a3b63b77b4baa5475912185b8772d5163a7923d1
[deliverable/linux.git] / drivers / net / wireless / iwlwifi / pcie / trans.c
1 /******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2007 - 2014 Intel Corporation. All rights reserved.
9 * Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of version 2 of the GNU General Public License as
13 * published by the Free Software Foundation.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
23 * USA
24 *
25 * The full GNU General Public License is included in this distribution
26 * in the file called COPYING.
27 *
28 * Contact Information:
29 * Intel Linux Wireless <ilw@linux.intel.com>
30 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 *
32 * BSD LICENSE
33 *
34 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
35 * Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH
36 * All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 *
42 * * Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * * Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in
46 * the documentation and/or other materials provided with the
47 * distribution.
48 * * Neither the name Intel Corporation nor the names of its
49 * contributors may be used to endorse or promote products derived
50 * from this software without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
53 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
54 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
55 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
56 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
57 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
58 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
59 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
60 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
61 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
62 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
63 *
64 *****************************************************************************/
65 #include <linux/pci.h>
66 #include <linux/pci-aspm.h>
67 #include <linux/interrupt.h>
68 #include <linux/debugfs.h>
69 #include <linux/sched.h>
70 #include <linux/bitops.h>
71 #include <linux/gfp.h>
72 #include <linux/vmalloc.h>
73
74 #include "iwl-drv.h"
75 #include "iwl-trans.h"
76 #include "iwl-csr.h"
77 #include "iwl-prph.h"
78 #include "iwl-agn-hw.h"
79 #include "iwl-fw-error-dump.h"
80 #include "internal.h"
81
82 /* extended range in FW SRAM */
83 #define IWL_FW_MEM_EXTENDED_START 0x40000
84 #define IWL_FW_MEM_EXTENDED_END 0x57FFF
85
86 static void iwl_pcie_free_fw_monitor(struct iwl_trans *trans)
87 {
88 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
89
90 if (!trans_pcie->fw_mon_page)
91 return;
92
93 dma_unmap_page(trans->dev, trans_pcie->fw_mon_phys,
94 trans_pcie->fw_mon_size, DMA_FROM_DEVICE);
95 __free_pages(trans_pcie->fw_mon_page,
96 get_order(trans_pcie->fw_mon_size));
97 trans_pcie->fw_mon_page = NULL;
98 trans_pcie->fw_mon_phys = 0;
99 trans_pcie->fw_mon_size = 0;
100 }
101
102 static void iwl_pcie_alloc_fw_monitor(struct iwl_trans *trans)
103 {
104 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
105 struct page *page;
106 dma_addr_t phys;
107 u32 size;
108 u8 power;
109
110 if (trans_pcie->fw_mon_page) {
111 dma_sync_single_for_device(trans->dev, trans_pcie->fw_mon_phys,
112 trans_pcie->fw_mon_size,
113 DMA_FROM_DEVICE);
114 return;
115 }
116
117 phys = 0;
118 for (power = 26; power >= 11; power--) {
119 int order;
120
121 size = BIT(power);
122 order = get_order(size);
123 page = alloc_pages(__GFP_COMP | __GFP_NOWARN | __GFP_ZERO,
124 order);
125 if (!page)
126 continue;
127
128 phys = dma_map_page(trans->dev, page, 0, PAGE_SIZE << order,
129 DMA_FROM_DEVICE);
130 if (dma_mapping_error(trans->dev, phys)) {
131 __free_pages(page, order);
132 continue;
133 }
134 IWL_INFO(trans,
135 "Allocated 0x%08x bytes (order %d) for firmware monitor.\n",
136 size, order);
137 break;
138 }
139
140 if (WARN_ON_ONCE(!page))
141 return;
142
143 trans_pcie->fw_mon_page = page;
144 trans_pcie->fw_mon_phys = phys;
145 trans_pcie->fw_mon_size = size;
146 }
147
148 static u32 iwl_trans_pcie_read_shr(struct iwl_trans *trans, u32 reg)
149 {
150 iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_CTRL_REG,
151 ((reg & 0x0000ffff) | (2 << 28)));
152 return iwl_read32(trans, HEEP_CTRL_WRD_PCIEX_DATA_REG);
153 }
154
155 static void iwl_trans_pcie_write_shr(struct iwl_trans *trans, u32 reg, u32 val)
156 {
157 iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_DATA_REG, val);
158 iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_CTRL_REG,
159 ((reg & 0x0000ffff) | (3 << 28)));
160 }
161
162 static void iwl_pcie_set_pwr(struct iwl_trans *trans, bool vaux)
163 {
164 if (vaux && pci_pme_capable(to_pci_dev(trans->dev), PCI_D3cold))
165 iwl_set_bits_mask_prph(trans, APMG_PS_CTRL_REG,
166 APMG_PS_CTRL_VAL_PWR_SRC_VAUX,
167 ~APMG_PS_CTRL_MSK_PWR_SRC);
168 else
169 iwl_set_bits_mask_prph(trans, APMG_PS_CTRL_REG,
170 APMG_PS_CTRL_VAL_PWR_SRC_VMAIN,
171 ~APMG_PS_CTRL_MSK_PWR_SRC);
172 }
173
174 /* PCI registers */
175 #define PCI_CFG_RETRY_TIMEOUT 0x041
176
177 static void iwl_pcie_apm_config(struct iwl_trans *trans)
178 {
179 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
180 u16 lctl;
181 u16 cap;
182
183 /*
184 * HW bug W/A for instability in PCIe bus L0S->L1 transition.
185 * Check if BIOS (or OS) enabled L1-ASPM on this device.
186 * If so (likely), disable L0S, so device moves directly L0->L1;
187 * costs negligible amount of power savings.
188 * If not (unlikely), enable L0S, so there is at least some
189 * power savings, even without L1.
