iwlwifi: store ucode version number
[deliverable/linux.git] / drivers / net / wireless / iwlwifi / iwl-commands.h
1 /******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2005 - 2008 Intel Corporation. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
23 *
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
26 *
27 * Contact Information:
28 * James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *
31 * BSD LICENSE
32 *
33 * Copyright(c) 2005 - 2008 Intel Corporation. All rights reserved.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 *
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 *****************************************************************************/
63 /*
64 * Please use this file (iwl-commands.h) only for uCode API definitions.
65 * Please use iwl-4965-hw.h for hardware-related definitions.
66 * Please use iwl-dev.h for driver implementation definitions.
67 */
68
69 #ifndef __iwl_commands_h__
70 #define __iwl_commands_h__
71
72 /* uCode version contains 4 values: Major/Minor/API/Serial */
73 #define IWL_UCODE_MAJOR(ver) (((ver) & 0xFF000000) >> 24)
74 #define IWL_UCODE_MINOR(ver) (((ver) & 0x00FF0000) >> 16)
75 #define IWL_UCODE_API(ver) (((ver) & 0x0000FF00) >> 8)
76 #define IWL_UCODE_SERIAL(ver) ((ver) & 0x000000FF)
77
78 enum {
79 REPLY_ALIVE = 0x1,
80 REPLY_ERROR = 0x2,
81
82 /* RXON and QOS commands */
83 REPLY_RXON = 0x10,
84 REPLY_RXON_ASSOC = 0x11,
85 REPLY_QOS_PARAM = 0x13,
86 REPLY_RXON_TIMING = 0x14,
87
88 /* Multi-Station support */
89 REPLY_ADD_STA = 0x18,
90 REPLY_REMOVE_STA = 0x19, /* not used */
91 REPLY_REMOVE_ALL_STA = 0x1a, /* not used */
92
93 /* Security */
94 REPLY_WEPKEY = 0x20,
95
96 /* RX, TX, LEDs */
97 REPLY_TX = 0x1c,
98 REPLY_RATE_SCALE = 0x47, /* 3945 only */
99 REPLY_LEDS_CMD = 0x48,
100 REPLY_TX_LINK_QUALITY_CMD = 0x4e, /* 4965 only */
101
102 /* WiMAX coexistence */
103 COEX_PRIORITY_TABLE_CMD = 0x5a, /*5000 only */
104 COEX_MEDIUM_NOTIFICATION = 0x5b,
105 COEX_EVENT_CMD = 0x5c,
106
107 /* Calibration */
108 CALIBRATION_CFG_CMD = 0x65,
109 CALIBRATION_RES_NOTIFICATION = 0x66,
110 CALIBRATION_COMPLETE_NOTIFICATION = 0x67,
111
112 /* 802.11h related */
113 RADAR_NOTIFICATION = 0x70, /* not used */
114 REPLY_QUIET_CMD = 0x71, /* not used */
115 REPLY_CHANNEL_SWITCH = 0x72,
116 CHANNEL_SWITCH_NOTIFICATION = 0x73,
117 REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
118 SPECTRUM_MEASURE_NOTIFICATION = 0x75,
119
120 /* Power Management */
121 POWER_TABLE_CMD = 0x77,
122 PM_SLEEP_NOTIFICATION = 0x7A,
123 PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
124
125 /* Scan commands and notifications */
126 REPLY_SCAN_CMD = 0x80,
127 REPLY_SCAN_ABORT_CMD = 0x81,
128 SCAN_START_NOTIFICATION = 0x82,
129 SCAN_RESULTS_NOTIFICATION = 0x83,
130 SCAN_COMPLETE_NOTIFICATION = 0x84,
131
132 /* IBSS/AP commands */
133 BEACON_NOTIFICATION = 0x90,
134 REPLY_TX_BEACON = 0x91,
135 WHO_IS_AWAKE_NOTIFICATION = 0x94, /* not used */
136
137 /* Miscellaneous commands */
138 QUIET_NOTIFICATION = 0x96, /* not used */
139 REPLY_TX_PWR_TABLE_CMD = 0x97,
140 REPLY_TX_POWER_DBM_CMD = 0x98,
141 MEASURE_ABORT_NOTIFICATION = 0x99, /* not used */
142
143 /* Bluetooth device coexistence config command */
144 REPLY_BT_CONFIG = 0x9b,
145
146 /* Statistics */
147 REPLY_STATISTICS_CMD = 0x9c,
148 STATISTICS_NOTIFICATION = 0x9d,
149
150 /* RF-KILL commands and notifications */
151 REPLY_CARD_STATE_CMD = 0xa0,
152 CARD_STATE_NOTIFICATION = 0xa1,
153
154 /* Missed beacons notification */
155 MISSED_BEACONS_NOTIFICATION = 0xa2,
156
157 REPLY_CT_KILL_CONFIG_CMD = 0xa4,
158 SENSITIVITY_CMD = 0xa8,
159 REPLY_PHY_CALIBRATION_CMD = 0xb0,
160 REPLY_RX_PHY_CMD = 0xc0,
161 REPLY_RX_MPDU_CMD = 0xc1,
162 REPLY_RX = 0xc3,
163 REPLY_COMPRESSED_BA = 0xc5,
164 REPLY_MAX = 0xff
165 };
166
167 /******************************************************************************
168 * (0)
169 * Commonly used structures and definitions:
170 * Command header, rate_n_flags, txpower
171 *
172 *****************************************************************************/
173
174 /* iwl_cmd_header flags value */
175 #define IWL_CMD_FAILED_MSK 0x40
176
177 #define SEQ_TO_QUEUE(s) (((s) >> 8) & 0x1f)
178 #define QUEUE_TO_SEQ(q) (((q) & 0x1f) << 8)
179 #define SEQ_TO_INDEX(s) ((s) & 0xff)
180 #define INDEX_TO_SEQ(i) ((i) & 0xff)
181 #define SEQ_HUGE_FRAME cpu_to_le16(0x4000)
182 #define SEQ_RX_FRAME cpu_to_le16(0x8000)
183
184 /**
185 * struct iwl_cmd_header
186 *
187 * This header format appears in the beginning of each command sent from the
188 * driver, and each response/notification received from uCode.
189 */
190 struct iwl_cmd_header {
191 u8 cmd; /* Command ID: REPLY_RXON, etc. */
192 u8 flags; /* 0:5 reserved, 6 abort, 7 internal */
193 /*
194 * The driver sets up the sequence number to values of its choosing.
195 * uCode does not use this value, but passes it back to the driver
196 * when sending the response to each driver-originated command, so
197 * the driver can match the response to the command. Since the values
198 * don't get used by uCode, the driver may set up an arbitrary format.
199 *
200 * There is one exception: uCode sets bit 15 when it originates
201 * the response/notification, i.e. when the response/notification
202 * is not a direct response to a command sent by the driver. For
203 * example, uCode issues REPLY_3945_RX when it sends a received frame
204 * to the driver; it is not a direct response to any driver command.
205 *
206 * The Linux driver uses the following format:
207 *
208 * 0:7 tfd index - position within TX queue
209 * 8:12 TX queue id
210 * 13 reserved
211 * 14 huge - driver sets this to indicate command is in the
212 * 'huge' storage at the end of the command buffers
213 * 15 unsolicited RX or uCode-originated notification
214 */
215 __le16 sequence;
216
217 /* command or response/notification data follows immediately */
218 u8 data[0];
219 } __attribute__ ((packed));
220
221 /**
222 * iwlagn rate_n_flags bit fields
223 *
224 * rate_n_flags format is used in following iwlagn commands:
225 * REPLY_RX (response only)
226 * REPLY_RX_MPDU (response only)
227 * REPLY_TX (both command and response)
228 * REPLY_TX_LINK_QUALITY_CMD
229 *
230 * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
231 * 2-0: 0) 6 Mbps
232 * 1) 12 Mbps
233 * 2) 18 Mbps
234 * 3) 24 Mbps
235 * 4) 36 Mbps
236 * 5) 48 Mbps
237 * 6) 54 Mbps
238 * 7) 60 Mbps
239 *
240 * 4-3: 0) Single stream (SISO)
241 * 1) Dual stream (MIMO)
242 * 2) Triple stream (MIMO)
243 *
244 * 5: Value of 0x20 in bits 7:0 indicates 6 Mbps FAT duplicate data
245 *
246 * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
247 * 3-0: 0xD) 6 Mbps
248 * 0xF) 9 Mbps
249 * 0x5) 12 Mbps
250 * 0x7) 18 Mbps
251 * 0x9) 24 Mbps
252 * 0xB) 36 Mbps
253 * 0x1) 48 Mbps
254 * 0x3) 54 Mbps
255 *
256 * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
257 * 3-0: 10) 1 Mbps
258 * 20) 2 Mbps
259 * 55) 5.5 Mbps
260 * 110) 11 Mbps
261 */
262 #define RATE_MCS_CODE_MSK 0x7
263 #define RATE_MCS_SPATIAL_POS 3
264 #define RATE_MCS_SPATIAL_MSK 0x18
265 #define RATE_MCS_HT_DUP_POS 5
266 #define RATE_MCS_HT_DUP_MSK 0x20
267
268 /* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
269 #define RATE_MCS_FLAGS_POS 8
270 #define RATE_MCS_HT_POS 8
271 #define RATE_MCS_HT_MSK 0x100
272
273 /* Bit 9: (1) CCK, (0) OFDM. HT (bit 8) must be "0" for this bit to be valid */
274 #define RATE_MCS_CCK_POS 9
275 #define RATE_MCS_CCK_MSK 0x200
276
277 /* Bit 10: (1) Use Green Field preamble */
278 #define RATE_MCS_GF_POS 10
279 #define RATE_MCS_GF_MSK 0x400
280
281 /* Bit 11: (1) Use 40Mhz FAT chnl width, (0) use 20 MHz legacy chnl width */
282 #define RATE_MCS_FAT_POS 11
283 #define RATE_MCS_FAT_MSK 0x800
284
285 /* Bit 12: (1) Duplicate data on both 20MHz chnls. FAT (bit 11) must be set. */
286 #define RATE_MCS_DUP_POS 12
287 #define RATE_MCS_DUP_MSK 0x1000
288
289 /* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
290 #define RATE_MCS_SGI_POS 13
291 #define RATE_MCS_SGI_MSK 0x2000
292
293 /**
294 * rate_n_flags Tx antenna masks
295 * 4965 has 2 transmitters
296 * 5100 has 1 transmitter B
297 * 5150 has 1 transmitter A
298 * 5300 has 3 transmitters
299 * 5350 has 3 transmitters
300 * bit14:16
301 */
302 #define RATE_MCS_ANT_POS 14
303 #define RATE_MCS_ANT_A_MSK 0x04000
304 #define RATE_MCS_ANT_B_MSK 0x08000
305 #define RATE_MCS_ANT_C_MSK 0x10000
306 #define RATE_MCS_ANT_ABC_MSK 0x1C000
307 #define RATE_ANT_NUM 3
308
309 #define POWER_TABLE_NUM_ENTRIES 33
310 #define POWER_TABLE_NUM_HT_OFDM_ENTRIES 32
311 #define POWER_TABLE_CCK_ENTRY 32
312
313 /**
314 * union iwl4965_tx_power_dual_stream
315 *
316 * Host format used for REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
317 * Use __le32 version (struct tx_power_dual_stream) when building command.
318 *
319 * Driver provides radio gain and DSP attenuation settings to device in pairs,
320 * one value for each transmitter chain. The first value is for transmitter A,
321 * second for transmitter B.
322 *
323 * For SISO bit rates, both values in a pair should be identical.
324 * For MIMO rates, one value may be different from the other,
325 * in order to balance the Tx output between the two transmitters.
326 *
327 * See more details in doc for TXPOWER in iwl-4965-hw.h.
328 */
329 union iwl4965_tx_power_dual_stream {
330 struct {
331 u8 radio_tx_gain[2];
332 u8 dsp_predis_atten[2];
333 } s;
334 u32 dw;
335 };
336
337 /**
338 * struct tx_power_dual_stream
339 *
340 * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
341 *
342 * Same format as iwl_tx_power_dual_stream, but __le32
343 */
344 struct tx_power_dual_stream {
345 __le32 dw;
346 } __attribute__ ((packed));
347
348 /**
349 * struct iwl4965_tx_power_db
350 *
351 * Entire table within REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
352 */
353 struct iwl4965_tx_power_db {
354 struct tx_power_dual_stream power_tbl[POWER_TABLE_NUM_ENTRIES];
355 } __attribute__ ((packed));
356
357 /**
358 * Command REPLY_TX_POWER_DBM_CMD = 0x98
359 * struct iwl5000_tx_power_dbm_cmd
360 */
361 #define IWL50_TX_POWER_AUTO 0x7f
362 #define IWL50_TX_POWER_NO_CLOSED (0x1 << 6)
363
364 struct iwl5000_tx_power_dbm_cmd {
365 s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
366 u8 flags;
367 s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
368 u8 reserved;
369 } __attribute__ ((packed));
370
371 /******************************************************************************
372 * (0a)
373 * Alive and Error Commands & Responses:
374 *
375 *****************************************************************************/
376
377 #define UCODE_VALID_OK cpu_to_le32(0x1)
378 #define INITIALIZE_SUBTYPE (9)
379
380 /*
381 * ("Initialize") REPLY_ALIVE = 0x1 (response only, not a command)
382 *
383 * uCode issues this "initialize alive" notification once the initialization
384 * uCode image has completed its work, and is ready to load the runtime image.
385 * This is the *first* "alive" notification that the driver will receive after
386 * rebooting uCode; the "initialize" alive is indicated by subtype field == 9.
387 *
388 * See comments documenting "BSM" (bootstrap state machine).
389 *
390 * For 4965, this notification contains important calibration data for
391 * calculating txpower settings:
392 *
393 * 1) Power supply voltage indication. The voltage sensor outputs higher
394 * values for lower voltage, and vice verse.
395 *
396 * 2) Temperature measurement parameters, for each of two channel widths
397 * (20 MHz and 40 MHz) supported by the radios. Temperature sensing
398 * is done via one of the receiver chains, and channel width influences
399 * the results.
400 *
401 * 3) Tx gain compensation to balance 4965's 2 Tx chains for MIMO operation,
402 * for each of 5 frequency ranges.
403 */
404 struct iwl_init_alive_resp {
405 u8 ucode_minor;
406 u8 ucode_major;
407 __le16 reserved1;
408 u8 sw_rev[8];
409 u8 ver_type;
410 u8 ver_subtype; /* "9" for initialize alive */
411 __le16 reserved2;
412 __le32 log_event_table_ptr;
413 __le32 error_event_table_ptr;
414 __le32 timestamp;
415 __le32 is_valid;
416
417 /* calibration values from "initialize" uCode */
418 __le32 voltage; /* signed, higher value is lower voltage */
419 __le32 therm_r1[2]; /* signed, 1st for normal, 2nd for FAT channel*/
420 __le32 therm_r2[2]; /* signed */
421 __le32 therm_r3[2]; /* signed */
422 __le32 therm_r4[2]; /* signed */
423 __le32 tx_atten[5][2]; /* signed MIMO gain comp, 5 freq groups,
424 * 2 Tx chains */
425 } __attribute__ ((packed));
426
427
428 /**
429 * REPLY_ALIVE = 0x1 (response only, not a command)
430 *
431 * uCode issues this "alive" notification once the runtime image is ready
432 * to receive commands from the driver. This is the *second* "alive"
433 * notification that the driver will receive after rebooting uCode;
434 * this "alive" is indicated by subtype field != 9.
435 *
436 * See comments documenting "BSM" (bootstrap state machine).
437 *
438 * This response includes two pointers to structures within the device's
439 * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
440 *
441 * 1) log_event_table_ptr indicates base of the event log. This traces
442 * a 256-entry history of uCode execution within a circular buffer.
