iwlwifi: move status definitions from iwl-shared
[deliverable/linux.git] / drivers / net / wireless / iwlwifi / iwl-trans-pcie-rx.c
1 /******************************************************************************
2 *
3 * Copyright(c) 2003 - 2012 Intel Corporation. All rights reserved.
4 *
5 * Portions of this file are derived from the ipw3945 project, as well
6 * as portions of the ieee80211 subsystem header files.
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of version 2 of the GNU General Public License as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 *
17 * You should have received a copy of the GNU General Public License along with
18 * this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
20 *
21 * The full GNU General Public License is included in this distribution in the
22 * file called LICENSE.
23 *
24 * Contact Information:
25 * Intel Linux Wireless <ilw@linux.intel.com>
26 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *
28 *****************************************************************************/
29 #include <linux/sched.h>
30 #include <linux/wait.h>
31 #include <linux/gfp.h>
32
33 #include "iwl-prph.h"
34 #include "iwl-io.h"
35 #include "iwl-trans-pcie-int.h"
36 #include "iwl-op-mode.h"
37
38 #ifdef CONFIG_IWLWIFI_IDI
39 #include "iwl-amfh.h"
40 #endif
41
42 /******************************************************************************
43 *
44 * RX path functions
45 *
46 ******************************************************************************/
47
48 /*
49 * Rx theory of operation
50 *
51 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
52 * each of which point to Receive Buffers to be filled by the NIC. These get
53 * used not only for Rx frames, but for any command response or notification
54 * from the NIC. The driver and NIC manage the Rx buffers by means
55 * of indexes into the circular buffer.
56 *
57 * Rx Queue Indexes
58 * The host/firmware share two index registers for managing the Rx buffers.
59 *
60 * The READ index maps to the first position that the firmware may be writing
61 * to -- the driver can read up to (but not including) this position and get
62 * good data.
63 * The READ index is managed by the firmware once the card is enabled.
64 *
65 * The WRITE index maps to the last position the driver has read from -- the
66 * position preceding WRITE is the last slot the firmware can place a packet.
67 *
68 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
69 * WRITE = READ.
70 *
71 * During initialization, the host sets up the READ queue position to the first
72 * INDEX position, and WRITE to the last (READ - 1 wrapped)
73 *
74 * When the firmware places a packet in a buffer, it will advance the READ index
75 * and fire the RX interrupt. The driver can then query the READ index and
76 * process as many packets as possible, moving the WRITE index forward as it
77 * resets the Rx queue buffers with new memory.
78 *
79 * The management in the driver is as follows:
80 * + A list of pre-allocated SKBs is stored in iwl->rxq->rx_free. When
81 * iwl->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
82 * to replenish the iwl->rxq->rx_free.
83 * + In iwl_rx_replenish (scheduled) if 'processed' != 'read' then the
84 * iwl->rxq is replenished and the READ INDEX is updated (updating the
85 * 'processed' and 'read' driver indexes as well)
86 * + A received packet is processed and handed to the kernel network stack,
87 * detached from the iwl->rxq. The driver 'processed' index is updated.
88 * + The Host/Firmware iwl->rxq is replenished at tasklet time from the rx_free
89 * list. If there are no allocated buffers in iwl->rxq->rx_free, the READ
90 * INDEX is not incremented and iwl->status(RX_STALLED) is set. If there
91 * were enough free buffers and RX_STALLED is set it is cleared.
92 *
93 *
94 * Driver sequence:
95 *
96 * iwl_rx_queue_alloc() Allocates rx_free
97 * iwl_rx_replenish() Replenishes rx_free list from rx_used, and calls
98 * iwl_rx_queue_restock
99 * iwl_rx_queue_restock() Moves available buffers from rx_free into Rx
100 * queue, updates firmware pointers, and updates
101 * the WRITE index. If insufficient rx_free buffers
102 * are available, schedules iwl_rx_replenish
103 *
104 * -- enable interrupts --
105 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the
106 * READ INDEX, detaching the SKB from the pool.
107 * Moves the packet buffer from queue to rx_used.
108 * Calls iwl_rx_queue_restock to refill any empty
109 * slots.
110 * ...
111 *
112 */
113
114 /**
115 * iwl_rx_queue_space - Return number of free slots available in queue.
