Merge branch 'for_linus' of git://cavan.codon.org.uk/platform-drivers-x86
[deliverable/linux.git] / drivers / net / wireless / iwlwifi / iwl-eeprom.c
1 /******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
23 *
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
26 *
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *
31 * BSD LICENSE
32 *
33 * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 *
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *****************************************************************************/
62
63
64 #include <linux/kernel.h>
65 #include <linux/module.h>
66 #include <linux/slab.h>
67 #include <linux/init.h>
68
69 #include <net/mac80211.h>
70
71 #include "iwl-commands.h"
72 #include "iwl-dev.h"
73 #include "iwl-core.h"
74 #include "iwl-debug.h"
75 #include "iwl-agn.h"
76 #include "iwl-eeprom.h"
77 #include "iwl-io.h"
78
79 /************************** EEPROM BANDS ****************************
80 *
81 * The iwl_eeprom_band definitions below provide the mapping from the
82 * EEPROM contents to the specific channel number supported for each
83 * band.
84 *
85 * For example, iwl_priv->eeprom.band_3_channels[4] from the band_3
86 * definition below maps to physical channel 42 in the 5.2GHz spectrum.
87 * The specific geography and calibration information for that channel
88 * is contained in the eeprom map itself.
89 *
90 * During init, we copy the eeprom information and channel map
91 * information into priv->channel_info_24/52 and priv->channel_map_24/52
92 *
93 * channel_map_24/52 provides the index in the channel_info array for a
94 * given channel. We have to have two separate maps as there is channel
95 * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
96 * band_2
97 *
98 * A value of 0xff stored in the channel_map indicates that the channel
99 * is not supported by the hardware at all.
100 *
101 * A value of 0xfe in the channel_map indicates that the channel is not
102 * valid for Tx with the current hardware. This means that
103 * while the system can tune and receive on a given channel, it may not
104 * be able to associate or transmit any frames on that
105 * channel. There is no corresponding channel information for that
106 * entry.
107 *
108 *********************************************************************/
109
110 /* 2.4 GHz */
111 const u8 iwl_eeprom_band_1[14] = {
112 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
113 };
114
115 /* 5.2 GHz bands */
116 static const u8 iwl_eeprom_band_2[] = { /* 4915-5080MHz */
117 183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
118 };
119
120 static const u8 iwl_eeprom_band_3[] = { /* 5170-5320MHz */
121 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
122 };
123
124 static const u8 iwl_eeprom_band_4[] = { /* 5500-5700MHz */
125 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
126 };
127
128 static const u8 iwl_eeprom_band_5[] = { /* 5725-5825MHz */
129 145, 149, 153, 157, 161, 165
130 };
131
132 static const u8 iwl_eeprom_band_6[] = { /* 2.4 ht40 channel */
133 1, 2, 3, 4, 5, 6, 7
134 };
135
136 static const u8 iwl_eeprom_band_7[] = { /* 5.2 ht40 channel */
137 36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
138 };
139
140 /******************************************************************************
141 *
142 * generic NVM functions
143 *
144 ******************************************************************************/
145
146 /*
147 * The device's EEPROM semaphore prevents conflicts between driver and uCode
148 * when accessing the EEPROM; each access is a series of pulses to/from the
149 * EEPROM chip, not a single event, so even reads could conflict if they
150 * weren't arbitrated by the semaphore.
151 */
152 static int iwl_eeprom_acquire_semaphore(struct iwl_priv *priv)
153 {
154 u16 count;
155 int ret;
156
157 for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) {
158 /* Request semaphore */
159 iwl_set_bit(bus(priv), CSR_HW_IF_CONFIG_REG,
160 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
161
162 /* See if we got it */
163 ret = iwl_poll_bit(bus(priv), CSR_HW_IF_CONFIG_REG,
164 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
165 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