443 * Its header format is:
444 *
445 * __le32 log_size; log capacity (in number of entries)
446 * __le32 type; (1) timestamp with each entry, (0) no timestamp
447 * __le32 wraps; # times uCode has wrapped to top of circular buffer
448 * __le32 write_index; next circular buffer entry that uCode would fill
449 *
450 * The header is followed by the circular buffer of log entries. Entries
451 * with timestamps have the following format:
452 *
453 * __le32 event_id; range 0 - 1500
454 * __le32 timestamp; low 32 bits of TSF (of network, if associated)
455 * __le32 data; event_id-specific data value
456 *
457 * Entries without timestamps contain only event_id and data.
458 *
459 * 2) error_event_table_ptr indicates base of the error log. This contains
460 * information about any uCode error that occurs. For 4965, the format
461 * of the error log is:
462 *
463 * __le32 valid; (nonzero) valid, (0) log is empty
464 * __le32 error_id; type of error
465 * __le32 pc; program counter
466 * __le32 blink1; branch link
467 * __le32 blink2; branch link
468 * __le32 ilink1; interrupt link
469 * __le32 ilink2; interrupt link
470 * __le32 data1; error-specific data
471 * __le32 data2; error-specific data
472 * __le32 line; source code line of error
473 * __le32 bcon_time; beacon timer
474 * __le32 tsf_low; network timestamp function timer
475 * __le32 tsf_hi; network timestamp function timer
476 *
477 * The Linux driver can print both logs to the system log when a uCode error
478 * occurs.
479 */
480 struct iwl_alive_resp {
481 u8 ucode_minor;
482 u8 ucode_major;
483 __le16 reserved1;
484 u8 sw_rev[8];
485 u8 ver_type;
486 u8 ver_subtype; /* not "9" for runtime alive */
487 __le16 reserved2;
488 __le32 log_event_table_ptr; /* SRAM address for event log */
489 __le32 error_event_table_ptr; /* SRAM address for error log */
490 __le32 timestamp;
491 __le32 is_valid;
492 } __attribute__ ((packed));
493
494
495
496 /*
497 * REPLY_ERROR = 0x2 (response only, not a command)
498 */
499 struct iwl_error_resp {
500 __le32 error_type;
501 u8 cmd_id;
502 u8 reserved1;
503 __le16 bad_cmd_seq_num;
504 __le32 error_info;
505 __le64 timestamp;
506 } __attribute__ ((packed));
507
508 /******************************************************************************
509 * (1)
510 * RXON Commands & Responses:
511 *
512 *****************************************************************************/
513
514 /*
515 * Rx config defines & structure
516 */
517 /* rx_config device types */
518 enum {
519 RXON_DEV_TYPE_AP = 1,
520 RXON_DEV_TYPE_ESS = 3,
521 RXON_DEV_TYPE_IBSS = 4,
522 RXON_DEV_TYPE_SNIFFER = 6,
523 };
524
525
526 #define RXON_RX_CHAIN_DRIVER_FORCE_MSK cpu_to_le16(0x1 << 0)
527 #define RXON_RX_CHAIN_VALID_MSK cpu_to_le16(0x7 << 1)
528 #define RXON_RX_CHAIN_VALID_POS (1)
529 #define RXON_RX_CHAIN_FORCE_SEL_MSK cpu_to_le16(0x7 << 4)
530 #define RXON_RX_CHAIN_FORCE_SEL_POS (4)
531 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK cpu_to_le16(0x7 << 7)
532 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS (7)
533 #define RXON_RX_CHAIN_CNT_MSK cpu_to_le16(0x3 << 10)
534 #define RXON_RX_CHAIN_CNT_POS (10)
535 #define RXON_RX_CHAIN_MIMO_CNT_MSK cpu_to_le16(0x3 << 12)
536 #define RXON_RX_CHAIN_MIMO_CNT_POS (12)
537 #define RXON_RX_CHAIN_MIMO_FORCE_MSK cpu_to_le16(0x1 << 14)
538 #define RXON_RX_CHAIN_MIMO_FORCE_POS (14)
539
540 /* rx_config flags */
541 /* band & modulation selection */
542 #define RXON_FLG_BAND_24G_MSK cpu_to_le32(1 << 0)
543 #define RXON_FLG_CCK_MSK cpu_to_le32(1 << 1)
544 /* auto detection enable */
545 #define RXON_FLG_AUTO_DETECT_MSK cpu_to_le32(1 << 2)
546 /* TGg protection when tx */
547 #define RXON_FLG_TGG_PROTECT_MSK cpu_to_le32(1 << 3)
548 /* cck short slot & preamble */
549 #define RXON_FLG_SHORT_SLOT_MSK cpu_to_le32(1 << 4)
550 #define RXON_FLG_SHORT_PREAMBLE_MSK cpu_to_le32(1 << 5)
551 /* antenna selection */
552 #define RXON_FLG_DIS_DIV_MSK cpu_to_le32(1 << 7)
553 #define RXON_FLG_ANT_SEL_MSK cpu_to_le32(0x0f00)
554 #define RXON_FLG_ANT_A_MSK cpu_to_le32(1 << 8)
555 #define RXON_FLG_ANT_B_MSK cpu_to_le32(1 << 9)
556 /* radar detection enable */
557 #define RXON_FLG_RADAR_DETECT_MSK cpu_to_le32(1 << 12)
558 #define RXON_FLG_TGJ_NARROW_BAND_MSK cpu_to_le32(1 << 13)
559 /* rx response to host with 8-byte TSF
560 * (according to ON_AIR deassertion) */
561 #define RXON_FLG_TSF2HOST_MSK cpu_to_le32(1 << 15)
562
563
564 /* HT flags */
565 #define RXON_FLG_CTRL_CHANNEL_LOC_POS (22)
566 #define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK cpu_to_le32(0x1 << 22)
567
568 #define RXON_FLG_HT_OPERATING_MODE_POS (23)
569
570 #define RXON_FLG_HT_PROT_MSK cpu_to_le32(0x1 << 23)
571 #define RXON_FLG_FAT_PROT_MSK cpu_to_le32(0x2 << 23)
572
573 #define RXON_FLG_CHANNEL_MODE_POS (25)
574 #define RXON_FLG_CHANNEL_MODE_MSK cpu_to_le32(0x3 << 25)
575 #define RXON_FLG_CHANNEL_MODE_PURE_40_MSK cpu_to_le32(0x1 << 25)
576 #define RXON_FLG_CHANNEL_MODE_MIXED_MSK cpu_to_le32(0x2 << 25)
577 /* CTS to self (if spec allows) flag */
578 #define RXON_FLG_SELF_CTS_EN cpu_to_le32(0x1<<30)
579
580 /* rx_config filter flags */
581 /* accept all data frames */
582 #define RXON_FILTER_PROMISC_MSK cpu_to_le32(1 << 0)
583 /* pass control & management to host */
584 #define RXON_FILTER_CTL2HOST_MSK cpu_to_le32(1 << 1)
585 /* accept multi-cast */
586 #define RXON_FILTER_ACCEPT_GRP_MSK cpu_to_le32(1 << 2)
587 /* don't decrypt uni-cast frames */
588 #define RXON_FILTER_DIS_DECRYPT_MSK cpu_to_le32(1 << 3)
589 /* don't decrypt multi-cast frames */
590 #define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
591 /* STA is associated */
592 #define RXON_FILTER_ASSOC_MSK cpu_to_le32(1 << 5)
593 /* transfer to host non bssid beacons in associated state */
594 #define RXON_FILTER_BCON_AWARE_MSK cpu_to_le32(1 << 6)
595
596 /**
597 * REPLY_RXON = 0x10 (command, has simple generic response)
598 *
599 * RXON tunes the radio tuner to a service channel, and sets up a number
600 * of parameters that are used primarily for Rx, but also for Tx operations.
601 *
602 * NOTE: When tuning to a new channel, driver must set the
603 * RXON_FILTER_ASSOC_MSK to 0. This will clear station-dependent
604 * info within the device, including the station tables, tx retry
605 * rate tables, and txpower tables. Driver must build a new station
606 * table and txpower table before transmitting anything on the RXON
607 * channel.
608 *
609 * NOTE: All RXONs wipe clean the internal txpower table. Driver must
610 * issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
611 * regardless of whether RXON_FILTER_ASSOC_MSK is set.
612 */
613 struct iwl4965_rxon_cmd {
614 u8 node_addr[6];
615 __le16 reserved1;
616 u8 bssid_addr[6];
617 __le16 reserved2;
618 u8 wlap_bssid_addr[6];
619 __le16 reserved3;
620 u8 dev_type;
621 u8 air_propagation;
622 __le16 rx_chain;
623 u8 ofdm_basic_rates;
624 u8 cck_basic_rates;
625 __le16 assoc_id;
626 __le32 flags;
627 __le32 filter_flags;
628 __le16 channel;
629 u8 ofdm_ht_single_stream_basic_rates;
630 u8 ofdm_ht_dual_stream_basic_rates;
631 } __attribute__ ((packed));
632
633 /* 5000 HW just extend this command */
634 struct iwl_rxon_cmd {
635 u8 node_addr[6];
636 __le16 reserved1;
637 u8 bssid_addr[6];
638 __le16 reserved2;
639 u8 wlap_bssid_addr[6];
640 __le16 reserved3;
641 u8 dev_type;
642 u8 air_propagation;
643 __le16 rx_chain;
644 u8 ofdm_basic_rates;
645 u8 cck_basic_rates;
646 __le16 assoc_id;
647 __le32 flags;
648 __le32 filter_flags;
649 __le16 channel;
650 u8 ofdm_ht_single_stream_basic_rates;
651 u8 ofdm_ht_dual_stream_basic_rates;
652 u8 ofdm_ht_triple_stream_basic_rates;
653 u8 reserved5;
654 __le16 acquisition_data;
655 __le16 reserved6;
656 } __attribute__ ((packed));
657
658 struct iwl5000_rxon_assoc_cmd {
659 __le32 flags;
660 __le32 filter_flags;
661 u8 ofdm_basic_rates;
662 u8 cck_basic_rates;
663 __le16 reserved1;
664 u8 ofdm_ht_single_stream_basic_rates;
665 u8 ofdm_ht_dual_stream_basic_rates;
666 u8 ofdm_ht_triple_stream_basic_rates;
667 u8 reserved2;
668 __le16 rx_chain_select_flags;
669 __le16 acquisition_data;
670 __le32 reserved3;
671 } __attribute__ ((packed));
672
673 /*
674 * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
675 */
676 struct iwl4965_rxon_assoc_cmd {
677 __le32 flags;
678 __le32 filter_flags;
679 u8 ofdm_basic_rates;
680 u8 cck_basic_rates;
681 u8 ofdm_ht_single_stream_basic_rates;
682 u8 ofdm_ht_dual_stream_basic_rates;
683 __le16 rx_chain_select_flags;
684 __le16 reserved;
685 } __attribute__ ((packed));
686
687 #define IWL_CONN_MAX_LISTEN_INTERVAL 10
688
689 /*
690 * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
691 */
692 struct iwl_rxon_time_cmd {
693 __le64 timestamp;
694 __le16 beacon_interval;
695 __le16 atim_window;
696 __le32 beacon_init_val;
697 __le16 listen_interval;
698 __le16 reserved;
699 } __attribute__ ((packed));
700
701 /*
702 * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
703 */
704 struct iwl4965_channel_switch_cmd {
705 u8 band;
706 u8 expect_beacon;
707 __le16 channel;
708 __le32 rxon_flags;
709 __le32 rxon_filter_flags;
710 __le32 switch_time;
711 struct iwl4965_tx_power_db tx_power;
712 } __attribute__ ((packed));
713
714 /*
715 * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
716 */
717 struct iwl4965_csa_notification {
718 __le16 band;
719 __le16 channel;
720 __le32 status; /* 0 - OK, 1 - fail */
721 } __attribute__ ((packed));
722
723 /******************************************************************************
724 * (2)
725 * Quality-of-Service (QOS) Commands & Responses:
726 *
727 *****************************************************************************/
728
729 /**
730 * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
731 * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
732 *
733 * @cw_min: Contention window, start value in numbers of slots.
734 * Should be a power-of-2, minus 1. Device's default is 0x0f.
735 * @cw_max: Contention window, max value in numbers of slots.
736 * Should be a power-of-2, minus 1. Device's default is 0x3f.
737 * @aifsn: Number of slots in Arbitration Interframe Space (before
738 * performing random backoff timing prior to Tx). Device default 1.
739 * @edca_txop: Length of Tx opportunity, in uSecs. Device default is 0.
740 *
741 * Device will automatically increase contention window by (2*CW) + 1 for each
742 * transmission retry. Device uses cw_max as a bit mask, ANDed with new CW
743 * value, to cap the CW value.
744 */
745 struct iwl_ac_qos {
746 __le16 cw_min;
747 __le16 cw_max;
748 u8 aifsn;
749 u8 reserved1;
750 __le16 edca_txop;
751 } __attribute__ ((packed));
752
753 /* QoS flags defines */
754 #define QOS_PARAM_FLG_UPDATE_EDCA_MSK cpu_to_le32(0x01)
755 #define QOS_PARAM_FLG_TGN_MSK cpu_to_le32(0x02)
756 #define QOS_PARAM_FLG_TXOP_TYPE_MSK cpu_to_le32(0x10)
757
758 /* Number of Access Categories (AC) (EDCA), queues 0..3 */
759 #define AC_NUM 4
760
761 /*
762 * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
763 *
764 * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
765 * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
766 */
767 struct iwl_qosparam_cmd {
768 __le32 qos_flags;
769 struct iwl_ac_qos ac[AC_NUM];
770 } __attribute__ ((packed));
771
772 /******************************************************************************
773 * (3)
774 * Add/Modify Stations Commands & Responses:
775 *
776 *****************************************************************************/
777 /*
778 * Multi station support
779 */
780
781 /* Special, dedicated locations within device's station table */
782 #define IWL_AP_ID 0
783 #define IWL_MULTICAST_ID 1
784 #define IWL_STA_ID 2
785 #define IWL4965_BROADCAST_ID 31
786 #define IWL4965_STATION_COUNT 32
787 #define IWL5000_BROADCAST_ID 15
788 #define IWL5000_STATION_COUNT 16
789
790 #define IWL_STATION_COUNT 32 /* MAX(3945,4965)*/
791 #define IWL_INVALID_STATION 255
792
793 #define STA_FLG_PWR_SAVE_MSK cpu_to_le32(1 << 8);
794 #define STA_FLG_RTS_MIMO_PROT_MSK cpu_to_le32(1 << 17)
795 #define STA_FLG_AGG_MPDU_8US_MSK cpu_to_le32(1 << 18)
796 #define STA_FLG_MAX_AGG_SIZE_POS (19)
797 #define STA_FLG_MAX_AGG_SIZE_MSK cpu_to_le32(3 << 19)
798 #define STA_FLG_FAT_EN_MSK cpu_to_le32(1 << 21)
799 #define STA_FLG_MIMO_DIS_MSK cpu_to_le32(1 << 22)
800 #define STA_FLG_AGG_MPDU_DENSITY_POS (23)
801 #define STA_FLG_AGG_MPDU_DENSITY_MSK cpu_to_le32(7 << 23)
802
803 /* Use in mode field. 1: modify existing entry, 0: add new station entry */
804 #define STA_CONTROL_MODIFY_MSK 0x01
805
806 /* key flags __le16*/
807 #define STA_KEY_FLG_ENCRYPT_MSK cpu_to_le16(0x0007)
808 #define STA_KEY_FLG_NO_ENC cpu_to_le16(0x0000)
809 #define STA_KEY_FLG_WEP cpu_to_le16(0x0001)
810 #define STA_KEY_FLG_CCMP cpu_to_le16(0x0002)
811 #define STA_KEY_FLG_TKIP cpu_to_le16(0x0003)
812
813 #define STA_KEY_FLG_KEYID_POS 8
814 #define STA_KEY_FLG_INVALID cpu_to_le16(0x0800)
815 /* wep key is either from global key (0) or from station info array (1) */
816 #define STA_KEY_FLG_MAP_KEY_MSK cpu_to_le16(0x0008)
817
818 /* wep key in STA: 5-bytes (0) or 13-bytes (1) */
819 #define STA_KEY_FLG_KEY_SIZE_MSK cpu_to_le16(0x1000)
820 #define STA_KEY_MULTICAST_MSK cpu_to_le16(0x4000)
821 #define STA_KEY_MAX_NUM 8
822
823 /* Flags indicate whether to modify vs. don't change various station params */
824 #define STA_MODIFY_KEY_MASK 0x01
825 #define STA_MODIFY_TID_DISABLE_TX 0x02
826 #define STA_MODIFY_TX_RATE_MSK 0x04
827 #define STA_MODIFY_ADDBA_TID_MSK 0x08
828 #define STA_MODIFY_DELBA_TID_MSK 0x10
829
830 /* Receiver address (actually, Rx station's index into station table),
831 * combined with Traffic ID (QOS priority), in format used by Tx Scheduler */
832 #define BUILD_RAxTID(sta_id, tid) (((sta_id) << 4) + (tid))
833
834 struct iwl4965_keyinfo {
835 __le16 key_flags;
836 u8 tkip_rx_tsc_byte2; /* TSC[2] for key mix ph1 detection */
837 u8 reserved1;
838 __le16 tkip_rx_ttak[5]; /* 10-byte unicast TKIP TTAK */
839 u8 key_offset;
840 u8 reserved2;
841 u8 key[16]; /* 16-byte unicast decryption key */
842 } __attribute__ ((packed));
843
844 /* 5000 */
845 struct iwl_keyinfo {
846 __le16 key_flags;
847 u8 tkip_rx_tsc_byte2; /* TSC[2] for key mix ph1 detection */
848 u8 reserved1;
849 __le16 tkip_rx_ttak[5]; /* 10-byte unicast TKIP TTAK */
850 u8 key_offset;
851 u8 reserved2;
852 u8 key[16]; /* 16-byte unicast decryption key */
853 __le64 tx_secur_seq_cnt;
854 __le64 hw_tkip_mic_rx_key;
855 __le64 hw_tkip_mic_tx_key;
856 } __attribute__ ((packed));
857
858 /**
859 * struct sta_id_modify
860 * @addr[ETH_ALEN]: station's MAC address
861 * @sta_id: index of station in uCode's station table
862 * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
863 *
864 * Driver selects unused table index when adding new station,
865 * or the index to a pre-existing station entry when modifying that station.