190 */
191 pcie_capability_read_word(trans_pcie->pci_dev, PCI_EXP_LNKCTL, &lctl);
192 if (lctl & PCI_EXP_LNKCTL_ASPM_L1)
193 iwl_set_bit(trans, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED);
194 else
195 iwl_clear_bit(trans, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED);
196 trans->pm_support = !(lctl & PCI_EXP_LNKCTL_ASPM_L0S);
197
198 pcie_capability_read_word(trans_pcie->pci_dev, PCI_EXP_DEVCTL2, &cap);
199 trans->ltr_enabled = cap & PCI_EXP_DEVCTL2_LTR_EN;
200 dev_info(trans->dev, "L1 %sabled - LTR %sabled\n",
201 (lctl & PCI_EXP_LNKCTL_ASPM_L1) ? "En" : "Dis",
202 trans->ltr_enabled ? "En" : "Dis");
203 }
204
205 /*
206 * Start up NIC's basic functionality after it has been reset
207 * (e.g. after platform boot, or shutdown via iwl_pcie_apm_stop())
208 * NOTE: This does not load uCode nor start the embedded processor
209 */
210 static int iwl_pcie_apm_init(struct iwl_trans *trans)
211 {
212 int ret = 0;
213 IWL_DEBUG_INFO(trans, "Init card's basic functions\n");
214
215 /*
216 * Use "set_bit" below rather than "write", to preserve any hardware
217 * bits already set by default after reset.
218 */
219
220 /* Disable L0S exit timer (platform NMI Work/Around) */
221 if (trans->cfg->device_family != IWL_DEVICE_FAMILY_8000)
222 iwl_set_bit(trans, CSR_GIO_CHICKEN_BITS,
223 CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER);
224
225 /*
226 * Disable L0s without affecting L1;
227 * don't wait for ICH L0s (ICH bug W/A)
228 */
229 iwl_set_bit(trans, CSR_GIO_CHICKEN_BITS,
230 CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX);
231
232 /* Set FH wait threshold to maximum (HW error during stress W/A) */
233 iwl_set_bit(trans, CSR_DBG_HPET_MEM_REG, CSR_DBG_HPET_MEM_REG_VAL);
234
235 /*
236 * Enable HAP INTA (interrupt from management bus) to
237 * wake device's PCI Express link L1a -> L0s
238 */
239 iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
240 CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A);
241
242 iwl_pcie_apm_config(trans);
243
244 /* Configure analog phase-lock-loop before activating to D0A */
245 if (trans->cfg->base_params->pll_cfg_val)
246 iwl_set_bit(trans, CSR_ANA_PLL_CFG,
247 trans->cfg->base_params->pll_cfg_val);
248
249 /*
250 * Set "initialization complete" bit to move adapter from
251 * D0U* --> D0A* (powered-up active) state.
252 */
253 iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
254
255 /*
256 * Wait for clock stabilization; once stabilized, access to
257 * device-internal resources is supported, e.g. iwl_write_prph()
258 * and accesses to uCode SRAM.
259 */
260 ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
261 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
262 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000);
263 if (ret < 0) {
264 IWL_DEBUG_INFO(trans, "Failed to init the card\n");
265 goto out;
266 }
267
268 if (trans->cfg->host_interrupt_operation_mode) {
269 /*
270 * This is a bit of an abuse - This is needed for 7260 / 3160
271 * only check host_interrupt_operation_mode even if this is
272 * not related to host_interrupt_operation_mode.
273 *
274 * Enable the oscillator to count wake up time for L1 exit. This
275 * consumes slightly more power (100uA) - but allows to be sure
276 * that we wake up from L1 on time.
277 *
278 * This looks weird: read twice the same register, discard the
279 * value, set a bit, and yet again, read that same register
280 * just to discard the value. But that's the way the hardware
281 * seems to like it.
282 */
283 iwl_read_prph(trans, OSC_CLK);
284 iwl_read_prph(trans, OSC_CLK);
285 iwl_set_bits_prph(trans, OSC_CLK, OSC_CLK_FORCE_CONTROL);
286 iwl_read_prph(trans, OSC_CLK);
287 iwl_read_prph(trans, OSC_CLK);
288 }
289
290 /*
291 * Enable DMA clock and wait for it to stabilize.
292 *
293 * Write to "CLK_EN_REG"; "1" bits enable clocks, while "0"
294 * bits do not disable clocks. This preserves any hardware
295 * bits already set by default in "CLK_CTRL_REG" after reset.
296 */
297 if (trans->cfg->device_family != IWL_DEVICE_FAMILY_8000) {
298 iwl_write_prph(trans, APMG_CLK_EN_REG,
299 APMG_CLK_VAL_DMA_CLK_RQT);
300 udelay(20);
301
302 /* Disable L1-Active */
303 iwl_set_bits_prph(trans, APMG_PCIDEV_STT_REG,
304 APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
305
306 /* Clear the interrupt in APMG if the NIC is in RFKILL */
307 iwl_write_prph(trans, APMG_RTC_INT_STT_REG,
308 APMG_RTC_INT_STT_RFKILL);
309 }
310
311 set_bit(STATUS_DEVICE_ENABLED, &trans->status);
312
313 out:
314 return ret;
315 }
316
317 /*
318 * Enable LP XTAL to avoid HW bug where device may consume much power if
319 * FW is not loaded after device reset. LP XTAL is disabled by default
320 * after device HW reset. Do it only if XTAL is fed by internal source.
321 * Configure device's "persistence" mode to avoid resetting XTAL again when
322 * SHRD_HW_RST occurs in S3.
