iwlagn: iwl-pci doesn't include iwl-dev any more
[deliverable/linux.git] / drivers / net / wireless / iwlwifi / iwl-commands.h
1 /******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
23 *
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
26 *
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *
31 * BSD LICENSE
32 *
33 * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 *
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 *****************************************************************************/
63 /*
64 * Please use this file (iwl-commands.h) only for uCode API definitions.
65 * Please use iwl-xxxx-hw.h for hardware-related definitions.
66 * Please use iwl-dev.h for driver implementation definitions.
67 */
68
69 #ifndef __iwl_commands_h__
70 #define __iwl_commands_h__
71
72 #include <linux/etherdevice.h>
73 #include <linux/ieee80211.h>
74
75 struct iwl_priv;
76
77 /* uCode version contains 4 values: Major/Minor/API/Serial */
78 #define IWL_UCODE_MAJOR(ver) (((ver) & 0xFF000000) >> 24)
79 #define IWL_UCODE_MINOR(ver) (((ver) & 0x00FF0000) >> 16)
80 #define IWL_UCODE_API(ver) (((ver) & 0x0000FF00) >> 8)
81 #define IWL_UCODE_SERIAL(ver) ((ver) & 0x000000FF)
82
83
84 /* Tx rates */
85 #define IWL_CCK_RATES 4
86 #define IWL_OFDM_RATES 8
87 #define IWL_MAX_RATES (IWL_CCK_RATES + IWL_OFDM_RATES)
88
89 enum {
90 REPLY_ALIVE = 0x1,
91 REPLY_ERROR = 0x2,
92
93 /* RXON and QOS commands */
94 REPLY_RXON = 0x10,
95 REPLY_RXON_ASSOC = 0x11,
96 REPLY_QOS_PARAM = 0x13,
97 REPLY_RXON_TIMING = 0x14,
98
99 /* Multi-Station support */
100 REPLY_ADD_STA = 0x18,
101 REPLY_REMOVE_STA = 0x19,
102 REPLY_REMOVE_ALL_STA = 0x1a, /* not used */
103 REPLY_TXFIFO_FLUSH = 0x1e,
104
105 /* Security */
106 REPLY_WEPKEY = 0x20,
107
108 /* RX, TX, LEDs */
109 REPLY_TX = 0x1c,
110 REPLY_LEDS_CMD = 0x48,
111 REPLY_TX_LINK_QUALITY_CMD = 0x4e, /* for 4965 and up */
112
113 /* WiMAX coexistence */
114 COEX_PRIORITY_TABLE_CMD = 0x5a, /* for 5000 series and up */
115 COEX_MEDIUM_NOTIFICATION = 0x5b,
116 COEX_EVENT_CMD = 0x5c,
117
118 /* Calibration */
119 TEMPERATURE_NOTIFICATION = 0x62,
120 CALIBRATION_CFG_CMD = 0x65,
121 CALIBRATION_RES_NOTIFICATION = 0x66,
122 CALIBRATION_COMPLETE_NOTIFICATION = 0x67,
123
124 /* 802.11h related */
125 REPLY_QUIET_CMD = 0x71, /* not used */
126 REPLY_CHANNEL_SWITCH = 0x72,
127 CHANNEL_SWITCH_NOTIFICATION = 0x73,
128 REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
129 SPECTRUM_MEASURE_NOTIFICATION = 0x75,
130
131 /* Power Management */
132 POWER_TABLE_CMD = 0x77,
133 PM_SLEEP_NOTIFICATION = 0x7A,
134 PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
135
136 /* Scan commands and notifications */
137 REPLY_SCAN_CMD = 0x80,
138 REPLY_SCAN_ABORT_CMD = 0x81,
139 SCAN_START_NOTIFICATION = 0x82,
140 SCAN_RESULTS_NOTIFICATION = 0x83,
141 SCAN_COMPLETE_NOTIFICATION = 0x84,
142
143 /* IBSS/AP commands */
144 BEACON_NOTIFICATION = 0x90,
145 REPLY_TX_BEACON = 0x91,
146 WHO_IS_AWAKE_NOTIFICATION = 0x94, /* not used */
147
148 /* Miscellaneous commands */
149 REPLY_TX_POWER_DBM_CMD = 0x95,
150 QUIET_NOTIFICATION = 0x96, /* not used */
151 REPLY_TX_PWR_TABLE_CMD = 0x97,
152 REPLY_TX_POWER_DBM_CMD_V1 = 0x98, /* old version of API */
153 TX_ANT_CONFIGURATION_CMD = 0x98,
154 MEASURE_ABORT_NOTIFICATION = 0x99, /* not used */
155
156 /* Bluetooth device coexistence config command */
157 REPLY_BT_CONFIG = 0x9b,
158
159 /* Statistics */
160 REPLY_STATISTICS_CMD = 0x9c,
161 STATISTICS_NOTIFICATION = 0x9d,
162
163 /* RF-KILL commands and notifications */
164 REPLY_CARD_STATE_CMD = 0xa0,
165 CARD_STATE_NOTIFICATION = 0xa1,
166
167 /* Missed beacons notification */
168 MISSED_BEACONS_NOTIFICATION = 0xa2,
169
170 REPLY_CT_KILL_CONFIG_CMD = 0xa4,
171 SENSITIVITY_CMD = 0xa8,
172 REPLY_PHY_CALIBRATION_CMD = 0xb0,
173 REPLY_RX_PHY_CMD = 0xc0,
174 REPLY_RX_MPDU_CMD = 0xc1,
175 REPLY_RX = 0xc3,
176 REPLY_COMPRESSED_BA = 0xc5,
177
178 /* BT Coex */
179 REPLY_BT_COEX_PRIO_TABLE = 0xcc,
180 REPLY_BT_COEX_PROT_ENV = 0xcd,
181 REPLY_BT_COEX_PROFILE_NOTIF = 0xce,
182
183 /* PAN commands */
184 REPLY_WIPAN_PARAMS = 0xb2,
185 REPLY_WIPAN_RXON = 0xb3, /* use REPLY_RXON structure */
186 REPLY_WIPAN_RXON_TIMING = 0xb4, /* use REPLY_RXON_TIMING structure */
187 REPLY_WIPAN_RXON_ASSOC = 0xb6, /* use REPLY_RXON_ASSOC structure */
188 REPLY_WIPAN_QOS_PARAM = 0xb7, /* use REPLY_QOS_PARAM structure */
189 REPLY_WIPAN_WEPKEY = 0xb8, /* use REPLY_WEPKEY structure */
190 REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9,
191 REPLY_WIPAN_NOA_NOTIFICATION = 0xbc,
192 REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd,
193
194 REPLY_WOWLAN_PATTERNS = 0xe0,
195 REPLY_WOWLAN_WAKEUP_FILTER = 0xe1,
196 REPLY_WOWLAN_TSC_RSC_PARAMS = 0xe2,
197 REPLY_WOWLAN_TKIP_PARAMS = 0xe3,
198 REPLY_WOWLAN_KEK_KCK_MATERIAL = 0xe4,
199 REPLY_WOWLAN_GET_STATUS = 0xe5,
200
201 REPLY_MAX = 0xff
202 };
203
204 /******************************************************************************
205 * (0)
206 * Commonly used structures and definitions:
207 * Command header, rate_n_flags, txpower
208 *
209 *****************************************************************************/
210
211 /* iwl_cmd_header flags value */
212 #define IWL_CMD_FAILED_MSK 0x40
213
214 #define SEQ_TO_QUEUE(s) (((s) >> 8) & 0x1f)
215 #define QUEUE_TO_SEQ(q) (((q) & 0x1f) << 8)
216 #define SEQ_TO_INDEX(s) ((s) & 0xff)
217 #define INDEX_TO_SEQ(i) ((i) & 0xff)
218 #define SEQ_RX_FRAME cpu_to_le16(0x8000)
219
220 /**
221 * struct iwl_cmd_header
222 *
223 * This header format appears in the beginning of each command sent from the
224 * driver, and each response/notification received from uCode.
225 */
226 struct iwl_cmd_header {
227 u8 cmd; /* Command ID: REPLY_RXON, etc. */
228 u8 flags; /* 0:5 reserved, 6 abort, 7 internal */
229 /*
230 * The driver sets up the sequence number to values of its choosing.
231 * uCode does not use this value, but passes it back to the driver
232 * when sending the response to each driver-originated command, so
233 * the driver can match the response to the command. Since the values
234 * don't get used by uCode, the driver may set up an arbitrary format.
235 *
236 * There is one exception: uCode sets bit 15 when it originates
237 * the response/notification, i.e. when the response/notification
238 * is not a direct response to a command sent by the driver. For
239 * example, uCode issues REPLY_RX when it sends a received frame
240 * to the driver; it is not a direct response to any driver command.
241 *
242 * The Linux driver uses the following format:
243 *
244 * 0:7 tfd index - position within TX queue
245 * 8:12 TX queue id
246 * 13:14 reserved
247 * 15 unsolicited RX or uCode-originated notification
248 */
249 __le16 sequence;
250
251 /* command or response/notification data follows immediately */
252 u8 data[0];
253 } __packed;
254
255
256 /**
257 * iwlagn rate_n_flags bit fields
258 *
259 * rate_n_flags format is used in following iwlagn commands:
260 * REPLY_RX (response only)
261 * REPLY_RX_MPDU (response only)
262 * REPLY_TX (both command and response)
263 * REPLY_TX_LINK_QUALITY_CMD
264 *
265 * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
266 * 2-0: 0) 6 Mbps
267 * 1) 12 Mbps
268 * 2) 18 Mbps
269 * 3) 24 Mbps
270 * 4) 36 Mbps
271 * 5) 48 Mbps
272 * 6) 54 Mbps
273 * 7) 60 Mbps
274 *
275 * 4-3: 0) Single stream (SISO)
276 * 1) Dual stream (MIMO)
277 * 2) Triple stream (MIMO)
278 *
279 * 5: Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data
280 *
281 * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
282 * 3-0: 0xD) 6 Mbps
283 * 0xF) 9 Mbps
284 * 0x5) 12 Mbps
285 * 0x7) 18 Mbps
286 * 0x9) 24 Mbps
287 * 0xB) 36 Mbps
288 * 0x1) 48 Mbps
289 * 0x3) 54 Mbps
290 *
291 * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
292 * 6-0: 10) 1 Mbps
293 * 20) 2 Mbps
294 * 55) 5.5 Mbps
295 * 110) 11 Mbps
296 */
297 #define RATE_MCS_CODE_MSK 0x7
298 #define RATE_MCS_SPATIAL_POS 3
299 #define RATE_MCS_SPATIAL_MSK 0x18
300 #define RATE_MCS_HT_DUP_POS 5
301 #define RATE_MCS_HT_DUP_MSK 0x20
302 /* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */
303 #define RATE_MCS_RATE_MSK 0xff
304
305 /* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
306 #define RATE_MCS_FLAGS_POS 8
307 #define RATE_MCS_HT_POS 8
308 #define RATE_MCS_HT_MSK 0x100
309
310 /* Bit 9: (1) CCK, (0) OFDM. HT (bit 8) must be "0" for this bit to be valid */
311 #define RATE_MCS_CCK_POS 9
312 #define RATE_MCS_CCK_MSK 0x200
313
314 /* Bit 10: (1) Use Green Field preamble */
315 #define RATE_MCS_GF_POS 10
316 #define RATE_MCS_GF_MSK 0x400
317
318 /* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */
319 #define RATE_MCS_HT40_POS 11
320 #define RATE_MCS_HT40_MSK 0x800
321
322 /* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */
323 #define RATE_MCS_DUP_POS 12
324 #define RATE_MCS_DUP_MSK 0x1000
325
326 /* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
327 #define RATE_MCS_SGI_POS 13
328 #define RATE_MCS_SGI_MSK 0x2000
329
330 /**
331 * rate_n_flags Tx antenna masks
332 * 4965 has 2 transmitters
333 * 5100 has 1 transmitter B
334 * 5150 has 1 transmitter A
335 * 5300 has 3 transmitters
336 * 5350 has 3 transmitters
337 * bit14:16
338 */
339 #define RATE_MCS_ANT_POS 14
340 #define RATE_MCS_ANT_A_MSK 0x04000
341 #define RATE_MCS_ANT_B_MSK 0x08000
342 #define RATE_MCS_ANT_C_MSK 0x10000
343 #define RATE_MCS_ANT_AB_MSK (RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK)
344 #define RATE_MCS_ANT_ABC_MSK (RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK)
345 #define RATE_ANT_NUM 3
346
347 #define POWER_TABLE_NUM_ENTRIES 33
348 #define POWER_TABLE_NUM_HT_OFDM_ENTRIES 32
349 #define POWER_TABLE_CCK_ENTRY 32
350
351 #define IWL_PWR_NUM_HT_OFDM_ENTRIES 24
352 #define IWL_PWR_CCK_ENTRIES 2
353
354 /**
355 * struct tx_power_dual_stream
356 *
357 * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
358 *
359 * Same format as iwl_tx_power_dual_stream, but __le32
360 */
361 struct tx_power_dual_stream {
362 __le32 dw;
363 } __packed;
364
365 /**
366 * Command REPLY_TX_POWER_DBM_CMD = 0x98
367 * struct iwlagn_tx_power_dbm_cmd
368 */
369 #define IWLAGN_TX_POWER_AUTO 0x7f
370 #define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6)
371
372 struct iwlagn_tx_power_dbm_cmd {
373 s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
374 u8 flags;
375 s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
376 u8 reserved;
377 } __packed;
378
379 /**
380 * Command TX_ANT_CONFIGURATION_CMD = 0x98
381 * This command is used to configure valid Tx antenna.
382 * By default uCode concludes the valid antenna according to the radio flavor.
383 * This command enables the driver to override/modify this conclusion.
384 */
385 struct iwl_tx_ant_config_cmd {
386 __le32 valid;
387 } __packed;
388
389 /******************************************************************************
390 * (0a)
391 * Alive and Error Commands & Responses:
392 *
393 *****************************************************************************/
394
395 #define UCODE_VALID_OK cpu_to_le32(0x1)
396
397 /**
398 * REPLY_ALIVE = 0x1 (response only, not a command)
399 *
400 * uCode issues this "alive" notification once the runtime image is ready
401 * to receive commands from the driver. This is the *second* "alive"
402 * notification that the driver will receive after rebooting uCode;
403 * this "alive" is indicated by subtype field != 9.
404 *
405 * See comments documenting "BSM" (bootstrap state machine).
406 *
407 * This response includes two pointers to structures within the device's
408 * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
409 *
410 * 1) log_event_table_ptr indicates base of the event log. This traces
411 * a 256-entry history of uCode execution within a circular buffer.
412 * Its header format is:
413 *
414 * __le32 log_size; log capacity (in number of entries)
415 * __le32 type; (1) timestamp with each entry, (0) no timestamp
416 * __le32 wraps; # times uCode has wrapped to top of circular buffer
417 * __le32 write_index; next circular buffer entry that uCode would fill
418 *
419 * The header is followed by the circular buffer of log entries. Entries
420 * with timestamps have the following format:
421 *
422 * __le32 event_id; range 0 - 1500
423 * __le32 timestamp; low 32 bits of TSF (of network, if associated)
424 * __le32 data; event_id-specific data value
425 *
426 * Entries without timestamps contain only event_id and data.
427 *
428 *
429 * 2) error_event_table_ptr indicates base of the error log. This contains
430 * information about any uCode error that occurs. For agn, the format
431 * of the error log is defined by struct iwl_error_event_table.
432 *
433 * The Linux driver can print both logs to the system log when a uCode error
434 * occurs.
435 */
436
437 /*
438 * Note: This structure is read from the device with IO accesses,
439 * and the reading already does the endian conversion. As it is
440 * read with u32-sized accesses, any members with a different size
441 * need to be ordered correctly though!
442 */
443 struct iwl_error_event_table {
444 u32 valid; /* (nonzero) valid, (0) log is empty */
445 u32 error_id; /* type of error */
446 u32 pc; /* program counter */
447 u32 blink1; /* branch link */
448 u32 blink2; /* branch link */
449 u32 ilink1; /* interrupt link */
450 u32 ilink2; /* interrupt link */
451 u32 data1; /* error-specific data */
452 u32 data2; /* error-specific data */
453 u32 line; /* source code line of error */
454 u32 bcon_time; /* beacon timer */
455 u32 tsf_low; /* network timestamp function timer */
456 u32 tsf_hi; /* network timestamp function timer */
457 u32 gp1; /* GP1 timer register */
458 u32 gp2; /* GP2 timer register */
459 u32 gp3; /* GP3 timer register */
460 u32 ucode_ver; /* uCode version */
461 u32 hw_ver; /* HW Silicon version */
462 u32 brd_ver; /* HW board version */
463 u32 log_pc; /* log program counter */
464 u32 frame_ptr; /* frame pointer */
465 u32 stack_ptr; /* stack pointer */
466 u32 hcmd; /* last host command header */
467 #if 0
468 /* no need to read the remainder, we don't use the values */
469 u32 isr0; /* isr status register LMPM_NIC_ISR0: rxtx_flag */
470 u32 isr1; /* isr status register LMPM_NIC_ISR1: host_flag */
471 u32 isr2; /* isr status register LMPM_NIC_ISR2: enc_flag */
472 u32 isr3; /* isr status register LMPM_NIC_ISR3: time_flag */
473 u32 isr4; /* isr status register LMPM_NIC_ISR4: wico interrupt */
474 u32 isr_pref; /* isr status register LMPM_NIC_PREF_STAT */
475 u32 wait_event; /* wait event() caller address */
476 u32 l2p_control; /* L2pControlField */
477 u32 l2p_duration; /* L2pDurationField */
478 u32 l2p_mhvalid; /* L2pMhValidBits */
479 u32 l2p_addr_match; /* L2pAddrMatchStat */
480 u32 lmpm_pmg_sel; /* indicate which clocks are turned on (LMPM_PMG_SEL) */
481 u32 u_timestamp; /* indicate when the date and time of the compilation */
482 u32 flow_handler; /* FH read/write pointers, RX credit */
483 #endif
484 } __packed;
485
486 struct iwl_alive_resp {
487 u8 ucode_minor;
488 u8 ucode_major;
489 __le16 reserved1;
490 u8 sw_rev[8];
491 u8 ver_type;
492 u8 ver_subtype; /* not "9" for runtime alive */
493 __le16 reserved2;
494 __le32 log_event_table_ptr; /* SRAM address for event log */
495 __le32 error_event_table_ptr; /* SRAM address for error log */
496 __le32 timestamp;
497 __le32 is_valid;
498 } __packed;
499
500 /*
501 * REPLY_ERROR = 0x2 (response only, not a command)
502 */
503 struct iwl_error_resp {
504 __le32 error_type;
505 u8 cmd_id;
506 u8 reserved1;
507 __le16 bad_cmd_seq_num;
508 __le32 error_info;
509 __le64 timestamp;
510 } __packed;
511
512 /******************************************************************************
513 * (1)
514 * RXON Commands & Responses:
515 *
516 *****************************************************************************/
517
518 /*
519 * Rx config defines & structure
520 */
521 /* rx_config device types */
522 enum {
523 RXON_DEV_TYPE_AP = 1,
524 RXON_DEV_TYPE_ESS = 3,
525 RXON_DEV_TYPE_IBSS = 4,
526 RXON_DEV_TYPE_SNIFFER = 6,
527 RXON_DEV_TYPE_CP = 7,
528 RXON_DEV_TYPE_2STA = 8,
529 RXON_DEV_TYPE_P2P = 9,
530 };
531
532
533 #define RXON_RX_CHAIN_DRIVER_FORCE_MSK cpu_to_le16(0x1 << 0)
534 #define RXON_RX_CHAIN_DRIVER_FORCE_POS (0)
535 #define RXON_RX_CHAIN_VALID_MSK cpu_to_le16(0x7 << 1)
536 #define RXON_RX_CHAIN_VALID_POS (1)
537 #define RXON_RX_CHAIN_FORCE_SEL_MSK cpu_to_le16(0x7 << 4)
538 #define RXON_RX_CHAIN_FORCE_SEL_POS (4)
539 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK cpu_to_le16(0x7 << 7)
540 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS (7)
541 #define RXON_RX_CHAIN_CNT_MSK cpu_to_le16(0x3 << 10)
542 #define RXON_RX_CHAIN_CNT_POS (10)
543 #define RXON_RX_CHAIN_MIMO_CNT_MSK cpu_to_le16(0x3 << 12)
544 #define RXON_RX_CHAIN_MIMO_CNT_POS (12)
545 #define RXON_RX_CHAIN_MIMO_FORCE_MSK cpu_to_le16(0x1 << 14)
546 #define RXON_RX_CHAIN_MIMO_FORCE_POS (14)
547
548 /* rx_config flags */
549 /* band & modulation selection */
550 #define RXON_FLG_BAND_24G_MSK cpu_to_le32(1 << 0)
551 #define RXON_FLG_CCK_MSK cpu_to_le32(1 << 1)
552 /* auto detection enable */
553 #define RXON_FLG_AUTO_DETECT_MSK cpu_to_le32(1 << 2)
554 /* TGg protection when tx */
555 #define RXON_FLG_TGG_PROTECT_MSK cpu_to_le32(1 << 3)
556 /* cck short slot & preamble */
557 #define RXON_FLG_SHORT_SLOT_MSK cpu_to_le32(1 << 4)
558 #define RXON_FLG_SHORT_PREAMBLE_MSK cpu_to_le32(1 << 5)
559 /* antenna selection */
560 #define RXON_FLG_DIS_DIV_MSK cpu_to_le32(1 << 7)
561 #define RXON_FLG_ANT_SEL_MSK cpu_to_le32(0x0f00)
562 #define RXON_FLG_ANT_A_MSK cpu_to_le32(1 << 8)
563 #define RXON_FLG_ANT_B_MSK cpu_to_le32(1 << 9)
564 /* radar detection enable */
565 #define RXON_FLG_RADAR_DETECT_MSK cpu_to_le32(1 << 12)
566 #define RXON_FLG_TGJ_NARROW_BAND_MSK cpu_to_le32(1 << 13)
567 /* rx response to host with 8-byte TSF
568 * (according to ON_AIR deassertion) */
569 #define RXON_FLG_TSF2HOST_MSK cpu_to_le32(1 << 15)
570
571
572 /* HT flags */
573 #define RXON_FLG_CTRL_CHANNEL_LOC_POS (22)
574 #define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK cpu_to_le32(0x1 << 22)
575
576 #define RXON_FLG_HT_OPERATING_MODE_POS (23)
577
578 #define RXON_FLG_HT_PROT_MSK cpu_to_le32(0x1 << 23)
579 #define RXON_FLG_HT40_PROT_MSK cpu_to_le32(0x2 << 23)
580
581 #define RXON_FLG_CHANNEL_MODE_POS (25)
582 #define RXON_FLG_CHANNEL_MODE_MSK cpu_to_le32(0x3 << 25)
583
584 /* channel mode */
585 enum {
586 CHANNEL_MODE_LEGACY = 0,
587 CHANNEL_MODE_PURE_40 = 1,
588 CHANNEL_MODE_MIXED = 2,
589 CHANNEL_MODE_RESERVED = 3,
590 };
591 #define RXON_FLG_CHANNEL_MODE_LEGACY cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS)
592 #define RXON_FLG_CHANNEL_MODE_PURE_40 cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS)
593 #define RXON_FLG_CHANNEL_MODE_MIXED cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS)
594
595 /* CTS to self (if spec allows) flag */
596 #define RXON_FLG_SELF_CTS_EN cpu_to_le32(0x1<<30)
597
598 /* rx_config filter flags */
599 /* accept all data frames */
600 #define RXON_FILTER_PROMISC_MSK cpu_to_le32(1 << 0)
601 /* pass control & management to host */
602 #define RXON_FILTER_CTL2HOST_MSK cpu_to_le32(1 << 1)
603 /* accept multi-cast */
604 #define RXON_FILTER_ACCEPT_GRP_MSK cpu_to_le32(1 << 2)
605 /* don't decrypt uni-cast frames */
606 #define RXON_FILTER_DIS_DECRYPT_MSK cpu_to_le32(1 << 3)
607 /* don't decrypt multi-cast frames */
608 #define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
609 /* STA is associated */
610 #define RXON_FILTER_ASSOC_MSK cpu_to_le32(1 << 5)
611 /* transfer to host non bssid beacons in associated state */
612 #define RXON_FILTER_BCON_AWARE_MSK cpu_to_le32(1 << 6)
613
614 /**
615 * REPLY_RXON = 0x10 (command, has simple generic response)
616 *
617 * RXON tunes the radio tuner to a service channel, and sets up a number
618 * of parameters that are used primarily for Rx, but also for Tx operations.
