iwlwifi: iwlmvm: LAR: disable LAR support due to NVM vs TLV conflict
[deliverable/linux.git] / drivers / net / wireless / iwlwifi / iwl-nvm-parse.c
1 /******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9 * Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of version 2 of the GNU General Public License as
13 * published by the Free Software Foundation.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
23 * USA
24 *
25 * The full GNU General Public License is included in this distribution
26 * in the file called COPYING.
27 *
28 * Contact Information:
29 * Intel Linux Wireless <ilw@linux.intel.com>
30 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 *
32 * BSD LICENSE
33 *
34 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
35 * Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH
36 * All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 *
42 * * Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * * Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in
46 * the documentation and/or other materials provided with the
47 * distribution.
48 * * Neither the name Intel Corporation nor the names of its
49 * contributors may be used to endorse or promote products derived
50 * from this software without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
53 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
54 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
55 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
56 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
57 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
58 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
59 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
60 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
61 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
62 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
63 *****************************************************************************/
64 #include <linux/types.h>
65 #include <linux/slab.h>
66 #include <linux/export.h>
67 #include <linux/etherdevice.h>
68 #include <linux/pci.h>
69 #include "iwl-drv.h"
70 #include "iwl-modparams.h"
71 #include "iwl-nvm-parse.h"
72
73 /* NVM offsets (in words) definitions */
74 enum wkp_nvm_offsets {
75 /* NVM HW-Section offset (in words) definitions */
76 HW_ADDR = 0x15,
77
78 /* NVM SW-Section offset (in words) definitions */
79 NVM_SW_SECTION = 0x1C0,
80 NVM_VERSION = 0,
81 RADIO_CFG = 1,
82 SKU = 2,
83 N_HW_ADDRS = 3,
84 NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
85
86 /* NVM calibration section offset (in words) definitions */
87 NVM_CALIB_SECTION = 0x2B8,
88 XTAL_CALIB = 0x316 - NVM_CALIB_SECTION
89 };
90
91 enum family_8000_nvm_offsets {
92 /* NVM HW-Section offset (in words) definitions */
93 HW_ADDR0_WFPM_FAMILY_8000 = 0x12,
94 HW_ADDR1_WFPM_FAMILY_8000 = 0x16,
95 HW_ADDR0_PCIE_FAMILY_8000 = 0x8A,
96 HW_ADDR1_PCIE_FAMILY_8000 = 0x8E,
97 MAC_ADDRESS_OVERRIDE_FAMILY_8000 = 1,
98
99 /* NVM SW-Section offset (in words) definitions */
100 NVM_SW_SECTION_FAMILY_8000 = 0x1C0,
101 NVM_VERSION_FAMILY_8000 = 0,
102 RADIO_CFG_FAMILY_8000 = 2,
103 SKU_FAMILY_8000 = 4,
104 N_HW_ADDRS_FAMILY_8000 = 5,
105
106 /* NVM REGULATORY -Section offset (in words) definitions */
107 NVM_CHANNELS_FAMILY_8000 = 0,
108 NVM_LAR_OFFSET_FAMILY_8000 = 0x4C7,
109 NVM_LAR_ENABLED_FAMILY_8000 = 0x7,
110
111 /* NVM calibration section offset (in words) definitions */
112 NVM_CALIB_SECTION_FAMILY_8000 = 0x2B8,
113 XTAL_CALIB_FAMILY_8000 = 0x316 - NVM_CALIB_SECTION_FAMILY_8000
114 };
115
116 /* SKU Capabilities (actual values from NVM definition) */
117 enum nvm_sku_bits {
118 NVM_SKU_CAP_BAND_24GHZ = BIT(0),
119 NVM_SKU_CAP_BAND_52GHZ = BIT(1),
120 NVM_SKU_CAP_11N_ENABLE = BIT(2),
121 NVM_SKU_CAP_11AC_ENABLE = BIT(3),
122 };
123
124 /*
125 * These are the channel numbers in the order that they are stored in the NVM
126 */
127 static const u8 iwl_nvm_channels[] = {
128 /* 2.4 GHz */
129 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
130 /* 5 GHz */
131 36, 40, 44 , 48, 52, 56, 60, 64,
132 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
133 149, 153, 157, 161, 165
134 };
135
136 static const u8 iwl_nvm_channels_family_8000[] = {
137 /* 2.4 GHz */
138 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
139 /* 5 GHz */
