWL_AP_ID 0
787 #define IWL_AP_ID_PAN 1
788 #define IWL_STA_ID 2
789 #define IWLAGN_PAN_BCAST_ID 14
790 #define IWLAGN_BROADCAST_ID 15
791 #define IWLAGN_STATION_COUNT 16
792
793 #define IWL_INVALID_STATION 255
794
795 #define STA_FLG_TX_RATE_MSK cpu_to_le32(1 << 2)
796 #define STA_FLG_PWR_SAVE_MSK cpu_to_le32(1 << 8)
797 #define STA_FLG_PAN_STATION cpu_to_le32(1 << 13)
798 #define STA_FLG_RTS_MIMO_PROT_MSK cpu_to_le32(1 << 17)
799 #define STA_FLG_AGG_MPDU_8US_MSK cpu_to_le32(1 << 18)
800 #define STA_FLG_MAX_AGG_SIZE_POS (19)
801 #define STA_FLG_MAX_AGG_SIZE_MSK cpu_to_le32(3 << 19)
802 #define STA_FLG_HT40_EN_MSK cpu_to_le32(1 << 21)
803 #define STA_FLG_MIMO_DIS_MSK cpu_to_le32(1 << 22)
804 #define STA_FLG_AGG_MPDU_DENSITY_POS (23)
805 #define STA_FLG_AGG_MPDU_DENSITY_MSK cpu_to_le32(7 << 23)
806
807 /* Use in mode field. 1: modify existing entry, 0: add new station entry */
808 #define STA_CONTROL_MODIFY_MSK 0x01
809
810 /* key flags __le16*/
811 #define STA_KEY_FLG_ENCRYPT_MSK cpu_to_le16(0x0007)
812 #define STA_KEY_FLG_NO_ENC cpu_to_le16(0x0000)
813 #define STA_KEY_FLG_WEP cpu_to_le16(0x0001)
814 #define STA_KEY_FLG_CCMP cpu_to_le16(0x0002)
815 #define STA_KEY_FLG_TKIP cpu_to_le16(0x0003)
816
817 #define STA_KEY_FLG_KEYID_POS 8
818 #define STA_KEY_FLG_INVALID cpu_to_le16(0x0800)
819 /* wep key is either from global key (0) or from station info array (1) */
820 #define STA_KEY_FLG_MAP_KEY_MSK cpu_to_le16(0x0008)
821
822 /* wep key in STA: 5-bytes (0) or 13-bytes (1) */
823 #define STA_KEY_FLG_KEY_SIZE_MSK cpu_to_le16(0x1000)
824 #define STA_KEY_MULTICAST_MSK cpu_to_le16(0x4000)
825 #define STA_KEY_MAX_NUM 8
826 #define STA_KEY_MAX_NUM_PAN 16
827
828 /* Flags indicate whether to modify vs. don't change various station params */
829 #define STA_MODIFY_KEY_MASK 0x01
830 #define STA_MODIFY_TID_DISABLE_TX 0x02
831 #define STA_MODIFY_TX_RATE_MSK 0x04
832 #define STA_MODIFY_ADDBA_TID_MSK 0x08
833 #define STA_MODIFY_DELBA_TID_MSK 0x10
834 #define STA_MODIFY_SLEEP_TX_COUNT_MSK 0x20
835
836 /* Receiver address (actually, Rx station's index into station table),
837 * combined with Traffic ID (QOS priority), in format used by Tx Scheduler */
838 #define BUILD_RAxTID(sta_id, tid) (((sta_id) << 4) + (tid))
839
840 /* agn */
841 struct iwl_keyinfo {
842 __le16 key_flags;
843 u8 tkip_rx_tsc_byte2; /* TSC[2] for key mix ph1 detection */
844 u8 reserved1;
845 __le16 tkip_rx_ttak[5]; /* 10-byte unicast TKIP TTAK */
846 u8 key_offset;
847 u8 reserved2;
848 u8 key[16]; /* 16-byte unicast decryption key */
849 __le64 tx_secur_seq_cnt;
850 __le64 hw_tkip_mic_rx_key;
851 __le64 hw_tkip_mic_tx_key;
852 } __packed;
853
854 /**
855 * struct sta_id_modify
856 * @addr[ETH_ALEN]: station's MAC address
857 * @sta_id: index of station in uCode's station table
858 * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
859 *
860 * Driver selects unused table index when adding new station,
861 * or the index to a pre-existing station entry when modifying that station.
862 * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
863 *
864 * modify_mask flags select which parameters to modify vs. leave alone.
865 */
866 struct sta_id_modify {
867 u8 addr[ETH_ALEN];
868 __le16 reserved1;
869 u8 sta_id;
870 u8 modify_mask;
871 __le16 reserved2;
872 } __packed;
873
874 /*
875 * REPLY_ADD_STA = 0x18 (command)
876 *
877 * The device contains an internal table of per-station information,
878 * with info on security keys, aggregation parameters, and Tx rates for
879 * initial Tx attempt and any retries (agn devices uses
880 * REPLY_TX_LINK_QUALITY_CMD,
881 *
882 * REPLY_ADD_STA sets up the table entry for one station, either creating
883 * a new entry, or modifying a pre-existing one.
884 *
885 * NOTE: RXON command (without "associated" bit set) wipes the station table
886 * clean. Moving into RF_KILL state does this also. Driver must set up
887 * new station table before transmitting anything on the RXON channel
888 * (except active scans or active measurements; those commands carry
889 * their own txpower/rate setup data).
890 *
891 * When getting started on a new channel, driver must set up the
892 * IWL_BROADCAST_ID entry (last entry in the table). For a client
893 * station in a BSS, once an AP is selected, driver sets up the AP STA
894 * in the IWL_AP_ID entry (1st entry in the table). BROADCAST and AP
895 * are all that are needed for a BSS client station. If the device is
896 * used as AP, or in an IBSS network, driver must set up station table
897 * entries for all STAs in network, starting with index IWL_STA_ID.
898 */
899
900 struct iwl_addsta_cmd {
901 u8 mode; /* 1: modify existing, 0: add new station */
902 u8 reserved[3];
903 struct sta_id_modify sta;
904 struct iwl_keyinfo key;
905 __le32 station_flags; /* STA_FLG_* */
906 __le32 station_flags_msk; /* STA_FLG_* */
907
908 /* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
909 * corresponding to bit (e.g. bit 5 controls TID 5).
910 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
911 __le16 tid_disable_tx;
912
913 __le16 rate_n_flags; /* 3945 only */
914
915 /* TID for which to add block-ack support.
916 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
917 u8 add_immediate_ba_tid;
918
919 /* TID for which to remove block-ack support.
920 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
921 u8 remove_immediate_ba_tid;
922
923 /* Starting Sequence Number for added block-ack support.
924 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
925 __le16 add_immediate_ba_ssn;
926
927 /*
928 * Number of packets OK to transmit to station even though
929 * it is asleep -- used to synchronise PS-poll and u-APSD
930 * responses while ucode keeps track of STA sleep state.
931 */
932 __le16 sleep_tx_count;
933
934 __le16 reserved2;
935 } __packed;
936
937
938 #define ADD_STA_SUCCESS_MSK 0x1
939 #define ADD_STA_NO_ROOM_IN_TABLE 0x2
940 #define ADD_STA_NO_BLOCK_ACK_RESOURCE 0x4
941 #define ADD_STA_MODIFY_NON_EXIST_STA 0x8
942 /*
943 * REPLY_ADD_STA = 0x18 (response)
944 */
945 struct iwl_add_sta_resp {
946 u8 status; /* ADD_STA_* */
947 } __packed;
948
949 #define REM_STA_SUCCESS_MSK 0x1
950 /*
951 * REPLY_REM_STA = 0x19 (response)
952 */
953 struct iwl_rem_sta_resp {
954 u8 status;
955 } __packed;
956
957 /*
958 * REPLY_REM_STA = 0x19 (command)
959 */
960 struct iwl_rem_sta_cmd {
961 u8 num_sta; /* number of removed stations */
962 u8 reserved[3];
963 u8 addr[ETH_ALEN]; /* MAC addr of the first station */
964 u8 reserved2[2];
965 } __packed;
966
967 #define IWL_TX_FIFO_BK_MSK cpu_to_le32(BIT(0))
968 #define IWL_TX_FIFO_BE_MSK cpu_to_le32(BIT(1))
969 #define IWL_TX_FIFO_VI_MSK cpu_to_le32(BIT(2))
970 #define IWL_TX_FIFO_VO_MSK cpu_to_le32(BIT(3))
971 #define IWL_AGG_TX_QUEUE_MSK cpu_to_le32(0xffc00)
972
973 #define IWL_DROP_SINGLE 0
974 #define IWL_DROP_SELECTED 1
975 #define IWL_DROP_ALL 2
976
977 /*
978 * REPLY_TXFIFO_FLUSH = 0x1e(command and response)
979 *
980 * When using full FIFO flush this command checks the scheduler HW block WR/RD
981 * pointers to check if all the frames were transferred by DMA into the
982 * relevant TX FIFO queue. Only when the DMA is finished and the queue is
983 * empty the command can finish.
984 * This command is used to flush the TXFIFO from transmit commands, it may
985 * operate on single or multiple queues, the command queue can't be flushed by
986 * this command. The command response is returned when all the queue flush
987 * operations are done. Each TX command flushed return response with the FLUSH
988 * status set in the TX response status. When FIFO flush operation is used,
989 * the flush operation ends when both the scheduler DMA done and TXFIFO empty
990 * are set.
991 *
992 * @fifo_control: bit mask for which queues to flush
993 * @flush_control: flush controls
994 * 0: Dump single MSDU
995 * 1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable.
996 * 2: Dump all FIFO
997 */
998 struct iwl_txfifo_flush_cmd {
999 __le32 fifo_control;
1000 __le16 flush_control;
1001 __le16 reserved;
1002 } __packed;
1003
1004 /*
1005 * REPLY_WEP_KEY = 0x20
1006 */
1007 struct iwl_wep_key {
1008 u8 key_index;
1009 u8 key_offset;
1010 u8 reserved1[2];
1011 u8 key_size;
1012 u8 reserved2[3];
1013 u8 key[16];
1014 } __packed;
1015
1016 struct iwl_wep_cmd {
1017 u8 num_keys;
1018 u8 global_key_type;
1019 u8 flags;
1020 u8 reserved;
1021 struct iwl_wep_key key[0];
1022 } __packed;
1023
1024 #define WEP_KEY_WEP_TYPE 1
1025 #define WEP_KEYS_MAX 4
1026 #define WEP_INVALID_OFFSET 0xff
1027 #define WEP_KEY_LEN_64 5
1028 #define WEP_KEY_LEN_128 13
1029
1030 /******************************************************************************
1031 * (4)
1032 * Rx Responses:
1033 *
1034 *****************************************************************************/
1035
1036 #define RX_RES_STATUS_NO_CRC32_ERROR cpu_to_le32(1 << 0)
1037 #define RX_RES_STATUS_NO_RXE_OVERFLOW cpu_to_le32(1 << 1)
1038
1039 #define RX_RES_PHY_FLAGS_BAND_24_MSK cpu_to_le16(1 << 0)
1040 #define RX_RES_PHY_FLAGS_MOD_CCK_MSK cpu_to_le16(1 << 1)
1041 #define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK cpu_to_le16(1 << 2)
1042 #define RX_RES_PHY_FLAGS_NARROW_BAND_MSK cpu_to_le16(1 << 3)
1043 #define RX_RES_PHY_FLAGS_ANTENNA_MSK 0xf0
1044 #define RX_RES_PHY_FLAGS_ANTENNA_POS 4
1045
1046 #define RX_RES_STATUS_SEC_TYPE_MSK (0x7 << 8)
1047 #define RX_RES_STATUS_SEC_TYPE_NONE (0x0 << 8)
1048 #define RX_RES_STATUS_SEC_TYPE_WEP (0x1 << 8)
1049 #define RX_RES_STATUS_SEC_TYPE_CCMP (0x2 << 8)
1050 #define RX_RES_STATUS_SEC_TYPE_TKIP (0x3 << 8)
1051 #define RX_RES_STATUS_SEC_TYPE_ERR (0x7 << 8)
1052
1053 #define RX_RES_STATUS_STATION_FOUND (1<<6)
1054 #define RX_RES_STATUS_NO_STATION_INFO_MISMATCH (1<<7)
1055
1056 #define RX_RES_STATUS_DECRYPT_TYPE_MSK (0x3 << 11)
1057 #define RX_RES_STATUS_NOT_DECRYPT (0x0 << 11)
1058 #define RX_RES_STATUS_DECRYPT_OK (0x3 << 11)
1059 #define RX_RES_STATUS_BAD_ICV_MIC (0x1 << 11)
1060 #define RX_RES_STATUS_BAD_KEY_TTAK (0x2 << 11)
1061
1062 #define RX_MPDU_RES_STATUS_ICV_OK (0x20)
1063 #define RX_MPDU_RES_STATUS_MIC_OK (0x40)
1064 #define RX_MPDU_RES_STATUS_TTAK_OK (1 << 7)
1065 #define RX_MPDU_RES_STATUS_DEC_DONE_MSK (0x800)
1066
1067
1068 #define IWLAGN_RX_RES_PHY_CNT 8
1069 #define IWLAGN_RX_RES_AGC_IDX 1
1070 #define IWLAGN_RX_RES_RSSI_AB_IDX 2
1071 #define IWLAGN_RX_RES_RSSI_C_IDX 3
1072 #define IWLAGN_OFDM_AGC_MSK 0xfe00
1073 #define IWLAGN_OFDM_AGC_BIT_POS 9
1074 #define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff
1075 #define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00
1076 #define IWLAGN_OFDM_RSSI_A_BIT_POS 0
1077 #define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000
1078 #define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000
1079 #define IWLAGN_OFDM_RSSI_B_BIT_POS 16
1080 #define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff
1081 #define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00
1082 #define IWLAGN_OFDM_RSSI_C_BIT_POS 0
1083
1084 struct iwlagn_non_cfg_phy {
1085 __le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT]; /* up to 8 phy entries */
1086 } __packed;
1087
1088
1089 /*
1090 * REPLY_RX = 0xc3 (response only, not a command)
1091 * Used only for legacy (non 11n) frames.
1092 */
1093 struct iwl_rx_phy_res {
1094 u8 non_cfg_phy_cnt; /* non configurable DSP phy data byte count */
1095 u8 cfg_phy_cnt; /* configurable DSP phy data byte count */
1096 u8 stat_id; /* configurable DSP phy data set ID */
1097 u8 reserved1;
1098 __le64 timestamp; /* TSF at on air rise */
1099 __le32 beacon_time_stamp; /* beacon at on-air rise */
1100 __le16 phy_flags; /* general phy flags: band, modulation, ... */
1101 __le16 channel; /* channel number */
1102 u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
1103 __le32 rate_n_flags; /* RATE_MCS_* */
1104 __le16 byte_count; /* frame's byte-count */
1105 __le16 frame_time; /* frame's time on the air */
1106 } __packed;
1107
1108 struct iwl_rx_mpdu_res_start {
1109 __le16 byte_count;
1110 __le16 reserved;
1111 } __packed;
1112
1113
1114 /******************************************************************************
1115 * (5)
1116 * Tx Commands & Responses:
1117 *
1118 * Driver must place each REPLY_TX command into one of the prioritized Tx
1119 * queues in host DRAM, shared between driver and device (see comments for
1120 * SCD registers and Tx/Rx Queues). When the device's Tx scheduler and uCode
1121 * are preparing to transmit, the device pulls the Tx command over the PCI
1122 * bus via one of the device's Tx DMA channels, to fill an internal FIFO
1123 * from which data will be transmitted.
1124 *
1125 * uCode handles all timing and protocol related to control frames
1126 * (RTS/CTS/ACK), based on flags in the Tx command. uCode and Tx scheduler
1127 * handle reception of block-acks; uCode updates the host driver via
1128 * REPLY_COMPRESSED_BA.
1129 *
1130 * uCode handles retrying Tx when an ACK is expected but not received.
1131 * This includes trying lower data rates than the one requested in the Tx
1132 * command, as set up by the REPLY_RATE_SCALE (for 3945) or
1133 * REPLY_TX_LINK_QUALITY_CMD (agn).