116 */
117 static int iwl_rx_queue_space(const struct iwl_rx_queue *q)
118 {
119 int s = q->read - q->write;
120 if (s <= 0)
121 s += RX_QUEUE_SIZE;
122 /* keep some buffer to not confuse full and empty queue */
123 s -= 2;
124 if (s < 0)
125 s = 0;
126 return s;
127 }
128
129 /**
130 * iwl_rx_queue_update_write_ptr - Update the write pointer for the RX queue
131 */
132 void iwl_rx_queue_update_write_ptr(struct iwl_trans *trans,
133 struct iwl_rx_queue *q)
134 {
135 unsigned long flags;
136 u32 reg;
137
138 spin_lock_irqsave(&q->lock, flags);
139
140 if (q->need_update == 0)
141 goto exit_unlock;
142
143 if (cfg(trans)->base_params->shadow_reg_enable) {
144 /* shadow register enabled */
145 /* Device expects a multiple of 8 */
146 q->write_actual = (q->write & ~0x7);
147 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, q->write_actual);
148 } else {
149 struct iwl_trans_pcie *trans_pcie =
150 IWL_TRANS_GET_PCIE_TRANS(trans);
151
152 /* If power-saving is in use, make sure device is awake */
153 if (test_bit(STATUS_TPOWER_PMI, &trans_pcie->status)) {
154 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
155
156 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
157 IWL_DEBUG_INFO(trans,
158 "Rx queue requesting wakeup,"
159 " GP1 = 0x%x\n", reg);
160 iwl_set_bit(trans, CSR_GP_CNTRL,
161 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
162 goto exit_unlock;
163 }
164
165 q->write_actual = (q->write & ~0x7);
166 iwl_write_direct32(trans, FH_RSCSR_CHNL0_WPTR,
167 q->write_actual);
168
169 /* Else device is assumed to be awake */
170 } else {
171 /* Device expects a multiple of 8 */
172 q->write_actual = (q->write & ~0x7);
173 iwl_write_direct32(trans, FH_RSCSR_CHNL0_WPTR,
174 q->write_actual);
175 }
176 }
177 q->need_update = 0;
178
179 exit_unlock:
180 spin_unlock_irqrestore(&q->lock, flags);
181 }
182
183 /**
184 * iwlagn_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
185 */
186 static inline __le32 iwlagn_dma_addr2rbd_ptr(dma_addr_t dma_addr)
187 {
188 return cpu_to_le32((u32)(dma_addr >> 8));
189 }
190
191 /**
192 * iwlagn_rx_queue_restock - refill RX queue from pre-allocated pool
193 *
194 * If there are slots in the RX queue that need to be restocked,
195 * and we have free pre-allocated buffers, fill the ranks as much
196 * as we can, pulling from rx_free.
197 *
198 * This moves the 'write' index forward to catch up with 'processed', and
199 * also updates the memory address in the firmware to reference the new
200 * target buffer.
201 */
202 static void iwlagn_rx_queue_restock(struct iwl_trans *trans)
203 {
204 struct iwl_trans_pcie *trans_pcie =
205 IWL_TRANS_GET_PCIE_TRANS(trans);
206
207 struct iwl_rx_queue *rxq = &trans_pcie->rxq;
208 struct list_head *element;
209 struct iwl_rx_mem_buffer *rxb;
210 unsigned long flags;
211
212 spin_lock_irqsave(&rxq->lock, flags);
213 while ((iwl_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
214 /* The overwritten rxb must be a used one */
215 rxb = rxq->queue[rxq->write];
216 BUG_ON(rxb && rxb->page);
217
218 /* Get next free Rx buffer, remove from free list */
219 element = rxq->rx_free.next;
220 rxb = list_entry(element, struct iwl_rx_mem_buffer, list);
221 list_del(element);
222
223 /* Point to Rx buffer via next RBD in circular buffer */
224 rxq->bd[rxq->write] = iwlagn_dma_addr2rbd_ptr(rxb->page_dma);
225 rxq->queue[rxq->write] = rxb;
226 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
227 rxq->free_count--;
228 }
229 spin_unlock_irqrestore(&rxq->lock, flags);
230 /* If the pre-allocated buffer pool is dropping low, schedule to
231 * refill it */
232 if (rxq->free_count <= RX_LOW_WATERMARK)
233 schedule_work(&trans_pcie->rx_replenish);
234
235
236 /* If we've added more space for the firmware to place data, tell it.
237 * Increment device's write pointer in multiples of 8. */
238 if (rxq->write_actual != (rxq->write & ~0x7)) {
239 spin_lock_irqsave(&rxq->lock, flags);
240 rxq->need_update = 1;
241 spin_unlock_irqrestore(&rxq->lock, flags);
242 iwl_rx_queue_update_write_ptr(trans, rxq);
243 }
244 }
245
246 /**
247 * iwlagn_rx_replenish - Move all used packet from rx_used to rx_free
248 *
249 * When moving to rx_free an SKB is allocated for the slot.
250 *
251 * Also restock the Rx queue via iwl_rx_queue_restock.