866 * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
867 *
868 * modify_mask flags select which parameters to modify vs. leave alone.
869 */
870 struct sta_id_modify {
871 u8 addr[ETH_ALEN];
872 __le16 reserved1;
873 u8 sta_id;
874 u8 modify_mask;
875 __le16 reserved2;
876 } __attribute__ ((packed));
877
878 /*
879 * REPLY_ADD_STA = 0x18 (command)
880 *
881 * The device contains an internal table of per-station information,
882 * with info on security keys, aggregation parameters, and Tx rates for
883 * initial Tx attempt and any retries (4965 uses REPLY_TX_LINK_QUALITY_CMD,
884 * 3945 uses REPLY_RATE_SCALE to set up rate tables).
885 *
886 * REPLY_ADD_STA sets up the table entry for one station, either creating
887 * a new entry, or modifying a pre-existing one.
888 *
889 * NOTE: RXON command (without "associated" bit set) wipes the station table
890 * clean. Moving into RF_KILL state does this also. Driver must set up
891 * new station table before transmitting anything on the RXON channel
892 * (except active scans or active measurements; those commands carry
893 * their own txpower/rate setup data).
894 *
895 * When getting started on a new channel, driver must set up the
896 * IWL_BROADCAST_ID entry (last entry in the table). For a client
897 * station in a BSS, once an AP is selected, driver sets up the AP STA
898 * in the IWL_AP_ID entry (1st entry in the table). BROADCAST and AP
899 * are all that are needed for a BSS client station. If the device is
900 * used as AP, or in an IBSS network, driver must set up station table
901 * entries for all STAs in network, starting with index IWL_STA_ID.
902 */
903 struct iwl4965_addsta_cmd {
904 u8 mode; /* 1: modify existing, 0: add new station */
905 u8 reserved[3];
906 struct sta_id_modify sta;
907 struct iwl4965_keyinfo key;
908 __le32 station_flags; /* STA_FLG_* */
909 __le32 station_flags_msk; /* STA_FLG_* */
910
911 /* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
912 * corresponding to bit (e.g. bit 5 controls TID 5).
913 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
914 __le16 tid_disable_tx;
915
916 __le16 reserved1;
917
918 /* TID for which to add block-ack support.
919 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
920 u8 add_immediate_ba_tid;
921
922 /* TID for which to remove block-ack support.
923 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
924 u8 remove_immediate_ba_tid;
925
926 /* Starting Sequence Number for added block-ack support.
927 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
928 __le16 add_immediate_ba_ssn;
929
930 __le32 reserved2;
931 } __attribute__ ((packed));
932
933 /* 5000 */
934 struct iwl_addsta_cmd {
935 u8 mode; /* 1: modify existing, 0: add new station */
936 u8 reserved[3];
937 struct sta_id_modify sta;
938 struct iwl_keyinfo key;
939 __le32 station_flags; /* STA_FLG_* */
940 __le32 station_flags_msk; /* STA_FLG_* */
941
942 /* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
943 * corresponding to bit (e.g. bit 5 controls TID 5).
944 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
945 __le16 tid_disable_tx;
946
947 __le16 reserved1;
948
949 /* TID for which to add block-ack support.
950 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
951 u8 add_immediate_ba_tid;
952
953 /* TID for which to remove block-ack support.
954 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
955 u8 remove_immediate_ba_tid;
956
957 /* Starting Sequence Number for added block-ack support.
958 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
959 __le16 add_immediate_ba_ssn;
960
961 __le32 reserved2;
962 } __attribute__ ((packed));
963
964
965 #define ADD_STA_SUCCESS_MSK 0x1
966 #define ADD_STA_NO_ROOM_IN_TABLE 0x2
967 #define ADD_STA_NO_BLOCK_ACK_RESOURCE 0x4
968 #define ADD_STA_MODIFY_NON_EXIST_STA 0x8
969 /*
970 * REPLY_ADD_STA = 0x18 (response)
971 */
972 struct iwl_add_sta_resp {
973 u8 status; /* ADD_STA_* */
974 } __attribute__ ((packed));
975
976 #define REM_STA_SUCCESS_MSK 0x1
977 /*
978 * REPLY_REM_STA = 0x19 (response)
979 */
980 struct iwl_rem_sta_resp {
981 u8 status;
982 } __attribute__ ((packed));
983
984 /*
985 * REPLY_REM_STA = 0x19 (command)
986 */
987 struct iwl_rem_sta_cmd {
988 u8 num_sta; /* number of removed stations */
989 u8 reserved[3];
990 u8 addr[ETH_ALEN]; /* MAC addr of the first station */
991 u8 reserved2[2];
992 } __attribute__ ((packed));
993
994 /*
995 * REPLY_WEP_KEY = 0x20
996 */
997 struct iwl_wep_key {
998 u8 key_index;
999 u8 key_offset;
1000 u8 reserved1[2];
1001 u8 key_size;
1002 u8 reserved2[3];
1003 u8 key[16];
1004 } __attribute__ ((packed));
1005
1006 struct iwl_wep_cmd {
1007 u8 num_keys;
1008 u8 global_key_type;
1009 u8 flags;
1010 u8 reserved;
1011 struct iwl_wep_key key[0];
1012 } __attribute__ ((packed));
1013
1014 #define WEP_KEY_WEP_TYPE 1
1015 #define WEP_KEYS_MAX 4
1016 #define WEP_INVALID_OFFSET 0xff
1017 #define WEP_KEY_LEN_64 5
1018 #define WEP_KEY_LEN_128 13
1019
1020 /******************************************************************************
1021 * (4)
1022 * Rx Responses:
1023 *
1024 *****************************************************************************/
1025
1026 struct iwl4965_rx_frame_stats {
1027 u8 phy_count;
1028 u8 id;
1029 u8 rssi;
1030 u8 agc;
1031 __le16 sig_avg;
1032 __le16 noise_diff;
1033 u8 payload[0];
1034 } __attribute__ ((packed));
1035
1036 struct iwl4965_rx_frame_hdr {
1037 __le16 channel;
1038 __le16 phy_flags;
1039 u8 reserved1;
1040 u8 rate;
1041 __le16 len;
1042 u8 payload[0];
1043 } __attribute__ ((packed));
1044
1045 #define RX_RES_STATUS_NO_CRC32_ERROR cpu_to_le32(1 << 0)
1046 #define RX_RES_STATUS_NO_RXE_OVERFLOW cpu_to_le32(1 << 1)
1047
1048 #define RX_RES_PHY_FLAGS_BAND_24_MSK cpu_to_le16(1 << 0)
1049 #define RX_RES_PHY_FLAGS_MOD_CCK_MSK cpu_to_le16(1 << 1)
1050 #define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK cpu_to_le16(1 << 2)
1051 #define RX_RES_PHY_FLAGS_NARROW_BAND_MSK cpu_to_le16(1 << 3)
1052 #define RX_RES_PHY_FLAGS_ANTENNA_MSK cpu_to_le16(0xf0)
1053
1054 #define RX_RES_STATUS_SEC_TYPE_MSK (0x7 << 8)
1055 #define RX_RES_STATUS_SEC_TYPE_NONE (0x0 << 8)
1056 #define RX_RES_STATUS_SEC_TYPE_WEP (0x1 << 8)
1057 #define RX_RES_STATUS_SEC_TYPE_CCMP (0x2 << 8)
1058 #define RX_RES_STATUS_SEC_TYPE_TKIP (0x3 << 8)
1059 #define RX_RES_STATUS_SEC_TYPE_ERR (0x7 << 8)
1060
1061 #define RX_RES_STATUS_STATION_FOUND (1<<6)
1062 #define RX_RES_STATUS_NO_STATION_INFO_MISMATCH (1<<7)
1063
1064 #define RX_RES_STATUS_DECRYPT_TYPE_MSK (0x3 << 11)
1065 #define RX_RES_STATUS_NOT_DECRYPT (0x0 << 11)
1066 #define RX_RES_STATUS_DECRYPT_OK (0x3 << 11)
1067 #define RX_RES_STATUS_BAD_ICV_MIC (0x1 << 11)
1068 #define RX_RES_STATUS_BAD_KEY_TTAK (0x2 << 11)
1069
1070 #define RX_MPDU_RES_STATUS_ICV_OK (0x20)
1071 #define RX_MPDU_RES_STATUS_MIC_OK (0x40)
1072 #define RX_MPDU_RES_STATUS_TTAK_OK (1 << 7)
1073 #define RX_MPDU_RES_STATUS_DEC_DONE_MSK (0x800)
1074
1075 struct iwl4965_rx_frame_end {
1076 __le32 status;
1077 __le64 timestamp;
1078 __le32 beacon_timestamp;
1079 } __attribute__ ((packed));
1080
1081 /*
1082 * REPLY_3945_RX = 0x1b (response only, not a command)
1083 *
1084 * NOTE: DO NOT dereference from casts to this structure
1085 * It is provided only for calculating minimum data set size.
1086 * The actual offsets of the hdr and end are dynamic based on
1087 * stats.phy_count
1088 */
1089 struct iwl4965_rx_frame {
1090 struct iwl4965_rx_frame_stats stats;
1091 struct iwl4965_rx_frame_hdr hdr;
1092 struct iwl4965_rx_frame_end end;
1093 } __attribute__ ((packed));
1094
1095 /* Fixed (non-configurable) rx data from phy */
1096
1097 #define IWL49_RX_RES_PHY_CNT 14
1098 #define IWL49_RX_PHY_FLAGS_ANTENNAE_OFFSET (4)
1099 #define IWL49_RX_PHY_FLAGS_ANTENNAE_MASK (0x70)
1100 #define IWL49_AGC_DB_MASK (0x3f80) /* MASK(7,13) */
1101 #define IWL49_AGC_DB_POS (7)
1102 struct iwl4965_rx_non_cfg_phy {
1103 __le16 ant_selection; /* ant A bit 4, ant B bit 5, ant C bit 6 */
1104 __le16 agc_info; /* agc code 0:6, agc dB 7:13, reserved 14:15 */
1105 u8 rssi_info[6]; /* we use even entries, 0/2/4 for A/B/C rssi */
1106 u8 pad[0];
1107 } __attribute__ ((packed));
1108
1109
1110 #define IWL50_RX_RES_PHY_CNT 8
1111 #define IWL50_RX_RES_AGC_IDX 1
1112 #define IWL50_RX_RES_RSSI_AB_IDX 2
1113 #define IWL50_RX_RES_RSSI_C_IDX 3
1114 #define IWL50_OFDM_AGC_MSK 0xfe00
1115 #define IWL50_OFDM_AGC_BIT_POS 9
1116 #define IWL50_OFDM_RSSI_A_MSK 0x00ff
1117 #define IWL50_OFDM_RSSI_A_BIT_POS 0
1118 #define IWL50_OFDM_RSSI_B_MSK 0xff0000
1119 #define IWL50_OFDM_RSSI_B_BIT_POS 16
1120 #define IWL50_OFDM_RSSI_C_MSK 0x00ff
1121 #define IWL50_OFDM_RSSI_C_BIT_POS 0
1122
1123 struct iwl5000_non_cfg_phy {
1124 __le32 non_cfg_phy[IWL50_RX_RES_PHY_CNT]; /* up to 8 phy entries */
1125 } __attribute__ ((packed));
1126
1127
1128 /*
1129 * REPLY_RX = 0xc3 (response only, not a command)
1130 * Used only for legacy (non 11n) frames.
1131 */
1132 struct iwl_rx_phy_res {
1133 u8 non_cfg_phy_cnt; /* non configurable DSP phy data byte count */
1134 u8 cfg_phy_cnt; /* configurable DSP phy data byte count */
1135 u8 stat_id; /* configurable DSP phy data set ID */
1136 u8 reserved1;
1137 __le64 timestamp; /* TSF at on air rise */
1138 __le32 beacon_time_stamp; /* beacon at on-air rise */
1139 __le16 phy_flags; /* general phy flags: band, modulation, ... */
1140 __le16 channel; /* channel number */
1141 u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
1142 __le32 rate_n_flags; /* RATE_MCS_* */
1143 __le16 byte_count; /* frame's byte-count */
1144 __le16 reserved3;
1145 } __attribute__ ((packed));
1146
1147 struct iwl4965_rx_mpdu_res_start {
1148 __le16 byte_count;
1149 __le16 reserved;
1150 } __attribute__ ((packed));
1151
1152
1153 /******************************************************************************
1154 * (5)
1155 * Tx Commands & Responses:
1156 *
1157 * Driver must place each REPLY_TX command into one of the prioritized Tx
1158 * queues in host DRAM, shared between driver and device (see comments for
1159 * SCD registers and Tx/Rx Queues). When the device's Tx scheduler and uCode
1160 * are preparing to transmit, the device pulls the Tx command over the PCI
1161 * bus via one of the device's Tx DMA channels, to fill an internal FIFO
1162 * from which data will be transmitted.
1163 *
1164 * uCode handles all timing and protocol related to control frames
1165 * (RTS/CTS/ACK), based on flags in the Tx command. uCode and Tx scheduler
1166 * handle reception of block-acks; uCode updates the host driver via
1167 * REPLY_COMPRESSED_BA (4965).
