ext3: Flush disk caches on fsync when needed
[deliverable/linux.git] / drivers / net / wireless / iwlwifi / iwl-power.c
1 /******************************************************************************
2 *
3 * Copyright(c) 2007 - 2009 Intel Corporation. All rights reserved.
4 *
5 * Portions of this file are derived from the ipw3945 project, as well
6 * as portions of the ieee80211 subsystem header files.
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of version 2 of the GNU General Public License as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 *
17 * You should have received a copy of the GNU General Public License along with
18 * this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
20 *
21 * The full GNU General Public License is included in this distribution in the
22 * file called LICENSE.
23 *
24 * Contact Information:
25 * Intel Linux Wireless <ilw@linux.intel.com>
26 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *****************************************************************************/
28
29
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33
34 #include <net/mac80211.h>
35
36 #include "iwl-eeprom.h"
37 #include "iwl-dev.h"
38 #include "iwl-core.h"
39 #include "iwl-io.h"
40 #include "iwl-commands.h"
41 #include "iwl-debug.h"
42 #include "iwl-power.h"
43
44 /*
45 * Setting power level allows the card to go to sleep when not busy.
46 *
47 * We calculate a sleep command based on the required latency, which
48 * we get from mac80211. In order to handle thermal throttling, we can
49 * also use pre-defined power levels.
50 */
51
52 /*
53 * For now, keep using power level 1 instead of automatically
54 * adjusting ...
55 */
56 bool no_sleep_autoadjust = true;
57 module_param(no_sleep_autoadjust, bool, S_IRUGO);
58 MODULE_PARM_DESC(no_sleep_autoadjust,
59 "don't automatically adjust sleep level "
60 "according to maximum network latency");
61
62 /*
63 * This defines the old power levels. They are still used by default
64 * (level 1) and for thermal throttle (levels 3 through 5)
65 */
66
67 struct iwl_power_vec_entry {
68 struct iwl_powertable_cmd cmd;
69 u8 no_dtim;
70 };
71
72 #define IWL_DTIM_RANGE_0_MAX 2
73 #define IWL_DTIM_RANGE_1_MAX 10
74
75 #define NOSLP cpu_to_le16(0), 0, 0
76 #define SLP IWL_POWER_DRIVER_ALLOW_SLEEP_MSK, 0, 0
77 #define TU_TO_USEC 1024
78 #define SLP_TOUT(T) cpu_to_le32((T) * TU_TO_USEC)
79 #define SLP_VEC(X0, X1, X2, X3, X4) {cpu_to_le32(X0), \
80 cpu_to_le32(X1), \
81 cpu_to_le32(X2), \
82 cpu_to_le32(X3), \
83 cpu_to_le32(X4)}
84 /* default power management (not Tx power) table values */
85 /* for DTIM period 0 through IWL_DTIM_RANGE_0_MAX */
86 static const struct iwl_power_vec_entry range_0[IWL_POWER_NUM] = {
87 {{SLP, SLP_TOUT(200), SLP_TOUT(500), SLP_VEC(1, 2, 2, 2, 0xFF)}, 0},
88 {{SLP, SLP_TOUT(200), SLP_TOUT(300), SLP_VEC(1, 2, 2, 2, 0xFF)}, 0},
89 {{SLP, SLP_TOUT(50), SLP_TOUT(100), SLP_VEC(2, 2, 2, 2, 0xFF)}, 0},
90 {{SLP, SLP_TOUT(50), SLP_TOUT(25), SLP_VEC(2, 2, 4, 4, 0xFF)}, 1},
91 {{SLP, SLP_TOUT(25), SLP_TOUT(25), SLP_VEC(2, 2, 4, 6, 0xFF)}, 2}
92 };
93
94
95 /* for DTIM period IWL_DTIM_RANGE_0_MAX + 1 through IWL_DTIM_RANGE_1_MAX */
96 static const struct iwl_power_vec_entry range_1[IWL_POWER_NUM] = {
97 {{SLP, SLP_TOUT(200), SLP_TOUT(500), SLP_VEC(1, 2, 3, 4, 4)}, 0},
98 {{SLP, SLP_TOUT(200), SLP_TOUT(300), SLP_VEC(1, 2, 3, 4, 7)}, 0},
99 {{SLP, SLP_TOUT(50), SLP_TOUT(100), SLP_VEC(2, 4, 6, 7, 9)}, 0},
