iwlwifi: update copyright year to 2010
[deliverable/linux.git] / drivers / net / wireless / iwlwifi / iwl-power.c
1 /******************************************************************************
2 *
3 * Copyright(c) 2007 - 2010 Intel Corporation. All rights reserved.
4 *
5 * Portions of this file are derived from the ipw3945 project, as well
6 * as portions of the ieee80211 subsystem header files.
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of version 2 of the GNU General Public License as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 *
17 * You should have received a copy of the GNU General Public License along with
18 * this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
20 *
21 * The full GNU General Public License is included in this distribution in the
22 * file called LICENSE.
23 *
24 * Contact Information:
25 * Intel Linux Wireless <ilw@linux.intel.com>
26 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *****************************************************************************/
28
29
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33
34 #include <net/mac80211.h>
35
36 #include "iwl-eeprom.h"
37 #include "iwl-dev.h"
38 #include "iwl-core.h"
39 #include "iwl-io.h"
40 #include "iwl-commands.h"
41 #include "iwl-debug.h"
42 #include "iwl-power.h"
43
44 /*
45 * Setting power level allows the card to go to sleep when not busy.
46 *
47 * We calculate a sleep command based on the required latency, which
48 * we get from mac80211. In order to handle thermal throttling, we can
49 * also use pre-defined power levels.
50 */
51
52 /*
53 * For now, keep using power level 1 instead of automatically
54 * adjusting ...
55 */
56 bool no_sleep_autoadjust = true;
57 module_param(no_sleep_autoadjust, bool, S_IRUGO);
58 MODULE_PARM_DESC(no_sleep_autoadjust,
59 "don't automatically adjust sleep level "
60 "according to maximum network latency");
61
62 /*
63 * This defines the old power levels. They are still used by default
64 * (level 1) and for thermal throttle (levels 3 through 5)
65 */
66
67 struct iwl_power_vec_entry {
68 struct iwl_powertable_cmd cmd;
69 u8 no_dtim; /* number of skip dtim */
70 };
71
72 #define IWL_DTIM_RANGE_0_MAX 2
73 #define IWL_DTIM_RANGE_1_MAX 10
74
75 #define NOSLP cpu_to_le16(0), 0, 0
76 #define SLP IWL_POWER_DRIVER_ALLOW_SLEEP_MSK, 0, 0
77 #define TU_TO_USEC 1024
78 #define SLP_TOUT(T) cpu_to_le32((T) * TU_TO_USEC)
79 #define SLP_VEC(X0, X1, X2, X3, X4) {cpu_to_le32(X0), \
80 cpu_to_le32(X1), \
81 cpu_to_le32(X2), \
82 cpu_to_le32(X3), \
83 cpu_to_le32(X4)}
84 /* default power management (not Tx power) table values */
85 /* for DTIM period 0 through IWL_DTIM_RANGE_0_MAX */
86 /* DTIM 0 - 2 */
87 static const struct iwl_power_vec_entry range_0[IWL_POWER_NUM] = {
88 {{SLP, SLP_TOUT(200), SLP_TOUT(500), SLP_VEC(1, 1, 2, 2, 0xFF)}, 0},
89 {{SLP, SLP_TOUT(200), SLP_TOUT(300), SLP_VEC(1, 2, 2, 2, 0xFF)}, 0},
90 {{SLP, SLP_TOUT(50), SLP_TOUT(100), SLP_VEC(2, 2, 2, 2, 0xFF)}, 0},
91 {{SLP, SLP_TOUT(50), SLP_TOUT(25), SLP_VEC(2, 2, 4, 4, 0xFF)}, 1},
92 {{SLP, SLP_TOUT(25), SLP_TOUT(25), SLP_VEC(2, 2, 4, 6, 0xFF)}, 2}
93 };
94
95
96 /* for DTIM period IWL_DTIM_RANGE_0_MAX + 1 through IWL_DTIM_RANGE_1_MAX */
97 /* DTIM 3 - 10 */
98 static const struct iwl_power_vec_entry range_1[IWL_POWER_NUM] = {
99 {{SLP, SLP_TOUT(200), SLP_TOUT(500), SLP_VEC(1, 2, 3, 4, 4)}, 0},
100 {{SLP, SLP_TOUT(200), SLP_TOUT(300), SLP_VEC(1, 2, 3, 4, 7)}, 0},
101 {{SLP, SLP_TOUT(50), SLP_TOUT(100), SLP_VEC(2, 4, 6, 7, 9)}, 0},
102 {{SLP, SLP_TOUT(50), SLP_TOUT(25), SLP_VEC(2, 4, 6, 9, 10)}, 1},
103 {{SLP, SLP_TOUT(25), SLP_TOUT(25), SLP_VEC(2, 4, 6, 10, 10)}, 2}
104 };
105
106 /* for DTIM period > IWL_DTIM_RANGE_1_MAX */
107 /* DTIM 11 - */
108 static const struct iwl_power_vec_entry range_2[IWL_POWER_NUM] = {
109 {{SLP, SLP_TOUT(200), SLP_TOUT(500), SLP_VEC(1, 2, 3, 4, 0xFF)}, 0},
110 {{SLP, SLP_TOUT(200), SLP_TOUT(300), SLP_VEC(2, 4, 6, 7, 0xFF)}, 0},
111 {{SLP, SLP_TOUT(50), SLP_TOUT(100), SLP_VEC(2, 7, 9, 9, 0xFF)}, 0},
112 {{SLP, SLP_TOUT(50), SLP_TOUT(25), SLP_VEC(2, 7, 9, 9, 0xFF)}, 0},
113 {{SLP, SLP_TOUT(25), SLP_TOUT(25), SLP_VEC(4, 7, 10, 10, 0xFF)}, 0}
114 };
115
116 static void iwl_static_sleep_cmd(struct iwl_priv *priv,
117 struct iwl_powertable_cmd *cmd,
118 enum iwl_power_level lvl, int period)
119 {
120 const struct iwl_power_vec_entry *table;
121 int max_sleep[IWL_POWER_VEC_SIZE] = { 0 };
122 int i;
123 u8 skip;
124 u32 slp_itrvl;
125
126 table = range_2;
127 if (period <= IWL_DTIM_RANGE_1_MAX)
128 table = range_1;
129 if (period <= IWL_DTIM_RANGE_0_MAX)
130 table = range_0;
131
132 BUG_ON(lvl < 0 || lvl >= IWL_POWER_NUM);