1168 *
1169 * uCode handles retrying Tx when an ACK is expected but not received.
1170 * This includes trying lower data rates than the one requested in the Tx
1171 * command, as set up by the REPLY_RATE_SCALE (for 3945) or
1172 * REPLY_TX_LINK_QUALITY_CMD (4965).
1173 *
1174 * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
1175 * This command must be executed after every RXON command, before Tx can occur.
1176 *****************************************************************************/
1177
1178 /* REPLY_TX Tx flags field */
1179
1180 /* 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
1181 * before this frame. if CTS-to-self required check
1182 * RXON_FLG_SELF_CTS_EN status. */
1183 #define TX_CMD_FLG_RTS_CTS_MSK cpu_to_le32(1 << 0)
1184
1185 /* 1: Use Request-To-Send protocol before this frame.
1186 * Mutually exclusive vs. TX_CMD_FLG_CTS_MSK. */
1187 #define TX_CMD_FLG_RTS_MSK cpu_to_le32(1 << 1)
1188
1189 /* 1: Transmit Clear-To-Send to self before this frame.
1190 * Driver should set this for AUTH/DEAUTH/ASSOC-REQ/REASSOC mgmnt frames.
1191 * Mutually exclusive vs. TX_CMD_FLG_RTS_MSK. */
1192 #define TX_CMD_FLG_CTS_MSK cpu_to_le32(1 << 2)
1193
1194 /* 1: Expect ACK from receiving station
1195 * 0: Don't expect ACK (MAC header's duration field s/b 0)
1196 * Set this for unicast frames, but not broadcast/multicast. */
1197 #define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
1198
1199 /* For 4965:
1200 * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
1201 * Tx command's initial_rate_index indicates first rate to try;
1202 * uCode walks through table for additional Tx attempts.
1203 * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
1204 * This rate will be used for all Tx attempts; it will not be scaled. */
1205 #define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
1206
1207 /* 1: Expect immediate block-ack.
1208 * Set when Txing a block-ack request frame. Also set TX_CMD_FLG_ACK_MSK. */
1209 #define TX_CMD_FLG_IMM_BA_RSP_MASK cpu_to_le32(1 << 6)
1210
1211 /* 1: Frame requires full Tx-Op protection.
1212 * Set this if either RTS or CTS Tx Flag gets set. */
1213 #define TX_CMD_FLG_FULL_TXOP_PROT_MSK cpu_to_le32(1 << 7)
1214
1215 /* Tx antenna selection field; used only for 3945, reserved (0) for 4965.
1216 * Set field to "0" to allow 3945 uCode to select antenna (normal usage). */
1217 #define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
1218 #define TX_CMD_FLG_ANT_A_MSK cpu_to_le32(1 << 8)
1219 #define TX_CMD_FLG_ANT_B_MSK cpu_to_le32(1 << 9)
1220
1221 /* 1: Ignore Bluetooth priority for this frame.
1222 * 0: Delay Tx until Bluetooth device is done (normal usage). */
1223 #define TX_CMD_FLG_BT_DIS_MSK cpu_to_le32(1 << 12)
1224
1225 /* 1: uCode overrides sequence control field in MAC header.
1226 * 0: Driver provides sequence control field in MAC header.
1227 * Set this for management frames, non-QOS data frames, non-unicast frames,
1228 * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
1229 #define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
1230
1231 /* 1: This frame is non-last MPDU; more fragments are coming.
1232 * 0: Last fragment, or not using fragmentation. */
1233 #define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
1234
1235 /* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
1236 * 0: No TSF required in outgoing frame.
1237 * Set this for transmitting beacons and probe responses. */
1238 #define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
1239
1240 /* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
1241 * alignment of frame's payload data field.
1242 * 0: No pad
1243 * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
1244 * field (but not both). Driver must align frame data (i.e. data following
1245 * MAC header) to DWORD boundary. */
1246 #define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
1247
1248 /* accelerate aggregation support
1249 * 0 - no CCMP encryption; 1 - CCMP encryption */
1250 #define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
1251
1252 /* HCCA-AP - disable duration overwriting. */
1253 #define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
1254
1255
1256 /*
1257 * TX command security control
1258 */
1259 #define TX_CMD_SEC_WEP 0x01
1260 #define TX_CMD_SEC_CCM 0x02
1261 #define TX_CMD_SEC_TKIP 0x03
1262 #define TX_CMD_SEC_MSK 0x03
1263 #define TX_CMD_SEC_SHIFT 6
1264 #define TX_CMD_SEC_KEY128 0x08
1265
1266 /*
1267 * security overhead sizes
1268 */
1269 #define WEP_IV_LEN 4
1270 #define WEP_ICV_LEN 4
1271 #define CCMP_MIC_LEN 8
1272 #define TKIP_ICV_LEN 4
1273
1274 /*
1275 * 4965 uCode updates these Tx attempt count values in host DRAM.
1276 * Used for managing Tx retries when expecting block-acks.
1277 * Driver should set these fields to 0.
1278 */
1279 struct iwl4965_dram_scratch {
1280 u8 try_cnt; /* Tx attempts */
1281 u8 bt_kill_cnt; /* Tx attempts blocked by Bluetooth device */
1282 __le16 reserved;
1283 } __attribute__ ((packed));
1284
1285 /*
1286 * REPLY_TX = 0x1c (command)
1287 */
1288 struct iwl_tx_cmd {
1289 /*
1290 * MPDU byte count:
1291 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1292 * + 8 byte IV for CCM or TKIP (not used for WEP)
1293 * + Data payload
1294 * + 8-byte MIC (not used for CCM/WEP)
1295 * NOTE: Does not include Tx command bytes, post-MAC pad bytes,
1296 * MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1297 * Range: 14-2342 bytes.
1298 */
1299 __le16 len;
1300
1301 /*
1302 * MPDU or MSDU byte count for next frame.
1303 * Used for fragmentation and bursting, but not 11n aggregation.
1304 * Same as "len", but for next frame. Set to 0 if not applicable.
1305 */
1306 __le16 next_frame_len;
1307
1308 __le32 tx_flags; /* TX_CMD_FLG_* */
1309
1310 /* 4965's uCode may modify this field of the Tx command (in host DRAM!).
1311 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
1312 struct iwl4965_dram_scratch scratch;
1313
1314 /* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
1315 __le32 rate_n_flags; /* RATE_MCS_* */
1316
1317 /* Index of destination station in uCode's station table */
1318 u8 sta_id;
1319
1320 /* Type of security encryption: CCM or TKIP */
1321 u8 sec_ctl; /* TX_CMD_SEC_* */
1322
1323 /*
1324 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
1325 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set. Normally "0" for
1326 * data frames, this field may be used to selectively reduce initial
1327 * rate (via non-0 value) for special frames (e.g. management), while
1328 * still supporting rate scaling for all frames.
1329 */
1330 u8 initial_rate_index;
1331 u8 reserved;
1332 u8 key[16];
1333 __le16 next_frame_flags;
1334 __le16 reserved2;
1335 union {
1336 __le32 life_time;
1337 __le32 attempt;
1338 } stop_time;
1339
1340 /* Host DRAM physical address pointer to "scratch" in this command.
1341 * Must be dword aligned. "0" in dram_lsb_ptr disables usage. */
1342 __le32 dram_lsb_ptr;
1343 u8 dram_msb_ptr;
1344
1345 u8 rts_retry_limit; /*byte 50 */
1346 u8 data_retry_limit; /*byte 51 */
1347 u8 tid_tspec;
1348 union {
1349 __le16 pm_frame_timeout;
1350 __le16 attempt_duration;
1351 } timeout;
1352
1353 /*
1354 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1355 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1356 */
1357 __le16 driver_txop;
1358
1359 /*
1360 * MAC header goes here, followed by 2 bytes padding if MAC header
1361 * length is 26 or 30 bytes, followed by payload data
1362 */
1363 u8 payload[0];
1364 struct ieee80211_hdr hdr[0];
1365 } __attribute__ ((packed));
1366
1367 /* TX command response is sent after *all* transmission attempts.
1368 *
1369 * NOTES:
1370 *
1371 * TX_STATUS_FAIL_NEXT_FRAG
1372 *
1373 * If the fragment flag in the MAC header for the frame being transmitted
1374 * is set and there is insufficient time to transmit the next frame, the
1375 * TX status will be returned with 'TX_STATUS_FAIL_NEXT_FRAG'.
1376 *
1377 * TX_STATUS_FIFO_UNDERRUN
1378 *
1379 * Indicates the host did not provide bytes to the FIFO fast enough while
1380 * a TX was in progress.
1381 *
1382 * TX_STATUS_FAIL_MGMNT_ABORT
1383 *
1384 * This status is only possible if the ABORT ON MGMT RX parameter was
1385 * set to true with the TX command.
1386 *
1387 * If the MSB of the status parameter is set then an abort sequence is
1388 * required. This sequence consists of the host activating the TX Abort
1389 * control line, and then waiting for the TX Abort command response. This
1390 * indicates that a the device is no longer in a transmit state, and that the
1391 * command FIFO has been cleared. The host must then deactivate the TX Abort
1392 * control line. Receiving is still allowed in this case.
1393 */
1394 enum {
1395 TX_STATUS_SUCCESS = 0x01,
1396 TX_STATUS_DIRECT_DONE = 0x02,
1397 TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
1398 TX_STATUS_FAIL_LONG_LIMIT = 0x83,
1399 TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1400 TX_STATUS_FAIL_MGMNT_ABORT = 0x85,
1401 TX_STATUS_FAIL_NEXT_FRAG = 0x86,
1402 TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1403 TX_STATUS_FAIL_DEST_PS = 0x88,
1404 TX_STATUS_FAIL_ABORTED = 0x89,
1405 TX_STATUS_FAIL_BT_RETRY = 0x8a,
1406 TX_STATUS_FAIL_STA_INVALID = 0x8b,
1407 TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1408 TX_STATUS_FAIL_TID_DISABLE = 0x8d,
1409 TX_STATUS_FAIL_FRAME_FLUSHED = 0x8e,
1410 TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1411 TX_STATUS_FAIL_TX_LOCKED = 0x90,
1412 TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1413 };
1414
1415 #define TX_PACKET_MODE_REGULAR 0x0000
1416 #define TX_PACKET_MODE_BURST_SEQ 0x0100
1417 #define TX_PACKET_MODE_BURST_FIRST 0x0200
1418
1419 enum {
1420 TX_POWER_PA_NOT_ACTIVE = 0x0,
1421 };
1422
1423 enum {
1424 TX_STATUS_MSK = 0x000000ff, /* bits 0:7 */
1425 TX_STATUS_DELAY_MSK = 0x00000040,
1426 TX_STATUS_ABORT_MSK = 0x00000080,
1427 TX_PACKET_MODE_MSK = 0x0000ff00, /* bits 8:15 */
1428 TX_FIFO_NUMBER_MSK = 0x00070000, /* bits 16:18 */
1429 TX_RESERVED = 0x00780000, /* bits 19:22 */
1430 TX_POWER_PA_DETECT_MSK = 0x7f800000, /* bits 23:30 */
1431 TX_ABORT_REQUIRED_MSK = 0x80000000, /* bits 31:31 */
1432 };
1433
1434 static inline bool iwl_is_tx_success(u32 status)
1435 {
1436 status &= TX_STATUS_MSK;
1437 return (status == TX_STATUS_SUCCESS) ||
1438 (status == TX_STATUS_DIRECT_DONE);
1439 }
1440
1441
1442
1443 /* *******************************
1444 * TX aggregation status
1445 ******************************* */
1446
1447 enum {
1448 AGG_TX_STATE_TRANSMITTED = 0x00,
1449 AGG_TX_STATE_UNDERRUN_MSK = 0x01,
1450 AGG_TX_STATE_BT_PRIO_MSK = 0x02,
1451 AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
1452 AGG_TX_STATE_ABORT_MSK = 0x08,
1453 AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
1454 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
1455 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
1456 AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
1457 AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
1458 AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
1459 AGG_TX_STATE_DUMP_TX_MSK = 0x200,
1460 AGG_TX_STATE_DELAY_TX_MSK = 0x400
1461 };
1462
1463 #define AGG_TX_STATE_LAST_SENT_MSK (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
1464 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
1465 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
1466
1467 /* # tx attempts for first frame in aggregation */
1468 #define AGG_TX_STATE_TRY_CNT_POS 12
1469 #define AGG_TX_STATE_TRY_CNT_MSK 0xf000
1470
1471 /* Command ID and sequence number of Tx command for this frame */
1472 #define AGG_TX_STATE_SEQ_NUM_POS 16
1473 #define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
1474
1475 /*
1476 * REPLY_TX = 0x1c (response)
1477 *
1478 * This response may be in one of two slightly different formats, indicated
1479 * by the frame_count field:
1480 *
1481 * 1) No aggregation (frame_count == 1). This reports Tx results for
1482 * a single frame. Multiple attempts, at various bit rates, may have
1483 * been made for this frame.
1484 *
1485 * 2) Aggregation (frame_count > 1). This reports Tx results for
1486 * 2 or more frames that used block-acknowledge. All frames were
1487 * transmitted at same rate. Rate scaling may have been used if first
1488 * frame in this new agg block failed in previous agg block(s).
1489 *
1490 * Note that, for aggregation, ACK (block-ack) status is not delivered here;
1491 * block-ack has not been received by the time the 4965 records this status.
1492 * This status relates to reasons the tx might have been blocked or aborted
1493 * within the sending station (this 4965), rather than whether it was
1494 * received successfully by the destination station.
1495 */
1496 struct agg_tx_status {
1497 __le16 status;
1498 __le16 sequence;
1499 } __attribute__ ((packed));
1500
1501 struct iwl4965_tx_resp {
1502 u8 frame_count; /* 1 no aggregation, >1 aggregation */
1503 u8 bt_kill_count; /* # blocked by bluetooth (unused for agg) */
1504 u8 failure_rts; /* # failures due to unsuccessful RTS */
1505 u8 failure_frame; /* # failures due to no ACK (unused for agg) */
1506
1507 /* For non-agg: Rate at which frame was successful.
1508 * For agg: Rate at which all frames were transmitted. */
1509 __le32 rate_n_flags; /* RATE_MCS_* */
1510
1511 /* For non-agg: RTS + CTS + frame tx attempts time + ACK.
1512 * For agg: RTS + CTS + aggregation tx time + block-ack time. */
1513 __le16 wireless_media_time; /* uSecs */
1514
1515 __le16 reserved;
1516 __le32 pa_power1; /* RF power amplifier measurement (not used) */
1517 __le32 pa_power2;
1518
1519 /*
1520 * For non-agg: frame status TX_STATUS_*
1521 * For agg: status of 1st frame, AGG_TX_STATE_*; other frame status
1522 * fields follow this one, up to frame_count.
1523 * Bit fields:
1524 * 11- 0: AGG_TX_STATE_* status code
1525 * 15-12: Retry count for 1st frame in aggregation (retries
1526 * occur if tx failed for this frame when it was a
1527 * member of a previous aggregation block). If rate
1528 * scaling is used, retry count indicates the rate
1529 * table entry used for all frames in the new agg.
1530 * 31-16: Sequence # for this frame's Tx cmd (not SSN!)