619 *
620 * NOTE: When tuning to a new channel, driver must set the
621 * RXON_FILTER_ASSOC_MSK to 0. This will clear station-dependent
622 * info within the device, including the station tables, tx retry
623 * rate tables, and txpower tables. Driver must build a new station
624 * table and txpower table before transmitting anything on the RXON
625 * channel.
626 *
627 * NOTE: All RXONs wipe clean the internal txpower table. Driver must
628 * issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
629 * regardless of whether RXON_FILTER_ASSOC_MSK is set.
630 */
631
632 struct iwl_rxon_cmd {
633 u8 node_addr[6];
634 __le16 reserved1;
635 u8 bssid_addr[6];
636 __le16 reserved2;
637 u8 wlap_bssid_addr[6];
638 __le16 reserved3;
639 u8 dev_type;
640 u8 air_propagation;
641 __le16 rx_chain;
642 u8 ofdm_basic_rates;
643 u8 cck_basic_rates;
644 __le16 assoc_id;
645 __le32 flags;
646 __le32 filter_flags;
647 __le16 channel;
648 u8 ofdm_ht_single_stream_basic_rates;
649 u8 ofdm_ht_dual_stream_basic_rates;
650 u8 ofdm_ht_triple_stream_basic_rates;
651 u8 reserved5;
652 __le16 acquisition_data;
653 __le16 reserved6;
654 } __packed;
655
656 /*
657 * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
658 */
659 struct iwl_rxon_assoc_cmd {
660 __le32 flags;
661 __le32 filter_flags;
662 u8 ofdm_basic_rates;
663 u8 cck_basic_rates;
664 __le16 reserved1;
665 u8 ofdm_ht_single_stream_basic_rates;
666 u8 ofdm_ht_dual_stream_basic_rates;
667 u8 ofdm_ht_triple_stream_basic_rates;
668 u8 reserved2;
669 __le16 rx_chain_select_flags;
670 __le16 acquisition_data;
671 __le32 reserved3;
672 } __packed;
673
674 #define IWL_CONN_MAX_LISTEN_INTERVAL 10
675 #define IWL_MAX_UCODE_BEACON_INTERVAL 4 /* 4096 */
676
677 /*
678 * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
679 */
680 struct iwl_rxon_time_cmd {
681 __le64 timestamp;
682 __le16 beacon_interval;
683 __le16 atim_window;
684 __le32 beacon_init_val;
685 __le16 listen_interval;
686 u8 dtim_period;
687 u8 delta_cp_bss_tbtts;
688 } __packed;
689
690 /*
691 * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
692 */
693 /**
694 * struct iwl5000_channel_switch_cmd
695 * @band: 0- 5.2GHz, 1- 2.4GHz
696 * @expect_beacon: 0- resume transmits after channel switch
697 * 1- wait for beacon to resume transmits
698 * @channel: new channel number
699 * @rxon_flags: Rx on flags
700 * @rxon_filter_flags: filtering parameters
701 * @switch_time: switch time in extended beacon format
702 * @reserved: reserved bytes
703 */
704 struct iwl5000_channel_switch_cmd {
705 u8 band;
706 u8 expect_beacon;
707 __le16 channel;
708 __le32 rxon_flags;
709 __le32 rxon_filter_flags;
710 __le32 switch_time;
711 __le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
712 } __packed;
713
714 /**
715 * struct iwl6000_channel_switch_cmd
716 * @band: 0- 5.2GHz, 1- 2.4GHz
717 * @expect_beacon: 0- resume transmits after channel switch
718 * 1- wait for beacon to resume transmits
719 * @channel: new channel number
720 * @rxon_flags: Rx on flags
721 * @rxon_filter_flags: filtering parameters
722 * @switch_time: switch time in extended beacon format
723 * @reserved: reserved bytes
724 */
725 struct iwl6000_channel_switch_cmd {
726 u8 band;
727 u8 expect_beacon;
728 __le16 channel;
729 __le32 rxon_flags;
730 __le32 rxon_filter_flags;
731 __le32 switch_time;
732 __le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
733 } __packed;
734
735 /*
736 * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
737 */
738 struct iwl_csa_notification {
739 __le16 band;
740 __le16 channel;
741 __le32 status; /* 0 - OK, 1 - fail */
742 } __packed;
743
744 /******************************************************************************
745 * (2)
746 * Quality-of-Service (QOS) Commands & Responses:
747 *
748 *****************************************************************************/
749
750 /**
751 * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
752 * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
753 *
754 * @cw_min: Contention window, start value in numbers of slots.
755 * Should be a power-of-2, minus 1. Device's default is 0x0f.
756 * @cw_max: Contention window, max value in numbers of slots.
757 * Should be a power-of-2, minus 1. Device's default is 0x3f.
758 * @aifsn: Number of slots in Arbitration Interframe Space (before
759 * performing random backoff timing prior to Tx). Device default 1.
760 * @edca_txop: Length of Tx opportunity, in uSecs. Device default is 0.
761 *
762 * Device will automatically increase contention window by (2*CW) + 1 for each
763 * transmission retry. Device uses cw_max as a bit mask, ANDed with new CW
764 * value, to cap the CW value.
765 */
766 struct iwl_ac_qos {
767 __le16 cw_min;
768 __le16 cw_max;
769 u8 aifsn;
770 u8 reserved1;
771 __le16 edca_txop;
772 } __packed;
773
774 /* QoS flags defines */
775 #define QOS_PARAM_FLG_UPDATE_EDCA_MSK cpu_to_le32(0x01)
776 #define QOS_PARAM_FLG_TGN_MSK cpu_to_le32(0x02)
777 #define QOS_PARAM_FLG_TXOP_TYPE_MSK cpu_to_le32(0x10)
778
779 /* Number of Access Categories (AC) (EDCA), queues 0..3 */
780 #define AC_NUM 4
781
782 /*
783 * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
784 *
785 * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
786 * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
787 */
788 struct iwl_qosparam_cmd {
789 __le32 qos_flags;
790 struct iwl_ac_qos ac[AC_NUM];
791 } __packed;
792
793 /******************************************************************************
794 * (3)
795 * Add/Modify Stations Commands & Responses:
796 *
797 *****************************************************************************/
798 /*
799 * Multi station support
800 */
801
802 /* Special, dedicated locations within device's station table */
803 #define IWL_AP_ID 0
804 #define IWL_AP_ID_PAN 1
805 #define IWL_STA_ID 2
806 #define IWLAGN_PAN_BCAST_ID 14
807 #define IWLAGN_BROADCAST_ID 15
808 #define IWLAGN_STATION_COUNT 16
809
810 #define IWL_INVALID_STATION 255
811
812 #define STA_FLG_TX_RATE_MSK cpu_to_le32(1 << 2)
813 #define STA_FLG_PWR_SAVE_MSK cpu_to_le32(1 << 8)
814 #define STA_FLG_PAN_STATION cpu_to_le32(1 << 13)
815 #define STA_FLG_RTS_MIMO_PROT_MSK cpu_to_le32(1 << 17)
816 #define STA_FLG_AGG_MPDU_8US_MSK cpu_to_le32(1 << 18)
817 #define STA_FLG_MAX_AGG_SIZE_POS (19)
818 #define STA_FLG_MAX_AGG_SIZE_MSK cpu_to_le32(3 << 19)
819 #define STA_FLG_HT40_EN_MSK cpu_to_le32(1 << 21)
820 #define STA_FLG_MIMO_DIS_MSK cpu_to_le32(1 << 22)
821 #define STA_FLG_AGG_MPDU_DENSITY_POS (23)
822 #define STA_FLG_AGG_MPDU_DENSITY_MSK cpu_to_le32(7 << 23)
823
824 /* Use in mode field. 1: modify existing entry, 0: add new station entry */
825 #define STA_CONTROL_MODIFY_MSK 0x01
826
827 /* key flags __le16*/
828 #define STA_KEY_FLG_ENCRYPT_MSK cpu_to_le16(0x0007)
829 #define STA_KEY_FLG_NO_ENC cpu_to_le16(0x0000)
830 #define STA_KEY_FLG_WEP cpu_to_le16(0x0001)
831 #define STA_KEY_FLG_CCMP cpu_to_le16(0x0002)
832 #define STA_KEY_FLG_TKIP cpu_to_le16(0x0003)
833
834 #define STA_KEY_FLG_KEYID_POS 8
835 #define STA_KEY_FLG_INVALID cpu_to_le16(0x0800)
836 /* wep key is either from global key (0) or from station info array (1) */
837 #define STA_KEY_FLG_MAP_KEY_MSK cpu_to_le16(0x0008)
838
839 /* wep key in STA: 5-bytes (0) or 13-bytes (1) */
840 #define STA_KEY_FLG_KEY_SIZE_MSK cpu_to_le16(0x1000)
841 #define STA_KEY_MULTICAST_MSK cpu_to_le16(0x4000)
842 #define STA_KEY_MAX_NUM 8
843 #define STA_KEY_MAX_NUM_PAN 16
844 /* must not match WEP_INVALID_OFFSET */
845 #define IWLAGN_HW_KEY_DEFAULT 0xfe
846
847 /* Flags indicate whether to modify vs. don't change various station params */
848 #define STA_MODIFY_KEY_MASK 0x01
849 #define STA_MODIFY_TID_DISABLE_TX 0x02
850 #define STA_MODIFY_TX_RATE_MSK 0x04
851 #define STA_MODIFY_ADDBA_TID_MSK 0x08
852 #define STA_MODIFY_DELBA_TID_MSK 0x10
853 #define STA_MODIFY_SLEEP_TX_COUNT_MSK 0x20
854
855 /* Receiver address (actually, Rx station's index into station table),
856 * combined with Traffic ID (QOS priority), in format used by Tx Scheduler */
857 #define BUILD_RAxTID(sta_id, tid) (((sta_id) << 4) + (tid))
858
859 /* agn */
860 struct iwl_keyinfo {
861 __le16 key_flags;
862 u8 tkip_rx_tsc_byte2; /* TSC[2] for key mix ph1 detection */
863 u8 reserved1;
864 __le16 tkip_rx_ttak[5]; /* 10-byte unicast TKIP TTAK */
865 u8 key_offset;
866 u8 reserved2;
867 u8 key[16]; /* 16-byte unicast decryption key */
868 __le64 tx_secur_seq_cnt;
869 __le64 hw_tkip_mic_rx_key;
870 __le64 hw_tkip_mic_tx_key;
871 } __packed;
872
873 /**
874 * struct sta_id_modify
875 * @addr[ETH_ALEN]: station's MAC address
876 * @sta_id: index of station in uCode's station table
877 * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
878 *
879 * Driver selects unused table index when adding new station,
880 * or the index to a pre-existing station entry when modifying that station.
881 * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
882 *
883 * modify_mask flags select which parameters to modify vs. leave alone.
884 */
885 struct sta_id_modify {
886 u8 addr[ETH_ALEN];
887 __le16 reserved1;
888 u8 sta_id;
889 u8 modify_mask;
890 __le16 reserved2;
891 } __packed;
892
893 /*
894 * REPLY_ADD_STA = 0x18 (command)
895 *
896 * The device contains an internal table of per-station information,
897 * with info on security keys, aggregation parameters, and Tx rates for
898 * initial Tx attempt and any retries (agn devices uses
899 * REPLY_TX_LINK_QUALITY_CMD,
900 *
901 * REPLY_ADD_STA sets up the table entry for one station, either creating
902 * a new entry, or modifying a pre-existing one.
903 *
904 * NOTE: RXON command (without "associated" bit set) wipes the station table
905 * clean. Moving into RF_KILL state does this also. Driver must set up
906 * new station table before transmitting anything on the RXON channel
907 * (except active scans or active measurements; those commands carry
908 * their own txpower/rate setup data).
909 *
910 * When getting started on a new channel, driver must set up the
911 * IWL_BROADCAST_ID entry (last entry in the table). For a client
912 * station in a BSS, once an AP is selected, driver sets up the AP STA
913 * in the IWL_AP_ID entry (1st entry in the table). BROADCAST and AP
914 * are all that are needed for a BSS client station. If the device is
915 * used as AP, or in an IBSS network, driver must set up station table
916 * entries for all STAs in network, starting with index IWL_STA_ID.
917 */
918
919 struct iwl_addsta_cmd {
920 u8 mode; /* 1: modify existing, 0: add new station */
921 u8 reserved[3];
922 struct sta_id_modify sta;
923 struct iwl_keyinfo key;
924 __le32 station_flags; /* STA_FLG_* */
925 __le32 station_flags_msk; /* STA_FLG_* */
926
927 /* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
928 * corresponding to bit (e.g. bit 5 controls TID 5).
929 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
930 __le16 tid_disable_tx;
931
932 __le16 rate_n_flags; /* 3945 only */
933
934 /* TID for which to add block-ack support.
935 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
936 u8 add_immediate_ba_tid;
937
938 /* TID for which to remove block-ack support.
939 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
940 u8 remove_immediate_ba_tid;
941
942 /* Starting Sequence Number for added block-ack support.
943 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
944 __le16 add_immediate_ba_ssn;
945
946 /*
947 * Number of packets OK to transmit to station even though
948 * it is asleep -- used to synchronise PS-poll and u-APSD
949 * responses while ucode keeps track of STA sleep state.
950 */
951 __le16 sleep_tx_count;
952
953 __le16 reserved2;
954 } __packed;
955
956
957 #define ADD_STA_SUCCESS_MSK 0x1
958 #define ADD_STA_NO_ROOM_IN_TABLE 0x2
959 #define ADD_STA_NO_BLOCK_ACK_RESOURCE 0x4
960 #define ADD_STA_MODIFY_NON_EXIST_STA 0x8
961 /*
962 * REPLY_ADD_STA = 0x18 (response)
963 */
964 struct iwl_add_sta_resp {
965 u8 status; /* ADD_STA_* */
966 } __packed;
967
968 #define REM_STA_SUCCESS_MSK 0x1
969 /*
970 * REPLY_REM_STA = 0x19 (response)
971 */
972 struct iwl_rem_sta_resp {
973 u8 status;
974 } __packed;
975
976 /*
977 * REPLY_REM_STA = 0x19 (command)
978 */
979 struct iwl_rem_sta_cmd {
980 u8 num_sta; /* number of removed stations */
981 u8 reserved[3];
982 u8 addr[ETH_ALEN]; /* MAC addr of the first station */
983 u8 reserved2[2];
984 } __packed;
985
986
987 /* WiFi queues mask */
988 #define IWL_SCD_BK_MSK cpu_to_le32(BIT(0))
989 #define IWL_SCD_BE_MSK cpu_to_le32(BIT(1))
990 #define IWL_SCD_VI_MSK cpu_to_le32(BIT(2))
991 #define IWL_SCD_VO_MSK cpu_to_le32(BIT(3))
992 #define IWL_SCD_MGMT_MSK cpu_to_le32(BIT(3))
993
994 /* PAN queues mask */
995 #define IWL_PAN_SCD_BK_MSK cpu_to_le32(BIT(4))
996 #define IWL_PAN_SCD_BE_MSK cpu_to_le32(BIT(5))
997 #define IWL_PAN_SCD_VI_MSK cpu_to_le32(BIT(6))
998 #define IWL_PAN_SCD_VO_MSK cpu_to_le32(BIT(7))
999 #define IWL_PAN_SCD_MGMT_MSK cpu_to_le32(BIT(7))
1000 #define IWL_PAN_SCD_MULTICAST_MSK cpu_to_le32(BIT(8))
1001
1002 #define IWL_AGG_TX_QUEUE_MSK cpu_to_le32(0xffc00)
1003
1004 #define IWL_DROP_SINGLE 0
1005 #define IWL_DROP_ALL (BIT(IWL_RXON_CTX_BSS) | BIT(IWL_RXON_CTX_PAN))
1006
1007 /*
1008 * REPLY_TXFIFO_FLUSH = 0x1e(command and response)
1009 *
1010 * When using full FIFO flush this command checks the scheduler HW block WR/RD
1011 * pointers to check if all the frames were transferred by DMA into the
1012 * relevant TX FIFO queue. Only when the DMA is finished and the queue is
1013 * empty the command can finish.
1014 * This command is used to flush the TXFIFO from transmit commands, it may
1015 * operate on single or multiple queues, the command queue can't be flushed by
1016 * this command. The command response is returned when all the queue flush
1017 * operations are done. Each TX command flushed return response with the FLUSH
1018 * status set in the TX response status. When FIFO flush operation is used,
1019 * the flush operation ends when both the scheduler DMA done and TXFIFO empty
1020 * are set.
1021 *
1022 * @fifo_control: bit mask for which queues to flush
1023 * @flush_control: flush controls
1024 * 0: Dump single MSDU
1025 * 1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable.