252 * This is called as a scheduled work item (except for during initialization)
253 */
254 static void iwlagn_rx_allocate(struct iwl_trans *trans, gfp_t priority)
255 {
256 struct iwl_trans_pcie *trans_pcie =
257 IWL_TRANS_GET_PCIE_TRANS(trans);
258
259 struct iwl_rx_queue *rxq = &trans_pcie->rxq;
260 struct list_head *element;
261 struct iwl_rx_mem_buffer *rxb;
262 struct page *page;
263 unsigned long flags;
264 gfp_t gfp_mask = priority;
265
266 while (1) {
267 spin_lock_irqsave(&rxq->lock, flags);
268 if (list_empty(&rxq->rx_used)) {
269 spin_unlock_irqrestore(&rxq->lock, flags);
270 return;
271 }
272 spin_unlock_irqrestore(&rxq->lock, flags);
273
274 if (rxq->free_count > RX_LOW_WATERMARK)
275 gfp_mask |= __GFP_NOWARN;
276
277 if (trans_pcie->rx_page_order > 0)
278 gfp_mask |= __GFP_COMP;
279
280 /* Alloc a new receive buffer */
281 page = alloc_pages(gfp_mask,
282 trans_pcie->rx_page_order);
283 if (!page) {
284 if (net_ratelimit())
285 IWL_DEBUG_INFO(trans, "alloc_pages failed, "
286 "order: %d\n",
287 trans_pcie->rx_page_order);
288
289 if ((rxq->free_count <= RX_LOW_WATERMARK) &&
290 net_ratelimit())
291 IWL_CRIT(trans, "Failed to alloc_pages with %s."
292 "Only %u free buffers remaining.\n",
293 priority == GFP_ATOMIC ?
294 "GFP_ATOMIC" : "GFP_KERNEL",
295 rxq->free_count);
296 /* We don't reschedule replenish work here -- we will
297 * call the restock method and if it still needs
298 * more buffers it will schedule replenish */
299 return;
300 }
301
302 spin_lock_irqsave(&rxq->lock, flags);
303
304 if (list_empty(&rxq->rx_used)) {
305 spin_unlock_irqrestore(&rxq->lock, flags);
306 __free_pages(page, trans_pcie->rx_page_order);
307 return;
308 }
309 element = rxq->rx_used.next;
310 rxb = list_entry(element, struct iwl_rx_mem_buffer, list);
311 list_del(element);
312
313 spin_unlock_irqrestore(&rxq->lock, flags);
314
315 BUG_ON(rxb->page);
316 rxb->page = page;
317 /* Get physical address of the RB */
318 rxb->page_dma = dma_map_page(trans->dev, page, 0,
319 PAGE_SIZE << trans_pcie->rx_page_order,
320 DMA_FROM_DEVICE);
321 /* dma address must be no more than 36 bits */
322 BUG_ON(rxb->page_dma & ~DMA_BIT_MASK(36));
323 /* and also 256 byte aligned! */
324 BUG_ON(rxb->page_dma & DMA_BIT_MASK(8));
325
326 spin_lock_irqsave(&rxq->lock, flags);
327
328 list_add_tail(&rxb->list, &rxq->rx_free);
329 rxq->free_count++;
330
331 spin_unlock_irqrestore(&rxq->lock, flags);
332 }
333 }
334
335 void iwlagn_rx_replenish(struct iwl_trans *trans)
336 {
337 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
338 unsigned long flags;
339
340 iwlagn_rx_allocate(trans, GFP_KERNEL);
341
342 spin_lock_irqsave(&trans_pcie->irq_lock, flags);
343 iwlagn_rx_queue_restock(trans);
344 spin_unlock_irqrestore(&trans_pcie->irq_lock, flags);
345 }
346
347 static void iwlagn_rx_replenish_now(struct iwl_trans *trans)
348 {
349 iwlagn_rx_allocate(trans, GFP_ATOMIC);
350
351 iwlagn_rx_queue_restock(trans);
352 }
353
354 void iwl_bg_rx_replenish(struct work_struct *data)
355 {
356 struct iwl_trans_pcie *trans_pcie =
357 container_of(data, struct iwl_trans_pcie, rx_replenish);
358
359 iwlagn_rx_replenish(trans_pcie->trans);
360 }
361
362 static void iwl_rx_handle_rxbuf(struct iwl_trans *trans,
363 struct iwl_rx_mem_buffer *rxb)
364 {
365 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
366 struct iwl_rx_queue *rxq = &trans_pcie->rxq;
367 struct iwl_tx_queue *txq = &trans_pcie->txq[trans_pcie->cmd_queue];
368 unsigned long flags;
369 bool page_stolen = false;
370 int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
371 u32 offset = 0;
372
373 if (WARN_ON(!rxb))
374 return;
375
376 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
377
378 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
379 struct iwl_rx_packet *pkt;
380 struct iwl_device_cmd *cmd;
381 u16 sequence;
382 bool reclaim;
383 int index, cmd_index, err, len;
384 struct iwl_rx_cmd_buffer rxcb = {
385 ._offset = offset,
386 ._page = rxb->page,
387 ._page_stolen = false,
388 };
389
390 pkt = rxb_addr(&rxcb);
391
392 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID))
393 break;
394
395 IWL_DEBUG_RX(trans, "cmd at offset %d: %s (0x%.2x)\n",
396 rxcb._offset, get_cmd_string(pkt->hdr.cmd),
397 pkt->hdr.cmd);
398
399 len = le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK;
400 len += sizeof(u32); /* account for status word */
401 trace_iwlwifi_dev_rx(trans->dev, pkt, len);
402
403 /* Reclaim a command buffer only if this packet is a response
404 * to a (driver-originated) command.