1134 *
1135 * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
1136 * This command must be executed after every RXON command, before Tx can occur.
1137 *****************************************************************************/
1138
1139 /* REPLY_TX Tx flags field */
1140
1141 /*
1142 * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
1143 * before this frame. if CTS-to-self required check
1144 * RXON_FLG_SELF_CTS_EN status.
1145 * unused in 3945/4965, used in 5000 series and after
1146 */
1147 #define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0)
1148
1149 /*
1150 * 1: Use Request-To-Send protocol before this frame.
1151 * Mutually exclusive vs. TX_CMD_FLG_CTS_MSK.
1152 * used in 3945/4965, unused in 5000 series and after
1153 */
1154 #define TX_CMD_FLG_RTS_MSK cpu_to_le32(1 << 1)
1155
1156 /*
1157 * 1: Transmit Clear-To-Send to self before this frame.
1158 * Driver should set this for AUTH/DEAUTH/ASSOC-REQ/REASSOC mgmnt frames.
1159 * Mutually exclusive vs. TX_CMD_FLG_RTS_MSK.
1160 * used in 3945/4965, unused in 5000 series and after
1161 */
1162 #define TX_CMD_FLG_CTS_MSK cpu_to_le32(1 << 2)
1163
1164 /* 1: Expect ACK from receiving station
1165 * 0: Don't expect ACK (MAC header's duration field s/b 0)
1166 * Set this for unicast frames, but not broadcast/multicast. */
1167 #define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
1168
1169 /* For agn devices:
1170 * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
1171 * Tx command's initial_rate_index indicates first rate to try;
1172 * uCode walks through table for additional Tx attempts.
1173 * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
1174 * This rate will be used for all Tx attempts; it will not be scaled. */
1175 #define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
1176
1177 /* 1: Expect immediate block-ack.
1178 * Set when Txing a block-ack request frame. Also set TX_CMD_FLG_ACK_MSK. */
1179 #define TX_CMD_FLG_IMM_BA_RSP_MASK cpu_to_le32(1 << 6)
1180
1181 /*
1182 * 1: Frame requires full Tx-Op protection.
1183 * Set this if either RTS or CTS Tx Flag gets set.
1184 * used in 3945/4965, unused in 5000 series and after
1185 */
1186 #define TX_CMD_FLG_FULL_TXOP_PROT_MSK cpu_to_le32(1 << 7)
1187
1188 /* Tx antenna selection field; used only for 3945, reserved (0) for agn devices.
1189 * Set field to "0" to allow 3945 uCode to select antenna (normal usage). */
1190 #define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
1191 #define TX_CMD_FLG_ANT_A_MSK cpu_to_le32(1 << 8)
1192 #define TX_CMD_FLG_ANT_B_MSK cpu_to_le32(1 << 9)
1193
1194 /* 1: Ignore Bluetooth priority for this frame.
1195 * 0: Delay Tx until Bluetooth device is done (normal usage). */
1196 #define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12)
1197
1198 /* 1: uCode overrides sequence control field in MAC header.
1199 * 0: Driver provides sequence control field in MAC header.
1200 * Set this for management frames, non-QOS data frames, non-unicast frames,
1201 * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
1202 #define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
1203
1204 /* 1: This frame is non-last MPDU; more fragments are coming.
1205 * 0: Last fragment, or not using fragmentation. */
1206 #define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
1207
1208 /* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
1209 * 0: No TSF required in outgoing frame.
1210 * Set this for transmitting beacons and probe responses. */
1211 #define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
1212
1213 /* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
1214 * alignment of frame's payload data field.
1215 * 0: No pad
1216 * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
1217 * field (but not both). Driver must align frame data (i.e. data following
1218 * MAC header) to DWORD boundary. */
1219 #define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
1220
1221 /* accelerate aggregation support
1222 * 0 - no CCMP encryption; 1 - CCMP encryption */
1223 #define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
1224
1225 /* HCCA-AP - disable duration overwriting. */
1226 #define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
1227
1228
1229 /*
1230 * TX command security control
1231 */
1232 #define TX_CMD_SEC_WEP 0x01
1233 #define TX_CMD_SEC_CCM 0x02
1234 #define TX_CMD_SEC_TKIP 0x03
1235 #define TX_CMD_SEC_MSK 0x03
1236 #define TX_CMD_SEC_SHIFT 6
1237 #define TX_CMD_SEC_KEY128 0x08
1238
1239 /*
1240 * security overhead sizes
1241 */
1242 #define WEP_IV_LEN 4
1243 #define WEP_ICV_LEN 4
1244 #define CCMP_MIC_LEN 8
1245 #define TKIP_ICV_LEN 4
1246
1247 /*
1248 * REPLY_TX = 0x1c (command)
1249 */
1250
1251 /*
1252 * 4965 uCode updates these Tx attempt count values in host DRAM.
1253 * Used for managing Tx retries when expecting block-acks.
1254 * Driver should set these fields to 0.
1255 */
1256 struct iwl_dram_scratch {
1257 u8 try_cnt; /* Tx attempts */
1258 u8 bt_kill_cnt; /* Tx attempts blocked by Bluetooth device */
1259 __le16 reserved;
1260 } __packed;
1261
1262 struct iwl_tx_cmd {
1263 /*
1264 * MPDU byte count:
1265 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1266 * + 8 byte IV for CCM or TKIP (not used for WEP)
1267 * + Data payload
1268 * + 8-byte MIC (not used for CCM/WEP)
1269 * NOTE: Does not include Tx command bytes, post-MAC pad bytes,
1270 * MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1271 * Range: 14-2342 bytes.
1272 */
1273 __le16 len;
1274
1275 /*
1276 * MPDU or MSDU byte count for next frame.
1277 * Used for fragmentation and bursting, but not 11n aggregation.
1278 * Same as "len", but for next frame. Set to 0 if not applicable.
1279 */
1280 __le16 next_frame_len;
1281
1282 __le32 tx_flags; /* TX_CMD_FLG_* */
1283
1284 /* uCode may modify this field of the Tx command (in host DRAM!).
1285 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
1286 struct iwl_dram_scratch scratch;
1287
1288 /* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
1289 __le32 rate_n_flags; /* RATE_MCS_* */
1290
1291 /* Index of destination station in uCode's station table */
1292 u8 sta_id;
1293
1294 /* Type of security encryption: CCM or TKIP */
1295 u8 sec_ctl; /* TX_CMD_SEC_* */
1296
1297 /*
1298 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
1299 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set. Normally "0" for
1300 * data frames, this field may be used to selectively reduce initial
1301 * rate (via non-0 value) for special frames (e.g. management), while
1302 * still supporting rate scaling for all frames.
1303 */
1304 u8 initial_rate_index;
1305 u8 reserved;
1306 u8 key[16];
1307 __le16 next_frame_flags;
1308 __le16 reserved2;
1309 union {
1310 __le32 life_time;
1311 __le32 attempt;
1312 } stop_time;
1313
1314 /* Host DRAM physical address pointer to "scratch" in this command.
1315 * Must be dword aligned. "0" in dram_lsb_ptr disables usage. */
1316 __le32 dram_lsb_ptr;
1317 u8 dram_msb_ptr;
1318
1319 u8 rts_retry_limit; /*byte 50 */
1320 u8 data_retry_limit; /*byte 51 */
1321 u8 tid_tspec;
1322 union {
1323 __le16 pm_frame_timeout;
1324 __le16 attempt_duration;
1325 } timeout;
1326
1327 /*
1328 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1329 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1330 */
1331 __le16 driver_txop;
1332
1333 /*
1334 * MAC header goes here, followed by 2 bytes padding if MAC header
1335 * length is 26 or 30 bytes, followed by payload data
1336 */
1337 u8 payload[0];
1338 struct ieee80211_hdr hdr[0];
1339 } __packed;
1340
1341 /*
1342 * TX command response is sent after *agn* transmission attempts.
1343 *
1344 * both postpone and abort status are expected behavior from uCode. there is
1345 * no special operation required from driver; except for RFKILL_FLUSH,
1346 * which required tx flush host command to flush all the tx frames in queues
1347 */
1348 enum {
1349 TX_STATUS_SUCCESS = 0x01,
1350 TX_STATUS_DIRECT_DONE = 0x02,
1351 /* postpone TX */
1352 TX_STATUS_POSTPONE_DELAY = 0x40,
1353 TX_STATUS_POSTPONE_FEW_BYTES = 0x41,
1354 TX_STATUS_POSTPONE_BT_PRIO = 0x42,
1355 TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43,
1356 TX_STATUS_POSTPONE_CALC_TTAK = 0x44,
1357 /* abort TX */
1358 TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81,
1359 TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
1360 TX_STATUS_FAIL_LONG_LIMIT = 0x83,
1361 TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1362 TX_STATUS_FAIL_DRAIN_FLOW = 0x85,
1363 TX_STATUS_FAIL_RFKILL_FLUSH = 0x86,
1364 TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1365 TX_STATUS_FAIL_DEST_PS = 0x88,
1366 TX_STATUS_FAIL_HOST_ABORTED = 0x89,
1367 TX_STATUS_FAIL_BT_RETRY = 0x8a,
1368 TX_STATUS_FAIL_STA_INVALID = 0x8b,
1369 TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1370 TX_STATUS_FAIL_TID_DISABLE = 0x8d,
1371 TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e,
1372 TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1373 TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90,
1374 TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1375 };
1376
1377 #define TX_PACKET_MODE_REGULAR 0x0000
1378 #define TX_PACKET_MODE_BURST_SEQ 0x0100
1379 #define TX_PACKET_MODE_BURST_FIRST 0x0200
1380
1381 enum {
1382 TX_POWER_PA_NOT_ACTIVE = 0x0,
1383 };
1384
1385 enum {
1386 TX_STATUS_MSK = 0x000000ff, /* bits 0:7 */
1387 TX_STATUS_DELAY_MSK = 0x00000040,
1388 TX_STATUS_ABORT_MSK = 0x00000080,
1389 TX_PACKET_MODE_MSK = 0x0000ff00, /* bits 8:15 */
1390 TX_FIFO_NUMBER_MSK = 0x00070000, /* bits 16:18 */
1391 TX_RESERVED = 0x00780000, /* bits 19:22 */
1392 TX_POWER_PA_DETECT_MSK = 0x7f800000, /* bits 23:30 */
1393 TX_ABORT_REQUIRED_MSK = 0x80000000, /* bits 31:31 */
1394 };
1395
1396 /* *******************************
1397 * TX aggregation status
1398 ******************************* */
1399
1400 enum {
1401 AGG_TX_STATE_TRANSMITTED = 0x00,
1402 AGG_TX_STATE_UNDERRUN_MSK = 0x01,
1403 AGG_TX_STATE_BT_PRIO_MSK = 0x02,
1404 AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
1405 AGG_TX_STATE_ABORT_MSK = 0x08,
1406 AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
1407 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
1408 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
1409 AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
1410 AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
1411 AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
1412 AGG_TX_STATE_DUMP_TX_MSK = 0x200,
1413 AGG_TX_STATE_DELAY_TX_MSK = 0x400
1414 };
1415
1416 #define AGG_TX_STATUS_MSK 0x00000fff /* bits 0:11 */
1417 #define AGG_TX_TRY_MSK 0x0000f000 /* bits 12:15 */
1418
1419 #define AGG_TX_STATE_LAST_SENT_MSK (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
1420 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
1421 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
1422
1423 /* # tx attempts for first frame in aggregation */
1424 #define AGG_TX_STATE_TRY_CNT_POS 12
1425 #define AGG_TX_STATE_TRY_CNT_MSK 0xf000
1426
1427 /* Command ID and sequence number of Tx command for this frame */
1428 #define AGG_TX_STATE_SEQ_NUM_POS 16
1429 #define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
1430
1431 /*
1432 * REPLY_TX = 0x1c (response)
1433 *
1434 * This response may be in one of two slightly different formats, indicated
1435 * by the frame_count field:
1436 *
1437 * 1) No aggregation (frame_count == 1). This reports Tx results for
1438 * a single frame. Multiple attempts, at various bit rates, may have
1439 * been made for this frame.
1440 *
1441 * 2) Aggregation (frame_count > 1). This reports Tx results for
1442 * 2 or more frames that used block-acknowledge. All frames were
1443 * transmitted at same rate. Rate scaling may have been used if first
1444 * frame in this new agg block failed in previous agg block(s).
1445 *
1446 * Note that, for aggregation, ACK (block-ack) status is not delivered here;
1447 * block-ack has not been received by the time the agn device records
1448 * this status.
1449 * This status relates to reasons the tx might have been blocked or aborted
1450 * within the sending station (this agn device), rather than whether it was
1451 * received successfully by the destination station.
1452 */
1453 struct agg_tx_status {
1454 __le16 status;
1455 __le16 sequence;
1456 } __packed;
1457
1458 /*
1459 * definitions for initial rate index field
1460 * bits [3:0] initial rate index
1461 * bits [6:4] rate table color, used for the initial rate
1462 * bit-7 invalid rate indication
1463 * i.e. rate was not chosen from rate table
1464 * or rate table color was changed during frame retries
1465 * refer tlc rate info
1466 */
1467
1468 #define IWL50_TX_RES_INIT_RATE_INDEX_POS 0
1469 #define IWL50_TX_RES_INIT_RATE_INDEX_MSK 0x0f
1470 #define IWL50_TX_RES_RATE_TABLE_COLOR_POS 4
1471 #define IWL50_TX_RES_RATE_TABLE_COLOR_MSK 0x70
1472 #define IWL50_TX_RES_INV_RATE_INDEX_MSK 0x80
1473
1474 /* refer to ra_tid */
1475 #define IWLAGN_TX_RES_TID_POS 0
1476 #define IWLAGN_TX_RES_TID_MSK 0x0f
1477 #define IWLAGN_TX_RES_RA_POS 4
1478 #define IWLAGN_TX_RES_RA_MSK 0xf0
1479
1480 struct iwlagn_tx_resp {
1481 u8 frame_count; /* 1 no aggregation, >1 aggregation */
1482 u8 bt_kill_count; /* # blocked by bluetooth (unused for agg) */
1483 u8 failure_rts; /* # failures due to unsuccessful RTS */
1484 u8 failure_frame; /* # failures due to no ACK (unused for agg) */
1485
1486 /* For non-agg: Rate at which frame was successful.
1487 * For agg: Rate at which all frames were transmitted. */
1488 __le32 rate_n_flags; /* RATE_MCS_* */
1489
1490 /* For non-agg: RTS + CTS + frame tx attempts time + ACK.
1491 * For agg: RTS + CTS + aggregation tx time + block-ack time. */
1492 __le16 wireless_media_time; /* uSecs */
1493
1494 u8 pa_status; /* RF power amplifier measurement (not used) */
1495 u8 pa_integ_res_a[3];
1496 u8 pa_integ_res_b[3];
1497 u8 pa_integ_res_C[3];
1498
1499 __le32 tfd_info;
1500 __le16 seq_ctl;
1501 __le16 byte_cnt;
1502 u8 tlc_info;
1503 u8 ra_tid; /* tid (0:3), sta_id (4:7) */
1504 __le16 frame_ctrl;
1505 /*
1506 * For non-agg: frame status TX_STATUS_*
1507 * For agg: status of 1st frame, AGG_TX_STATE_*; other frame status
1508 * fields follow this one, up to frame_count.
1509 * Bit fields:
1510 * 11- 0: AGG_TX_STATE_* status code
1511 * 15-12: Retry count for 1st frame in aggregation (retries
1512 * occur if tx failed for this frame when it was a
1513 * member of a previous aggregation block). If rate
1514 * scaling is used, retry count indicates the rate
1515 * table entry used for all frames in the new agg.
1516 * 31-16: Sequence # for this frame's Tx cmd (not SSN!)