140 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
141 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
142 149, 153, 157, 161, 165, 169, 173, 177, 181
143 };
144
145 #define IWL_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels)
146 #define IWL_NUM_CHANNELS_FAMILY_8000 ARRAY_SIZE(iwl_nvm_channels_family_8000)
147 #define NUM_2GHZ_CHANNELS 14
148 #define NUM_2GHZ_CHANNELS_FAMILY_8000 14
149 #define FIRST_2GHZ_HT_MINUS 5
150 #define LAST_2GHZ_HT_PLUS 9
151 #define LAST_5GHZ_HT 165
152 #define LAST_5GHZ_HT_FAMILY_8000 181
153
154 /* rate data (static) */
155 static struct ieee80211_rate iwl_cfg80211_rates[] = {
156 { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
157 { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
158 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
159 { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
160 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
161 { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
162 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
163 { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
164 { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
165 { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
166 { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
167 { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
168 { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
169 { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
170 { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
171 };
172 #define RATES_24_OFFS 0
173 #define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates)
174 #define RATES_52_OFFS 4
175 #define N_RATES_52 (N_RATES_24 - RATES_52_OFFS)
176
177 /**
178 * enum iwl_nvm_channel_flags - channel flags in NVM
179 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
180 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
181 * @NVM_CHANNEL_ACTIVE: active scanning allowed
182 * @NVM_CHANNEL_RADAR: radar detection required
183 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
184 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
185 * on same channel on 2.4 or same UNII band on 5.2
186 * @NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
187 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
188 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
189 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
190 */
191 enum iwl_nvm_channel_flags {
192 NVM_CHANNEL_VALID = BIT(0),
193 NVM_CHANNEL_IBSS = BIT(1),
194 NVM_CHANNEL_ACTIVE = BIT(3),
195 NVM_CHANNEL_RADAR = BIT(4),
196 NVM_CHANNEL_INDOOR_ONLY = BIT(5),
197 NVM_CHANNEL_GO_CONCURRENT = BIT(6),
198 NVM_CHANNEL_WIDE = BIT(8),
199 NVM_CHANNEL_40MHZ = BIT(9),
200 NVM_CHANNEL_80MHZ = BIT(10),
201 NVM_CHANNEL_160MHZ = BIT(11),
202 };
203
204 #define CHECK_AND_PRINT_I(x) \
205 ((ch_flags & NVM_CHANNEL_##x) ? # x " " : "")
206
207 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz,
208 u16 nvm_flags, const struct iwl_cfg *cfg)
209 {
210 u32 flags = IEEE80211_CHAN_NO_HT40;
211 u32 last_5ghz_ht = LAST_5GHZ_HT;
212
213 if (cfg->device_family == IWL_DEVICE_FAMILY_8000)
214 last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
215
216 if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) {
217 if (ch_num <= LAST_2GHZ_HT_PLUS)
218 flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
219 if (ch_num >= FIRST_2GHZ_HT_MINUS)
220 flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
221 } else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) {
222 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
223 flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
224 else
225 flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
226 }
227 if (!(nvm_flags & NVM_CHANNEL_80MHZ))
228 flags |= IEEE80211_CHAN_NO_80MHZ;
229 if (!(nvm_flags & NVM_CHANNEL_160MHZ))
230 flags |= IEEE80211_CHAN_NO_160MHZ;
231
232 if (!(nvm_flags & NVM_CHANNEL_IBSS))
233 flags |= IEEE80211_CHAN_NO_IR;
234
235 if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
236 flags |= IEEE80211_CHAN_NO_IR;
237
238 if (nvm_flags & NVM_CHANNEL_RADAR)
239 flags |= IEEE80211_CHAN_RADAR;
240
241 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
242 flags |= IEEE80211_CHAN_INDOOR_ONLY;
243
244 /* Set the GO concurrent flag only in case that NO_IR is set.