405 * If the packet (e.g. Rx frame) originated from uCode,
406 * there is no command buffer to reclaim.
407 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
408 * but apparently a few don't get set; catch them here. */
409 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
410 if (reclaim) {
411 int i;
412
413 for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
414 if (trans_pcie->no_reclaim_cmds[i] ==
415 pkt->hdr.cmd) {
416 reclaim = false;
417 break;
418 }
419 }
420 }
421
422 sequence = le16_to_cpu(pkt->hdr.sequence);
423 index = SEQ_TO_INDEX(sequence);
424 cmd_index = get_cmd_index(&txq->q, index);
425
426 if (reclaim)
427 cmd = txq->cmd[cmd_index];
428 else
429 cmd = NULL;
430
431 err = iwl_op_mode_rx(trans->op_mode, &rxcb, cmd);
432
433 /*
434 * After here, we should always check rxcb._page_stolen,
435 * if it is true then one of the handlers took the page.
436 */
437
438 if (reclaim) {
439 /* Invoke any callbacks, transfer the buffer to caller,
440 * and fire off the (possibly) blocking
441 * iwl_trans_send_cmd()
442 * as we reclaim the driver command queue */
443 if (!rxcb._page_stolen)
444 iwl_tx_cmd_complete(trans, &rxcb, err);
445 else
446 IWL_WARN(trans, "Claim null rxb?\n");
447 }
448
449 page_stolen |= rxcb._page_stolen;
450 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
451 }
452
453 /* page was stolen from us -- free our reference */
454 if (page_stolen) {
455 __free_pages(rxb->page, trans_pcie->rx_page_order);
456 rxb->page = NULL;
457 }
458
459 /* Reuse the page if possible. For notification packets and
460 * SKBs that fail to Rx correctly, add them back into the
461 * rx_free list for reuse later. */
462 spin_lock_irqsave(&rxq->lock, flags);
463 if (rxb->page != NULL) {
464 rxb->page_dma =
465 dma_map_page(trans->dev, rxb->page, 0,
466 PAGE_SIZE << trans_pcie->rx_page_order,
467 DMA_FROM_DEVICE);
468 list_add_tail(&rxb->list, &rxq->rx_free);
469 rxq->free_count++;
470 } else
471 list_add_tail(&rxb->list, &rxq->rx_used);
472 spin_unlock_irqrestore(&rxq->lock, flags);
473 }
474
475 /**
476 * iwl_rx_handle - Main entry function for receiving responses from uCode
477 *
478 * Uses the priv->rx_handlers callback function array to invoke
479 * the appropriate handlers, including command responses,
480 * frame-received notifications, and other notifications.
481 */
482 static void iwl_rx_handle(struct iwl_trans *trans)
483 {
484 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
485 struct iwl_rx_queue *rxq = &trans_pcie->rxq;
486 u32 r, i;
487 u8 fill_rx = 0;
488 u32 count = 8;
489 int total_empty;
490
491 /* uCode's read index (stored in shared DRAM) indicates the last Rx
492 * buffer that the driver may process (last buffer filled by ucode). */
493 r = le16_to_cpu(rxq->rb_stts->closed_rb_num) & 0x0FFF;
494 i = rxq->read;
495
496 /* Rx interrupt, but nothing sent from uCode */
497 if (i == r)
498 IWL_DEBUG_RX(trans, "r = %d, i = %d\n", r, i);
499
500 /* calculate total frames need to be restock after handling RX */
501 total_empty = r - rxq->write_actual;
502 if (total_empty < 0)
503 total_empty += RX_QUEUE_SIZE;
504
505 if (total_empty > (RX_QUEUE_SIZE / 2))
506 fill_rx = 1;
507
508 while (i != r) {
509 struct iwl_rx_mem_buffer *rxb;
510
511 rxb = rxq->queue[i];
512 rxq->queue[i] = NULL;
513
514 IWL_DEBUG_RX(trans, "rxbuf: r = %d, i = %d (%p)\n", rxb);
515
516 iwl_rx_handle_rxbuf(trans, rxb);
517
518 i = (i + 1) & RX_QUEUE_MASK;
519 /* If there are a lot of unused frames,
520 * restock the Rx queue so ucode wont assert. */
521 if (fill_rx) {
522 count++;
523 if (count >= 8) {
524 rxq->read = i;
525 iwlagn_rx_replenish_now(trans);
526 count = 0;
527 }
528 }
529 }
530
531 /* Backtrack one entry */
532 rxq->read = i;
533 if (fill_rx)
534 iwlagn_rx_replenish_now(trans);
535 else
536 iwlagn_rx_queue_restock(trans);
537 }
538
539 /**
540 * iwl_irq_handle_error - called for HW or SW error interrupt from card
541 */
542 static void iwl_irq_handle_error(struct iwl_trans *trans)
543 {
544 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
545 if (cfg(trans)->internal_wimax_coex &&
546 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
547 APMS_CLK_VAL_MRB_FUNC_MODE) ||
548 (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
549 APMG_PS_CTRL_VAL_RESET_REQ))) {
550 struct iwl_trans_pcie *trans_pcie;
551
552 trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
553 clear_bit(STATUS_HCMD_ACTIVE, &trans_pcie->status);
554 iwl_op_mode_wimax_active(trans->op_mode);
555 wake_up(&trans->wait_command_queue);
556 return;
557 }
558
559 iwl_dump_csr(trans);
560 iwl_dump_fh(trans, NULL, false);
561
562 iwl_op_mode_nic_error(trans->op_mode);
563 }
564
565 /* tasklet for iwlagn interrupt */