166 EEPROM_SEM_TIMEOUT);
167 if (ret >= 0) {
168 IWL_DEBUG_EEPROM(priv,
169 "Acquired semaphore after %d tries.\n",
170 count+1);
171 return ret;
172 }
173 }
174
175 return ret;
176 }
177
178 static void iwl_eeprom_release_semaphore(struct iwl_priv *priv)
179 {
180 iwl_clear_bit(bus(priv), CSR_HW_IF_CONFIG_REG,
181 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
182
183 }
184
185 static int iwl_eeprom_verify_signature(struct iwl_priv *priv)
186 {
187 u32 gp = iwl_read32(bus(priv), CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK;
188 int ret = 0;
189
190 IWL_DEBUG_EEPROM(priv, "EEPROM signature=0x%08x\n", gp);
191 switch (gp) {
192 case CSR_EEPROM_GP_BAD_SIG_EEP_GOOD_SIG_OTP:
193 if (priv->nvm_device_type != NVM_DEVICE_TYPE_OTP) {
194 IWL_ERR(priv, "EEPROM with bad signature: 0x%08x\n",
195 gp);
196 ret = -ENOENT;
197 }
198 break;
199 case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
200 case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
201 if (priv->nvm_device_type != NVM_DEVICE_TYPE_EEPROM) {
202 IWL_ERR(priv, "OTP with bad signature: 0x%08x\n", gp);
203 ret = -ENOENT;
204 }
205 break;
206 case CSR_EEPROM_GP_BAD_SIGNATURE_BOTH_EEP_AND_OTP:
207 default:
208 IWL_ERR(priv, "bad EEPROM/OTP signature, type=%s, "
209 "EEPROM_GP=0x%08x\n",
210 (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP)
211 ? "OTP" : "EEPROM", gp);
212 ret = -ENOENT;
213 break;
214 }
215 return ret;
216 }
217
218 u16 iwl_eeprom_query16(const struct iwl_priv *priv, size_t offset)
219 {
220 if (!priv->eeprom)
221 return 0;
222 return (u16)priv->eeprom[offset] | ((u16)priv->eeprom[offset + 1] << 8);
223 }
224
225 int iwl_eeprom_check_version(struct iwl_priv *priv)
226 {
227 u16 eeprom_ver;
228 u16 calib_ver;
229
230 eeprom_ver = iwl_eeprom_query16(priv, EEPROM_VERSION);
231 calib_ver = iwlagn_eeprom_calib_version(priv);
232
233 if (eeprom_ver < priv->cfg->eeprom_ver ||
234 calib_ver < priv->cfg->eeprom_calib_ver)
235 goto err;
236
237 IWL_INFO(priv, "device EEPROM VER=0x%x, CALIB=0x%x\n",
238 eeprom_ver, calib_ver);
239
240 return 0;
241 err:
242 IWL_ERR(priv, "Unsupported (too old) EEPROM VER=0x%x < 0x%x "
243 "CALIB=0x%x < 0x%x\n",
244 eeprom_ver, priv->cfg->eeprom_ver,
245 calib_ver, priv->cfg->eeprom_calib_ver);
246 return -EINVAL;
247
248 }
249
250 int iwl_eeprom_check_sku(struct iwl_priv *priv)
251 {
252 u16 radio_cfg;
253
254 if (!priv->cfg->sku) {
255 /* not using sku overwrite */
256 priv->cfg->sku = iwl_eeprom_query16(priv, EEPROM_SKU_CAP);
257 if (priv->cfg->sku & EEPROM_SKU_CAP_11N_ENABLE &&
258 !priv->cfg->ht_params) {
259 IWL_ERR(priv, "Invalid 11n configuration\n");
260 return -EINVAL;
261 }
262 }
263 if (!priv->cfg->sku) {
264 IWL_ERR(priv, "Invalid device sku\n");
265 return -EINVAL;
266 }
267
268 IWL_INFO(priv, "Device SKU: 0X%x\n", priv->cfg->sku);
269
270 if (!priv->cfg->valid_tx_ant && !priv->cfg->valid_rx_ant) {
271 /* not using .cfg overwrite */
272 radio_cfg = iwl_eeprom_query16(priv, EEPROM_RADIO_CONFIG);
273 priv->cfg->valid_tx_ant = EEPROM_RF_CFG_TX_ANT_MSK(radio_cfg);
274 priv->cfg->valid_rx_ant = EEPROM_RF_CFG_RX_ANT_MSK(radio_cfg);
275 if (!priv->cfg->valid_tx_ant || !priv->cfg->valid_rx_ant) {
276 IWL_ERR(priv, "Invalid chain (0X%x, 0X%x)\n",
277 priv->cfg->valid_tx_ant,
278 priv->cfg->valid_rx_ant);
279 return -EINVAL;
280 }
281 IWL_INFO(priv, "Valid Tx ant: 0X%x, Valid Rx ant: 0X%x\n",
282 priv->cfg->valid_tx_ant, priv->cfg->valid_rx_ant);
283 }
284 /*
285 * for some special cases,
286 * EEPROM did not reflect the correct antenna setting
287 * so overwrite the valid tx/rx antenna from .cfg
288 */
289 return 0;
290 }
291
292 void iwl_eeprom_get_mac(const struct iwl_priv *priv, u8 *mac)
293 {
294 const u8 *addr = iwl_eeprom_query_addr(priv,
295 EEPROM_MAC_ADDRESS);
296 memcpy(mac, addr, ETH_ALEN);
297 }
298
299 /******************************************************************************
300 *
301 * OTP related functions
302 *
303 ******************************************************************************/
304
305 static void iwl_set_otp_access(struct iwl_priv *priv, enum iwl_access_mode mode)
306 {
307 iwl_read32(bus(priv), CSR_OTP_GP_REG);
308
309 if (mode == IWL_OTP_ACCESS_ABSOLUTE)
310 iwl_clear_bit(bus(priv), CSR_OTP_GP_REG,
