iwlwifi: mvm: Reflect GO channel switch in NoA
[deliverable/linux.git] / drivers / net / wireless / iwlwifi / iwl-nvm-parse.c
1 /******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
23 *
24 * The full GNU General Public License is included in this distribution
25 * in the file called COPYING.
26 *
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *
31 * BSD LICENSE
32 *
33 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 *
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *****************************************************************************/
62 #include <linux/types.h>
63 #include <linux/slab.h>
64 #include <linux/export.h>
65 #include <linux/etherdevice.h>
66 #include <linux/pci.h>
67 #include "iwl-drv.h"
68 #include "iwl-modparams.h"
69 #include "iwl-nvm-parse.h"
70
71 /* NVM offsets (in words) definitions */
72 enum wkp_nvm_offsets {
73 /* NVM HW-Section offset (in words) definitions */
74 HW_ADDR = 0x15,
75
76 /* NVM SW-Section offset (in words) definitions */
77 NVM_SW_SECTION = 0x1C0,
78 NVM_VERSION = 0,
79 RADIO_CFG = 1,
80 SKU = 2,
81 N_HW_ADDRS = 3,
82 NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
83
84 /* NVM calibration section offset (in words) definitions */
85 NVM_CALIB_SECTION = 0x2B8,
86 XTAL_CALIB = 0x316 - NVM_CALIB_SECTION
87 };
88
89 enum family_8000_nvm_offsets {
90 /* NVM HW-Section offset (in words) definitions */
91 HW_ADDR0_WFPM_FAMILY_8000 = 0x12,
92 HW_ADDR1_WFPM_FAMILY_8000 = 0x16,
93 HW_ADDR0_PCIE_FAMILY_8000 = 0x8A,
94 HW_ADDR1_PCIE_FAMILY_8000 = 0x8E,
95 MAC_ADDRESS_OVERRIDE_FAMILY_8000 = 1,
96
97 /* NVM SW-Section offset (in words) definitions */
98 NVM_SW_SECTION_FAMILY_8000 = 0x1C0,
99 NVM_VERSION_FAMILY_8000 = 0,
100 RADIO_CFG_FAMILY_8000 = 2,
101 SKU_FAMILY_8000 = 4,
102 N_HW_ADDRS_FAMILY_8000 = 5,
103
104 /* NVM REGULATORY -Section offset (in words) definitions */
105 NVM_CHANNELS_FAMILY_8000 = 0,
106
107 /* NVM calibration section offset (in words) definitions */
108 NVM_CALIB_SECTION_FAMILY_8000 = 0x2B8,
109 XTAL_CALIB_FAMILY_8000 = 0x316 - NVM_CALIB_SECTION_FAMILY_8000
110 };
111
112 /* SKU Capabilities (actual values from NVM definition) */
113 enum nvm_sku_bits {
114 NVM_SKU_CAP_BAND_24GHZ = BIT(0),
115 NVM_SKU_CAP_BAND_52GHZ = BIT(1),
116 NVM_SKU_CAP_11N_ENABLE = BIT(2),
117 NVM_SKU_CAP_11AC_ENABLE = BIT(3),
118 };
119
120 /*
121 * These are the channel numbers in the order that they are stored in the NVM
122 */
123 static const u8 iwl_nvm_channels[] = {
124 /* 2.4 GHz */
125 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
126 /* 5 GHz */
127 36, 40, 44 , 48, 52, 56, 60, 64,
128 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
129 149, 153, 157, 161, 165
130 };
131
132 static const u8 iwl_nvm_channels_family_8000[] = {
133 /* 2.4 GHz */
134 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
135 /* 5 GHz */
136 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
137 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
138 149, 153, 157, 161, 165, 169, 173, 177, 181
139 };
140
141 #define IWL_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels)
142 #define IWL_NUM_CHANNELS_FAMILY_8000 ARRAY_SIZE(iwl_nvm_channels_family_8000)
143 #define NUM_2GHZ_CHANNELS 14
144 #define NUM_2GHZ_CHANNELS_FAMILY_8000 14
145 #define FIRST_2GHZ_HT_MINUS 5
146 #define LAST_2GHZ_HT_PLUS 9
147 #define LAST_5GHZ_HT 161
148
149 #define DEFAULT_MAX_TX_POWER 16
150
151 /* rate data (static) */
152 static struct ieee80211_rate iwl_cfg80211_rates[] = {
153 { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
154 { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
155 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
156 { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
157 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
158 { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
159 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
160 { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
161 { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
162 { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
163 { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
164 { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
165 { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