566 void iwl_irq_tasklet(struct iwl_trans *trans)
567 {
568 u32 inta = 0;
569 u32 handled = 0;
570 unsigned long flags;
571 u32 i;
572 #ifdef CONFIG_IWLWIFI_DEBUG
573 u32 inta_mask;
574 #endif
575
576 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
577 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
578
579
580 spin_lock_irqsave(&trans_pcie->irq_lock, flags);
581
582 /* Ack/clear/reset pending uCode interrupts.
583 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
584 */
585 /* There is a hardware bug in the interrupt mask function that some
586 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
587 * they are disabled in the CSR_INT_MASK register. Furthermore the
588 * ICT interrupt handling mechanism has another bug that might cause
589 * these unmasked interrupts fail to be detected. We workaround the
590 * hardware bugs here by ACKing all the possible interrupts so that
591 * interrupt coalescing can still be achieved.
592 */
593 iwl_write32(trans, CSR_INT,
594 trans_pcie->inta | ~trans_pcie->inta_mask);
595
596 inta = trans_pcie->inta;
597
598 #ifdef CONFIG_IWLWIFI_DEBUG
599 if (iwl_have_debug_level(IWL_DL_ISR)) {
600 /* just for debug */
601 inta_mask = iwl_read32(trans, CSR_INT_MASK);
602 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
603 inta, inta_mask);
604 }
605 #endif
606
607 /* saved interrupt in inta variable now we can reset trans_pcie->inta */
608 trans_pcie->inta = 0;
609
610 spin_unlock_irqrestore(&trans_pcie->irq_lock, flags);
611
612 /* Now service all interrupt bits discovered above. */
613 if (inta & CSR_INT_BIT_HW_ERR) {
614 IWL_ERR(trans, "Hardware error detected. Restarting.\n");
615
616 /* Tell the device to stop sending interrupts */
617 iwl_disable_interrupts(trans);
618
619 isr_stats->hw++;
620 iwl_irq_handle_error(trans);
621
622 handled |= CSR_INT_BIT_HW_ERR;
623
624 return;
625 }
626
627 #ifdef CONFIG_IWLWIFI_DEBUG
628 if (iwl_have_debug_level(IWL_DL_ISR)) {
629 /* NIC fires this, but we don't use it, redundant with WAKEUP */
630 if (inta & CSR_INT_BIT_SCD) {
631 IWL_DEBUG_ISR(trans, "Scheduler finished to transmit "
632 "the frame/frames.\n");
633 isr_stats->sch++;
634 }
635
636 /* Alive notification via Rx interrupt will do the real work */
637 if (inta & CSR_INT_BIT_ALIVE) {
638 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
639 isr_stats->alive++;
640 }
641 }
642 #endif
643 /* Safely ignore these bits for debug checks below */
644 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
645
646 /* HW RF KILL switch toggled */
647 if (inta & CSR_INT_BIT_RF_KILL) {
648 bool hw_rfkill;
649
650 hw_rfkill = !(iwl_read32(trans, CSR_GP_CNTRL) &
651 CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW);
652 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
653 hw_rfkill ? "disable radio" : "enable radio");
654
655 isr_stats->rfkill++;
656
657 iwl_op_mode_hw_rf_kill(trans->op_mode, hw_rfkill);
658
659 handled |= CSR_INT_BIT_RF_KILL;
660 }
661
662 /* Chip got too hot and stopped itself */
663 if (inta & CSR_INT_BIT_CT_KILL) {
664 IWL_ERR(trans, "Microcode CT kill error detected.\n");
665 isr_stats->ctkill++;
666 handled |= CSR_INT_BIT_CT_KILL;
667 }
668
669 /* Error detected by uCode */
670 if (inta & CSR_INT_BIT_SW_ERR) {
671 IWL_ERR(trans, "Microcode SW error detected. "
672 " Restarting 0x%X.\n", inta);
673 isr_stats->sw++;
674 iwl_irq_handle_error(trans);
675 handled |= CSR_INT_BIT_SW_ERR;
676 }
677
678 /* uCode wakes up after power-down sleep */
679 if (inta & CSR_INT_BIT_WAKEUP) {
680 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
681 iwl_rx_queue_update_write_ptr(trans, &trans_pcie->rxq);
682 for (i = 0; i < cfg(trans)->base_params->num_of_queues; i++)
683 iwl_txq_update_write_ptr(trans,
684 &trans_pcie->txq[i]);
685
686 isr_stats->wakeup++;
687
688 handled |= CSR_INT_BIT_WAKEUP;
689 }
690
691 /* All uCode command responses, including Tx command responses,
692 * Rx "responses" (frame-received notification), and other
693 * notifications from uCode come through here*/
694 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
695 CSR_INT_BIT_RX_PERIODIC)) {
696 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
697 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
698 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
699 iwl_write32(trans, CSR_FH_INT_STATUS,
700 CSR_FH_INT_RX_MASK);
701 }
702 if (inta & CSR_INT_BIT_RX_PERIODIC) {
703 handled |= CSR_INT_BIT_RX_PERIODIC;
704 iwl_write32(trans,
705 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
706 }
707 /* Sending RX interrupt require many steps to be done in the
708 * the device:
709 * 1- write interrupt to current index in ICT table.