311 CSR_OTP_GP_REG_OTP_ACCESS_MODE);
312 else
313 iwl_set_bit(bus(priv), CSR_OTP_GP_REG,
314 CSR_OTP_GP_REG_OTP_ACCESS_MODE);
315 }
316
317 static int iwl_get_nvm_type(struct iwl_priv *priv, u32 hw_rev)
318 {
319 u32 otpgp;
320 int nvm_type;
321
322 /* OTP only valid for CP/PP and after */
323 switch (hw_rev & CSR_HW_REV_TYPE_MSK) {
324 case CSR_HW_REV_TYPE_NONE:
325 IWL_ERR(priv, "Unknown hardware type\n");
326 return -ENOENT;
327 case CSR_HW_REV_TYPE_5300:
328 case CSR_HW_REV_TYPE_5350:
329 case CSR_HW_REV_TYPE_5100:
330 case CSR_HW_REV_TYPE_5150:
331 nvm_type = NVM_DEVICE_TYPE_EEPROM;
332 break;
333 default:
334 otpgp = iwl_read32(bus(priv), CSR_OTP_GP_REG);
335 if (otpgp & CSR_OTP_GP_REG_DEVICE_SELECT)
336 nvm_type = NVM_DEVICE_TYPE_OTP;
337 else
338 nvm_type = NVM_DEVICE_TYPE_EEPROM;
339 break;
340 }
341 return nvm_type;
342 }
343
344 static int iwl_init_otp_access(struct iwl_priv *priv)
345 {
346 int ret;
347
348 /* Enable 40MHz radio clock */
349 iwl_write32(bus(priv), CSR_GP_CNTRL,
350 iwl_read32(bus(priv), CSR_GP_CNTRL) |
351 CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
352
353 /* wait for clock to be ready */
354 ret = iwl_poll_bit(bus(priv), CSR_GP_CNTRL,
355 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
356 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
357 25000);
358 if (ret < 0)
359 IWL_ERR(priv, "Time out access OTP\n");
360 else {
361 iwl_set_bits_prph(bus(priv), APMG_PS_CTRL_REG,
362 APMG_PS_CTRL_VAL_RESET_REQ);
363 udelay(5);
364 iwl_clear_bits_prph(bus(priv), APMG_PS_CTRL_REG,
365 APMG_PS_CTRL_VAL_RESET_REQ);
366
367 /*
368 * CSR auto clock gate disable bit -
369 * this is only applicable for HW with OTP shadow RAM
370 */
371 if (priv->cfg->base_params->shadow_ram_support)
372 iwl_set_bit(bus(priv), CSR_DBG_LINK_PWR_MGMT_REG,
373 CSR_RESET_LINK_PWR_MGMT_DISABLED);
374 }
375 return ret;
376 }
377
378 static int iwl_read_otp_word(struct iwl_priv *priv, u16 addr, __le16 *eeprom_data)
379 {
380 int ret = 0;
381 u32 r;
382 u32 otpgp;
383
384 iwl_write32(bus(priv), CSR_EEPROM_REG,
385 CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
386 ret = iwl_poll_bit(bus(priv), CSR_EEPROM_REG,
387 CSR_EEPROM_REG_READ_VALID_MSK,
388 CSR_EEPROM_REG_READ_VALID_MSK,
389 IWL_EEPROM_ACCESS_TIMEOUT);
390 if (ret < 0) {
391 IWL_ERR(priv, "Time out reading OTP[%d]\n", addr);
392 return ret;
393 }
394 r = iwl_read32(bus(priv), CSR_EEPROM_REG);
395 /* check for ECC errors: */
396 otpgp = iwl_read32(bus(priv), CSR_OTP_GP_REG);
397 if (otpgp & CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK) {
398 /* stop in this case */
399 /* set the uncorrectable OTP ECC bit for acknowledgement */
400 iwl_set_bit(bus(priv), CSR_OTP_GP_REG,
401 CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
402 IWL_ERR(priv, "Uncorrectable OTP ECC error, abort OTP read\n");
403 return -EINVAL;
404 }
405 if (otpgp & CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK) {
406 /* continue in this case */
407 /* set the correctable OTP ECC bit for acknowledgement */
408 iwl_set_bit(bus(priv), CSR_OTP_GP_REG,
409 CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK);
410 IWL_ERR(priv, "Correctable OTP ECC error, continue read\n");
411 }
412 *eeprom_data = cpu_to_le16(r >> 16);
413 return 0;
414 }
415
416 /*
417 * iwl_is_otp_empty: check for empty OTP
418 */
419 static bool iwl_is_otp_empty(struct iwl_priv *priv)
420 {
421 u16 next_link_addr = 0;
422 __le16 link_value;
423 bool is_empty = false;
424
425 /* locate the beginning of OTP link list */
426 if (!iwl_read_otp_word(priv, next_link_addr, &link_value)) {
427 if (!link_value) {
428 IWL_ERR(priv, "OTP is empty\n");
429 is_empty = true;
430 }
431 } else {
432 IWL_ERR(priv, "Unable to read first block of OTP list.\n");
433 is_empty = true;
434 }
435
436 return is_empty;
437 }
438
439
440 /*
441 * iwl_find_otp_image: find EEPROM image in OTP
442 * finding the OTP block that contains the EEPROM image.
443 * the last valid block on the link list (the block _before_ the last block)
444 * is the block we should read and used to configure the device.
445 * If all the available OTP blocks are full, the last block will be the block
446 * we should read and used to configure the device.