323 */
324 static void iwl_pcie_apm_lp_xtal_enable(struct iwl_trans *trans)
325 {
326 int ret;
327 u32 apmg_gp1_reg;
328 u32 apmg_xtal_cfg_reg;
329 u32 dl_cfg_reg;
330
331 /* Force XTAL ON */
332 __iwl_trans_pcie_set_bit(trans, CSR_GP_CNTRL,
333 CSR_GP_CNTRL_REG_FLAG_XTAL_ON);
334
335 /* Reset entire device - do controller reset (results in SHRD_HW_RST) */
336 iwl_set_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
337
338 udelay(10);
339
340 /*
341 * Set "initialization complete" bit to move adapter from
342 * D0U* --> D0A* (powered-up active) state.
343 */
344 iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
345
346 /*
347 * Wait for clock stabilization; once stabilized, access to
348 * device-internal resources is possible.
349 */
350 ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
351 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
352 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
353 25000);
354 if (WARN_ON(ret < 0)) {
355 IWL_ERR(trans, "Access time out - failed to enable LP XTAL\n");
356 /* Release XTAL ON request */
357 __iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL,
358 CSR_GP_CNTRL_REG_FLAG_XTAL_ON);
359 return;
360 }
361
362 /*
363 * Clear "disable persistence" to avoid LP XTAL resetting when
364 * SHRD_HW_RST is applied in S3.
365 */
366 iwl_clear_bits_prph(trans, APMG_PCIDEV_STT_REG,
367 APMG_PCIDEV_STT_VAL_PERSIST_DIS);
368
369 /*
370 * Force APMG XTAL to be active to prevent its disabling by HW
371 * caused by APMG idle state.
372 */
373 apmg_xtal_cfg_reg = iwl_trans_pcie_read_shr(trans,
374 SHR_APMG_XTAL_CFG_REG);
375 iwl_trans_pcie_write_shr(trans, SHR_APMG_XTAL_CFG_REG,
376 apmg_xtal_cfg_reg |
377 SHR_APMG_XTAL_CFG_XTAL_ON_REQ);
378
379 /*
380 * Reset entire device again - do controller reset (results in
381 * SHRD_HW_RST). Turn MAC off before proceeding.
382 */
383 iwl_set_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
384
385 udelay(10);
386
387 /* Enable LP XTAL by indirect access through CSR */
388 apmg_gp1_reg = iwl_trans_pcie_read_shr(trans, SHR_APMG_GP1_REG);
389 iwl_trans_pcie_write_shr(trans, SHR_APMG_GP1_REG, apmg_gp1_reg |
390 SHR_APMG_GP1_WF_XTAL_LP_EN |
391 SHR_APMG_GP1_CHICKEN_BIT_SELECT);
392
393 /* Clear delay line clock power up */
394 dl_cfg_reg = iwl_trans_pcie_read_shr(trans, SHR_APMG_DL_CFG_REG);
395 iwl_trans_pcie_write_shr(trans, SHR_APMG_DL_CFG_REG, dl_cfg_reg &
396 ~SHR_APMG_DL_CFG_DL_CLOCK_POWER_UP);
397
398 /*
399 * Enable persistence mode to avoid LP XTAL resetting when
400 * SHRD_HW_RST is applied in S3.
401 */
402 iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
403 CSR_HW_IF_CONFIG_REG_PERSIST_MODE);
404
405 /*
406 * Clear "initialization complete" bit to move adapter from
407 * D0A* (powered-up Active) --> D0U* (Uninitialized) state.
408 */
409 iwl_clear_bit(trans, CSR_GP_CNTRL,
410 CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
411
412 /* Activates XTAL resources monitor */
413 __iwl_trans_pcie_set_bit(trans, CSR_MONITOR_CFG_REG,
414 CSR_MONITOR_XTAL_RESOURCES);
415
416 /* Release XTAL ON request */
417 __iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL,
418 CSR_GP_CNTRL_REG_FLAG_XTAL_ON);
419 udelay(10);
420
421 /* Release APMG XTAL */
422 iwl_trans_pcie_write_shr(trans, SHR_APMG_XTAL_CFG_REG,
423 apmg_xtal_cfg_reg &
424 ~SHR_APMG_XTAL_CFG_XTAL_ON_REQ);
425 }
426
427 static int iwl_pcie_apm_stop_master(struct iwl_trans *trans)
428 {
429 int ret = 0;
430
431 /* stop device's busmaster DMA activity */
432 iwl_set_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_STOP_MASTER);
433
434 ret = iwl_poll_bit(trans, CSR_RESET,
435 CSR_RESET_REG_FLAG_MASTER_DISABLED,
436 CSR_RESET_REG_FLAG_MASTER_DISABLED, 100);
437 if (ret < 0)
438 IWL_WARN(trans, "Master Disable Timed Out, 100 usec\n");
439
440 IWL_DEBUG_INFO(trans, "stop master\n");
441
442 return ret;
443 }
444
445 static void iwl_pcie_apm_stop(struct iwl_trans *trans)
446 {
447 IWL_DEBUG_INFO(trans, "Stop card, put in low power state\n");
448
449 clear_bit(STATUS_DEVICE_ENABLED, &trans->status);
450
451 /* Stop device's DMA activity */
452 iwl_pcie_apm_stop_master(trans);
453
454 if (trans->cfg->lp_xtal_workaround) {
455 iwl_pcie_apm_lp_xtal_enable(trans);
456 return;
457 }
458
459 /* Reset the entire device */
460 iwl_set_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
461
462 udelay(10);
463
464 /*
465 * Clear "initialization complete" bit to move adapter from
466 * D0A* (powered-up Active) --> D0U* (Uninitialized) state.