710 * 2- dma RX frame.
711 * 3- update RX shared data to indicate last write index.
712 * 4- send interrupt.
713 * This could lead to RX race, driver could receive RX interrupt
714 * but the shared data changes does not reflect this;
715 * periodic interrupt will detect any dangling Rx activity.
716 */
717
718 /* Disable periodic interrupt; we use it as just a one-shot. */
719 iwl_write8(trans, CSR_INT_PERIODIC_REG,
720 CSR_INT_PERIODIC_DIS);
721 #ifdef CONFIG_IWLWIFI_IDI
722 iwl_amfh_rx_handler();
723 #else
724 iwl_rx_handle(trans);
725 #endif
726 /*
727 * Enable periodic interrupt in 8 msec only if we received
728 * real RX interrupt (instead of just periodic int), to catch
729 * any dangling Rx interrupt. If it was just the periodic
730 * interrupt, there was no dangling Rx activity, and no need
731 * to extend the periodic interrupt; one-shot is enough.
732 */
733 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
734 iwl_write8(trans, CSR_INT_PERIODIC_REG,
735 CSR_INT_PERIODIC_ENA);
736
737 isr_stats->rx++;
738 }
739
740 /* This "Tx" DMA channel is used only for loading uCode */
741 if (inta & CSR_INT_BIT_FH_TX) {
742 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
743 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
744 isr_stats->tx++;
745 handled |= CSR_INT_BIT_FH_TX;
746 /* Wake up uCode load routine, now that load is complete */
747 trans_pcie->ucode_write_complete = true;
748 wake_up(&trans_pcie->ucode_write_waitq);
749 }
750
751 if (inta & ~handled) {
752 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
753 isr_stats->unhandled++;
754 }
755
756 if (inta & ~(trans_pcie->inta_mask)) {
757 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
758 inta & ~trans_pcie->inta_mask);
759 }
760
761 /* Re-enable all interrupts */
762 /* only Re-enable if disabled by irq */
763 if (test_bit(STATUS_INT_ENABLED, &trans_pcie->status))
764 iwl_enable_interrupts(trans);
765 /* Re-enable RF_KILL if it occurred */
766 else if (handled & CSR_INT_BIT_RF_KILL)
767 iwl_enable_rfkill_int(trans);
768 }
769
770 /******************************************************************************
771 *
772 * ICT functions
773 *
774 ******************************************************************************/
775
776 /* a device (PCI-E) page is 4096 bytes long */
777 #define ICT_SHIFT 12
778 #define ICT_SIZE (1 << ICT_SHIFT)
779 #define ICT_COUNT (ICT_SIZE / sizeof(u32))
780
781 /* Free dram table */
782 void iwl_free_isr_ict(struct iwl_trans *trans)
783 {
784 struct iwl_trans_pcie *trans_pcie =
785 IWL_TRANS_GET_PCIE_TRANS(trans);
786
787 if (trans_pcie->ict_tbl) {
788 dma_free_coherent(trans->dev, ICT_SIZE,
789 trans_pcie->ict_tbl,
790 trans_pcie->ict_tbl_dma);
791 trans_pcie->ict_tbl = NULL;
792 trans_pcie->ict_tbl_dma = 0;
793 }
794 }
795
796
797 /*
798 * allocate dram shared table, it is an aligned memory
799 * block of ICT_SIZE.
800 * also reset all data related to ICT table interrupt.