1026 * 2: Dump all FIFO
1027 */
1028 struct iwl_txfifo_flush_cmd {
1029 __le32 fifo_control;
1030 __le16 flush_control;
1031 __le16 reserved;
1032 } __packed;
1033
1034 /*
1035 * REPLY_WEP_KEY = 0x20
1036 */
1037 struct iwl_wep_key {
1038 u8 key_index;
1039 u8 key_offset;
1040 u8 reserved1[2];
1041 u8 key_size;
1042 u8 reserved2[3];
1043 u8 key[16];
1044 } __packed;
1045
1046 struct iwl_wep_cmd {
1047 u8 num_keys;
1048 u8 global_key_type;
1049 u8 flags;
1050 u8 reserved;
1051 struct iwl_wep_key key[0];
1052 } __packed;
1053
1054 #define WEP_KEY_WEP_TYPE 1
1055 #define WEP_KEYS_MAX 4
1056 #define WEP_INVALID_OFFSET 0xff
1057 #define WEP_KEY_LEN_64 5
1058 #define WEP_KEY_LEN_128 13
1059
1060 /******************************************************************************
1061 * (4)
1062 * Rx Responses:
1063 *
1064 *****************************************************************************/
1065
1066 #define RX_RES_STATUS_NO_CRC32_ERROR cpu_to_le32(1 << 0)
1067 #define RX_RES_STATUS_NO_RXE_OVERFLOW cpu_to_le32(1 << 1)
1068
1069 #define RX_RES_PHY_FLAGS_BAND_24_MSK cpu_to_le16(1 << 0)
1070 #define RX_RES_PHY_FLAGS_MOD_CCK_MSK cpu_to_le16(1 << 1)
1071 #define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK cpu_to_le16(1 << 2)
1072 #define RX_RES_PHY_FLAGS_NARROW_BAND_MSK cpu_to_le16(1 << 3)
1073 #define RX_RES_PHY_FLAGS_ANTENNA_MSK 0xf0
1074 #define RX_RES_PHY_FLAGS_ANTENNA_POS 4
1075
1076 #define RX_RES_STATUS_SEC_TYPE_MSK (0x7 << 8)
1077 #define RX_RES_STATUS_SEC_TYPE_NONE (0x0 << 8)
1078 #define RX_RES_STATUS_SEC_TYPE_WEP (0x1 << 8)
1079 #define RX_RES_STATUS_SEC_TYPE_CCMP (0x2 << 8)
1080 #define RX_RES_STATUS_SEC_TYPE_TKIP (0x3 << 8)
1081 #define RX_RES_STATUS_SEC_TYPE_ERR (0x7 << 8)
1082
1083 #define RX_RES_STATUS_STATION_FOUND (1<<6)
1084 #define RX_RES_STATUS_NO_STATION_INFO_MISMATCH (1<<7)
1085
1086 #define RX_RES_STATUS_DECRYPT_TYPE_MSK (0x3 << 11)
1087 #define RX_RES_STATUS_NOT_DECRYPT (0x0 << 11)
1088 #define RX_RES_STATUS_DECRYPT_OK (0x3 << 11)
1089 #define RX_RES_STATUS_BAD_ICV_MIC (0x1 << 11)
1090 #define RX_RES_STATUS_BAD_KEY_TTAK (0x2 << 11)
1091
1092 #define RX_MPDU_RES_STATUS_ICV_OK (0x20)
1093 #define RX_MPDU_RES_STATUS_MIC_OK (0x40)
1094 #define RX_MPDU_RES_STATUS_TTAK_OK (1 << 7)
1095 #define RX_MPDU_RES_STATUS_DEC_DONE_MSK (0x800)
1096
1097
1098 #define IWLAGN_RX_RES_PHY_CNT 8
1099 #define IWLAGN_RX_RES_AGC_IDX 1
1100 #define IWLAGN_RX_RES_RSSI_AB_IDX 2
1101 #define IWLAGN_RX_RES_RSSI_C_IDX 3
1102 #define IWLAGN_OFDM_AGC_MSK 0xfe00
1103 #define IWLAGN_OFDM_AGC_BIT_POS 9
1104 #define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff
1105 #define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00
1106 #define IWLAGN_OFDM_RSSI_A_BIT_POS 0
1107 #define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000
1108 #define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000
1109 #define IWLAGN_OFDM_RSSI_B_BIT_POS 16
1110 #define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff
1111 #define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00
1112 #define IWLAGN_OFDM_RSSI_C_BIT_POS 0
1113
1114 struct iwlagn_non_cfg_phy {
1115 __le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT]; /* up to 8 phy entries */
1116 } __packed;
1117
1118
1119 /*
1120 * REPLY_RX = 0xc3 (response only, not a command)
1121 * Used only for legacy (non 11n) frames.
1122 */
1123 struct iwl_rx_phy_res {
1124 u8 non_cfg_phy_cnt; /* non configurable DSP phy data byte count */
1125 u8 cfg_phy_cnt; /* configurable DSP phy data byte count */
1126 u8 stat_id; /* configurable DSP phy data set ID */
1127 u8 reserved1;
1128 __le64 timestamp; /* TSF at on air rise */
1129 __le32 beacon_time_stamp; /* beacon at on-air rise */
1130 __le16 phy_flags; /* general phy flags: band, modulation, ... */
1131 __le16 channel; /* channel number */
1132 u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
1133 __le32 rate_n_flags; /* RATE_MCS_* */
1134 __le16 byte_count; /* frame's byte-count */
1135 __le16 frame_time; /* frame's time on the air */
1136 } __packed;
1137
1138 struct iwl_rx_mpdu_res_start {
1139 __le16 byte_count;
1140 __le16 reserved;
1141 } __packed;
1142
1143
1144 /******************************************************************************
1145 * (5)
1146 * Tx Commands & Responses:
1147 *
1148 * Driver must place each REPLY_TX command into one of the prioritized Tx
1149 * queues in host DRAM, shared between driver and device (see comments for
1150 * SCD registers and Tx/Rx Queues). When the device's Tx scheduler and uCode
1151 * are preparing to transmit, the device pulls the Tx command over the PCI
1152 * bus via one of the device's Tx DMA channels, to fill an internal FIFO
1153 * from which data will be transmitted.
1154 *
1155 * uCode handles all timing and protocol related to control frames
1156 * (RTS/CTS/ACK), based on flags in the Tx command. uCode and Tx scheduler
1157 * handle reception of block-acks; uCode updates the host driver via
1158 * REPLY_COMPRESSED_BA.
1159 *
1160 * uCode handles retrying Tx when an ACK is expected but not received.
1161 * This includes trying lower data rates than the one requested in the Tx
1162 * command, as set up by the REPLY_RATE_SCALE (for 3945) or
1163 * REPLY_TX_LINK_QUALITY_CMD (agn).
1164 *
1165 * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
1166 * This command must be executed after every RXON command, before Tx can occur.
1167 *****************************************************************************/
1168
1169 /* REPLY_TX Tx flags field */
1170
1171 /*
1172 * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
1173 * before this frame. if CTS-to-self required check
1174 * RXON_FLG_SELF_CTS_EN status.
1175 * unused in 3945/4965, used in 5000 series and after
1176 */
1177 #define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0)
1178
1179 /*
1180 * 1: Use Request-To-Send protocol before this frame.
1181 * Mutually exclusive vs. TX_CMD_FLG_CTS_MSK.
1182 * used in 3945/4965, unused in 5000 series and after
1183 */
1184 #define TX_CMD_FLG_RTS_MSK cpu_to_le32(1 << 1)
1185
1186 /*
1187 * 1: Transmit Clear-To-Send to self before this frame.
1188 * Driver should set this for AUTH/DEAUTH/ASSOC-REQ/REASSOC mgmnt frames.
1189 * Mutually exclusive vs. TX_CMD_FLG_RTS_MSK.
1190 * used in 3945/4965, unused in 5000 series and after
1191 */
1192 #define TX_CMD_FLG_CTS_MSK cpu_to_le32(1 << 2)
1193
1194 /* 1: Expect ACK from receiving station
1195 * 0: Don't expect ACK (MAC header's duration field s/b 0)
1196 * Set this for unicast frames, but not broadcast/multicast. */
1197 #define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
1198
1199 /* For agn devices:
1200 * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
1201 * Tx command's initial_rate_index indicates first rate to try;
1202 * uCode walks through table for additional Tx attempts.
1203 * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
1204 * This rate will be used for all Tx attempts; it will not be scaled. */
1205 #define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
1206
1207 /* 1: Expect immediate block-ack.
1208 * Set when Txing a block-ack request frame. Also set TX_CMD_FLG_ACK_MSK. */
1209 #define TX_CMD_FLG_IMM_BA_RSP_MASK cpu_to_le32(1 << 6)
1210
1211 /*
1212 * 1: Frame requires full Tx-Op protection.
1213 * Set this if either RTS or CTS Tx Flag gets set.
1214 * used in 3945/4965, unused in 5000 series and after
1215 */
1216 #define TX_CMD_FLG_FULL_TXOP_PROT_MSK cpu_to_le32(1 << 7)
1217
1218 /* Tx antenna selection field; used only for 3945, reserved (0) for agn devices.
1219 * Set field to "0" to allow 3945 uCode to select antenna (normal usage). */
1220 #define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
1221 #define TX_CMD_FLG_ANT_A_MSK cpu_to_le32(1 << 8)
1222 #define TX_CMD_FLG_ANT_B_MSK cpu_to_le32(1 << 9)
1223
1224 /* 1: Ignore Bluetooth priority for this frame.
1225 * 0: Delay Tx until Bluetooth device is done (normal usage). */
1226 #define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12)
1227
1228 /* 1: uCode overrides sequence control field in MAC header.
1229 * 0: Driver provides sequence control field in MAC header.
1230 * Set this for management frames, non-QOS data frames, non-unicast frames,
1231 * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
1232 #define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
1233
1234 /* 1: This frame is non-last MPDU; more fragments are coming.
1235 * 0: Last fragment, or not using fragmentation. */
1236 #define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
1237
1238 /* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
1239 * 0: No TSF required in outgoing frame.
1240 * Set this for transmitting beacons and probe responses. */
1241 #define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
1242
1243 /* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
1244 * alignment of frame's payload data field.
1245 * 0: No pad
1246 * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
1247 * field (but not both). Driver must align frame data (i.e. data following
1248 * MAC header) to DWORD boundary. */
1249 #define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
1250
1251 /* accelerate aggregation support
1252 * 0 - no CCMP encryption; 1 - CCMP encryption */
1253 #define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
1254
1255 /* HCCA-AP - disable duration overwriting. */
1256 #define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
1257
1258
1259 /*
1260 * TX command security control
1261 */
1262 #define TX_CMD_SEC_WEP 0x01
1263 #define TX_CMD_SEC_CCM 0x02
1264 #define TX_CMD_SEC_TKIP 0x03
1265 #define TX_CMD_SEC_MSK 0x03
1266 #define TX_CMD_SEC_SHIFT 6
1267 #define TX_CMD_SEC_KEY128 0x08
1268
1269 /*
1270 * security overhead sizes
1271 */
1272 #define WEP_IV_LEN 4
1273 #define WEP_ICV_LEN 4
1274 #define CCMP_MIC_LEN 8
1275 #define TKIP_ICV_LEN 4
1276
1277 /*
1278 * REPLY_TX = 0x1c (command)
1279 */
1280
1281 /*
1282 * 4965 uCode updates these Tx attempt count values in host DRAM.
1283 * Used for managing Tx retries when expecting block-acks.
1284 * Driver should set these fields to 0.
1285 */
1286 struct iwl_dram_scratch {
1287 u8 try_cnt; /* Tx attempts */
1288 u8 bt_kill_cnt; /* Tx attempts blocked by Bluetooth device */
1289 __le16 reserved;
1290 } __packed;
1291
1292 struct iwl_tx_cmd {
1293 /*
1294 * MPDU byte count:
1295 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1296 * + 8 byte IV for CCM or TKIP (not used for WEP)
1297 * + Data payload
1298 * + 8-byte MIC (not used for CCM/WEP)
1299 * NOTE: Does not include Tx command bytes, post-MAC pad bytes,
1300 * MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1301 * Range: 14-2342 bytes.
1302 */
1303 __le16 len;
1304
1305 /*
1306 * MPDU or MSDU byte count for next frame.
1307 * Used for fragmentation and bursting, but not 11n aggregation.
1308 * Same as "len", but for next frame. Set to 0 if not applicable.
1309 */
1310 __le16 next_frame_len;
1311
1312 __le32 tx_flags; /* TX_CMD_FLG_* */
1313
1314 /* uCode may modify this field of the Tx command (in host DRAM!).
1315 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
1316 struct iwl_dram_scratch scratch;
1317
1318 /* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
1319 __le32 rate_n_flags; /* RATE_MCS_* */
1320
1321 /* Index of destination station in uCode's station table */
1322 u8 sta_id;
1323
1324 /* Type of security encryption: CCM or TKIP */
1325 u8 sec_ctl; /* TX_CMD_SEC_* */
1326
1327 /*
1328 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
1329 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set. Normally "0" for
1330 * data frames, this field may be used to selectively reduce initial
1331 * rate (via non-0 value) for special frames (e.g. management), while
1332 * still supporting rate scaling for all frames.
1333 */
1334 u8 initial_rate_index;
1335 u8 reserved;
1336 u8 key[16];
1337 __le16 next_frame_flags;
1338 __le16 reserved2;
1339 union {
1340 __le32 life_time;
1341 __le32 attempt;
1342 } stop_time;
1343
1344 /* Host DRAM physical address pointer to "scratch" in this command.
1345 * Must be dword aligned. "0" in dram_lsb_ptr disables usage. */
1346 __le32 dram_lsb_ptr;
1347 u8 dram_msb_ptr;
1348
1349 u8 rts_retry_limit; /*byte 50 */
1350 u8 data_retry_limit; /*byte 51 */
1351 u8 tid_tspec;
1352 union {
1353 __le16 pm_frame_timeout;
1354 __le16 attempt_duration;
1355 } timeout;
1356
1357 /*
1358 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1359 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1360 */
1361 __le16 driver_txop;
1362
1363 /*
1364 * MAC header goes here, followed by 2 bytes padding if MAC header
1365 * length is 26 or 30 bytes, followed by payload data
1366 */
1367 u8 payload[0];
1368 struct ieee80211_hdr hdr[0];
1369 } __packed;
1370
1371 /*
1372 * TX command response is sent after *agn* transmission attempts.
1373 *
1374 * both postpone and abort status are expected behavior from uCode. there is
1375 * no special operation required from driver; except for RFKILL_FLUSH,
1376 * which required tx flush host command to flush all the tx frames in queues
1377 */
1378 enum {
1379 TX_STATUS_SUCCESS = 0x01,
1380 TX_STATUS_DIRECT_DONE = 0x02,
1381 /* postpone TX */
1382 TX_STATUS_POSTPONE_DELAY = 0x40,
1383 TX_STATUS_POSTPONE_FEW_BYTES = 0x41,
1384 TX_STATUS_POSTPONE_BT_PRIO = 0x42,
1385 TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43,
1386 TX_STATUS_POSTPONE_CALC_TTAK = 0x44,
1387 /* abort TX */
1388 TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81,
1389 TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
1390 TX_STATUS_FAIL_LONG_LIMIT = 0x83,
1391 TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1392 TX_STATUS_FAIL_DRAIN_FLOW = 0x85,
1393 TX_STATUS_FAIL_RFKILL_FLUSH = 0x86,
1394 TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1395 TX_STATUS_FAIL_DEST_PS = 0x88,
1396 TX_STATUS_FAIL_HOST_ABORTED = 0x89,
1397 TX_STATUS_FAIL_BT_RETRY = 0x8a,
1398 TX_STATUS_FAIL_STA_INVALID = 0x8b,
1399 TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1400 TX_STATUS_FAIL_TID_DISABLE = 0x8d,
1401 TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e,
1402 TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1403 TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90,
1404 TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1405 };
1406
1407 #define TX_PACKET_MODE_REGULAR 0x0000
1408 #define TX_PACKET_MODE_BURST_SEQ 0x0100
1409 #define TX_PACKET_MODE_BURST_FIRST 0x0200
1410
1411 enum {
1412 TX_POWER_PA_NOT_ACTIVE = 0x0,
1413 };
1414
1415 enum {
1416 TX_STATUS_MSK = 0x000000ff, /* bits 0:7 */
1417 TX_STATUS_DELAY_MSK = 0x00000040,
1418 TX_STATUS_ABORT_MSK = 0x00000080,
1419 TX_PACKET_MODE_MSK = 0x0000ff00, /* bits 8:15 */
1420 TX_FIFO_NUMBER_MSK = 0x00070000, /* bits 16:18 */
1421 TX_RESERVED = 0x00780000, /* bits 19:22 */
1422 TX_POWER_PA_DETECT_MSK = 0x7f800000, /* bits 23:30 */
1423 TX_ABORT_REQUIRED_MSK = 0x80000000, /* bits 31:31 */
1424 };
1425
1426 /* *******************************
1427 * TX aggregation status
1428 ******************************* */
1429
1430 enum {
1431 AGG_TX_STATE_TRANSMITTED = 0x00,
1432 AGG_TX_STATE_UNDERRUN_MSK = 0x01,
1433 AGG_TX_STATE_BT_PRIO_MSK = 0x02,
1434 AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
1435 AGG_TX_STATE_ABORT_MSK = 0x08,
1436 AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
1437 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
1438 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
1439 AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
1440 AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
1441 AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
1442 AGG_TX_STATE_DUMP_TX_MSK = 0x200,
1443 AGG_TX_STATE_DELAY_TX_MSK = 0x400
1444 };
1445
1446 #define AGG_TX_STATUS_MSK 0x00000fff /* bits 0:11 */
1447 #define AGG_TX_TRY_MSK 0x0000f000 /* bits 12:15 */
1448
1449 #define AGG_TX_STATE_LAST_SENT_MSK (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
1450 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
1451 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
1452
1453 /* # tx attempts for first frame in aggregation */
1454 #define AGG_TX_STATE_TRY_CNT_POS 12
1455 #define AGG_TX_STATE_TRY_CNT_MSK 0xf000
1456
1457 /* Command ID and sequence number of Tx command for this frame */
1458 #define AGG_TX_STATE_SEQ_NUM_POS 16
1459 #define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
1460
1461 /*
1462 * REPLY_TX = 0x1c (response)
1463 *
1464 * This response may be in one of two slightly different formats, indicated
1465 * by the frame_count field:
1466 *
1467 * 1) No aggregation (frame_count == 1). This reports Tx results for
1468 * a single frame. Multiple attempts, at various bit rates, may have
1469 * been made for this frame.
1470 *
1471 * 2) Aggregation (frame_count > 1). This reports Tx results for
1472 * 2 or more frames that used block-acknowledge. All frames were
1473 * transmitted at same rate. Rate scaling may have been used if first
1474 * frame in this new agg block failed in previous agg block(s).
1475 *
1476 * Note that, for aggregation, ACK (block-ack) status is not delivered here;
1477 * block-ack has not been received by the time the agn device records
1478 * this status.
1479 * This status relates to reasons the tx might have been blocked or aborted
1480 * within the sending station (this agn device), rather than whether it was
1481 * received successfully by the destination station.
1482 */
1483 struct agg_tx_status {
1484 __le16 status;
1485 __le16 sequence;
1486 } __packed;
1487
1488 /*
1489 * definitions for initial rate index field
1490 * bits [3:0] initial rate index
1491 * bits [6:4] rate table color, used for the initial rate
1492 * bit-7 invalid rate indication
1493 * i.e. rate was not chosen from rate table
1494 * or rate table color was changed during frame retries
1495 * refer tlc rate info
1496 */
1497
1498 #define IWL50_TX_RES_INIT_RATE_INDEX_POS 0
1499 #define IWL50_TX_RES_INIT_RATE_INDEX_MSK 0x0f
1500 #define IWL50_TX_RES_RATE_TABLE_COLOR_POS 4
1501 #define IWL50_TX_RES_RATE_TABLE_COLOR_MSK 0x70
1502 #define IWL50_TX_RES_INV_RATE_INDEX_MSK 0x80
1503
1504 /* refer to ra_tid */
1505 #define IWLAGN_TX_RES_TID_POS 0
1506 #define IWLAGN_TX_RES_TID_MSK 0x0f
1507 #define IWLAGN_TX_RES_RA_POS 4
1508 #define IWLAGN_TX_RES_RA_MSK 0xf0
1509
1510 struct iwlagn_tx_resp {
1511 u8 frame_count; /* 1 no aggregation, >1 aggregation */
1512 u8 bt_kill_count; /* # blocked by bluetooth (unused for agg) */
1513 u8 failure_rts; /* # failures due to unsuccessful RTS */
1514 u8 failure_frame; /* # failures due to no ACK (unused for agg) */
1515
1516 /* For non-agg: Rate at which frame was successful.
1517 * For agg: Rate at which all frames were transmitted. */
1518 __le32 rate_n_flags; /* RATE_MCS_* */
1519
1520 /* For non-agg: RTS + CTS + frame tx attempts time + ACK.