245 * Otherwise it is meaningless
246 */
247 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
248 (flags & IEEE80211_CHAN_NO_IR))
249 flags |= IEEE80211_CHAN_GO_CONCURRENT;
250
251 return flags;
252 }
253
254 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
255 struct iwl_nvm_data *data,
256 const __le16 * const nvm_ch_flags,
257 bool lar_supported)
258 {
259 int ch_idx;
260 int n_channels = 0;
261 struct ieee80211_channel *channel;
262 u16 ch_flags;
263 bool is_5ghz;
264 int num_of_ch, num_2ghz_channels;
265 const u8 *nvm_chan;
266
267 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
268 num_of_ch = IWL_NUM_CHANNELS;
269 nvm_chan = &iwl_nvm_channels[0];
270 num_2ghz_channels = NUM_2GHZ_CHANNELS;
271 } else {
272 num_of_ch = IWL_NUM_CHANNELS_FAMILY_8000;
273 nvm_chan = &iwl_nvm_channels_family_8000[0];
274 num_2ghz_channels = NUM_2GHZ_CHANNELS_FAMILY_8000;
275 }
276
277 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
278 ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);
279
280 if (ch_idx >= num_2ghz_channels &&
281 !data->sku_cap_band_52GHz_enable)
282 continue;
283
284 if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) {
285 /*
286 * Channels might become valid later if lar is
287 * supported, hence we still want to add them to
288 * the list of supported channels to cfg80211.
289 */
290 IWL_DEBUG_EEPROM(dev,
291 "Ch. %d Flags %x [%sGHz] - No traffic\n",
292 nvm_chan[ch_idx],
293 ch_flags,
294 (ch_idx >= num_2ghz_channels) ?
295 "5.2" : "2.4");
296 continue;
297 }
298
299 channel = &data->channels[n_channels];
300 n_channels++;
301
302 channel->hw_value = nvm_chan[ch_idx];
303 channel->band = (ch_idx < num_2ghz_channels) ?
304 IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
305 channel->center_freq =
306 ieee80211_channel_to_frequency(
307 channel->hw_value, channel->band);
308
309 /* Initialize regulatory-based run-time data */
310
311 /*
312 * Default value - highest tx power value. max_power
313 * is not used in mvm, and is used for backwards compatibility
314 */
315 channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
316 is_5ghz = channel->band == IEEE80211_BAND_5GHZ;
317
318 /* don't put limitations in case we're using LAR */
319 if (!lar_supported)
320 channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
321 ch_idx, is_5ghz,
322 ch_flags, cfg);
323 else
324 channel->flags = 0;
325
326 IWL_DEBUG_EEPROM(dev,
327 "Ch. %d [%sGHz] %s%s%s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n",
328 channel->hw_value,
329 is_5ghz ? "5.2" : "2.4",
330 CHECK_AND_PRINT_I(VALID),
331 CHECK_AND_PRINT_I(IBSS),
332 CHECK_AND_PRINT_I(ACTIVE),
333 CHECK_AND_PRINT_I(RADAR),
334 CHECK_AND_PRINT_I(WIDE),
335 CHECK_AND_PRINT_I(INDOOR_ONLY),
336 CHECK_AND_PRINT_I(GO_CONCURRENT),
337 ch_flags,
338 channel->max_power,
339 ((ch_flags & NVM_CHANNEL_IBSS) &&
340 !(ch_flags & NVM_CHANNEL_RADAR))
341 ? "" : "not ");
342 }
343
344 return n_channels;
345 }
346
347 static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg,
348 struct iwl_nvm_data *data,
349 struct ieee80211_sta_vht_cap *vht_cap,
350 u8 tx_chains, u8 rx_chains)
351 {
352 int num_rx_ants = num_of_ant(rx_chains);
353 int num_tx_ants = num_of_ant(tx_chains);
354 unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
355 IEEE80211_VHT_MAX_AMPDU_1024K);
356
357 vht_cap->vht_supported = true;
358
359 vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
360 IEEE80211_VHT_CAP_RXSTBC_1 |
361 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
362 3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
363 max_ampdu_exponent <<
364 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
365
366 if (cfg->ht_params->ldpc)
367 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
368
369 if (num_tx_ants > 1)
370 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
371 else
372 vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