133
134 *cmd = table[lvl].cmd;
135
136 if (period == 0) {
137 skip = 0;
138 period = 1;
139 for (i = 0; i < IWL_POWER_VEC_SIZE; i++)
140 max_sleep[i] = 1;
141
142 } else {
143 skip = table[lvl].no_dtim;
144 for (i = 0; i < IWL_POWER_VEC_SIZE; i++)
145 max_sleep[i] = le32_to_cpu(cmd->sleep_interval[i]);
146 max_sleep[IWL_POWER_VEC_SIZE - 1] = skip + 1;
147 }
148
149 slp_itrvl = le32_to_cpu(cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1]);
150 /* figure out the listen interval based on dtim period and skip */
151 if (slp_itrvl == 0xFF)
152 cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1] =
153 cpu_to_le32(period * (skip + 1));
154
155 slp_itrvl = le32_to_cpu(cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1]);
156 if (slp_itrvl > period)
157 cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1] =
158 cpu_to_le32((slp_itrvl / period) * period);
159
160 if (skip)
161 cmd->flags |= IWL_POWER_SLEEP_OVER_DTIM_MSK;
162 else
163 cmd->flags &= ~IWL_POWER_SLEEP_OVER_DTIM_MSK;
164
165 slp_itrvl = le32_to_cpu(cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1]);
166 if (slp_itrvl > IWL_CONN_MAX_LISTEN_INTERVAL)
167 cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1] =
168 cpu_to_le32(IWL_CONN_MAX_LISTEN_INTERVAL);
169
170 /* enforce max sleep interval */
171 for (i = IWL_POWER_VEC_SIZE - 1; i >= 0 ; i--) {
172 if (le32_to_cpu(cmd->sleep_interval[i]) >
173 (max_sleep[i] * period))
174 cmd->sleep_interval[i] =
175 cpu_to_le32(max_sleep[i] * period);
176 if (i != (IWL_POWER_VEC_SIZE - 1)) {
177 if (le32_to_cpu(cmd->sleep_interval[i]) >
178 le32_to_cpu(cmd->sleep_interval[i+1]))
179 cmd->sleep_interval[i] =
180 cmd->sleep_interval[i+1];
181 }
182 }
183
184 if (priv->power_data.pci_pm)
185 cmd->flags |= IWL_POWER_PCI_PM_MSK;
186 else
187 cmd->flags &= ~IWL_POWER_PCI_PM_MSK;
188
189 IWL_DEBUG_POWER(priv, "numSkipDtim = %u, dtimPeriod = %d\n",
190 skip, period);
191 IWL_DEBUG_POWER(priv, "Sleep command for index %d\n", lvl + 1);
192 }
193
194 /* default Thermal Throttling transaction table
195 * Current state | Throttling Down | Throttling Up
196 *=============================================================================
197 * Condition Nxt State Condition Nxt State Condition Nxt State
198 *-----------------------------------------------------------------------------
199 * IWL_TI_0 T >= 114 CT_KILL 114>T>=105 TI_1 N/A N/A
200 * IWL_TI_1 T >= 114 CT_KILL 114>T>=110 TI_2 T<=95 TI_0
201 * IWL_TI_2 T >= 114 CT_KILL T<=100 TI_1
202 * IWL_CT_KILL N/A N/A N/A N/A T<=95 TI_0
203 *=============================================================================
204 */
205 static const struct iwl_tt_trans tt_range_0[IWL_TI_STATE_MAX - 1] = {
206 {IWL_TI_0, IWL_ABSOLUTE_ZERO, 104},
207 {IWL_TI_1, 105, CT_KILL_THRESHOLD - 1},
208 {IWL_TI_CT_KILL, CT_KILL_THRESHOLD, IWL_ABSOLUTE_MAX}
209 };
210 static const struct iwl_tt_trans tt_range_1[IWL_TI_STATE_MAX - 1] = {
211 {IWL_TI_0, IWL_ABSOLUTE_ZERO, 95},
212 {IWL_TI_2, 110, CT_KILL_THRESHOLD - 1},
213 {IWL_TI_CT_KILL, CT_KILL_THRESHOLD, IWL_ABSOLUTE_MAX}
214 };
215 static const struct iwl_tt_trans tt_range_2[IWL_TI_STATE_MAX - 1] = {
216 {IWL_TI_1, IWL_ABSOLUTE_ZERO, 100},
217 {IWL_TI_CT_KILL, CT_KILL_THRESHOLD, IWL_ABSOLUTE_MAX},
218 {IWL_TI_CT_KILL, CT_KILL_THRESHOLD, IWL_ABSOLUTE_MAX}
219 };
220 static const struct iwl_tt_trans tt_range_3[IWL_TI_STATE_MAX - 1] = {
221 {IWL_TI_0, IWL_ABSOLUTE_ZERO, CT_KILL_EXIT_THRESHOLD},
222 {IWL_TI_CT_KILL, CT_KILL_EXIT_THRESHOLD + 1, IWL_ABSOLUTE_MAX},
223 {IWL_TI_CT_KILL, CT_KILL_EXIT_THRESHOLD + 1, IWL_ABSOLUTE_MAX}
224 };
225
226 /* Advance Thermal Throttling default restriction table */
227 static const struct iwl_tt_restriction restriction_range[IWL_TI_STATE_MAX] = {
228 {IWL_ANT_OK_MULTI, IWL_ANT_OK_MULTI, true },
229 {IWL_ANT_OK_SINGLE, IWL_ANT_OK_MULTI, true },
230 {IWL_ANT_OK_SINGLE, IWL_ANT_OK_SINGLE, false },
231 {IWL_ANT_OK_NONE, IWL_ANT_OK_NONE, false }
232 };
233
234
235 static void iwl_power_sleep_cam_cmd(struct iwl_priv *priv,
236 struct iwl_powertable_cmd *cmd)
237 {
238 memset(cmd, 0, sizeof(*cmd));
239
240 if (priv->power_data.pci_pm)
241 cmd->flags |= IWL_POWER_PCI_PM_MSK;
242
243 IWL_DEBUG_POWER(priv, "Sleep command for CAM\n");
244 }
245
246 static void iwl_power_fill_sleep_cmd(struct iwl_priv *priv,
247 struct iwl_powertable_cmd *cmd,
248 int dynps_ms, int wakeup_period)
249 {
250 /*
251 * These are the original power level 3 sleep successions. The
252 * device may behave better with such succession and was also
253 * only tested with that. Just like the original sleep commands,
254 * also adjust the succession here to the wakeup_period below.