166 { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
167 { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
168 };
169 #define RATES_24_OFFS 0
170 #define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates)
171 #define RATES_52_OFFS 4
172 #define N_RATES_52 (N_RATES_24 - RATES_52_OFFS)
173
174 /**
175 * enum iwl_nvm_channel_flags - channel flags in NVM
176 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
177 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
178 * @NVM_CHANNEL_ACTIVE: active scanning allowed
179 * @NVM_CHANNEL_RADAR: radar detection required
180 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
181 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
182 * on same channel on 2.4 or same UNII band on 5.2
183 * @NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
184 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
185 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
186 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
187 */
188 enum iwl_nvm_channel_flags {
189 NVM_CHANNEL_VALID = BIT(0),
190 NVM_CHANNEL_IBSS = BIT(1),
191 NVM_CHANNEL_ACTIVE = BIT(3),
192 NVM_CHANNEL_RADAR = BIT(4),
193 NVM_CHANNEL_INDOOR_ONLY = BIT(5),
194 NVM_CHANNEL_GO_CONCURRENT = BIT(6),
195 NVM_CHANNEL_WIDE = BIT(8),
196 NVM_CHANNEL_40MHZ = BIT(9),
197 NVM_CHANNEL_80MHZ = BIT(10),
198 NVM_CHANNEL_160MHZ = BIT(11),
199 };
200
201 #define CHECK_AND_PRINT_I(x) \
202 ((ch_flags & NVM_CHANNEL_##x) ? # x " " : "")
203
204 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
205 struct iwl_nvm_data *data,
206 const __le16 * const nvm_ch_flags)
207 {
208 int ch_idx;
209 int n_channels = 0;
210 struct ieee80211_channel *channel;
211 u16 ch_flags;
212 bool is_5ghz;
213 int num_of_ch, num_2ghz_channels;
214 const u8 *nvm_chan;
215
216 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
217 num_of_ch = IWL_NUM_CHANNELS;
218 nvm_chan = &iwl_nvm_channels[0];
219 num_2ghz_channels = NUM_2GHZ_CHANNELS;
220 } else {
221 num_of_ch = IWL_NUM_CHANNELS_FAMILY_8000;
222 nvm_chan = &iwl_nvm_channels_family_8000[0];
223 num_2ghz_channels = NUM_2GHZ_CHANNELS_FAMILY_8000;
224 }
225
226 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
227 ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);
228
229 if (ch_idx >= num_2ghz_channels &&
230 !data->sku_cap_band_52GHz_enable)
231 ch_flags &= ~NVM_CHANNEL_VALID;
232
233 if (!(ch_flags & NVM_CHANNEL_VALID)) {
234 IWL_DEBUG_EEPROM(dev,
235 "Ch. %d Flags %x [%sGHz] - No traffic\n",
236 nvm_chan[ch_idx],
237 ch_flags,
238 (ch_idx >= num_2ghz_channels) ?
239 "5.2" : "2.4");
240 continue;
241 }
242
243 channel = &data->channels[n_channels];
244 n_channels++;
245
246 channel->hw_value = nvm_chan[ch_idx];
247 channel->band = (ch_idx < num_2ghz_channels) ?
248 IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
249 channel->center_freq =
250 ieee80211_channel_to_frequency(
251 channel->hw_value, channel->band);
252
253 /* TODO: Need to be dependent to the NVM */
254 channel->flags = IEEE80211_CHAN_NO_HT40;
255 if (ch_idx < num_2ghz_channels &&
256 (ch_flags & NVM_CHANNEL_40MHZ)) {
257 if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
258 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
259 if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
260 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
261 } else if (nvm_chan[ch_idx] <= LAST_5GHZ_HT &&
262 (ch_flags & NVM_CHANNEL_40MHZ)) {
263 if ((ch_idx - num_2ghz_channels) % 2 == 0)
264 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
265 else
266 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
267 }
268 if (!(ch_flags & NVM_CHANNEL_80MHZ))
269 channel->flags |= IEEE80211_CHAN_NO_80MHZ;
270 if (!(ch_flags & NVM_CHANNEL_160MHZ))
271 channel->flags |= IEEE80211_CHAN_NO_160MHZ;
272
273 if (!(ch_flags & NVM_CHANNEL_IBSS))
274 channel->flags |= IEEE80211_CHAN_NO_IR;
275
276 if (!(ch_flags & NVM_CHANNEL_ACTIVE))
277 channel->flags |= IEEE80211_CHAN_NO_IR;
278
279 if (ch_flags & NVM_CHANNEL_RADAR)
280 channel->flags |= IEEE80211_CHAN_RADAR;
281
282 if (ch_flags & NVM_CHANNEL_INDOOR_ONLY)
283 channel->flags |= IEEE80211_CHAN_INDOOR_ONLY;
284
285 /* Set the GO concurrent flag only in case that NO_IR is set.