373
374 if (iwlwifi_mod_params.amsdu_size_8K)
375 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
376
377 vht_cap->vht_mcs.rx_mcs_map =
378 cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
379 IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
380 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
381 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
382 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
383 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
384 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
385 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
386
387 if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
388 vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
389 /* this works because NOT_SUPPORTED == 3 */
390 vht_cap->vht_mcs.rx_mcs_map |=
391 cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
392 }
393
394 vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
395 }
396
397 static void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
398 struct iwl_nvm_data *data,
399 const __le16 *ch_section, bool enable_vht,
400 u8 tx_chains, u8 rx_chains, bool lar_supported)
401 {
402 int n_channels;
403 int n_used = 0;
404 struct ieee80211_supported_band *sband;
405
406 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
407 n_channels = iwl_init_channel_map(
408 dev, cfg, data,
409 &ch_section[NVM_CHANNELS], lar_supported);
410 else
411 n_channels = iwl_init_channel_map(
412 dev, cfg, data,
413 &ch_section[NVM_CHANNELS_FAMILY_8000],
414 lar_supported);
415
416 sband = &data->bands[IEEE80211_BAND_2GHZ];
417 sband->band = IEEE80211_BAND_2GHZ;
418 sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
419 sband->n_bitrates = N_RATES_24;
420 n_used += iwl_init_sband_channels(data, sband, n_channels,
421 IEEE80211_BAND_2GHZ);
422 iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_2GHZ,
423 tx_chains, rx_chains);
424
425 sband = &data->bands[IEEE80211_BAND_5GHZ];
426 sband->band = IEEE80211_BAND_5GHZ;
427 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
428 sband->n_bitrates = N_RATES_52;
429 n_used += iwl_init_sband_channels(data, sband, n_channels,
430 IEEE80211_BAND_5GHZ);
431 iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_5GHZ,
432 tx_chains, rx_chains);
433 if (enable_vht)
434 iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap,
435 tx_chains, rx_chains);
436
437 if (n_channels != n_used)
438 IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
439 n_used, n_channels);
440 }
441
442 static int iwl_get_sku(const struct iwl_cfg *cfg,
443 const __le16 *nvm_sw)
444 {
445 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
446 return le16_to_cpup(nvm_sw + SKU);
447 else
448 return le32_to_cpup((__le32 *)(nvm_sw + SKU_FAMILY_8000));
449 }
450
451 static int iwl_get_nvm_version(const struct iwl_cfg *cfg,
452 const __le16 *nvm_sw)
453 {
454 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
455 return le16_to_cpup(nvm_sw + NVM_VERSION);
456 else
457 return le32_to_cpup((__le32 *)(nvm_sw +
458 NVM_VERSION_FAMILY_8000));
459 }
460
461 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg,
462 const __le16 *nvm_sw)
463 {
464 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
465 return le16_to_cpup(nvm_sw + RADIO_CFG);
466 else
467 return le32_to_cpup((__le32 *)(nvm_sw + RADIO_CFG_FAMILY_8000));
468 }
469
470 #define N_HW_ADDRS_MASK_FAMILY_8000 0xF
471 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg,
472 const __le16 *nvm_sw)
473 {
474 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
475 return le16_to_cpup(nvm_sw + N_HW_ADDRS);
476 else
477 return le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000))
478 & N_HW_ADDRS_MASK_FAMILY_8000;
479 }
480
481 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
482 struct iwl_nvm_data *data,
483 u32 radio_cfg)
484 {