255 * The ranges are the same as for the sleep commands, 0-2, 3-9
256 * and >10, which is selected based on the DTIM interval for
257 * the sleep index but here we use the wakeup period since that
258 * is what we need to do for the latency requirements.
259 */
260 static const u8 slp_succ_r0[IWL_POWER_VEC_SIZE] = { 2, 2, 2, 2, 2 };
261 static const u8 slp_succ_r1[IWL_POWER_VEC_SIZE] = { 2, 4, 6, 7, 9 };
262 static const u8 slp_succ_r2[IWL_POWER_VEC_SIZE] = { 2, 7, 9, 9, 0xFF };
263 const u8 *slp_succ = slp_succ_r0;
264 int i;
265
266 if (wakeup_period > IWL_DTIM_RANGE_0_MAX)
267 slp_succ = slp_succ_r1;
268 if (wakeup_period > IWL_DTIM_RANGE_1_MAX)
269 slp_succ = slp_succ_r2;
270
271 memset(cmd, 0, sizeof(*cmd));
272
273 cmd->flags = IWL_POWER_DRIVER_ALLOW_SLEEP_MSK |
274 IWL_POWER_FAST_PD; /* no use seeing frames for others */
275
276 if (priv->power_data.pci_pm)
277 cmd->flags |= IWL_POWER_PCI_PM_MSK;
278
279 cmd->rx_data_timeout = cpu_to_le32(1000 * dynps_ms);
280 cmd->tx_data_timeout = cpu_to_le32(1000 * dynps_ms);
281
282 for (i = 0; i < IWL_POWER_VEC_SIZE; i++)
283 cmd->sleep_interval[i] =
284 cpu_to_le32(min_t(int, slp_succ[i], wakeup_period));
285
286 IWL_DEBUG_POWER(priv, "Automatic sleep command\n");
287 }
288
289 static int iwl_set_power(struct iwl_priv *priv, struct iwl_powertable_cmd *cmd)
290 {
291 IWL_DEBUG_POWER(priv, "Sending power/sleep command\n");
292 IWL_DEBUG_POWER(priv, "Flags value = 0x%08X\n", cmd->flags);
293 IWL_DEBUG_POWER(priv, "Tx timeout = %u\n", le32_to_cpu(cmd->tx_data_timeout));
294 IWL_DEBUG_POWER(priv, "Rx timeout = %u\n", le32_to_cpu(cmd->rx_data_timeout));
295 IWL_DEBUG_POWER(priv, "Sleep interval vector = { %d , %d , %d , %d , %d }\n",
296 le32_to_cpu(cmd->sleep_interval[0]),
297 le32_to_cpu(cmd->sleep_interval[1]),
298 le32_to_cpu(cmd->sleep_interval[2]),
299 le32_to_cpu(cmd->sleep_interval[3]),
300 le32_to_cpu(cmd->sleep_interval[4]));
301
302 return iwl_send_cmd_pdu(priv, POWER_TABLE_CMD,
303 sizeof(struct iwl_powertable_cmd), cmd);
304 }
305
306
307 int iwl_power_update_mode(struct iwl_priv *priv, bool force)
308 {
309 int ret = 0;
310 struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
311 bool enabled = (priv->iw_mode == NL80211_IFTYPE_STATION) &&
312 (priv->hw->conf.flags & IEEE80211_CONF_PS);
313 bool update_chains;
314 struct iwl_powertable_cmd cmd;
315 int dtimper;
316
317 /* Don't update the RX chain when chain noise calibration is running */
318 update_chains = priv->chain_noise_data.state == IWL_CHAIN_NOISE_DONE ||
319 priv->chain_noise_data.state == IWL_CHAIN_NOISE_ALIVE;
320
321 if (priv->vif)
322 dtimper = priv->vif->bss_conf.dtim_period;
323 else
324 dtimper = 1;
325
326 if (priv->cfg->broken_powersave)
327 iwl_power_sleep_cam_cmd(priv, &cmd);
328 else if (priv->cfg->supports_idle &&
329 priv->hw->conf.flags & IEEE80211_CONF_IDLE)
330 iwl_static_sleep_cmd(priv, &cmd, IWL_POWER_INDEX_5, 20);
331 else if (tt->state >= IWL_TI_1)
332 iwl_static_sleep_cmd(priv, &cmd, tt->tt_power_mode, dtimper);
333 else if (!enabled)
334 iwl_power_sleep_cam_cmd(priv, &cmd);
335 else if (priv->power_data.debug_sleep_level_override >= 0)
336 iwl_static_sleep_cmd(priv, &cmd,
337 priv->power_data.debug_sleep_level_override,
338 dtimper);
339 else if (no_sleep_autoadjust)
340 iwl_static_sleep_cmd(priv, &cmd, IWL_POWER_INDEX_1, dtimper);
341 else
342 iwl_power_fill_sleep_cmd(priv, &cmd,
343 priv->hw->conf.dynamic_ps_timeout,
344 priv->hw->conf.max_sleep_period);
345
346 if (iwl_is_ready_rf(priv) &&
347 (memcmp(&priv->power_data.sleep_cmd, &cmd, sizeof(cmd)) || force)) {
348 if (cmd.flags & IWL_POWER_DRIVER_ALLOW_SLEEP_MSK)
349 set_bit(STATUS_POWER_PMI, &priv->status);
350