1521 * For agg: RTS + CTS + aggregation tx time + block-ack time. */
1522 __le16 wireless_media_time; /* uSecs */
1523
1524 u8 pa_status; /* RF power amplifier measurement (not used) */
1525 u8 pa_integ_res_a[3];
1526 u8 pa_integ_res_b[3];
1527 u8 pa_integ_res_C[3];
1528
1529 __le32 tfd_info;
1530 __le16 seq_ctl;
1531 __le16 byte_cnt;
1532 u8 tlc_info;
1533 u8 ra_tid; /* tid (0:3), sta_id (4:7) */
1534 __le16 frame_ctrl;
1535 /*
1536 * For non-agg: frame status TX_STATUS_*
1537 * For agg: status of 1st frame, AGG_TX_STATE_*; other frame status
1538 * fields follow this one, up to frame_count.
1539 * Bit fields:
1540 * 11- 0: AGG_TX_STATE_* status code
1541 * 15-12: Retry count for 1st frame in aggregation (retries
1542 * occur if tx failed for this frame when it was a
1543 * member of a previous aggregation block). If rate
1544 * scaling is used, retry count indicates the rate
1545 * table entry used for all frames in the new agg.
1546 * 31-16: Sequence # for this frame's Tx cmd (not SSN!)
1547 */
1548 struct agg_tx_status status; /* TX status (in aggregation -
1549 * status of 1st frame) */
1550 } __packed;
1551 /*
1552 * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
1553 *
1554 * Reports Block-Acknowledge from recipient station
1555 */
1556 struct iwl_compressed_ba_resp {
1557 __le32 sta_addr_lo32;
1558 __le16 sta_addr_hi16;
1559 __le16 reserved;
1560
1561 /* Index of recipient (BA-sending) station in uCode's station table */
1562 u8 sta_id;
1563 u8 tid;
1564 __le16 seq_ctl;
1565 __le64 bitmap;
1566 __le16 scd_flow;
1567 __le16 scd_ssn;
1568 /* following only for 5000 series and up */
1569 u8 txed; /* number of frames sent */
1570 u8 txed_2_done; /* number of frames acked */
1571 } __packed;
1572
1573 /*
1574 * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
1575 *
1576 */
1577
1578 /*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
1579 #define LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK (1 << 0)
1580
1581 /* # of EDCA prioritized tx fifos */
1582 #define LINK_QUAL_AC_NUM AC_NUM
1583
1584 /* # entries in rate scale table to support Tx retries */
1585 #define LINK_QUAL_MAX_RETRY_NUM 16
1586
1587 /* Tx antenna selection values */
1588 #define LINK_QUAL_ANT_A_MSK (1 << 0)
1589 #define LINK_QUAL_ANT_B_MSK (1 << 1)
1590 #define LINK_QUAL_ANT_MSK (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
1591
1592
1593 /**
1594 * struct iwl_link_qual_general_params
1595 *
1596 * Used in REPLY_TX_LINK_QUALITY_CMD
1597 */
1598 struct iwl_link_qual_general_params {
1599 u8 flags;
1600
1601 /* No entries at or above this (driver chosen) index contain MIMO */
1602 u8 mimo_delimiter;
1603
1604 /* Best single antenna to use for single stream (legacy, SISO). */
1605 u8 single_stream_ant_msk; /* LINK_QUAL_ANT_* */
1606
1607 /* Best antennas to use for MIMO (unused for 4965, assumes both). */
1608 u8 dual_stream_ant_msk; /* LINK_QUAL_ANT_* */
1609
1610 /*
1611 * If driver needs to use different initial rates for different
1612 * EDCA QOS access categories (as implemented by tx fifos 0-3),
1613 * this table will set that up, by indicating the indexes in the
1614 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
1615 * Otherwise, driver should set all entries to 0.
1616 *
1617 * Entry usage:
1618 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
1619 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
1620 */
1621 u8 start_rate_index[LINK_QUAL_AC_NUM];
1622 } __packed;
1623
1624 #define LINK_QUAL_AGG_TIME_LIMIT_DEF (4000) /* 4 milliseconds */
1625 #define LINK_QUAL_AGG_TIME_LIMIT_MAX (8000)
1626 #define LINK_QUAL_AGG_TIME_LIMIT_MIN (100)
1627
1628 #define LINK_QUAL_AGG_DISABLE_START_DEF (3)
1629 #define LINK_QUAL_AGG_DISABLE_START_MAX (255)
1630 #define LINK_QUAL_AGG_DISABLE_START_MIN (0)
1631
1632 #define LINK_QUAL_AGG_FRAME_LIMIT_DEF (63)
1633 #define LINK_QUAL_AGG_FRAME_LIMIT_MAX (63)
1634 #define LINK_QUAL_AGG_FRAME_LIMIT_MIN (0)
1635
1636 /**
1637 * struct iwl_link_qual_agg_params
1638 *
1639 * Used in REPLY_TX_LINK_QUALITY_CMD
1640 */
1641 struct iwl_link_qual_agg_params {
1642
1643 /*
1644 *Maximum number of uSec in aggregation.
1645 * default set to 4000 (4 milliseconds) if not configured in .cfg
1646 */
1647 __le16 agg_time_limit;
1648
1649 /*
1650 * Number of Tx retries allowed for a frame, before that frame will
1651 * no longer be considered for the start of an aggregation sequence
1652 * (scheduler will then try to tx it as single frame).
1653 * Driver should set this to 3.
1654 */
1655 u8 agg_dis_start_th;
1656
1657 /*
1658 * Maximum number of frames in aggregation.
1659 * 0 = no limit (default). 1 = no aggregation.
1660 * Other values = max # frames in aggregation.
1661 */
1662 u8 agg_frame_cnt_limit;
1663
1664 __le32 reserved;
1665 } __packed;
1666
1667 /*
1668 * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
1669 *
1670 * For agn devices only; 3945 uses REPLY_RATE_SCALE.
1671 *
1672 * Each station in the agn device's internal station table has its own table
1673 * of 16
1674 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
1675 * an ACK is not received. This command replaces the entire table for
1676 * one station.
1677 *
1678 * NOTE: Station must already be in agn device's station table.
1679 * Use REPLY_ADD_STA.
1680 *
1681 * The rate scaling procedures described below work well. Of course, other
1682 * procedures are possible, and may work better for particular environments.
1683 *
1684 *
1685 * FILLING THE RATE TABLE
1686 *
1687 * Given a particular initial rate and mode, as determined by the rate
1688 * scaling algorithm described below, the Linux driver uses the following
1689 * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
1690 * Link Quality command:
1691 *
1692 *
1693 * 1) If using High-throughput (HT) (SISO or MIMO) initial rate:
1694 * a) Use this same initial rate for first 3 entries.
1695 * b) Find next lower available rate using same mode (SISO or MIMO),
1696 * use for next 3 entries. If no lower rate available, switch to
1697 * legacy mode (no HT40 channel, no MIMO, no short guard interval).
1698 * c) If using MIMO, set command's mimo_delimiter to number of entries
1699 * using MIMO (3 or 6).
1700 * d) After trying 2 HT rates, switch to legacy mode (no HT40 channel,
1701 * no MIMO, no short guard interval), at the next lower bit rate
1702 * (e.g. if second HT bit rate was 54, try 48 legacy), and follow
1703 * legacy procedure for remaining table entries.
1704 *
1705 * 2) If using legacy initial rate:
1706 * a) Use the initial rate for only one entry.
1707 * b) For each following entry, reduce the rate to next lower available
1708 * rate, until reaching the lowest available rate.
1709 * c) When reducing rate, also switch antenna selection.
1710 * d) Once lowest available rate is reached, repeat this rate until
1711 * rate table is filled (16 entries), switching antenna each entry.
1712 *
1713 *
1714 * ACCUMULATING HISTORY
1715 *
1716 * The rate scaling algorithm for agn devices, as implemented in Linux driver,
1717 * uses two sets of frame Tx success history: One for the current/active
1718 * modulation mode, and one for a speculative/search mode that is being
1719 * attempted. If the speculative mode turns out to be more effective (i.e.
1720 * actual transfer rate is better), then the driver continues to use the
1721 * speculative mode as the new current active mode.
1722 *
1723 * Each history set contains, separately for each possible rate, data for a
1724 * sliding window of the 62 most recent tx attempts at that rate. The data
1725 * includes a shifting bitmap of success(1)/failure(0), and sums of successful
1726 * and attempted frames, from which the driver can additionally calculate a
1727 * success ratio (success / attempted) and number of failures
1728 * (attempted - success), and control the size of the window (attempted).
1729 * The driver uses the bit map to remove successes from the success sum, as
1730 * the oldest tx attempts fall out of the window.
1731 *
1732 * When the agn device makes multiple tx attempts for a given frame, each
1733 * attempt might be at a different rate, and have different modulation
1734 * characteristics (e.g. antenna, fat channel, short guard interval), as set
1735 * up in the rate scaling table in the Link Quality command. The driver must
1736 * determine which rate table entry was used for each tx attempt, to determine
1737 * which rate-specific history to update, and record only those attempts that
1738 * match the modulation characteristics of the history set.
1739 *
1740 * When using block-ack (aggregation), all frames are transmitted at the same
1741 * rate, since there is no per-attempt acknowledgment from the destination
1742 * station. The Tx response struct iwl_tx_resp indicates the Tx rate in
1743 * rate_n_flags field. After receiving a block-ack, the driver can update
1744 * history for the entire block all at once.
1745 *
1746 *
1747 * FINDING BEST STARTING RATE:
1748 *
1749 * When working with a selected initial modulation mode (see below), the
1750 * driver attempts to find a best initial rate. The initial rate is the
1751 * first entry in the Link Quality command's rate table.
1752 *
1753 * 1) Calculate actual throughput (success ratio * expected throughput, see
1754 * table below) for current initial rate. Do this only if enough frames
1755 * have been attempted to make the value meaningful: at least 6 failed
1756 * tx attempts, or at least 8 successes. If not enough, don't try rate
1757 * scaling yet.
1758 *
1759 * 2) Find available rates adjacent to current initial rate. Available means:
1760 * a) supported by hardware &&
1761 * b) supported by association &&
1762 * c) within any constraints selected by user
1763 *
1764 * 3) Gather measured throughputs for adjacent rates. These might not have
1765 * enough history to calculate a throughput. That's okay, we might try
1766 * using one of them anyway!
1767 *
1768 * 4) Try decreasing rate if, for current rate:
1769 * a) success ratio is < 15% ||
1770 * b) lower adjacent rate has better measured throughput ||
1771 * c) higher adjacent rate has worse throughput, and lower is unmeasured
1772 *
1773 * As a sanity check, if decrease was determined above, leave rate
1774 * unchanged if:
1775 * a) lower rate unavailable
1776 * b) success ratio at current rate > 85% (very good)
1777 * c) current measured throughput is better than expected throughput
1778 * of lower rate (under perfect 100% tx conditions, see table below)
1779 *
1780 * 5) Try increasing rate if, for current rate:
1781 * a) success ratio is < 15% ||
1782 * b) both adjacent rates' throughputs are unmeasured (try it!) ||
1783 * b) higher adjacent rate has better measured throughput ||
1784 * c) lower adjacent rate has worse throughput, and higher is unmeasured
1785 *
1786 * As a sanity check, if increase was determined above, leave rate
1787 * unchanged if:
1788 * a) success ratio at current rate < 70%. This is not particularly
1789 * good performance; higher rate is sure to have poorer success.
1790 *
1791 * 6) Re-evaluate the rate after each tx frame. If working with block-
1792 * acknowledge, history and statistics may be calculated for the entire
1793 * block (including prior history that fits within the history windows),
1794 * before re-evaluation.
1795 *
1796 * FINDING BEST STARTING MODULATION MODE:
1797 *
1798 * After working with a modulation mode for a "while" (and doing rate scaling),
1799 * the driver searches for a new initial mode in an attempt to improve
1800 * throughput. The "while" is measured by numbers of attempted frames:
1801 *
1802 * For legacy mode, search for new mode after:
1803 * 480 successful frames, or 160 failed frames
1804 * For high-throughput modes (SISO or MIMO), search for new mode after:
1805 * 4500 successful frames, or 400 failed frames
1806 *
1807 * Mode switch possibilities are (3 for each mode):
1808 *
1809 * For legacy:
1810 * Change antenna, try SISO (if HT association), try MIMO (if HT association)
1811 * For SISO:
1812 * Change antenna, try MIMO, try shortened guard interval (SGI)
1813 * For MIMO:
1814 * Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
1815 *
1816 * When trying a new mode, use the same bit rate as the old/current mode when
1817 * trying antenna switches and shortened guard interval. When switching to
1818 * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
1819 * for which the expected throughput (under perfect conditions) is about the
1820 * same or slightly better than the actual measured throughput delivered by
1821 * the old/current mode.
1822 *
1823 * Actual throughput can be estimated by multiplying the expected throughput
1824 * by the success ratio (successful / attempted tx frames). Frame size is
1825 * not considered in this calculation; it assumes that frame size will average
1826 * out to be fairly consistent over several samples. The following are
1827 * metric values for expected throughput assuming 100% success ratio.
1828 * Only G band has support for CCK rates:
1829 *
1830 * RATE: 1 2 5 11 6 9 12 18 24 36 48 54 60
1831 *
1832 * G: 7 13 35 58 40 57 72 98 121 154 177 186 186
1833 * A: 0 0 0 0 40 57 72 98 121 154 177 186 186
1834 * SISO 20MHz: 0 0 0 0 42 42 76 102 124 159 183 193 202
1835 * SGI SISO 20MHz: 0 0 0 0 46 46 82 110 132 168 192 202 211
1836 * MIMO 20MHz: 0 0 0 0 74 74 123 155 179 214 236 244 251
1837 * SGI MIMO 20MHz: 0 0 0 0 81 81 131 164 188 222 243 251 257
1838 * SISO 40MHz: 0 0 0 0 77 77 127 160 184 220 242 250 257
1839 * SGI SISO 40MHz: 0 0 0 0 83 83 135 169 193 229 250 257 264
1840 * MIMO 40MHz: 0 0 0 0 123 123 182 214 235 264 279 285 289
1841 * SGI MIMO 40MHz: 0 0 0 0 131 131 191 222 242 270 284 289 293
1842 *
1843 * After the new mode has been tried for a short while (minimum of 6 failed
1844 * frames or 8 successful frames), compare success ratio and actual throughput
1845 * estimate of the new mode with the old. If either is better with the new
1846 * mode, continue to use the new mode.
1847 *
1848 * Continue comparing modes until all 3 possibilities have been tried.
1849 * If moving from legacy to HT, try all 3 possibilities from the new HT
1850 * mode. After trying all 3, a best mode is found. Continue to use this mode
1851 * for the longer "while" described above (e.g. 480 successful frames for
1852 * legacy), and then repeat the search process.
1853 *
1854 */
1855 struct iwl_link_quality_cmd {
1856
1857 /* Index of destination/recipient station in uCode's station table */
1858 u8 sta_id;
1859 u8 reserved1;
1860 __le16 control; /* not used */
1861 struct iwl_link_qual_general_params general_params;
1862 struct iwl_link_qual_agg_params agg_params;
1863
1864 /*
1865 * Rate info; when using rate-scaling, Tx command's initial_rate_index
1866 * specifies 1st Tx rate attempted, via index into this table.
1867 * agn devices works its way through table when retrying Tx.
1868 */
1869 struct {
1870 __le32 rate_n_flags; /* RATE_MCS_*, IWL_RATE_* */
1871 } rs_table[LINK_QUAL_MAX_RETRY_NUM];
1872 __le32 reserved2;
1873 } __packed;
1874
1875 /*
1876 * BT configuration enable flags:
1877 * bit 0 - 1: BT channel announcement enabled
1878 * 0: disable
1879 * bit 1 - 1: priority of BT device enabled
1880 * 0: disable
1881 * bit 2 - 1: BT 2 wire support enabled
1882 * 0: disable
1883 */
1884 #define BT_COEX_DISABLE (0x0)
1885 #define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0)
1886 #define BT_ENABLE_PRIORITY BIT(1)
1887 #define BT_ENABLE_2_WIRE BIT(2)
1888
1889 #define BT_COEX_DISABLE (0x0)
1890 #define BT_COEX_ENABLE (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY)
1891
1892 #define BT_LEAD_TIME_MIN (0x0)
1893 #define BT_LEAD_TIME_DEF (0x1E)
1894 #define BT_LEAD_TIME_MAX (0xFF)
1895
1896 #define BT_MAX_KILL_MIN (0x1)
1897 #define BT_MAX_KILL_DEF (0x5)
1898 #define BT_MAX_KILL_MAX (0xFF)
1899
1900 #define BT_DURATION_LIMIT_DEF 625
1901 #define BT_DURATION_LIMIT_MAX 1250
1902 #define BT_DURATION_LIMIT_MIN 625
1903
1904 #define BT_ON_THRESHOLD_DEF 4
1905 #define BT_ON_THRESHOLD_MAX 1000
1906 #define BT_ON_THRESHOLD_MIN 1
1907
1908 #define BT_FRAG_THRESHOLD_DEF 0
1909 #define BT_FRAG_THRESHOLD_MAX 0
1910 #define BT_FRAG_THRESHOLD_MIN 0
1911
1912 #define BT_AGG_THRESHOLD_DEF 1200
1913 #define BT_AGG_THRESHOLD_MAX 8000
1914 #define BT_AGG_THRESHOLD_MIN 400
1915
1916 /*
1917 * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
1918 *
1919 * 3945 and agn devices support hardware handshake with Bluetooth device on
1920 * same platform. Bluetooth device alerts wireless device when it will Tx;
1921 * wireless device can delay or kill its own Tx to accommodate.