801 */
802 int iwl_alloc_isr_ict(struct iwl_trans *trans)
803 {
804 struct iwl_trans_pcie *trans_pcie =
805 IWL_TRANS_GET_PCIE_TRANS(trans);
806
807 trans_pcie->ict_tbl =
808 dma_alloc_coherent(trans->dev, ICT_SIZE,
809 &trans_pcie->ict_tbl_dma,
810 GFP_KERNEL);
811 if (!trans_pcie->ict_tbl)
812 return -ENOMEM;
813
814 /* just an API sanity check ... it is guaranteed to be aligned */
815 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
816 iwl_free_isr_ict(trans);
817 return -EINVAL;
818 }
819
820 IWL_DEBUG_ISR(trans, "ict dma addr %Lx\n",
821 (unsigned long long)trans_pcie->ict_tbl_dma);
822
823 IWL_DEBUG_ISR(trans, "ict vir addr %p\n", trans_pcie->ict_tbl);
824
825 /* reset table and index to all 0 */
826 memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
827 trans_pcie->ict_index = 0;
828
829 /* add periodic RX interrupt */
830 trans_pcie->inta_mask |= CSR_INT_BIT_RX_PERIODIC;
831 return 0;
832 }
833
834 /* Device is going up inform it about using ICT interrupt table,
835 * also we need to tell the driver to start using ICT interrupt.
836 */
837 void iwl_reset_ict(struct iwl_trans *trans)
838 {
839 u32 val;
840 unsigned long flags;
841 struct iwl_trans_pcie *trans_pcie =
842 IWL_TRANS_GET_PCIE_TRANS(trans);
843
844 if (!trans_pcie->ict_tbl)
845 return;
846
847 spin_lock_irqsave(&trans_pcie->irq_lock, flags);
848 iwl_disable_interrupts(trans);
849
850 memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
851
852 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
853
854 val |= CSR_DRAM_INT_TBL_ENABLE;
855 val |= CSR_DRAM_INIT_TBL_WRAP_CHECK;
856
857 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
858
859 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
860 trans_pcie->use_ict = true;
861 trans_pcie->ict_index = 0;
862 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
863 iwl_enable_interrupts(trans);
864 spin_unlock_irqrestore(&trans_pcie->irq_lock, flags);
865 }
866
867 /* Device is going down disable ict interrupt usage */
868 void iwl_disable_ict(struct iwl_trans *trans)
869 {
870 struct iwl_trans_pcie *trans_pcie =
871 IWL_TRANS_GET_PCIE_TRANS(trans);
872
873 unsigned long flags;
874
875 spin_lock_irqsave(&trans_pcie->irq_lock, flags);
876 trans_pcie->use_ict = false;
877 spin_unlock_irqrestore(&trans_pcie->irq_lock, flags);
878 }
879
880 static irqreturn_t iwl_isr(int irq, void *data)
881 {
882 struct iwl_trans *trans = data;
883 struct iwl_trans_pcie *trans_pcie;
884 u32 inta, inta_mask;
885 unsigned long flags;
886 #ifdef CONFIG_IWLWIFI_DEBUG
887 u32 inta_fh;
888 #endif
889 if (!trans)
890 return IRQ_NONE;
891
892 trace_iwlwifi_dev_irq(trans->dev);
893
894 trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
895
896 spin_lock_irqsave(&trans_pcie->irq_lock, flags);
897
898 /* Disable (but don't clear!) interrupts here to avoid
899 * back-to-back ISRs and sporadic interrupts from our NIC.
900 * If we have something to service, the tasklet will re-enable ints.
901 * If we *don't* have something, we'll re-enable before leaving here. */
902 inta_mask = iwl_read32(trans, CSR_INT_MASK); /* just for debug */
903 iwl_write32(trans, CSR_INT_MASK, 0x00000000);
904
905 /* Discover which interrupts are active/pending */
906 inta = iwl_read32(trans, CSR_INT);
907
908 /* Ignore interrupt if there's nothing in NIC to service.
909 * This may be due to IRQ shared with another device,
910 * or due to sporadic interrupts thrown from our NIC. */
911 if (!inta) {
912 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
913 goto none;
914 }
915
916 if ((inta == 0xFFFFFFFF) || ((inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
917 /* Hardware disappeared. It might have already raised
918 * an interrupt */
919 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
920 goto unplugged;
921 }
922
923 #ifdef CONFIG_IWLWIFI_DEBUG
924 if (iwl_have_debug_level(IWL_DL_ISR)) {
925 inta_fh = iwl_read32(trans, CSR_FH_INT_STATUS);
926 IWL_DEBUG_ISR(trans, "ISR inta 0x%08x, enabled 0x%08x, "
927 "fh 0x%08x\n", inta, inta_mask, inta_fh);
928 }
929 #endif
930
931 trans_pcie->inta |= inta;
932 /* iwl_irq_tasklet() will service interrupts and re-enable them */
933 if (likely(inta))
934 tasklet_schedule(&trans_pcie->irq_tasklet);
935 else if (test_bit(STATUS_INT_ENABLED, &trans_pcie->status) &&
936 !trans_pcie->inta)
937 iwl_enable_interrupts(trans);
938
939 unplugged:
940 spin_unlock_irqrestore(&trans_pcie->irq_lock, flags);
941 return IRQ_HANDLED;
942
943 none:
944 /* re-enable interrupts here since we don't have anything to service. */
945 /* only Re-enable if disabled by irq and no schedules tasklet. */
946 if (test_bit(STATUS_INT_ENABLED, &trans_pcie->status) &&
947 !trans_pcie->inta)
948 iwl_enable_interrupts(trans);
949
950 spin_unlock_irqrestore(&trans_pcie->irq_lock, flags);
951 return IRQ_NONE;
952 }
953
954 /* interrupt handler using ict table, with this interrupt driver will
955 * stop using INTA register to get device's interrupt, reading this register
956 * is expensive, device will write interrupts in ICT dram table, increment
957 * index then will fire interrupt to driver, driver will OR all ICT table
958 * entries from current index up to table entry with 0 value. the result is
959 * the interrupt we need to service, driver will set the entries back to 0 and
960 * set index.