351 ret = iwl_set_power(priv, &cmd);
352 if (!ret) {
353 if (!(cmd.flags & IWL_POWER_DRIVER_ALLOW_SLEEP_MSK))
354 clear_bit(STATUS_POWER_PMI, &priv->status);
355
356 if (priv->cfg->ops->lib->update_chain_flags &&
357 update_chains)
358 priv->cfg->ops->lib->update_chain_flags(priv);
359 else if (priv->cfg->ops->lib->update_chain_flags)
360 IWL_DEBUG_POWER(priv,
361 "Cannot update the power, chain noise "
362 "calibration running: %d\n",
363 priv->chain_noise_data.state);
364 memcpy(&priv->power_data.sleep_cmd, &cmd, sizeof(cmd));
365 } else
366 IWL_ERR(priv, "set power fail, ret = %d", ret);
367 }
368
369 return ret;
370 }
371 EXPORT_SYMBOL(iwl_power_update_mode);
372
373 bool iwl_ht_enabled(struct iwl_priv *priv)
374 {
375 struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
376 struct iwl_tt_restriction *restriction;
377
378 if (!priv->thermal_throttle.advanced_tt)
379 return true;
380 restriction = tt->restriction + tt->state;
381 return restriction->is_ht;
382 }
383 EXPORT_SYMBOL(iwl_ht_enabled);
384
385 bool iwl_within_ct_kill_margin(struct iwl_priv *priv)
386 {
387 s32 temp = priv->temperature; /* degrees CELSIUS except 4965 */
388 bool within_margin = false;
389
390 if ((priv->hw_rev & CSR_HW_REV_TYPE_MSK) == CSR_HW_REV_TYPE_4965)
391 temp = KELVIN_TO_CELSIUS(priv->temperature);
392
393 if (!priv->thermal_throttle.advanced_tt)
394 within_margin = ((temp + IWL_TT_CT_KILL_MARGIN) >=
395 CT_KILL_THRESHOLD_LEGACY) ? true : false;
396 else
397 within_margin = ((temp + IWL_TT_CT_KILL_MARGIN) >=
398 CT_KILL_THRESHOLD) ? true : false;
399 return within_margin;
400 }
401
402 enum iwl_antenna_ok iwl_tx_ant_restriction(struct iwl_priv *priv)
403 {
404 struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
405 struct iwl_tt_restriction *restriction;
406
407 if (!priv->thermal_throttle.advanced_tt)
408 return IWL_ANT_OK_MULTI;
409 restriction = tt->restriction + tt->state;
410 return restriction->tx_stream;
411 }
412 EXPORT_SYMBOL(iwl_tx_ant_restriction);
413
414 enum iwl_antenna_ok iwl_rx_ant_restriction(struct iwl_priv *priv)
415 {
416 struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
417 struct iwl_tt_restriction *restriction;
418
419 if (!priv->thermal_throttle.advanced_tt)
420 return IWL_ANT_OK_MULTI;
421 restriction = tt->restriction + tt->state;
422 return restriction->rx_stream;
423 }
424
425 #define CT_KILL_EXIT_DURATION (5) /* 5 seconds duration */
426 #define CT_KILL_WAITING_DURATION (300) /* 300ms duration */
427
428 /*
429 * toggle the bit to wake up uCode and check the temperature
430 * if the temperature is below CT, uCode will stay awake and send card
431 * state notification with CT_KILL bit clear to inform Thermal Throttling
432 * Management to change state. Otherwise, uCode will go back to sleep
433 * without doing anything, driver should continue the 5 seconds timer
434 * to wake up uCode for temperature check until temperature drop below CT
435 */
436 static void iwl_tt_check_exit_ct_kill(unsigned long data)
437 {
438 struct iwl_priv *priv = (struct iwl_priv *)data;
439 struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
440 unsigned long flags;
441
442 if (test_bit(STATUS_EXIT_PENDING, &priv->status))
443 return;
444
445 if (tt->state == IWL_TI_CT_KILL) {
446 if (priv->thermal_throttle.ct_kill_toggle) {
447 iwl_write32(priv, CSR_UCODE_DRV_GP1_CLR,
448 CSR_UCODE_DRV_GP1_REG_BIT_CT_KILL_EXIT);
449 priv->thermal_throttle.ct_kill_toggle = false;
450 } else {
451 iwl_write32(priv, CSR_UCODE_DRV_GP1_SET,
452 CSR_UCODE_DRV_GP1_REG_BIT_CT_KILL_EXIT);
453 priv->thermal_throttle.ct_kill_toggle = true;
454 }
455 iwl_read32(priv, CSR_UCODE_DRV_GP1);
456 spin_lock_irqsave(&priv->reg_lock, flags);
457 if (!iwl_grab_nic_access(priv))