447 * only perform this operation if shadow RAM is disabled
448 */
449 static int iwl_find_otp_image(struct iwl_priv *priv,
450 u16 *validblockaddr)
451 {
452 u16 next_link_addr = 0, valid_addr;
453 __le16 link_value = 0;
454 int usedblocks = 0;
455
456 /* set addressing mode to absolute to traverse the link list */
457 iwl_set_otp_access(priv, IWL_OTP_ACCESS_ABSOLUTE);
458
459 /* checking for empty OTP or error */
460 if (iwl_is_otp_empty(priv))
461 return -EINVAL;
462
463 /*
464 * start traverse link list
465 * until reach the max number of OTP blocks
466 * different devices have different number of OTP blocks
467 */
468 do {
469 /* save current valid block address
470 * check for more block on the link list
471 */
472 valid_addr = next_link_addr;
473 next_link_addr = le16_to_cpu(link_value) * sizeof(u16);
474 IWL_DEBUG_EEPROM(priv, "OTP blocks %d addr 0x%x\n",
475 usedblocks, next_link_addr);
476 if (iwl_read_otp_word(priv, next_link_addr, &link_value))
477 return -EINVAL;
478 if (!link_value) {
479 /*
480 * reach the end of link list, return success and
481 * set address point to the starting address
482 * of the image
483 */
484 *validblockaddr = valid_addr;
485 /* skip first 2 bytes (link list pointer) */
486 *validblockaddr += 2;
487 return 0;
488 }
489 /* more in the link list, continue */
490 usedblocks++;
491 } while (usedblocks <= priv->cfg->base_params->max_ll_items);
492
493 /* OTP has no valid blocks */
494 IWL_DEBUG_EEPROM(priv, "OTP has no valid blocks\n");
495 return -EINVAL;
496 }
497
498 /******************************************************************************
499 *
500 * Tx Power related functions
501 *
502 ******************************************************************************/
503 /**
504 * iwl_get_max_txpower_avg - get the highest tx power from all chains.
505 * find the highest tx power from all chains for the channel
506 */
507 static s8 iwl_get_max_txpower_avg(struct iwl_priv *priv,
508 struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
509 int element, s8 *max_txpower_in_half_dbm)
510 {
511 s8 max_txpower_avg = 0; /* (dBm) */
512
513 /* Take the highest tx power from any valid chains */
514 if ((priv->cfg->valid_tx_ant & ANT_A) &&
515 (enhanced_txpower[element].chain_a_max > max_txpower_avg))
516 max_txpower_avg = enhanced_txpower[element].chain_a_max;
517 if ((priv->cfg->valid_tx_ant & ANT_B) &&
518 (enhanced_txpower[element].chain_b_max > max_txpower_avg))
519 max_txpower_avg = enhanced_txpower[element].chain_b_max;
520 if ((priv->cfg->valid_tx_ant & ANT_C) &&
521 (enhanced_txpower[element].chain_c_max > max_txpower_avg))
522 max_txpower_avg = enhanced_txpower[element].chain_c_max;
523 if (((priv->cfg->valid_tx_ant == ANT_AB) |
524 (priv->cfg->valid_tx_ant == ANT_BC) |
525 (priv->cfg->valid_tx_ant == ANT_AC)) &&
526 (enhanced_txpower[element].mimo2_max > max_txpower_avg))
527 max_txpower_avg = enhanced_txpower[element].mimo2_max;
528 if ((priv->cfg->valid_tx_ant == ANT_ABC) &&
529 (enhanced_txpower[element].mimo3_max > max_txpower_avg))
530 max_txpower_avg = enhanced_txpower[element].mimo3_max;
531
532 /*
533 * max. tx power in EEPROM is in 1/2 dBm format
534 * convert from 1/2 dBm to dBm (round-up convert)
535 * but we also do not want to loss 1/2 dBm resolution which
536 * will impact performance
537 */
538 *max_txpower_in_half_dbm = max_txpower_avg;
539 return (max_txpower_avg & 0x01) + (max_txpower_avg >> 1);
540 }
541
542 static void
543 iwl_eeprom_enh_txp_read_element(struct iwl_priv *priv,
544 struct iwl_eeprom_enhanced_txpwr *txp,
545 s8 max_txpower_avg)
546 {
547 int ch_idx;
548 bool is_ht40 = txp->flags & IWL_EEPROM_ENH_TXP_FL_40MHZ;
549 enum ieee80211_band band;
550
551 band = txp->flags & IWL_EEPROM_ENH_TXP_FL_BAND_52G ?