1922 */
1923 struct iwl_bt_cmd {
1924 u8 flags;
1925 u8 lead_time;
1926 u8 max_kill;
1927 u8 reserved;
1928 __le32 kill_ack_mask;
1929 __le32 kill_cts_mask;
1930 } __packed;
1931
1932 #define IWLAGN_BT_FLAG_CHANNEL_INHIBITION BIT(0)
1933
1934 #define IWLAGN_BT_FLAG_COEX_MODE_MASK (BIT(3)|BIT(4)|BIT(5))
1935 #define IWLAGN_BT_FLAG_COEX_MODE_SHIFT 3
1936 #define IWLAGN_BT_FLAG_COEX_MODE_DISABLED 0
1937 #define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W 1
1938 #define IWLAGN_BT_FLAG_COEX_MODE_3W 2
1939 #define IWLAGN_BT_FLAG_COEX_MODE_4W 3
1940
1941 #define IWLAGN_BT_FLAG_UCODE_DEFAULT BIT(6)
1942 /* Disable Sync PSPoll on SCO/eSCO */
1943 #define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE BIT(7)
1944
1945 #define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD -75 /* dBm */
1946 #define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD -65 /* dBm */
1947
1948 #define IWLAGN_BT_PRIO_BOOST_MAX 0xFF
1949 #define IWLAGN_BT_PRIO_BOOST_MIN 0x00
1950 #define IWLAGN_BT_PRIO_BOOST_DEFAULT 0xF0
1951
1952 #define IWLAGN_BT_MAX_KILL_DEFAULT 5
1953
1954 #define IWLAGN_BT3_T7_DEFAULT 1
1955
1956 #define IWLAGN_BT_KILL_ACK_MASK_DEFAULT cpu_to_le32(0xffff0000)
1957 #define IWLAGN_BT_KILL_CTS_MASK_DEFAULT cpu_to_le32(0xffff0000)
1958 #define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO cpu_to_le32(0xffffffff)
1959
1960 #define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT 2
1961
1962 #define IWLAGN_BT3_T2_DEFAULT 0xc
1963
1964 #define IWLAGN_BT_VALID_ENABLE_FLAGS cpu_to_le16(BIT(0))
1965 #define IWLAGN_BT_VALID_BOOST cpu_to_le16(BIT(1))
1966 #define IWLAGN_BT_VALID_MAX_KILL cpu_to_le16(BIT(2))
1967 #define IWLAGN_BT_VALID_3W_TIMERS cpu_to_le16(BIT(3))
1968 #define IWLAGN_BT_VALID_KILL_ACK_MASK cpu_to_le16(BIT(4))
1969 #define IWLAGN_BT_VALID_KILL_CTS_MASK cpu_to_le16(BIT(5))
1970 #define IWLAGN_BT_VALID_BT4_TIMES cpu_to_le16(BIT(6))
1971 #define IWLAGN_BT_VALID_3W_LUT cpu_to_le16(BIT(7))
1972
1973 #define IWLAGN_BT_ALL_VALID_MSK (IWLAGN_BT_VALID_ENABLE_FLAGS | \
1974 IWLAGN_BT_VALID_BOOST | \
1975 IWLAGN_BT_VALID_MAX_KILL | \
1976 IWLAGN_BT_VALID_3W_TIMERS | \
1977 IWLAGN_BT_VALID_KILL_ACK_MASK | \
1978 IWLAGN_BT_VALID_KILL_CTS_MASK | \
1979 IWLAGN_BT_VALID_BT4_TIMES | \
1980 IWLAGN_BT_VALID_3W_LUT)
1981
1982 struct iwl_basic_bt_cmd {
1983 u8 flags;
1984 u8 ledtime; /* unused */
1985 u8 max_kill;
1986 u8 bt3_timer_t7_value;
1987 __le32 kill_ack_mask;
1988 __le32 kill_cts_mask;
1989 u8 bt3_prio_sample_time;
1990 u8 bt3_timer_t2_value;
1991 __le16 bt4_reaction_time; /* unused */
1992 __le32 bt3_lookup_table[12];
1993 __le16 bt4_decision_time; /* unused */
1994 __le16 valid;
1995 };
1996
1997 struct iwl6000_bt_cmd {
1998 struct iwl_basic_bt_cmd basic;
1999 u8 prio_boost;
2000 /*
2001 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
2002 * if configure the following patterns
2003 */
2004 u8 tx_prio_boost; /* SW boost of WiFi tx priority */
2005 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */
2006 };
2007
2008 struct iwl2000_bt_cmd {
2009 struct iwl_basic_bt_cmd basic;
2010 __le32 prio_boost;
2011 /*
2012 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
2013 * if configure the following patterns
2014 */
2015 u8 reserved;
2016 u8 tx_prio_boost; /* SW boost of WiFi tx priority */
2017 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */
2018 };
2019
2020 #define IWLAGN_BT_SCO_ACTIVE cpu_to_le32(BIT(0))
2021
2022 struct iwlagn_bt_sco_cmd {
2023 __le32 flags;
2024 };
2025
2026 /******************************************************************************
2027 * (6)
2028 * Spectrum Management (802.11h) Commands, Responses, Notifications:
2029 *
2030 *****************************************************************************/
2031
2032 /*
2033 * Spectrum Management
2034 */
2035 #define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK | \
2036 RXON_FILTER_CTL2HOST_MSK | \
2037 RXON_FILTER_ACCEPT_GRP_MSK | \
2038 RXON_FILTER_DIS_DECRYPT_MSK | \
2039 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
2040 RXON_FILTER_ASSOC_MSK | \
2041 RXON_FILTER_BCON_AWARE_MSK)
2042
2043 struct iwl_measure_channel {
2044 __le32 duration; /* measurement duration in extended beacon
2045 * format */
2046 u8 channel; /* channel to measure */
2047 u8 type; /* see enum iwl_measure_type */
2048 __le16 reserved;
2049 } __packed;
2050
2051 /*
2052 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
2053 */
2054 struct iwl_spectrum_cmd {
2055 __le16 len; /* number of bytes starting from token */
2056 u8 token; /* token id */
2057 u8 id; /* measurement id -- 0 or 1 */
2058 u8 origin; /* 0 = TGh, 1 = other, 2 = TGk */
2059 u8 periodic; /* 1 = periodic */
2060 __le16 path_loss_timeout;
2061 __le32 start_time; /* start time in extended beacon format */
2062 __le32 reserved2;
2063 __le32 flags; /* rxon flags */
2064 __le32 filter_flags; /* rxon filter flags */
2065 __le16 channel_count; /* minimum 1, maximum 10 */
2066 __le16 reserved3;
2067 struct iwl_measure_channel channels[10];
2068 } __packed;
2069
2070 /*
2071 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
2072 */
2073 struct iwl_spectrum_resp {
2074 u8 token;
2075 u8 id; /* id of the prior command replaced, or 0xff */
2076 __le16 status; /* 0 - command will be handled
2077 * 1 - cannot handle (conflicts with another
2078 * measurement) */
2079 } __packed;
2080
2081 enum iwl_measurement_state {
2082 IWL_MEASUREMENT_START = 0,
2083 IWL_MEASUREMENT_STOP = 1,
2084 };
2085
2086 enum iwl_measurement_status {
2087 IWL_MEASUREMENT_OK = 0,
2088 IWL_MEASUREMENT_CONCURRENT = 1,
2089 IWL_MEASUREMENT_CSA_CONFLICT = 2,
2090 IWL_MEASUREMENT_TGH_CONFLICT = 3,
2091 /* 4-5 reserved */
2092 IWL_MEASUREMENT_STOPPED = 6,
2093 IWL_MEASUREMENT_TIMEOUT = 7,
2094 IWL_MEASUREMENT_PERIODIC_FAILED = 8,
2095 };
2096
2097 #define NUM_ELEMENTS_IN_HISTOGRAM 8
2098
2099 struct iwl_measurement_histogram {
2100 __le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 0.8usec counts */
2101 __le32 cck[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 1usec counts */
2102 } __packed;
2103
2104 /* clear channel availability counters */
2105 struct iwl_measurement_cca_counters {
2106 __le32 ofdm;
2107 __le32 cck;
2108 } __packed;
2109
2110 enum iwl_measure_type {
2111 IWL_MEASURE_BASIC = (1 << 0),
2112 IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
2113 IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
2114 IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
2115 IWL_MEASURE_FRAME = (1 << 4),
2116 /* bits 5:6 are reserved */
2117 IWL_MEASURE_IDLE = (1 << 7),
2118 };
2119
2120 /*
2121 * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
2122 */
2123 struct iwl_spectrum_notification {
2124 u8 id; /* measurement id -- 0 or 1 */
2125 u8 token;
2126 u8 channel_index; /* index in measurement channel list */
2127 u8 state; /* 0 - start, 1 - stop */
2128 __le32 start_time; /* lower 32-bits of TSF */
2129 u8 band; /* 0 - 5.2GHz, 1 - 2.4GHz */
2130 u8 channel;
2131 u8 type; /* see enum iwl_measurement_type */
2132 u8 reserved1;
2133 /* NOTE: cca_ofdm, cca_cck, basic_type, and histogram are only only
2134 * valid if applicable for measurement type requested. */
2135 __le32 cca_ofdm; /* cca fraction time in 40Mhz clock periods */
2136 __le32 cca_cck; /* cca fraction time in 44Mhz clock periods */
2137 __le32 cca_time; /* channel load time in usecs */
2138 u8 basic_type; /* 0 - bss, 1 - ofdm preamble, 2 -
2139 * unidentified */
2140 u8 reserved2[3];
2141 struct iwl_measurement_histogram histogram;
2142 __le32 stop_time; /* lower 32-bits of TSF */
2143 __le32 status; /* see iwl_measurement_status */
2144 } __packed;
2145
2146 /******************************************************************************
2147 * (7)
2148 * Power Management Commands, Responses, Notifications:
2149 *
2150 *****************************************************************************/
2151
2152 /**
2153 * struct iwl_powertable_cmd - Power Table Command
2154 * @flags: See below:
2155 *
2156 * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
2157 *
2158 * PM allow:
2159 * bit 0 - '0' Driver not allow power management
2160 * '1' Driver allow PM (use rest of parameters)
2161 *
2162 * uCode send sleep notifications:
2163 * bit 1 - '0' Don't send sleep notification
2164 * '1' send sleep notification (SEND_PM_NOTIFICATION)
2165 *
2166 * Sleep over DTIM
2167 * bit 2 - '0' PM have to walk up every DTIM
2168 * '1' PM could sleep over DTIM till listen Interval.
2169 *
2170 * PCI power managed
2171 * bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
2172 * '1' !(PCI_CFG_LINK_CTRL & 0x1)
2173 *
2174 * Fast PD
2175 * bit 4 - '1' Put radio to sleep when receiving frame for others
2176 *
2177 * Force sleep Modes
2178 * bit 31/30- '00' use both mac/xtal sleeps
2179 * '01' force Mac sleep
2180 * '10' force xtal sleep
2181 * '11' Illegal set
2182 *
2183 * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
2184 * ucode assume sleep over DTIM is allowed and we don't need to wake up
2185 * for every DTIM.
2186 */
2187 #define IWL_POWER_VEC_SIZE 5
2188
2189 #define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK cpu_to_le16(BIT(0))
2190 #define IWL_POWER_POWER_SAVE_ENA_MSK cpu_to_le16(BIT(0))
2191 #define IWL_POWER_POWER_MANAGEMENT_ENA_MSK cpu_to_le16(BIT(1))
2192 #define IWL_POWER_SLEEP_OVER_DTIM_MSK cpu_to_le16(BIT(2))
2193 #define IWL_POWER_PCI_PM_MSK cpu_to_le16(BIT(3))
2194 #define IWL_POWER_FAST_PD cpu_to_le16(BIT(4))
2195 #define IWL_POWER_BEACON_FILTERING cpu_to_le16(BIT(5))
2196 #define IWL_POWER_SHADOW_REG_ENA cpu_to_le16(BIT(6))
2197 #define IWL_POWER_CT_KILL_SET cpu_to_le16(BIT(7))
2198 #define IWL_POWER_BT_SCO_ENA cpu_to_le16(BIT(8))
2199 #define IWL_POWER_ADVANCE_PM_ENA_MSK cpu_to_le16(BIT(9))
2200
2201 struct iwl_powertable_cmd {
2202 __le16 flags;
2203 u8 keep_alive_seconds; /* 3945 reserved */
2204 u8 debug_flags; /* 3945 reserved */
2205 __le32 rx_data_timeout;
2206 __le32 tx_data_timeout;
2207 __le32 sleep_interval[IWL_POWER_VEC_SIZE];
2208 __le32 keep_alive_beacons;
2209 } __packed;
2210
2211 /*
2212 * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
2213 * all devices identical.
2214 */
2215 struct iwl_sleep_notification {
2216 u8 pm_sleep_mode;
2217 u8 pm_wakeup_src;
2218 __le16 reserved;
2219 __le32 sleep_time;
2220 __le32 tsf_low;
2221 __le32 bcon_timer;
2222 } __packed;
2223
2224 /* Sleep states. all devices identical. */
2225 enum {
2226 IWL_PM_NO_SLEEP = 0,
2227 IWL_PM_SLP_MAC = 1,
2228 IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
2229 IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
2230 IWL_PM_SLP_PHY = 4,
2231 IWL_PM_SLP_REPENT = 5,
2232 IWL_PM_WAKEUP_BY_TIMER = 6,
2233 IWL_PM_WAKEUP_BY_DRIVER = 7,
2234 IWL_PM_WAKEUP_BY_RFKILL = 8,
2235 /* 3 reserved */
2236 IWL_PM_NUM_OF_MODES = 12,
2237 };
2238
2239 /*
2240 * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
2241 */
2242 #define CARD_STATE_CMD_DISABLE 0x00 /* Put card to sleep */
2243 #define CARD_STATE_CMD_ENABLE 0x01 /* Wake up card */
2244 #define CARD_STATE_CMD_HALT 0x02 /* Power down permanently */
2245 struct iwl_card_state_cmd {
2246 __le32 status; /* CARD_STATE_CMD_* request new power state */
2247 } __packed;
2248
2249 /*
2250 * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
2251 */
2252 struct iwl_card_state_notif {
2253 __le32 flags;
2254 } __packed;
2255
2256 #define HW_CARD_DISABLED 0x01
2257 #define SW_CARD_DISABLED 0x02
2258 #define CT_CARD_DISABLED 0x04
2259 #define RXON_CARD_DISABLED 0x10
2260
2261 struct iwl_ct_kill_config {
2262 __le32 reserved;
2263 __le32 critical_temperature_M;
2264 __le32 critical_temperature_R;
2265 } __packed;
2266
2267 /* 1000, and 6x00 */
2268 struct iwl_ct_kill_throttling_config {
2269 __le32 critical_temperature_exit;
2270 __le32 reserved;
2271 __le32 critical_temperature_enter;
2272 } __packed;
2273
2274 /******************************************************************************
2275 * (8)
2276 * Scan Commands, Responses, Notifications:
2277 *
2278 *****************************************************************************/
2279
2280 #define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
2281 #define SCAN_CHANNEL_TYPE_ACTIVE cpu_to_le32(1)
2282
2283 /**
2284 * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
2285 *
2286 * One for each channel in the scan list.
2287 * Each channel can independently select:
2288 * 1) SSID for directed active scans
2289 * 2) Txpower setting (for rate specified within Tx command)
2290 * 3) How long to stay on-channel (behavior may be modified by quiet_time,
2291 * quiet_plcp_th, good_CRC_th)
2292 *
2293 * To avoid uCode errors, make sure the following are true (see comments
2294 * under struct iwl_scan_cmd about max_out_time and quiet_time):
2295 * 1) If using passive_dwell (i.e. passive_dwell != 0):
2296 * active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
2297 * 2) quiet_time <= active_dwell
2298 * 3) If restricting off-channel time (i.e. max_out_time !=0):
2299 * passive_dwell < max_out_time
2300 * active_dwell < max_out_time
2301 */
2302
2303 struct iwl_scan_channel {
2304 /*
2305 * type is defined as:
2306 * 0:0 1 = active, 0 = passive
2307 * 1:20 SSID direct bit map; if a bit is set, then corresponding
2308 * SSID IE is transmitted in probe request.
2309 * 21:31 reserved
2310 */
2311 __le32 type;
2312 __le16 channel; /* band is selected by iwl_scan_cmd "flags" field */
2313 u8 tx_gain; /* gain for analog radio */
2314 u8 dsp_atten; /* gain for DSP */
2315 __le16 active_dwell; /* in 1024-uSec TU (time units), typ 5-50 */
2316 __le16 passive_dwell; /* in 1024-uSec TU (time units), typ 20-500 */
2317 } __packed;
2318
2319 /* set number of direct probes __le32 type */
2320 #define IWL_SCAN_PROBE_MASK(n) cpu_to_le32((BIT(n) | (BIT(n) - BIT(1))))
2321
2322 /**
2323 * struct iwl_ssid_ie - directed scan network information element
2324 *
2325 * Up to 20 of these may appear in REPLY_SCAN_CMD (Note: Only 4 are in
2326 * 3945 SCAN api), selected by "type" bit field in struct iwl_scan_channel;
2327 * each channel may select different ssids from among the 20 (4) entries.
2328 * SSID IEs get transmitted in reverse order of entry.
2329 */
2330 struct iwl_ssid_ie {
2331 u8 id;
2332 u8 len;
2333 u8 ssid[32];
2334 } __packed;
2335
2336 #define PROBE_OPTION_MAX_3945 4
2337 #define PROBE_OPTION_MAX 20
2338 #define TX_CMD_LIFE_TIME_INFINITE cpu_to_le32(0xFFFFFFFF)
2339 #define IWL_GOOD_CRC_TH_DISABLED 0
2340 #define IWL_GOOD_CRC_TH_DEFAULT cpu_to_le16(1)
2341 #define IWL_GOOD_CRC_TH_NEVER cpu_to_le16(0xffff)
2342 #define IWL_MAX_SCAN_SIZE 1024
2343 #define IWL_MAX_CMD_SIZE 4096
2344
2345 /*
2346 * REPLY_SCAN_CMD = 0x80 (command)
2347 *
2348 * The hardware scan command is very powerful; the driver can set it up to
2349 * maintain (relatively) normal network traffic while doing a scan in the
2350 * background. The max_out_time and suspend_time control the ratio of how
2351 * long the device stays on an associated network channel ("service channel")
2352 * vs. how long it's away from the service channel, i.e. tuned to other channels
2353 * for scanning.
2354 *
2355 * max_out_time is the max time off-channel (in usec), and suspend_time
2356 * is how long (in "extended beacon" format) that the scan is "suspended"
2357 * after returning to the service channel. That is, suspend_time is the
2358 * time that we stay on the service channel, doing normal work, between
2359 * scan segments. The driver may set these parameters differently to support
2360 * scanning when associated vs. not associated, and light vs. heavy traffic
2361 * loads when associated.
2362 *
2363 * After receiving this command, the device's scan engine does the following;
2364 *
2365 * 1) Sends SCAN_START notification to driver
2366 * 2) Checks to see if it has time to do scan for one channel
2367 * 3) Sends NULL packet, with power-save (PS) bit set to 1,
2368 * to tell AP that we're going off-channel
2369 * 4) Tunes to first channel in scan list, does active or passive scan
2370 * 5) Sends SCAN_RESULT notification to driver
2371 * 6) Checks to see if it has time to do scan on *next* channel in list
2372 * 7) Repeats 4-6 until it no longer has time to scan the next channel
2373 * before max_out_time expires
2374 * 8) Returns to service channel
2375 * 9) Sends NULL packet with PS=0 to tell AP that we're back
2376 * 10) Stays on service channel until suspend_time expires
2377 * 11) Repeats entire process 2-10 until list is complete
2378 * 12) Sends SCAN_COMPLETE notification
2379 *
2380 * For fast, efficient scans, the scan command also has support for staying on
2381 * a channel for just a short time, if doing active scanning and getting no
2382 * responses to the transmitted probe request. This time is controlled by
2383 * quiet_time, and the number of received packets below which a channel is
2384 * considered "quiet" is controlled by quiet_plcp_threshold.
2385 *
2386 * For active scanning on channels that have regulatory restrictions against
2387 * blindly transmitting, the scan can listen before transmitting, to make sure
2388 * that there is already legitimate activity on the channel. If enough
2389 * packets are cleanly received on the channel (controlled by good_CRC_th,
2390 * typical value 1), the scan engine starts transmitting probe requests.
2391 *
2392 * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
2393 *
2394 * To avoid uCode errors, see timing restrictions described under
2395 * struct iwl_scan_channel.
2396 */
2397
2398 enum iwl_scan_flags {
2399 /* BIT(0) currently unused */
2400 IWL_SCAN_FLAGS_ACTION_FRAME_TX = BIT(1),
2401 /* bits 2-7 reserved */
2402 };
2403
2404 struct iwl_scan_cmd {
2405 __le16 len;
2406 u8 scan_flags; /* scan flags: see enum iwl_scan_flags */
2407 u8 channel_count; /* # channels in channel list */
2408 __le16 quiet_time; /* dwell only this # millisecs on quiet channel
2409 * (only for active scan) */
2410 __le16 quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */
2411 __le16 good_CRC_th; /* passive -> active promotion threshold */
2412 __le16 rx_chain; /* RXON_RX_CHAIN_* */
2413 __le32 max_out_time; /* max usec to be away from associated (service)
2414 * channel */
2415 __le32 suspend_time; /* pause scan this long (in "extended beacon
2416 * format") when returning to service chnl:
2417 * 3945; 31:24 # beacons, 19:0 additional usec,
2418 * 4965; 31:22 # beacons, 21:0 additional usec.
2419 */
2420 __le32 flags; /* RXON_FLG_* */
2421 __le32 filter_flags; /* RXON_FILTER_* */
2422
2423 /* For active scans (set to all-0s for passive scans).
2424 * Does not include payload. Must specify Tx rate; no rate scaling. */
2425 struct iwl_tx_cmd tx_cmd;
2426
2427 /* For directed active scans (set to all-0s otherwise) */
2428 struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
2429
2430 /*
2431 * Probe request frame, followed by channel list.
2432 *
2433 * Size of probe request frame is specified by byte count in tx_cmd.
2434 * Channel list follows immediately after probe request frame.
2435 * Number of channels in list is specified by channel_count.
2436 * Each channel in list is of type:
2437 *
2438 * struct iwl_scan_channel channels[0];
2439 *
2440 * NOTE: Only one band of channels can be scanned per pass. You
2441 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2442 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2443 * before requesting another scan.
