Merge branch 'wl12xx-next' into for-linville
[deliverable/linux.git] / drivers / net / wireless / iwlwifi / iwl-trans.h
1 /******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2007 - 2012 Intel Corporation. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
23 *
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
26 *
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *
31 * BSD LICENSE
32 *
33 * Copyright(c) 2005 - 2012 Intel Corporation. All rights reserved.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 *
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 *****************************************************************************/
63 #ifndef __iwl_trans_h__
64 #define __iwl_trans_h__
65
66 #include <linux/ieee80211.h>
67 #include <linux/mm.h> /* for page_address */
68
69 #include "iwl-shared.h"
70 #include "iwl-debug.h"
71
72 /**
73 * DOC: Transport layer - what is it ?
74 *
75 * The tranport layer is the layer that deals with the HW directly. It provides
76 * an abstraction of the underlying HW to the upper layer. The transport layer
77 * doesn't provide any policy, algorithm or anything of this kind, but only
78 * mechanisms to make the HW do something.It is not completely stateless but
79 * close to it.
80 * We will have an implementation for each different supported bus.
81 */
82
83 /**
84 * DOC: Life cycle of the transport layer
85 *
86 * The transport layer has a very precise life cycle.
87 *
88 * 1) A helper function is called during the module initialization and
89 * registers the bus driver's ops with the transport's alloc function.
90 * 2) Bus's probe calls to the transport layer's allocation functions.
91 * Of course this function is bus specific.
92 * 3) This allocation functions will spawn the upper layer which will
93 * register mac80211.
94 *
95 * 4) At some point (i.e. mac80211's start call), the op_mode will call
96 * the following sequence:
97 * start_hw
98 * start_fw
99 *
100 * 5) Then when finished (or reset):
101 * stop_fw (a.k.a. stop device for the moment)
102 * stop_hw
103 *
104 * 6) Eventually, the free function will be called.
105 */
106
107 struct iwl_priv;
108 struct iwl_shared;
109 struct iwl_op_mode;
110 struct fw_img;
111 struct sk_buff;
112 struct dentry;
113
114 /**
115 * DOC: Host command section
116 *
117 * A host command is a commaned issued by the upper layer to the fw. There are
118 * several versions of fw that have several APIs. The transport layer is
119 * completely agnostic to these differences.
120 * The transport does provide helper functionnality (i.e. SYNC / ASYNC mode),
121 */
122 #define SEQ_TO_SN(seq) (((seq) & IEEE80211_SCTL_SEQ) >> 4)
123 #define SN_TO_SEQ(ssn) (((ssn) << 4) & IEEE80211_SCTL_SEQ)
124 #define MAX_SN ((IEEE80211_SCTL_SEQ) >> 4)
125 #define SEQ_TO_QUEUE(s) (((s) >> 8) & 0x1f)
126 #define QUEUE_TO_SEQ(q) (((q) & 0x1f) << 8)
127 #define SEQ_TO_INDEX(s) ((s) & 0xff)
128 #define INDEX_TO_SEQ(i) ((i) & 0xff)
129 #define SEQ_RX_FRAME cpu_to_le16(0x8000)
130
131 /**
132 * struct iwl_cmd_header
133 *
134 * This header format appears in the beginning of each command sent from the
135 * driver, and each response/notification received from uCode.
136 */
137 struct iwl_cmd_header {
138 u8 cmd; /* Command ID: REPLY_RXON, etc. */
139 u8 flags; /* 0:5 reserved, 6 abort, 7 internal */
140 /*
141 * The driver sets up the sequence number to values of its choosing.
142 * uCode does not use this value, but passes it back to the driver
143 * when sending the response to each driver-originated command, so
144 * the driver can match the response to the command. Since the values
145 * don't get used by uCode, the driver may set up an arbitrary format.
146 *
147 * There is one exception: uCode sets bit 15 when it originates
148 * the response/notification, i.e. when the response/notification
149 * is not a direct response to a command sent by the driver. For
150 * example, uCode issues REPLY_RX when it sends a received frame
151 * to the driver; it is not a direct response to any driver command.
152 *
153 * The Linux driver uses the following format:
154 *
155 * 0:7 tfd index - position within TX queue
156 * 8:12 TX queue id
157 * 13:14 reserved
158 * 15 unsolicited RX or uCode-originated notification
159 */
160 __le16 sequence;
161 } __packed;
162
163
164 #define FH_RSCSR_FRAME_SIZE_MSK 0x00003FFF /* bits 0-13 */
165
166 struct iwl_rx_packet {
167 /*
168 * The first 4 bytes of the RX frame header contain both the RX frame
169 * size and some flags.