100 {{SLP, SLP_TOUT(50), SLP_TOUT(25), SLP_VEC(2, 4, 6, 9, 10)}, 1},
101 {{SLP, SLP_TOUT(25), SLP_TOUT(25), SLP_VEC(2, 4, 7, 10, 10)}, 2}
102 };
103
104 /* for DTIM period > IWL_DTIM_RANGE_1_MAX */
105 static const struct iwl_power_vec_entry range_2[IWL_POWER_NUM] = {
106 {{SLP, SLP_TOUT(200), SLP_TOUT(500), SLP_VEC(1, 2, 3, 4, 0xFF)}, 0},
107 {{SLP, SLP_TOUT(200), SLP_TOUT(300), SLP_VEC(2, 4, 6, 7, 0xFF)}, 0},
108 {{SLP, SLP_TOUT(50), SLP_TOUT(100), SLP_VEC(2, 7, 9, 9, 0xFF)}, 0},
109 {{SLP, SLP_TOUT(50), SLP_TOUT(25), SLP_VEC(2, 7, 9, 9, 0xFF)}, 0},
110 {{SLP, SLP_TOUT(25), SLP_TOUT(25), SLP_VEC(4, 7, 10, 10, 0xFF)}, 0}
111 };
112
113 static void iwl_static_sleep_cmd(struct iwl_priv *priv,
114 struct iwl_powertable_cmd *cmd,
115 enum iwl_power_level lvl, int period)
116 {
117 const struct iwl_power_vec_entry *table;
118 int max_sleep, i;
119 bool skip;
120
121 table = range_2;
122 if (period < IWL_DTIM_RANGE_1_MAX)
123 table = range_1;
124 if (period < IWL_DTIM_RANGE_0_MAX)
125 table = range_0;
126
127 BUG_ON(lvl < 0 || lvl >= IWL_POWER_NUM);
128
129 *cmd = table[lvl].cmd;
130
131 if (period == 0) {
132 skip = false;
133 period = 1;
134 } else {
135 skip = !!table[lvl].no_dtim;
136 }
137
138 if (skip) {
139 __le32 slp_itrvl = cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1];
140 max_sleep = le32_to_cpu(slp_itrvl);
141 if (max_sleep == 0xFF)
142 max_sleep = period * (skip + 1);
143 else if (max_sleep > period)
144 max_sleep = (le32_to_cpu(slp_itrvl) / period) * period;
145 cmd->flags |= IWL_POWER_SLEEP_OVER_DTIM_MSK;
146 } else {
147 max_sleep = period;
148 cmd->flags &= ~IWL_POWER_SLEEP_OVER_DTIM_MSK;
149 }
150
151 for (i = 0; i < IWL_POWER_VEC_SIZE; i++)
152 if (le32_to_cpu(cmd->sleep_interval[i]) > max_sleep)
153 cmd->sleep_interval[i] = cpu_to_le32(max_sleep);
154
155 if (priv->power_data.pci_pm)
156 cmd->flags |= IWL_POWER_PCI_PM_MSK;
157 else
158 cmd->flags &= ~IWL_POWER_PCI_PM_MSK;
159
160 IWL_DEBUG_POWER(priv, "Sleep command for index %d\n", lvl + 1);
161 }
162
163 /* default Thermal Throttling transaction table
164 * Current state | Throttling Down | Throttling Up
165 *=============================================================================
166 * Condition Nxt State Condition Nxt State Condition Nxt State
167 *-----------------------------------------------------------------------------
168 * IWL_TI_0 T >= 115 CT_KILL 115>T>=105 TI_1 N/A N/A
169 * IWL_TI_1 T >= 115 CT_KILL 115>T>=110 TI_2 T<=95 TI_0
170 * IWL_TI_2 T >= 115 CT_KILL T<=100 TI_1
171 * IWL_CT_KILL N/A N/A N/A N/A T<=95 TI_0
172 *=============================================================================
173 */
174 static const struct iwl_tt_trans tt_range_0[IWL_TI_STATE_MAX - 1] = {
175 {IWL_TI_0, IWL_ABSOLUTE_ZERO, 104},
176 {IWL_TI_1, 105, CT_KILL_THRESHOLD},
177 {IWL_TI_CT_KILL, CT_KILL_THRESHOLD + 1, IWL_ABSOLUTE_MAX}
178 };
179 static const struct iwl_tt_trans tt_range_1[IWL_TI_STATE_MAX - 1] = {
180 {IWL_TI_0, IWL_ABSOLUTE_ZERO, 95},
181 {IWL_TI_2, 110, CT_KILL_THRESHOLD},
182 {IWL_TI_CT_KILL, CT_KILL_THRESHOLD + 1, IWL_ABSOLUTE_MAX}
183 };
184 static const struct iwl_tt_trans tt_range_2[IWL_TI_STATE_MAX - 1] = {
185 {IWL_TI_1, IWL_ABSOLUTE_ZERO, 100},
186 {IWL_TI_CT_KILL, CT_KILL_THRESHOLD + 1, IWL_ABSOLUTE_MAX},
187 {IWL_TI_CT_KILL, CT_KILL_THRESHOLD + 1, IWL_ABSOLUTE_MAX}
188 };
189 static const struct iwl_tt_trans tt_range_3[IWL_TI_STATE_MAX - 1] = {