458 iwl_release_nic_access(priv);
459 spin_unlock_irqrestore(&priv->reg_lock, flags);
460
461 /* Reschedule the ct_kill timer to occur in
462 * CT_KILL_EXIT_DURATION seconds to ensure we get a
463 * thermal update */
464 IWL_DEBUG_POWER(priv, "schedule ct_kill exit timer\n");
465 mod_timer(&priv->thermal_throttle.ct_kill_exit_tm, jiffies +
466 CT_KILL_EXIT_DURATION * HZ);
467 }
468 }
469
470 static void iwl_perform_ct_kill_task(struct iwl_priv *priv,
471 bool stop)
472 {
473 if (stop) {
474 IWL_DEBUG_POWER(priv, "Stop all queues\n");
475 if (priv->mac80211_registered)
476 ieee80211_stop_queues(priv->hw);
477 IWL_DEBUG_POWER(priv,
478 "Schedule 5 seconds CT_KILL Timer\n");
479 mod_timer(&priv->thermal_throttle.ct_kill_exit_tm, jiffies +
480 CT_KILL_EXIT_DURATION * HZ);
481 } else {
482 IWL_DEBUG_POWER(priv, "Wake all queues\n");
483 if (priv->mac80211_registered)
484 ieee80211_wake_queues(priv->hw);
485 }
486 }
487
488 static void iwl_tt_ready_for_ct_kill(unsigned long data)
489 {
490 struct iwl_priv *priv = (struct iwl_priv *)data;
491 struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
492
493 if (test_bit(STATUS_EXIT_PENDING, &priv->status))
494 return;
495
496 /* temperature timer expired, ready to go into CT_KILL state */
497 if (tt->state != IWL_TI_CT_KILL) {
498 IWL_DEBUG_POWER(priv, "entering CT_KILL state when temperature timer expired\n");
499 tt->state = IWL_TI_CT_KILL;
500 set_bit(STATUS_CT_KILL, &priv->status);
501 iwl_perform_ct_kill_task(priv, true);
502 }
503 }
504
505 static void iwl_prepare_ct_kill_task(struct iwl_priv *priv)
506 {
507 IWL_DEBUG_POWER(priv, "Prepare to enter IWL_TI_CT_KILL\n");
508 /* make request to retrieve statistics information */
509 iwl_send_statistics_request(priv, CMD_SYNC, false);
510 /* Reschedule the ct_kill wait timer */
511 mod_timer(&priv->thermal_throttle.ct_kill_waiting_tm,
512 jiffies + msecs_to_jiffies(CT_KILL_WAITING_DURATION));
513 }
514
515 #define IWL_MINIMAL_POWER_THRESHOLD (CT_KILL_THRESHOLD_LEGACY)
516 #define IWL_REDUCED_PERFORMANCE_THRESHOLD_2 (100)
517 #define IWL_REDUCED_PERFORMANCE_THRESHOLD_1 (90)
518
519 /*
520 * Legacy thermal throttling
521 * 1) Avoid NIC destruction due to high temperatures
522 * Chip will identify dangerously high temperatures that can
523 * harm the device and will power down
524 * 2) Avoid the NIC power down due to high temperature
525 * Throttle early enough to lower the power consumption before
526 * drastic steps are needed
527 */
528 static void iwl_legacy_tt_handler(struct iwl_priv *priv, s32 temp, bool force)
529 {
530 struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
531 enum iwl_tt_state old_state;
532
533 #ifdef CONFIG_IWLWIFI_DEBUG
534 if ((tt->tt_previous_temp) &&
535 (temp > tt->tt_previous_temp) &&
536 ((temp - tt->tt_previous_temp) >
537 IWL_TT_INCREASE_MARGIN)) {
538 IWL_DEBUG_POWER(priv,
539 "Temperature increase %d degree Celsius\n",
540 (temp - tt->tt_previous_temp));
541 }
542 #endif
543 old_state = tt->state;
544 /* in Celsius */
545 if (temp >= IWL_MINIMAL_POWER_THRESHOLD)
546 tt->state = IWL_TI_CT_KILL;
547 else if (temp >= IWL_REDUCED_PERFORMANCE_THRESHOLD_2)
548 tt->state = IWL_TI_2;
549 else if (temp >= IWL_REDUCED_PERFORMANCE_THRESHOLD_1)
550 tt->state = IWL_TI_1;
551 else
552 tt->state = IWL_TI_0;
553
554 #ifdef CONFIG_IWLWIFI_DEBUG
555 tt->tt_previous_temp = temp;
556 #endif
557 /* stop ct_kill_waiting_tm timer */
558 del_timer_sync(&priv->thermal_throttle.ct_kill_waiting_tm);
559 if (tt->state != old_state) {
560 switch (tt->state) {
561 case IWL_TI_0:
562 /*
563 * When the system is ready to go back to IWL_TI_0
564 * we only have to call iwl_power_update_mode() to
565 * do so.