552 IEEE80211_BAND_5GHZ : IEEE80211_BAND_2GHZ;
553
554 for (ch_idx = 0; ch_idx < priv->channel_count; ch_idx++) {
555 struct iwl_channel_info *ch_info = &priv->channel_info[ch_idx];
556
557 /* update matching channel or from common data only */
558 if (txp->channel != 0 && ch_info->channel != txp->channel)
559 continue;
560
561 /* update matching band only */
562 if (band != ch_info->band)
563 continue;
564
565 if (ch_info->max_power_avg < max_txpower_avg && !is_ht40) {
566 ch_info->max_power_avg = max_txpower_avg;
567 ch_info->curr_txpow = max_txpower_avg;
568 ch_info->scan_power = max_txpower_avg;
569 }
570
571 if (is_ht40 && ch_info->ht40_max_power_avg < max_txpower_avg)
572 ch_info->ht40_max_power_avg = max_txpower_avg;
573 }
574 }
575
576 #define EEPROM_TXP_OFFS (0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT)
577 #define EEPROM_TXP_ENTRY_LEN sizeof(struct iwl_eeprom_enhanced_txpwr)
578 #define EEPROM_TXP_SZ_OFFS (0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT_SIZE)
579
580 #define TXP_CHECK_AND_PRINT(x) ((txp->flags & IWL_EEPROM_ENH_TXP_FL_##x) \
581 ? # x " " : "")
582
583 void iwl_eeprom_enhanced_txpower(struct iwl_priv *priv)
584 {
585 struct iwl_eeprom_enhanced_txpwr *txp_array, *txp;
586 int idx, entries;
587 __le16 *txp_len;
588 s8 max_txp_avg, max_txp_avg_halfdbm;
589
590 BUILD_BUG_ON(sizeof(struct iwl_eeprom_enhanced_txpwr) != 8);
591
592 /* the length is in 16-bit words, but we want entries */
593 txp_len = (__le16 *) iwl_eeprom_query_addr(priv, EEPROM_TXP_SZ_OFFS);
594 entries = le16_to_cpup(txp_len) * 2 / EEPROM_TXP_ENTRY_LEN;
595
596 txp_array = (void *) iwl_eeprom_query_addr(priv, EEPROM_TXP_OFFS);
597
598 for (idx = 0; idx < entries; idx++) {
599 txp = &txp_array[idx];
600 /* skip invalid entries */
601 if (!(txp->flags & IWL_EEPROM_ENH_TXP_FL_VALID))
602 continue;
603
604 IWL_DEBUG_EEPROM(priv, "%s %d:\t %s%s%s%s%s%s%s%s (0x%02x)\n",
605 (txp->channel && (txp->flags &
606 IWL_EEPROM_ENH_TXP_FL_COMMON_TYPE)) ?
607 "Common " : (txp->channel) ?
608 "Channel" : "Common",
609 (txp->channel),
610 TXP_CHECK_AND_PRINT(VALID),
611 TXP_CHECK_AND_PRINT(BAND_52G),
612 TXP_CHECK_AND_PRINT(OFDM),
613 TXP_CHECK_AND_PRINT(40MHZ),
614 TXP_CHECK_AND_PRINT(HT_AP),
615 TXP_CHECK_AND_PRINT(RES1),
616 TXP_CHECK_AND_PRINT(RES2),
617 TXP_CHECK_AND_PRINT(COMMON_TYPE),
618 txp->flags);
619 IWL_DEBUG_EEPROM(priv, "\t\t chain_A: 0x%02x "
620 "chain_B: 0X%02x chain_C: 0X%02x\n",
621 txp->chain_a_max, txp->chain_b_max,
622 txp->chain_c_max);
623 IWL_DEBUG_EEPROM(priv, "\t\t MIMO2: 0x%02x "
624 "MIMO3: 0x%02x High 20_on_40: 0x%02x "
625 "Low 20_on_40: 0x%02x\n",
626 txp->mimo2_max, txp->mimo3_max,
627 ((txp->delta_20_in_40 & 0xf0) >> 4),
628 (txp->delta_20_in_40 & 0x0f));
629
630 max_txp_avg = iwl_get_max_txpower_avg(priv, txp_array, idx,
631 &max_txp_avg_halfdbm);
632
633 /*
634 * Update the user limit values values to the highest
635 * power supported by any channel
636 */
637 if (max_txp_avg > priv->tx_power_user_lmt)
638 priv->tx_power_user_lmt = max_txp_avg;
639 if (max_txp_avg_halfdbm > priv->tx_power_lmt_in_half_dbm)
640 priv->tx_power_lmt_in_half_dbm = max_txp_avg_halfdbm;
641
642 iwl_eeprom_enh_txp_read_element(priv, txp, max_txp_avg);
643 }
644 }
645
646 /**
647 * iwl_eeprom_init - read EEPROM contents
648 *
649 * Load the EEPROM contents from adapter into priv->eeprom
650 *
651 * NOTE: This routine uses the non-debug IO access functions.
652 */
653 int iwl_eeprom_init(struct iwl_priv *priv, u32 hw_rev)
654 {
655 __le16 *e;
656 u32 gp = iwl_read32(bus(priv), CSR_EEPROM_GP);
657 int sz;
658 int ret;
659 u16 addr;
660 u16 validblockaddr = 0;
661 u16 cache_addr = 0;
662
663 priv->nvm_device_type = iwl_get_nvm_type(priv, hw_rev);
664 if (priv->nvm_device_type == -ENOENT)
665 return -ENOENT;
666 /* allocate eeprom */
667 sz = priv->cfg->base_params->eeprom_size;
668 IWL_DEBUG_EEPROM(priv, "NVM size = %d\n", sz);
669 priv->eeprom = kzalloc(sz, GFP_KERNEL);
670 if (!priv->eeprom) {
671 ret = -ENOMEM;
672 goto alloc_err;
673 }
674 e = (__le16 *)priv->eeprom;
675
676 iwl_apm_init(priv);
677
678 ret = iwl_eeprom_verify_signature(priv);
679 if (ret < 0) {
680 IWL_ERR(priv, "EEPROM not found, EEPROM_GP=0x%08x\n", gp);
681 ret = -ENOENT;
682 goto err;
683 }
684
685 /* Make sure driver (instead of uCode) is allowed to read EEPROM */
686 ret = iwl_eeprom_acquire_semaphore(priv);
687 if (ret < 0) {
688 IWL_ERR(priv, "Failed to acquire EEPROM semaphore.\n");