190 {IWL_TI_0, IWL_ABSOLUTE_ZERO, CT_KILL_EXIT_THRESHOLD},
191 {IWL_TI_CT_KILL, CT_KILL_EXIT_THRESHOLD + 1, IWL_ABSOLUTE_MAX},
192 {IWL_TI_CT_KILL, CT_KILL_EXIT_THRESHOLD + 1, IWL_ABSOLUTE_MAX}
193 };
194
195 /* Advance Thermal Throttling default restriction table */
196 static const struct iwl_tt_restriction restriction_range[IWL_TI_STATE_MAX] = {
197 {IWL_ANT_OK_MULTI, IWL_ANT_OK_MULTI, true },
198 {IWL_ANT_OK_SINGLE, IWL_ANT_OK_MULTI, true },
199 {IWL_ANT_OK_SINGLE, IWL_ANT_OK_SINGLE, false },
200 {IWL_ANT_OK_NONE, IWL_ANT_OK_NONE, false }
201 };
202
203
204 static void iwl_power_sleep_cam_cmd(struct iwl_priv *priv,
205 struct iwl_powertable_cmd *cmd)
206 {
207 memset(cmd, 0, sizeof(*cmd));
208
209 if (priv->power_data.pci_pm)
210 cmd->flags |= IWL_POWER_PCI_PM_MSK;
211
212 IWL_DEBUG_POWER(priv, "Sleep command for CAM\n");
213 }
214
215 static void iwl_power_fill_sleep_cmd(struct iwl_priv *priv,
216 struct iwl_powertable_cmd *cmd,
217 int dynps_ms, int wakeup_period)
218 {
219 /*
220 * These are the original power level 3 sleep successions. The
221 * device may behave better with such succession and was also
222 * only tested with that. Just like the original sleep commands,
223 * also adjust the succession here to the wakeup_period below.
224 * The ranges are the same as for the sleep commands, 0-2, 3-9
225 * and >10, which is selected based on the DTIM interval for
226 * the sleep index but here we use the wakeup period since that
227 * is what we need to do for the latency requirements.
228 */
229 static const u8 slp_succ_r0[IWL_POWER_VEC_SIZE] = { 2, 2, 2, 2, 2 };
230 static const u8 slp_succ_r1[IWL_POWER_VEC_SIZE] = { 2, 4, 6, 7, 9 };
231 static const u8 slp_succ_r2[IWL_POWER_VEC_SIZE] = { 2, 7, 9, 9, 0xFF };
232 const u8 *slp_succ = slp_succ_r0;
233 int i;
234
235 if (wakeup_period > IWL_DTIM_RANGE_0_MAX)
236 slp_succ = slp_succ_r1;
237 if (wakeup_period > IWL_DTIM_RANGE_1_MAX)
238 slp_succ = slp_succ_r2;
239
240 memset(cmd, 0, sizeof(*cmd));
241
242 cmd->flags = IWL_POWER_DRIVER_ALLOW_SLEEP_MSK |
243 IWL_POWER_FAST_PD; /* no use seeing frames for others */
244
245 if (priv->power_data.pci_pm)
246 cmd->flags |= IWL_POWER_PCI_PM_MSK;
247
248 cmd->rx_data_timeout = cpu_to_le32(1000 * dynps_ms);
249 cmd->tx_data_timeout = cpu_to_le32(1000 * dynps_ms);
250
251 for (i = 0; i < IWL_POWER_VEC_SIZE; i++)
252 cmd->sleep_interval[i] =
253 cpu_to_le32(min_t(int, slp_succ[i], wakeup_period));
254
255 IWL_DEBUG_POWER(priv, "Automatic sleep command\n");
256 }
257
258 static int iwl_set_power(struct iwl_priv *priv, struct iwl_powertable_cmd *cmd)
259 {
260 IWL_DEBUG_POWER(priv, "Sending power/sleep command\n");
261 IWL_DEBUG_POWER(priv, "Flags value = 0x%08X\n", cmd->flags);
262 IWL_DEBUG_POWER(priv, "Tx timeout = %u\n", le32_to_cpu(cmd->tx_data_timeout));
263 IWL_DEBUG_POWER(priv, "Rx timeout = %u\n", le32_to_cpu(cmd->rx_data_timeout));
264 IWL_DEBUG_POWER(priv, "Sleep interval vector = { %d , %d , %d , %d , %d }\n",
265 le32_to_cpu(cmd->sleep_interval[0]),
266 le32_to_cpu(cmd->sleep_interval[1]),
267 le32_to_cpu(cmd->sleep_interval[2]),
268 le32_to_cpu(cmd->sleep_interval[3]),
269 le32_to_cpu(cmd->sleep_interval[4]));
270
271 return iwl_send_cmd_pdu(priv, POWER_TABLE_CMD,
272 sizeof(struct iwl_powertable_cmd), cmd);
273 }
274
275
276 int iwl_power_update_mode(struct iwl_priv *priv, bool force)
277 {
278 int ret = 0;
279 struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