1517 */
1518 struct agg_tx_status status; /* TX status (in aggregation -
1519 * status of 1st frame) */
1520 } __packed;
1521 /*
1522 * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
1523 *
1524 * Reports Block-Acknowledge from recipient station
1525 */
1526 struct iwl_compressed_ba_resp {
1527 __le32 sta_addr_lo32;
1528 __le16 sta_addr_hi16;
1529 __le16 reserved;
1530
1531 /* Index of recipient (BA-sending) station in uCode's station table */
1532 u8 sta_id;
1533 u8 tid;
1534 __le16 seq_ctl;
1535 __le64 bitmap;
1536 __le16 scd_flow;
1537 __le16 scd_ssn;
1538 /* following only for 5000 series and up */
1539 u8 txed; /* number of frames sent */
1540 u8 txed_2_done; /* number of frames acked */
1541 } __packed;
1542
1543 /*
1544 * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
1545 *
1546 */
1547
1548 /*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
1549 #define LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK (1 << 0)
1550
1551 /* # of EDCA prioritized tx fifos */
1552 #define LINK_QUAL_AC_NUM AC_NUM
1553
1554 /* # entries in rate scale table to support Tx retries */
1555 #define LINK_QUAL_MAX_RETRY_NUM 16
1556
1557 /* Tx antenna selection values */
1558 #define LINK_QUAL_ANT_A_MSK (1 << 0)
1559 #define LINK_QUAL_ANT_B_MSK (1 << 1)
1560 #define LINK_QUAL_ANT_MSK (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
1561
1562
1563 /**
1564 * struct iwl_link_qual_general_params
1565 *
1566 * Used in REPLY_TX_LINK_QUALITY_CMD
1567 */
1568 struct iwl_link_qual_general_params {
1569 u8 flags;
1570
1571 /* No entries at or above this (driver chosen) index contain MIMO */
1572 u8 mimo_delimiter;
1573
1574 /* Best single antenna to use for single stream (legacy, SISO). */
1575 u8 single_stream_ant_msk; /* LINK_QUAL_ANT_* */
1576
1577 /* Best antennas to use for MIMO (unused for 4965, assumes both). */
1578 u8 dual_stream_ant_msk; /* LINK_QUAL_ANT_* */
1579
1580 /*
1581 * If driver needs to use different initial rates for different
1582 * EDCA QOS access categories (as implemented by tx fifos 0-3),
1583 * this table will set that up, by indicating the indexes in the
1584 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
1585 * Otherwise, driver should set all entries to 0.
1586 *
1587 * Entry usage:
1588 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
1589 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
1590 */
1591 u8 start_rate_index[LINK_QUAL_AC_NUM];
1592 } __packed;
1593
1594 #define LINK_QUAL_AGG_TIME_LIMIT_DEF (4000) /* 4 milliseconds */
1595 #define LINK_QUAL_AGG_TIME_LIMIT_MAX (8000)
1596 #define LINK_QUAL_AGG_TIME_LIMIT_MIN (100)
1597
1598 #define LINK_QUAL_AGG_DISABLE_START_DEF (3)
1599 #define LINK_QUAL_AGG_DISABLE_START_MAX (255)
1600 #define LINK_QUAL_AGG_DISABLE_START_MIN (0)
1601
1602 #define LINK_QUAL_AGG_FRAME_LIMIT_DEF (63)
1603 #define LINK_QUAL_AGG_FRAME_LIMIT_MAX (63)
1604 #define LINK_QUAL_AGG_FRAME_LIMIT_MIN (0)
1605
1606 /**
1607 * struct iwl_link_qual_agg_params
1608 *
1609 * Used in REPLY_TX_LINK_QUALITY_CMD
1610 */
1611 struct iwl_link_qual_agg_params {
1612
1613 /*
1614 *Maximum number of uSec in aggregation.
1615 * default set to 4000 (4 milliseconds) if not configured in .cfg
1616 */
1617 __le16 agg_time_limit;
1618
1619 /*
1620 * Number of Tx retries allowed for a frame, before that frame will
1621 * no longer be considered for the start of an aggregation sequence
1622 * (scheduler will then try to tx it as single frame).
1623 * Driver should set this to 3.
1624 */
1625 u8 agg_dis_start_th;
1626
1627 /*
1628 * Maximum number of frames in aggregation.
1629 * 0 = no limit (default). 1 = no aggregation.
1630 * Other values = max # frames in aggregation.
1631 */
1632 u8 agg_frame_cnt_limit;
1633
1634 __le32 reserved;
1635 } __packed;
1636
1637 /*
1638 * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
1639 *
1640 * For agn devices only; 3945 uses REPLY_RATE_SCALE.
1641 *
1642 * Each station in the agn device's internal station table has its own table
1643 * of 16
1644 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
1645 * an ACK is not received. This command replaces the entire table for
1646 * one station.
1647 *
1648 * NOTE: Station must already be in agn device's station table.
1649 * Use REPLY_ADD_STA.
1650 *
1651 * The rate scaling procedures described below work well. Of course, other
1652 * procedures are possible, and may work better for particular environments.
1653 *
1654 *
1655 * FILLING THE RATE TABLE
1656 *
1657 * Given a particular initial rate and mode, as determined by the rate
1658 * scaling algorithm described below, the Linux driver uses the following
1659 * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
1660 * Link Quality command:
1661 *
1662 *
1663 * 1) If using High-throughput (HT) (SISO or MIMO) initial rate:
1664 * a) Use this same initial rate for first 3 entries.
1665 * b) Find next lower available rate using same mode (SISO or MIMO),
1666 * use for next 3 entries. If no lower rate available, switch to
1667 * legacy mode (no HT40 channel, no MIMO, no short guard interval).
1668 * c) If using MIMO, set command's mimo_delimiter to number of entries
1669 * using MIMO (3 or 6).
1670 * d) After trying 2 HT rates, switch to legacy mode (no HT40 channel,
1671 * no MIMO, no short guard interval), at the next lower bit rate
1672 * (e.g. if second HT bit rate was 54, try 48 legacy), and follow
1673 * legacy procedure for remaining table entries.
1674 *
1675 * 2) If using legacy initial rate:
1676 * a) Use the initial rate for only one entry.
1677 * b) For each following entry, reduce the rate to next lower available
1678 * rate, until reaching the lowest available rate.
1679 * c) When reducing rate, also switch antenna selection.
1680 * d) Once lowest available rate is reached, repeat this rate until
1681 * rate table is filled (16 entries), switching antenna each entry.
1682 *
1683 *
1684 * ACCUMULATING HISTORY
1685 *
1686 * The rate scaling algorithm for agn devices, as implemented in Linux driver,
1687 * uses two sets of frame Tx success history: One for the current/active
1688 * modulation mode, and one for a speculative/search mode that is being
1689 * attempted. If the speculative mode turns out to be more effective (i.e.
1690 * actual transfer rate is better), then the driver continues to use the
1691 * speculative mode as the new current active mode.
1692 *
1693 * Each history set contains, separately for each possible rate, data for a
1694 * sliding window of the 62 most recent tx attempts at that rate. The data
1695 * includes a shifting bitmap of success(1)/failure(0), and sums of successful
1696 * and attempted frames, from which the driver can additionally calculate a
1697 * success ratio (success / attempted) and number of failures
1698 * (attempted - success), and control the size of the window (attempted).
1699 * The driver uses the bit map to remove successes from the success sum, as
1700 * the oldest tx attempts fall out of the window.
1701 *
1702 * When the agn device makes multiple tx attempts for a given frame, each
1703 * attempt might be at a different rate, and have different modulation
1704 * characteristics (e.g. antenna, fat channel, short guard interval), as set
1705 * up in the rate scaling table in the Link Quality command. The driver must
1706 * determine which rate table entry was used for each tx attempt, to determine
1707 * which rate-specific history to update, and record only those attempts that
1708 * match the modulation characteristics of the history set.
1709 *
1710 * When using block-ack (aggregation), all frames are transmitted at the same
1711 * rate, since there is no per-attempt acknowledgment from the destination
1712 * station. The Tx response struct iwl_tx_resp indicates the Tx rate in
1713 * rate_n_flags field. After receiving a block-ack, the driver can update
1714 * history for the entire block all at once.
1715 *
1716 *
1717 * FINDING BEST STARTING RATE:
1718 *
1719 * When working with a selected initial modulation mode (see below), the
1720 * driver attempts to find a best initial rate. The initial rate is the
1721 * first entry in the Link Quality command's rate table.
1722 *
1723 * 1) Calculate actual throughput (success ratio * expected throughput, see
1724 * table below) for current initial rate. Do this only if enough frames
1725 * have been attempted to make the value meaningful: at least 6 failed
1726 * tx attempts, or at least 8 successes. If not enough, don't try rate
1727 * scaling yet.
1728 *
1729 * 2) Find available rates adjacent to current initial rate. Available means:
1730 * a) supported by hardware &&
1731 * b) supported by association &&
1732 * c) within any constraints selected by user
1733 *
1734 * 3) Gather measured throughputs for adjacent rates. These might not have
1735 * enough history to calculate a throughput. That's okay, we might try
1736 * using one of them anyway!
1737 *
1738 * 4) Try decreasing rate if, for current rate:
1739 * a) success ratio is < 15% ||
1740 * b) lower adjacent rate has better measured throughput ||
1741 * c) higher adjacent rate has worse throughput, and lower is unmeasured
1742 *
1743 * As a sanity check, if decrease was determined above, leave rate
1744 * unchanged if:
1745 * a) lower rate unavailable
1746 * b) success ratio at current rate > 85% (very good)
1747 * c) current measured throughput is better than expected throughput
1748 * of lower rate (under perfect 100% tx conditions, see table below)
1749 *
1750 * 5) Try increasing rate if, for current rate:
1751 * a) success ratio is < 15% ||
1752 * b) both adjacent rates' throughputs are unmeasured (try it!) ||
1753 * b) higher adjacent rate has better measured throughput ||
1754 * c) lower adjacent rate has worse throughput, and higher is unmeasured
1755 *
1756 * As a sanity check, if increase was determined above, leave rate
1757 * unchanged if:
1758 * a) success ratio at current rate < 70%. This is not particularly
1759 * good performance; higher rate is sure to have poorer success.
1760 *
1761 * 6) Re-evaluate the rate after each tx frame. If working with block-
1762 * acknowledge, history and statistics may be calculated for the entire
1763 * block (including prior history that fits within the history windows),
1764 * before re-evaluation.
1765 *
1766 * FINDING BEST STARTING MODULATION MODE:
1767 *
1768 * After working with a modulation mode for a "while" (and doing rate scaling),
1769 * the driver searches for a new initial mode in an attempt to improve
1770 * throughput. The "while" is measured by numbers of attempted frames:
1771 *
1772 * For legacy mode, search for new mode after:
1773 * 480 successful frames, or 160 failed frames
1774 * For high-throughput modes (SISO or MIMO), search for new mode after:
1775 * 4500 successful frames, or 400 failed frames
1776 *
1777 * Mode switch possibilities are (3 for each mode):
1778 *
1779 * For legacy:
1780 * Change antenna, try SISO (if HT association), try MIMO (if HT association)
1781 * For SISO:
1782 * Change antenna, try MIMO, try shortened guard interval (SGI)
1783 * For MIMO:
1784 * Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
1785 *
1786 * When trying a new mode, use the same bit rate as the old/current mode when
1787 * trying antenna switches and shortened guard interval. When switching to
1788 * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
1789 * for which the expected throughput (under perfect conditions) is about the
1790 * same or slightly better than the actual measured throughput delivered by
1791 * the old/current mode.
1792 *
1793 * Actual throughput can be estimated by multiplying the expected throughput
1794 * by the success ratio (successful / attempted tx frames). Frame size is
1795 * not considered in this calculation; it assumes that frame size will average
1796 * out to be fairly consistent over several samples. The following are
1797 * metric values for expected throughput assuming 100% success ratio.
1798 * Only G band has support for CCK rates:
1799 *
1800 * RATE: 1 2 5 11 6 9 12 18 24 36 48 54 60
1801 *
1802 * G: 7 13 35 58 40 57 72 98 121 154 177 186 186
1803 * A: 0 0 0 0 40 57 72 98 121 154 177 186 186
1804 * SISO 20MHz: 0 0 0 0 42 42 76 102 124 159 183 193 202
1805 * SGI SISO 20MHz: 0 0 0 0 46 46 82 110 132 168 192 202 211
1806 * MIMO 20MHz: 0 0 0 0 74 74 123 155 179 214 236 244 251
1807 * SGI MIMO 20MHz: 0 0 0 0 81 81 131 164 188 222 243 251 257
1808 * SISO 40MHz: 0 0 0 0 77 77 127 160 184 220 242 250 257
1809 * SGI SISO 40MHz: 0 0 0 0 83 83 135 169 193 229 250 257 264
1810 * MIMO 40MHz: 0 0 0 0 123 123 182 214 235 264 279 285 289
1811 * SGI MIMO 40MHz: 0 0 0 0 131 131 191 222 242 270 284 289 293
1812 *
1813 * After the new mode has been tried for a short while (minimum of 6 failed
1814 * frames or 8 successful frames), compare success ratio and actual throughput
1815 * estimate of the new mode with the old. If either is better with the new
1816 * mode, continue to use the new mode.
1817 *
1818 * Continue comparing modes until all 3 possibilities have been tried.
1819 * If moving from legacy to HT, try all 3 possibilities from the new HT
1820 * mode. After trying all 3, a best mode is found. Continue to use this mode
1821 * for the longer "while" described above (e.g. 480 successful frames for
1822 * legacy), and then repeat the search process.
1823 *
1824 */
1825 struct iwl_link_quality_cmd {
1826
1827 /* Index of destination/recipient station in uCode's station table */
1828 u8 sta_id;
1829 u8 reserved1;
1830 __le16 control; /* not used */
1831 struct iwl_link_qual_general_params general_params;
1832 struct iwl_link_qual_agg_params agg_params;
1833
1834 /*
1835 * Rate info; when using rate-scaling, Tx command's initial_rate_index
1836 * specifies 1st Tx rate attempted, via index into this table.
1837 * agn devices works its way through table when retrying Tx.
1838 */
1839 struct {
1840 __le32 rate_n_flags; /* RATE_MCS_*, IWL_RATE_* */
1841 } rs_table[LINK_QUAL_MAX_RETRY_NUM];
1842 __le32 reserved2;
1843 } __packed;
1844
1845 /*
1846 * BT configuration enable flags:
1847 * bit 0 - 1: BT channel announcement enabled
1848 * 0: disable
1849 * bit 1 - 1: priority of BT device enabled
1850 * 0: disable
1851 * bit 2 - 1: BT 2 wire support enabled
1852 * 0: disable
1853 */
1854 #define BT_COEX_DISABLE (0x0)
1855 #define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0)
1856 #define BT_ENABLE_PRIORITY BIT(1)
1857 #define BT_ENABLE_2_WIRE BIT(2)
1858
1859 #define BT_COEX_DISABLE (0x0)
1860 #define BT_COEX_ENABLE (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY)
1861
1862 #define BT_LEAD_TIME_MIN (0x0)
1863 #define BT_LEAD_TIME_DEF (0x1E)
1864 #define BT_LEAD_TIME_MAX (0xFF)
1865
1866 #define BT_MAX_KILL_MIN (0x1)
1867 #define BT_MAX_KILL_DEF (0x5)
1868 #define BT_MAX_KILL_MAX (0xFF)
1869
1870 #define BT_DURATION_LIMIT_DEF 625
1871 #define BT_DURATION_LIMIT_MAX 1250
1872 #define BT_DURATION_LIMIT_MIN 625
1873
1874 #define BT_ON_THRESHOLD_DEF 4
1875 #define BT_ON_THRESHOLD_MAX 1000
1876 #define BT_ON_THRESHOLD_MIN 1
1877
1878 #define BT_FRAG_THRESHOLD_DEF 0
1879 #define BT_FRAG_THRESHOLD_MAX 0
1880 #define BT_FRAG_THRESHOLD_MIN 0
1881
1882 #define BT_AGG_THRESHOLD_DEF 1200
1883 #define BT_AGG_THRESHOLD_MAX 8000
1884 #define BT_AGG_THRESHOLD_MIN 400
1885
1886 /*
1887 * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
1888 *
1889 * 3945 and agn devices support hardware handshake with Bluetooth device on
1890 * same platform. Bluetooth device alerts wireless device when it will Tx;
1891 * wireless device can delay or kill its own Tx to accommodate.