689 ret = -ENOENT;
690 goto err;
691 }
692
693 if (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP) {
694
695 ret = iwl_init_otp_access(priv);
696 if (ret) {
697 IWL_ERR(priv, "Failed to initialize OTP access.\n");
698 ret = -ENOENT;
699 goto done;
700 }
701 iwl_write32(bus(priv), CSR_EEPROM_GP,
702 iwl_read32(bus(priv), CSR_EEPROM_GP) &
703 ~CSR_EEPROM_GP_IF_OWNER_MSK);
704
705 iwl_set_bit(bus(priv), CSR_OTP_GP_REG,
706 CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK |
707 CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
708 /* traversing the linked list if no shadow ram supported */
709 if (!priv->cfg->base_params->shadow_ram_support) {
710 if (iwl_find_otp_image(priv, &validblockaddr)) {
711 ret = -ENOENT;
712 goto done;
713 }
714 }
715 for (addr = validblockaddr; addr < validblockaddr + sz;
716 addr += sizeof(u16)) {
717 __le16 eeprom_data;
718
719 ret = iwl_read_otp_word(priv, addr, &eeprom_data);
720 if (ret)
721 goto done;
722 e[cache_addr / 2] = eeprom_data;
723 cache_addr += sizeof(u16);
724 }
725 } else {
726 /* eeprom is an array of 16bit values */
727 for (addr = 0; addr < sz; addr += sizeof(u16)) {
728 u32 r;
729
730 iwl_write32(bus(priv), CSR_EEPROM_REG,
731 CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
732
733 ret = iwl_poll_bit(bus(priv), CSR_EEPROM_REG,
734 CSR_EEPROM_REG_READ_VALID_MSK,
735 CSR_EEPROM_REG_READ_VALID_MSK,
736 IWL_EEPROM_ACCESS_TIMEOUT);
737 if (ret < 0) {
738 IWL_ERR(priv, "Time out reading EEPROM[%d]\n", addr);
739 goto done;
740 }
741 r = iwl_read32(bus(priv), CSR_EEPROM_REG);
742 e[addr / 2] = cpu_to_le16(r >> 16);
743 }
744 }
745
746 IWL_DEBUG_EEPROM(priv, "NVM Type: %s, version: 0x%x\n",
747 (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP)
748 ? "OTP" : "EEPROM",
749 iwl_eeprom_query16(priv, EEPROM_VERSION));
750
751 ret = 0;
752 done:
753 iwl_eeprom_release_semaphore(priv);
754
755 err:
756 if (ret)
757 iwl_eeprom_free(priv);
758 /* Reset chip to save power until we load uCode during "up". */
759 iwl_apm_stop(priv);
760 alloc_err:
761 return ret;
762 }
763
764 void iwl_eeprom_free(struct iwl_priv *priv)
765 {
766 kfree(priv->eeprom);
767 priv->eeprom = NULL;
768 }
769
770 static void iwl_init_band_reference(const struct iwl_priv *priv,
771 int eep_band, int *eeprom_ch_count,
772 const struct iwl_eeprom_channel **eeprom_ch_info,
773 const u8 **eeprom_ch_index)
774 {
775 u32 offset = priv->cfg->lib->
776 eeprom_ops.regulatory_bands[eep_band - 1];
777 switch (eep_band) {
778 case 1: /* 2.4GHz band */
779 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1);
780 *eeprom_ch_info = (struct iwl_eeprom_channel *)
781 iwl_eeprom_query_addr(priv, offset);
782 *eeprom_ch_index = iwl_eeprom_band_1;
783 break;
784 case 2: /* 4.9GHz band */
785 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2);
786 *eeprom_ch_info = (struct iwl_eeprom_channel *)
787 iwl_eeprom_query_addr(priv, offset);
788 *eeprom_ch_index = iwl_eeprom_band_2;
789 break;
790 case 3: /* 5.2GHz band */
791 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3);
792 *eeprom_ch_info = (struct iwl_eeprom_channel *)
793 iwl_eeprom_query_addr(priv, offset);
794 *eeprom_ch_index = iwl_eeprom_band_3;
795 break;
796 case 4: /* 5.5GHz band */
797 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4);
798 *eeprom_ch_info = (struct iwl_eeprom_channel *)
799 iwl_eeprom_query_addr(priv, offset);
800 *eeprom_ch_index = iwl_eeprom_band_4;
801 break;
802 case 5: /* 5.7GHz band */
803 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5);
804 *eeprom_ch_info = (struct iwl_eeprom_channel *)
805 iwl_eeprom_query_addr(priv, offset);
806 *eeprom_ch_index = iwl_eeprom_band_5;
807 break;
808 case 6: /* 2.4GHz ht40 channels */
809 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6);
810 *eeprom_ch_info = (struct iwl_eeprom_channel *)
811 iwl_eeprom_query_addr(priv, offset);
812 *eeprom_ch_index = iwl_eeprom_band_6;
813 break;
814 case 7: /* 5 GHz ht40 channels */
815 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7);
816 *eeprom_ch_info = (struct iwl_eeprom_channel *)
817 iwl_eeprom_query_addr(priv, offset);
818 *eeprom_ch_index = iwl_eeprom_band_7;
819 break;
820 default:
821 BUG();
822 return;
823 }
824 }
825
826 #define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
827 ? # x " " : "")
828 /**
829 * iwl_mod_ht40_chan_info - Copy ht40 channel info into driver's priv.
