iwlwifi: nvm: init correct nvm channel list for 8000 devices
[deliverable/linux.git] / drivers / net / wireless / iwlwifi / iwl-nvm-parse.c
1 /******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9 * Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of version 2 of the GNU General Public License as
13 * published by the Free Software Foundation.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
23 * USA
24 *
25 * The full GNU General Public License is included in this distribution
26 * in the file called COPYING.
27 *
28 * Contact Information:
29 * Intel Linux Wireless <ilw@linux.intel.com>
30 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 *
32 * BSD LICENSE
33 *
34 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
35 * Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH
36 * All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 *
42 * * Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * * Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in
46 * the documentation and/or other materials provided with the
47 * distribution.
48 * * Neither the name Intel Corporation nor the names of its
49 * contributors may be used to endorse or promote products derived
50 * from this software without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
53 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
54 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
55 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
56 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
57 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
58 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
59 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
60 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
61 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
62 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
63 *****************************************************************************/
64 #include <linux/types.h>
65 #include <linux/slab.h>
66 #include <linux/export.h>
67 #include <linux/etherdevice.h>
68 #include <linux/pci.h>
69 #include "iwl-drv.h"
70 #include "iwl-modparams.h"
71 #include "iwl-nvm-parse.h"
72
73 /* NVM offsets (in words) definitions */
74 enum wkp_nvm_offsets {
75 /* NVM HW-Section offset (in words) definitions */
76 HW_ADDR = 0x15,
77
78 /* NVM SW-Section offset (in words) definitions */
79 NVM_SW_SECTION = 0x1C0,
80 NVM_VERSION = 0,
81 RADIO_CFG = 1,
82 SKU = 2,
83 N_HW_ADDRS = 3,
84 NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
85
86 /* NVM calibration section offset (in words) definitions */
87 NVM_CALIB_SECTION = 0x2B8,
88 XTAL_CALIB = 0x316 - NVM_CALIB_SECTION
89 };
90
91 enum family_8000_nvm_offsets {
92 /* NVM HW-Section offset (in words) definitions */
93 HW_ADDR0_WFPM_FAMILY_8000 = 0x12,
94 HW_ADDR1_WFPM_FAMILY_8000 = 0x16,
95 HW_ADDR0_PCIE_FAMILY_8000 = 0x8A,
96 HW_ADDR1_PCIE_FAMILY_8000 = 0x8E,
97 MAC_ADDRESS_OVERRIDE_FAMILY_8000 = 1,
98
99 /* NVM SW-Section offset (in words) definitions */
100 NVM_SW_SECTION_FAMILY_8000 = 0x1C0,
101 NVM_VERSION_FAMILY_8000 = 0,
102 RADIO_CFG_FAMILY_8000 = 2,
103 SKU_FAMILY_8000 = 4,
104 N_HW_ADDRS_FAMILY_8000 = 5,
105
106 /* NVM REGULATORY -Section offset (in words) definitions */
107 NVM_CHANNELS_FAMILY_8000 = 0,
108
109 /* NVM calibration section offset (in words) definitions */
110 NVM_CALIB_SECTION_FAMILY_8000 = 0x2B8,
111 XTAL_CALIB_FAMILY_8000 = 0x316 - NVM_CALIB_SECTION_FAMILY_8000
112 };
113
114 /* SKU Capabilities (actual values from NVM definition) */
115 enum nvm_sku_bits {
116 NVM_SKU_CAP_BAND_24GHZ = BIT(0),
117 NVM_SKU_CAP_BAND_52GHZ = BIT(1),
118 NVM_SKU_CAP_11N_ENABLE = BIT(2),
119 NVM_SKU_CAP_11AC_ENABLE = BIT(3),
120 };
121
122 /*
123 * These are the channel numbers in the order that they are stored in the NVM
124 */
125 static const u8 iwl_nvm_channels[] = {
126 /* 2.4 GHz */
127 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
128 /* 5 GHz */
129 36, 40, 44 , 48, 52, 56, 60, 64,
130 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
131 149, 153, 157, 161, 165
132 };
133
134 static const u8 iwl_nvm_channels_family_8000[] = {
135 /* 2.4 GHz */