170 * Bit fields:
171 * 31: flag flush RB request
172 * 30: flag ignore TC (terminal counter) request
173 * 29: flag fast IRQ request
174 * 28-14: Reserved
175 * 13-00: RX frame size
176 */
177 __le32 len_n_flags;
178 struct iwl_cmd_header hdr;
179 u8 data[];
180 } __packed;
181
182 /**
183 * enum CMD_MODE - how to send the host commands ?
184 *
185 * @CMD_SYNC: The caller will be stalled until the fw responds to the command
186 * @CMD_ASYNC: Return right away and don't want for the response
187 * @CMD_WANT_SKB: valid only with CMD_SYNC. The caller needs the buffer of the
188 * response.
189 * @CMD_ON_DEMAND: This command is sent by the test mode pipe.
190 */
191 enum CMD_MODE {
192 CMD_SYNC = 0,
193 CMD_ASYNC = BIT(0),
194 CMD_WANT_SKB = BIT(1),
195 CMD_ON_DEMAND = BIT(2),
196 };
197
198 #define DEF_CMD_PAYLOAD_SIZE 320
199
200 /**
201 * struct iwl_device_cmd
202 *
203 * For allocation of the command and tx queues, this establishes the overall
204 * size of the largest command we send to uCode, except for commands that
205 * aren't fully copied and use other TFD space.
206 */
207 struct iwl_device_cmd {
208 struct iwl_cmd_header hdr; /* uCode API */
209 u8 payload[DEF_CMD_PAYLOAD_SIZE];
210 } __packed;
211
212 #define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd))
213
214 #define IWL_MAX_CMD_TFDS 2
215
216 /**
217 * struct iwl_hcmd_dataflag - flag for each one of the chunks of the command
218 *
219 * IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's
220 * ring. The transport layer doesn't map the command's buffer to DMA, but
221 * rather copies it to an previously allocated DMA buffer. This flag tells
222 * the transport layer not to copy the command, but to map the existing
223 * buffer. This can save memcpy and is worth with very big comamnds.
224 */
225 enum iwl_hcmd_dataflag {
226 IWL_HCMD_DFL_NOCOPY = BIT(0),
227 };
228
229 /**
230 * struct iwl_host_cmd - Host command to the uCode
231 *
232 * @data: array of chunks that composes the data of the host command
233 * @resp_pkt: response packet, if %CMD_WANT_SKB was set
234 * @_rx_page_order: (internally used to free response packet)
235 * @_rx_page_addr: (internally used to free response packet)
236 * @handler_status: return value of the handler of the command
237 * (put in setup_rx_handlers) - valid for SYNC mode only
238 * @flags: can be CMD_*
239 * @len: array of the lenths of the chunks in data
240 * @dataflags: IWL_HCMD_DFL_*
241 * @id: id of the host command
242 */
243 struct iwl_host_cmd {
244 const void *data[IWL_MAX_CMD_TFDS];
245 struct iwl_rx_packet *resp_pkt;
246 unsigned long _rx_page_addr;
247 u32 _rx_page_order;
248 int handler_status;
249
250 u32 flags;
251 u16 len[IWL_MAX_CMD_TFDS];
252 u8 dataflags[IWL_MAX_CMD_TFDS];
253 u8 id;
254 };
255
256 static inline void iwl_free_resp(struct iwl_host_cmd *cmd)
257 {
258 free_pages(cmd->_rx_page_addr, cmd->_rx_page_order);
259 }
260
261 struct iwl_rx_cmd_buffer {
262 struct page *_page;
263 };
264
265 static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r)
266 {
267 return page_address(r->_page);
268 }
269
270 static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r)
271 {
272 struct page *p = r->_page;
273 r->_page = NULL;
274 return p;
275 }
276
277 /**
278 * struct iwl_trans_ops - transport specific operations
279 *
280 * All the handlers MUST be implemented
281 *
282 * @start_hw: starts the HW- from that point on, the HW can send interrupts
283 * May sleep
284 * @stop_hw: stops the HW- from that point on, the HW will be in low power but
285 * will still issue interrupt if the HW RF kill is triggered.