485 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
486 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
487 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
488 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
489 data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
490 return;
491 }
492
493 /* set the radio configuration for family 8000 */
494 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK_FAMILY_8000(radio_cfg);
495 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK_FAMILY_8000(radio_cfg);
496 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK_FAMILY_8000(radio_cfg);
497 data->radio_cfg_pnum = NVM_RF_CFG_FLAVOR_MSK_FAMILY_8000(radio_cfg);
498 data->valid_tx_ant = NVM_RF_CFG_TX_ANT_MSK_FAMILY_8000(radio_cfg);
499 data->valid_rx_ant = NVM_RF_CFG_RX_ANT_MSK_FAMILY_8000(radio_cfg);
500 }
501
502 static void iwl_set_hw_address(const struct iwl_cfg *cfg,
503 struct iwl_nvm_data *data,
504 const __le16 *nvm_sec)
505 {
506 const u8 *hw_addr = (const u8 *)(nvm_sec + HW_ADDR);
507
508 /* The byte order is little endian 16 bit, meaning 214365 */
509 data->hw_addr[0] = hw_addr[1];
510 data->hw_addr[1] = hw_addr[0];
511 data->hw_addr[2] = hw_addr[3];
512 data->hw_addr[3] = hw_addr[2];
513 data->hw_addr[4] = hw_addr[5];
514 data->hw_addr[5] = hw_addr[4];
515 }
516
517 static void iwl_set_hw_address_family_8000(struct device *dev,
518 const struct iwl_cfg *cfg,
519 struct iwl_nvm_data *data,
520 const __le16 *mac_override,
521 const __le16 *nvm_hw)
522 {
523 const u8 *hw_addr;
524
525 if (mac_override) {
526 hw_addr = (const u8 *)(mac_override +
527 MAC_ADDRESS_OVERRIDE_FAMILY_8000);
528
529 /* The byte order is little endian 16 bit, meaning 214365 */
530 data->hw_addr[0] = hw_addr[1];
531 data->hw_addr[1] = hw_addr[0];
532 data->hw_addr[2] = hw_addr[3];
533 data->hw_addr[3] = hw_addr[2];
534 data->hw_addr[4] = hw_addr[5];
535 data->hw_addr[5] = hw_addr[4];
536
537 if (is_valid_ether_addr(data->hw_addr))
538 return;
539
540 IWL_ERR_DEV(dev,
541 "mac address from nvm override section is not valid\n");
542 }
543
544 if (nvm_hw) {
545 /* read the MAC address from OTP */
546 if (!dev_is_pci(dev) || (data->nvm_version < 0xE08)) {
547 /* read the mac address from the WFPM location */
548 hw_addr = (const u8 *)(nvm_hw +
549 HW_ADDR0_WFPM_FAMILY_8000);
550 data->hw_addr[0] = hw_addr[3];
551 data->hw_addr[1] = hw_addr[2];
552 data->hw_addr[2] = hw_addr[1];
553 data->hw_addr[3] = hw_addr[0];
554
555 hw_addr = (const u8 *)(nvm_hw +
556 HW_ADDR1_WFPM_FAMILY_8000);
557 data->hw_addr[4] = hw_addr[1];
558 data->hw_addr[5] = hw_addr[0];
559 } else if ((data->nvm_version >= 0xE08) &&
560 (data->nvm_version < 0xE0B)) {
561 /* read "reverse order" from the PCIe location */
562 hw_addr = (const u8 *)(nvm_hw +
563 HW_ADDR0_PCIE_FAMILY_8000);
564 data->hw_addr[5] = hw_addr[2];
565 data->hw_addr[4] = hw_addr[1];
566 data->hw_addr[3] = hw_addr[0];
567
568 hw_addr = (const u8 *)(nvm_hw +
569 HW_ADDR1_PCIE_FAMILY_8000);
570 data->hw_addr[2] = hw_addr[3];
571 data->hw_addr[1] = hw_addr[2];
572 data->hw_addr[0] = hw_addr[1];
573 } else {
574 /* read from the PCIe location */
575 hw_addr = (const u8 *)(nvm_hw +
576 HW_ADDR0_PCIE_FAMILY_8000);
577 data->hw_addr[5] = hw_addr[0];
578 data->hw_addr[4] = hw_addr[1];
579 data->hw_addr[3] = hw_addr[2];
580
581 hw_addr = (const u8 *)(nvm_hw +
582 HW_ADDR1_PCIE_FAMILY_8000);
583 data->hw_addr[2] = hw_addr[1];
584 data->hw_addr[1] = hw_addr[2];
585 data->hw_addr[0] = hw_addr[3];
586 }
587 if (!is_valid_ether_addr(data->hw_addr))
588 IWL_ERR_DEV(dev,
589 "mac address from hw section is not valid\n");
590
591 return;
592 }
593
594 IWL_ERR_DEV(dev, "mac address is not found\n");
595 }
596
597 struct iwl_nvm_data *
598 iwl_parse_nvm_data(struct device *dev, const struct iwl_cfg *cfg,
599 const __le16 *nvm_hw, const __le16 *nvm_sw,
600 const __le16 *nvm_calib, const __le16 *regulatory,