280 bool enabled = (priv->iw_mode == NL80211_IFTYPE_STATION) &&
281 (priv->hw->conf.flags & IEEE80211_CONF_PS);
282 bool update_chains;
283 struct iwl_powertable_cmd cmd;
284 int dtimper;
285
286 /* Don't update the RX chain when chain noise calibration is running */
287 update_chains = priv->chain_noise_data.state == IWL_CHAIN_NOISE_DONE ||
288 priv->chain_noise_data.state == IWL_CHAIN_NOISE_ALIVE;
289
290 if (priv->vif)
291 dtimper = priv->vif->bss_conf.dtim_period;
292 else
293 dtimper = 1;
294
295 /* TT power setting overwrites everything */
296 if (tt->state >= IWL_TI_1)
297 iwl_static_sleep_cmd(priv, &cmd, tt->tt_power_mode, dtimper);
298 else if (!enabled)
299 iwl_power_sleep_cam_cmd(priv, &cmd);
300 else if (priv->power_data.debug_sleep_level_override >= 0)
301 iwl_static_sleep_cmd(priv, &cmd,
302 priv->power_data.debug_sleep_level_override,
303 dtimper);
304 else if (no_sleep_autoadjust)
305 iwl_static_sleep_cmd(priv, &cmd, IWL_POWER_INDEX_1, dtimper);
306 else
307 iwl_power_fill_sleep_cmd(priv, &cmd,
308 priv->hw->conf.dynamic_ps_timeout,
309 priv->hw->conf.max_sleep_period);
310
311 if (iwl_is_ready_rf(priv) &&
312 (memcmp(&priv->power_data.sleep_cmd, &cmd, sizeof(cmd)) || force)) {
313 if (cmd.flags & IWL_POWER_DRIVER_ALLOW_SLEEP_MSK)
314 set_bit(STATUS_POWER_PMI, &priv->status);
315
316 ret = iwl_set_power(priv, &cmd);
317 if (!ret) {
318 if (!(cmd.flags & IWL_POWER_DRIVER_ALLOW_SLEEP_MSK))
319 clear_bit(STATUS_POWER_PMI, &priv->status);
320
321 if (priv->cfg->ops->lib->update_chain_flags &&
322 update_chains)
323 priv->cfg->ops->lib->update_chain_flags(priv);
324 else if (priv->cfg->ops->lib->update_chain_flags)
325 IWL_DEBUG_POWER(priv,
326 "Cannot update the power, chain noise "
327 "calibration running: %d\n",
328 priv->chain_noise_data.state);
329 memcpy(&priv->power_data.sleep_cmd, &cmd, sizeof(cmd));
330 } else
331 IWL_ERR(priv, "set power fail, ret = %d", ret);
332 }
333
334 return ret;
335 }
336 EXPORT_SYMBOL(iwl_power_update_mode);
337
338 bool iwl_ht_enabled(struct iwl_priv *priv)
339 {
340 struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
341 struct iwl_tt_restriction *restriction;
342
343 if (!priv->thermal_throttle.advanced_tt)
344 return true;
345 restriction = tt->restriction + tt->state;
346 return restriction->is_ht;
347 }
348 EXPORT_SYMBOL(iwl_ht_enabled);
349
350 enum iwl_antenna_ok iwl_tx_ant_restriction(struct iwl_priv *priv)
351 {
352 struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
353 struct iwl_tt_restriction *restriction;
354
355 if (!priv->thermal_throttle.advanced_tt)
356 return IWL_ANT_OK_MULTI;
357 restriction = tt->restriction + tt->state;
358 return restriction->tx_stream;
359 }
360 EXPORT_SYMBOL(iwl_tx_ant_restriction);
361
362 enum iwl_antenna_ok iwl_rx_ant_restriction(struct iwl_priv *priv)
363 {
364 struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
365 struct iwl_tt_restriction *restriction;
366
367 if (!priv->thermal_throttle.advanced_tt)
368 return IWL_ANT_OK_MULTI;
369 restriction = tt->restriction + tt->state;
370 return restriction->rx_stream;
371 }
372
373 #define CT_KILL_EXIT_DURATION (5) /* 5 seconds duration */
374
375 /*
376 * toggle the bit to wake up uCode and check the temperature
377 * if the temperature is below CT, uCode will stay awake and send card
378 * state notification with CT_KILL bit clear to inform Thermal Throttling
379 * Management to change state. Otherwise, uCode will go back to sleep