830 *
831 * Does not set up a command, or touch hardware.
832 */
833 static int iwl_mod_ht40_chan_info(struct iwl_priv *priv,
834 enum ieee80211_band band, u16 channel,
835 const struct iwl_eeprom_channel *eeprom_ch,
836 u8 clear_ht40_extension_channel)
837 {
838 struct iwl_channel_info *ch_info;
839
840 ch_info = (struct iwl_channel_info *)
841 iwl_get_channel_info(priv, band, channel);
842
843 if (!is_channel_valid(ch_info))
844 return -1;
845
846 IWL_DEBUG_EEPROM(priv, "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
847 " Ad-Hoc %ssupported\n",
848 ch_info->channel,
849 is_channel_a_band(ch_info) ?
850 "5.2" : "2.4",
851 CHECK_AND_PRINT(IBSS),
852 CHECK_AND_PRINT(ACTIVE),
853 CHECK_AND_PRINT(RADAR),
854 CHECK_AND_PRINT(WIDE),
855 CHECK_AND_PRINT(DFS),
856 eeprom_ch->flags,
857 eeprom_ch->max_power_avg,
858 ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS)
859 && !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ?
860 "" : "not ");
861
862 ch_info->ht40_eeprom = *eeprom_ch;
863 ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg;
864 ch_info->ht40_flags = eeprom_ch->flags;
865 if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
866 ch_info->ht40_extension_channel &= ~clear_ht40_extension_channel;
867
868 return 0;
869 }
870
871 #define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \
872 ? # x " " : "")
873
874 /**
875 * iwl_init_channel_map - Set up driver's info for all possible channels
876 */
877 int iwl_init_channel_map(struct iwl_priv *priv)
878 {
879 int eeprom_ch_count = 0;
880 const u8 *eeprom_ch_index = NULL;
881 const struct iwl_eeprom_channel *eeprom_ch_info = NULL;
882 int band, ch;
883 struct iwl_channel_info *ch_info;
884
885 if (priv->channel_count) {
886 IWL_DEBUG_EEPROM(priv, "Channel map already initialized.\n");
887 return 0;
888 }
889
890 IWL_DEBUG_EEPROM(priv, "Initializing regulatory info from EEPROM\n");
891
892 priv->channel_count =
893 ARRAY_SIZE(iwl_eeprom_band_1) +
894 ARRAY_SIZE(iwl_eeprom_band_2) +
895 ARRAY_SIZE(iwl_eeprom_band_3) +
896 ARRAY_SIZE(iwl_eeprom_band_4) +
897 ARRAY_SIZE(iwl_eeprom_band_5);
898
899 IWL_DEBUG_EEPROM(priv, "Parsing data for %d channels.\n",
900 priv->channel_count);
901
902 priv->channel_info = kcalloc(priv->channel_count,
903 sizeof(struct iwl_channel_info),
904 GFP_KERNEL);
905 if (!priv->channel_info) {
906 IWL_ERR(priv, "Could not allocate channel_info\n");
907 priv->channel_count = 0;
908 return -ENOMEM;
909 }
910
911 ch_info = priv->channel_info;
912
913 /* Loop through the 5 EEPROM bands adding them in order to the
914 * channel map we maintain (that contains additional information than
915 * what just in the EEPROM) */
916 for (band = 1; band <= 5; band++) {
917
918 iwl_init_band_reference(priv, band, &eeprom_ch_count,
919 &eeprom_ch_info, &eeprom_ch_index);
920
921 /* Loop through each band adding each of the channels */
922 for (ch = 0; ch < eeprom_ch_count; ch++) {
923 ch_info->channel = eeprom_ch_index[ch];
924 ch_info->band = (band == 1) ? IEEE80211_BAND_2GHZ :
925 IEEE80211_BAND_5GHZ;
926
927 /* permanently store EEPROM's channel regulatory flags
928 * and max power in channel info database. */
929 ch_info->eeprom = eeprom_ch_info[ch];
930
931 /* Copy the run-time flags so they are there even on
932 * invalid channels */
933 ch_info->flags = eeprom_ch_info[ch].flags;
934 /* First write that ht40 is not enabled, and then enable
935 * one by one */
936 ch_info->ht40_extension_channel =
937 IEEE80211_CHAN_NO_HT40;
938
939 if (!(is_channel_valid(ch_info))) {
940 IWL_DEBUG_EEPROM(priv,
941 "Ch. %d Flags %x [%sGHz] - "
942 "No traffic\n",
943 ch_info->channel,
944 ch_info->flags,
945 is_channel_a_band(ch_info) ?
946 "5.2" : "2.4");
947 ch_info++;
948 continue;
949 }
950
951 /* Initialize regulatory-based run-time data */
952 ch_info->max_power_avg = ch_info->curr_txpow =
953 eeprom_ch_info[ch].max_power_avg;
954 ch_info->scan_power = eeprom_ch_info[ch].max_power_avg;
955 ch_info->min_power = 0;
956
957 IWL_DEBUG_EEPROM(priv, "Ch. %d [%sGHz] "
958 "%s%s%s%s%s%s(0x%02x %ddBm):"
959 " Ad-Hoc %ssupported\n",
960 ch_info->channel,
961 is_channel_a_band(ch_info) ?