286 * Otherwise it is meaningless
287 */
288 if ((ch_flags & NVM_CHANNEL_GO_CONCURRENT) &&
289 (channel->flags & IEEE80211_CHAN_NO_IR))
290 channel->flags |= IEEE80211_CHAN_GO_CONCURRENT;
291
292 /* Initialize regulatory-based run-time data */
293
294 /*
295 * Default value - highest tx power value. max_power
296 * is not used in mvm, and is used for backwards compatibility
297 */
298 channel->max_power = DEFAULT_MAX_TX_POWER;
299 is_5ghz = channel->band == IEEE80211_BAND_5GHZ;
300 IWL_DEBUG_EEPROM(dev,
301 "Ch. %d [%sGHz] %s%s%s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n",
302 channel->hw_value,
303 is_5ghz ? "5.2" : "2.4",
304 CHECK_AND_PRINT_I(VALID),
305 CHECK_AND_PRINT_I(IBSS),
306 CHECK_AND_PRINT_I(ACTIVE),
307 CHECK_AND_PRINT_I(RADAR),
308 CHECK_AND_PRINT_I(WIDE),
309 CHECK_AND_PRINT_I(INDOOR_ONLY),
310 CHECK_AND_PRINT_I(GO_CONCURRENT),
311 ch_flags,
312 channel->max_power,
313 ((ch_flags & NVM_CHANNEL_IBSS) &&
314 !(ch_flags & NVM_CHANNEL_RADAR))
315 ? "" : "not ");
316 }
317
318 return n_channels;
319 }
320
321 static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg,
322 struct iwl_nvm_data *data,
323 struct ieee80211_sta_vht_cap *vht_cap,
324 u8 tx_chains, u8 rx_chains)
325 {
326 int num_rx_ants = num_of_ant(rx_chains);
327 int num_tx_ants = num_of_ant(tx_chains);
328
329 vht_cap->vht_supported = true;
330
331 vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
332 IEEE80211_VHT_CAP_RXSTBC_1 |
333 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
334 3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
335 7 << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
336
337 if (num_tx_ants > 1)
338 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
339 else
340 vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
341
342 if (iwlwifi_mod_params.amsdu_size_8K)
343 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
344
345 vht_cap->vht_mcs.rx_mcs_map =
346 cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
347 IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
348 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
349 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
350 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
351 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
352 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
353 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
354
355 if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
356 vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
357 /* this works because NOT_SUPPORTED == 3 */
358 vht_cap->vht_mcs.rx_mcs_map |=
359 cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
360 }
361
362 vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
363 }
364
365 static void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
366 struct iwl_nvm_data *data,
367 const __le16 *ch_section, bool enable_vht,
368 u8 tx_chains, u8 rx_chains)
369 {
370 int n_channels;
371 int n_used = 0;
372 struct ieee80211_supported_band *sband;
373
374 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
375 n_channels = iwl_init_channel_map(
376 dev, cfg, data,
377 &ch_section[NVM_CHANNELS]);
378 else
379 n_channels = iwl_init_channel_map(
380 dev, cfg, data,
381 &ch_section[NVM_CHANNELS_FAMILY_8000]);
382
383 sband = &data->bands[IEEE80211_BAND_2GHZ];
384 sband->band = IEEE80211_BAND_2GHZ;
385 sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
386 sband->n_bitrates = N_RATES_24;
387 n_used += iwl_init_sband_channels(data, sband, n_channels,
388 IEEE80211_BAND_2GHZ);
389 iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_2GHZ,
390 tx_chains, rx_chains);
391
392 sband = &data->bands[IEEE80211_BAND_5GHZ];
393 sband->band = IEEE80211_BAND_5GHZ;
394 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
395 sband->n_bitrates = N_RATES_52;