380 * without doing anything, driver should continue the 5 seconds timer
381 * to wake up uCode for temperature check until temperature drop below CT
382 */
383 static void iwl_tt_check_exit_ct_kill(unsigned long data)
384 {
385 struct iwl_priv *priv = (struct iwl_priv *)data;
386 struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
387 unsigned long flags;
388
389 if (test_bit(STATUS_EXIT_PENDING, &priv->status))
390 return;
391
392 if (tt->state == IWL_TI_CT_KILL) {
393 if (priv->thermal_throttle.ct_kill_toggle) {
394 iwl_write32(priv, CSR_UCODE_DRV_GP1_CLR,
395 CSR_UCODE_DRV_GP1_REG_BIT_CT_KILL_EXIT);
396 priv->thermal_throttle.ct_kill_toggle = false;
397 } else {
398 iwl_write32(priv, CSR_UCODE_DRV_GP1_SET,
399 CSR_UCODE_DRV_GP1_REG_BIT_CT_KILL_EXIT);
400 priv->thermal_throttle.ct_kill_toggle = true;
401 }
402 iwl_read32(priv, CSR_UCODE_DRV_GP1);
403 spin_lock_irqsave(&priv->reg_lock, flags);
404 if (!iwl_grab_nic_access(priv))
405 iwl_release_nic_access(priv);
406 spin_unlock_irqrestore(&priv->reg_lock, flags);
407
408 /* Reschedule the ct_kill timer to occur in
409 * CT_KILL_EXIT_DURATION seconds to ensure we get a
410 * thermal update */
411 mod_timer(&priv->thermal_throttle.ct_kill_exit_tm, jiffies +
412 CT_KILL_EXIT_DURATION * HZ);
413 }
414 }
415
416 static void iwl_perform_ct_kill_task(struct iwl_priv *priv,
417 bool stop)
418 {
419 if (stop) {
420 IWL_DEBUG_POWER(priv, "Stop all queues\n");
421 if (priv->mac80211_registered)
422 ieee80211_stop_queues(priv->hw);
423 IWL_DEBUG_POWER(priv,
424 "Schedule 5 seconds CT_KILL Timer\n");
425 mod_timer(&priv->thermal_throttle.ct_kill_exit_tm, jiffies +
426 CT_KILL_EXIT_DURATION * HZ);
427 } else {
428 IWL_DEBUG_POWER(priv, "Wake all queues\n");
429 if (priv->mac80211_registered)
430 ieee80211_wake_queues(priv->hw);
431 }
432 }
433
434 #define IWL_MINIMAL_POWER_THRESHOLD (CT_KILL_THRESHOLD_LEGACY)
435 #define IWL_REDUCED_PERFORMANCE_THRESHOLD_2 (100)
436 #define IWL_REDUCED_PERFORMANCE_THRESHOLD_1 (90)
437
438 /*
439 * Legacy thermal throttling
440 * 1) Avoid NIC destruction due to high temperatures
441 * Chip will identify dangerously high temperatures that can
442 * harm the device and will power down
443 * 2) Avoid the NIC power down due to high temperature
444 * Throttle early enough to lower the power consumption before
445 * drastic steps are needed
446 */
447 static void iwl_legacy_tt_handler(struct iwl_priv *priv, s32 temp)
448 {
449 struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
450 enum iwl_tt_state old_state;
451
452 #ifdef CONFIG_IWLWIFI_DEBUG
453 if ((tt->tt_previous_temp) &&
454 (temp > tt->tt_previous_temp) &&
455 ((temp - tt->tt_previous_temp) >
456 IWL_TT_INCREASE_MARGIN)) {
457 IWL_DEBUG_POWER(priv,
458 "Temperature increase %d degree Celsius\n",
459 (temp - tt->tt_previous_temp));
460 }
461 #endif
462 old_state = tt->state;
463 /* in Celsius */
464 if (temp >= IWL_MINIMAL_POWER_THRESHOLD)
465 tt->state = IWL_TI_CT_KILL;
466 else if (temp >= IWL_REDUCED_PERFORMANCE_THRESHOLD_2)
467 tt->state = IWL_TI_2;
468 else if (temp >= IWL_REDUCED_PERFORMANCE_THRESHOLD_1)
469 tt->state = IWL_TI_1;
470 else
471 tt->state = IWL_TI_0;
472
473 #ifdef CONFIG_IWLWIFI_DEBUG
474 tt->tt_previous_temp = temp;
475 #endif
476 if (tt->state != old_state) {
477 switch (tt->state) {
478 case IWL_TI_0:
479 /*
480 * When the system is ready to go back to IWL_TI_0
481 * we only have to call iwl_power_update_mode() to
482 * do so.