136 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
137 /* 5 GHz */
138 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
139 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
140 149, 153, 157, 161, 165, 169, 173, 177, 181
141 };
142
143 #define IWL_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels)
144 #define IWL_NUM_CHANNELS_FAMILY_8000 ARRAY_SIZE(iwl_nvm_channels_family_8000)
145 #define NUM_2GHZ_CHANNELS 14
146 #define NUM_2GHZ_CHANNELS_FAMILY_8000 14
147 #define FIRST_2GHZ_HT_MINUS 5
148 #define LAST_2GHZ_HT_PLUS 9
149 #define LAST_5GHZ_HT 161
150
151 /* rate data (static) */
152 static struct ieee80211_rate iwl_cfg80211_rates[] = {
153 { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
154 { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
155 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
156 { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
157 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
158 { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
159 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
160 { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
161 { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
162 { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
163 { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
164 { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
165 { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
166 { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
167 { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
168 };
169 #define RATES_24_OFFS 0
170 #define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates)
171 #define RATES_52_OFFS 4
172 #define N_RATES_52 (N_RATES_24 - RATES_52_OFFS)
173
174 /**
175 * enum iwl_nvm_channel_flags - channel flags in NVM
176 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
177 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
178 * @NVM_CHANNEL_ACTIVE: active scanning allowed
179 * @NVM_CHANNEL_RADAR: radar detection required
180 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
181 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
182 * on same channel on 2.4 or same UNII band on 5.2
183 * @NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
184 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
185 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
186 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
187 */
188 enum iwl_nvm_channel_flags {
189 NVM_CHANNEL_VALID = BIT(0),
190 NVM_CHANNEL_IBSS = BIT(1),
191 NVM_CHANNEL_ACTIVE = BIT(3),
192 NVM_CHANNEL_RADAR = BIT(4),
193 NVM_CHANNEL_INDOOR_ONLY = BIT(5),
194 NVM_CHANNEL_GO_CONCURRENT = BIT(6),
195 NVM_CHANNEL_WIDE = BIT(8),
196 NVM_CHANNEL_40MHZ = BIT(9),
197 NVM_CHANNEL_80MHZ = BIT(10),
198 NVM_CHANNEL_160MHZ = BIT(11),
199 };
200
201 #define CHECK_AND_PRINT_I(x) \
202 ((ch_flags & NVM_CHANNEL_##x) ? # x " " : "")
203
204 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz,
205 u16 nvm_flags)
206 {
207 u32 flags = IEEE80211_CHAN_NO_HT40;
208
209 if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) {
210 if (ch_num <= LAST_2GHZ_HT_PLUS)
211 flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
212 if (ch_num >= FIRST_2GHZ_HT_MINUS)
213 flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
214 } else if (ch_num <= LAST_5GHZ_HT && (nvm_flags & NVM_CHANNEL_40MHZ)) {
215 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
216 flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
217 else
218 flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
219 }
220 if (!(nvm_flags & NVM_CHANNEL_80MHZ))
221 flags |= IEEE80211_CHAN_NO_80MHZ;
222 if (!(nvm_flags & NVM_CHANNEL_160MHZ))
223 flags |= IEEE80211_CHAN_NO_160MHZ;
224
225 if (!(nvm_flags & NVM_CHANNEL_IBSS))
226 flags |= IEEE80211_CHAN_NO_IR;
227
228 if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
229 flags |= IEEE80211_CHAN_NO_IR;
230
231 if (nvm_flags & NVM_CHANNEL_RADAR)
232 flags |= IEEE80211_CHAN_RADAR;
233
234 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
235 flags |= IEEE80211_CHAN_INDOOR_ONLY;
236
237 /* Set the GO concurrent flag only in case that NO_IR is set.