1531 */
1532 union {
1533 __le32 status;
1534 struct agg_tx_status agg_status[0]; /* for each agg frame */
1535 } u;
1536 } __attribute__ ((packed));
1537
1538 /*
1539 * definitions for initial rate index field
1540 * bits [3:0] initial rate index
1541 * bits [6:4] rate table color, used for the initial rate
1542 * bit-7 invalid rate indication
1543 * i.e. rate was not chosen from rate table
1544 * or rate table color was changed during frame retries
1545 * refer tlc rate info
1546 */
1547
1548 #define IWL50_TX_RES_INIT_RATE_INDEX_POS 0
1549 #define IWL50_TX_RES_INIT_RATE_INDEX_MSK 0x0f
1550 #define IWL50_TX_RES_RATE_TABLE_COLOR_POS 4
1551 #define IWL50_TX_RES_RATE_TABLE_COLOR_MSK 0x70
1552 #define IWL50_TX_RES_INV_RATE_INDEX_MSK 0x80
1553
1554 /* refer to ra_tid */
1555 #define IWL50_TX_RES_TID_POS 0
1556 #define IWL50_TX_RES_TID_MSK 0x0f
1557 #define IWL50_TX_RES_RA_POS 4
1558 #define IWL50_TX_RES_RA_MSK 0xf0
1559
1560 struct iwl5000_tx_resp {
1561 u8 frame_count; /* 1 no aggregation, >1 aggregation */
1562 u8 bt_kill_count; /* # blocked by bluetooth (unused for agg) */
1563 u8 failure_rts; /* # failures due to unsuccessful RTS */
1564 u8 failure_frame; /* # failures due to no ACK (unused for agg) */
1565
1566 /* For non-agg: Rate at which frame was successful.
1567 * For agg: Rate at which all frames were transmitted. */
1568 __le32 rate_n_flags; /* RATE_MCS_* */
1569
1570 /* For non-agg: RTS + CTS + frame tx attempts time + ACK.
1571 * For agg: RTS + CTS + aggregation tx time + block-ack time. */
1572 __le16 wireless_media_time; /* uSecs */
1573
1574 u8 pa_status; /* RF power amplifier measurement (not used) */
1575 u8 pa_integ_res_a[3];
1576 u8 pa_integ_res_b[3];
1577 u8 pa_integ_res_C[3];
1578
1579 __le32 tfd_info;
1580 __le16 seq_ctl;
1581 __le16 byte_cnt;
1582 u8 tlc_info;
1583 u8 ra_tid; /* tid (0:3), sta_id (4:7) */
1584 __le16 frame_ctrl;
1585 /*
1586 * For non-agg: frame status TX_STATUS_*
1587 * For agg: status of 1st frame, AGG_TX_STATE_*; other frame status
1588 * fields follow this one, up to frame_count.
1589 * Bit fields:
1590 * 11- 0: AGG_TX_STATE_* status code
1591 * 15-12: Retry count for 1st frame in aggregation (retries
1592 * occur if tx failed for this frame when it was a
1593 * member of a previous aggregation block). If rate
1594 * scaling is used, retry count indicates the rate
1595 * table entry used for all frames in the new agg.
1596 * 31-16: Sequence # for this frame's Tx cmd (not SSN!)
1597 */
1598 struct agg_tx_status status; /* TX status (in aggregation -
1599 * status of 1st frame) */
1600 } __attribute__ ((packed));
1601 /*
1602 * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
1603 *
1604 * Reports Block-Acknowledge from recipient station
1605 */
1606 struct iwl_compressed_ba_resp {
1607 __le32 sta_addr_lo32;
1608 __le16 sta_addr_hi16;
1609 __le16 reserved;
1610
1611 /* Index of recipient (BA-sending) station in uCode's station table */
1612 u8 sta_id;
1613 u8 tid;
1614 __le16 seq_ctl;
1615 __le64 bitmap;
1616 __le16 scd_flow;
1617 __le16 scd_ssn;
1618 } __attribute__ ((packed));
1619
1620 /*
1621 * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
1622 *
1623 * See details under "TXPOWER" in iwl-4965-hw.h.
1624 */
1625 struct iwl4965_txpowertable_cmd {
1626 u8 band; /* 0: 5 GHz, 1: 2.4 GHz */
1627 u8 reserved;
1628 __le16 channel;
1629 struct iwl4965_tx_power_db tx_power;
1630 } __attribute__ ((packed));
1631
1632 /*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
1633 #define LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK (1 << 0)
1634
1635 /* # of EDCA prioritized tx fifos */
1636 #define LINK_QUAL_AC_NUM AC_NUM
1637
1638 /* # entries in rate scale table to support Tx retries */
1639 #define LINK_QUAL_MAX_RETRY_NUM 16
1640
1641 /* Tx antenna selection values */
1642 #define LINK_QUAL_ANT_A_MSK (1 << 0)
1643 #define LINK_QUAL_ANT_B_MSK (1 << 1)
1644 #define LINK_QUAL_ANT_MSK (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
1645
1646
1647 /**
1648 * struct iwl_link_qual_general_params
1649 *
1650 * Used in REPLY_TX_LINK_QUALITY_CMD
1651 */
1652 struct iwl_link_qual_general_params {
1653 u8 flags;
1654
1655 /* No entries at or above this (driver chosen) index contain MIMO */
1656 u8 mimo_delimiter;
1657
1658 /* Best single antenna to use for single stream (legacy, SISO). */
1659 u8 single_stream_ant_msk; /* LINK_QUAL_ANT_* */
1660
1661 /* Best antennas to use for MIMO (unused for 4965, assumes both). */
1662 u8 dual_stream_ant_msk; /* LINK_QUAL_ANT_* */
1663
1664 /*
1665 * If driver needs to use different initial rates for different
1666 * EDCA QOS access categories (as implemented by tx fifos 0-3),
1667 * this table will set that up, by indicating the indexes in the
1668 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
1669 * Otherwise, driver should set all entries to 0.
1670 *
1671 * Entry usage:
1672 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
1673 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
1674 */
1675 u8 start_rate_index[LINK_QUAL_AC_NUM];
1676 } __attribute__ ((packed));
1677
1678 /**
1679 * struct iwl_link_qual_agg_params
1680 *
1681 * Used in REPLY_TX_LINK_QUALITY_CMD
1682 */
1683 struct iwl_link_qual_agg_params {
1684
1685 /* Maximum number of uSec in aggregation.
1686 * Driver should set this to 4000 (4 milliseconds). */
1687 __le16 agg_time_limit;
1688
1689 /*
1690 * Number of Tx retries allowed for a frame, before that frame will
1691 * no longer be considered for the start of an aggregation sequence
1692 * (scheduler will then try to tx it as single frame).
1693 * Driver should set this to 3.
1694 */
1695 u8 agg_dis_start_th;
1696
1697 /*
1698 * Maximum number of frames in aggregation.
1699 * 0 = no limit (default). 1 = no aggregation.
1700 * Other values = max # frames in aggregation.
1701 */
1702 u8 agg_frame_cnt_limit;
1703
1704 __le32 reserved;
1705 } __attribute__ ((packed));
1706
1707 /*
1708 * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
1709 *
1710 * For 4965 only; 3945 uses REPLY_RATE_SCALE.
1711 *
1712 * Each station in the 4965's internal station table has its own table of 16
1713 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
1714 * an ACK is not received. This command replaces the entire table for
1715 * one station.
1716 *
1717 * NOTE: Station must already be in 4965's station table. Use REPLY_ADD_STA.
1718 *
1719 * The rate scaling procedures described below work well. Of course, other
1720 * procedures are possible, and may work better for particular environments.
1721 *
1722 *
1723 * FILLING THE RATE TABLE
1724 *
1725 * Given a particular initial rate and mode, as determined by the rate
1726 * scaling algorithm described below, the Linux driver uses the following
1727 * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
1728 * Link Quality command:
1729 *
1730 *
1731 * 1) If using High-throughput (HT) (SISO or MIMO) initial rate:
1732 * a) Use this same initial rate for first 3 entries.
1733 * b) Find next lower available rate using same mode (SISO or MIMO),
1734 * use for next 3 entries. If no lower rate available, switch to
1735 * legacy mode (no FAT channel, no MIMO, no short guard interval).
1736 * c) If using MIMO, set command's mimo_delimiter to number of entries
1737 * using MIMO (3 or 6).
1738 * d) After trying 2 HT rates, switch to legacy mode (no FAT channel,
1739 * no MIMO, no short guard interval), at the next lower bit rate
1740 * (e.g. if second HT bit rate was 54, try 48 legacy), and follow
1741 * legacy procedure for remaining table entries.
1742 *
1743 * 2) If using legacy initial rate:
1744 * a) Use the initial rate for only one entry.
1745 * b) For each following entry, reduce the rate to next lower available
1746 * rate, until reaching the lowest available rate.
1747 * c) When reducing rate, also switch antenna selection.
1748 * d) Once lowest available rate is reached, repeat this rate until
1749 * rate table is filled (16 entries), switching antenna each entry.
1750 *
1751 *
1752 * ACCUMULATING HISTORY
1753 *
1754 * The rate scaling algorithm for 4965, as implemented in Linux driver, uses
1755 * two sets of frame Tx success history: One for the current/active modulation
1756 * mode, and one for a speculative/search mode that is being attempted. If the
1757 * speculative mode turns out to be more effective (i.e. actual transfer
1758 * rate is better), then the driver continues to use the speculative mode
1759 * as the new current active mode.
1760 *
1761 * Each history set contains, separately for each possible rate, data for a
1762 * sliding window of the 62 most recent tx attempts at that rate. The data
1763 * includes a shifting bitmap of success(1)/failure(0), and sums of successful
1764 * and attempted frames, from which the driver can additionally calculate a
1765 * success ratio (success / attempted) and number of failures
1766 * (attempted - success), and control the size of the window (attempted).
1767 * The driver uses the bit map to remove successes from the success sum, as
1768 * the oldest tx attempts fall out of the window.
1769 *
1770 * When the 4965 makes multiple tx attempts for a given frame, each attempt
1771 * might be at a different rate, and have different modulation characteristics
1772 * (e.g. antenna, fat channel, short guard interval), as set up in the rate
1773 * scaling table in the Link Quality command. The driver must determine
1774 * which rate table entry was used for each tx attempt, to determine which
1775 * rate-specific history to update, and record only those attempts that
1776 * match the modulation characteristics of the history set.
1777 *
1778 * When using block-ack (aggregation), all frames are transmitted at the same
1779 * rate, since there is no per-attempt acknowledgment from the destination
1780 * station. The Tx response struct iwl_tx_resp indicates the Tx rate in
1781 * rate_n_flags field. After receiving a block-ack, the driver can update
1782 * history for the entire block all at once.
1783 *
1784 *
1785 * FINDING BEST STARTING RATE:
1786 *
1787 * When working with a selected initial modulation mode (see below), the
1788 * driver attempts to find a best initial rate. The initial rate is the
1789 * first entry in the Link Quality command's rate table.
1790 *
1791 * 1) Calculate actual throughput (success ratio * expected throughput, see
1792 * table below) for current initial rate. Do this only if enough frames
1793 * have been attempted to make the value meaningful: at least 6 failed
1794 * tx attempts, or at least 8 successes. If not enough, don't try rate
1795 * scaling yet.
1796 *
1797 * 2) Find available rates adjacent to current initial rate. Available means:
1798 * a) supported by hardware &&
1799 * b) supported by association &&
1800 * c) within any constraints selected by user
1801 *
1802 * 3) Gather measured throughputs for adjacent rates. These might not have
1803 * enough history to calculate a throughput. That's okay, we might try
1804 * using one of them anyway!
1805 *
1806 * 4) Try decreasing rate if, for current rate:
1807 * a) success ratio is < 15% ||
1808 * b) lower adjacent rate has better measured throughput ||
1809 * c) higher adjacent rate has worse throughput, and lower is unmeasured
1810 *
1811 * As a sanity check, if decrease was determined above, leave rate
1812 * unchanged if:
1813 * a) lower rate unavailable
1814 * b) success ratio at current rate > 85% (very good)
1815 * c) current measured throughput is better than expected throughput
1816 * of lower rate (under perfect 100% tx conditions, see table below)
1817 *
1818 * 5) Try increasing rate if, for current rate:
1819 * a) success ratio is < 15% ||
1820 * b) both adjacent rates' throughputs are unmeasured (try it!) ||
1821 * b) higher adjacent rate has better measured throughput ||
1822 * c) lower adjacent rate has worse throughput, and higher is unmeasured
1823 *
1824 * As a sanity check, if increase was determined above, leave rate
1825 * unchanged if:
1826 * a) success ratio at current rate < 70%. This is not particularly
1827 * good performance; higher rate is sure to have poorer success.
1828 *
1829 * 6) Re-evaluate the rate after each tx frame. If working with block-
1830 * acknowledge, history and statistics may be calculated for the entire
1831 * block (including prior history that fits within the history windows),
1832 * before re-evaluation.
1833 *
1834 * FINDING BEST STARTING MODULATION MODE:
1835 *
1836 * After working with a modulation mode for a "while" (and doing rate scaling),
1837 * the driver searches for a new initial mode in an attempt to improve
1838 * throughput. The "while" is measured by numbers of attempted frames:
1839 *
1840 * For legacy mode, search for new mode after:
1841 * 480 successful frames, or 160 failed frames
1842 * For high-throughput modes (SISO or MIMO), search for new mode after:
1843 * 4500 successful frames, or 400 failed frames
1844 *
1845 * Mode switch possibilities are (3 for each mode):
1846 *
1847 * For legacy:
1848 * Change antenna, try SISO (if HT association), try MIMO (if HT association)
1849 * For SISO:
1850 * Change antenna, try MIMO, try shortened guard interval (SGI)
1851 * For MIMO:
1852 * Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
1853 *
1854 * When trying a new mode, use the same bit rate as the old/current mode when
1855 * trying antenna switches and shortened guard interval. When switching to
1856 * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
1857 * for which the expected throughput (under perfect conditions) is about the
1858 * same or slightly better than the actual measured throughput delivered by
1859 * the old/current mode.
1860 *
1861 * Actual throughput can be estimated by multiplying the expected throughput
1862 * by the success ratio (successful / attempted tx frames). Frame size is
1863 * not considered in this calculation; it assumes that frame size will average
1864 * out to be fairly consistent over several samples. The following are
1865 * metric values for expected throughput assuming 100% success ratio.
1866 * Only G band has support for CCK rates:
1867 *
1868 * RATE: 1 2 5 11 6 9 12 18 24 36 48 54 60
1869 *
1870 * G: 7 13 35 58 40 57 72 98 121 154 177 186 186
1871 * A: 0 0 0 0 40 57 72 98 121 154 177 186 186
1872 * SISO 20MHz: 0 0 0 0 42 42 76 102 124 159 183 193 202
1873 * SGI SISO 20MHz: 0 0 0 0 46 46 82 110 132 168 192 202 211
1874 * MIMO 20MHz: 0 0 0 0 74 74 123 155 179 214 236 244 251
1875 * SGI MIMO 20MHz: 0 0 0 0 81 81 131 164 188 222 243 251 257
1876 * SISO 40MHz: 0 0 0 0 77 77 127 160 184 220 242 250 257
1877 * SGI SISO 40MHz: 0 0 0 0 83 83 135 169 193 229 250 257 264
1878 * MIMO 40MHz: 0 0 0 0 123 123 182 214 235 264 279 285 289
1879 * SGI MIMO 40MHz: 0 0 0 0 131 131 191 222 242 270 284 289 293
1880 *
1881 * After the new mode has been tried for a short while (minimum of 6 failed
1882 * frames or 8 successful frames), compare success ratio and actual throughput
1883 * estimate of the new mode with the old. If either is better with the new
1884 * mode, continue to use the new mode.
1885 *
1886 * Continue comparing modes until all 3 possibilities have been tried.
1887 * If moving from legacy to HT, try all 3 possibilities from the new HT
1888 * mode. After trying all 3, a best mode is found. Continue to use this mode
1889 * for the longer "while" described above (e.g. 480 successful frames for
1890 * legacy), and then repeat the search process.