1892 */
1893 struct iwl_bt_cmd {
1894 u8 flags;
1895 u8 lead_time;
1896 u8 max_kill;
1897 u8 reserved;
1898 __le32 kill_ack_mask;
1899 __le32 kill_cts_mask;
1900 } __packed;
1901
1902 #define IWLAGN_BT_FLAG_CHANNEL_INHIBITION BIT(0)
1903
1904 #define IWLAGN_BT_FLAG_COEX_MODE_MASK (BIT(3)|BIT(4)|BIT(5))
1905 #define IWLAGN_BT_FLAG_COEX_MODE_SHIFT 3
1906 #define IWLAGN_BT_FLAG_COEX_MODE_DISABLED 0
1907 #define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W 1
1908 #define IWLAGN_BT_FLAG_COEX_MODE_3W 2
1909 #define IWLAGN_BT_FLAG_COEX_MODE_4W 3
1910
1911 #define IWLAGN_BT_FLAG_UCODE_DEFAULT BIT(6)
1912 /* Disable Sync PSPoll on SCO/eSCO */
1913 #define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE BIT(7)
1914
1915 #define IWLAGN_BT_PRIO_BOOST_MAX 0xFF
1916 #define IWLAGN_BT_PRIO_BOOST_MIN 0x00
1917 #define IWLAGN_BT_PRIO_BOOST_DEFAULT 0xF0
1918
1919 #define IWLAGN_BT_MAX_KILL_DEFAULT 5
1920
1921 #define IWLAGN_BT3_T7_DEFAULT 1
1922
1923 #define IWLAGN_BT_KILL_ACK_MASK_DEFAULT cpu_to_le32(0xffff0000)
1924 #define IWLAGN_BT_KILL_CTS_MASK_DEFAULT cpu_to_le32(0xffff0000)
1925 #define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO cpu_to_le32(0xffffffff)
1926
1927 #define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT 2
1928
1929 #define IWLAGN_BT3_T2_DEFAULT 0xc
1930
1931 #define IWLAGN_BT_VALID_ENABLE_FLAGS cpu_to_le16(BIT(0))
1932 #define IWLAGN_BT_VALID_BOOST cpu_to_le16(BIT(1))
1933 #define IWLAGN_BT_VALID_MAX_KILL cpu_to_le16(BIT(2))
1934 #define IWLAGN_BT_VALID_3W_TIMERS cpu_to_le16(BIT(3))
1935 #define IWLAGN_BT_VALID_KILL_ACK_MASK cpu_to_le16(BIT(4))
1936 #define IWLAGN_BT_VALID_KILL_CTS_MASK cpu_to_le16(BIT(5))
1937 #define IWLAGN_BT_VALID_BT4_TIMES cpu_to_le16(BIT(6))
1938 #define IWLAGN_BT_VALID_3W_LUT cpu_to_le16(BIT(7))
1939
1940 #define IWLAGN_BT_ALL_VALID_MSK (IWLAGN_BT_VALID_ENABLE_FLAGS | \
1941 IWLAGN_BT_VALID_BOOST | \
1942 IWLAGN_BT_VALID_MAX_KILL | \
1943 IWLAGN_BT_VALID_3W_TIMERS | \
1944 IWLAGN_BT_VALID_KILL_ACK_MASK | \
1945 IWLAGN_BT_VALID_KILL_CTS_MASK | \
1946 IWLAGN_BT_VALID_BT4_TIMES | \
1947 IWLAGN_BT_VALID_3W_LUT)
1948
1949 struct iwl_basic_bt_cmd {
1950 u8 flags;
1951 u8 ledtime; /* unused */
1952 u8 max_kill;
1953 u8 bt3_timer_t7_value;
1954 __le32 kill_ack_mask;
1955 __le32 kill_cts_mask;
1956 u8 bt3_prio_sample_time;
1957 u8 bt3_timer_t2_value;
1958 __le16 bt4_reaction_time; /* unused */
1959 __le32 bt3_lookup_table[12];
1960 __le16 bt4_decision_time; /* unused */
1961 __le16 valid;
1962 };
1963
1964 struct iwl6000_bt_cmd {
1965 struct iwl_basic_bt_cmd basic;
1966 u8 prio_boost;
1967 /*
1968 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1969 * if configure the following patterns
1970 */
1971 u8 tx_prio_boost; /* SW boost of WiFi tx priority */
1972 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */
1973 };
1974
1975 struct iwl2000_bt_cmd {
1976 struct iwl_basic_bt_cmd basic;
1977 __le32 prio_boost;
1978 /*
1979 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1980 * if configure the following patterns
1981 */
1982 u8 reserved;
1983 u8 tx_prio_boost; /* SW boost of WiFi tx priority */
1984 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */
1985 };
1986
1987 #define IWLAGN_BT_SCO_ACTIVE cpu_to_le32(BIT(0))
1988
1989 struct iwlagn_bt_sco_cmd {
1990 __le32 flags;
1991 };
1992
1993 /******************************************************************************
1994 * (6)
1995 * Spectrum Management (802.11h) Commands, Responses, Notifications:
1996 *
1997 *****************************************************************************/
1998
1999 /*
2000 * Spectrum Management
2001 */
2002 #define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK | \
2003 RXON_FILTER_CTL2HOST_MSK | \
2004 RXON_FILTER_ACCEPT_GRP_MSK | \
2005 RXON_FILTER_DIS_DECRYPT_MSK | \
2006 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
2007 RXON_FILTER_ASSOC_MSK | \
2008 RXON_FILTER_BCON_AWARE_MSK)
2009
2010 struct iwl_measure_channel {
2011 __le32 duration; /* measurement duration in extended beacon
2012 * format */
2013 u8 channel; /* channel to measure */
2014 u8 type; /* see enum iwl_measure_type */
2015 __le16 reserved;
2016 } __packed;
2017
2018 /*
2019 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
2020 */
2021 struct iwl_spectrum_cmd {
2022 __le16 len; /* number of bytes starting from token */
2023 u8 token; /* token id */
2024 u8 id; /* measurement id -- 0 or 1 */
2025 u8 origin; /* 0 = TGh, 1 = other, 2 = TGk */
2026 u8 periodic; /* 1 = periodic */
2027 __le16 path_loss_timeout;
2028 __le32 start_time; /* start time in extended beacon format */
2029 __le32 reserved2;
2030 __le32 flags; /* rxon flags */
2031 __le32 filter_flags; /* rxon filter flags */
2032 __le16 channel_count; /* minimum 1, maximum 10 */
2033 __le16 reserved3;
2034 struct iwl_measure_channel channels[10];
2035 } __packed;
2036
2037 /*
2038 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
2039 */
2040 struct iwl_spectrum_resp {
2041 u8 token;
2042 u8 id; /* id of the prior command replaced, or 0xff */
2043 __le16 status; /* 0 - command will be handled
2044 * 1 - cannot handle (conflicts with another
2045 * measurement) */
2046 } __packed;
2047
2048 enum iwl_measurement_state {
2049 IWL_MEASUREMENT_START = 0,
2050 IWL_MEASUREMENT_STOP = 1,
2051 };
2052
2053 enum iwl_measurement_status {
2054 IWL_MEASUREMENT_OK = 0,
2055 IWL_MEASUREMENT_CONCURRENT = 1,
2056 IWL_MEASUREMENT_CSA_CONFLICT = 2,
2057 IWL_MEASUREMENT_TGH_CONFLICT = 3,
2058 /* 4-5 reserved */
2059 IWL_MEASUREMENT_STOPPED = 6,
2060 IWL_MEASUREMENT_TIMEOUT = 7,
2061 IWL_MEASUREMENT_PERIODIC_FAILED = 8,
2062 };
2063
2064 #define NUM_ELEMENTS_IN_HISTOGRAM 8
2065
2066 struct iwl_measurement_histogram {
2067 __le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 0.8usec counts */
2068 __le32 cck[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 1usec counts */
2069 } __packed;
2070
2071 /* clear channel availability counters */
2072 struct iwl_measurement_cca_counters {
2073 __le32 ofdm;
2074 __le32 cck;
2075 } __packed;
2076
2077 enum iwl_measure_type {
2078 IWL_MEASURE_BASIC = (1 << 0),
2079 IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
2080 IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
2081 IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
2082 IWL_MEASURE_FRAME = (1 << 4),
2083 /* bits 5:6 are reserved */
2084 IWL_MEASURE_IDLE = (1 << 7),
2085 };
2086
2087 /*
2088 * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
2089 */
2090 struct iwl_spectrum_notification {
2091 u8 id; /* measurement id -- 0 or 1 */
2092 u8 token;
2093 u8 channel_index; /* index in measurement channel list */
2094 u8 state; /* 0 - start, 1 - stop */
2095 __le32 start_time; /* lower 32-bits of TSF */
2096 u8 band; /* 0 - 5.2GHz, 1 - 2.4GHz */
2097 u8 channel;
2098 u8 type; /* see enum iwl_measurement_type */
2099 u8 reserved1;
2100 /* NOTE: cca_ofdm, cca_cck, basic_type, and histogram are only only
2101 * valid if applicable for measurement type requested. */
2102 __le32 cca_ofdm; /* cca fraction time in 40Mhz clock periods */
2103 __le32 cca_cck; /* cca fraction time in 44Mhz clock periods */
2104 __le32 cca_time; /* channel load time in usecs */
2105 u8 basic_type; /* 0 - bss, 1 - ofdm preamble, 2 -
2106 * unidentified */
2107 u8 reserved2[3];
2108 struct iwl_measurement_histogram histogram;
2109 __le32 stop_time; /* lower 32-bits of TSF */
2110 __le32 status; /* see iwl_measurement_status */
2111 } __packed;
2112
2113 /******************************************************************************
2114 * (7)
2115 * Power Management Commands, Responses, Notifications:
2116 *
2117 *****************************************************************************/
2118
2119 /**
2120 * struct iwl_powertable_cmd - Power Table Command
2121 * @flags: See below:
2122 *
2123 * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
2124 *
2125 * PM allow:
2126 * bit 0 - '0' Driver not allow power management
2127 * '1' Driver allow PM (use rest of parameters)
2128 *
2129 * uCode send sleep notifications:
2130 * bit 1 - '0' Don't send sleep notification
2131 * '1' send sleep notification (SEND_PM_NOTIFICATION)
2132 *
2133 * Sleep over DTIM
2134 * bit 2 - '0' PM have to walk up every DTIM
2135 * '1' PM could sleep over DTIM till listen Interval.
2136 *
2137 * PCI power managed
2138 * bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
2139 * '1' !(PCI_CFG_LINK_CTRL & 0x1)
2140 *
2141 * Fast PD
2142 * bit 4 - '1' Put radio to sleep when receiving frame for others
2143 *
2144 * Force sleep Modes
2145 * bit 31/30- '00' use both mac/xtal sleeps
2146 * '01' force Mac sleep
2147 * '10' force xtal sleep
2148 * '11' Illegal set
2149 *
2150 * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
2151 * ucode assume sleep over DTIM is allowed and we don't need to wake up
2152 * for every DTIM.
2153 */
2154 #define IWL_POWER_VEC_SIZE 5
2155
2156 #define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK cpu_to_le16(BIT(0))
2157 #define IWL_POWER_POWER_SAVE_ENA_MSK cpu_to_le16(BIT(0))
2158 #define IWL_POWER_POWER_MANAGEMENT_ENA_MSK cpu_to_le16(BIT(1))
2159 #define IWL_POWER_SLEEP_OVER_DTIM_MSK cpu_to_le16(BIT(2))
2160 #define IWL_POWER_PCI_PM_MSK cpu_to_le16(BIT(3))
2161 #define IWL_POWER_FAST_PD cpu_to_le16(BIT(4))
2162 #define IWL_POWER_BEACON_FILTERING cpu_to_le16(BIT(5))
2163 #define IWL_POWER_SHADOW_REG_ENA cpu_to_le16(BIT(6))
2164 #define IWL_POWER_CT_KILL_SET cpu_to_le16(BIT(7))
2165 #define IWL_POWER_BT_SCO_ENA cpu_to_le16(BIT(8))
2166 #define IWL_POWER_ADVANCE_PM_ENA_MSK cpu_to_le16(BIT(9))
2167
2168 struct iwl_powertable_cmd {
2169 __le16 flags;
2170 u8 keep_alive_seconds; /* 3945 reserved */
2171 u8 debug_flags; /* 3945 reserved */
2172 __le32 rx_data_timeout;
2173 __le32 tx_data_timeout;
2174 __le32 sleep_interval[IWL_POWER_VEC_SIZE];
2175 __le32 keep_alive_beacons;
2176 } __packed;
2177
2178 /*
2179 * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
2180 * all devices identical.
2181 */
2182 struct iwl_sleep_notification {
2183 u8 pm_sleep_mode;
2184 u8 pm_wakeup_src;
2185 __le16 reserved;
2186 __le32 sleep_time;
2187 __le32 tsf_low;
2188 __le32 bcon_timer;
2189 } __packed;
2190
2191 /* Sleep states. all devices identical. */
2192 enum {
2193 IWL_PM_NO_SLEEP = 0,
2194 IWL_PM_SLP_MAC = 1,
2195 IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
2196 IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
2197 IWL_PM_SLP_PHY = 4,
2198 IWL_PM_SLP_REPENT = 5,
2199 IWL_PM_WAKEUP_BY_TIMER = 6,
2200 IWL_PM_WAKEUP_BY_DRIVER = 7,
2201 IWL_PM_WAKEUP_BY_RFKILL = 8,
2202 /* 3 reserved */
2203 IWL_PM_NUM_OF_MODES = 12,
2204 };
2205
2206 /*
2207 * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
2208 */
2209 #define CARD_STATE_CMD_DISABLE 0x00 /* Put card to sleep */
2210 #define CARD_STATE_CMD_ENABLE 0x01 /* Wake up card */
2211 #define CARD_STATE_CMD_HALT 0x02 /* Power down permanently */
2212 struct iwl_card_state_cmd {
2213 __le32 status; /* CARD_STATE_CMD_* request new power state */
2214 } __packed;
2215
2216 /*
2217 * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
2218 */
2219 struct iwl_card_state_notif {
2220 __le32 flags;
2221 } __packed;
2222
2223 #define HW_CARD_DISABLED 0x01
2224 #define SW_CARD_DISABLED 0x02
2225 #define CT_CARD_DISABLED 0x04
2226 #define RXON_CARD_DISABLED 0x10
2227
2228 struct iwl_ct_kill_config {
2229 __le32 reserved;
2230 __le32 critical_temperature_M;
2231 __le32 critical_temperature_R;
2232 } __packed;
2233
2234 /* 1000, and 6x00 */
2235 struct iwl_ct_kill_throttling_config {
2236 __le32 critical_temperature_exit;
2237 __le32 reserved;
2238 __le32 critical_temperature_enter;
2239 } __packed;
2240
2241 /******************************************************************************
2242 * (8)
2243 * Scan Commands, Responses, Notifications:
2244 *
2245 *****************************************************************************/
2246
2247 #define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
2248 #define SCAN_CHANNEL_TYPE_ACTIVE cpu_to_le32(1)
2249
2250 /**
2251 * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
2252 *
2253 * One for each channel in the scan list.
2254 * Each channel can independently select:
2255 * 1) SSID for directed active scans
2256 * 2) Txpower setting (for rate specified within Tx command)
2257 * 3) How long to stay on-channel (behavior may be modified by quiet_time,
2258 * quiet_plcp_th, good_CRC_th)
2259 *
2260 * To avoid uCode errors, make sure the following are true (see comments
2261 * under struct iwl_scan_cmd about max_out_time and quiet_time):
2262 * 1) If using passive_dwell (i.e. passive_dwell != 0):
2263 * active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
2264 * 2) quiet_time <= active_dwell
2265 * 3) If restricting off-channel time (i.e. max_out_time !=0):
2266 * passive_dwell < max_out_time
2267 * active_dwell < max_out_time
2268 */
2269
2270 struct iwl_scan_channel {
2271 /*
2272 * type is defined as:
2273 * 0:0 1 = active, 0 = passive
2274 * 1:20 SSID direct bit map; if a bit is set, then corresponding
2275 * SSID IE is transmitted in probe request.