396 n_used += iwl_init_sband_channels(data, sband, n_channels,
397 IEEE80211_BAND_5GHZ);
398 iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_5GHZ,
399 tx_chains, rx_chains);
400 if (enable_vht)
401 iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap,
402 tx_chains, rx_chains);
403
404 if (n_channels != n_used)
405 IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
406 n_used, n_channels);
407 }
408
409 static int iwl_get_sku(const struct iwl_cfg *cfg,
410 const __le16 *nvm_sw)
411 {
412 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
413 return le16_to_cpup(nvm_sw + SKU);
414 else
415 return le32_to_cpup((__le32 *)(nvm_sw + SKU_FAMILY_8000));
416 }
417
418 static int iwl_get_nvm_version(const struct iwl_cfg *cfg,
419 const __le16 *nvm_sw)
420 {
421 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
422 return le16_to_cpup(nvm_sw + NVM_VERSION);
423 else
424 return le32_to_cpup((__le32 *)(nvm_sw +
425 NVM_VERSION_FAMILY_8000));
426 }
427
428 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg,
429 const __le16 *nvm_sw)
430 {
431 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
432 return le16_to_cpup(nvm_sw + RADIO_CFG);
433 else
434 return le32_to_cpup((__le32 *)(nvm_sw + RADIO_CFG_FAMILY_8000));
435 }
436
437 #define N_HW_ADDRS_MASK_FAMILY_8000 0xF
438 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg,
439 const __le16 *nvm_sw)
440 {
441 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
442 return le16_to_cpup(nvm_sw + N_HW_ADDRS);
443 else
444 return le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000))
445 & N_HW_ADDRS_MASK_FAMILY_8000;
446 }
447
448 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
449 struct iwl_nvm_data *data,
450 u32 radio_cfg)
451 {
452 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
453 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
454 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
455 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
456 data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
457 return;
458 }
459
460 /* set the radio configuration for family 8000 */
461 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK_FAMILY_8000(radio_cfg);
462 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK_FAMILY_8000(radio_cfg);
463 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK_FAMILY_8000(radio_cfg);
464 data->radio_cfg_pnum = NVM_RF_CFG_FLAVOR_MSK_FAMILY_8000(radio_cfg);
465 }
466
467 static void iwl_set_hw_address(const struct iwl_cfg *cfg,
468 struct iwl_nvm_data *data,
469 const __le16 *nvm_sec)
470 {
471 const u8 *hw_addr = (const u8 *)(nvm_sec + HW_ADDR);
472
473 /* The byte order is little endian 16 bit, meaning 214365 */
474 data->hw_addr[0] = hw_addr[1];
475 data->hw_addr[1] = hw_addr[0];
476 data->hw_addr[2] = hw_addr[3];
477 data->hw_addr[3] = hw_addr[2];
478 data->hw_addr[4] = hw_addr[5];
479 data->hw_addr[5] = hw_addr[4];
480 }
481
482 static void iwl_set_hw_address_family_8000(struct device *dev,
483 const struct iwl_cfg *cfg,
484 struct iwl_nvm_data *data,
485 const __le16 *mac_override,
486 const __le16 *nvm_hw)
487 {
488 const u8 *hw_addr;
489
490 if (mac_override) {
491 hw_addr = (const u8 *)(mac_override +
492 MAC_ADDRESS_OVERRIDE_FAMILY_8000);
493
494 /* The byte order is little endian 16 bit, meaning 214365 */
495 data->hw_addr[0] = hw_addr[1];
496 data->hw_addr[1] = hw_addr[0];
497 data->hw_addr[2] = hw_addr[3];
498 data->hw_addr[3] = hw_addr[2];
499 data->hw_addr[4] = hw_addr[5];
500 data->hw_addr[5] = hw_addr[4];
501
502 if (is_valid_ether_addr(data->hw_addr))
503 return;
504
505 IWL_ERR_DEV(dev,
506 "mac address from nvm override section is not valid\n");
507 }
508
509 if (nvm_hw) {
510 /* read the MAC address from OTP */
511 if (!dev_is_pci(dev) || (data->nvm_version < 0xE08)) {
512 /* read the mac address from the WFPM location */