483 */
484 break;
485 case IWL_TI_1:
486 tt->tt_power_mode = IWL_POWER_INDEX_3;
487 break;
488 case IWL_TI_2:
489 tt->tt_power_mode = IWL_POWER_INDEX_4;
490 break;
491 default:
492 tt->tt_power_mode = IWL_POWER_INDEX_5;
493 break;
494 }
495 mutex_lock(&priv->mutex);
496 if (iwl_power_update_mode(priv, true)) {
497 /* TT state not updated
498 * try again during next temperature read
499 */
500 tt->state = old_state;
501 IWL_ERR(priv, "Cannot update power mode, "
502 "TT state not updated\n");
503 } else {
504 if (tt->state == IWL_TI_CT_KILL)
505 iwl_perform_ct_kill_task(priv, true);
506 else if (old_state == IWL_TI_CT_KILL &&
507 tt->state != IWL_TI_CT_KILL)
508 iwl_perform_ct_kill_task(priv, false);
509 IWL_DEBUG_POWER(priv, "Temperature state changed %u\n",
510 tt->state);
511 IWL_DEBUG_POWER(priv, "Power Index change to %u\n",
512 tt->tt_power_mode);
513 }
514 mutex_unlock(&priv->mutex);
515 }
516 }
517
518 /*
519 * Advance thermal throttling
520 * 1) Avoid NIC destruction due to high temperatures
521 * Chip will identify dangerously high temperatures that can
522 * harm the device and will power down
523 * 2) Avoid the NIC power down due to high temperature
524 * Throttle early enough to lower the power consumption before
525 * drastic steps are needed
526 * Actions include relaxing the power down sleep thresholds and
527 * decreasing the number of TX streams
528 * 3) Avoid throughput performance impact as much as possible
529 *
530 *=============================================================================
531 * Condition Nxt State Condition Nxt State Condition Nxt State
532 *-----------------------------------------------------------------------------
533 * IWL_TI_0 T >= 115 CT_KILL 115>T>=105 TI_1 N/A N/A
534 * IWL_TI_1 T >= 115 CT_KILL 115>T>=110 TI_2 T<=95 TI_0
535 * IWL_TI_2 T >= 115 CT_KILL T<=100 TI_1
536 * IWL_CT_KILL N/A N/A N/A N/A T<=95 TI_0
537 *=============================================================================
538 */
539 static void iwl_advance_tt_handler(struct iwl_priv *priv, s32 temp)
540 {
541 struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
542 int i;
543 bool changed = false;
544 enum iwl_tt_state old_state;
545 struct iwl_tt_trans *transaction;
546
547 old_state = tt->state;
548 for (i = 0; i < IWL_TI_STATE_MAX - 1; i++) {
549 /* based on the current TT state,
550 * find the curresponding transaction table
551 * each table has (IWL_TI_STATE_MAX - 1) entries
552 * tt->transaction + ((old_state * (IWL_TI_STATE_MAX - 1))
553 * will advance to the correct table.
554 * then based on the current temperature
555 * find the next state need to transaction to
556 * go through all the possible (IWL_TI_STATE_MAX - 1) entries
557 * in the current table to see if transaction is needed
558 */
559 transaction = tt->transaction +
560 ((old_state * (IWL_TI_STATE_MAX - 1)) + i);
561 if (temp >= transaction->tt_low &&
562 temp <= transaction->tt_high) {
563 #ifdef CONFIG_IWLWIFI_DEBUG
564 if ((tt->tt_previous_temp) &&
565 (temp > tt->tt_previous_temp) &&
566 ((temp - tt->tt_previous_temp) >
567 IWL_TT_INCREASE_MARGIN)) {
568 IWL_DEBUG_POWER(priv,
569 "Temperature increase %d "
570 "degree Celsius\n",
571 (temp - tt->tt_previous_temp));
572 }
573 tt->tt_previous_temp = temp;
574 #endif
575 if (old_state !=
576 transaction->next_state) {
577 changed = true;
578 tt->state =
579 transaction->next_state;
580 }
581 break;
582 }
583 }
584 if (changed) {
585 struct iwl_rxon_cmd *rxon = &priv->staging_rxon;
586
587 if (tt->state >= IWL_TI_1) {
588 /* force PI = IWL_POWER_INDEX_5 in the case of TI > 0 */
589 tt->tt_power_mode = IWL_POWER_INDEX_5;
590 if (!iwl_ht_enabled(priv))
591 /* disable HT */
592 rxon->flags &= ~(RXON_FLG_CHANNEL_MODE_MSK |
593 RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK |
594 RXON_FLG_HT40_PROT_MSK |
595 RXON_FLG_HT_PROT_MSK);
596 else {
597 /* check HT capability and set
598 * according to the system HT capability
599 * in case get disabled before */
600 iwl_set_rxon_ht(priv, &priv->current_ht_config);
601 }
602
603 } else {
604 /*
605 * restore system power setting -- it will be
606 * recalculated automatically.