2276 * 21:31 reserved
2277 */
2278 __le32 type;
2279 __le16 channel; /* band is selected by iwl_scan_cmd "flags" field */
2280 u8 tx_gain; /* gain for analog radio */
2281 u8 dsp_atten; /* gain for DSP */
2282 __le16 active_dwell; /* in 1024-uSec TU (time units), typ 5-50 */
2283 __le16 passive_dwell; /* in 1024-uSec TU (time units), typ 20-500 */
2284 } __packed;
2285
2286 /* set number of direct probes __le32 type */
2287 #define IWL_SCAN_PROBE_MASK(n) cpu_to_le32((BIT(n) | (BIT(n) - BIT(1))))
2288
2289 /**
2290 * struct iwl_ssid_ie - directed scan network information element
2291 *
2292 * Up to 20 of these may appear in REPLY_SCAN_CMD (Note: Only 4 are in
2293 * 3945 SCAN api), selected by "type" bit field in struct iwl_scan_channel;
2294 * each channel may select different ssids from among the 20 (4) entries.
2295 * SSID IEs get transmitted in reverse order of entry.
2296 */
2297 struct iwl_ssid_ie {
2298 u8 id;
2299 u8 len;
2300 u8 ssid[32];
2301 } __packed;
2302
2303 #define PROBE_OPTION_MAX_3945 4
2304 #define PROBE_OPTION_MAX 20
2305 #define TX_CMD_LIFE_TIME_INFINITE cpu_to_le32(0xFFFFFFFF)
2306 #define IWL_GOOD_CRC_TH_DISABLED 0
2307 #define IWL_GOOD_CRC_TH_DEFAULT cpu_to_le16(1)
2308 #define IWL_GOOD_CRC_TH_NEVER cpu_to_le16(0xffff)
2309 #define IWL_MAX_SCAN_SIZE 1024
2310 #define IWL_MAX_CMD_SIZE 4096
2311
2312 /*
2313 * REPLY_SCAN_CMD = 0x80 (command)
2314 *
2315 * The hardware scan command is very powerful; the driver can set it up to
2316 * maintain (relatively) normal network traffic while doing a scan in the
2317 * background. The max_out_time and suspend_time control the ratio of how
2318 * long the device stays on an associated network channel ("service channel")
2319 * vs. how long it's away from the service channel, i.e. tuned to other channels
2320 * for scanning.
2321 *
2322 * max_out_time is the max time off-channel (in usec), and suspend_time
2323 * is how long (in "extended beacon" format) that the scan is "suspended"
2324 * after returning to the service channel. That is, suspend_time is the
2325 * time that we stay on the service channel, doing normal work, between
2326 * scan segments. The driver may set these parameters differently to support
2327 * scanning when associated vs. not associated, and light vs. heavy traffic
2328 * loads when associated.
2329 *
2330 * After receiving this command, the device's scan engine does the following;
2331 *
2332 * 1) Sends SCAN_START notification to driver
2333 * 2) Checks to see if it has time to do scan for one channel
2334 * 3) Sends NULL packet, with power-save (PS) bit set to 1,
2335 * to tell AP that we're going off-channel
2336 * 4) Tunes to first channel in scan list, does active or passive scan
2337 * 5) Sends SCAN_RESULT notification to driver
2338 * 6) Checks to see if it has time to do scan on *next* channel in list
2339 * 7) Repeats 4-6 until it no longer has time to scan the next channel
2340 * before max_out_time expires
2341 * 8) Returns to service channel
2342 * 9) Sends NULL packet with PS=0 to tell AP that we're back
2343 * 10) Stays on service channel until suspend_time expires
2344 * 11) Repeats entire process 2-10 until list is complete
2345 * 12) Sends SCAN_COMPLETE notification
2346 *
2347 * For fast, efficient scans, the scan command also has support for staying on
2348 * a channel for just a short time, if doing active scanning and getting no
2349 * responses to the transmitted probe request. This time is controlled by
2350 * quiet_time, and the number of received packets below which a channel is
2351 * considered "quiet" is controlled by quiet_plcp_threshold.
2352 *
2353 * For active scanning on channels that have regulatory restrictions against
2354 * blindly transmitting, the scan can listen before transmitting, to make sure
2355 * that there is already legitimate activity on the channel. If enough
2356 * packets are cleanly received on the channel (controlled by good_CRC_th,
2357 * typical value 1), the scan engine starts transmitting probe requests.
2358 *
2359 * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
2360 *
2361 * To avoid uCode errors, see timing restrictions described under
2362 * struct iwl_scan_channel.
2363 */
2364
2365 enum iwl_scan_flags {
2366 /* BIT(0) currently unused */
2367 IWL_SCAN_FLAGS_ACTION_FRAME_TX = BIT(1),
2368 /* bits 2-7 reserved */
2369 };
2370
2371 struct iwl_scan_cmd {
2372 __le16 len;
2373 u8 scan_flags; /* scan flags: see enum iwl_scan_flags */
2374 u8 channel_count; /* # channels in channel list */
2375 __le16 quiet_time; /* dwell only this # millisecs on quiet channel
2376 * (only for active scan) */
2377 __le16 quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */
2378 __le16 good_CRC_th; /* passive -> active promotion threshold */
2379 __le16 rx_chain; /* RXON_RX_CHAIN_* */
2380 __le32 max_out_time; /* max usec to be away from associated (service)
2381 * channel */
2382 __le32 suspend_time; /* pause scan this long (in "extended beacon
2383 * format") when returning to service chnl:
2384 * 3945; 31:24 # beacons, 19:0 additional usec,
2385 * 4965; 31:22 # beacons, 21:0 additional usec.
2386 */
2387 __le32 flags; /* RXON_FLG_* */
2388 __le32 filter_flags; /* RXON_FILTER_* */
2389
2390 /* For active scans (set to all-0s for passive scans).
2391 * Does not include payload. Must specify Tx rate; no rate scaling. */
2392 struct iwl_tx_cmd tx_cmd;
2393
2394 /* For directed active scans (set to all-0s otherwise) */
2395 struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
2396
2397 /*
2398 * Probe request frame, followed by channel list.
2399 *
2400 * Size of probe request frame is specified by byte count in tx_cmd.
2401 * Channel list follows immediately after probe request frame.
2402 * Number of channels in list is specified by channel_count.
2403 * Each channel in list is of type:
2404 *
2405 * struct iwl_scan_channel channels[0];
2406 *
2407 * NOTE: Only one band of channels can be scanned per pass. You
2408 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2409 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2410 * before requesting another scan.
2411 */
2412 u8 data[0];
2413 } __packed;
2414
2415 /* Can abort will notify by complete notification with abort status. */
2416 #define CAN_ABORT_STATUS cpu_to_le32(0x1)
2417 /* complete notification statuses */
2418 #define ABORT_STATUS 0x2
2419
2420 /*
2421 * REPLY_SCAN_CMD = 0x80 (response)
2422 */
2423 struct iwl_scanreq_notification {
2424 __le32 status; /* 1: okay, 2: cannot fulfill request */
2425 } __packed;
2426
2427 /*
2428 * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
2429 */
2430 struct iwl_scanstart_notification {
2431 __le32 tsf_low;
2432 __le32 tsf_high;
2433 __le32 beacon_timer;
2434 u8 channel;
2435 u8 band;
2436 u8 reserved[2];
2437 __le32 status;
2438 } __packed;
2439
2440 #define SCAN_OWNER_STATUS 0x1;
2441 #define MEASURE_OWNER_STATUS 0x2;
2442
2443 #define IWL_PROBE_STATUS_OK 0
2444 #define IWL_PROBE_STATUS_TX_FAILED BIT(0)
2445 /* error statuses combined with TX_FAILED */
2446 #define IWL_PROBE_STATUS_FAIL_TTL BIT(1)
2447 #define IWL_PROBE_STATUS_FAIL_BT BIT(2)
2448
2449 #define NUMBER_OF_STATISTICS 1 /* first __le32 is good CRC */
2450 /*
2451 * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
2452 */
2453 struct iwl_scanresults_notification {
2454 u8 channel;
2455 u8 band;
2456 u8 probe_status;
2457 u8 num_probe_not_sent; /* not enough time to send */
2458 __le32 tsf_low;
2459 __le32 tsf_high;
2460 __le32 statistics[NUMBER_OF_STATISTICS];
2461 } __packed;
2462
2463 /*
2464 * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
2465 */
2466 struct iwl_scancomplete_notification {
2467 u8 scanned_channels;
2468 u8 status;
2469 u8 bt_status; /* BT On/Off status */
2470 u8 last_channel;
2471 __le32 tsf_low;
2472 __le32 tsf_high;
2473 } __packed;
2474
2475
2476 /******************************************************************************
2477 * (9)
2478 * IBSS/AP Commands and Notifications:
2479 *
2480 *****************************************************************************/
2481
2482 enum iwl_ibss_manager {
2483 IWL_NOT_IBSS_MANAGER = 0,
2484 IWL_IBSS_MANAGER = 1,
2485 };
2486
2487 /*
2488 * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
2489 */
2490
2491 struct iwlagn_beacon_notif {
2492 struct iwlagn_tx_resp beacon_notify_hdr;
2493 __le32 low_tsf;
2494 __le32 high_tsf;
2495 __le32 ibss_mgr_status;
2496 } __packed;
2497
2498 /*
2499 * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
2500 */
2501
2502 struct iwl_tx_beacon_cmd {
2503 struct iwl_tx_cmd tx;
2504 __le16 tim_idx;
2505 u8 tim_size;
2506 u8 reserved1;
2507 struct ieee80211_hdr frame[0]; /* beacon frame */
2508 } __packed;
2509
2510 /******************************************************************************
2511 * (10)
2512 * Statistics Commands and Notifications:
2513 *
2514 *****************************************************************************/
2515
2516 #define IWL_TEMP_CONVERT 260
2517
2518 #define SUP_RATE_11A_MAX_NUM_CHANNELS 8
2519 #define SUP_RATE_11B_MAX_NUM_CHANNELS 4
2520 #define SUP_RATE_11G_MAX_NUM_CHANNELS 12
2521
2522 /* Used for passing to driver number of successes and failures per rate */
2523 struct rate_histogram {
2524 union {
2525 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2526 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2527 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2528 } success;
2529 union {
2530 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2531 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2532 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2533 } failed;
2534 } __packed;
2535
2536 /* statistics command response */
2537
2538 struct statistics_dbg {
2539 __le32 burst_check;
2540 __le32 burst_count;
2541 __le32 wait_for_silence_timeout_cnt;
2542 __le32 reserved[3];
2543 } __packed;
2544
2545 struct statistics_rx_phy {
2546 __le32 ina_cnt;
2547 __le32 fina_cnt;
2548 __le32 plcp_err;
2549 __le32 crc32_err;
2550 __le32 overrun_err;
2551 __le32 early_overrun_err;
2552 __le32 crc32_good;
2553 __le32 false_alarm_cnt;
2554 __le32 fina_sync_err_cnt;
2555 __le32 sfd_timeout;
2556 __le32 fina_timeout;
2557 __le32 unresponded_rts;
2558 __le32 rxe_frame_limit_overrun;
2559 __le32 sent_ack_cnt;
2560 __le32 sent_cts_cnt;
2561 __le32 sent_ba_rsp_cnt;
2562 __le32 dsp_self_kill;
2563 __le32 mh_format_err;
2564 __le32 re_acq_main_rssi_sum;
2565 __le32 reserved3;
2566 } __packed;
2567
2568 struct statistics_rx_ht_phy {
2569 __le32 plcp_err;
2570 __le32 overrun_err;
2571 __le32 early_overrun_err;
2572 __le32 crc32_good;
2573 __le32 crc32_err;
2574 __le32 mh_format_err;
2575 __le32 agg_crc32_good;
2576 __le32 agg_mpdu_cnt;
2577 __le32 agg_cnt;
2578 __le32 unsupport_mcs;
2579 } __packed;
2580
2581 #define INTERFERENCE_DATA_AVAILABLE cpu_to_le32(1)
2582
2583 struct statistics_rx_non_phy {
2584 __le32 bogus_cts; /* CTS received when not expecting CTS */
2585 __le32 bogus_ack; /* ACK received when not expecting ACK */
2586 __le32 non_bssid_frames; /* number of frames with BSSID that
2587 * doesn't belong to the STA BSSID */
2588 __le32 filtered_frames; /* count frames that were dumped in the
2589 * filtering process */
2590 __le32 non_channel_beacons; /* beacons with our bss id but not on
2591 * our serving channel */
2592 __le32 channel_beacons; /* beacons with our bss id and in our
2593 * serving channel */
2594 __le32 num_missed_bcon; /* number of missed beacons */
2595 __le32 adc_rx_saturation_time; /* count in 0.8us units the time the
2596 * ADC was in saturation */
2597 __le32 ina_detection_search_time;/* total time (in 0.8us) searched
2598 * for INA */
2599 __le32 beacon_silence_rssi_a; /* RSSI silence after beacon frame */
2600 __le32 beacon_silence_rssi_b; /* RSSI silence after beacon frame */
2601 __le32 beacon_silence_rssi_c; /* RSSI silence after beacon frame */
2602 __le32 interference_data_flag; /* flag for interference data
2603 * availability. 1 when data is
2604 * available. */
2605 __le32 channel_load; /* counts RX Enable time in uSec */
2606 __le32 dsp_false_alarms; /* DSP false alarm (both OFDM
2607 * and CCK) counter */
2608 __le32 beacon_rssi_a;
2609 __le32 beacon_rssi_b;
2610 __le32 beacon_rssi_c;
2611 __le32 beacon_energy_a;
2612 __le32 beacon_energy_b;
2613 __le32 beacon_energy_c;
2614 } __packed;
2615
2616 struct statistics_rx_non_phy_bt {
2617 struct statistics_rx_non_phy common;
2618 /* additional stats for bt */
2619 __le32 num_bt_kills;
2620 __le32 reserved[2];
2621 } __packed;
2622
2623 struct statistics_rx {
2624 struct statistics_rx_phy ofdm;
2625 struct statistics_rx_phy cck;
2626 struct statistics_rx_non_phy general;
2627 struct statistics_rx_ht_phy ofdm_ht;
2628 } __packed;
2629
2630 struct statistics_rx_bt {
2631 struct statistics_rx_phy ofdm;
2632 struct statistics_rx_phy cck;
2633 struct statistics_rx_non_phy_bt general;
2634 struct statistics_rx_ht_phy ofdm_ht;
2635 } __packed;
2636
2637 /**
2638 * struct statistics_tx_power - current tx power
2639 *
2640 * @ant_a: current tx power on chain a in 1/2 dB step
2641 * @ant_b: current tx power on chain b in 1/2 dB step
2642 * @ant_c: current tx power on chain c in 1/2 dB step
2643 */
2644 struct statistics_tx_power {
2645 u8 ant_a;
2646 u8 ant_b;
2647 u8 ant_c;
2648 u8 reserved;
2649 } __packed;
2650
2651 struct statistics_tx_non_phy_agg {
2652 __le32 ba_timeout;
2653 __le32 ba_reschedule_frames;
2654 __le32 scd_query_agg_frame_cnt;
2655 __le32 scd_query_no_agg;
2656 __le32 scd_query_agg;
2657 __le32 scd_query_mismatch;
2658 __le32 frame_not_ready;
2659 __le32 underrun;
2660 __le32 bt_prio_kill;
2661 __le32 rx_ba_rsp_cnt;
2662 } __packed;
2663
2664 struct statistics_tx {
2665 __le32 preamble_cnt;
2666 __le32 rx_detected_cnt;
2667 __le32 bt_prio_defer_cnt;
2668 __le32 bt_prio_kill_cnt;
2669 __le32 few_bytes_cnt;
2670 __le32 cts_timeout;
2671 __le32 ack_timeout;
2672 __le32 expected_ack_cnt;
2673 __le32 actual_ack_cnt;
2674 __le32 dump_msdu_cnt;
2675 __le32 burst_abort_next_frame_mismatch_cnt;
2676 __le32 burst_abort_missing_next_frame_cnt;
2677 __le32 cts_timeout_collision;
2678 __le32 ack_or_ba_timeout_collision;
2679 struct statistics_tx_non_phy_agg agg;
2680 /*
2681 * "tx_power" are optional parameters provided by uCode,
2682 * 6000 series is the only device provide the information,
2683 * Those are reserved fields for all the other devices
2684 */
2685 struct statistics_tx_power tx_power;
2686 __le32 reserved1;
2687 } __packed;
2688
2689
2690 struct statistics_div {
2691 __le32 tx_on_a;
2692 __le32 tx_on_b;
2693 __le32 exec_time;
2694 __le32 probe_time;
2695 __le32 reserved1;
2696 __le32 reserved2;
2697 } __packed;
2698
2699 struct statistics_general_common {
2700 __le32 temperature; /* radio temperature */
2701 __le32 temperature_m; /* for 5000 and up, this is radio voltage */
2702 struct statistics_dbg dbg;
2703 __le32 sleep_time;
2704 __le32 slots_out;
2705 __le32 slots_idle;
2706 __le32 ttl_timestamp;
2707 struct statistics_div div;
2708 __le32 rx_enable_counter;
2709 /*
2710 * num_of_sos_states:
2711 * count the number of times we have to re-tune
2712 * in order to get out of bad PHY status
2713 */
2714 __le32 num_of_sos_states;
2715 } __packed;
2716
2717 struct statistics_bt_activity {
2718 /* Tx statistics */
2719 __le32 hi_priority_tx_req_cnt;
2720 __le32 hi_priority_tx_denied_cnt;
2721 __le32 lo_priority_tx_req_cnt;
2722 __le32 lo_priority_tx_denied_cnt;
2723 /* Rx statistics */
2724 __le32 hi_priority_rx_req_cnt;
2725 __le32 hi_priority_rx_denied_cnt;
2726 __le32 lo_priority_rx_req_cnt;
2727 __le32 lo_priority_rx_denied_cnt;
2728 } __packed;
2729
2730 struct statistics_general {
2731 struct statistics_general_common common;
2732 __le32 reserved2;
2733 __le32 reserved3;
2734 } __packed;
2735
2736 struct statistics_general_bt {
2737 struct statistics_general_common common;
2738 struct statistics_bt_activity activity;
2739 __le32 reserved2;
2740 __le32 reserved3;
2741 } __packed;
2742
2743 #define UCODE_STATISTICS_CLEAR_MSK (0x1 << 0)
2744 #define UCODE_STATISTICS_FREQUENCY_MSK (0x1 << 1)
2745 #define UCODE_STATISTICS_NARROW_BAND_MSK (0x1 << 2)
2746
2747 /*
2748 * REPLY_STATISTICS_CMD = 0x9c,
2749 * all devices identical.