566 */
567 break;
568 case IWL_TI_1:
569 tt->tt_power_mode = IWL_POWER_INDEX_3;
570 break;
571 case IWL_TI_2:
572 tt->tt_power_mode = IWL_POWER_INDEX_4;
573 break;
574 default:
575 tt->tt_power_mode = IWL_POWER_INDEX_5;
576 break;
577 }
578 mutex_lock(&priv->mutex);
579 if (old_state == IWL_TI_CT_KILL)
580 clear_bit(STATUS_CT_KILL, &priv->status);
581 if (tt->state != IWL_TI_CT_KILL &&
582 iwl_power_update_mode(priv, true)) {
583 /* TT state not updated
584 * try again during next temperature read
585 */
586 if (old_state == IWL_TI_CT_KILL)
587 set_bit(STATUS_CT_KILL, &priv->status);
588 tt->state = old_state;
589 IWL_ERR(priv, "Cannot update power mode, "
590 "TT state not updated\n");
591 } else {
592 if (tt->state == IWL_TI_CT_KILL) {
593 if (force) {
594 set_bit(STATUS_CT_KILL, &priv->status);
595 iwl_perform_ct_kill_task(priv, true);
596 } else {
597 iwl_prepare_ct_kill_task(priv);
598 tt->state = old_state;
599 }
600 } else if (old_state == IWL_TI_CT_KILL &&
601 tt->state != IWL_TI_CT_KILL)
602 iwl_perform_ct_kill_task(priv, false);
603 IWL_DEBUG_POWER(priv, "Temperature state changed %u\n",
604 tt->state);
605 IWL_DEBUG_POWER(priv, "Power Index change to %u\n",
606 tt->tt_power_mode);
607 }
608 mutex_unlock(&priv->mutex);
609 }
610 }
611
612 /*
613 * Advance thermal throttling
614 * 1) Avoid NIC destruction due to high temperatures
615 * Chip will identify dangerously high temperatures that can
616 * harm the device and will power down
617 * 2) Avoid the NIC power down due to high temperature
618 * Throttle early enough to lower the power consumption before
619 * drastic steps are needed
620 * Actions include relaxing the power down sleep thresholds and
621 * decreasing the number of TX streams
622 * 3) Avoid throughput performance impact as much as possible
623 *
624 *=============================================================================
625 * Condition Nxt State Condition Nxt State Condition Nxt State
626 *-----------------------------------------------------------------------------
627 * IWL_TI_0 T >= 114 CT_KILL 114>T>=105 TI_1 N/A N/A
628 * IWL_TI_1 T >= 114 CT_KILL 114>T>=110 TI_2 T<=95 TI_0
629 * IWL_TI_2 T >= 114 CT_KILL T<=100 TI_1
630 * IWL_CT_KILL N/A N/A N/A N/A T<=95 TI_0
631 *=============================================================================
632 */
633 static void iwl_advance_tt_handler(struct iwl_priv *priv, s32 temp, bool force)
634 {
635 struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
636 int i;
637 bool changed = false;
638 enum iwl_tt_state old_state;
639 struct iwl_tt_trans *transaction;
640
641 old_state = tt->state;
642 for (i = 0; i < IWL_TI_STATE_MAX - 1; i++) {
643 /* based on the current TT state,
644 * find the curresponding transaction table
645 * each table has (IWL_TI_STATE_MAX - 1) entries
646 * tt->transaction + ((old_state * (IWL_TI_STATE_MAX - 1))
647 * will advance to the correct table.
648 * then based on the current temperature
649 * find the next state need to transaction to
650 * go through all the possible (IWL_TI_STATE_MAX - 1) entries
651 * in the current table to see if transaction is needed
652 */
653 transaction = tt->transaction +
654 ((old_state * (IWL_TI_STATE_MAX - 1)) + i);
655 if (temp >= transaction->tt_low &&
656 temp <= transaction->tt_high) {
657 #ifdef CONFIG_IWLWIFI_DEBUG
658 if ((tt->tt_previous_temp) &&
659 (temp > tt->tt_previous_temp) &&
660 ((temp - tt->tt_previous_temp) >
661 IWL_TT_INCREASE_MARGIN)) {
662 IWL_DEBUG_POWER(priv,
663 "Temperature increase %d "
664 "degree Celsius\n",
665 (temp - tt->tt_previous_temp));
666 }
667 tt->tt_previous_temp = temp;
668 #endif
669 if (old_state !=
670 transaction->next_state) {
671 changed = true;
672 tt->state =
673 transaction->next_state;
674 }
675 break;
676 }
677 }
678 /* stop ct_kill_waiting_tm timer */
679 del_timer_sync(&priv->thermal_throttle.ct_kill_waiting_tm);
680 if (changed) {
681 struct iwl_rxon_cmd *rxon = &priv->staging_rxon;
682
683 if (tt->state >= IWL_TI_1) {
684 /* force PI = IWL_POWER_INDEX_5 in the case of TI > 0 */
685 tt->tt_power_mode = IWL_POWER_INDEX_5;
686 if (!iwl_ht_enabled(priv))
687 /* disable HT */
688 rxon->flags &= ~(RXON_FLG_CHANNEL_MODE_MSK |
689 RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK |
690 RXON_FLG_HT40_PROT_MSK |
691 RXON_FLG_HT_PROT_MSK);
692 else {
693 /* check HT capability and set
694 * according to the system HT capability
695 * in case get disabled before */
696 iwl_set_rxon_ht(priv, &priv->current_ht_config);
697 }
698
699 } else {
700 /*
701 * restore system power setting -- it will be
702 * recalculated automatically.