467 */
468 iwl_clear_bit(trans, CSR_GP_CNTRL,
469 CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
470 }
471
472 static int iwl_pcie_nic_init(struct iwl_trans *trans)
473 {
474 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
475
476 /* nic_init */
477 spin_lock(&trans_pcie->irq_lock);
478 iwl_pcie_apm_init(trans);
479
480 spin_unlock(&trans_pcie->irq_lock);
481
482 if (trans->cfg->device_family != IWL_DEVICE_FAMILY_8000)
483 iwl_pcie_set_pwr(trans, false);
484
485 iwl_op_mode_nic_config(trans->op_mode);
486
487 /* Allocate the RX queue, or reset if it is already allocated */
488 iwl_pcie_rx_init(trans);
489
490 /* Allocate or reset and init all Tx and Command queues */
491 if (iwl_pcie_tx_init(trans))
492 return -ENOMEM;
493
494 if (trans->cfg->base_params->shadow_reg_enable) {
495 /* enable shadow regs in HW */
496 iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL, 0x800FFFFF);
497 IWL_DEBUG_INFO(trans, "Enabling shadow registers in device\n");
498 }
499
500 return 0;
501 }
502
503 #define HW_READY_TIMEOUT (50)
504
505 /* Note: returns poll_bit return value, which is >= 0 if success */
506 static int iwl_pcie_set_hw_ready(struct iwl_trans *trans)
507 {
508 int ret;
509
510 iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
511 CSR_HW_IF_CONFIG_REG_BIT_NIC_READY);
512
513 /* See if we got it */
514 ret = iwl_poll_bit(trans, CSR_HW_IF_CONFIG_REG,
515 CSR_HW_IF_CONFIG_REG_BIT_NIC_READY,
516 CSR_HW_IF_CONFIG_REG_BIT_NIC_READY,
517 HW_READY_TIMEOUT);
518
519 if (ret >= 0)
520 iwl_set_bit(trans, CSR_MBOX_SET_REG, CSR_MBOX_SET_REG_OS_ALIVE);
521
522 IWL_DEBUG_INFO(trans, "hardware%s ready\n", ret < 0 ? " not" : "");
523 return ret;
524 }
525
526 /* Note: returns standard 0/-ERROR code */
527 static int iwl_pcie_prepare_card_hw(struct iwl_trans *trans)
528 {
529 int ret;
530 int t = 0;
531 int iter;
532
533 IWL_DEBUG_INFO(trans, "iwl_trans_prepare_card_hw enter\n");
534
535 ret = iwl_pcie_set_hw_ready(trans);
536 /* If the card is ready, exit 0 */
537 if (ret >= 0)
538 return 0;
539
540 for (iter = 0; iter < 10; iter++) {
541 /* If HW is not ready, prepare the conditions to check again */
542 iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
543 CSR_HW_IF_CONFIG_REG_PREPARE);
544
545 do {
546 ret = iwl_pcie_set_hw_ready(trans);
547 if (ret >= 0)
548 return 0;
549
550 usleep_range(200, 1000);
551 t += 200;
552 } while (t < 150000);
553 msleep(25);
554 }
555
556 IWL_ERR(trans, "Couldn't prepare the card\n");
557
558 return ret;
559 }
560
561 /*
562 * ucode
563 */
564 static int iwl_pcie_load_firmware_chunk(struct iwl_trans *trans, u32 dst_addr,
565 dma_addr_t phy_addr, u32 byte_cnt)
566 {
567 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
568 int ret;
569
570 trans_pcie->ucode_write_complete = false;
571
572 iwl_write_direct32(trans,
573 FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL),
574 FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
575
576 iwl_write_direct32(trans,
577 FH_SRVC_CHNL_SRAM_ADDR_REG(FH_SRVC_CHNL),
578 dst_addr);
579
580 iwl_write_direct32(trans,
581 FH_TFDIB_CTRL0_REG(FH_SRVC_CHNL),
582 phy_addr & FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
583
584 iwl_write_direct32(trans,
585 FH_TFDIB_CTRL1_REG(FH_SRVC_CHNL),
586 (iwl_get_dma_hi_addr(phy_addr)
587 << FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
588
589 iwl_write_direct32(trans,
590 FH_TCSR_CHNL_TX_BUF_STS_REG(FH_SRVC_CHNL),
591 1 << FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM |
592 1 << FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX |
593 FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
594
595 iwl_write_direct32(trans,
596 FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL),
597 FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
598 FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |
599 FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
600
601 ret = wait_event_timeout(trans_pcie->ucode_write_waitq,
602 trans_pcie->ucode_write_complete, 5 * HZ);
603 if (!ret) {
604 IWL_ERR(trans, "Failed to load firmware chunk!\n");
605 return -ETIMEDOUT;
606 }
607
608 return 0;
609 }
610
611 static int iwl_pcie_load_section(struct iwl_trans *trans, u8 section_num,
612 const struct fw_desc *section)
613 {
614 u8 *v_addr;
615 dma_addr_t p_addr;
616 u32 offset, chunk_sz = section->len;
617 int ret = 0;
618
619 IWL_DEBUG_FW(trans, "[%d] uCode section being loaded...\n",
620 section_num);
621
622 v_addr = dma_alloc_coherent(trans->dev, chunk_sz, &p_addr,
623 GFP_KERNEL | __GFP_NOWARN);
624 if (!v_addr) {
625 IWL_DEBUG_INFO(trans, "Falling back to small chunks of DMA\n");
626 chunk_sz = PAGE_SIZE;