2750 *
2751 * This command triggers an immediate response containing uCode statistics.
2752 * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
2753 *
2754 * If the CLEAR_STATS configuration flag is set, uCode will clear its
2755 * internal copy of the statistics (counters) after issuing the response.
2756 * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
2757 *
2758 * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
2759 * STATISTICS_NOTIFICATIONs after received beacons (see below). This flag
2760 * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
2761 */
2762 #define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1) /* see above */
2763 #define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */
2764 struct iwl_statistics_cmd {
2765 __le32 configuration_flags; /* IWL_STATS_CONF_* */
2766 } __packed;
2767
2768 /*
2769 * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
2770 *
2771 * By default, uCode issues this notification after receiving a beacon
2772 * while associated. To disable this behavior, set DISABLE_NOTIF flag in the
2773 * REPLY_STATISTICS_CMD 0x9c, above.
2774 *
2775 * Statistics counters continue to increment beacon after beacon, but are
2776 * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
2777 * 0x9c with CLEAR_STATS bit set (see above).
2778 *
2779 * uCode also issues this notification during scans. uCode clears statistics
2780 * appropriately so that each notification contains statistics for only the
2781 * one channel that has just been scanned.
2782 */
2783 #define STATISTICS_REPLY_FLG_BAND_24G_MSK cpu_to_le32(0x2)
2784 #define STATISTICS_REPLY_FLG_HT40_MODE_MSK cpu_to_le32(0x8)
2785
2786 struct iwl_notif_statistics {
2787 __le32 flag;
2788 struct statistics_rx rx;
2789 struct statistics_tx tx;
2790 struct statistics_general general;
2791 } __packed;
2792
2793 struct iwl_bt_notif_statistics {
2794 __le32 flag;
2795 struct statistics_rx_bt rx;
2796 struct statistics_tx tx;
2797 struct statistics_general_bt general;
2798 } __packed;
2799
2800 /*
2801 * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
2802 *
2803 * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed
2804 * in regardless of how many missed beacons, which mean when driver receive the
2805 * notification, inside the command, it can find all the beacons information
2806 * which include number of total missed beacons, number of consecutive missed
2807 * beacons, number of beacons received and number of beacons expected to
2808 * receive.
2809 *
2810 * If uCode detected consecutive_missed_beacons > 5, it will reset the radio
2811 * in order to bring the radio/PHY back to working state; which has no relation
2812 * to when driver will perform sensitivity calibration.
2813 *
2814 * Driver should set it own missed_beacon_threshold to decide when to perform
2815 * sensitivity calibration based on number of consecutive missed beacons in
2816 * order to improve overall performance, especially in noisy environment.
2817 *
2818 */
2819
2820 #define IWL_MISSED_BEACON_THRESHOLD_MIN (1)
2821 #define IWL_MISSED_BEACON_THRESHOLD_DEF (5)
2822 #define IWL_MISSED_BEACON_THRESHOLD_MAX IWL_MISSED_BEACON_THRESHOLD_DEF
2823
2824 struct iwl_missed_beacon_notif {
2825 __le32 consecutive_missed_beacons;
2826 __le32 total_missed_becons;
2827 __le32 num_expected_beacons;
2828 __le32 num_recvd_beacons;
2829 } __packed;
2830
2831
2832 /******************************************************************************
2833 * (11)
2834 * Rx Calibration Commands:
2835 *
2836 * With the uCode used for open source drivers, most Tx calibration (except
2837 * for Tx Power) and most Rx calibration is done by uCode during the
2838 * "initialize" phase of uCode boot. Driver must calibrate only:
2839 *
2840 * 1) Tx power (depends on temperature), described elsewhere
2841 * 2) Receiver gain balance (optimize MIMO, and detect disconnected antennas)
2842 * 3) Receiver sensitivity (to optimize signal detection)
2843 *
2844 *****************************************************************************/
2845
2846 /**
2847 * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
2848 *
2849 * This command sets up the Rx signal detector for a sensitivity level that
2850 * is high enough to lock onto all signals within the associated network,
2851 * but low enough to ignore signals that are below a certain threshold, so as
2852 * not to have too many "false alarms". False alarms are signals that the
2853 * Rx DSP tries to lock onto, but then discards after determining that they
2854 * are noise.
2855 *
2856 * The optimum number of false alarms is between 5 and 50 per 200 TUs
2857 * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
2858 * time listening, not transmitting). Driver must adjust sensitivity so that
2859 * the ratio of actual false alarms to actual Rx time falls within this range.
2860 *
2861 * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
2862 * received beacon. These provide information to the driver to analyze the
2863 * sensitivity. Don't analyze statistics that come in from scanning, or any
2864 * other non-associated-network source. Pertinent statistics include:
2865 *
2866 * From "general" statistics (struct statistics_rx_non_phy):
2867 *
2868 * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
2869 * Measure of energy of desired signal. Used for establishing a level
2870 * below which the device does not detect signals.
2871 *
2872 * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
2873 * Measure of background noise in silent period after beacon.
2874 *
2875 * channel_load
2876 * uSecs of actual Rx time during beacon period (varies according to
2877 * how much time was spent transmitting).
2878 *
2879 * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
2880 *
2881 * false_alarm_cnt
2882 * Signal locks abandoned early (before phy-level header).
2883 *
2884 * plcp_err
2885 * Signal locks abandoned late (during phy-level header).
2886 *
2887 * NOTE: Both false_alarm_cnt and plcp_err increment monotonically from
2888 * beacon to beacon, i.e. each value is an accumulation of all errors
2889 * before and including the latest beacon. Values will wrap around to 0
2890 * after counting up to 2^32 - 1. Driver must differentiate vs.
2891 * previous beacon's values to determine # false alarms in the current
2892 * beacon period.
2893 *
2894 * Total number of false alarms = false_alarms + plcp_errs
2895 *
2896 * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
2897 * (notice that the start points for OFDM are at or close to settings for
2898 * maximum sensitivity):
2899 *
2900 * START / MIN / MAX
2901 * HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX 90 / 85 / 120
2902 * HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX 170 / 170 / 210
2903 * HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX 105 / 105 / 140
2904 * HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX 220 / 220 / 270
2905 *
2906 * If actual rate of OFDM false alarms (+ plcp_errors) is too high
2907 * (greater than 50 for each 204.8 msecs listening), reduce sensitivity
2908 * by *adding* 1 to all 4 of the table entries above, up to the max for
2909 * each entry. Conversely, if false alarm rate is too low (less than 5
2910 * for each 204.8 msecs listening), *subtract* 1 from each entry to
2911 * increase sensitivity.
2912 *
2913 * For CCK sensitivity, keep track of the following:
2914 *
2915 * 1). 20-beacon history of maximum background noise, indicated by
2916 * (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
2917 * 3 receivers. For any given beacon, the "silence reference" is
2918 * the maximum of last 60 samples (20 beacons * 3 receivers).
2919 *
2920 * 2). 10-beacon history of strongest signal level, as indicated
2921 * by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
2922 * i.e. the strength of the signal through the best receiver at the
2923 * moment. These measurements are "upside down", with lower values
2924 * for stronger signals, so max energy will be *minimum* value.
2925 *
2926 * Then for any given beacon, the driver must determine the *weakest*
2927 * of the strongest signals; this is the minimum level that needs to be
2928 * successfully detected, when using the best receiver at the moment.
2929 * "Max cck energy" is the maximum (higher value means lower energy!)
2930 * of the last 10 minima. Once this is determined, driver must add
2931 * a little margin by adding "6" to it.
2932 *
2933 * 3). Number of consecutive beacon periods with too few false alarms.
2934 * Reset this to 0 at the first beacon period that falls within the
2935 * "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
2936 *
2937 * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
2938 * (notice that the start points for CCK are at maximum sensitivity):
2939 *
2940 * START / MIN / MAX
2941 * HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX 125 / 125 / 200
2942 * HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX 200 / 200 / 400
2943 * HD_MIN_ENERGY_CCK_DET_INDEX 100 / 0 / 100
2944 *
2945 * If actual rate of CCK false alarms (+ plcp_errors) is too high
2946 * (greater than 50 for each 204.8 msecs listening), method for reducing
2947 * sensitivity is:
2948 *
2949 * 1) *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2950 * up to max 400.
2951 *
2952 * 2) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
2953 * sensitivity has been reduced a significant amount; bring it up to
2954 * a moderate 161. Otherwise, *add* 3, up to max 200.
2955 *
2956 * 3) a) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
2957 * sensitivity has been reduced only a moderate or small amount;
2958 * *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
2959 * down to min 0. Otherwise (if gain has been significantly reduced),
2960 * don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
2961 *
2962 * b) Save a snapshot of the "silence reference".
2963 *
2964 * If actual rate of CCK false alarms (+ plcp_errors) is too low
2965 * (less than 5 for each 204.8 msecs listening), method for increasing
2966 * sensitivity is used only if:
2967 *
2968 * 1a) Previous beacon did not have too many false alarms
2969 * 1b) AND difference between previous "silence reference" and current
2970 * "silence reference" (prev - current) is 2 or more,
2971 * OR 2) 100 or more consecutive beacon periods have had rate of
2972 * less than 5 false alarms per 204.8 milliseconds rx time.
2973 *
2974 * Method for increasing sensitivity:
2975 *
2976 * 1) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
2977 * down to min 125.
2978 *
2979 * 2) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2980 * down to min 200.
2981 *
2982 * 3) *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
2983 *
2984 * If actual rate of CCK false alarms (+ plcp_errors) is within good range
2985 * (between 5 and 50 for each 204.8 msecs listening):
2986 *
2987 * 1) Save a snapshot of the silence reference.
2988 *
2989 * 2) If previous beacon had too many CCK false alarms (+ plcp_errors),
2990 * give some extra margin to energy threshold by *subtracting* 8
2991 * from value in HD_MIN_ENERGY_CCK_DET_INDEX.
2992 *
2993 * For all cases (too few, too many, good range), make sure that the CCK
2994 * detection threshold (energy) is below the energy level for robust
2995 * detection over the past 10 beacon periods, the "Max cck energy".
2996 * Lower values mean higher energy; this means making sure that the value
2997 * in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
2998 *
2999 */
3000
3001 /*
3002 * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
3003 */
3004 #define HD_TABLE_SIZE (11) /* number of entries */
3005 #define HD_MIN_ENERGY_CCK_DET_INDEX (0) /* table indexes */
3006 #define HD_MIN_ENERGY_OFDM_DET_INDEX (1)
3007 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX (2)
3008 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX (3)
3009 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX (4)
3010 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX (5)
3011 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX (6)
3012 #define HD_BARKER_CORR_TH_ADD_MIN_INDEX (7)
3013 #define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX (8)
3014 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX (9)
3015 #define HD_OFDM_ENERGY_TH_IN_INDEX (10)
3016
3017 /*
3018 * Additional table entries in enhance SENSITIVITY_CMD
3019 */
3020 #define HD_INA_NON_SQUARE_DET_OFDM_INDEX (11)
3021 #define HD_INA_NON_SQUARE_DET_CCK_INDEX (12)
3022 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX (13)
3023 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX (14)
3024 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (15)
3025 #define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX (16)
3026 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX (17)
3027 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX (18)
3028 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (19)
3029 #define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX (20)
3030 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX (21)
3031 #define HD_RESERVED (22)
3032
3033 /* number of entries for enhanced tbl */
3034 #define ENHANCE_HD_TABLE_SIZE (23)
3035
3036 /* number of additional entries for enhanced tbl */
3037 #define ENHANCE_HD_TABLE_ENTRIES (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE)
3038
3039 #define HD_INA_NON_SQUARE_DET_OFDM_DATA cpu_to_le16(0)
3040 #define HD_INA_NON_SQUARE_DET_CCK_DATA cpu_to_le16(0)
3041 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA cpu_to_le16(0)
3042 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA cpu_to_le16(668)
3043 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA cpu_to_le16(4)
3044 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA cpu_to_le16(486)
3045 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA cpu_to_le16(37)
3046 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA cpu_to_le16(853)
3047 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA cpu_to_le16(4)
3048 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA cpu_to_le16(476)
3049 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA cpu_to_le16(99)
3050
3051
3052 /* Control field in struct iwl_sensitivity_cmd */
3053 #define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE cpu_to_le16(0)
3054 #define SENSITIVITY_CMD_CONTROL_WORK_TABLE cpu_to_le16(1)
3055
3056 /**
3057 * struct iwl_sensitivity_cmd
3058 * @control: (1) updates working table, (0) updates default table
3059 * @table: energy threshold values, use HD_* as index into table
3060 *
3061 * Always use "1" in "control" to update uCode's working table and DSP.
3062 */
3063 struct iwl_sensitivity_cmd {
3064 __le16 control; /* always use "1" */
3065 __le16 table[HD_TABLE_SIZE]; /* use HD_* as index */
3066 } __packed;
3067
3068 /*
3069 *
3070 */
3071 struct iwl_enhance_sensitivity_cmd {
3072 __le16 control; /* always use "1" */
3073 __le16 enhance_table[ENHANCE_HD_TABLE_SIZE]; /* use HD_* as index */
3074 } __packed;
3075
3076
3077 /**
3078 * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
3079 *
3080 * This command sets the relative gains of agn device's 3 radio receiver chains.
3081 *
3082 * After the first association, driver should accumulate signal and noise
3083 * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
3084 * beacons from the associated network (don't collect statistics that come
3085 * in from scanning, or any other non-network source).
3086 *
3087 * DISCONNECTED ANTENNA:
3088 *
3089 * Driver should determine which antennas are actually connected, by comparing
3090 * average beacon signal levels for the 3 Rx chains. Accumulate (add) the
3091 * following values over 20 beacons, one accumulator for each of the chains
3092 * a/b/c, from struct statistics_rx_non_phy:
3093 *
3094 * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
3095 *
3096 * Find the strongest signal from among a/b/c. Compare the other two to the
3097 * strongest. If any signal is more than 15 dB (times 20, unless you
3098 * divide the accumulated values by 20) below the strongest, the driver
3099 * considers that antenna to be disconnected, and should not try to use that
3100 * antenna/chain for Rx or Tx. If both A and B seem to be disconnected,
3101 * driver should declare the stronger one as connected, and attempt to use it
3102 * (A and B are the only 2 Tx chains!).