2444 */
2445 u8 data[0];
2446 } __packed;
2447
2448 /* Can abort will notify by complete notification with abort status. */
2449 #define CAN_ABORT_STATUS cpu_to_le32(0x1)
2450 /* complete notification statuses */
2451 #define ABORT_STATUS 0x2
2452
2453 /*
2454 * REPLY_SCAN_CMD = 0x80 (response)
2455 */
2456 struct iwl_scanreq_notification {
2457 __le32 status; /* 1: okay, 2: cannot fulfill request */
2458 } __packed;
2459
2460 /*
2461 * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
2462 */
2463 struct iwl_scanstart_notification {
2464 __le32 tsf_low;
2465 __le32 tsf_high;
2466 __le32 beacon_timer;
2467 u8 channel;
2468 u8 band;
2469 u8 reserved[2];
2470 __le32 status;
2471 } __packed;
2472
2473 #define SCAN_OWNER_STATUS 0x1
2474 #define MEASURE_OWNER_STATUS 0x2
2475
2476 #define IWL_PROBE_STATUS_OK 0
2477 #define IWL_PROBE_STATUS_TX_FAILED BIT(0)
2478 /* error statuses combined with TX_FAILED */
2479 #define IWL_PROBE_STATUS_FAIL_TTL BIT(1)
2480 #define IWL_PROBE_STATUS_FAIL_BT BIT(2)
2481
2482 #define NUMBER_OF_STATISTICS 1 /* first __le32 is good CRC */
2483 /*
2484 * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
2485 */
2486 struct iwl_scanresults_notification {
2487 u8 channel;
2488 u8 band;
2489 u8 probe_status;
2490 u8 num_probe_not_sent; /* not enough time to send */
2491 __le32 tsf_low;
2492 __le32 tsf_high;
2493 __le32 statistics[NUMBER_OF_STATISTICS];
2494 } __packed;
2495
2496 /*
2497 * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
2498 */
2499 struct iwl_scancomplete_notification {
2500 u8 scanned_channels;
2501 u8 status;
2502 u8 bt_status; /* BT On/Off status */
2503 u8 last_channel;
2504 __le32 tsf_low;
2505 __le32 tsf_high;
2506 } __packed;
2507
2508
2509 /******************************************************************************
2510 * (9)
2511 * IBSS/AP Commands and Notifications:
2512 *
2513 *****************************************************************************/
2514
2515 enum iwl_ibss_manager {
2516 IWL_NOT_IBSS_MANAGER = 0,
2517 IWL_IBSS_MANAGER = 1,
2518 };
2519
2520 /*
2521 * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
2522 */
2523
2524 struct iwlagn_beacon_notif {
2525 struct iwlagn_tx_resp beacon_notify_hdr;
2526 __le32 low_tsf;
2527 __le32 high_tsf;
2528 __le32 ibss_mgr_status;
2529 } __packed;
2530
2531 /*
2532 * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
2533 */
2534
2535 struct iwl_tx_beacon_cmd {
2536 struct iwl_tx_cmd tx;
2537 __le16 tim_idx;
2538 u8 tim_size;
2539 u8 reserved1;
2540 struct ieee80211_hdr frame[0]; /* beacon frame */
2541 } __packed;
2542
2543 /******************************************************************************
2544 * (10)
2545 * Statistics Commands and Notifications:
2546 *
2547 *****************************************************************************/
2548
2549 #define IWL_TEMP_CONVERT 260
2550
2551 #define SUP_RATE_11A_MAX_NUM_CHANNELS 8
2552 #define SUP_RATE_11B_MAX_NUM_CHANNELS 4
2553 #define SUP_RATE_11G_MAX_NUM_CHANNELS 12
2554
2555 /* Used for passing to driver number of successes and failures per rate */
2556 struct rate_histogram {
2557 union {
2558 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2559 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2560 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2561 } success;
2562 union {
2563 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2564 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2565 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2566 } failed;
2567 } __packed;
2568
2569 /* statistics command response */
2570
2571 struct statistics_dbg {
2572 __le32 burst_check;
2573 __le32 burst_count;
2574 __le32 wait_for_silence_timeout_cnt;
2575 __le32 reserved[3];
2576 } __packed;
2577
2578 struct statistics_rx_phy {
2579 __le32 ina_cnt;
2580 __le32 fina_cnt;
2581 __le32 plcp_err;
2582 __le32 crc32_err;
2583 __le32 overrun_err;
2584 __le32 early_overrun_err;
2585 __le32 crc32_good;
2586 __le32 false_alarm_cnt;
2587 __le32 fina_sync_err_cnt;
2588 __le32 sfd_timeout;
2589 __le32 fina_timeout;
2590 __le32 unresponded_rts;
2591 __le32 rxe_frame_limit_overrun;
2592 __le32 sent_ack_cnt;
2593 __le32 sent_cts_cnt;
2594 __le32 sent_ba_rsp_cnt;
2595 __le32 dsp_self_kill;
2596 __le32 mh_format_err;
2597 __le32 re_acq_main_rssi_sum;
2598 __le32 reserved3;
2599 } __packed;
2600
2601 struct statistics_rx_ht_phy {
2602 __le32 plcp_err;
2603 __le32 overrun_err;
2604 __le32 early_overrun_err;
2605 __le32 crc32_good;
2606 __le32 crc32_err;
2607 __le32 mh_format_err;
2608 __le32 agg_crc32_good;
2609 __le32 agg_mpdu_cnt;
2610 __le32 agg_cnt;
2611 __le32 unsupport_mcs;
2612 } __packed;
2613
2614 #define INTERFERENCE_DATA_AVAILABLE cpu_to_le32(1)
2615
2616 struct statistics_rx_non_phy {
2617 __le32 bogus_cts; /* CTS received when not expecting CTS */
2618 __le32 bogus_ack; /* ACK received when not expecting ACK */
2619 __le32 non_bssid_frames; /* number of frames with BSSID that
2620 * doesn't belong to the STA BSSID */
2621 __le32 filtered_frames; /* count frames that were dumped in the
2622 * filtering process */
2623 __le32 non_channel_beacons; /* beacons with our bss id but not on
2624 * our serving channel */
2625 __le32 channel_beacons; /* beacons with our bss id and in our
2626 * serving channel */
2627 __le32 num_missed_bcon; /* number of missed beacons */
2628 __le32 adc_rx_saturation_time; /* count in 0.8us units the time the
2629 * ADC was in saturation */
2630 __le32 ina_detection_search_time;/* total time (in 0.8us) searched
2631 * for INA */
2632 __le32 beacon_silence_rssi_a; /* RSSI silence after beacon frame */
2633 __le32 beacon_silence_rssi_b; /* RSSI silence after beacon frame */
2634 __le32 beacon_silence_rssi_c; /* RSSI silence after beacon frame */
2635 __le32 interference_data_flag; /* flag for interference data
2636 * availability. 1 when data is
2637 * available. */
2638 __le32 channel_load; /* counts RX Enable time in uSec */
2639 __le32 dsp_false_alarms; /* DSP false alarm (both OFDM
2640 * and CCK) counter */
2641 __le32 beacon_rssi_a;
2642 __le32 beacon_rssi_b;
2643 __le32 beacon_rssi_c;
2644 __le32 beacon_energy_a;
2645 __le32 beacon_energy_b;
2646 __le32 beacon_energy_c;
2647 } __packed;
2648
2649 struct statistics_rx_non_phy_bt {
2650 struct statistics_rx_non_phy common;
2651 /* additional stats for bt */
2652 __le32 num_bt_kills;
2653 __le32 reserved[2];
2654 } __packed;
2655
2656 struct statistics_rx {
2657 struct statistics_rx_phy ofdm;
2658 struct statistics_rx_phy cck;
2659 struct statistics_rx_non_phy general;
2660 struct statistics_rx_ht_phy ofdm_ht;
2661 } __packed;
2662
2663 struct statistics_rx_bt {
2664 struct statistics_rx_phy ofdm;
2665 struct statistics_rx_phy cck;
2666 struct statistics_rx_non_phy_bt general;
2667 struct statistics_rx_ht_phy ofdm_ht;
2668 } __packed;
2669
2670 /**
2671 * struct statistics_tx_power - current tx power
2672 *
2673 * @ant_a: current tx power on chain a in 1/2 dB step
2674 * @ant_b: current tx power on chain b in 1/2 dB step
2675 * @ant_c: current tx power on chain c in 1/2 dB step
2676 */
2677 struct statistics_tx_power {
2678 u8 ant_a;
2679 u8 ant_b;
2680 u8 ant_c;
2681 u8 reserved;
2682 } __packed;
2683
2684 struct statistics_tx_non_phy_agg {
2685 __le32 ba_timeout;
2686 __le32 ba_reschedule_frames;
2687 __le32 scd_query_agg_frame_cnt;
2688 __le32 scd_query_no_agg;
2689 __le32 scd_query_agg;
2690 __le32 scd_query_mismatch;
2691 __le32 frame_not_ready;
2692 __le32 underrun;
2693 __le32 bt_prio_kill;
2694 __le32 rx_ba_rsp_cnt;
2695 } __packed;
2696
2697 struct statistics_tx {
2698 __le32 preamble_cnt;
2699 __le32 rx_detected_cnt;
2700 __le32 bt_prio_defer_cnt;
2701 __le32 bt_prio_kill_cnt;
2702 __le32 few_bytes_cnt;
2703 __le32 cts_timeout;
2704 __le32 ack_timeout;
2705 __le32 expected_ack_cnt;
2706 __le32 actual_ack_cnt;
2707 __le32 dump_msdu_cnt;
2708 __le32 burst_abort_next_frame_mismatch_cnt;
2709 __le32 burst_abort_missing_next_frame_cnt;
2710 __le32 cts_timeout_collision;
2711 __le32 ack_or_ba_timeout_collision;
2712 struct statistics_tx_non_phy_agg agg;
2713 /*
2714 * "tx_power" are optional parameters provided by uCode,
2715 * 6000 series is the only device provide the information,
2716 * Those are reserved fields for all the other devices
2717 */
2718 struct statistics_tx_power tx_power;
2719 __le32 reserved1;
2720 } __packed;
2721
2722
2723 struct statistics_div {
2724 __le32 tx_on_a;
2725 __le32 tx_on_b;
2726 __le32 exec_time;
2727 __le32 probe_time;
2728 __le32 reserved1;
2729 __le32 reserved2;
2730 } __packed;
2731
2732 struct statistics_general_common {
2733 __le32 temperature; /* radio temperature */
2734 __le32 temperature_m; /* for 5000 and up, this is radio voltage */
2735 struct statistics_dbg dbg;
2736 __le32 sleep_time;
2737 __le32 slots_out;
2738 __le32 slots_idle;
2739 __le32 ttl_timestamp;
2740 struct statistics_div div;
2741 __le32 rx_enable_counter;
2742 /*
2743 * num_of_sos_states:
2744 * count the number of times we have to re-tune
2745 * in order to get out of bad PHY status
2746 */
2747 __le32 num_of_sos_states;
2748 } __packed;
2749
2750 struct statistics_bt_activity {
2751 /* Tx statistics */
2752 __le32 hi_priority_tx_req_cnt;
2753 __le32 hi_priority_tx_denied_cnt;
2754 __le32 lo_priority_tx_req_cnt;
2755 __le32 lo_priority_tx_denied_cnt;
2756 /* Rx statistics */
2757 __le32 hi_priority_rx_req_cnt;
2758 __le32 hi_priority_rx_denied_cnt;
2759 __le32 lo_priority_rx_req_cnt;
2760 __le32 lo_priority_rx_denied_cnt;
2761 } __packed;
2762
2763 struct statistics_general {
2764 struct statistics_general_common common;
2765 __le32 reserved2;
2766 __le32 reserved3;
2767 } __packed;
2768
2769 struct statistics_general_bt {
2770 struct statistics_general_common common;
2771 struct statistics_bt_activity activity;
2772 __le32 reserved2;
2773 __le32 reserved3;
2774 } __packed;
2775
2776 #define UCODE_STATISTICS_CLEAR_MSK (0x1 << 0)
2777 #define UCODE_STATISTICS_FREQUENCY_MSK (0x1 << 1)
2778 #define UCODE_STATISTICS_NARROW_BAND_MSK (0x1 << 2)
2779
2780 /*
2781 * REPLY_STATISTICS_CMD = 0x9c,
2782 * all devices identical.
2783 *
2784 * This command triggers an immediate response containing uCode statistics.
2785 * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
2786 *
2787 * If the CLEAR_STATS configuration flag is set, uCode will clear its
2788 * internal copy of the statistics (counters) after issuing the response.
2789 * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
2790 *
2791 * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
2792 * STATISTICS_NOTIFICATIONs after received beacons (see below). This flag
2793 * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
2794 */
2795 #define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1) /* see above */
2796 #define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */
2797 struct iwl_statistics_cmd {
2798 __le32 configuration_flags; /* IWL_STATS_CONF_* */
2799 } __packed;
2800
2801 /*
2802 * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
2803 *
2804 * By default, uCode issues this notification after receiving a beacon
2805 * while associated. To disable this behavior, set DISABLE_NOTIF flag in the
2806 * REPLY_STATISTICS_CMD 0x9c, above.
2807 *
2808 * Statistics counters continue to increment beacon after beacon, but are
2809 * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
2810 * 0x9c with CLEAR_STATS bit set (see above).
2811 *
2812 * uCode also issues this notification during scans. uCode clears statistics
2813 * appropriately so that each notification contains statistics for only the
2814 * one channel that has just been scanned.
2815 */
2816 #define STATISTICS_REPLY_FLG_BAND_24G_MSK cpu_to_le32(0x2)
2817 #define STATISTICS_REPLY_FLG_HT40_MODE_MSK cpu_to_le32(0x8)
2818
2819 struct iwl_notif_statistics {
2820 __le32 flag;
2821 struct statistics_rx rx;
2822 struct statistics_tx tx;
2823 struct statistics_general general;
2824 } __packed;
2825
2826 struct iwl_bt_notif_statistics {
2827 __le32 flag;
2828 struct statistics_rx_bt rx;
2829 struct statistics_tx tx;
2830 struct statistics_general_bt general;
2831 } __packed;
2832
2833 /*
2834 * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
2835 *
2836 * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed
2837 * in regardless of how many missed beacons, which mean when driver receive the
2838 * notification, inside the command, it can find all the beacons information
2839 * which include number of total missed beacons, number of consecutive missed
2840 * beacons, number of beacons received and number of beacons expected to
2841 * receive.
2842 *
2843 * If uCode detected consecutive_missed_beacons > 5, it will reset the radio
2844 * in order to bring the radio/PHY back to working state; which has no relation
2845 * to when driver will perform sensitivity calibration.
2846 *
2847 * Driver should set it own missed_beacon_threshold to decide when to perform
2848 * sensitivity calibration based on number of consecutive missed beacons in
2849 * order to improve overall performance, especially in noisy environment.
2850 *
2851 */
2852
2853 #define IWL_MISSED_BEACON_THRESHOLD_MIN (1)
2854 #define IWL_MISSED_BEACON_THRESHOLD_DEF (5)
2855 #define IWL_MISSED_BEACON_THRESHOLD_MAX IWL_MISSED_BEACON_THRESHOLD_DEF
2856
2857 struct iwl_missed_beacon_notif {
2858 __le32 consecutive_missed_beacons;
2859 __le32 total_missed_becons;
2860 __le32 num_expected_beacons;
2861 __le32 num_recvd_beacons;
2862 } __packed;
2863
2864
2865 /******************************************************************************
2866 * (11)
2867 * Rx Calibration Commands:
2868 *
2869 * With the uCode used for open source drivers, most Tx calibration (except
2870 * for Tx Power) and most Rx calibration is done by uCode during the
2871 * "initialize" phase of uCode boot. Driver must calibrate only:
2872 *
2873 * 1) Tx power (depends on temperature), described elsewhere
2874 * 2) Receiver gain balance (optimize MIMO, and detect disconnected antennas)
2875 * 3) Receiver sensitivity (to optimize signal detection)
2876 *
2877 *****************************************************************************/
2878
2879 /**
2880 * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
2881 *
2882 * This command sets up the Rx signal detector for a sensitivity level that
2883 * is high enough to lock onto all signals within the associated network,
2884 * but low enough to ignore signals that are below a certain threshold, so as
2885 * not to have too many "false alarms". False alarms are signals that the
2886 * Rx DSP tries to lock onto, but then discards after determining that they
2887 * are noise.
2888 *
2889 * The optimum number of false alarms is between 5 and 50 per 200 TUs
2890 * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
2891 * time listening, not transmitting). Driver must adjust sensitivity so that
2892 * the ratio of actual false alarms to actual Rx time falls within this range.
2893 *
2894 * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
2895 * received beacon. These provide information to the driver to analyze the
2896 * sensitivity. Don't analyze statistics that come in from scanning, or any
2897 * other non-associated-network source. Pertinent statistics include:
2898 *
2899 * From "general" statistics (struct statistics_rx_non_phy):
2900 *
2901 * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
2902 * Measure of energy of desired signal. Used for establishing a level
2903 * below which the device does not detect signals.
2904 *
2905 * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
2906 * Measure of background noise in silent period after beacon.
2907 *
2908 * channel_load
2909 * uSecs of actual Rx time during beacon period (varies according to
2910 * how much time was spent transmitting).
2911 *
2912 * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
2913 *
2914 * false_alarm_cnt
2915 * Signal locks abandoned early (before phy-level header).
2916 *
2917 * plcp_err
2918 * Signal locks abandoned late (during phy-level header).
2919 *
2920 * NOTE: Both false_alarm_cnt and plcp_err increment monotonically from
2921 * beacon to beacon, i.e. each value is an accumulation of all errors
2922 * before and including the latest beacon. Values will wrap around to 0
2923 * after counting up to 2^32 - 1. Driver must differentiate vs.
2924 * previous beacon's values to determine # false alarms in the current
2925 * beacon period.
2926 *
2927 * Total number of false alarms = false_alarms + plcp_errs
2928 *
2929 * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
2930 * (notice that the start points for OFDM are at or close to settings for
2931 * maximum sensitivity):
2932 *
2933 * START / MIN / MAX
2934 * HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX 90 / 85 / 120
2935 * HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX 170 / 170 / 210
2936 * HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX 105 / 105 / 140
2937 * HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX 220 / 220 / 270
2938 *
2939 * If actual rate of OFDM false alarms (+ plcp_errors) is too high
2940 * (greater than 50 for each 204.8 msecs listening), reduce sensitivity
2941 * by *adding* 1 to all 4 of the table entries above, up to the max for
2942 * each entry. Conversely, if false alarm rate is too low (less than 5
2943 * for each 204.8 msecs listening), *subtract* 1 from each entry to
2944 * increase sensitivity.
2945 *
2946 * For CCK sensitivity, keep track of the following:
2947 *
2948 * 1). 20-beacon history of maximum background noise, indicated by
2949 * (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
2950 * 3 receivers. For any given beacon, the "silence reference" is
2951 * the maximum of last 60 samples (20 beacons * 3 receivers).
2952 *
2953 * 2). 10-beacon history of strongest signal level, as indicated
2954 * by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
2955 * i.e. the strength of the signal through the best receiver at the
2956 * moment. These measurements are "upside down", with lower values
2957 * for stronger signals, so max energy will be *minimum* value.
2958 *
2959 * Then for any given beacon, the driver must determine the *weakest*
2960 * of the strongest signals; this is the minimum level that needs to be
2961 * successfully detected, when using the best receiver at the moment.
2962 * "Max cck energy" is the maximum (higher value means lower energy!)
2963 * of the last 10 minima. Once this is determined, driver must add
2964 * a little margin by adding "6" to it.
2965 *
2966 * 3). Number of consecutive beacon periods with too few false alarms.
2967 * Reset this to 0 at the first beacon period that falls within the
2968 * "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
2969 *
2970 * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
2971 * (notice that the start points for CCK are at maximum sensitivity):
2972 *
2973 * START / MIN / MAX
2974 * HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX 125 / 125 / 200
2975 * HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX 200 / 200 / 400
2976 * HD_MIN_ENERGY_CCK_DET_INDEX 100 / 0 / 100
2977 *
2978 * If actual rate of CCK false alarms (+ plcp_errors) is too high
2979 * (greater than 50 for each 204.8 msecs listening), method for reducing
2980 * sensitivity is:
2981 *
2982 * 1) *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2983 * up to max 400.
2984 *
2985 * 2) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
2986 * sensitivity has been reduced a significant amount; bring it up to
2987 * a moderate 161. Otherwise, *add* 3, up to max 200.
2988 *
2989 * 3) a) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
2990 * sensitivity has been reduced only a moderate or small amount;
2991 * *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
2992 * down to min 0. Otherwise (if gain has been significantly reduced),
2993 * don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
2994 *
2995 * b) Save a snapshot of the "silence reference".
2996 *
2997 * If actual rate of CCK false alarms (+ plcp_errors) is too low
2998 * (less than 5 for each 204.8 msecs listening), method for increasing
2999 * sensitivity is used only if:
3000 *
3001 * 1a) Previous beacon did not have too many false alarms
3002 * 1b) AND difference between previous "silence reference" and current
3003 * "silence reference" (prev - current) is 2 or more,
3004 * OR 2) 100 or more consecutive beacon periods have had rate of
3005 * less than 5 false alarms per 204.8 milliseconds rx time.
3006 *
3007 * Method for increasing sensitivity:
3008 *
3009 * 1) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
3010 * down to min 125.
3011 *
3012 * 2) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
3013 * down to min 200.
3014 *
3015 * 3) *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
3016 *
3017 * If actual rate of CCK false alarms (+ plcp_errors) is within good range
3018 * (between 5 and 50 for each 204.8 msecs listening):
3019 *
3020 * 1) Save a snapshot of the silence reference.
3021 *
3022 * 2) If previous beacon had too many CCK false alarms (+ plcp_errors),
3023 * give some extra margin to energy threshold by *subtracting* 8
3024 * from value in HD_MIN_ENERGY_CCK_DET_INDEX.
3025 *
3026 * For all cases (too few, too many, good range), make sure that the CCK
3027 * detection threshold (energy) is below the energy level for robust
3028 * detection over the past 10 beacon periods, the "Max cck energy".