238 * Otherwise it is meaningless
239 */
240 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
241 (flags & IEEE80211_CHAN_NO_IR))
242 flags |= IEEE80211_CHAN_GO_CONCURRENT;
243
244 return flags;
245 }
246
247 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
248 struct iwl_nvm_data *data,
249 const __le16 * const nvm_ch_flags,
250 bool lar_supported)
251 {
252 int ch_idx;
253 int n_channels = 0;
254 struct ieee80211_channel *channel;
255 u16 ch_flags;
256 bool is_5ghz;
257 int num_of_ch, num_2ghz_channels;
258 const u8 *nvm_chan;
259
260 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
261 num_of_ch = IWL_NUM_CHANNELS;
262 nvm_chan = &iwl_nvm_channels[0];
263 num_2ghz_channels = NUM_2GHZ_CHANNELS;
264 } else {
265 num_of_ch = IWL_NUM_CHANNELS_FAMILY_8000;
266 nvm_chan = &iwl_nvm_channels_family_8000[0];
267 num_2ghz_channels = NUM_2GHZ_CHANNELS_FAMILY_8000;
268 }
269
270 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
271 ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);
272
273 if (ch_idx >= num_2ghz_channels &&
274 !data->sku_cap_band_52GHz_enable)
275 continue;
276
277 if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) {
278 /*
279 * Channels might become valid later if lar is
280 * supported, hence we still want to add them to
281 * the list of supported channels to cfg80211.
282 */
283 IWL_DEBUG_EEPROM(dev,
284 "Ch. %d Flags %x [%sGHz] - No traffic\n",
285 nvm_chan[ch_idx],
286 ch_flags,
287 (ch_idx >= num_2ghz_channels) ?
288 "5.2" : "2.4");
289 continue;
290 }
291
292 channel = &data->channels[n_channels];
293 n_channels++;
294
295 channel->hw_value = nvm_chan[ch_idx];
296 channel->band = (ch_idx < num_2ghz_channels) ?
297 IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
298 channel->center_freq =
299 ieee80211_channel_to_frequency(
300 channel->hw_value, channel->band);
301
302 /* Initialize regulatory-based run-time data */
303
304 /*
305 * Default value - highest tx power value. max_power
306 * is not used in mvm, and is used for backwards compatibility
307 */
308 channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
309 is_5ghz = channel->band == IEEE80211_BAND_5GHZ;
310
311 /* don't put limitations in case we're using LAR */
312 if (!lar_supported)
313 channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
314 ch_idx, is_5ghz,
315 ch_flags);
316 else
317 channel->flags = 0;
318
319 IWL_DEBUG_EEPROM(dev,
320 "Ch. %d [%sGHz] %s%s%s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n",
321 channel->hw_value,
322 is_5ghz ? "5.2" : "2.4",
323 CHECK_AND_PRINT_I(VALID),
324 CHECK_AND_PRINT_I(IBSS),
325 CHECK_AND_PRINT_I(ACTIVE),
326 CHECK_AND_PRINT_I(RADAR),
327 CHECK_AND_PRINT_I(WIDE),
328 CHECK_AND_PRINT_I(INDOOR_ONLY),
329 CHECK_AND_PRINT_I(GO_CONCURRENT),
330 ch_flags,
331 channel->max_power,
332 ((ch_flags & NVM_CHANNEL_IBSS) &&
333 !(ch_flags & NVM_CHANNEL_RADAR))
334 ? "" : "not ");
335 }
336
337 return n_channels;
338 }
339
340 static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg,
341 struct iwl_nvm_data *data,
342 struct ieee80211_sta_vht_cap *vht_cap,
343 u8 tx_chains, u8 rx_chains)
344 {
345 int num_rx_ants = num_of_ant(rx_chains);
346 int num_tx_ants = num_of_ant(tx_chains);
347 unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
348 IEEE80211_VHT_MAX_AMPDU_1024K);
349
350 vht_cap->vht_supported = true;
351
352 vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
353 IEEE80211_VHT_CAP_RXSTBC_1 |
354 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
355 3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
356 max_ampdu_exponent <<
357 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
358
359 if (cfg->ht_params->ldpc)
360 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
361
362 if (num_tx_ants > 1)