962 "5.2" : "2.4",
963 CHECK_AND_PRINT_I(VALID),
964 CHECK_AND_PRINT_I(IBSS),
965 CHECK_AND_PRINT_I(ACTIVE),
966 CHECK_AND_PRINT_I(RADAR),
967 CHECK_AND_PRINT_I(WIDE),
968 CHECK_AND_PRINT_I(DFS),
969 eeprom_ch_info[ch].flags,
970 eeprom_ch_info[ch].max_power_avg,
971 ((eeprom_ch_info[ch].
972 flags & EEPROM_CHANNEL_IBSS)
973 && !(eeprom_ch_info[ch].
974 flags & EEPROM_CHANNEL_RADAR))
975 ? "" : "not ");
976
977 ch_info++;
978 }
979 }
980
981 /* Check if we do have HT40 channels */
982 if (priv->cfg->lib->eeprom_ops.regulatory_bands[5] ==
983 EEPROM_REGULATORY_BAND_NO_HT40 &&
984 priv->cfg->lib->eeprom_ops.regulatory_bands[6] ==
985 EEPROM_REGULATORY_BAND_NO_HT40)
986 return 0;
987
988 /* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
989 for (band = 6; band <= 7; band++) {
990 enum ieee80211_band ieeeband;
991
992 iwl_init_band_reference(priv, band, &eeprom_ch_count,
993 &eeprom_ch_info, &eeprom_ch_index);
994
995 /* EEPROM band 6 is 2.4, band 7 is 5 GHz */
996 ieeeband =
997 (band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
998
999 /* Loop through each band adding each of the channels */
1000 for (ch = 0; ch < eeprom_ch_count; ch++) {
1001 /* Set up driver's info for lower half */
1002 iwl_mod_ht40_chan_info(priv, ieeeband,
1003 eeprom_ch_index[ch],
1004 &eeprom_ch_info[ch],
1005 IEEE80211_CHAN_NO_HT40PLUS);
1006
1007 /* Set up driver's info for upper half */
1008 iwl_mod_ht40_chan_info(priv, ieeeband,
1009 eeprom_ch_index[ch] + 4,
1010 &eeprom_ch_info[ch],
1011 IEEE80211_CHAN_NO_HT40MINUS);
1012 }
1013 }
1014
1015 /* for newer device (6000 series and up)
1016 * EEPROM contain enhanced tx power information
1017 * driver need to process addition information
1018 * to determine the max channel tx power limits
1019 */
1020 if (priv->cfg->lib->eeprom_ops.update_enhanced_txpower)
1021 priv->cfg->lib->eeprom_ops.update_enhanced_txpower(priv);
1022
1023 return 0;
1024 }
1025
1026 /*
1027 * iwl_free_channel_map - undo allocations in iwl_init_channel_map
1028 */
1029 void iwl_free_channel_map(struct iwl_priv *priv)
1030 {
1031 kfree(priv->channel_info);
1032 priv->channel_count = 0;
1033 }
1034
1035 /**
1036 * iwl_get_channel_info - Find driver's private channel info
1037 *
1038 * Based on band and channel number.
1039 */
1040 const struct iwl_channel_info *iwl_get_channel_info(const struct iwl_priv *priv,
1041 enum ieee80211_band band, u16 channel)
1042 {
1043 int i;
1044
1045 switch (band) {
1046 case IEEE80211_BAND_5GHZ:
1047 for (i = 14; i < priv->channel_count; i++) {
1048 if (priv->channel_info[i].channel == channel)
1049 return &priv->channel_info[i];
1050 }
1051 break;
1052 case IEEE80211_BAND_2GHZ:
1053 if (channel >= 1 && channel <= 14)
1054 return &priv->channel_info[channel - 1];
1055 break;
1056 default:
1057 BUG();
1058 }
1059
1060 return NULL;
1061 }
1062
1063 void iwl_rf_config(struct iwl_priv *priv)
1064 {
1065 u16 radio_cfg;
1066
1067 radio_cfg = iwl_eeprom_query16(priv, EEPROM_RADIO_CONFIG);
1068
1069 /* write radio config values to register */
1070 if (EEPROM_RF_CFG_TYPE_MSK(radio_cfg) <= EEPROM_RF_CONFIG_TYPE_MAX) {
1071 iwl_set_bit(bus(priv), CSR_HW_IF_CONFIG_REG,
1072 EEPROM_RF_CFG_TYPE_MSK(radio_cfg) |
1073 EEPROM_RF_CFG_STEP_MSK(radio_cfg) |
1074 EEPROM_RF_CFG_DASH_MSK(radio_cfg));
1075 IWL_INFO(priv, "Radio type=0x%x-0x%x-0x%x\n",
1076 EEPROM_RF_CFG_TYPE_MSK(radio_cfg),
1077 EEPROM_RF_CFG_STEP_MSK(radio_cfg),
1078 EEPROM_RF_CFG_DASH_MSK(radio_cfg));
1079 } else
1080 WARN_ON(1);
1081
1082 /* set CSR_HW_CONFIG_REG for uCode use */
1083 iwl_set_bit(bus(priv), CSR_HW_IF_CONFIG_REG,
1084 CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
1085 CSR_HW_IF_CONFIG_REG_BIT_MAC_SI);
1086 }
This page took 0.054979 seconds and 6 git commands to generate.