3029 * Lower values mean higher energy; this means making sure that the value
3030 * in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
3031 *
3032 */
3033
3034 /*
3035 * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
3036 */
3037 #define HD_TABLE_SIZE (11) /* number of entries */
3038 #define HD_MIN_ENERGY_CCK_DET_INDEX (0) /* table indexes */
3039 #define HD_MIN_ENERGY_OFDM_DET_INDEX (1)
3040 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX (2)
3041 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX (3)
3042 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX (4)
3043 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX (5)
3044 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX (6)
3045 #define HD_BARKER_CORR_TH_ADD_MIN_INDEX (7)
3046 #define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX (8)
3047 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX (9)
3048 #define HD_OFDM_ENERGY_TH_IN_INDEX (10)
3049
3050 /*
3051 * Additional table entries in enhance SENSITIVITY_CMD
3052 */
3053 #define HD_INA_NON_SQUARE_DET_OFDM_INDEX (11)
3054 #define HD_INA_NON_SQUARE_DET_CCK_INDEX (12)
3055 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX (13)
3056 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX (14)
3057 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (15)
3058 #define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX (16)
3059 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX (17)
3060 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX (18)
3061 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (19)
3062 #define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX (20)
3063 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX (21)
3064 #define HD_RESERVED (22)
3065
3066 /* number of entries for enhanced tbl */
3067 #define ENHANCE_HD_TABLE_SIZE (23)
3068
3069 /* number of additional entries for enhanced tbl */
3070 #define ENHANCE_HD_TABLE_ENTRIES (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE)
3071
3072 #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1 cpu_to_le16(0)
3073 #define HD_INA_NON_SQUARE_DET_CCK_DATA_V1 cpu_to_le16(0)
3074 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1 cpu_to_le16(0)
3075 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(668)
3076 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4)
3077 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(486)
3078 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(37)
3079 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(853)
3080 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4)
3081 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(476)
3082 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(99)
3083
3084 #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2 cpu_to_le16(1)
3085 #define HD_INA_NON_SQUARE_DET_CCK_DATA_V2 cpu_to_le16(1)
3086 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2 cpu_to_le16(1)
3087 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(600)
3088 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(40)
3089 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(486)
3090 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(45)
3091 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(853)
3092 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(60)
3093 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(476)
3094 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(99)
3095
3096
3097 /* Control field in struct iwl_sensitivity_cmd */
3098 #define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE cpu_to_le16(0)
3099 #define SENSITIVITY_CMD_CONTROL_WORK_TABLE cpu_to_le16(1)
3100
3101 /**
3102 * struct iwl_sensitivity_cmd
3103 * @control: (1) updates working table, (0) updates default table
3104 * @table: energy threshold values, use HD_* as index into table
3105 *
3106 * Always use "1" in "control" to update uCode's working table and DSP.
3107 */
3108 struct iwl_sensitivity_cmd {
3109 __le16 control; /* always use "1" */
3110 __le16 table[HD_TABLE_SIZE]; /* use HD_* as index */
3111 } __packed;
3112
3113 /*
3114 *
3115 */
3116 struct iwl_enhance_sensitivity_cmd {
3117 __le16 control; /* always use "1" */
3118 __le16 enhance_table[ENHANCE_HD_TABLE_SIZE]; /* use HD_* as index */
3119 } __packed;
3120
3121
3122 /**
3123 * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
3124 *
3125 * This command sets the relative gains of agn device's 3 radio receiver chains.
3126 *
3127 * After the first association, driver should accumulate signal and noise
3128 * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
3129 * beacons from the associated network (don't collect statistics that come
3130 * in from scanning, or any other non-network source).
3131 *
3132 * DISCONNECTED ANTENNA:
3133 *
3134 * Driver should determine which antennas are actually connected, by comparing
3135 * average beacon signal levels for the 3 Rx chains. Accumulate (add) the
3136 * following values over 20 beacons, one accumulator for each of the chains
3137 * a/b/c, from struct statistics_rx_non_phy:
3138 *
3139 * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
3140 *
3141 * Find the strongest signal from among a/b/c. Compare the other two to the
3142 * strongest. If any signal is more than 15 dB (times 20, unless you
3143 * divide the accumulated values by 20) below the strongest, the driver
3144 * considers that antenna to be disconnected, and should not try to use that
3145 * antenna/chain for Rx or Tx. If both A and B seem to be disconnected,
3146 * driver should declare the stronger one as connected, and attempt to use it
3147 * (A and B are the only 2 Tx chains!).
3148 *
3149 *
3150 * RX BALANCE:
3151 *
3152 * Driver should balance the 3 receivers (but just the ones that are connected
3153 * to antennas, see above) for gain, by comparing the average signal levels
3154 * detected during the silence after each beacon (background noise).
3155 * Accumulate (add) the following values over 20 beacons, one accumulator for
3156 * each of the chains a/b/c, from struct statistics_rx_non_phy:
3157 *
3158 * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
3159 *
3160 * Find the weakest background noise level from among a/b/c. This Rx chain
3161 * will be the reference, with 0 gain adjustment. Attenuate other channels by
3162 * finding noise difference:
3163 *
3164 * (accum_noise[i] - accum_noise[reference]) / 30
3165 *
3166 * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
3167 * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
3168 * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
3169 * and set bit 2 to indicate "reduce gain". The value for the reference
3170 * (weakest) chain should be "0".
3171 *
3172 * diff_gain_[abc] bit fields:
3173 * 2: (1) reduce gain, (0) increase gain
3174 * 1-0: amount of gain, units of 1.5 dB
3175 */
3176
3177 /* Phy calibration command for series */
3178 /* The default calibrate table size if not specified by firmware */
3179 #define IWL_DEFAULT_STANDARD_PHY_CALIBRATE_TBL_SIZE 18
3180 enum {
3181 IWL_PHY_CALIBRATE_DC_CMD = 8,
3182 IWL_PHY_CALIBRATE_LO_CMD = 9,
3183 IWL_PHY_CALIBRATE_TX_IQ_CMD = 11,
3184 IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD = 15,
3185 IWL_PHY_CALIBRATE_BASE_BAND_CMD = 16,
3186 IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD = 17,
3187 IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD = 18,
3188 IWL_MAX_STANDARD_PHY_CALIBRATE_TBL_SIZE = 19,
3189 };
3190
3191 #define IWL_MAX_PHY_CALIBRATE_TBL_SIZE (253)
3192
3193 /* This enum defines the bitmap of various calibrations to enable in both
3194 * init ucode and runtime ucode through CALIBRATION_CFG_CMD.
3195 */
3196 enum iwl_ucode_calib_cfg {
3197 IWL_CALIB_CFG_RX_BB_IDX = BIT(0),
3198 IWL_CALIB_CFG_DC_IDX = BIT(1),
3199 IWL_CALIB_CFG_LO_IDX = BIT(2),
3200 IWL_CALIB_CFG_TX_IQ_IDX = BIT(3),
3201 IWL_CALIB_CFG_RX_IQ_IDX = BIT(4),
3202 IWL_CALIB_CFG_NOISE_IDX = BIT(5),
3203 IWL_CALIB_CFG_CRYSTAL_IDX = BIT(6),
3204 IWL_CALIB_CFG_TEMPERATURE_IDX = BIT(7),
3205 IWL_CALIB_CFG_PAPD_IDX = BIT(8),
3206 IWL_CALIB_CFG_SENSITIVITY_IDX = BIT(9),
3207 IWL_CALIB_CFG_TX_PWR_IDX = BIT(10),
3208 };
3209
3210 #define IWL_CALIB_INIT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \
3211 IWL_CALIB_CFG_DC_IDX | \
3212 IWL_CALIB_CFG_LO_IDX | \
3213 IWL_CALIB_CFG_TX_IQ_IDX | \
3214 IWL_CALIB_CFG_RX_IQ_IDX | \
3215 IWL_CALIB_CFG_NOISE_IDX | \
3216 IWL_CALIB_CFG_CRYSTAL_IDX | \
3217 IWL_CALIB_CFG_TEMPERATURE_IDX | \
3218 IWL_CALIB_CFG_PAPD_IDX | \
3219 IWL_CALIB_CFG_SENSITIVITY_IDX | \
3220 IWL_CALIB_CFG_TX_PWR_IDX)
3221
3222 #define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK cpu_to_le32(BIT(0))
3223
3224 struct iwl_calib_cfg_elmnt_s {
3225 __le32 is_enable;
3226 __le32 start;
3227 __le32 send_res;
3228 __le32 apply_res;
3229 __le32 reserved;
3230 } __packed;
3231
3232 struct iwl_calib_cfg_status_s {
3233 struct iwl_calib_cfg_elmnt_s once;
3234 struct iwl_calib_cfg_elmnt_s perd;
3235 __le32 flags;
3236 } __packed;
3237
3238 struct iwl_calib_cfg_cmd {
3239 struct iwl_calib_cfg_status_s ucd_calib_cfg;
3240 struct iwl_calib_cfg_status_s drv_calib_cfg;
3241 __le32 reserved1;
3242 } __packed;
3243
3244 struct iwl_calib_hdr {
3245 u8 op_code;
3246 u8 first_group;
3247 u8 groups_num;
3248 u8 data_valid;
3249 } __packed;
3250
3251 struct iwl_calib_cmd {
3252 struct iwl_calib_hdr hdr;
3253 u8 data[0];
3254 } __packed;
3255
3256 struct iwl_calib_xtal_freq_cmd {
3257 struct iwl_calib_hdr hdr;
3258 u8 cap_pin1;
3259 u8 cap_pin2;
3260 u8 pad[2];
3261 } __packed;
3262
3263 #define DEFAULT_RADIO_SENSOR_OFFSET cpu_to_le16(2700)
3264 struct iwl_calib_temperature_offset_cmd {
3265 struct iwl_calib_hdr hdr;
3266 __le16 radio_sensor_offset;
3267 __le16 reserved;
3268 } __packed;
3269
3270 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
3271 struct iwl_calib_chain_noise_reset_cmd {
3272 struct iwl_calib_hdr hdr;
3273 u8 data[0];
3274 };
3275
3276 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
3277 struct iwl_calib_chain_noise_gain_cmd {
3278 struct iwl_calib_hdr hdr;
3279 u8 delta_gain_1;
3280 u8 delta_gain_2;
3281 u8 pad[2];
3282 } __packed;
3283
3284 /******************************************************************************
3285 * (12)
3286 * Miscellaneous Commands:
3287 *
3288 *****************************************************************************/
3289
3290 /*
3291 * LEDs Command & Response
3292 * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
3293 *
3294 * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
3295 * this command turns it on or off, or sets up a periodic blinking cycle.
3296 */
3297 struct iwl_led_cmd {
3298 __le32 interval; /* "interval" in uSec */
3299 u8 id; /* 1: Activity, 2: Link, 3: Tech */
3300 u8 off; /* # intervals off while blinking;
3301 * "0", with >0 "on" value, turns LED on */
3302 u8 on; /* # intervals on while blinking;
3303 * "0", regardless of "off", turns LED off */
3304 u8 reserved;
3305 } __packed;
3306
3307 /*
3308 * station priority table entries
3309 * also used as potential "events" value for both
3310 * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD
3311 */
3312
3313 /*
3314 * COEX events entry flag masks
3315 * RP - Requested Priority
3316 * WP - Win Medium Priority: priority assigned when the contention has been won
3317 */
3318 #define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG (0x1)
3319 #define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG (0x2)
3320 #define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG (0x4)
3321
3322 #define COEX_CU_UNASSOC_IDLE_RP 4
3323 #define COEX_CU_UNASSOC_MANUAL_SCAN_RP 4
3324 #define COEX_CU_UNASSOC_AUTO_SCAN_RP 4
3325 #define COEX_CU_CALIBRATION_RP 4
3326 #define COEX_CU_PERIODIC_CALIBRATION_RP 4
3327 #define COEX_CU_CONNECTION_ESTAB_RP 4
3328 #define COEX_CU_ASSOCIATED_IDLE_RP 4
3329 #define COEX_CU_ASSOC_MANUAL_SCAN_RP 4
3330 #define COEX_CU_ASSOC_AUTO_SCAN_RP 4
3331 #define COEX_CU_ASSOC_ACTIVE_LEVEL_RP 4
3332 #define COEX_CU_RF_ON_RP 6
3333 #define COEX_CU_RF_OFF_RP 4
3334 #define COEX_CU_STAND_ALONE_DEBUG_RP 6
3335 #define COEX_CU_IPAN_ASSOC_LEVEL_RP 4
3336 #define COEX_CU_RSRVD1_RP 4
3337 #define COEX_CU_RSRVD2_RP 4
3338
3339 #define COEX_CU_UNASSOC_IDLE_WP 3
3340 #define COEX_CU_UNASSOC_MANUAL_SCAN_WP 3
3341 #define COEX_CU_UNASSOC_AUTO_SCAN_WP 3
3342 #define COEX_CU_CALIBRATION_WP 3
3343 #define COEX_CU_PERIODIC_CALIBRATION_WP 3
3344 #define COEX_CU_CONNECTION_ESTAB_WP 3
3345 #define COEX_CU_ASSOCIATED_IDLE_WP 3
3346 #define COEX_CU_ASSOC_MANUAL_SCAN_WP 3
3347 #define COEX_CU_ASSOC_AUTO_SCAN_WP 3
3348 #define COEX_CU_ASSOC_ACTIVE_LEVEL_WP 3
3349 #define COEX_CU_RF_ON_WP 3
3350 #define COEX_CU_RF_OFF_WP 3
3351 #define COEX_CU_STAND_ALONE_DEBUG_WP 6
3352 #define COEX_CU_IPAN_ASSOC_LEVEL_WP 3
3353 #define COEX_CU_RSRVD1_WP 3
3354 #define COEX_CU_RSRVD2_WP 3
3355
3356 #define COEX_UNASSOC_IDLE_FLAGS 0
3357 #define COEX_UNASSOC_MANUAL_SCAN_FLAGS \
3358 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3359 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3360 #define COEX_UNASSOC_AUTO_SCAN_FLAGS \
3361 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3362 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3363 #define COEX_CALIBRATION_FLAGS \
3364 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3365 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3366 #define COEX_PERIODIC_CALIBRATION_FLAGS 0
3367 /*
3368 * COEX_CONNECTION_ESTAB:
3369 * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3370 */
3371 #define COEX_CONNECTION_ESTAB_FLAGS \
3372 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3373 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3374 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3375 #define COEX_ASSOCIATED_IDLE_FLAGS 0
3376 #define COEX_ASSOC_MANUAL_SCAN_FLAGS \
3377 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3378 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3379 #define COEX_ASSOC_AUTO_SCAN_FLAGS \
3380 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3381 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3382 #define COEX_ASSOC_ACTIVE_LEVEL_FLAGS 0
3383 #define COEX_RF_ON_FLAGS 0
3384 #define COEX_RF_OFF_FLAGS 0
3385 #define COEX_STAND_ALONE_DEBUG_FLAGS \
3386 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3387 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3388 #define COEX_IPAN_ASSOC_LEVEL_FLAGS \
3389 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3390 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3391 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3392 #define COEX_RSRVD1_FLAGS 0
3393 #define COEX_RSRVD2_FLAGS 0
3394 /*
3395 * COEX_CU_RF_ON is the event wrapping all radio ownership.
3396 * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3397 */
3398 #define COEX_CU_RF_ON_FLAGS \
3399 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3400 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3401 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3402
3403
3404 enum {
3405 /* un-association part */
3406 COEX_UNASSOC_IDLE = 0,
3407 COEX_UNASSOC_MANUAL_SCAN = 1,
3408 COEX_UNASSOC_AUTO_SCAN = 2,
3409 /* calibration */
3410 COEX_CALIBRATION = 3,
3411 COEX_PERIODIC_CALIBRATION = 4,
3412 /* connection */
3413 COEX_CONNECTION_ESTAB = 5,
3414 /* association part */
3415 COEX_ASSOCIATED_IDLE = 6,
3416 COEX_ASSOC_MANUAL_SCAN = 7,
3417 COEX_ASSOC_AUTO_SCAN = 8,
3418 COEX_ASSOC_ACTIVE_LEVEL = 9,
3419 /* RF ON/OFF */
3420 COEX_RF_ON = 10,
3421 COEX_RF_OFF = 11,
3422 COEX_STAND_ALONE_DEBUG = 12,
3423 /* IPAN */
3424 COEX_IPAN_ASSOC_LEVEL = 13,
3425 /* reserved */
3426 COEX_RSRVD1 = 14,
3427 COEX_RSRVD2 = 15,
3428 COEX_NUM_OF_EVENTS = 16
3429 };
3430
3431 /*
3432 * Coexistence WIFI/WIMAX Command
3433 * COEX_PRIORITY_TABLE_CMD = 0x5a
3434 *
3435 */
3436 struct iwl_wimax_coex_event_entry {
3437 u8 request_prio;
3438 u8 win_medium_prio;
3439 u8 reserved;
3440 u8 flags;
3441 } __packed;
3442
3443 /* COEX flag masks */
3444
3445 /* Station table is valid */
3446 #define COEX_FLAGS_STA_TABLE_VALID_MSK (0x1)
3447 /* UnMask wake up src at unassociated sleep */
3448 #define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK (0x4)
3449 /* UnMask wake up src at associated sleep */
3450 #define COEX_FLAGS_ASSOC_WA_UNMASK_MSK (0x8)
3451 /* Enable CoEx feature. */
3452 #define COEX_FLAGS_COEX_ENABLE_MSK (0x80)
3453
3454 struct iwl_wimax_coex_cmd {
3455 u8 flags;
3456 u8 reserved[3];
3457 struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
3458 } __packed;
3459
3460 /*
3461 * Coexistence MEDIUM NOTIFICATION
3462 * COEX_MEDIUM_NOTIFICATION = 0x5b
3463 *
3464 * notification from uCode to host to indicate medium changes
3465 *
3466 */
3467 /*
3468 * status field
3469 * bit 0 - 2: medium status
3470 * bit 3: medium change indication
3471 * bit 4 - 31: reserved
3472 */
3473 /* status option values, (0 - 2 bits) */
3474 #define COEX_MEDIUM_BUSY (0x0) /* radio belongs to WiMAX */
3475 #define COEX_MEDIUM_ACTIVE (0x1) /* radio belongs to WiFi */
3476 #define COEX_MEDIUM_PRE_RELEASE (0x2) /* received radio release */
3477 #define COEX_MEDIUM_MSK (0x7)
3478
3479 /* send notification status (1 bit) */
3480 #define COEX_MEDIUM_CHANGED (0x8)
3481 #define COEX_MEDIUM_CHANGED_MSK (0x8)
3482 #define COEX_MEDIUM_SHIFT (3)
3483
3484 struct iwl_coex_medium_notification {
3485 __le32 status;
3486 __le32 events;
3487 } __packed;
3488
3489 /*
3490 * Coexistence EVENT Command
3491 * COEX_EVENT_CMD = 0x5c
3492 *
3493 * send from host to uCode for coex event request.
3494 */
3495 /* flags options */
3496 #define COEX_EVENT_REQUEST_MSK (0x1)
3497
3498 struct iwl_coex_event_cmd {
3499 u8 flags;
3500 u8 event;
3501 __le16 reserved;
3502 } __packed;
3503
3504 struct iwl_coex_event_resp {
3505 __le32 status;
3506 } __packed;
3507
3508
3509 /******************************************************************************
3510 * Bluetooth Coexistence commands
3511 *
3512 *****************************************************************************/
3513
3514 /*
3515 * BT Status notification
3516 * REPLY_BT_COEX_PROFILE_NOTIF = 0xce
3517 */
3518 enum iwl_bt_coex_profile_traffic_load {
3519 IWL_BT_COEX_TRAFFIC_LOAD_NONE = 0,
3520 IWL_BT_COEX_TRAFFIC_LOAD_LOW = 1,
3521 IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 2,
3522 IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS = 3,
3523 /*
3524 * There are no more even though below is a u8, the
3525 * indication from the BT device only has two bits.