3103 *
3104 *
3105 * RX BALANCE:
3106 *
3107 * Driver should balance the 3 receivers (but just the ones that are connected
3108 * to antennas, see above) for gain, by comparing the average signal levels
3109 * detected during the silence after each beacon (background noise).
3110 * Accumulate (add) the following values over 20 beacons, one accumulator for
3111 * each of the chains a/b/c, from struct statistics_rx_non_phy:
3112 *
3113 * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
3114 *
3115 * Find the weakest background noise level from among a/b/c. This Rx chain
3116 * will be the reference, with 0 gain adjustment. Attenuate other channels by
3117 * finding noise difference:
3118 *
3119 * (accum_noise[i] - accum_noise[reference]) / 30
3120 *
3121 * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
3122 * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
3123 * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
3124 * and set bit 2 to indicate "reduce gain". The value for the reference
3125 * (weakest) chain should be "0".
3126 *
3127 * diff_gain_[abc] bit fields:
3128 * 2: (1) reduce gain, (0) increase gain
3129 * 1-0: amount of gain, units of 1.5 dB
3130 */
3131
3132 /* Phy calibration command for series */
3133 /* The default calibrate table size if not specified by firmware */
3134 #define IWL_DEFAULT_STANDARD_PHY_CALIBRATE_TBL_SIZE 18
3135 enum {
3136 IWL_PHY_CALIBRATE_DIFF_GAIN_CMD = 7,
3137 IWL_PHY_CALIBRATE_DC_CMD = 8,
3138 IWL_PHY_CALIBRATE_LO_CMD = 9,
3139 IWL_PHY_CALIBRATE_TX_IQ_CMD = 11,
3140 IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD = 15,
3141 IWL_PHY_CALIBRATE_BASE_BAND_CMD = 16,
3142 IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD = 17,
3143 IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD = 18,
3144 IWL_MAX_STANDARD_PHY_CALIBRATE_TBL_SIZE = 19,
3145 };
3146
3147 #define IWL_MAX_PHY_CALIBRATE_TBL_SIZE (253)
3148
3149 #define IWL_CALIB_INIT_CFG_ALL cpu_to_le32(0xffffffff)
3150
3151 /* This enum defines the bitmap of various calibrations to enable in both
3152 * init ucode and runtime ucode through CALIBRATION_CFG_CMD.
3153 */
3154 enum iwl_ucode_calib_cfg {
3155 IWL_CALIB_CFG_RX_BB_IDX,
3156 IWL_CALIB_CFG_DC_IDX,
3157 IWL_CALIB_CFG_TX_IQ_IDX,
3158 IWL_CALIB_CFG_RX_IQ_IDX,
3159 IWL_CALIB_CFG_NOISE_IDX,
3160 IWL_CALIB_CFG_CRYSTAL_IDX,
3161 IWL_CALIB_CFG_TEMPERATURE_IDX,
3162 IWL_CALIB_CFG_PAPD_IDX,
3163 };
3164
3165
3166 struct iwl_calib_cfg_elmnt_s {
3167 __le32 is_enable;
3168 __le32 start;
3169 __le32 send_res;
3170 __le32 apply_res;
3171 __le32 reserved;
3172 } __packed;
3173
3174 struct iwl_calib_cfg_status_s {
3175 struct iwl_calib_cfg_elmnt_s once;
3176 struct iwl_calib_cfg_elmnt_s perd;
3177 __le32 flags;
3178 } __packed;
3179
3180 struct iwl_calib_cfg_cmd {
3181 struct iwl_calib_cfg_status_s ucd_calib_cfg;
3182 struct iwl_calib_cfg_status_s drv_calib_cfg;
3183 __le32 reserved1;
3184 } __packed;
3185
3186 struct iwl_calib_hdr {
3187 u8 op_code;
3188 u8 first_group;
3189 u8 groups_num;
3190 u8 data_valid;
3191 } __packed;
3192
3193 struct iwl_calib_cmd {
3194 struct iwl_calib_hdr hdr;
3195 u8 data[0];
3196 } __packed;
3197
3198 /* IWL_PHY_CALIBRATE_DIFF_GAIN_CMD (7) */
3199 struct iwl_calib_diff_gain_cmd {
3200 struct iwl_calib_hdr hdr;
3201 s8 diff_gain_a; /* see above */
3202 s8 diff_gain_b;
3203 s8 diff_gain_c;
3204 u8 reserved1;
3205 } __packed;
3206
3207 struct iwl_calib_xtal_freq_cmd {
3208 struct iwl_calib_hdr hdr;
3209 u8 cap_pin1;
3210 u8 cap_pin2;
3211 u8 pad[2];
3212 } __packed;
3213
3214 #define DEFAULT_RADIO_SENSOR_OFFSET 2700
3215 struct iwl_calib_temperature_offset_cmd {
3216 struct iwl_calib_hdr hdr;
3217 s16 radio_sensor_offset;
3218 s16 reserved;
3219 } __packed;
3220
3221 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
3222 struct iwl_calib_chain_noise_reset_cmd {
3223 struct iwl_calib_hdr hdr;
3224 u8 data[0];
3225 };
3226
3227 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
3228 struct iwl_calib_chain_noise_gain_cmd {
3229 struct iwl_calib_hdr hdr;
3230 u8 delta_gain_1;
3231 u8 delta_gain_2;
3232 u8 pad[2];
3233 } __packed;
3234
3235 /******************************************************************************
3236 * (12)
3237 * Miscellaneous Commands:
3238 *
3239 *****************************************************************************/
3240
3241 /*
3242 * LEDs Command & Response
3243 * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
3244 *
3245 * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
3246 * this command turns it on or off, or sets up a periodic blinking cycle.
3247 */
3248 struct iwl_led_cmd {
3249 __le32 interval; /* "interval" in uSec */
3250 u8 id; /* 1: Activity, 2: Link, 3: Tech */
3251 u8 off; /* # intervals off while blinking;
3252 * "0", with >0 "on" value, turns LED on */
3253 u8 on; /* # intervals on while blinking;
3254 * "0", regardless of "off", turns LED off */
3255 u8 reserved;
3256 } __packed;
3257
3258 /*
3259 * station priority table entries
3260 * also used as potential "events" value for both
3261 * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD
3262 */
3263
3264 /*
3265 * COEX events entry flag masks
3266 * RP - Requested Priority
3267 * WP - Win Medium Priority: priority assigned when the contention has been won
3268 */
3269 #define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG (0x1)
3270 #define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG (0x2)
3271 #define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG (0x4)
3272
3273 #define COEX_CU_UNASSOC_IDLE_RP 4
3274 #define COEX_CU_UNASSOC_MANUAL_SCAN_RP 4
3275 #define COEX_CU_UNASSOC_AUTO_SCAN_RP 4
3276 #define COEX_CU_CALIBRATION_RP 4
3277 #define COEX_CU_PERIODIC_CALIBRATION_RP 4
3278 #define COEX_CU_CONNECTION_ESTAB_RP 4
3279 #define COEX_CU_ASSOCIATED_IDLE_RP 4
3280 #define COEX_CU_ASSOC_MANUAL_SCAN_RP 4
3281 #define COEX_CU_ASSOC_AUTO_SCAN_RP 4
3282 #define COEX_CU_ASSOC_ACTIVE_LEVEL_RP 4
3283 #define COEX_CU_RF_ON_RP 6
3284 #define COEX_CU_RF_OFF_RP 4
3285 #define COEX_CU_STAND_ALONE_DEBUG_RP 6
3286 #define COEX_CU_IPAN_ASSOC_LEVEL_RP 4
3287 #define COEX_CU_RSRVD1_RP 4
3288 #define COEX_CU_RSRVD2_RP 4
3289
3290 #define COEX_CU_UNASSOC_IDLE_WP 3
3291 #define COEX_CU_UNASSOC_MANUAL_SCAN_WP 3
3292 #define COEX_CU_UNASSOC_AUTO_SCAN_WP 3
3293 #define COEX_CU_CALIBRATION_WP 3
3294 #define COEX_CU_PERIODIC_CALIBRATION_WP 3
3295 #define COEX_CU_CONNECTION_ESTAB_WP 3
3296 #define COEX_CU_ASSOCIATED_IDLE_WP 3
3297 #define COEX_CU_ASSOC_MANUAL_SCAN_WP 3
3298 #define COEX_CU_ASSOC_AUTO_SCAN_WP 3
3299 #define COEX_CU_ASSOC_ACTIVE_LEVEL_WP 3
3300 #define COEX_CU_RF_ON_WP 3
3301 #define COEX_CU_RF_OFF_WP 3
3302 #define COEX_CU_STAND_ALONE_DEBUG_WP 6
3303 #define COEX_CU_IPAN_ASSOC_LEVEL_WP 3
3304 #define COEX_CU_RSRVD1_WP 3
3305 #define COEX_CU_RSRVD2_WP 3
3306
3307 #define COEX_UNASSOC_IDLE_FLAGS 0
3308 #define COEX_UNASSOC_MANUAL_SCAN_FLAGS \
3309 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3310 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3311 #define COEX_UNASSOC_AUTO_SCAN_FLAGS \
3312 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3313 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3314 #define COEX_CALIBRATION_FLAGS \
3315 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3316 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3317 #define COEX_PERIODIC_CALIBRATION_FLAGS 0
3318 /*
3319 * COEX_CONNECTION_ESTAB:
3320 * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3321 */
3322 #define COEX_CONNECTION_ESTAB_FLAGS \
3323 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3324 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3325 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3326 #define COEX_ASSOCIATED_IDLE_FLAGS 0
3327 #define COEX_ASSOC_MANUAL_SCAN_FLAGS \
3328 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3329 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3330 #define COEX_ASSOC_AUTO_SCAN_FLAGS \
3331 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3332 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3333 #define COEX_ASSOC_ACTIVE_LEVEL_FLAGS 0
3334 #define COEX_RF_ON_FLAGS 0
3335 #define COEX_RF_OFF_FLAGS 0
3336 #define COEX_STAND_ALONE_DEBUG_FLAGS \
3337 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3338 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3339 #define COEX_IPAN_ASSOC_LEVEL_FLAGS \
3340 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3341 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3342 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3343 #define COEX_RSRVD1_FLAGS 0
3344 #define COEX_RSRVD2_FLAGS 0
3345 /*
3346 * COEX_CU_RF_ON is the event wrapping all radio ownership.
3347 * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3348 */
3349 #define COEX_CU_RF_ON_FLAGS \
3350 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3351 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3352 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3353
3354
3355 enum {
3356 /* un-association part */
3357 COEX_UNASSOC_IDLE = 0,
3358 COEX_UNASSOC_MANUAL_SCAN = 1,
3359 COEX_UNASSOC_AUTO_SCAN = 2,
3360 /* calibration */
3361 COEX_CALIBRATION = 3,
3362 COEX_PERIODIC_CALIBRATION = 4,
3363 /* connection */
3364 COEX_CONNECTION_ESTAB = 5,
3365 /* association part */
3366 COEX_ASSOCIATED_IDLE = 6,
3367 COEX_ASSOC_MANUAL_SCAN = 7,
3368 COEX_ASSOC_AUTO_SCAN = 8,
3369 COEX_ASSOC_ACTIVE_LEVEL = 9,
3370 /* RF ON/OFF */
3371 COEX_RF_ON = 10,
3372 COEX_RF_OFF = 11,
3373 COEX_STAND_ALONE_DEBUG = 12,
3374 /* IPAN */
3375 COEX_IPAN_ASSOC_LEVEL = 13,
3376 /* reserved */
3377 COEX_RSRVD1 = 14,
3378 COEX_RSRVD2 = 15,
3379 COEX_NUM_OF_EVENTS = 16
3380 };
3381
3382 /*
3383 * Coexistence WIFI/WIMAX Command
3384 * COEX_PRIORITY_TABLE_CMD = 0x5a
3385 *
3386 */
3387 struct iwl_wimax_coex_event_entry {
3388 u8 request_prio;
3389 u8 win_medium_prio;
3390 u8 reserved;
3391 u8 flags;
3392 } __packed;
3393
3394 /* COEX flag masks */
3395
3396 /* Station table is valid */
3397 #define COEX_FLAGS_STA_TABLE_VALID_MSK (0x1)
3398 /* UnMask wake up src at unassociated sleep */
3399 #define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK (0x4)
3400 /* UnMask wake up src at associated sleep */
3401 #define COEX_FLAGS_ASSOC_WA_UNMASK_MSK (0x8)
3402 /* Enable CoEx feature. */
3403 #define COEX_FLAGS_COEX_ENABLE_MSK (0x80)
3404
3405 struct iwl_wimax_coex_cmd {
3406 u8 flags;
3407 u8 reserved[3];
3408 struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
3409 } __packed;
3410
3411 /*
3412 * Coexistence MEDIUM NOTIFICATION
3413 * COEX_MEDIUM_NOTIFICATION = 0x5b
3414 *
3415 * notification from uCode to host to indicate medium changes
3416 *
3417 */
3418 /*
3419 * status field
3420 * bit 0 - 2: medium status
3421 * bit 3: medium change indication
3422 * bit 4 - 31: reserved
3423 */
3424 /* status option values, (0 - 2 bits) */
3425 #define COEX_MEDIUM_BUSY (0x0) /* radio belongs to WiMAX */
3426 #define COEX_MEDIUM_ACTIVE (0x1) /* radio belongs to WiFi */
3427 #define COEX_MEDIUM_PRE_RELEASE (0x2) /* received radio release */
3428 #define COEX_MEDIUM_MSK (0x7)
3429
3430 /* send notification status (1 bit) */
3431 #define COEX_MEDIUM_CHANGED (0x8)
3432 #define COEX_MEDIUM_CHANGED_MSK (0x8)
3433 #define COEX_MEDIUM_SHIFT (3)
3434
3435 struct iwl_coex_medium_notification {
3436 __le32 status;
3437 __le32 events;
3438 } __packed;
3439
3440 /*
3441 * Coexistence EVENT Command
3442 * COEX_EVENT_CMD = 0x5c
3443 *
3444 * send from host to uCode for coex event request.
3445 */
3446 /* flags options */
3447 #define COEX_EVENT_REQUEST_MSK (0x1)
3448
3449 struct iwl_coex_event_cmd {
3450 u8 flags;
3451 u8 event;
3452 __le16 reserved;
3453 } __packed;
3454
3455 struct iwl_coex_event_resp {
3456 __le32 status;
3457 } __packed;
3458
3459
3460 /******************************************************************************
3461 * Bluetooth Coexistence commands
3462 *
3463 *****************************************************************************/
3464
3465 /*
3466 * BT Status notification
3467 * REPLY_BT_COEX_PROFILE_NOTIF = 0xce
3468 */
3469 enum iwl_bt_coex_profile_traffic_load {
3470 IWL_BT_COEX_TRAFFIC_LOAD_NONE = 0,
3471 IWL_BT_COEX_TRAFFIC_LOAD_LOW = 1,
3472 IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 2,
3473 IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS = 3,
3474 /*
3475 * There are no more even though below is a u8, the
3476 * indication from the BT device only has two bits.