1891 *
1892 */
1893 struct iwl_link_quality_cmd {
1894
1895 /* Index of destination/recipient station in uCode's station table */
1896 u8 sta_id;
1897 u8 reserved1;
1898 __le16 control; /* not used */
1899 struct iwl_link_qual_general_params general_params;
1900 struct iwl_link_qual_agg_params agg_params;
1901
1902 /*
1903 * Rate info; when using rate-scaling, Tx command's initial_rate_index
1904 * specifies 1st Tx rate attempted, via index into this table.
1905 * 4965 works its way through table when retrying Tx.
1906 */
1907 struct {
1908 __le32 rate_n_flags; /* RATE_MCS_*, IWL_RATE_* */
1909 } rs_table[LINK_QUAL_MAX_RETRY_NUM];
1910 __le32 reserved2;
1911 } __attribute__ ((packed));
1912
1913 /*
1914 * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
1915 *
1916 * 3945 and 4965 support hardware handshake with Bluetooth device on
1917 * same platform. Bluetooth device alerts wireless device when it will Tx;
1918 * wireless device can delay or kill its own Tx to accommodate.
1919 */
1920 struct iwl4965_bt_cmd {
1921 u8 flags;
1922 u8 lead_time;
1923 u8 max_kill;
1924 u8 reserved;
1925 __le32 kill_ack_mask;
1926 __le32 kill_cts_mask;
1927 } __attribute__ ((packed));
1928
1929 /******************************************************************************
1930 * (6)
1931 * Spectrum Management (802.11h) Commands, Responses, Notifications:
1932 *
1933 *****************************************************************************/
1934
1935 /*
1936 * Spectrum Management
1937 */
1938 #define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK | \
1939 RXON_FILTER_CTL2HOST_MSK | \
1940 RXON_FILTER_ACCEPT_GRP_MSK | \
1941 RXON_FILTER_DIS_DECRYPT_MSK | \
1942 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
1943 RXON_FILTER_ASSOC_MSK | \
1944 RXON_FILTER_BCON_AWARE_MSK)
1945
1946 struct iwl4965_measure_channel {
1947 __le32 duration; /* measurement duration in extended beacon
1948 * format */
1949 u8 channel; /* channel to measure */
1950 u8 type; /* see enum iwl4965_measure_type */
1951 __le16 reserved;
1952 } __attribute__ ((packed));
1953
1954 /*
1955 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
1956 */
1957 struct iwl4965_spectrum_cmd {
1958 __le16 len; /* number of bytes starting from token */
1959 u8 token; /* token id */
1960 u8 id; /* measurement id -- 0 or 1 */
1961 u8 origin; /* 0 = TGh, 1 = other, 2 = TGk */
1962 u8 periodic; /* 1 = periodic */
1963 __le16 path_loss_timeout;
1964 __le32 start_time; /* start time in extended beacon format */
1965 __le32 reserved2;
1966 __le32 flags; /* rxon flags */
1967 __le32 filter_flags; /* rxon filter flags */
1968 __le16 channel_count; /* minimum 1, maximum 10 */
1969 __le16 reserved3;
1970 struct iwl4965_measure_channel channels[10];
1971 } __attribute__ ((packed));
1972
1973 /*
1974 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
1975 */
1976 struct iwl4965_spectrum_resp {
1977 u8 token;
1978 u8 id; /* id of the prior command replaced, or 0xff */
1979 __le16 status; /* 0 - command will be handled
1980 * 1 - cannot handle (conflicts with another
1981 * measurement) */
1982 } __attribute__ ((packed));
1983
1984 enum iwl4965_measurement_state {
1985 IWL_MEASUREMENT_START = 0,
1986 IWL_MEASUREMENT_STOP = 1,
1987 };
1988
1989 enum iwl4965_measurement_status {
1990 IWL_MEASUREMENT_OK = 0,
1991 IWL_MEASUREMENT_CONCURRENT = 1,
1992 IWL_MEASUREMENT_CSA_CONFLICT = 2,
1993 IWL_MEASUREMENT_TGH_CONFLICT = 3,
1994 /* 4-5 reserved */
1995 IWL_MEASUREMENT_STOPPED = 6,
1996 IWL_MEASUREMENT_TIMEOUT = 7,
1997 IWL_MEASUREMENT_PERIODIC_FAILED = 8,
1998 };
1999
2000 #define NUM_ELEMENTS_IN_HISTOGRAM 8
2001
2002 struct iwl4965_measurement_histogram {
2003 __le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 0.8usec counts */
2004 __le32 cck[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 1usec counts */
2005 } __attribute__ ((packed));
2006
2007 /* clear channel availability counters */
2008 struct iwl4965_measurement_cca_counters {
2009 __le32 ofdm;
2010 __le32 cck;
2011 } __attribute__ ((packed));
2012
2013 enum iwl4965_measure_type {
2014 IWL_MEASURE_BASIC = (1 << 0),
2015 IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
2016 IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
2017 IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
2018 IWL_MEASURE_FRAME = (1 << 4),
2019 /* bits 5:6 are reserved */
2020 IWL_MEASURE_IDLE = (1 << 7),
2021 };
2022
2023 /*
2024 * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
2025 */
2026 struct iwl4965_spectrum_notification {
2027 u8 id; /* measurement id -- 0 or 1 */
2028 u8 token;
2029 u8 channel_index; /* index in measurement channel list */
2030 u8 state; /* 0 - start, 1 - stop */
2031 __le32 start_time; /* lower 32-bits of TSF */
2032 u8 band; /* 0 - 5.2GHz, 1 - 2.4GHz */
2033 u8 channel;
2034 u8 type; /* see enum iwl4965_measurement_type */
2035 u8 reserved1;
2036 /* NOTE: cca_ofdm, cca_cck, basic_type, and histogram are only only
2037 * valid if applicable for measurement type requested. */
2038 __le32 cca_ofdm; /* cca fraction time in 40Mhz clock periods */
2039 __le32 cca_cck; /* cca fraction time in 44Mhz clock periods */
2040 __le32 cca_time; /* channel load time in usecs */
2041 u8 basic_type; /* 0 - bss, 1 - ofdm preamble, 2 -
2042 * unidentified */
2043 u8 reserved2[3];
2044 struct iwl4965_measurement_histogram histogram;
2045 __le32 stop_time; /* lower 32-bits of TSF */
2046 __le32 status; /* see iwl4965_measurement_status */
2047 } __attribute__ ((packed));
2048
2049 /******************************************************************************
2050 * (7)
2051 * Power Management Commands, Responses, Notifications:
2052 *
2053 *****************************************************************************/
2054
2055 /**
2056 * struct iwl_powertable_cmd - Power Table Command
2057 * @flags: See below:
2058 *
2059 * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
2060 *
2061 * PM allow:
2062 * bit 0 - '0' Driver not allow power management
2063 * '1' Driver allow PM (use rest of parameters)
2064 * uCode send sleep notifications:
2065 * bit 1 - '0' Don't send sleep notification
2066 * '1' send sleep notification (SEND_PM_NOTIFICATION)
2067 * Sleep over DTIM
2068 * bit 2 - '0' PM have to walk up every DTIM
2069 * '1' PM could sleep over DTIM till listen Interval.
2070 * PCI power managed
2071 * bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
2072 * '1' !(PCI_CFG_LINK_CTRL & 0x1)
2073 * Force sleep Modes
2074 * bit 31/30- '00' use both mac/xtal sleeps
2075 * '01' force Mac sleep
2076 * '10' force xtal sleep
2077 * '11' Illegal set
2078 *
2079 * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
2080 * ucode assume sleep over DTIM is allowed and we don't need to wake up
2081 * for every DTIM.
2082 */
2083 #define IWL_POWER_VEC_SIZE 5
2084
2085 #define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK cpu_to_le16(1 << 0)
2086 #define IWL_POWER_SLEEP_OVER_DTIM_MSK cpu_to_le16(1 << 2)
2087 #define IWL_POWER_PCI_PM_MSK cpu_to_le16(1 << 3)
2088 #define IWL_POWER_FAST_PD cpu_to_le16(1 << 4)
2089
2090 struct iwl_powertable_cmd {
2091 __le16 flags;
2092 u8 keep_alive_seconds;
2093 u8 debug_flags;
2094 __le32 rx_data_timeout;
2095 __le32 tx_data_timeout;
2096 __le32 sleep_interval[IWL_POWER_VEC_SIZE];
2097 __le32 keep_alive_beacons;
2098 } __attribute__ ((packed));
2099
2100 /*
2101 * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
2102 * 3945 and 4965 identical.
2103 */
2104 struct iwl4965_sleep_notification {
2105 u8 pm_sleep_mode;
2106 u8 pm_wakeup_src;
2107 __le16 reserved;
2108 __le32 sleep_time;
2109 __le32 tsf_low;
2110 __le32 bcon_timer;
2111 } __attribute__ ((packed));
2112
2113 /* Sleep states. 3945 and 4965 identical. */
2114 enum {
2115 IWL_PM_NO_SLEEP = 0,
2116 IWL_PM_SLP_MAC = 1,
2117 IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
2118 IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
2119 IWL_PM_SLP_PHY = 4,
2120 IWL_PM_SLP_REPENT = 5,
2121 IWL_PM_WAKEUP_BY_TIMER = 6,
2122 IWL_PM_WAKEUP_BY_DRIVER = 7,
2123 IWL_PM_WAKEUP_BY_RFKILL = 8,
2124 /* 3 reserved */
2125 IWL_PM_NUM_OF_MODES = 12,
2126 };
2127
2128 /*
2129 * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
2130 */
2131 #define CARD_STATE_CMD_DISABLE 0x00 /* Put card to sleep */
2132 #define CARD_STATE_CMD_ENABLE 0x01 /* Wake up card */
2133 #define CARD_STATE_CMD_HALT 0x02 /* Power down permanently */
2134 struct iwl4965_card_state_cmd {
2135 __le32 status; /* CARD_STATE_CMD_* request new power state */
2136 } __attribute__ ((packed));
2137
2138 /*
2139 * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
2140 */
2141 struct iwl4965_card_state_notif {
2142 __le32 flags;
2143 } __attribute__ ((packed));
2144
2145 #define HW_CARD_DISABLED 0x01
2146 #define SW_CARD_DISABLED 0x02
2147 #define RF_CARD_DISABLED 0x04
2148 #define RXON_CARD_DISABLED 0x10
2149
2150 struct iwl_ct_kill_config {
2151 __le32 reserved;
2152 __le32 critical_temperature_M;
2153 __le32 critical_temperature_R;
2154 } __attribute__ ((packed));
2155
2156 /******************************************************************************
2157 * (8)
2158 * Scan Commands, Responses, Notifications:
2159 *
2160 *****************************************************************************/
2161
2162 #define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
2163 #define SCAN_CHANNEL_TYPE_ACTIVE cpu_to_le32(1)
2164
2165 /**
2166 * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
2167 *
2168 * One for each channel in the scan list.
2169 * Each channel can independently select:
2170 * 1) SSID for directed active scans
2171 * 2) Txpower setting (for rate specified within Tx command)
2172 * 3) How long to stay on-channel (behavior may be modified by quiet_time,
2173 * quiet_plcp_th, good_CRC_th)
2174 *
2175 * To avoid uCode errors, make sure the following are true (see comments
2176 * under struct iwl_scan_cmd about max_out_time and quiet_time):
2177 * 1) If using passive_dwell (i.e. passive_dwell != 0):
2178 * active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
2179 * 2) quiet_time <= active_dwell
2180 * 3) If restricting off-channel time (i.e. max_out_time !=0):
2181 * passive_dwell < max_out_time
2182 * active_dwell < max_out_time
2183 */
2184 struct iwl_scan_channel {
2185 /*
2186 * type is defined as:
2187 * 0:0 1 = active, 0 = passive
2188 * 1:20 SSID direct bit map; if a bit is set, then corresponding
2189 * SSID IE is transmitted in probe request.
2190 * 21:31 reserved
2191 */
2192 __le32 type;
2193 __le16 channel; /* band is selected by iwl_scan_cmd "flags" field */
2194 u8 tx_gain; /* gain for analog radio */
2195 u8 dsp_atten; /* gain for DSP */
2196 __le16 active_dwell; /* in 1024-uSec TU (time units), typ 5-50 */
2197 __le16 passive_dwell; /* in 1024-uSec TU (time units), typ 20-500 */
2198 } __attribute__ ((packed));
2199
2200 /**
2201 * struct iwl_ssid_ie - directed scan network information element
2202 *
2203 * Up to 4 of these may appear in REPLY_SCAN_CMD, selected by "type" field
2204 * in struct iwl4965_scan_channel; each channel may select different ssids from
2205 * among the 4 entries. SSID IEs get transmitted in reverse order of entry.
2206 */
2207 struct iwl_ssid_ie {
2208 u8 id;
2209 u8 len;
2210 u8 ssid[32];
2211 } __attribute__ ((packed));
2212
2213 #define PROBE_OPTION_MAX 0x14
2214 #define TX_CMD_LIFE_TIME_INFINITE cpu_to_le32(0xFFFFFFFF)
2215 #define IWL_GOOD_CRC_TH cpu_to_le16(1)
2216 #define IWL_MAX_SCAN_SIZE 1024
2217
2218 /*
2219 * REPLY_SCAN_CMD = 0x80 (command)
2220 *
2221 * The hardware scan command is very powerful; the driver can set it up to
2222 * maintain (relatively) normal network traffic while doing a scan in the
2223 * background. The max_out_time and suspend_time control the ratio of how
2224 * long the device stays on an associated network channel ("service channel")
2225 * vs. how long it's away from the service channel, i.e. tuned to other channels
2226 * for scanning.
2227 *
2228 * max_out_time is the max time off-channel (in usec), and suspend_time
2229 * is how long (in "extended beacon" format) that the scan is "suspended"
2230 * after returning to the service channel. That is, suspend_time is the
2231 * time that we stay on the service channel, doing normal work, between
2232 * scan segments. The driver may set these parameters differently to support
2233 * scanning when associated vs. not associated, and light vs. heavy traffic
2234 * loads when associated.
2235 *
2236 * After receiving this command, the device's scan engine does the following;
2237 *
2238 * 1) Sends SCAN_START notification to driver
2239 * 2) Checks to see if it has time to do scan for one channel
2240 * 3) Sends NULL packet, with power-save (PS) bit set to 1,
2241 * to tell AP that we're going off-channel
2242 * 4) Tunes to first channel in scan list, does active or passive scan
2243 * 5) Sends SCAN_RESULT notification to driver
2244 * 6) Checks to see if it has time to do scan on *next* channel in list
2245 * 7) Repeats 4-6 until it no longer has time to scan the next channel
2246 * before max_out_time expires
2247 * 8) Returns to service channel
2248 * 9) Sends NULL packet with PS=0 to tell AP that we're back
2249 * 10) Stays on service channel until suspend_time expires
2250 * 11) Repeats entire process 2-10 until list is complete
2251 * 12) Sends SCAN_COMPLETE notification
2252 *
2253 * For fast, efficient scans, the scan command also has support for staying on
2254 * a channel for just a short time, if doing active scanning and getting no
2255 * responses to the transmitted probe request. This time is controlled by
2256 * quiet_time, and the number of received packets below which a channel is
2257 * considered "quiet" is controlled by quiet_plcp_threshold.
2258 *
2259 * For active scanning on channels that have regulatory restrictions against
2260 * blindly transmitting, the scan can listen before transmitting, to make sure
2261 * that there is already legitimate activity on the channel. If enough
2262 * packets are cleanly received on the channel (controlled by good_CRC_th,
2263 * typical value 1), the scan engine starts transmitting probe requests.
2264 *
2265 * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
2266 *
2267 * To avoid uCode errors, see timing restrictions described under
2268 * struct iwl_scan_channel.