3526 */
3527 };
3528
3529 #define BT_SESSION_ACTIVITY_1_UART_MSG 0x1
3530 #define BT_SESSION_ACTIVITY_2_UART_MSG 0x2
3531
3532 /* BT UART message - Share Part (BT -> WiFi) */
3533 #define BT_UART_MSG_FRAME1MSGTYPE_POS (0)
3534 #define BT_UART_MSG_FRAME1MSGTYPE_MSK \
3535 (0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS)
3536 #define BT_UART_MSG_FRAME1SSN_POS (3)
3537 #define BT_UART_MSG_FRAME1SSN_MSK \
3538 (0x3 << BT_UART_MSG_FRAME1SSN_POS)
3539 #define BT_UART_MSG_FRAME1UPDATEREQ_POS (5)
3540 #define BT_UART_MSG_FRAME1UPDATEREQ_MSK \
3541 (0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS)
3542 #define BT_UART_MSG_FRAME1RESERVED_POS (6)
3543 #define BT_UART_MSG_FRAME1RESERVED_MSK \
3544 (0x3 << BT_UART_MSG_FRAME1RESERVED_POS)
3545
3546 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS (0)
3547 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK \
3548 (0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS)
3549 #define BT_UART_MSG_FRAME2TRAFFICLOAD_POS (2)
3550 #define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK \
3551 (0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS)
3552 #define BT_UART_MSG_FRAME2CHLSEQN_POS (4)
3553 #define BT_UART_MSG_FRAME2CHLSEQN_MSK \
3554 (0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS)
3555 #define BT_UART_MSG_FRAME2INBAND_POS (5)
3556 #define BT_UART_MSG_FRAME2INBAND_MSK \
3557 (0x1 << BT_UART_MSG_FRAME2INBAND_POS)
3558 #define BT_UART_MSG_FRAME2RESERVED_POS (6)
3559 #define BT_UART_MSG_FRAME2RESERVED_MSK \
3560 (0x3 << BT_UART_MSG_FRAME2RESERVED_POS)
3561
3562 #define BT_UART_MSG_FRAME3SCOESCO_POS (0)
3563 #define BT_UART_MSG_FRAME3SCOESCO_MSK \
3564 (0x1 << BT_UART_MSG_FRAME3SCOESCO_POS)
3565 #define BT_UART_MSG_FRAME3SNIFF_POS (1)
3566 #define BT_UART_MSG_FRAME3SNIFF_MSK \
3567 (0x1 << BT_UART_MSG_FRAME3SNIFF_POS)
3568 #define BT_UART_MSG_FRAME3A2DP_POS (2)
3569 #define BT_UART_MSG_FRAME3A2DP_MSK \
3570 (0x1 << BT_UART_MSG_FRAME3A2DP_POS)
3571 #define BT_UART_MSG_FRAME3ACL_POS (3)
3572 #define BT_UART_MSG_FRAME3ACL_MSK \
3573 (0x1 << BT_UART_MSG_FRAME3ACL_POS)
3574 #define BT_UART_MSG_FRAME3MASTER_POS (4)
3575 #define BT_UART_MSG_FRAME3MASTER_MSK \
3576 (0x1 << BT_UART_MSG_FRAME3MASTER_POS)
3577 #define BT_UART_MSG_FRAME3OBEX_POS (5)
3578 #define BT_UART_MSG_FRAME3OBEX_MSK \
3579 (0x1 << BT_UART_MSG_FRAME3OBEX_POS)
3580 #define BT_UART_MSG_FRAME3RESERVED_POS (6)
3581 #define BT_UART_MSG_FRAME3RESERVED_MSK \
3582 (0x3 << BT_UART_MSG_FRAME3RESERVED_POS)
3583
3584 #define BT_UART_MSG_FRAME4IDLEDURATION_POS (0)
3585 #define BT_UART_MSG_FRAME4IDLEDURATION_MSK \
3586 (0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS)
3587 #define BT_UART_MSG_FRAME4RESERVED_POS (6)
3588 #define BT_UART_MSG_FRAME4RESERVED_MSK \
3589 (0x3 << BT_UART_MSG_FRAME4RESERVED_POS)
3590
3591 #define BT_UART_MSG_FRAME5TXACTIVITY_POS (0)
3592 #define BT_UART_MSG_FRAME5TXACTIVITY_MSK \
3593 (0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS)
3594 #define BT_UART_MSG_FRAME5RXACTIVITY_POS (2)
3595 #define BT_UART_MSG_FRAME5RXACTIVITY_MSK \
3596 (0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS)
3597 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS (4)
3598 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK \
3599 (0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS)
3600 #define BT_UART_MSG_FRAME5RESERVED_POS (6)
3601 #define BT_UART_MSG_FRAME5RESERVED_MSK \
3602 (0x3 << BT_UART_MSG_FRAME5RESERVED_POS)
3603
3604 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS (0)
3605 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK \
3606 (0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS)
3607 #define BT_UART_MSG_FRAME6DISCOVERABLE_POS (5)
3608 #define BT_UART_MSG_FRAME6DISCOVERABLE_MSK \
3609 (0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS)
3610 #define BT_UART_MSG_FRAME6RESERVED_POS (6)
3611 #define BT_UART_MSG_FRAME6RESERVED_MSK \
3612 (0x3 << BT_UART_MSG_FRAME6RESERVED_POS)
3613
3614 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS (0)
3615 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK \
3616 (0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS)
3617 #define BT_UART_MSG_FRAME7PAGE_POS (3)
3618 #define BT_UART_MSG_FRAME7PAGE_MSK \
3619 (0x1 << BT_UART_MSG_FRAME7PAGE_POS)
3620 #define BT_UART_MSG_FRAME7INQUIRY_POS (4)
3621 #define BT_UART_MSG_FRAME7INQUIRY_MSK \
3622 (0x1 << BT_UART_MSG_FRAME7INQUIRY_POS)
3623 #define BT_UART_MSG_FRAME7CONNECTABLE_POS (5)
3624 #define BT_UART_MSG_FRAME7CONNECTABLE_MSK \
3625 (0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS)
3626 #define BT_UART_MSG_FRAME7RESERVED_POS (6)
3627 #define BT_UART_MSG_FRAME7RESERVED_MSK \
3628 (0x3 << BT_UART_MSG_FRAME7RESERVED_POS)
3629
3630 /* BT Session Activity 2 UART message (BT -> WiFi) */
3631 #define BT_UART_MSG_2_FRAME1RESERVED1_POS (5)
3632 #define BT_UART_MSG_2_FRAME1RESERVED1_MSK \
3633 (0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS)
3634 #define BT_UART_MSG_2_FRAME1RESERVED2_POS (6)
3635 #define BT_UART_MSG_2_FRAME1RESERVED2_MSK \
3636 (0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS)
3637
3638 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS (0)
3639 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK \
3640 (0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS)
3641 #define BT_UART_MSG_2_FRAME2RESERVED_POS (6)
3642 #define BT_UART_MSG_2_FRAME2RESERVED_MSK \
3643 (0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS)
3644
3645 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS (0)
3646 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK \
3647 (0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS)
3648 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS (4)
3649 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK \
3650 (0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS)
3651 #define BT_UART_MSG_2_FRAME3LEMASTER_POS (5)
3652 #define BT_UART_MSG_2_FRAME3LEMASTER_MSK \
3653 (0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS)
3654 #define BT_UART_MSG_2_FRAME3RESERVED_POS (6)
3655 #define BT_UART_MSG_2_FRAME3RESERVED_MSK \
3656 (0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS)
3657
3658 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS (0)
3659 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK \
3660 (0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS)
3661 #define BT_UART_MSG_2_FRAME4NUMLECONN_POS (4)
3662 #define BT_UART_MSG_2_FRAME4NUMLECONN_MSK \
3663 (0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS)
3664 #define BT_UART_MSG_2_FRAME4RESERVED_POS (6)
3665 #define BT_UART_MSG_2_FRAME4RESERVED_MSK \
3666 (0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS)
3667
3668 #define BT_UART_MSG_2_FRAME5BTMINRSSI_POS (0)
3669 #define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK \
3670 (0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS)
3671 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS (4)
3672 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK \
3673 (0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS)
3674 #define BT_UART_MSG_2_FRAME5LEADVERMODE_POS (5)
3675 #define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK \
3676 (0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS)
3677 #define BT_UART_MSG_2_FRAME5RESERVED_POS (6)
3678 #define BT_UART_MSG_2_FRAME5RESERVED_MSK \
3679 (0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS)
3680
3681 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS (0)
3682 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK \
3683 (0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS)
3684 #define BT_UART_MSG_2_FRAME6RFU_POS (5)
3685 #define BT_UART_MSG_2_FRAME6RFU_MSK \
3686 (0x1<<BT_UART_MSG_2_FRAME6RFU_POS)
3687 #define BT_UART_MSG_2_FRAME6RESERVED_POS (6)
3688 #define BT_UART_MSG_2_FRAME6RESERVED_MSK \
3689 (0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS)
3690
3691 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS (0)
3692 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK \
3693 (0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS)
3694 #define BT_UART_MSG_2_FRAME7LEPROFILE1_POS (3)
3695 #define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK \
3696 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS)
3697 #define BT_UART_MSG_2_FRAME7LEPROFILE2_POS (4)
3698 #define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK \
3699 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS)
3700 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS (5)
3701 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK \
3702 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS)
3703 #define BT_UART_MSG_2_FRAME7RESERVED_POS (6)
3704 #define BT_UART_MSG_2_FRAME7RESERVED_MSK \
3705 (0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS)
3706
3707
3708 struct iwl_bt_uart_msg {
3709 u8 header;
3710 u8 frame1;
3711 u8 frame2;
3712 u8 frame3;
3713 u8 frame4;
3714 u8 frame5;
3715 u8 frame6;
3716 u8 frame7;
3717 } __attribute__((packed));
3718
3719 struct iwl_bt_coex_profile_notif {
3720 struct iwl_bt_uart_msg last_bt_uart_msg;
3721 u8 bt_status; /* 0 - off, 1 - on */
3722 u8 bt_traffic_load; /* 0 .. 3? */
3723 u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */
3724 u8 reserved;
3725 } __attribute__((packed));
3726
3727 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS 0
3728 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK 0x1
3729 #define IWL_BT_COEX_PRIO_TBL_PRIO_POS 1
3730 #define IWL_BT_COEX_PRIO_TBL_PRIO_MASK 0x0e
3731 #define IWL_BT_COEX_PRIO_TBL_RESERVED_POS 4
3732 #define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK 0xf0
3733 #define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT 1
3734
3735 /*
3736 * BT Coexistence Priority table
3737 * REPLY_BT_COEX_PRIO_TABLE = 0xcc
3738 */
3739 enum bt_coex_prio_table_events {
3740 BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0,
3741 BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1,
3742 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2,
3743 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */
3744 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4,
3745 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5,
3746 BT_COEX_PRIO_TBL_EVT_DTIM = 6,
3747 BT_COEX_PRIO_TBL_EVT_SCAN52 = 7,
3748 BT_COEX_PRIO_TBL_EVT_SCAN24 = 8,
3749 BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9,
3750 BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10,
3751 BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11,
3752 BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12,
3753 BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13,
3754 BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14,
3755 BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15,
3756 /* BT_COEX_PRIO_TBL_EVT_MAX should always be last */
3757 BT_COEX_PRIO_TBL_EVT_MAX,
3758 };
3759
3760 enum bt_coex_prio_table_priorities {
3761 BT_COEX_PRIO_TBL_DISABLED = 0,
3762 BT_COEX_PRIO_TBL_PRIO_LOW = 1,
3763 BT_COEX_PRIO_TBL_PRIO_HIGH = 2,
3764 BT_COEX_PRIO_TBL_PRIO_BYPASS = 3,
3765 BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4,
3766 BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5,
3767 BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6,
3768 BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7,
3769 BT_COEX_PRIO_TBL_MAX,
3770 };
3771
3772 struct iwl_bt_coex_prio_table_cmd {
3773 u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX];
3774 } __attribute__((packed));
3775
3776 #define IWL_BT_COEX_ENV_CLOSE 0
3777 #define IWL_BT_COEX_ENV_OPEN 1
3778 /*
3779 * BT Protection Envelope
3780 * REPLY_BT_COEX_PROT_ENV = 0xcd
3781 */
3782 struct iwl_bt_coex_prot_env_cmd {
3783 u8 action; /* 0 = closed, 1 = open */
3784 u8 type; /* 0 .. 15 */
3785 u8 reserved[2];
3786 } __attribute__((packed));
3787
3788 /*
3789 * REPLY_WOWLAN_PATTERNS
3790 */
3791 #define IWLAGN_WOWLAN_MIN_PATTERN_LEN 16
3792 #define IWLAGN_WOWLAN_MAX_PATTERN_LEN 128
3793
3794 struct iwlagn_wowlan_pattern {
3795 u8 mask[IWLAGN_WOWLAN_MAX_PATTERN_LEN / 8];
3796 u8 pattern[IWLAGN_WOWLAN_MAX_PATTERN_LEN];
3797 u8 mask_size;
3798 u8 pattern_size;
3799 __le16 reserved;
3800 } __packed;
3801
3802 #define IWLAGN_WOWLAN_MAX_PATTERNS 20
3803
3804 struct iwlagn_wowlan_patterns_cmd {
3805 __le32 n_patterns;
3806 struct iwlagn_wowlan_pattern patterns[];
3807 } __packed;
3808
3809 /*
3810 * REPLY_WOWLAN_WAKEUP_FILTER
3811 */
3812 enum iwlagn_wowlan_wakeup_filters {
3813 IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET = BIT(0),
3814 IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH = BIT(1),
3815 IWLAGN_WOWLAN_WAKEUP_BEACON_MISS = BIT(2),
3816 IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE = BIT(3),
3817 IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL = BIT(4),
3818 IWLAGN_WOWLAN_WAKEUP_RFKILL = BIT(5),
3819 IWLAGN_WOWLAN_WAKEUP_UCODE_ERROR = BIT(6),
3820 IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ = BIT(7),
3821 IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE = BIT(8),
3822 IWLAGN_WOWLAN_WAKEUP_ALWAYS = BIT(9),
3823 IWLAGN_WOWLAN_WAKEUP_ENABLE_NET_DETECT = BIT(10),
3824 };
3825
3826 struct iwlagn_wowlan_wakeup_filter_cmd {
3827 __le32 enabled;
3828 __le16 non_qos_seq;
3829 u8 min_sleep_seconds;
3830 u8 reserved;
3831 __le16 qos_seq[8];
3832 };
3833
3834 /*
3835 * REPLY_WOWLAN_TSC_RSC_PARAMS
3836 */
3837 #define IWLAGN_NUM_RSC 16
3838
3839 struct tkip_sc {
3840 __le16 iv16;
3841 __le16 pad;
3842 __le32 iv32;
3843 } __packed;
3844
3845 struct iwlagn_tkip_rsc_tsc {
3846 struct tkip_sc unicast_rsc[IWLAGN_NUM_RSC];
3847 struct tkip_sc multicast_rsc[IWLAGN_NUM_RSC];
3848 struct tkip_sc tsc;
3849 } __packed;
3850
3851 struct aes_sc {
3852 __le64 pn;
3853 } __packed;
3854
3855 struct iwlagn_aes_rsc_tsc {
3856 struct aes_sc unicast_rsc[IWLAGN_NUM_RSC];
3857 struct aes_sc multicast_rsc[IWLAGN_NUM_RSC];
3858 struct aes_sc tsc;
3859 } __packed;
3860
3861 union iwlagn_all_tsc_rsc {
3862 struct iwlagn_tkip_rsc_tsc tkip;
3863 struct iwlagn_aes_rsc_tsc aes;
3864 };
3865
3866 struct iwlagn_wowlan_rsc_tsc_params_cmd {
3867 union iwlagn_all_tsc_rsc all_tsc_rsc;
3868 } __packed;
3869
3870 /*
3871 * REPLY_WOWLAN_TKIP_PARAMS
3872 */
3873 #define IWLAGN_MIC_KEY_SIZE 8
3874 #define IWLAGN_P1K_SIZE 5
3875 struct iwlagn_mic_keys {
3876 u8 tx[IWLAGN_MIC_KEY_SIZE];
3877 u8 rx_unicast[IWLAGN_MIC_KEY_SIZE];
3878 u8 rx_mcast[IWLAGN_MIC_KEY_SIZE];
3879 } __packed;
3880
3881 struct iwlagn_p1k_cache {
3882 __le16 p1k[IWLAGN_P1K_SIZE];
3883 } __packed;
3884
3885 #define IWLAGN_NUM_RX_P1K_CACHE 2
3886
3887 struct iwlagn_wowlan_tkip_params_cmd {
3888 struct iwlagn_mic_keys mic_keys;
3889 struct iwlagn_p1k_cache tx;
3890 struct iwlagn_p1k_cache rx_uni[IWLAGN_NUM_RX_P1K_CACHE];
3891 struct iwlagn_p1k_cache rx_multi[IWLAGN_NUM_RX_P1K_CACHE];
3892 } __packed;
3893
3894 /*
3895 * REPLY_WOWLAN_KEK_KCK_MATERIAL
3896 */
3897
3898 #define IWLAGN_KCK_MAX_SIZE 32
3899 #define IWLAGN_KEK_MAX_SIZE 32
3900
3901 struct iwlagn_wowlan_kek_kck_material_cmd {
3902 u8 kck[IWLAGN_KCK_MAX_SIZE];
3903 u8 kek[IWLAGN_KEK_MAX_SIZE];
3904 __le16 kck_len;
3905 __le16 kek_len;
3906 __le64 replay_ctr;
3907 } __packed;
3908
3909 /******************************************************************************
3910 * (13)
3911 * Union of all expected notifications/responses:
3912 *
3913 *****************************************************************************/
3914 #define FH_RSCSR_FRAME_SIZE_MSK (0x00003FFF) /* bits 0-13 */
3915
3916 struct iwl_rx_packet {
3917 /*
3918 * The first 4 bytes of the RX frame header contain both the RX frame
3919 * size and some flags.
3920 * Bit fields:
3921 * 31: flag flush RB request
3922 * 30: flag ignore TC (terminal counter) request
3923 * 29: flag fast IRQ request
3924 * 28-14: Reserved
3925 * 13-00: RX frame size
3926 */
3927 __le32 len_n_flags;
3928 struct iwl_cmd_header hdr;
3929 union {
3930 struct iwl_alive_resp alive_frame;
3931 struct iwl_spectrum_notification spectrum_notif;
3932 struct iwl_csa_notification csa_notif;
3933 struct iwl_error_resp err_resp;
3934 struct iwl_card_state_notif card_state_notif;
3935 struct iwl_add_sta_resp add_sta;
3936 struct iwl_rem_sta_resp rem_sta;
3937 struct iwl_sleep_notification sleep_notif;
3938 struct iwl_spectrum_resp spectrum;
3939 struct iwl_notif_statistics stats;
3940 struct iwl_bt_notif_statistics stats_bt;
3941 struct iwl_compressed_ba_resp compressed_ba;
3942 struct iwl_missed_beacon_notif missed_beacon;
3943 struct iwl_coex_medium_notification coex_medium_notif;
3944 struct iwl_coex_event_resp coex_event;
3945 struct iwl_bt_coex_profile_notif bt_coex_profile_notif;
3946 __le32 status;
3947 u8 raw[0];
3948 } u;
3949 } __packed;
3950
3951 int iwl_agn_check_rxon_cmd(struct iwl_priv *priv);
3952
3953 /*
3954 * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification)
3955 */
3956
3957 /*
3958 * Minimum slot time in TU
3959 */
3960 #define IWL_MIN_SLOT_TIME 20
3961
3962 /**
3963 * struct iwl_wipan_slot
3964 * @width: Time in TU
3965 * @type:
3966 * 0 - BSS
3967 * 1 - PAN
3968 */
3969 struct iwl_wipan_slot {
3970 __le16 width;
3971 u8 type;
3972 u8 reserved;
3973 } __packed;
3974
3975 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS BIT(1) /* reserved */
3976 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET BIT(2) /* reserved */
3977 #define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE BIT(3) /* reserved */
3978 #define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF BIT(4)
3979 #define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE BIT(5)
3980
3981 /**
3982 * struct iwl_wipan_params_cmd
3983 * @flags:
3984 * bit0: reserved
3985 * bit1: CP leave channel with CTS
3986 * bit2: CP leave channel qith Quiet
3987 * bit3: slotted mode
3988 * 1 - work in slotted mode
3989 * 0 - work in non slotted mode
3990 * bit4: filter beacon notification
3991 * bit5: full tx slotted mode. if this flag is set,
3992 * uCode will perform leaving channel methods in context switch
3993 * also when working in same channel mode
3994 * @num_slots: 1 - 10
3995 */
3996 struct iwl_wipan_params_cmd {
3997 __le16 flags;
3998 u8 reserved;
3999 u8 num_slots;
4000 struct iwl_wipan_slot slots[10];
4001 } __packed;
4002
4003 /*
4004 * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9
4005 *
4006 * TODO: Figure out what this is used for,
4007 * it can only switch between 2.4 GHz
4008 * channels!!
4009 */
4010
4011 struct iwl_wipan_p2p_channel_switch_cmd {
4012 __le16 channel;
4013 __le16 reserved;
4014 };
4015
4016 /*
4017 * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc
4018 *
4019 * This is used by the device to notify us of the
4020 * NoA schedule it determined so we can forward it
4021 * to userspace for inclusion in probe responses.
4022 *
4023 * In beacons, the NoA schedule is simply appended
4024 * to the frame we give the device.
4025 */
4026
4027 struct iwl_wipan_noa_descriptor {
4028 u8 count;
4029 __le32 duration;
4030 __le32 interval;
4031 __le32 starttime;
4032 } __packed;
4033
4034 struct iwl_wipan_noa_attribute {
4035 u8 id;
4036 __le16 length;
4037 u8 index;
4038 u8 ct_window;
4039 struct iwl_wipan_noa_descriptor descr0, descr1;
4040 u8 reserved;
4041 } __packed;
4042
4043 struct iwl_wipan_noa_notification {
4044 u32 noa_active;
4045 struct iwl_wipan_noa_attribute noa_attribute;
4046 } __packed;
4047
4048 #endif /* __iwl_commands_h__ */
This page took 0.18016 seconds and 5 git commands to generate.