513 hw_addr = (const u8 *)(nvm_hw +
514 HW_ADDR0_WFPM_FAMILY_8000);
515 data->hw_addr[0] = hw_addr[3];
516 data->hw_addr[1] = hw_addr[2];
517 data->hw_addr[2] = hw_addr[1];
518 data->hw_addr[3] = hw_addr[0];
519
520 hw_addr = (const u8 *)(nvm_hw +
521 HW_ADDR1_WFPM_FAMILY_8000);
522 data->hw_addr[4] = hw_addr[1];
523 data->hw_addr[5] = hw_addr[0];
524 } else if ((data->nvm_version >= 0xE08) &&
525 (data->nvm_version < 0xE0B)) {
526 /* read "reverse order" from the PCIe location */
527 hw_addr = (const u8 *)(nvm_hw +
528 HW_ADDR0_PCIE_FAMILY_8000);
529 data->hw_addr[5] = hw_addr[2];
530 data->hw_addr[4] = hw_addr[1];
531 data->hw_addr[3] = hw_addr[0];
532
533 hw_addr = (const u8 *)(nvm_hw +
534 HW_ADDR1_PCIE_FAMILY_8000);
535 data->hw_addr[2] = hw_addr[3];
536 data->hw_addr[1] = hw_addr[2];
537 data->hw_addr[0] = hw_addr[1];
538 } else {
539 /* read from the PCIe location */
540 hw_addr = (const u8 *)(nvm_hw +
541 HW_ADDR0_PCIE_FAMILY_8000);
542 data->hw_addr[5] = hw_addr[0];
543 data->hw_addr[4] = hw_addr[1];
544 data->hw_addr[3] = hw_addr[2];
545
546 hw_addr = (const u8 *)(nvm_hw +
547 HW_ADDR1_PCIE_FAMILY_8000);
548 data->hw_addr[2] = hw_addr[1];
549 data->hw_addr[1] = hw_addr[2];
550 data->hw_addr[0] = hw_addr[3];
551 }
552 if (!is_valid_ether_addr(data->hw_addr))
553 IWL_ERR_DEV(dev,
554 "mac address from hw section is not valid\n");
555
556 return;
557 }
558
559 IWL_ERR_DEV(dev, "mac address is not found\n");
560 }
561
562 struct iwl_nvm_data *
563 iwl_parse_nvm_data(struct device *dev, const struct iwl_cfg *cfg,
564 const __le16 *nvm_hw, const __le16 *nvm_sw,
565 const __le16 *nvm_calib, const __le16 *regulatory,
566 const __le16 *mac_override, u8 tx_chains, u8 rx_chains)
567 {
568 struct iwl_nvm_data *data;
569 u32 sku;
570 u32 radio_cfg;
571
572 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
573 data = kzalloc(sizeof(*data) +
574 sizeof(struct ieee80211_channel) *
575 IWL_NUM_CHANNELS,
576 GFP_KERNEL);
577 else
578 data = kzalloc(sizeof(*data) +
579 sizeof(struct ieee80211_channel) *
580 IWL_NUM_CHANNELS_FAMILY_8000,
581 GFP_KERNEL);
582 if (!data)
583 return NULL;
584
585 data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
586
587 radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw);
588 iwl_set_radio_cfg(cfg, data, radio_cfg);
589
590 sku = iwl_get_sku(cfg, nvm_sw);
591 data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
592 data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
593 data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
594 data->sku_cap_11ac_enable = sku & NVM_SKU_CAP_11AC_ENABLE;
595 if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
596 data->sku_cap_11n_enable = false;
597
598 data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
599
600 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
601 /* Checking for required sections */
602 if (!nvm_calib) {
603 IWL_ERR_DEV(dev,
604 "Can't parse empty Calib NVM sections\n");
605 kfree(data);
606 return NULL;
607 }
608 /* in family 8000 Xtal calibration values moved to OTP */
609 data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
610 data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
611 }
612
613 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
614 iwl_set_hw_address(cfg, data, nvm_hw);
615
616 iwl_init_sbands(dev, cfg, data, nvm_sw,
617 sku & NVM_SKU_CAP_11AC_ENABLE, tx_chains,
618 rx_chains);
619 } else {
620 /* MAC address in family 8000 */
621 iwl_set_hw_address_family_8000(dev, cfg, data, mac_override,
622 nvm_hw);
623
624 iwl_init_sbands(dev, cfg, data, regulatory,
625 sku & NVM_SKU_CAP_11AC_ENABLE, tx_chains,
626 rx_chains);
627 }
628
629 data->calib_version = 255;
630
631 return data;
632 }
633 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
This page took 0.070481 seconds and 5 git commands to generate.