363 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
364 else
365 vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
366
367 if (iwlwifi_mod_params.amsdu_size_8K)
368 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
369
370 vht_cap->vht_mcs.rx_mcs_map =
371 cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
372 IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
373 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
374 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
375 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
376 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
377 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
378 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
379
380 if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
381 vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
382 /* this works because NOT_SUPPORTED == 3 */
383 vht_cap->vht_mcs.rx_mcs_map |=
384 cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
385 }
386
387 vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
388 }
389
390 static void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
391 struct iwl_nvm_data *data,
392 const __le16 *ch_section, bool enable_vht,
393 u8 tx_chains, u8 rx_chains, bool lar_supported)
394 {
395 int n_channels;
396 int n_used = 0;
397 struct ieee80211_supported_band *sband;
398
399 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
400 n_channels = iwl_init_channel_map(
401 dev, cfg, data,
402 &ch_section[NVM_CHANNELS], lar_supported);
403 else
404 n_channels = iwl_init_channel_map(
405 dev, cfg, data,
406 &ch_section[NVM_CHANNELS_FAMILY_8000],
407 lar_supported);
408
409 sband = &data->bands[IEEE80211_BAND_2GHZ];
410 sband->band = IEEE80211_BAND_2GHZ;
411 sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
412 sband->n_bitrates = N_RATES_24;
413 n_used += iwl_init_sband_channels(data, sband, n_channels,
414 IEEE80211_BAND_2GHZ);
415 iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_2GHZ,
416 tx_chains, rx_chains);
417
418 sband = &data->bands[IEEE80211_BAND_5GHZ];
419 sband->band = IEEE80211_BAND_5GHZ;
420 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
421 sband->n_bitrates = N_RATES_52;
422 n_used += iwl_init_sband_channels(data, sband, n_channels,
423 IEEE80211_BAND_5GHZ);
424 iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_5GHZ,
425 tx_chains, rx_chains);
426 if (enable_vht)
427 iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap,
428 tx_chains, rx_chains);
429
430 if (n_channels != n_used)
431 IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
432 n_used, n_channels);
433 }
434
435 static int iwl_get_sku(const struct iwl_cfg *cfg,
436 const __le16 *nvm_sw)
437 {
438 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
439 return le16_to_cpup(nvm_sw + SKU);
440 else
441 return le32_to_cpup((__le32 *)(nvm_sw + SKU_FAMILY_8000));
442 }
443
444 static int iwl_get_nvm_version(const struct iwl_cfg *cfg,
445 const __le16 *nvm_sw)
446 {
447 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
448 return le16_to_cpup(nvm_sw + NVM_VERSION);
449 else
450 return le32_to_cpup((__le32 *)(nvm_sw +
451 NVM_VERSION_FAMILY_8000));
452 }
453
454 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg,
455 const __le16 *nvm_sw)
456 {
457 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
458 return le16_to_cpup(nvm_sw + RADIO_CFG);
459 else
460 return le32_to_cpup((__le32 *)(nvm_sw + RADIO_CFG_FAMILY_8000));
461 }
462
463 #define N_HW_ADDRS_MASK_FAMILY_8000 0xF
464 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg,
465 const __le16 *nvm_sw)
466 {
467 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
468 return le16_to_cpup(nvm_sw + N_HW_ADDRS);
469 else
470 return le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000))