601 const __le16 *mac_override, u8 tx_chains, u8 rx_chains,
602 bool lar_fw_supported)
603 {
604 struct iwl_nvm_data *data;
605 u32 sku;
606 u32 radio_cfg;
607 u16 lar_config;
608
609 if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
610 data = kzalloc(sizeof(*data) +
611 sizeof(struct ieee80211_channel) *
612 IWL_NUM_CHANNELS,
613 GFP_KERNEL);
614 else
615 data = kzalloc(sizeof(*data) +
616 sizeof(struct ieee80211_channel) *
617 IWL_NUM_CHANNELS_FAMILY_8000,
618 GFP_KERNEL);
619 if (!data)
620 return NULL;
621
622 data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
623
624 radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw);
625 iwl_set_radio_cfg(cfg, data, radio_cfg);
626 if (data->valid_tx_ant)
627 tx_chains &= data->valid_tx_ant;
628 if (data->valid_rx_ant)
629 rx_chains &= data->valid_rx_ant;
630
631 sku = iwl_get_sku(cfg, nvm_sw);
632 data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
633 data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
634 data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
635 data->sku_cap_11ac_enable = sku & NVM_SKU_CAP_11AC_ENABLE;
636 if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
637 data->sku_cap_11n_enable = false;
638
639 data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
640
641 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
642 /* Checking for required sections */
643 if (!nvm_calib) {
644 IWL_ERR_DEV(dev,
645 "Can't parse empty Calib NVM sections\n");
646 kfree(data);
647 return NULL;
648 }
649 /* in family 8000 Xtal calibration values moved to OTP */
650 data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
651 data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
652 }
653
654 if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
655 iwl_set_hw_address(cfg, data, nvm_hw);
656
657 iwl_init_sbands(dev, cfg, data, nvm_sw,
658 sku & NVM_SKU_CAP_11AC_ENABLE, tx_chains,
659 rx_chains, lar_fw_supported);
660 } else {
661 lar_config = le16_to_cpup(regulatory +
662 NVM_LAR_OFFSET_FAMILY_8000);
663 data->lar_enabled = !!(lar_config &
664 NVM_LAR_ENABLED_FAMILY_8000);
665
666 /* MAC address in family 8000 */
667 iwl_set_hw_address_family_8000(dev, cfg, data, mac_override,
668 nvm_hw);
669
670 iwl_init_sbands(dev, cfg, data, regulatory,
671 sku & NVM_SKU_CAP_11AC_ENABLE, tx_chains,
672 rx_chains, lar_fw_supported &&
673 data->lar_enabled);
674 }
675
676 data->calib_version = 255;
677
678 return data;
679 }
680 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
681
682 static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan,
683 int ch_idx, u16 nvm_flags,
684 const struct iwl_cfg *cfg)
685 {
686 u32 flags = NL80211_RRF_NO_HT40;
687 u32 last_5ghz_ht = LAST_5GHZ_HT;
688
689 if (cfg->device_family == IWL_DEVICE_FAMILY_8000)
690 last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
691
692 if (ch_idx < NUM_2GHZ_CHANNELS &&
693 (nvm_flags & NVM_CHANNEL_40MHZ)) {
694 if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
695 flags &= ~NL80211_RRF_NO_HT40PLUS;
696 if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
697 flags &= ~NL80211_RRF_NO_HT40MINUS;
698 } else if (nvm_chan[ch_idx] <= last_5ghz_ht &&
699 (nvm_flags & NVM_CHANNEL_40MHZ)) {
700 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
701 flags &= ~NL80211_RRF_NO_HT40PLUS;
702 else
703 flags &= ~NL80211_RRF_NO_HT40MINUS;
704 }
705
706 if (!(nvm_flags & NVM_CHANNEL_80MHZ))
707 flags |= NL80211_RRF_NO_80MHZ;
708 if (!(nvm_flags & NVM_CHANNEL_160MHZ))
709 flags |= NL80211_RRF_NO_160MHZ;
710
711 if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
712 flags |= NL80211_RRF_NO_IR;
713
714 if (nvm_flags & NVM_CHANNEL_RADAR)
715 flags |= NL80211_RRF_DFS;
716
717 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
718 flags |= NL80211_RRF_NO_OUTDOOR;
719
720 /* Set the GO concurrent flag only in case that NO_IR is set.