961 */
962 irqreturn_t iwl_isr_ict(int irq, void *data)
963 {
964 struct iwl_trans *trans = data;
965 struct iwl_trans_pcie *trans_pcie;
966 u32 inta, inta_mask;
967 u32 val = 0;
968 u32 read;
969 unsigned long flags;
970
971 if (!trans)
972 return IRQ_NONE;
973
974 trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
975
976 /* dram interrupt table not set yet,
977 * use legacy interrupt.
978 */
979 if (!trans_pcie->use_ict)
980 return iwl_isr(irq, data);
981
982 trace_iwlwifi_dev_irq(trans->dev);
983
984 spin_lock_irqsave(&trans_pcie->irq_lock, flags);
985
986 /* Disable (but don't clear!) interrupts here to avoid
987 * back-to-back ISRs and sporadic interrupts from our NIC.
988 * If we have something to service, the tasklet will re-enable ints.
989 * If we *don't* have something, we'll re-enable before leaving here.
990 */
991 inta_mask = iwl_read32(trans, CSR_INT_MASK); /* just for debug */
992 iwl_write32(trans, CSR_INT_MASK, 0x00000000);
993
994
995 /* Ignore interrupt if there's nothing in NIC to service.
996 * This may be due to IRQ shared with another device,
997 * or due to sporadic interrupts thrown from our NIC. */
998 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
999 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1000 if (!read) {
1001 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1002 goto none;
1003 }
1004
1005 /*
1006 * Collect all entries up to the first 0, starting from ict_index;
1007 * note we already read at ict_index.
1008 */
1009 do {
1010 val |= read;
1011 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1012 trans_pcie->ict_index, read);
1013 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1014 trans_pcie->ict_index =
1015 iwl_queue_inc_wrap(trans_pcie->ict_index, ICT_COUNT);
1016
1017 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1018 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1019 read);
1020 } while (read);
1021
1022 /* We should not get this value, just ignore it. */
1023 if (val == 0xffffffff)
1024 val = 0;
1025
1026 /*
1027 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1028 * (bit 15 before shifting it to 31) to clear when using interrupt
1029 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1030 * so we use them to decide on the real state of the Rx bit.
1031 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1032 */
1033 if (val & 0xC0000)
1034 val |= 0x8000;
1035
1036 inta = (0xff & val) | ((0xff00 & val) << 16);
1037 IWL_DEBUG_ISR(trans, "ISR inta 0x%08x, enabled 0x%08x ict 0x%08x\n",
1038 inta, inta_mask, val);
1039
1040 inta &= trans_pcie->inta_mask;
1041 trans_pcie->inta |= inta;
1042
1043 /* iwl_irq_tasklet() will service interrupts and re-enable them */
1044 if (likely(inta))
1045 tasklet_schedule(&trans_pcie->irq_tasklet);
1046 else if (test_bit(STATUS_INT_ENABLED, &trans_pcie->status) &&
1047 !trans_pcie->inta) {
1048 /* Allow interrupt if was disabled by this handler and
1049 * no tasklet was schedules, We should not enable interrupt,
1050 * tasklet will enable it.
1051 */
1052 iwl_enable_interrupts(trans);
1053 }
1054
1055 spin_unlock_irqrestore(&trans_pcie->irq_lock, flags);
1056 return IRQ_HANDLED;
1057
1058 none:
1059 /* re-enable interrupts here since we don't have anything to service.
1060 * only Re-enable if disabled by irq.
1061 */
1062 if (test_bit(STATUS_INT_ENABLED, &trans_pcie->status) &&
1063 !trans_pcie->inta)
1064 iwl_enable_interrupts(trans);
1065
1066 spin_unlock_irqrestore(&trans_pcie->irq_lock, flags);
1067 return IRQ_NONE;
1068 }
This page took 0.068466 seconds and 5 git commands to generate.