607 */
608
609 /* check HT capability and set
610 * according to the system HT capability
611 * in case get disabled before */
612 iwl_set_rxon_ht(priv, &priv->current_ht_config);
613 }
614 mutex_lock(&priv->mutex);
615 if (iwl_power_update_mode(priv, true)) {
616 /* TT state not updated
617 * try again during next temperature read
618 */
619 IWL_ERR(priv, "Cannot update power mode, "
620 "TT state not updated\n");
621 tt->state = old_state;
622 } else {
623 IWL_DEBUG_POWER(priv,
624 "Thermal Throttling to new state: %u\n",
625 tt->state);
626 if (old_state != IWL_TI_CT_KILL &&
627 tt->state == IWL_TI_CT_KILL) {
628 IWL_DEBUG_POWER(priv, "Enter IWL_TI_CT_KILL\n");
629 iwl_perform_ct_kill_task(priv, true);
630
631 } else if (old_state == IWL_TI_CT_KILL &&
632 tt->state != IWL_TI_CT_KILL) {
633 IWL_DEBUG_POWER(priv, "Exit IWL_TI_CT_KILL\n");
634 iwl_perform_ct_kill_task(priv, false);
635 }
636 }
637 mutex_unlock(&priv->mutex);
638 }
639 }
640
641 /* Card State Notification indicated reach critical temperature
642 * if PSP not enable, no Thermal Throttling function will be performed
643 * just set the GP1 bit to acknowledge the event
644 * otherwise, go into IWL_TI_CT_KILL state
645 * since Card State Notification will not provide any temperature reading
646 * for Legacy mode
647 * so just pass the CT_KILL temperature to iwl_legacy_tt_handler()
648 * for advance mode
649 * pass CT_KILL_THRESHOLD+1 to make sure move into IWL_TI_CT_KILL state
650 */
651 static void iwl_bg_ct_enter(struct work_struct *work)
652 {
653 struct iwl_priv *priv = container_of(work, struct iwl_priv, ct_enter);
654 struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
655
656 if (test_bit(STATUS_EXIT_PENDING, &priv->status))
657 return;
658
659 if (!iwl_is_ready(priv))
660 return;
661
662 if (tt->state != IWL_TI_CT_KILL) {
663 IWL_ERR(priv, "Device reached critical temperature "
664 "- ucode going to sleep!\n");
665 if (!priv->thermal_throttle.advanced_tt)
666 iwl_legacy_tt_handler(priv,
667 IWL_MINIMAL_POWER_THRESHOLD);
668 else
669 iwl_advance_tt_handler(priv,
670 CT_KILL_THRESHOLD + 1);
671 }
672 }
673
674 /* Card State Notification indicated out of critical temperature
675 * since Card State Notification will not provide any temperature reading
676 * so pass the IWL_REDUCED_PERFORMANCE_THRESHOLD_2 temperature
677 * to iwl_legacy_tt_handler() to get out of IWL_CT_KILL state
678 */
679 static void iwl_bg_ct_exit(struct work_struct *work)
680 {
681 struct iwl_priv *priv = container_of(work, struct iwl_priv, ct_exit);
682 struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
683
684 if (test_bit(STATUS_EXIT_PENDING, &priv->status))
685 return;
686
687 if (!iwl_is_ready(priv))
688 return;
689
690 /* stop ct_kill_exit_tm timer */
691 del_timer_sync(&priv->thermal_throttle.ct_kill_exit_tm);
692
693 if (tt->state == IWL_TI_CT_KILL) {
694 IWL_ERR(priv,
695 "Device temperature below critical"
696 "- ucode awake!\n");
697 if (!priv->thermal_throttle.advanced_tt)
698 iwl_legacy_tt_handler(priv,
699 IWL_REDUCED_PERFORMANCE_THRESHOLD_2);
700 else
701 iwl_advance_tt_handler(priv, CT_KILL_EXIT_THRESHOLD);
702 }
703 }
704
705 void iwl_tt_enter_ct_kill(struct iwl_priv *priv)
706 {
707 if (test_bit(STATUS_EXIT_PENDING, &priv->status))
708 return;
709
710 IWL_DEBUG_POWER(priv, "Queueing critical temperature enter.\n");
711 queue_work(priv->workqueue, &priv->ct_enter);
712 }
713 EXPORT_SYMBOL(iwl_tt_enter_ct_kill);
714
715 void iwl_tt_exit_ct_kill(struct iwl_priv *priv)
716 {
717 if (test_bit(STATUS_EXIT_PENDING, &priv->status))
718 return;
719
720 IWL_DEBUG_POWER(priv, "Queueing critical temperature exit.\n");
721 queue_work(priv->workqueue, &priv->ct_exit);
722 }
723 EXPORT_SYMBOL(iwl_tt_exit_ct_kill);
724
725 static void iwl_bg_tt_work(struct work_struct *work)
726 {
727 struct iwl_priv *priv = container_of(work, struct iwl_priv, tt_work);
728 s32 temp = priv->temperature; /* degrees CELSIUS except 4965 */
729
730 if (test_bit(STATUS_EXIT_PENDING, &priv->status))
731 return;
732
733 if ((priv->hw_rev & CSR_HW_REV_TYPE_MSK) == CSR_HW_REV_TYPE_4965)
734 temp = KELVIN_TO_CELSIUS(priv->temperature);