471 & N_HW_ADDRS_MASK_FAMILY_8000;
472 }
473
474 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
475 struct iwl_nvm_data *data,
476 u32 radio_cfg)
477 {
478 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
479 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
480 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
481 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
482 data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
483 return;
484 }
485
486 /* set the radio configuration for family 8000 */
487 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK_FAMILY_8000(radio_cfg);
488 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK_FAMILY_8000(radio_cfg);
489 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK_FAMILY_8000(radio_cfg);
490 data->radio_cfg_pnum = NVM_RF_CFG_FLAVOR_MSK_FAMILY_8000(radio_cfg);
491 data->valid_tx_ant = NVM_RF_CFG_TX_ANT_MSK_FAMILY_8000(radio_cfg);
492 data->valid_rx_ant = NVM_RF_CFG_RX_ANT_MSK_FAMILY_8000(radio_cfg);
493 }
494
495 static void iwl_set_hw_address(const struct iwl_cfg *cfg,
496 struct iwl_nvm_data *data,
497 const __le16 *nvm_sec)
498 {
499 const u8 *hw_addr = (const u8 *)(nvm_sec + HW_ADDR);
500
501 /* The byte order is little endian 16 bit, meaning 214365 */
502 data->hw_addr[0] = hw_addr[1];
503 data->hw_addr[1] = hw_addr[0];
504 data->hw_addr[2] = hw_addr[3];
505 data->hw_addr[3] = hw_addr[2];
506 data->hw_addr[4] = hw_addr[5];
507 data->hw_addr[5] = hw_addr[4];
508 }
509
510 static void iwl_set_hw_address_family_8000(struct device *dev,
511 const struct iwl_cfg *cfg,
512 struct iwl_nvm_data *data,
513 const __le16 *mac_override,
514 const __le16 *nvm_hw)
515 {
516 const u8 *hw_addr;
517
518 if (mac_override) {
519 hw_addr = (const u8 *)(mac_override +
520 MAC_ADDRESS_OVERRIDE_FAMILY_8000);
521
522 /* The byte order is little endian 16 bit, meaning 214365 */
523 data->hw_addr[0] = hw_addr[1];
524 data->hw_addr[1] = hw_addr[0];
525 data->hw_addr[2] = hw_addr[3];
526 data->hw_addr[3] = hw_addr[2];
527 data->hw_addr[4] = hw_addr[5];
528 data->hw_addr[5] = hw_addr[4];
529
530 if (is_valid_ether_addr(data->hw_addr))
531 return;
532
533 IWL_ERR_DEV(dev,
534 "mac address from nvm override section is not valid\n");
535 }
536
537 if (nvm_hw) {
538 /* read the MAC address from OTP */
539 if (!dev_is_pci(dev) || (data->nvm_version < 0xE08)) {
540 /* read the mac address from the WFPM location */
541 hw_addr = (const u8 *)(nvm_hw +
542 HW_ADDR0_WFPM_FAMILY_8000);
543 data->hw_addr[0] = hw_addr[3];
544 data->hw_addr[1] = hw_addr[2];
545 data->hw_addr[2] = hw_addr[1];
546 data->hw_addr[3] = hw_addr[0];
547
548 hw_addr = (const u8 *)(nvm_hw +
549 HW_ADDR1_WFPM_FAMILY_8000);
550 data->hw_addr[4] = hw_addr[1];
551 data->hw_addr[5] = hw_addr[0];
552 } else if ((data->nvm_version >= 0xE08) &&
553 (data->nvm_version < 0xE0B)) {
554 /* read "reverse order" from the PCIe location */
555 hw_addr = (const u8 *)(nvm_hw +
556 HW_ADDR0_PCIE_FAMILY_8000);
557 data->hw_addr[5] = hw_addr[2];
558 data->hw_addr[4] = hw_addr[1];
559 data->hw_addr[3] = hw_addr[0];
560
561 hw_addr = (const u8 *)(nvm_hw +
562 HW_ADDR1_PCIE_FAMILY_8000);
563 data->hw_addr[2] = hw_addr[3];
564 data->hw_addr[1] = hw_addr[2];
565 data->hw_addr[0] = hw_addr[1];
566 } else {
567 /* read from the PCIe location */
568 hw_addr = (const u8 *)(nvm_hw +
569 HW_ADDR0_PCIE_FAMILY_8000);
570 data->hw_addr[5] = hw_addr[0];
571 data->hw_addr[4] = hw_addr[1];
572 data->hw_addr[3] = hw_addr[2];
573
574 hw_addr = (const u8 *)(nvm_hw +
575 HW_ADDR1_PCIE_FAMILY_8000);
576 data->hw_addr[2] = hw_addr[1];
577 data->hw_addr[1] = hw_addr[2];
578 data->hw_addr[0] = hw_addr[3];
579 }
580 if (!is_valid_ether_addr(data->hw_addr))
581 IWL_ERR_DEV(dev,
582 "mac address from hw section is not valid\n");