627 v_addr = dma_alloc_coherent(trans->dev, chunk_sz,
628 &p_addr, GFP_KERNEL);
629 if (!v_addr)
630 return -ENOMEM;
631 }
632
633 for (offset = 0; offset < section->len; offset += chunk_sz) {
634 u32 copy_size, dst_addr;
635 bool extended_addr = false;
636
637 copy_size = min_t(u32, chunk_sz, section->len - offset);
638 dst_addr = section->offset + offset;
639
640 if (dst_addr >= IWL_FW_MEM_EXTENDED_START &&
641 dst_addr <= IWL_FW_MEM_EXTENDED_END)
642 extended_addr = true;
643
644 if (extended_addr)
645 iwl_set_bits_prph(trans, LMPM_CHICK,
646 LMPM_CHICK_EXTENDED_ADDR_SPACE);
647
648 memcpy(v_addr, (u8 *)section->data + offset, copy_size);
649 ret = iwl_pcie_load_firmware_chunk(trans, dst_addr, p_addr,
650 copy_size);
651
652 if (extended_addr)
653 iwl_clear_bits_prph(trans, LMPM_CHICK,
654 LMPM_CHICK_EXTENDED_ADDR_SPACE);
655
656 if (ret) {
657 IWL_ERR(trans,
658 "Could not load the [%d] uCode section\n",
659 section_num);
660 break;
661 }
662 }
663
664 dma_free_coherent(trans->dev, chunk_sz, v_addr, p_addr);
665 return ret;
666 }
667
668 static int iwl_pcie_load_cpu_secured_sections(struct iwl_trans *trans,
669 const struct fw_img *image,
670 int cpu,
671 int *first_ucode_section)
672 {
673 int shift_param;
674 int i, ret = 0;
675 u32 last_read_idx = 0;
676
677 if (cpu == 1) {
678 shift_param = 0;
679 *first_ucode_section = 0;
680 } else {
681 shift_param = 16;
682 (*first_ucode_section)++;
683 }
684
685 for (i = *first_ucode_section; i < IWL_UCODE_SECTION_MAX; i++) {
686 last_read_idx = i;
687
688 if (!image->sec[i].data ||
689 image->sec[i].offset == CPU1_CPU2_SEPARATOR_SECTION) {
690 IWL_DEBUG_FW(trans,
691 "Break since Data not valid or Empty section, sec = %d\n",
692 i);
693 break;
694 }
695
696 if (i == (*first_ucode_section) + 1)
697 /* set CPU to started */
698 iwl_set_bits_prph(trans,
699 CSR_UCODE_LOAD_STATUS_ADDR,
700 LMPM_CPU_HDRS_LOADING_COMPLETED
701 << shift_param);
702
703 ret = iwl_pcie_load_section(trans, i, &image->sec[i]);
704 if (ret)
705 return ret;
706 }
707 /* image loading complete */
708 iwl_set_bits_prph(trans,
709 CSR_UCODE_LOAD_STATUS_ADDR,
710 LMPM_CPU_UCODE_LOADING_COMPLETED << shift_param);
711
712 *first_ucode_section = last_read_idx;
713
714 return 0;
715 }
716
717 static int iwl_pcie_load_cpu_sections(struct iwl_trans *trans,
718 const struct fw_img *image,
719 int cpu,
720 int *first_ucode_section)
721 {
722 int shift_param;
723 int i, ret = 0;
724 u32 last_read_idx = 0;
725
726 if (cpu == 1) {
727 shift_param = 0;
728 *first_ucode_section = 0;
729 } else {
730 shift_param = 16;
731 (*first_ucode_section)++;
732 }
733
734 for (i = *first_ucode_section; i < IWL_UCODE_SECTION_MAX; i++) {
735 last_read_idx = i;
736
737 if (!image->sec[i].data ||
738 image->sec[i].offset == CPU1_CPU2_SEPARATOR_SECTION) {
739 IWL_DEBUG_FW(trans,
740 "Break since Data not valid or Empty section, sec = %d\n",
741 i);
742 break;
743 }
744
745 ret = iwl_pcie_load_section(trans, i, &image->sec[i]);
746 if (ret)
747 return ret;
748 }
749
750 if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000)
751 iwl_set_bits_prph(trans,
752 CSR_UCODE_LOAD_STATUS_ADDR,
753 (LMPM_CPU_UCODE_LOADING_COMPLETED |
754 LMPM_CPU_HDRS_LOADING_COMPLETED |
755 LMPM_CPU_UCODE_LOADING_STARTED) <<
756 shift_param);
757
758 *first_ucode_section = last_read_idx;
759
760 return 0;
761 }
762
763 static int iwl_pcie_load_given_ucode(struct iwl_trans *trans,
764 const struct fw_img *image)
765 {
766 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
767 int ret = 0;
768 int first_ucode_section;
769
770 IWL_DEBUG_FW(trans,
771 "working with %s CPU\n",
772 image->is_dual_cpus ? "Dual" : "Single");
773
774 /* configure the ucode to be ready to get the secured image */
775 if (iwl_has_secure_boot(trans->hw_rev, trans->cfg->device_family)) {
776 /* set secure boot inspector addresses */
777 iwl_write_prph(trans,
778 LMPM_SECURE_INSPECTOR_CODE_ADDR,
779 LMPM_SECURE_INSPECTOR_CODE_MEM_SPACE);
780
781 iwl_write_prph(trans,
782 LMPM_SECURE_INSPECTOR_DATA_ADDR,
783 LMPM_SECURE_INSPECTOR_DATA_MEM_SPACE);
784
785 /* set CPU1 header address */
786 iwl_write_prph(trans,
787 LMPM_SECURE_UCODE_LOAD_CPU1_HDR_ADDR,
788 LMPM_SECURE_CPU1_HDR_MEM_SPACE);
789
790 /* load to FW the binary Secured sections of CPU1 */
791 ret = iwl_pcie_load_cpu_secured_sections(trans, image, 1,
792 &first_ucode_section);
793 if (ret)
794 return ret;
795
796 } else {
797 /* load to FW the binary Non secured sections of CPU1 */
798 ret = iwl_pcie_load_cpu_sections(trans, image, 1,
799 &first_ucode_section);
800 if (ret)
801 return ret;
802 }
803
804 if (image->is_dual_cpus) {
805 /* set CPU2 header address */