2269 */
2270 struct iwl_scan_cmd {
2271 __le16 len;
2272 u8 reserved0;
2273 u8 channel_count; /* # channels in channel list */
2274 __le16 quiet_time; /* dwell only this # millisecs on quiet channel
2275 * (only for active scan) */
2276 __le16 quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */
2277 __le16 good_CRC_th; /* passive -> active promotion threshold */
2278 __le16 rx_chain; /* RXON_RX_CHAIN_* */
2279 __le32 max_out_time; /* max usec to be away from associated (service)
2280 * channel */
2281 __le32 suspend_time; /* pause scan this long (in "extended beacon
2282 * format") when returning to service chnl:
2283 * 3945; 31:24 # beacons, 19:0 additional usec,
2284 * 4965; 31:22 # beacons, 21:0 additional usec.
2285 */
2286 __le32 flags; /* RXON_FLG_* */
2287 __le32 filter_flags; /* RXON_FILTER_* */
2288
2289 /* For active scans (set to all-0s for passive scans).
2290 * Does not include payload. Must specify Tx rate; no rate scaling. */
2291 struct iwl_tx_cmd tx_cmd;
2292
2293 /* For directed active scans (set to all-0s otherwise) */
2294 struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
2295
2296 /*
2297 * Probe request frame, followed by channel list.
2298 *
2299 * Size of probe request frame is specified by byte count in tx_cmd.
2300 * Channel list follows immediately after probe request frame.
2301 * Number of channels in list is specified by channel_count.
2302 * Each channel in list is of type:
2303 *
2304 * struct iwl4965_scan_channel channels[0];
2305 *
2306 * NOTE: Only one band of channels can be scanned per pass. You
2307 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2308 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2309 * before requesting another scan.
2310 */
2311 u8 data[0];
2312 } __attribute__ ((packed));
2313
2314 /* Can abort will notify by complete notification with abort status. */
2315 #define CAN_ABORT_STATUS cpu_to_le32(0x1)
2316 /* complete notification statuses */
2317 #define ABORT_STATUS 0x2
2318
2319 /*
2320 * REPLY_SCAN_CMD = 0x80 (response)
2321 */
2322 struct iwl_scanreq_notification {
2323 __le32 status; /* 1: okay, 2: cannot fulfill request */
2324 } __attribute__ ((packed));
2325
2326 /*
2327 * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
2328 */
2329 struct iwl_scanstart_notification {
2330 __le32 tsf_low;
2331 __le32 tsf_high;
2332 __le32 beacon_timer;
2333 u8 channel;
2334 u8 band;
2335 u8 reserved[2];
2336 __le32 status;
2337 } __attribute__ ((packed));
2338
2339 #define SCAN_OWNER_STATUS 0x1;
2340 #define MEASURE_OWNER_STATUS 0x2;
2341
2342 #define NUMBER_OF_STATISTICS 1 /* first __le32 is good CRC */
2343 /*
2344 * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
2345 */
2346 struct iwl_scanresults_notification {
2347 u8 channel;
2348 u8 band;
2349 u8 reserved[2];
2350 __le32 tsf_low;
2351 __le32 tsf_high;
2352 __le32 statistics[NUMBER_OF_STATISTICS];
2353 } __attribute__ ((packed));
2354
2355 /*
2356 * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
2357 */
2358 struct iwl_scancomplete_notification {
2359 u8 scanned_channels;
2360 u8 status;
2361 u8 reserved;
2362 u8 last_channel;
2363 __le32 tsf_low;
2364 __le32 tsf_high;
2365 } __attribute__ ((packed));
2366
2367
2368 /******************************************************************************
2369 * (9)
2370 * IBSS/AP Commands and Notifications:
2371 *
2372 *****************************************************************************/
2373
2374 /*
2375 * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
2376 */
2377 struct iwl4965_beacon_notif {
2378 struct iwl4965_tx_resp beacon_notify_hdr;
2379 __le32 low_tsf;
2380 __le32 high_tsf;
2381 __le32 ibss_mgr_status;
2382 } __attribute__ ((packed));
2383
2384 /*
2385 * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
2386 */
2387 struct iwl_tx_beacon_cmd {
2388 struct iwl_tx_cmd tx;
2389 __le16 tim_idx;
2390 u8 tim_size;
2391 u8 reserved1;
2392 struct ieee80211_hdr frame[0]; /* beacon frame */
2393 } __attribute__ ((packed));
2394
2395 /******************************************************************************
2396 * (10)
2397 * Statistics Commands and Notifications:
2398 *
2399 *****************************************************************************/
2400
2401 #define IWL_TEMP_CONVERT 260
2402
2403 #define SUP_RATE_11A_MAX_NUM_CHANNELS 8
2404 #define SUP_RATE_11B_MAX_NUM_CHANNELS 4
2405 #define SUP_RATE_11G_MAX_NUM_CHANNELS 12
2406
2407 /* Used for passing to driver number of successes and failures per rate */
2408 struct rate_histogram {
2409 union {
2410 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2411 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2412 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2413 } success;
2414 union {
2415 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2416 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2417 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2418 } failed;
2419 } __attribute__ ((packed));
2420
2421 /* statistics command response */
2422
2423 struct statistics_rx_phy {
2424 __le32 ina_cnt;
2425 __le32 fina_cnt;
2426 __le32 plcp_err;
2427 __le32 crc32_err;
2428 __le32 overrun_err;
2429 __le32 early_overrun_err;
2430 __le32 crc32_good;
2431 __le32 false_alarm_cnt;
2432 __le32 fina_sync_err_cnt;
2433 __le32 sfd_timeout;
2434 __le32 fina_timeout;
2435 __le32 unresponded_rts;
2436 __le32 rxe_frame_limit_overrun;
2437 __le32 sent_ack_cnt;
2438 __le32 sent_cts_cnt;
2439 __le32 sent_ba_rsp_cnt;
2440 __le32 dsp_self_kill;
2441 __le32 mh_format_err;
2442 __le32 re_acq_main_rssi_sum;
2443 __le32 reserved3;
2444 } __attribute__ ((packed));
2445
2446 struct statistics_rx_ht_phy {
2447 __le32 plcp_err;
2448 __le32 overrun_err;
2449 __le32 early_overrun_err;
2450 __le32 crc32_good;
2451 __le32 crc32_err;
2452 __le32 mh_format_err;
2453 __le32 agg_crc32_good;
2454 __le32 agg_mpdu_cnt;
2455 __le32 agg_cnt;
2456 __le32 reserved2;
2457 } __attribute__ ((packed));
2458
2459 struct statistics_rx_non_phy {
2460 __le32 bogus_cts; /* CTS received when not expecting CTS */
2461 __le32 bogus_ack; /* ACK received when not expecting ACK */
2462 __le32 non_bssid_frames; /* number of frames with BSSID that
2463 * doesn't belong to the STA BSSID */
2464 __le32 filtered_frames; /* count frames that were dumped in the
2465 * filtering process */
2466 __le32 non_channel_beacons; /* beacons with our bss id but not on
2467 * our serving channel */
2468 __le32 channel_beacons; /* beacons with our bss id and in our
2469 * serving channel */
2470 __le32 num_missed_bcon; /* number of missed beacons */
2471 __le32 adc_rx_saturation_time; /* count in 0.8us units the time the
2472 * ADC was in saturation */
2473 __le32 ina_detection_search_time;/* total time (in 0.8us) searched
2474 * for INA */
2475 __le32 beacon_silence_rssi_a; /* RSSI silence after beacon frame */
2476 __le32 beacon_silence_rssi_b; /* RSSI silence after beacon frame */
2477 __le32 beacon_silence_rssi_c; /* RSSI silence after beacon frame */
2478 __le32 interference_data_flag; /* flag for interference data
2479 * availability. 1 when data is
2480 * available. */
2481 __le32 channel_load; /* counts RX Enable time in uSec */
2482 __le32 dsp_false_alarms; /* DSP false alarm (both OFDM
2483 * and CCK) counter */
2484 __le32 beacon_rssi_a;
2485 __le32 beacon_rssi_b;
2486 __le32 beacon_rssi_c;
2487 __le32 beacon_energy_a;
2488 __le32 beacon_energy_b;
2489 __le32 beacon_energy_c;
2490 } __attribute__ ((packed));
2491
2492 struct statistics_rx {
2493 struct statistics_rx_phy ofdm;
2494 struct statistics_rx_phy cck;
2495 struct statistics_rx_non_phy general;
2496 struct statistics_rx_ht_phy ofdm_ht;
2497 } __attribute__ ((packed));
2498
2499 struct statistics_tx_non_phy_agg {
2500 __le32 ba_timeout;
2501 __le32 ba_reschedule_frames;
2502 __le32 scd_query_agg_frame_cnt;
2503 __le32 scd_query_no_agg;
2504 __le32 scd_query_agg;
2505 __le32 scd_query_mismatch;
2506 __le32 frame_not_ready;
2507 __le32 underrun;
2508 __le32 bt_prio_kill;
2509 __le32 rx_ba_rsp_cnt;
2510 __le32 reserved2;
2511 __le32 reserved3;
2512 } __attribute__ ((packed));
2513
2514 struct statistics_tx {
2515 __le32 preamble_cnt;
2516 __le32 rx_detected_cnt;
2517 __le32 bt_prio_defer_cnt;
2518 __le32 bt_prio_kill_cnt;
2519 __le32 few_bytes_cnt;
2520 __le32 cts_timeout;
2521 __le32 ack_timeout;
2522 __le32 expected_ack_cnt;
2523 __le32 actual_ack_cnt;
2524 __le32 dump_msdu_cnt;
2525 __le32 burst_abort_next_frame_mismatch_cnt;
2526 __le32 burst_abort_missing_next_frame_cnt;
2527 __le32 cts_timeout_collision;
2528 __le32 ack_or_ba_timeout_collision;
2529 struct statistics_tx_non_phy_agg agg;
2530 } __attribute__ ((packed));
2531
2532 struct statistics_dbg {
2533 __le32 burst_check;
2534 __le32 burst_count;
2535 __le32 reserved[4];
2536 } __attribute__ ((packed));
2537
2538 struct statistics_div {
2539 __le32 tx_on_a;
2540 __le32 tx_on_b;
2541 __le32 exec_time;
2542 __le32 probe_time;
2543 __le32 reserved1;
2544 __le32 reserved2;
2545 } __attribute__ ((packed));
2546
2547 struct statistics_general {
2548 __le32 temperature;
2549 __le32 temperature_m;
2550 struct statistics_dbg dbg;
2551 __le32 sleep_time;
2552 __le32 slots_out;
2553 __le32 slots_idle;
2554 __le32 ttl_timestamp;
2555 struct statistics_div div;
2556 __le32 rx_enable_counter;
2557 __le32 reserved1;
2558 __le32 reserved2;
2559 __le32 reserved3;
2560 } __attribute__ ((packed));
2561
2562 /*
2563 * REPLY_STATISTICS_CMD = 0x9c,
2564 * 3945 and 4965 identical.
2565 *
2566 * This command triggers an immediate response containing uCode statistics.
2567 * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
2568 *
2569 * If the CLEAR_STATS configuration flag is set, uCode will clear its
2570 * internal copy of the statistics (counters) after issuing the response.
2571 * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
2572 *
2573 * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
2574 * STATISTICS_NOTIFICATIONs after received beacons (see below). This flag
2575 * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
2576 */
2577 #define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1) /* see above */
2578 #define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */
2579 struct iwl_statistics_cmd {
2580 __le32 configuration_flags; /* IWL_STATS_CONF_* */
2581 } __attribute__ ((packed));
2582
2583 /*
2584 * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
2585 *
2586 * By default, uCode issues this notification after receiving a beacon
2587 * while associated. To disable this behavior, set DISABLE_NOTIF flag in the
2588 * REPLY_STATISTICS_CMD 0x9c, above.
2589 *
2590 * Statistics counters continue to increment beacon after beacon, but are
2591 * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
2592 * 0x9c with CLEAR_STATS bit set (see above).
2593 *
2594 * uCode also issues this notification during scans. uCode clears statistics
2595 * appropriately so that each notification contains statistics for only the
2596 * one channel that has just been scanned.
2597 */
2598 #define STATISTICS_REPLY_FLG_BAND_24G_MSK cpu_to_le32(0x2)
2599 #define STATISTICS_REPLY_FLG_FAT_MODE_MSK cpu_to_le32(0x8)
2600 struct iwl_notif_statistics {
2601 __le32 flag;
2602 struct statistics_rx rx;
2603 struct statistics_tx tx;
2604 struct statistics_general general;
2605 } __attribute__ ((packed));
2606
2607
2608 /*
2609 * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
2610 */
2611 /* if ucode missed CONSECUTIVE_MISSED_BCONS_TH beacons in a row,
2612 * then this notification will be sent. */
2613 #define CONSECUTIVE_MISSED_BCONS_TH 20
2614
2615 struct iwl4965_missed_beacon_notif {
2616 __le32 consequtive_missed_beacons;
2617 __le32 total_missed_becons;
2618 __le32 num_expected_beacons;
2619 __le32 num_recvd_beacons;
2620 } __attribute__ ((packed));
2621
2622
2623 /******************************************************************************
2624 * (11)
2625 * Rx Calibration Commands:
2626 *
2627 * With the uCode used for open source drivers, most Tx calibration (except
2628 * for Tx Power) and most Rx calibration is done by uCode during the
2629 * "initialize" phase of uCode boot. Driver must calibrate only:
2630 *
2631 * 1) Tx power (depends on temperature), described elsewhere
2632 * 2) Receiver gain balance (optimize MIMO, and detect disconnected antennas)
2633 * 3) Receiver sensitivity (to optimize signal detection)
2634 *
2635 *****************************************************************************/
2636
2637 /**
2638 * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
2639 *
2640 * This command sets up the Rx signal detector for a sensitivity level that
2641 * is high enough to lock onto all signals within the associated network,
2642 * but low enough to ignore signals that are below a certain threshold, so as
2643 * not to have too many "false alarms". False alarms are signals that the
2644 * Rx DSP tries to lock onto, but then discards after determining that they
2645 * are noise.
2646 *
2647 * The optimum number of false alarms is between 5 and 50 per 200 TUs
2648 * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
2649 * time listening, not transmitting). Driver must adjust sensitivity so that
2650 * the ratio of actual false alarms to actual Rx time falls within this range.
2651 *
2652 * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
2653 * received beacon. These provide information to the driver to analyze the
2654 * sensitivity. Don't analyze statistics that come in from scanning, or any
2655 * other non-associated-network source. Pertinent statistics include:
2656 *
2657 * From "general" statistics (struct statistics_rx_non_phy):
2658 *
2659 * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
2660 * Measure of energy of desired signal. Used for establishing a level
2661 * below which the device does not detect signals.
2662 *
2663 * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
2664 * Measure of background noise in silent period after beacon.
2665 *
2666 * channel_load
2667 * uSecs of actual Rx time during beacon period (varies according to
2668 * how much time was spent transmitting).
2669 *
2670 * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
2671 *
2672 * false_alarm_cnt
2673 * Signal locks abandoned early (before phy-level header).
2674 *
2675 * plcp_err
2676 * Signal locks abandoned late (during phy-level header).
2677 *
2678 * NOTE: Both false_alarm_cnt and plcp_err increment monotonically from
2679 * beacon to beacon, i.e. each value is an accumulation of all errors
2680 * before and including the latest beacon. Values will wrap around to 0
2681 * after counting up to 2^32 - 1. Driver must differentiate vs.
2682 * previous beacon's values to determine # false alarms in the current
2683 * beacon period.