703 */
704
705 /* check HT capability and set
706 * according to the system HT capability
707 * in case get disabled before */
708 iwl_set_rxon_ht(priv, &priv->current_ht_config);
709 }
710 mutex_lock(&priv->mutex);
711 if (old_state == IWL_TI_CT_KILL)
712 clear_bit(STATUS_CT_KILL, &priv->status);
713 if (tt->state != IWL_TI_CT_KILL &&
714 iwl_power_update_mode(priv, true)) {
715 /* TT state not updated
716 * try again during next temperature read
717 */
718 IWL_ERR(priv, "Cannot update power mode, "
719 "TT state not updated\n");
720 if (old_state == IWL_TI_CT_KILL)
721 set_bit(STATUS_CT_KILL, &priv->status);
722 tt->state = old_state;
723 } else {
724 IWL_DEBUG_POWER(priv,
725 "Thermal Throttling to new state: %u\n",
726 tt->state);
727 if (old_state != IWL_TI_CT_KILL &&
728 tt->state == IWL_TI_CT_KILL) {
729 if (force) {
730 IWL_DEBUG_POWER(priv,
731 "Enter IWL_TI_CT_KILL\n");
732 set_bit(STATUS_CT_KILL, &priv->status);
733 iwl_perform_ct_kill_task(priv, true);
734 } else {
735 iwl_prepare_ct_kill_task(priv);
736 tt->state = old_state;
737 }
738 } else if (old_state == IWL_TI_CT_KILL &&
739 tt->state != IWL_TI_CT_KILL) {
740 IWL_DEBUG_POWER(priv, "Exit IWL_TI_CT_KILL\n");
741 iwl_perform_ct_kill_task(priv, false);
742 }
743 }
744 mutex_unlock(&priv->mutex);
745 }
746 }
747
748 /* Card State Notification indicated reach critical temperature
749 * if PSP not enable, no Thermal Throttling function will be performed
750 * just set the GP1 bit to acknowledge the event
751 * otherwise, go into IWL_TI_CT_KILL state
752 * since Card State Notification will not provide any temperature reading
753 * for Legacy mode
754 * so just pass the CT_KILL temperature to iwl_legacy_tt_handler()
755 * for advance mode
756 * pass CT_KILL_THRESHOLD+1 to make sure move into IWL_TI_CT_KILL state
757 */
758 static void iwl_bg_ct_enter(struct work_struct *work)
759 {
760 struct iwl_priv *priv = container_of(work, struct iwl_priv, ct_enter);
761 struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
762
763 if (test_bit(STATUS_EXIT_PENDING, &priv->status))
764 return;
765
766 if (!iwl_is_ready(priv))
767 return;
768
769 if (tt->state != IWL_TI_CT_KILL) {
770 IWL_ERR(priv, "Device reached critical temperature "
771 "- ucode going to sleep!\n");
772 if (!priv->thermal_throttle.advanced_tt)
773 iwl_legacy_tt_handler(priv,
774 IWL_MINIMAL_POWER_THRESHOLD,
775 true);
776 else
777 iwl_advance_tt_handler(priv,
778 CT_KILL_THRESHOLD + 1, true);
779 }
780 }
781
782 /* Card State Notification indicated out of critical temperature
783 * since Card State Notification will not provide any temperature reading
784 * so pass the IWL_REDUCED_PERFORMANCE_THRESHOLD_2 temperature
785 * to iwl_legacy_tt_handler() to get out of IWL_CT_KILL state
786 */
787 static void iwl_bg_ct_exit(struct work_struct *work)
788 {
789 struct iwl_priv *priv = container_of(work, struct iwl_priv, ct_exit);
790 struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
791
792 if (test_bit(STATUS_EXIT_PENDING, &priv->status))
793 return;
794
795 if (!iwl_is_ready(priv))
796 return;
797
798 /* stop ct_kill_exit_tm timer */
799 del_timer_sync(&priv->thermal_throttle.ct_kill_exit_tm);
800
801 if (tt->state == IWL_TI_CT_KILL) {
802 IWL_ERR(priv,
803 "Device temperature below critical"
804 "- ucode awake!\n");
805 /*
806 * exit from CT_KILL state
807 * reset the current temperature reading
808 */
809 priv->temperature = 0;
810 if (!priv->thermal_throttle.advanced_tt)
811 iwl_legacy_tt_handler(priv,
812 IWL_REDUCED_PERFORMANCE_THRESHOLD_2,
813 true);
814 else
815 iwl_advance_tt_handler(priv, CT_KILL_EXIT_THRESHOLD,
816 true);
817 }
818 }
819
820 void iwl_tt_enter_ct_kill(struct iwl_priv *priv)
821 {
822 if (test_bit(STATUS_EXIT_PENDING, &priv->status))
823 return;
824
825 IWL_DEBUG_POWER(priv, "Queueing critical temperature enter.\n");
826 queue_work(priv->workqueue, &priv->ct_enter);
827 }
828 EXPORT_SYMBOL(iwl_tt_enter_ct_kill);
829
830 void iwl_tt_exit_ct_kill(struct iwl_priv *priv)
831 {
832 if (test_bit(STATUS_EXIT_PENDING, &priv->status))
833 return;
834
835 IWL_DEBUG_POWER(priv, "Queueing critical temperature exit.\n");
836 queue_work(priv->workqueue, &priv->ct_exit);
837 }
838 EXPORT_SYMBOL(iwl_tt_exit_ct_kill);
839
840 static void iwl_bg_tt_work(struct work_struct *work)
841 {
842 struct iwl_priv *priv = container_of(work, struct iwl_priv, tt_work);
843 s32 temp = priv->temperature; /* degrees CELSIUS except 4965 */
844
845 if (test_bit(STATUS_EXIT_PENDING, &priv->status))