735
736 if (!priv->thermal_throttle.advanced_tt)
737 iwl_legacy_tt_handler(priv, temp);
738 else
739 iwl_advance_tt_handler(priv, temp);
740 }
741
742 void iwl_tt_handler(struct iwl_priv *priv)
743 {
744 if (test_bit(STATUS_EXIT_PENDING, &priv->status))
745 return;
746
747 IWL_DEBUG_POWER(priv, "Queueing thermal throttling work.\n");
748 queue_work(priv->workqueue, &priv->tt_work);
749 }
750 EXPORT_SYMBOL(iwl_tt_handler);
751
752 /* Thermal throttling initialization
753 * For advance thermal throttling:
754 * Initialize Thermal Index and temperature threshold table
755 * Initialize thermal throttling restriction table
756 */
757 void iwl_tt_initialize(struct iwl_priv *priv)
758 {
759 struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
760 int size = sizeof(struct iwl_tt_trans) * (IWL_TI_STATE_MAX - 1);
761 struct iwl_tt_trans *transaction;
762
763 IWL_DEBUG_POWER(priv, "Initialize Thermal Throttling \n");
764
765 memset(tt, 0, sizeof(struct iwl_tt_mgmt));
766
767 tt->state = IWL_TI_0;
768 init_timer(&priv->thermal_throttle.ct_kill_exit_tm);
769 priv->thermal_throttle.ct_kill_exit_tm.data = (unsigned long)priv;
770 priv->thermal_throttle.ct_kill_exit_tm.function = iwl_tt_check_exit_ct_kill;
771
772 /* setup deferred ct kill work */
773 INIT_WORK(&priv->tt_work, iwl_bg_tt_work);
774 INIT_WORK(&priv->ct_enter, iwl_bg_ct_enter);
775 INIT_WORK(&priv->ct_exit, iwl_bg_ct_exit);
776
777 switch (priv->hw_rev & CSR_HW_REV_TYPE_MSK) {
778 case CSR_HW_REV_TYPE_6x00:
779 case CSR_HW_REV_TYPE_6x50:
780 IWL_DEBUG_POWER(priv, "Advanced Thermal Throttling\n");
781 tt->restriction = kzalloc(sizeof(struct iwl_tt_restriction) *
782 IWL_TI_STATE_MAX, GFP_KERNEL);
783 tt->transaction = kzalloc(sizeof(struct iwl_tt_trans) *
784 IWL_TI_STATE_MAX * (IWL_TI_STATE_MAX - 1),
785 GFP_KERNEL);
786 if (!tt->restriction || !tt->transaction) {
787 IWL_ERR(priv, "Fallback to Legacy Throttling\n");
788 priv->thermal_throttle.advanced_tt = false;
789 kfree(tt->restriction);
790 tt->restriction = NULL;
791 kfree(tt->transaction);
792 tt->transaction = NULL;
793 } else {
794 transaction = tt->transaction +
795 (IWL_TI_0 * (IWL_TI_STATE_MAX - 1));
796 memcpy(transaction, &tt_range_0[0], size);
797 transaction = tt->transaction +
798 (IWL_TI_1 * (IWL_TI_STATE_MAX - 1));
799 memcpy(transaction, &tt_range_1[0], size);
800 transaction = tt->transaction +
801 (IWL_TI_2 * (IWL_TI_STATE_MAX - 1));
802 memcpy(transaction, &tt_range_2[0], size);
803 transaction = tt->transaction +
804 (IWL_TI_CT_KILL * (IWL_TI_STATE_MAX - 1));
805 memcpy(transaction, &tt_range_3[0], size);
806 size = sizeof(struct iwl_tt_restriction) *
807 IWL_TI_STATE_MAX;
808 memcpy(tt->restriction,
809 &restriction_range[0], size);
810 priv->thermal_throttle.advanced_tt = true;
811 }
812 break;
813 default:
814 IWL_DEBUG_POWER(priv, "Legacy Thermal Throttling\n");
815 priv->thermal_throttle.advanced_tt = false;
816 break;
817 }
818 }
819 EXPORT_SYMBOL(iwl_tt_initialize);
820
821 /* cleanup thermal throttling management related memory and timer */
822 void iwl_tt_exit(struct iwl_priv *priv)
823 {
824 struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
825
826 /* stop ct_kill_exit_tm timer if activated */
827 del_timer_sync(&priv->thermal_throttle.ct_kill_exit_tm);
828 cancel_work_sync(&priv->tt_work);
829 cancel_work_sync(&priv->ct_enter);
830 cancel_work_sync(&priv->ct_exit);
831
832 if (priv->thermal_throttle.advanced_tt) {
833 /* free advance thermal throttling memory */
834 kfree(tt->restriction);
835 tt->restriction = NULL;
836 kfree(tt->transaction);
837 tt->transaction = NULL;
838 }
839 }
840 EXPORT_SYMBOL(iwl_tt_exit);
841
842 /* initialize to default */
843 void iwl_power_initialize(struct iwl_priv *priv)
844 {
845 u16 lctl = iwl_pcie_link_ctl(priv);
846
847 priv->power_data.pci_pm = !(lctl & PCI_CFG_LINK_CTRL_VAL_L0S_EN);
848
849 priv->power_data.debug_sleep_level_override = -1;
850
851 memset(&priv->power_data.sleep_cmd, 0,
852 sizeof(priv->power_data.sleep_cmd));
853 }
854 EXPORT_SYMBOL(iwl_power_initialize);
This page took 0.066166 seconds and 5 git commands to generate.