806 iwl_write_prph(trans,
807 LMPM_SECURE_UCODE_LOAD_CPU2_HDR_ADDR,
808 LMPM_SECURE_CPU2_HDR_MEM_SPACE);
809
810 /* load to FW the binary sections of CPU2 */
811 if (iwl_has_secure_boot(trans->hw_rev,
812 trans->cfg->device_family))
813 ret = iwl_pcie_load_cpu_secured_sections(
814 trans, image, 2,
815 &first_ucode_section);
816 else
817 ret = iwl_pcie_load_cpu_sections(trans, image, 2,
818 &first_ucode_section);
819 if (ret)
820 return ret;
821 }
822
823 /* supported for 7000 only for the moment */
824 if (iwlwifi_mod_params.fw_monitor &&
825 trans->cfg->device_family == IWL_DEVICE_FAMILY_7000) {
826 iwl_pcie_alloc_fw_monitor(trans);
827
828 if (trans_pcie->fw_mon_size) {
829 iwl_write_prph(trans, MON_BUFF_BASE_ADDR,
830 trans_pcie->fw_mon_phys >> 4);
831 iwl_write_prph(trans, MON_BUFF_END_ADDR,
832 (trans_pcie->fw_mon_phys +
833 trans_pcie->fw_mon_size) >> 4);
834 }
835 }
836
837 /* release CPU reset */
838 if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000)
839 iwl_write_prph(trans, RELEASE_CPU_RESET, RELEASE_CPU_RESET_BIT);
840 else
841 iwl_write32(trans, CSR_RESET, 0);
842
843 if (iwl_has_secure_boot(trans->hw_rev, trans->cfg->device_family)) {
844 /* wait for image verification to complete */
845 ret = iwl_poll_prph_bit(trans,
846 LMPM_SECURE_BOOT_CPU1_STATUS_ADDR,
847 LMPM_SECURE_BOOT_STATUS_SUCCESS,
848 LMPM_SECURE_BOOT_STATUS_SUCCESS,
849 LMPM_SECURE_TIME_OUT);
850
851 if (ret < 0) {
852 IWL_ERR(trans, "Time out on secure boot process\n");
853 return ret;
854 }
855 }
856
857 return 0;
858 }
859
860 static int iwl_trans_pcie_start_fw(struct iwl_trans *trans,
861 const struct fw_img *fw, bool run_in_rfkill)
862 {
863 int ret;
864 bool hw_rfkill;
865
866 /* This may fail if AMT took ownership of the device */
867 if (iwl_pcie_prepare_card_hw(trans)) {
868 IWL_WARN(trans, "Exit HW not ready\n");
869 return -EIO;
870 }
871
872 iwl_enable_rfkill_int(trans);
873
874 /* If platform's RF_KILL switch is NOT set to KILL */
875 hw_rfkill = iwl_is_rfkill_set(trans);
876 if (hw_rfkill)
877 set_bit(STATUS_RFKILL, &trans->status);
878 else
879 clear_bit(STATUS_RFKILL, &trans->status);
880 iwl_trans_pcie_rf_kill(trans, hw_rfkill);
881 if (hw_rfkill && !run_in_rfkill)
882 return -ERFKILL;
883
884 iwl_write32(trans, CSR_INT, 0xFFFFFFFF);
885
886 ret = iwl_pcie_nic_init(trans);
887 if (ret) {
888 IWL_ERR(trans, "Unable to init nic\n");
889 return ret;
890 }
891
892 /* make sure rfkill handshake bits are cleared */
893 iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
894 iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR,
895 CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
896
897 /* clear (again), then enable host interrupts */
898 iwl_write32(trans, CSR_INT, 0xFFFFFFFF);
899 iwl_enable_interrupts(trans);
900
901 /* really make sure rfkill handshake bits are cleared */
902 iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
903 iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
904
905 /* Load the given image to the HW */
906 return iwl_pcie_load_given_ucode(trans, fw);
907 }
908
909 static void iwl_trans_pcie_fw_alive(struct iwl_trans *trans, u32 scd_addr)
910 {
911 iwl_pcie_reset_ict(trans);
912 iwl_pcie_tx_start(trans, scd_addr);
913 }
914
915 static void iwl_trans_pcie_stop_device(struct iwl_trans *trans)
916 {
917 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
918 bool hw_rfkill, was_hw_rfkill;
919
920 was_hw_rfkill = iwl_is_rfkill_set(trans);
921
922 /* tell the device to stop sending interrupts */
923 spin_lock(&trans_pcie->irq_lock);
924 iwl_disable_interrupts(trans);
925 spin_unlock(&trans_pcie->irq_lock);
926
927 /* device going down, Stop using ICT table */
928 iwl_pcie_disable_ict(trans);
929
930 /*
931 * If a HW restart happens during firmware loading,
932 * then the firmware loading might call this function
933 * and later it might be called again due to the
934 * restart. So don't process again if the device is
935 * already dead.
936 */
937 if (test_and_clear_bit(STATUS_DEVICE_ENABLED, &trans->status)) {
938 IWL_DEBUG_INFO(trans, "DEVICE_ENABLED bit was set and is now cleared\n");
939 iwl_pcie_tx_stop(trans);
940 iwl_pcie_rx_stop(trans);
941
942 /* Power-down device's busmaster DMA clocks */
943 iwl_write_prph(trans, APMG_CLK_DIS_REG,
944 APMG_CLK_VAL_DMA_CLK_RQT);
945 udelay(5);
946 }
947
948 /* Make sure (redundant) we've released our request to stay awake */
949 iwl_clear_bit(trans, CSR_GP_CNTRL,
950 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
951
952 /* Stop the device, and put it in low power state */
953 iwl_pcie_apm_stop(trans);
954
955 /* Upon stop, the APM issues an interrupt if HW RF kill is set.