583
584 return;
585 }
586
587 IWL_ERR_DEV(dev, "mac address is not found\n");
588 }
589
590 struct iwl_nvm_data *
591 iwl_parse_nvm_data(struct device *dev, const struct iwl_cfg *cfg,
592 const __le16 *nvm_hw, const __le16 *nvm_sw,
593 const __le16 *nvm_calib, const __le16 *regulatory,
594 const __le16 *mac_override, u8 tx_chains, u8 rx_chains,
595 bool lar_supported)
596 {
597 struct iwl_nvm_data *data;
598 u32 sku;
599 u32 radio_cfg;
600
601 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
602 data = kzalloc(sizeof(*data) +
603 sizeof(struct ieee80211_channel) *
604 IWL_NUM_CHANNELS,
605 GFP_KERNEL);
606 else
607 data = kzalloc(sizeof(*data) +
608 sizeof(struct ieee80211_channel) *
609 IWL_NUM_CHANNELS_FAMILY_8000,
610 GFP_KERNEL);
611 if (!data)
612 return NULL;
613
614 data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
615
616 radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw);
617 iwl_set_radio_cfg(cfg, data, radio_cfg);
618 if (data->valid_tx_ant)
619 tx_chains &= data->valid_tx_ant;
620 if (data->valid_rx_ant)
621 rx_chains &= data->valid_rx_ant;
622
623 sku = iwl_get_sku(cfg, nvm_sw);
624 data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
625 data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
626 data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
627 data->sku_cap_11ac_enable = sku & NVM_SKU_CAP_11AC_ENABLE;
628 if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
629 data->sku_cap_11n_enable = false;
630
631 data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
632
633 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
634 /* Checking for required sections */
635 if (!nvm_calib) {
636 IWL_ERR_DEV(dev,
637 "Can't parse empty Calib NVM sections\n");
638 kfree(data);
639 return NULL;
640 }
641 /* in family 8000 Xtal calibration values moved to OTP */
642 data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
643 data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
644 }
645
646 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
647 iwl_set_hw_address(cfg, data, nvm_hw);
648
649 iwl_init_sbands(dev, cfg, data, nvm_sw,
650 sku & NVM_SKU_CAP_11AC_ENABLE, tx_chains,
651 rx_chains, lar_supported);
652 } else {
653 /* MAC address in family 8000 */
654 iwl_set_hw_address_family_8000(dev, cfg, data, mac_override,
655 nvm_hw);
656
657 iwl_init_sbands(dev, cfg, data, regulatory,
658 sku & NVM_SKU_CAP_11AC_ENABLE, tx_chains,
659 rx_chains, lar_supported);
660 }
661
662 data->calib_version = 255;
663
664 return data;
665 }
666 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
667
668 static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan,
669 int ch_idx, u16 nvm_flags)
670 {
671 u32 flags = NL80211_RRF_NO_HT40;
672
673 if (ch_idx < NUM_2GHZ_CHANNELS &&
674 (nvm_flags & NVM_CHANNEL_40MHZ)) {
675 if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
676 flags &= ~NL80211_RRF_NO_HT40PLUS;
677 if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
678 flags &= ~NL80211_RRF_NO_HT40MINUS;
679 } else if (nvm_chan[ch_idx] <= LAST_5GHZ_HT &&
680 (nvm_flags & NVM_CHANNEL_40MHZ)) {
681 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
682 flags &= ~NL80211_RRF_NO_HT40PLUS;
683 else
684 flags &= ~NL80211_RRF_NO_HT40MINUS;
685 }
686
687 if (!(nvm_flags & NVM_CHANNEL_80MHZ))
688 flags |= NL80211_RRF_NO_80MHZ;
689 if (!(nvm_flags & NVM_CHANNEL_160MHZ))
690 flags |= NL80211_RRF_NO_160MHZ;
691
692 if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
693 flags |= NL80211_RRF_NO_IR;
694
695 if (nvm_flags & NVM_CHANNEL_RADAR)
696 flags |= NL80211_RRF_DFS;
697
698 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
699 flags |= NL80211_RRF_NO_OUTDOOR;
700
701 /* Set the GO concurrent flag only in case that NO_IR is set.