3477 */
3478 };
3479
3480 #define BT_SESSION_ACTIVITY_1_UART_MSG 0x1
3481 #define BT_SESSION_ACTIVITY_2_UART_MSG 0x2
3482
3483 /* BT UART message - Share Part (BT -> WiFi) */
3484 #define BT_UART_MSG_FRAME1MSGTYPE_POS (0)
3485 #define BT_UART_MSG_FRAME1MSGTYPE_MSK \
3486 (0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS)
3487 #define BT_UART_MSG_FRAME1SSN_POS (3)
3488 #define BT_UART_MSG_FRAME1SSN_MSK \
3489 (0x3 << BT_UART_MSG_FRAME1SSN_POS)
3490 #define BT_UART_MSG_FRAME1UPDATEREQ_POS (5)
3491 #define BT_UART_MSG_FRAME1UPDATEREQ_MSK \
3492 (0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS)
3493 #define BT_UART_MSG_FRAME1RESERVED_POS (6)
3494 #define BT_UART_MSG_FRAME1RESERVED_MSK \
3495 (0x3 << BT_UART_MSG_FRAME1RESERVED_POS)
3496
3497 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS (0)
3498 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK \
3499 (0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS)
3500 #define BT_UART_MSG_FRAME2TRAFFICLOAD_POS (2)
3501 #define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK \
3502 (0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS)
3503 #define BT_UART_MSG_FRAME2CHLSEQN_POS (4)
3504 #define BT_UART_MSG_FRAME2CHLSEQN_MSK \
3505 (0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS)
3506 #define BT_UART_MSG_FRAME2INBAND_POS (5)
3507 #define BT_UART_MSG_FRAME2INBAND_MSK \
3508 (0x1 << BT_UART_MSG_FRAME2INBAND_POS)
3509 #define BT_UART_MSG_FRAME2RESERVED_POS (6)
3510 #define BT_UART_MSG_FRAME2RESERVED_MSK \
3511 (0x3 << BT_UART_MSG_FRAME2RESERVED_POS)
3512
3513 #define BT_UART_MSG_FRAME3SCOESCO_POS (0)
3514 #define BT_UART_MSG_FRAME3SCOESCO_MSK \
3515 (0x1 << BT_UART_MSG_FRAME3SCOESCO_POS)
3516 #define BT_UART_MSG_FRAME3SNIFF_POS (1)
3517 #define BT_UART_MSG_FRAME3SNIFF_MSK \
3518 (0x1 << BT_UART_MSG_FRAME3SNIFF_POS)
3519 #define BT_UART_MSG_FRAME3A2DP_POS (2)
3520 #define BT_UART_MSG_FRAME3A2DP_MSK \
3521 (0x1 << BT_UART_MSG_FRAME3A2DP_POS)
3522 #define BT_UART_MSG_FRAME3ACL_POS (3)
3523 #define BT_UART_MSG_FRAME3ACL_MSK \
3524 (0x1 << BT_UART_MSG_FRAME3ACL_POS)
3525 #define BT_UART_MSG_FRAME3MASTER_POS (4)
3526 #define BT_UART_MSG_FRAME3MASTER_MSK \
3527 (0x1 << BT_UART_MSG_FRAME3MASTER_POS)
3528 #define BT_UART_MSG_FRAME3OBEX_POS (5)
3529 #define BT_UART_MSG_FRAME3OBEX_MSK \
3530 (0x1 << BT_UART_MSG_FRAME3OBEX_POS)
3531 #define BT_UART_MSG_FRAME3RESERVED_POS (6)
3532 #define BT_UART_MSG_FRAME3RESERVED_MSK \
3533 (0x3 << BT_UART_MSG_FRAME3RESERVED_POS)
3534
3535 #define BT_UART_MSG_FRAME4IDLEDURATION_POS (0)
3536 #define BT_UART_MSG_FRAME4IDLEDURATION_MSK \
3537 (0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS)
3538 #define BT_UART_MSG_FRAME4RESERVED_POS (6)
3539 #define BT_UART_MSG_FRAME4RESERVED_MSK \
3540 (0x3 << BT_UART_MSG_FRAME4RESERVED_POS)
3541
3542 #define BT_UART_MSG_FRAME5TXACTIVITY_POS (0)
3543 #define BT_UART_MSG_FRAME5TXACTIVITY_MSK \
3544 (0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS)
3545 #define BT_UART_MSG_FRAME5RXACTIVITY_POS (2)
3546 #define BT_UART_MSG_FRAME5RXACTIVITY_MSK \
3547 (0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS)
3548 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS (4)
3549 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK \
3550 (0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS)
3551 #define BT_UART_MSG_FRAME5RESERVED_POS (6)
3552 #define BT_UART_MSG_FRAME5RESERVED_MSK \
3553 (0x3 << BT_UART_MSG_FRAME5RESERVED_POS)
3554
3555 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS (0)
3556 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK \
3557 (0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS)
3558 #define BT_UART_MSG_FRAME6DISCOVERABLE_POS (5)
3559 #define BT_UART_MSG_FRAME6DISCOVERABLE_MSK \
3560 (0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS)
3561 #define BT_UART_MSG_FRAME6RESERVED_POS (6)
3562 #define BT_UART_MSG_FRAME6RESERVED_MSK \
3563 (0x3 << BT_UART_MSG_FRAME6RESERVED_POS)
3564
3565 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS (0)
3566 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK \
3567 (0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS)
3568 #define BT_UART_MSG_FRAME7PAGE_POS (3)
3569 #define BT_UART_MSG_FRAME7PAGE_MSK \
3570 (0x1 << BT_UART_MSG_FRAME7PAGE_POS)
3571 #define BT_UART_MSG_FRAME7INQUIRY_POS (4)
3572 #define BT_UART_MSG_FRAME7INQUIRY_MSK \
3573 (0x1 << BT_UART_MSG_FRAME7INQUIRY_POS)
3574 #define BT_UART_MSG_FRAME7CONNECTABLE_POS (5)
3575 #define BT_UART_MSG_FRAME7CONNECTABLE_MSK \
3576 (0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS)
3577 #define BT_UART_MSG_FRAME7RESERVED_POS (6)
3578 #define BT_UART_MSG_FRAME7RESERVED_MSK \
3579 (0x3 << BT_UART_MSG_FRAME7RESERVED_POS)
3580
3581 /* BT Session Activity 2 UART message (BT -> WiFi) */
3582 #define BT_UART_MSG_2_FRAME1RESERVED1_POS (5)
3583 #define BT_UART_MSG_2_FRAME1RESERVED1_MSK \
3584 (0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS)
3585 #define BT_UART_MSG_2_FRAME1RESERVED2_POS (6)
3586 #define BT_UART_MSG_2_FRAME1RESERVED2_MSK \
3587 (0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS)
3588
3589 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS (0)
3590 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK \
3591 (0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS)
3592 #define BT_UART_MSG_2_FRAME2RESERVED_POS (6)
3593 #define BT_UART_MSG_2_FRAME2RESERVED_MSK \
3594 (0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS)
3595
3596 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS (0)
3597 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK \
3598 (0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS)
3599 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS (4)
3600 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK \
3601 (0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS)
3602 #define BT_UART_MSG_2_FRAME3LEMASTER_POS (5)
3603 #define BT_UART_MSG_2_FRAME3LEMASTER_MSK \
3604 (0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS)
3605 #define BT_UART_MSG_2_FRAME3RESERVED_POS (6)
3606 #define BT_UART_MSG_2_FRAME3RESERVED_MSK \
3607 (0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS)
3608
3609 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS (0)
3610 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK \
3611 (0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS)
3612 #define BT_UART_MSG_2_FRAME4NUMLECONN_POS (4)
3613 #define BT_UART_MSG_2_FRAME4NUMLECONN_MSK \
3614 (0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS)
3615 #define BT_UART_MSG_2_FRAME4RESERVED_POS (6)
3616 #define BT_UART_MSG_2_FRAME4RESERVED_MSK \
3617 (0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS)
3618
3619 #define BT_UART_MSG_2_FRAME5BTMINRSSI_POS (0)
3620 #define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK \
3621 (0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS)
3622 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS (4)
3623 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK \
3624 (0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS)
3625 #define BT_UART_MSG_2_FRAME5LEADVERMODE_POS (5)
3626 #define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK \
3627 (0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS)
3628 #define BT_UART_MSG_2_FRAME5RESERVED_POS (6)
3629 #define BT_UART_MSG_2_FRAME5RESERVED_MSK \
3630 (0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS)
3631
3632 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS (0)
3633 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK \
3634 (0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS)
3635 #define BT_UART_MSG_2_FRAME6RFU_POS (5)
3636 #define BT_UART_MSG_2_FRAME6RFU_MSK \
3637 (0x1<<BT_UART_MSG_2_FRAME6RFU_POS)
3638 #define BT_UART_MSG_2_FRAME6RESERVED_POS (6)
3639 #define BT_UART_MSG_2_FRAME6RESERVED_MSK \
3640 (0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS)
3641
3642 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS (0)
3643 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK \
3644 (0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS)
3645 #define BT_UART_MSG_2_FRAME7LEPROFILE1_POS (3)
3646 #define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK \
3647 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS)
3648 #define BT_UART_MSG_2_FRAME7LEPROFILE2_POS (4)
3649 #define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK \
3650 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS)
3651 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS (5)
3652 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK \
3653 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS)
3654 #define BT_UART_MSG_2_FRAME7RESERVED_POS (6)
3655 #define BT_UART_MSG_2_FRAME7RESERVED_MSK \
3656 (0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS)
3657
3658
3659 struct iwl_bt_uart_msg {
3660 u8 header;
3661 u8 frame1;
3662 u8 frame2;
3663 u8 frame3;
3664 u8 frame4;
3665 u8 frame5;
3666 u8 frame6;
3667 u8 frame7;
3668 } __attribute__((packed));
3669
3670 struct iwl_bt_coex_profile_notif {
3671 struct iwl_bt_uart_msg last_bt_uart_msg;
3672 u8 bt_status; /* 0 - off, 1 - on */
3673 u8 bt_traffic_load; /* 0 .. 3? */
3674 u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */
3675 u8 reserved;
3676 } __attribute__((packed));
3677
3678 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS 0
3679 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK 0x1
3680 #define IWL_BT_COEX_PRIO_TBL_PRIO_POS 1
3681 #define IWL_BT_COEX_PRIO_TBL_PRIO_MASK 0x0e
3682 #define IWL_BT_COEX_PRIO_TBL_RESERVED_POS 4
3683 #define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK 0xf0
3684 #define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT 1
3685
3686 /*
3687 * BT Coexistence Priority table
3688 * REPLY_BT_COEX_PRIO_TABLE = 0xcc
3689 */
3690 enum bt_coex_prio_table_events {
3691 BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0,
3692 BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1,
3693 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2,
3694 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */
3695 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4,
3696 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5,
3697 BT_COEX_PRIO_TBL_EVT_DTIM = 6,
3698 BT_COEX_PRIO_TBL_EVT_SCAN52 = 7,
3699 BT_COEX_PRIO_TBL_EVT_SCAN24 = 8,
3700 BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9,
3701 BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10,
3702 BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11,
3703 BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12,
3704 BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13,
3705 BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14,
3706 BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15,
3707 /* BT_COEX_PRIO_TBL_EVT_MAX should always be last */
3708 BT_COEX_PRIO_TBL_EVT_MAX,
3709 };
3710
3711 enum bt_coex_prio_table_priorities {
3712 BT_COEX_PRIO_TBL_DISABLED = 0,
3713 BT_COEX_PRIO_TBL_PRIO_LOW = 1,
3714 BT_COEX_PRIO_TBL_PRIO_HIGH = 2,
3715 BT_COEX_PRIO_TBL_PRIO_BYPASS = 3,
3716 BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4,
3717 BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5,
3718 BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6,
3719 BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7,
3720 BT_COEX_PRIO_TBL_MAX,
3721 };
3722
3723 struct iwl_bt_coex_prio_table_cmd {
3724 u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX];
3725 } __attribute__((packed));
3726
3727 #define IWL_BT_COEX_ENV_CLOSE 0
3728 #define IWL_BT_COEX_ENV_OPEN 1
3729 /*
3730 * BT Protection Envelope
3731 * REPLY_BT_COEX_PROT_ENV = 0xcd
3732 */
3733 struct iwl_bt_coex_prot_env_cmd {
3734 u8 action; /* 0 = closed, 1 = open */
3735 u8 type; /* 0 .. 15 */
3736 u8 reserved[2];
3737 } __attribute__((packed));
3738
3739 /******************************************************************************
3740 * (13)
3741 * Union of all expected notifications/responses:
3742 *
3743 *****************************************************************************/
3744
3745 struct iwl_rx_packet {
3746 /*
3747 * The first 4 bytes of the RX frame header contain both the RX frame
3748 * size and some flags.
3749 * Bit fields:
3750 * 31: flag flush RB request
3751 * 30: flag ignore TC (terminal counter) request
3752 * 29: flag fast IRQ request
3753 * 28-14: Reserved
3754 * 13-00: RX frame size
3755 */
3756 __le32 len_n_flags;
3757 struct iwl_cmd_header hdr;
3758 union {
3759 struct iwl_alive_resp alive_frame;
3760 struct iwl_spectrum_notification spectrum_notif;
3761 struct iwl_csa_notification csa_notif;
3762 struct iwl_error_resp err_resp;
3763 struct iwl_card_state_notif card_state_notif;
3764 struct iwl_add_sta_resp add_sta;
3765 struct iwl_rem_sta_resp rem_sta;
3766 struct iwl_sleep_notification sleep_notif;
3767 struct iwl_spectrum_resp spectrum;
3768 struct iwl_notif_statistics stats;
3769 struct iwl_bt_notif_statistics stats_bt;
3770 struct iwl_compressed_ba_resp compressed_ba;
3771 struct iwl_missed_beacon_notif missed_beacon;
3772 struct iwl_coex_medium_notification coex_medium_notif;
3773 struct iwl_coex_event_resp coex_event;
3774 struct iwl_bt_coex_profile_notif bt_coex_profile_notif;
3775 __le32 status;
3776 u8 raw[0];
3777 } u;
3778 } __packed;
3779
3780 int iwl_agn_check_rxon_cmd(struct iwl_priv *priv);
3781
3782 /*
3783 * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification)
3784 */
3785
3786 /*
3787 * Minimum slot time in TU
3788 */
3789 #define IWL_MIN_SLOT_TIME 20
3790
3791 /**
3792 * struct iwl_wipan_slot
3793 * @width: Time in TU
3794 * @type:
3795 * 0 - BSS
3796 * 1 - PAN
3797 */
3798 struct iwl_wipan_slot {
3799 __le16 width;
3800 u8 type;
3801 u8 reserved;
3802 } __packed;
3803
3804 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS BIT(1) /* reserved */
3805 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET BIT(2) /* reserved */
3806 #define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE BIT(3) /* reserved */
3807 #define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF BIT(4)
3808 #define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE BIT(5)
3809
3810 /**
3811 * struct iwl_wipan_params_cmd
3812 * @flags:
3813 * bit0: reserved
3814 * bit1: CP leave channel with CTS
3815 * bit2: CP leave channel qith Quiet
3816 * bit3: slotted mode
3817 * 1 - work in slotted mode
3818 * 0 - work in non slotted mode
3819 * bit4: filter beacon notification
3820 * bit5: full tx slotted mode. if this flag is set,
3821 * uCode will perform leaving channel methods in context switch
3822 * also when working in same channel mode
3823 * @num_slots: 1 - 10
3824 */
3825 struct iwl_wipan_params_cmd {
3826 __le16 flags;
3827 u8 reserved;
3828 u8 num_slots;
3829 struct iwl_wipan_slot slots[10];
3830 } __packed;
3831
3832 /*
3833 * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9
3834 *
3835 * TODO: Figure out what this is used for,
3836 * it can only switch between 2.4 GHz
3837 * channels!!
3838 */
3839
3840 struct iwl_wipan_p2p_channel_switch_cmd {
3841 __le16 channel;
3842 __le16 reserved;
3843 };
3844
3845 /*
3846 * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc
3847 *
3848 * This is used by the device to notify us of the
3849 * NoA schedule it determined so we can forward it
3850 * to userspace for inclusion in probe responses.
3851 *
3852 * In beacons, the NoA schedule is simply appended
3853 * to the frame we give the device.
3854 */
3855
3856 struct iwl_wipan_noa_descriptor {
3857 u8 count;
3858 __le32 duration;
3859 __le32 interval;
3860 __le32 starttime;
3861 } __packed;
3862
3863 struct iwl_wipan_noa_attribute {
3864 u8 id;
3865 __le16 length;
3866 u8 index;
3867 u8 ct_window;
3868 struct iwl_wipan_noa_descriptor descr0, descr1;
3869 u8 reserved;
3870 } __packed;
3871
3872 struct iwl_wipan_noa_notification {
3873 u32 noa_active;
3874 struct iwl_wipan_noa_attribute noa_attribute;
3875 } __packed;
3876
3877 #endif /* __iwl_commands_h__ */
This page took 0.167644 seconds and 5 git commands to generate.