956 * Clean again the interrupt here
957 */
958 spin_lock(&trans_pcie->irq_lock);
959 iwl_disable_interrupts(trans);
960 spin_unlock(&trans_pcie->irq_lock);
961
962 /* stop and reset the on-board processor */
963 iwl_write32(trans, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
964 udelay(20);
965
966 /* clear all status bits */
967 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
968 clear_bit(STATUS_INT_ENABLED, &trans->status);
969 clear_bit(STATUS_TPOWER_PMI, &trans->status);
970 clear_bit(STATUS_RFKILL, &trans->status);
971
972 /*
973 * Even if we stop the HW, we still want the RF kill
974 * interrupt
975 */
976 iwl_enable_rfkill_int(trans);
977
978 /*
979 * Check again since the RF kill state may have changed while
980 * all the interrupts were disabled, in this case we couldn't
981 * receive the RF kill interrupt and update the state in the
982 * op_mode.
983 * Don't call the op_mode if the rkfill state hasn't changed.
984 * This allows the op_mode to call stop_device from the rfkill
985 * notification without endless recursion. Under very rare
986 * circumstances, we might have a small recursion if the rfkill
987 * state changed exactly now while we were called from stop_device.
988 * This is very unlikely but can happen and is supported.
989 */
990 hw_rfkill = iwl_is_rfkill_set(trans);
991 if (hw_rfkill)
992 set_bit(STATUS_RFKILL, &trans->status);
993 else
994 clear_bit(STATUS_RFKILL, &trans->status);
995 if (hw_rfkill != was_hw_rfkill)
996 iwl_trans_pcie_rf_kill(trans, hw_rfkill);
997 }
998
999 void iwl_trans_pcie_rf_kill(struct iwl_trans *trans, bool state)
1000 {
1001 if (iwl_op_mode_hw_rf_kill(trans->op_mode, state))
1002 iwl_trans_pcie_stop_device(trans);
1003 }
1004
1005 static void iwl_trans_pcie_d3_suspend(struct iwl_trans *trans, bool test)
1006 {
1007 iwl_disable_interrupts(trans);
1008
1009 /*
1010 * in testing mode, the host stays awake and the
1011 * hardware won't be reset (not even partially)
1012 */
1013 if (test)
1014 return;
1015
1016 iwl_pcie_disable_ict(trans);
1017
1018 iwl_clear_bit(trans, CSR_GP_CNTRL,
1019 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
1020 iwl_clear_bit(trans, CSR_GP_CNTRL,
1021 CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
1022
1023 /*
1024 * reset TX queues -- some of their registers reset during S3
1025 * so if we don't reset everything here the D3 image would try
1026 * to execute some invalid memory upon resume
1027 */
1028 iwl_trans_pcie_tx_reset(trans);
1029
1030 iwl_pcie_set_pwr(trans, true);
1031 }
1032
1033 static int iwl_trans_pcie_d3_resume(struct iwl_trans *trans,
1034 enum iwl_d3_status *status,
1035 bool test)
1036 {
1037 u32 val;
1038 int ret;
1039
1040 if (test) {
1041 iwl_enable_interrupts(trans);
1042 *status = IWL_D3_STATUS_ALIVE;
1043 return 0;
1044 }
1045
1046 /*
1047 * Also enables interrupts - none will happen as the device doesn't
1048 * know we're waking it up, only when the opmode actually tells it
1049 * after this call.
1050 */
1051 iwl_pcie_reset_ict(trans);
1052
1053 iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
1054 iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
1055
1056 if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000)
1057 udelay(2);
1058
1059 ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
1060 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
1061 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
1062 25000);
1063 if (ret < 0) {
1064 IWL_ERR(trans, "Failed to resume the device (mac ready)\n");
1065 return ret;
1066 }
1067
1068 iwl_pcie_set_pwr(trans, false);
1069
1070 iwl_trans_pcie_tx_reset(trans);
1071
1072 ret = iwl_pcie_rx_init(trans);
1073 if (ret) {
1074 IWL_ERR(trans, "Failed to resume the device (RX reset)\n");
1075 return ret;
1076 }
1077
1078 val = iwl_read32(trans, CSR_RESET);
1079 if (val & CSR_RESET_REG_FLAG_NEVO_RESET)
1080 *status = IWL_D3_STATUS_RESET;
1081 else
1082 *status = IWL_D3_STATUS_ALIVE;
1083
1084 return 0;
1085 }
1086
1087 static int iwl_trans_pcie_start_hw(struct iwl_trans *trans)
1088 {
1089 bool hw_rfkill;
1090 int err;
1091
1092 err = iwl_pcie_prepare_card_hw(trans);
1093 if (err) {
1094 IWL_ERR(trans, "Error while preparing HW: %d\n", err);
1095 return err;
1096 }
1097
1098 /* Reset the entire device */
1099 iwl_write32(trans, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
1100
1101 usleep_range(10, 15);
1102
1103 iwl_pcie_apm_init(trans);
1104
1105 /* From now on, the op_mode will be kept updated about RF kill state */
1106 iwl_enable_rfkill_int(trans);
1107
1108 hw_rfkill = iwl_is_rfkill_set(trans);
1109 if (hw_rfkill)
1110 set_bit(STATUS_RFKILL, &trans->status);
1111 else
1112 clear_bit(STATUS_RFKILL, &trans->status);
1113 iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1114
1115 return 0;
1116 }
1117