702 * Otherwise it is meaningless
703 */
704 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
705 (flags & NL80211_RRF_NO_IR))
706 flags |= NL80211_RRF_GO_CONCURRENT;
707
708 return flags;
709 }
710
711 struct ieee80211_regdomain *
712 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
713 int num_of_ch, __le32 *channels, u16 fw_mcc)
714 {
715 int ch_idx;
716 u16 ch_flags, prev_ch_flags = 0;
717 const u8 *nvm_chan = cfg->device_family == IWL_DEVICE_FAMILY_8000 ?
718 iwl_nvm_channels_family_8000 : iwl_nvm_channels;
719 struct ieee80211_regdomain *regd;
720 int size_of_regd;
721 struct ieee80211_reg_rule *rule;
722 enum ieee80211_band band;
723 int center_freq, prev_center_freq = 0;
724 int valid_rules = 0;
725 bool new_rule;
726
727 if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
728 return ERR_PTR(-EINVAL);
729
730 IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
731 num_of_ch);
732
733 /* build a regdomain rule for every valid channel */
734 size_of_regd =
735 sizeof(struct ieee80211_regdomain) +
736 num_of_ch * sizeof(struct ieee80211_reg_rule);
737
738 regd = kzalloc(size_of_regd, GFP_KERNEL);
739 if (!regd)
740 return ERR_PTR(-ENOMEM);
741
742 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
743 ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
744 band = (ch_idx < NUM_2GHZ_CHANNELS) ?
745 IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
746 center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
747 band);
748 new_rule = false;
749
750 if (!(ch_flags & NVM_CHANNEL_VALID)) {
751 IWL_DEBUG_DEV(dev, IWL_DL_LAR,
752 "Ch. %d Flags %x [%sGHz] - No traffic\n",
753 nvm_chan[ch_idx],
754 ch_flags,
755 (ch_idx >= NUM_2GHZ_CHANNELS) ?
756 "5.2" : "2.4");
757 continue;
758 }
759
760 /* we can't continue the same rule */
761 if (ch_idx == 0 || prev_ch_flags != ch_flags ||
762 center_freq - prev_center_freq > 20) {
763 valid_rules++;
764 new_rule = true;
765 }
766
767 rule = &regd->reg_rules[valid_rules - 1];
768
769 if (new_rule)
770 rule->freq_range.start_freq_khz =
771 MHZ_TO_KHZ(center_freq - 10);
772
773 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
774
775 /* this doesn't matter - not used by FW */
776 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
777 rule->power_rule.max_eirp = DBM_TO_MBM(20);
778
779 rule->flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
780 ch_flags);
781
782 /* rely on auto-calculation to merge BW of contiguous chans */
783 rule->flags |= NL80211_RRF_AUTO_BW;
784 rule->freq_range.max_bandwidth_khz = 0;
785
786 prev_ch_flags = ch_flags;
787 prev_center_freq = center_freq;
788
789 IWL_DEBUG_DEV(dev, IWL_DL_LAR,
790 "Ch. %d [%sGHz] %s%s%s%s%s%s%s%s%s(0x%02x): Ad-Hoc %ssupported\n",
791 center_freq,
792 band == IEEE80211_BAND_5GHZ ? "5.2" : "2.4",
793 CHECK_AND_PRINT_I(VALID),
794 CHECK_AND_PRINT_I(ACTIVE),
795 CHECK_AND_PRINT_I(RADAR),
796 CHECK_AND_PRINT_I(WIDE),
797 CHECK_AND_PRINT_I(40MHZ),
798 CHECK_AND_PRINT_I(80MHZ),
799 CHECK_AND_PRINT_I(160MHZ),
800 CHECK_AND_PRINT_I(INDOOR_ONLY),
801 CHECK_AND_PRINT_I(GO_CONCURRENT),
802 ch_flags,
803 ((ch_flags & NVM_CHANNEL_ACTIVE) &&
804 !(ch_flags & NVM_CHANNEL_RADAR))
805 ? "" : "not ");
806 }
807
808 regd->n_reg_rules = valid_rules;
809
810 /* set alpha2 from FW. */
811 regd->alpha2[0] = fw_mcc >> 8;
812 regd->alpha2[1] = fw_mcc & 0xff;
813
814 return regd;
815 }
816 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
This page took 0.230542 seconds and 5 git commands to generate.