286 * May sleep
287 * @start_fw: allocates and inits all the resources for the transport
288 * layer. Also kick a fw image.
289 * May sleep
290 * @fw_alive: called when the fw sends alive notification
291 * May sleep
292 * @wake_any_queue: wake all the queues of a specfic context IWL_RXON_CTX_*
293 * @stop_device:stops the whole device (embedded CPU put to reset)
294 * May sleep
295 * @wowlan_suspend: put the device into the correct mode for WoWLAN during
296 * suspend. This is optional, if not implemented WoWLAN will not be
297 * supported. This callback may sleep.
298 * @send_cmd:send a host command
299 * May sleep only if CMD_SYNC is set
300 * @tx: send an skb
301 * Must be atomic
302 * @reclaim: free packet until ssn. Returns a list of freed packets.
303 * Must be atomic
304 * @tx_agg_alloc: allocate resources for a TX BA session
305 * Must be atomic
306 * @tx_agg_setup: setup a tx queue for AMPDU - will be called once the HW is
307 * ready and a successful ADDBA response has been received.
308 * May sleep
309 * @tx_agg_disable: de-configure a Tx queue to send AMPDUs
310 * May sleep
311 * @free: release all the ressource for the transport layer itself such as
312 * irq, tasklet etc... From this point on, the device may not issue
313 * any interrupt (incl. RFKILL).
314 * May sleep
315 * @stop_queue: stop a specific queue
316 * @check_stuck_queue: check if a specific queue is stuck
317 * @wait_tx_queue_empty: wait until all tx queues are empty
318 * May sleep
319 * @dbgfs_register: add the dbgfs files under this directory. Files will be
320 * automatically deleted.
321 * @suspend: stop the device unless WoWLAN is configured
322 * @resume: resume activity of the device
323 * @write8: write a u8 to a register at offset ofs from the BAR
324 * @write32: write a u32 to a register at offset ofs from the BAR
325 * @read32: read a u32 register at offset ofs from the BAR
326 */
327 struct iwl_trans_ops {
328
329 int (*start_hw)(struct iwl_trans *iwl_trans);
330 void (*stop_hw)(struct iwl_trans *iwl_trans);
331 int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw);
332 void (*fw_alive)(struct iwl_trans *trans);
333 void (*stop_device)(struct iwl_trans *trans);
334
335 void (*wowlan_suspend)(struct iwl_trans *trans);
336
337 void (*wake_any_queue)(struct iwl_trans *trans,
338 enum iwl_rxon_context_id ctx,
339 const char *msg);
340
341 int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
342
343 int (*tx)(struct iwl_trans *trans, struct sk_buff *skb,
344 struct iwl_device_cmd *dev_cmd, enum iwl_rxon_context_id ctx,
345 u8 sta_id, u8 tid);
346 int (*reclaim)(struct iwl_trans *trans, int sta_id, int tid,
347 int txq_id, int ssn, u32 status,
348 struct sk_buff_head *skbs);
349
350 int (*tx_agg_disable)(struct iwl_trans *trans,
351 int sta_id, int tid);
352 int (*tx_agg_alloc)(struct iwl_trans *trans,
353 int sta_id, int tid);
354 void (*tx_agg_setup)(struct iwl_trans *trans,
355 enum iwl_rxon_context_id ctx, int sta_id, int tid,
356 int frame_limit, u16 ssn);
357
358 void (*free)(struct iwl_trans *trans);
359
360 void (*stop_queue)(struct iwl_trans *trans, int q, const char *msg);
361
362 int (*dbgfs_register)(struct iwl_trans *trans, struct dentry* dir);
363 int (*check_stuck_queue)(struct iwl_trans *trans, int q);
364 int (*wait_tx_queue_empty)(struct iwl_trans *trans);
365 #ifdef CONFIG_PM_SLEEP
366 int (*suspend)(struct iwl_trans *trans);
367 int (*resume)(struct iwl_trans *trans);
368 #endif
369 void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val);
370 void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val);
371 u32 (*read32)(struct iwl_trans *trans, u32 ofs);
372 };
373
374 /**
375 * enum iwl_trans_state - state of the transport layer
376 *
377 * @IWL_TRANS_NO_FW: no fw has sent an alive response
378 * @IWL_TRANS_FW_ALIVE: a fw has sent an alive response
379 */
380 enum iwl_trans_state {
381 IWL_TRANS_NO_FW = 0,
382 IWL_TRANS_FW_ALIVE = 1,
383 };
384
385 /**
386 * struct iwl_trans - transport common data
387 *
388 * @ops - pointer to iwl_trans_ops
389 * @op_mode - pointer to the op_mode
390 * @shrd - pointer to iwl_shared which holds shared data from the upper layer
391 * @reg_lock - protect hw register access
392 * @dev - pointer to struct device * that represents the device
393 * @hw_id: a u32 with the ID of the device / subdevice.