2684 *
2685 * Total number of false alarms = false_alarms + plcp_errs
2686 *
2687 * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
2688 * (notice that the start points for OFDM are at or close to settings for
2689 * maximum sensitivity):
2690 *
2691 * START / MIN / MAX
2692 * HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX 90 / 85 / 120
2693 * HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX 170 / 170 / 210
2694 * HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX 105 / 105 / 140
2695 * HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX 220 / 220 / 270
2696 *
2697 * If actual rate of OFDM false alarms (+ plcp_errors) is too high
2698 * (greater than 50 for each 204.8 msecs listening), reduce sensitivity
2699 * by *adding* 1 to all 4 of the table entries above, up to the max for
2700 * each entry. Conversely, if false alarm rate is too low (less than 5
2701 * for each 204.8 msecs listening), *subtract* 1 from each entry to
2702 * increase sensitivity.
2703 *
2704 * For CCK sensitivity, keep track of the following:
2705 *
2706 * 1). 20-beacon history of maximum background noise, indicated by
2707 * (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
2708 * 3 receivers. For any given beacon, the "silence reference" is
2709 * the maximum of last 60 samples (20 beacons * 3 receivers).
2710 *
2711 * 2). 10-beacon history of strongest signal level, as indicated
2712 * by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
2713 * i.e. the strength of the signal through the best receiver at the
2714 * moment. These measurements are "upside down", with lower values
2715 * for stronger signals, so max energy will be *minimum* value.
2716 *
2717 * Then for any given beacon, the driver must determine the *weakest*
2718 * of the strongest signals; this is the minimum level that needs to be
2719 * successfully detected, when using the best receiver at the moment.
2720 * "Max cck energy" is the maximum (higher value means lower energy!)
2721 * of the last 10 minima. Once this is determined, driver must add
2722 * a little margin by adding "6" to it.
2723 *
2724 * 3). Number of consecutive beacon periods with too few false alarms.
2725 * Reset this to 0 at the first beacon period that falls within the
2726 * "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
2727 *
2728 * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
2729 * (notice that the start points for CCK are at maximum sensitivity):
2730 *
2731 * START / MIN / MAX
2732 * HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX 125 / 125 / 200
2733 * HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX 200 / 200 / 400
2734 * HD_MIN_ENERGY_CCK_DET_INDEX 100 / 0 / 100
2735 *
2736 * If actual rate of CCK false alarms (+ plcp_errors) is too high
2737 * (greater than 50 for each 204.8 msecs listening), method for reducing
2738 * sensitivity is:
2739 *
2740 * 1) *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2741 * up to max 400.
2742 *
2743 * 2) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
2744 * sensitivity has been reduced a significant amount; bring it up to
2745 * a moderate 161. Otherwise, *add* 3, up to max 200.
2746 *
2747 * 3) a) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
2748 * sensitivity has been reduced only a moderate or small amount;
2749 * *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
2750 * down to min 0. Otherwise (if gain has been significantly reduced),
2751 * don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
2752 *
2753 * b) Save a snapshot of the "silence reference".
2754 *
2755 * If actual rate of CCK false alarms (+ plcp_errors) is too low
2756 * (less than 5 for each 204.8 msecs listening), method for increasing
2757 * sensitivity is used only if:
2758 *
2759 * 1a) Previous beacon did not have too many false alarms
2760 * 1b) AND difference between previous "silence reference" and current
2761 * "silence reference" (prev - current) is 2 or more,
2762 * OR 2) 100 or more consecutive beacon periods have had rate of
2763 * less than 5 false alarms per 204.8 milliseconds rx time.
2764 *
2765 * Method for increasing sensitivity:
2766 *
2767 * 1) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
2768 * down to min 125.
2769 *
2770 * 2) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2771 * down to min 200.
2772 *
2773 * 3) *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
2774 *
2775 * If actual rate of CCK false alarms (+ plcp_errors) is within good range
2776 * (between 5 and 50 for each 204.8 msecs listening):
2777 *
2778 * 1) Save a snapshot of the silence reference.
2779 *
2780 * 2) If previous beacon had too many CCK false alarms (+ plcp_errors),
2781 * give some extra margin to energy threshold by *subtracting* 8
2782 * from value in HD_MIN_ENERGY_CCK_DET_INDEX.
2783 *
2784 * For all cases (too few, too many, good range), make sure that the CCK
2785 * detection threshold (energy) is below the energy level for robust
2786 * detection over the past 10 beacon periods, the "Max cck energy".
2787 * Lower values mean higher energy; this means making sure that the value
2788 * in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
2789 *
2790 * Driver should set the following entries to fixed values:
2791 *
2792 * HD_MIN_ENERGY_OFDM_DET_INDEX 100
2793 * HD_BARKER_CORR_TH_ADD_MIN_INDEX 190
2794 * HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX 390
2795 * HD_OFDM_ENERGY_TH_IN_INDEX 62
2796 */
2797
2798 /*
2799 * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
2800 */
2801 #define HD_TABLE_SIZE (11) /* number of entries */
2802 #define HD_MIN_ENERGY_CCK_DET_INDEX (0) /* table indexes */
2803 #define HD_MIN_ENERGY_OFDM_DET_INDEX (1)
2804 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX (2)
2805 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX (3)
2806 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX (4)
2807 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX (5)
2808 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX (6)
2809 #define HD_BARKER_CORR_TH_ADD_MIN_INDEX (7)
2810 #define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX (8)
2811 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX (9)
2812 #define HD_OFDM_ENERGY_TH_IN_INDEX (10)
2813
2814 /* Control field in struct iwl_sensitivity_cmd */
2815 #define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE cpu_to_le16(0)
2816 #define SENSITIVITY_CMD_CONTROL_WORK_TABLE cpu_to_le16(1)
2817
2818 /**
2819 * struct iwl_sensitivity_cmd
2820 * @control: (1) updates working table, (0) updates default table
2821 * @table: energy threshold values, use HD_* as index into table
2822 *
2823 * Always use "1" in "control" to update uCode's working table and DSP.
2824 */
2825 struct iwl_sensitivity_cmd {
2826 __le16 control; /* always use "1" */
2827 __le16 table[HD_TABLE_SIZE]; /* use HD_* as index */
2828 } __attribute__ ((packed));
2829
2830
2831 /**
2832 * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
2833 *
2834 * This command sets the relative gains of 4965's 3 radio receiver chains.
2835 *
2836 * After the first association, driver should accumulate signal and noise
2837 * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
2838 * beacons from the associated network (don't collect statistics that come
2839 * in from scanning, or any other non-network source).
2840 *
2841 * DISCONNECTED ANTENNA:
2842 *
2843 * Driver should determine which antennas are actually connected, by comparing
2844 * average beacon signal levels for the 3 Rx chains. Accumulate (add) the
2845 * following values over 20 beacons, one accumulator for each of the chains
2846 * a/b/c, from struct statistics_rx_non_phy:
2847 *
2848 * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
2849 *
2850 * Find the strongest signal from among a/b/c. Compare the other two to the
2851 * strongest. If any signal is more than 15 dB (times 20, unless you
2852 * divide the accumulated values by 20) below the strongest, the driver
2853 * considers that antenna to be disconnected, and should not try to use that
2854 * antenna/chain for Rx or Tx. If both A and B seem to be disconnected,
2855 * driver should declare the stronger one as connected, and attempt to use it
2856 * (A and B are the only 2 Tx chains!).
2857 *
2858 *
2859 * RX BALANCE:
2860 *
2861 * Driver should balance the 3 receivers (but just the ones that are connected
2862 * to antennas, see above) for gain, by comparing the average signal levels
2863 * detected during the silence after each beacon (background noise).
2864 * Accumulate (add) the following values over 20 beacons, one accumulator for
2865 * each of the chains a/b/c, from struct statistics_rx_non_phy:
2866 *
2867 * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
2868 *
2869 * Find the weakest background noise level from among a/b/c. This Rx chain
2870 * will be the reference, with 0 gain adjustment. Attenuate other channels by
2871 * finding noise difference:
2872 *
2873 * (accum_noise[i] - accum_noise[reference]) / 30
2874 *
2875 * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
2876 * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
2877 * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
2878 * and set bit 2 to indicate "reduce gain". The value for the reference
2879 * (weakest) chain should be "0".
2880 *
2881 * diff_gain_[abc] bit fields:
2882 * 2: (1) reduce gain, (0) increase gain
2883 * 1-0: amount of gain, units of 1.5 dB
2884 */
2885
2886 /* Phy calibration command for series */
2887
2888 enum {
2889 IWL_PHY_CALIBRATE_DIFF_GAIN_CMD = 7,
2890 IWL_PHY_CALIBRATE_DC_CMD = 8,
2891 IWL_PHY_CALIBRATE_LO_CMD = 9,
2892 IWL_PHY_CALIBRATE_RX_BB_CMD = 10,
2893 IWL_PHY_CALIBRATE_TX_IQ_CMD = 11,
2894 IWL_PHY_CALIBRATE_RX_IQ_CMD = 12,
2895 IWL_PHY_CALIBRATION_NOISE_CMD = 13,
2896 IWL_PHY_CALIBRATE_AGC_TABLE_CMD = 14,
2897 IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD = 15,
2898 IWL_PHY_CALIBRATE_BASE_BAND_CMD = 16,
2899 IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD = 17,
2900 IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD = 18,
2901 IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD = 19,
2902 };
2903
2904
2905 #define IWL_CALIB_INIT_CFG_ALL cpu_to_le32(0xffffffff)
2906
2907 struct iwl_calib_cfg_elmnt_s {
2908 __le32 is_enable;
2909 __le32 start;
2910 __le32 send_res;
2911 __le32 apply_res;
2912 __le32 reserved;
2913 } __attribute__ ((packed));
2914
2915 struct iwl_calib_cfg_status_s {
2916 struct iwl_calib_cfg_elmnt_s once;
2917 struct iwl_calib_cfg_elmnt_s perd;
2918 __le32 flags;
2919 } __attribute__ ((packed));
2920
2921 struct iwl_calib_cfg_cmd {
2922 struct iwl_calib_cfg_status_s ucd_calib_cfg;
2923 struct iwl_calib_cfg_status_s drv_calib_cfg;
2924 __le32 reserved1;
2925 } __attribute__ ((packed));
2926
2927 struct iwl_calib_hdr {
2928 u8 op_code;
2929 u8 first_group;
2930 u8 groups_num;
2931 u8 data_valid;
2932 } __attribute__ ((packed));
2933
2934 struct iwl_calib_cmd {
2935 struct iwl_calib_hdr hdr;
2936 u8 data[0];
2937 } __attribute__ ((packed));
2938
2939 /* IWL_PHY_CALIBRATE_DIFF_GAIN_CMD (7) */
2940 struct iwl_calib_diff_gain_cmd {
2941 struct iwl_calib_hdr hdr;
2942 s8 diff_gain_a; /* see above */
2943 s8 diff_gain_b;
2944 s8 diff_gain_c;
2945 u8 reserved1;
2946 } __attribute__ ((packed));
2947
2948 struct iwl_calib_xtal_freq_cmd {
2949 struct iwl_calib_hdr hdr;
2950 u8 cap_pin1;
2951 u8 cap_pin2;
2952 u8 pad[2];
2953 } __attribute__ ((packed));
2954
2955 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
2956 struct iwl_calib_chain_noise_reset_cmd {
2957 struct iwl_calib_hdr hdr;
2958 u8 data[0];
2959 };
2960
2961 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
2962 struct iwl_calib_chain_noise_gain_cmd {
2963 struct iwl_calib_hdr hdr;
2964 u8 delta_gain_1;
2965 u8 delta_gain_2;
2966 u8 pad[2];
2967 } __attribute__ ((packed));
2968
2969 /******************************************************************************
2970 * (12)
2971 * Miscellaneous Commands:
2972 *
2973 *****************************************************************************/
2974
2975 /*
2976 * LEDs Command & Response
2977 * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
2978 *
2979 * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
2980 * this command turns it on or off, or sets up a periodic blinking cycle.
2981 */
2982 struct iwl_led_cmd {
2983 __le32 interval; /* "interval" in uSec */
2984 u8 id; /* 1: Activity, 2: Link, 3: Tech */
2985 u8 off; /* # intervals off while blinking;
2986 * "0", with >0 "on" value, turns LED on */
2987 u8 on; /* # intervals on while blinking;
2988 * "0", regardless of "off", turns LED off */
2989 u8 reserved;
2990 } __attribute__ ((packed));
2991
2992 /*
2993 * Coexistence WIFI/WIMAX Command
2994 * COEX_PRIORITY_TABLE_CMD = 0x5a
2995 *
2996 */
2997 enum {
2998 COEX_UNASSOC_IDLE = 0,
2999 COEX_UNASSOC_MANUAL_SCAN = 1,
3000 COEX_UNASSOC_AUTO_SCAN = 2,
3001 COEX_CALIBRATION = 3,
3002 COEX_PERIODIC_CALIBRATION = 4,
3003 COEX_CONNECTION_ESTAB = 5,
3004 COEX_ASSOCIATED_IDLE = 6,
3005 COEX_ASSOC_MANUAL_SCAN = 7,
3006 COEX_ASSOC_AUTO_SCAN = 8,
3007 COEX_ASSOC_ACTIVE_LEVEL = 9,
3008 COEX_RF_ON = 10,
3009 COEX_RF_OFF = 11,
3010 COEX_STAND_ALONE_DEBUG = 12,
3011 COEX_IPAN_ASSOC_LEVEL = 13,
3012 COEX_RSRVD1 = 14,
3013 COEX_RSRVD2 = 15,
3014 COEX_NUM_OF_EVENTS = 16
3015 };
3016
3017 struct iwl_wimax_coex_event_entry {
3018 u8 request_prio;
3019 u8 win_medium_prio;
3020 u8 reserved;
3021 u8 flags;
3022 } __attribute__ ((packed));
3023
3024 /* COEX flag masks */
3025
3026 /* Station table is valid */
3027 #define COEX_FLAGS_STA_TABLE_VALID_MSK (0x1)
3028 /* UnMask wake up src at unassociated sleep */
3029 #define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK (0x4)
3030 /* UnMask wake up src at associated sleep */
3031 #define COEX_FLAGS_ASSOC_WA_UNMASK_MSK (0x8)
3032 /* Enable CoEx feature. */
3033 #define COEX_FLAGS_COEX_ENABLE_MSK (0x80)
3034
3035 struct iwl_wimax_coex_cmd {
3036 u8 flags;
3037 u8 reserved[3];
3038 struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
3039 } __attribute__ ((packed));
3040
3041 /******************************************************************************
3042 * (13)
3043 * Union of all expected notifications/responses:
3044 *
3045 *****************************************************************************/
3046
3047 struct iwl_rx_packet {
3048 __le32 len;
3049 struct iwl_cmd_header hdr;
3050 union {
3051 struct iwl_alive_resp alive_frame;
3052 struct iwl4965_rx_frame rx_frame;
3053 struct iwl4965_tx_resp tx_resp;
3054 struct iwl4965_spectrum_notification spectrum_notif;
3055 struct iwl4965_csa_notification csa_notif;
3056 struct iwl_error_resp err_resp;
3057 struct iwl4965_card_state_notif card_state_notif;
3058 struct iwl4965_beacon_notif beacon_status;
3059 struct iwl_add_sta_resp add_sta;
3060 struct iwl_rem_sta_resp rem_sta;
3061 struct iwl4965_sleep_notification sleep_notif;
3062 struct iwl4965_spectrum_resp spectrum;
3063 struct iwl_notif_statistics stats;
3064 struct iwl_compressed_ba_resp compressed_ba;
3065 struct iwl4965_missed_beacon_notif missed_beacon;
3066 __le32 status;
3067 u8 raw[0];
3068 } u;
3069 } __attribute__ ((packed));
3070
3071 #define IWL_RX_FRAME_SIZE (4 + sizeof(struct iwl4965_rx_frame))
3072
3073 int iwl_agn_check_rxon_cmd(struct iwl_rxon_cmd *rxon);
3074
3075 #endif /* __iwl_commands_h__ */
This page took 0.109849 seconds and 6 git commands to generate.