721 * Otherwise it is meaningless
722 */
723 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
724 (flags & NL80211_RRF_NO_IR))
725 flags |= NL80211_RRF_GO_CONCURRENT;
726
727 return flags;
728 }
729
730 struct ieee80211_regdomain *
731 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
732 int num_of_ch, __le32 *channels, u16 fw_mcc)
733 {
734 int ch_idx;
735 u16 ch_flags, prev_ch_flags = 0;
736 const u8 *nvm_chan = cfg->device_family == IWL_DEVICE_FAMILY_8000 ?
737 iwl_nvm_channels_family_8000 : iwl_nvm_channels;
738 struct ieee80211_regdomain *regd;
739 int size_of_regd;
740 struct ieee80211_reg_rule *rule;
741 enum ieee80211_band band;
742 int center_freq, prev_center_freq = 0;
743 int valid_rules = 0;
744 bool new_rule;
745
746 if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
747 return ERR_PTR(-EINVAL);
748
749 IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
750 num_of_ch);
751
752 /* build a regdomain rule for every valid channel */
753 size_of_regd =
754 sizeof(struct ieee80211_regdomain) +
755 num_of_ch * sizeof(struct ieee80211_reg_rule);
756
757 regd = kzalloc(size_of_regd, GFP_KERNEL);
758 if (!regd)
759 return ERR_PTR(-ENOMEM);
760
761 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
762 ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
763 band = (ch_idx < NUM_2GHZ_CHANNELS) ?
764 IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
765 center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
766 band);
767 new_rule = false;
768
769 if (!(ch_flags & NVM_CHANNEL_VALID)) {
770 IWL_DEBUG_DEV(dev, IWL_DL_LAR,
771 "Ch. %d Flags %x [%sGHz] - No traffic\n",
772 nvm_chan[ch_idx],
773 ch_flags,
774 (ch_idx >= NUM_2GHZ_CHANNELS) ?
775 "5.2" : "2.4");
776 continue;
777 }
778
779 /* we can't continue the same rule */
780 if (ch_idx == 0 || prev_ch_flags != ch_flags ||
781 center_freq - prev_center_freq > 20) {
782 valid_rules++;
783 new_rule = true;
784 }
785
786 rule = &regd->reg_rules[valid_rules - 1];
787
788 if (new_rule)
789 rule->freq_range.start_freq_khz =
790 MHZ_TO_KHZ(center_freq - 10);
791
792 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
793
794 /* this doesn't matter - not used by FW */
795 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
796 rule->power_rule.max_eirp =
797 DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
798
799 rule->flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
800 ch_flags, cfg);
801
802 /* rely on auto-calculation to merge BW of contiguous chans */
803 rule->flags |= NL80211_RRF_AUTO_BW;
804 rule->freq_range.max_bandwidth_khz = 0;
805
806 prev_ch_flags = ch_flags;
807 prev_center_freq = center_freq;
808
809 IWL_DEBUG_DEV(dev, IWL_DL_LAR,
810 "Ch. %d [%sGHz] %s%s%s%s%s%s%s%s%s(0x%02x): Ad-Hoc %ssupported\n",
811 center_freq,
812 band == IEEE80211_BAND_5GHZ ? "5.2" : "2.4",
813 CHECK_AND_PRINT_I(VALID),
814 CHECK_AND_PRINT_I(ACTIVE),
815 CHECK_AND_PRINT_I(RADAR),
816 CHECK_AND_PRINT_I(WIDE),
817 CHECK_AND_PRINT_I(40MHZ),
818 CHECK_AND_PRINT_I(80MHZ),
819 CHECK_AND_PRINT_I(160MHZ),
820 CHECK_AND_PRINT_I(INDOOR_ONLY),
821 CHECK_AND_PRINT_I(GO_CONCURRENT),
822 ch_flags,
823 ((ch_flags & NVM_CHANNEL_ACTIVE) &&
824 !(ch_flags & NVM_CHANNEL_RADAR))
825 ? "" : "not ");
826 }
827
828 regd->n_reg_rules = valid_rules;
829
830 /* set alpha2 from FW. */
831 regd->alpha2[0] = fw_mcc >> 8;
832 regd->alpha2[1] = fw_mcc & 0xff;
833
834 return regd;
835 }
836 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
This page took 0.062136 seconds and 5 git commands to generate.