394 * Set during transport allocation.
395 * @hw_id_str: a string with info about HW ID. Set during transport allocation.
396 * @nvm_device_type: indicates OTP or eeprom
397 * @pm_support: set to true in start_hw if link pm is supported
398 */
399 struct iwl_trans {
400 const struct iwl_trans_ops *ops;
401 struct iwl_op_mode *op_mode;
402 struct iwl_shared *shrd;
403 enum iwl_trans_state state;
404 spinlock_t reg_lock;
405
406 struct device *dev;
407 u32 hw_rev;
408 u32 hw_id;
409 char hw_id_str[52];
410
411 int nvm_device_type;
412 bool pm_support;
413
414 /* pointer to trans specific struct */
415 /*Ensure that this pointer will always be aligned to sizeof pointer */
416 char trans_specific[0] __aligned(sizeof(void *));
417 };
418
419 static inline void iwl_trans_configure(struct iwl_trans *trans,
420 struct iwl_op_mode *op_mode)
421 {
422 /*
423 * only set the op_mode for the moment. Later on, this function will do
424 * more
425 */
426 trans->op_mode = op_mode;
427 }
428
429 static inline int iwl_trans_start_hw(struct iwl_trans *trans)
430 {
431 might_sleep();
432
433 return trans->ops->start_hw(trans);
434 }
435
436 static inline void iwl_trans_stop_hw(struct iwl_trans *trans)
437 {
438 might_sleep();
439
440 trans->ops->stop_hw(trans);
441
442 trans->state = IWL_TRANS_NO_FW;
443 }
444
445 static inline void iwl_trans_fw_alive(struct iwl_trans *trans)
446 {
447 might_sleep();
448
449 trans->ops->fw_alive(trans);
450
451 trans->state = IWL_TRANS_FW_ALIVE;
452 }
453
454 static inline int iwl_trans_start_fw(struct iwl_trans *trans,
455 const struct fw_img *fw)
456 {
457 might_sleep();
458
459 return trans->ops->start_fw(trans, fw);
460 }
461
462 static inline void iwl_trans_stop_device(struct iwl_trans *trans)
463 {
464 might_sleep();
465
466 trans->ops->stop_device(trans);
467
468 trans->state = IWL_TRANS_NO_FW;
469 }
470
471 static inline void iwl_trans_wowlan_suspend(struct iwl_trans *trans)
472 {
473 might_sleep();
474 trans->ops->wowlan_suspend(trans);
475 }
476
477 static inline void iwl_trans_wake_any_queue(struct iwl_trans *trans,
478 enum iwl_rxon_context_id ctx,
479 const char *msg)
480 {
481 if (trans->state != IWL_TRANS_FW_ALIVE)
482 IWL_ERR(trans, "%s bad state = %d", __func__, trans->state);
483
484 trans->ops->wake_any_queue(trans, ctx, msg);
485 }
486
487
488 static inline int iwl_trans_send_cmd(struct iwl_trans *trans,
489 struct iwl_host_cmd *cmd)
490 {
491 if (trans->state != IWL_TRANS_FW_ALIVE)
492 IWL_ERR(trans, "%s bad state = %d", __func__, trans->state);
493
494 return trans->ops->send_cmd(trans, cmd);
495 }
496
497 static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb,
498 struct iwl_device_cmd *dev_cmd, enum iwl_rxon_context_id ctx,
499 u8 sta_id, u8 tid)
500 {
501 if (trans->state != IWL_TRANS_FW_ALIVE)
502 IWL_ERR(trans, "%s bad state = %d", __func__, trans->state);
503
504 return trans->ops->tx(trans, skb, dev_cmd, ctx, sta_id, tid);
505 }
506
507 static inline int iwl_trans_reclaim(struct iwl_trans *trans, int sta_id,
508 int tid, int txq_id, int ssn, u32 status,
509 struct sk_buff_head *skbs)
510 {
511 if (trans->state != IWL_TRANS_FW_ALIVE)
512 IWL_ERR(trans, "%s bad state = %d", __func__, trans->state);
513
514 return trans->ops->reclaim(trans, sta_id, tid, txq_id, ssn,
515 status, skbs);
516 }
517
518 static inline int iwl_trans_tx_agg_disable(struct iwl_trans *trans,