846 return;
847
848 if ((priv->hw_rev & CSR_HW_REV_TYPE_MSK) == CSR_HW_REV_TYPE_4965)
849 temp = KELVIN_TO_CELSIUS(priv->temperature);
850
851 if (!priv->thermal_throttle.advanced_tt)
852 iwl_legacy_tt_handler(priv, temp, false);
853 else
854 iwl_advance_tt_handler(priv, temp, false);
855 }
856
857 void iwl_tt_handler(struct iwl_priv *priv)
858 {
859 if (test_bit(STATUS_EXIT_PENDING, &priv->status))
860 return;
861
862 IWL_DEBUG_POWER(priv, "Queueing thermal throttling work.\n");
863 queue_work(priv->workqueue, &priv->tt_work);
864 }
865 EXPORT_SYMBOL(iwl_tt_handler);
866
867 /* Thermal throttling initialization
868 * For advance thermal throttling:
869 * Initialize Thermal Index and temperature threshold table
870 * Initialize thermal throttling restriction table
871 */
872 void iwl_tt_initialize(struct iwl_priv *priv)
873 {
874 struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
875 int size = sizeof(struct iwl_tt_trans) * (IWL_TI_STATE_MAX - 1);
876 struct iwl_tt_trans *transaction;
877
878 IWL_DEBUG_POWER(priv, "Initialize Thermal Throttling \n");
879
880 memset(tt, 0, sizeof(struct iwl_tt_mgmt));
881
882 tt->state = IWL_TI_0;
883 init_timer(&priv->thermal_throttle.ct_kill_exit_tm);
884 priv->thermal_throttle.ct_kill_exit_tm.data = (unsigned long)priv;
885 priv->thermal_throttle.ct_kill_exit_tm.function =
886 iwl_tt_check_exit_ct_kill;
887 init_timer(&priv->thermal_throttle.ct_kill_waiting_tm);
888 priv->thermal_throttle.ct_kill_waiting_tm.data = (unsigned long)priv;
889 priv->thermal_throttle.ct_kill_waiting_tm.function =
890 iwl_tt_ready_for_ct_kill;
891 /* setup deferred ct kill work */
892 INIT_WORK(&priv->tt_work, iwl_bg_tt_work);
893 INIT_WORK(&priv->ct_enter, iwl_bg_ct_enter);
894 INIT_WORK(&priv->ct_exit, iwl_bg_ct_exit);
895
896 if (priv->cfg->adv_thermal_throttle) {
897 IWL_DEBUG_POWER(priv, "Advanced Thermal Throttling\n");
898 tt->restriction = kzalloc(sizeof(struct iwl_tt_restriction) *
899 IWL_TI_STATE_MAX, GFP_KERNEL);
900 tt->transaction = kzalloc(sizeof(struct iwl_tt_trans) *
901 IWL_TI_STATE_MAX * (IWL_TI_STATE_MAX - 1),
902 GFP_KERNEL);
903 if (!tt->restriction || !tt->transaction) {
904 IWL_ERR(priv, "Fallback to Legacy Throttling\n");
905 priv->thermal_throttle.advanced_tt = false;
906 kfree(tt->restriction);
907 tt->restriction = NULL;
908 kfree(tt->transaction);
909 tt->transaction = NULL;
910 } else {
911 transaction = tt->transaction +
912 (IWL_TI_0 * (IWL_TI_STATE_MAX - 1));
913 memcpy(transaction, &tt_range_0[0], size);
914 transaction = tt->transaction +
915 (IWL_TI_1 * (IWL_TI_STATE_MAX - 1));
916 memcpy(transaction, &tt_range_1[0], size);
917 transaction = tt->transaction +
918 (IWL_TI_2 * (IWL_TI_STATE_MAX - 1));
919 memcpy(transaction, &tt_range_2[0], size);
920 transaction = tt->transaction +
921 (IWL_TI_CT_KILL * (IWL_TI_STATE_MAX - 1));
922 memcpy(transaction, &tt_range_3[0], size);
923 size = sizeof(struct iwl_tt_restriction) *
924 IWL_TI_STATE_MAX;
925 memcpy(tt->restriction,
926 &restriction_range[0], size);
927 priv->thermal_throttle.advanced_tt = true;
928 }
929 } else {
930 IWL_DEBUG_POWER(priv, "Legacy Thermal Throttling\n");
931 priv->thermal_throttle.advanced_tt = false;
932 }
933 }
934 EXPORT_SYMBOL(iwl_tt_initialize);
935
936 /* cleanup thermal throttling management related memory and timer */
937 void iwl_tt_exit(struct iwl_priv *priv)
938 {
939 struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
940
941 /* stop ct_kill_exit_tm timer if activated */
942 del_timer_sync(&priv->thermal_throttle.ct_kill_exit_tm);
943 /* stop ct_kill_waiting_tm timer if activated */
944 del_timer_sync(&priv->thermal_throttle.ct_kill_waiting_tm);
945 cancel_work_sync(&priv->tt_work);
946 cancel_work_sync(&priv->ct_enter);
947 cancel_work_sync(&priv->ct_exit);
948
949 if (priv->thermal_throttle.advanced_tt) {
950 /* free advance thermal throttling memory */
951 kfree(tt->restriction);
952 tt->restriction = NULL;
953 kfree(tt->transaction);
954 tt->transaction = NULL;
955 }
956 }
957 EXPORT_SYMBOL(iwl_tt_exit);
958
959 /* initialize to default */
960 void iwl_power_initialize(struct iwl_priv *priv)
961 {
962 u16 lctl = iwl_pcie_link_ctl(priv);
963
964 priv->power_data.pci_pm = !(lctl & PCI_CFG_LINK_CTRL_VAL_L0S_EN);
965
966 priv->power_data.debug_sleep_level_override = -1;
967
968 memset(&priv->power_data.sleep_cmd, 0,
969 sizeof(priv->power_data.sleep_cmd));
970 }
971 EXPORT_SYMBOL(iwl_power_initialize);
This page took 0.128487 seconds and 5 git commands to generate.