519 int sta_id, int tid)
520 {
521 might_sleep();
522
523 if (trans->state != IWL_TRANS_FW_ALIVE)
524 IWL_ERR(trans, "%s bad state = %d", __func__, trans->state);
525
526 return trans->ops->tx_agg_disable(trans, sta_id, tid);
527 }
528
529 static inline int iwl_trans_tx_agg_alloc(struct iwl_trans *trans,
530 int sta_id, int tid)
531 {
532 if (trans->state != IWL_TRANS_FW_ALIVE)
533 IWL_ERR(trans, "%s bad state = %d", __func__, trans->state);
534
535 return trans->ops->tx_agg_alloc(trans, sta_id, tid);
536 }
537
538
539 static inline void iwl_trans_tx_agg_setup(struct iwl_trans *trans,
540 enum iwl_rxon_context_id ctx,
541 int sta_id, int tid,
542 int frame_limit, u16 ssn)
543 {
544 might_sleep();
545
546 if (trans->state != IWL_TRANS_FW_ALIVE)
547 IWL_ERR(trans, "%s bad state = %d", __func__, trans->state);
548
549 trans->ops->tx_agg_setup(trans, ctx, sta_id, tid, frame_limit, ssn);
550 }
551
552 static inline void iwl_trans_free(struct iwl_trans *trans)
553 {
554 trans->ops->free(trans);
555 }
556
557 static inline void iwl_trans_stop_queue(struct iwl_trans *trans, int q,
558 const char *msg)
559 {
560 if (trans->state != IWL_TRANS_FW_ALIVE)
561 IWL_ERR(trans, "%s bad state = %d", __func__, trans->state);
562
563 trans->ops->stop_queue(trans, q, msg);
564 }
565
566 static inline int iwl_trans_wait_tx_queue_empty(struct iwl_trans *trans)
567 {
568 if (trans->state != IWL_TRANS_FW_ALIVE)
569 IWL_ERR(trans, "%s bad state = %d", __func__, trans->state);
570
571 return trans->ops->wait_tx_queue_empty(trans);
572 }
573
574 static inline int iwl_trans_check_stuck_queue(struct iwl_trans *trans, int q)
575 {
576 if (trans->state != IWL_TRANS_FW_ALIVE)
577 IWL_ERR(trans, "%s bad state = %d", __func__, trans->state);
578
579 return trans->ops->check_stuck_queue(trans, q);
580 }
581 static inline int iwl_trans_dbgfs_register(struct iwl_trans *trans,
582 struct dentry *dir)
583 {
584 return trans->ops->dbgfs_register(trans, dir);
585 }
586
587 #ifdef CONFIG_PM_SLEEP
588 static inline int iwl_trans_suspend(struct iwl_trans *trans)
589 {
590 return trans->ops->suspend(trans);
591 }
592
593 static inline int iwl_trans_resume(struct iwl_trans *trans)
594 {
595 return trans->ops->resume(trans);
596 }
597 #endif
598
599 static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val)
600 {
601 trans->ops->write8(trans, ofs, val);
602 }
603
604 static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val)
605 {
606 trans->ops->write32(trans, ofs, val);
607 }
608
609 static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs)
610 {
611 return trans->ops->read32(trans, ofs);
612 }
613
614 /*****************************************************
615 * Transport layers implementations + their allocation function
616 ******************************************************/
617 struct pci_dev;
618 struct pci_device_id;
619 extern const struct iwl_trans_ops trans_ops_pcie;
620 struct iwl_trans *iwl_trans_pcie_alloc(struct iwl_shared *shrd,
621 struct pci_dev *pdev,
622 const struct pci_device_id *ent);
623 int __must_check iwl_pci_register_driver(void);
624 void iwl_pci_unregister_driver(void);
625
626 extern const struct iwl_trans_ops trans_ops_idi;
627 struct iwl_trans *iwl_trans_idi_alloc(struct iwl_shared *shrd,
628 void *pdev_void,
629 const void *ent_void);
630 #endif /* __iwl_trans_h__ */
This page took 0.085778 seconds and 6 git commands to generate.