1118 static void iwl_trans_pcie_op_mode_leave(struct iwl_trans *trans)
1119 {
1120 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1121
1122 /* disable interrupts - don't enable HW RF kill interrupt */
1123 spin_lock(&trans_pcie->irq_lock);
1124 iwl_disable_interrupts(trans);
1125 spin_unlock(&trans_pcie->irq_lock);
1126
1127 iwl_pcie_apm_stop(trans);
1128
1129 spin_lock(&trans_pcie->irq_lock);
1130 iwl_disable_interrupts(trans);
1131 spin_unlock(&trans_pcie->irq_lock);
1132
1133 iwl_pcie_disable_ict(trans);
1134 }
1135
1136 static void iwl_trans_pcie_write8(struct iwl_trans *trans, u32 ofs, u8 val)
1137 {
1138 writeb(val, IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs);
1139 }
1140
1141 static void iwl_trans_pcie_write32(struct iwl_trans *trans, u32 ofs, u32 val)
1142 {
1143 writel(val, IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs);
1144 }
1145
1146 static u32 iwl_trans_pcie_read32(struct iwl_trans *trans, u32 ofs)
1147 {
1148 return readl(IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs);
1149 }
1150
1151 static u32 iwl_trans_pcie_read_prph(struct iwl_trans *trans, u32 reg)
1152 {
1153 iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_RADDR,
1154 ((reg & 0x000FFFFF) | (3 << 24)));
1155 return iwl_trans_pcie_read32(trans, HBUS_TARG_PRPH_RDAT);
1156 }
1157
1158 static void iwl_trans_pcie_write_prph(struct iwl_trans *trans, u32 addr,
1159 u32 val)
1160 {
1161 iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_WADDR,
1162 ((addr & 0x000FFFFF) | (3 << 24)));
1163 iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_WDAT, val);
1164 }
1165
1166 static int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
1167 {
1168 WARN_ON(1);
1169 return 0;
1170 }
1171
1172 static void iwl_trans_pcie_configure(struct iwl_trans *trans,
1173 const struct iwl_trans_config *trans_cfg)
1174 {
1175 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1176
1177 trans_pcie->cmd_queue = trans_cfg->cmd_queue;
1178 trans_pcie->cmd_fifo = trans_cfg->cmd_fifo;
1179 if (WARN_ON(trans_cfg->n_no_reclaim_cmds > MAX_NO_RECLAIM_CMDS))
1180 trans_pcie->n_no_reclaim_cmds = 0;
1181 else
1182 trans_pcie->n_no_reclaim_cmds = trans_cfg->n_no_reclaim_cmds;
1183 if (trans_pcie->n_no_reclaim_cmds)
1184 memcpy(trans_pcie->no_reclaim_cmds, trans_cfg->no_reclaim_cmds,
1185 trans_pcie->n_no_reclaim_cmds * sizeof(u8));
1186
1187 trans_pcie->rx_buf_size_8k = trans_cfg->rx_buf_size_8k;
1188 if (trans_pcie->rx_buf_size_8k)
1189 trans_pcie->rx_page_order = get_order(8 * 1024);
1190 else
1191 trans_pcie->rx_page_order = get_order(4 * 1024);
1192
1193 trans_pcie->wd_timeout =
1194 msecs_to_jiffies(trans_cfg->queue_watchdog_timeout);
1195
1196 trans_pcie->command_names = trans_cfg->command_names;
1197 trans_pcie->bc_table_dword = trans_cfg->bc_table_dword;
1198 trans_pcie->scd_set_active = trans_cfg->scd_set_active;
1199
1200 /* Initialize NAPI here - it should be before registering to mac80211
1201 * in the opmode but after the HW struct is allocated.
1202 * As this function may be called again in some corner cases don't
1203 * do anything if NAPI was already initialized.
1204 */
1205 if (!trans_pcie->napi.poll && trans->op_mode->ops->napi_add) {
1206 init_dummy_netdev(&trans_pcie->napi_dev);
1207 iwl_op_mode_napi_add(trans->op_mode, &trans_pcie->napi,
1208 &trans_pcie->napi_dev,
1209 iwl_pcie_dummy_napi_poll, 64);
1210 }
1211 }
1212
1213 void iwl_trans_pcie_free(struct iwl_trans *trans)
1214 {
1215 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1216
1217 synchronize_irq(trans_pcie->pci_dev->irq);
1218
1219 iwl_pcie_tx_free(trans);
1220 iwl_pcie_rx_free(trans);
1221
1222 free_irq(trans_pcie->pci_dev->irq, trans);
1223 iwl_pcie_free_ict(trans);
1224
1225 pci_disable_msi(trans_pcie->pci_dev);
1226 iounmap(trans_pcie->hw_base);
1227 pci_release_regions(trans_pcie->pci_dev);
1228 pci_disable_device(trans_pcie->pci_dev);
1229 kmem_cache_destroy(trans->dev_cmd_pool);
1230
1231 if (trans_pcie->napi.poll)
1232 netif_napi_del(&trans_pcie->napi);
1233
1234 iwl_pcie_free_fw_monitor(trans);
1235
1236 kfree(trans);
1237 }
1238
1239 static void iwl_trans_pcie_set_pmi(struct iwl_trans *trans, bool state)
1240 {
1241 if (state)
1242 set_bit(STATUS_TPOWER_PMI, &trans->status);
1243 else
1244 clear_bit(STATUS_TPOWER_PMI, &trans->status);
1245 }
1246
1247 static bool iwl_trans_pcie_grab_nic_access(struct iwl_trans *trans, bool silent,
1248 unsigned long *flags)
1249 {
1250 int ret;
1251 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1252
1253 spin_lock_irqsave(&trans_pcie->reg_lock, *flags);
1254
1255 if (trans_pcie->cmd_in_flight)
1256 goto out;
1257
1258 /* this bit wakes up the NIC */
1259 __iwl_trans_pcie_set_bit(trans, CSR_GP_CNTRL,
1260 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
1261 if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000)
1262 udelay(2);
1263
1264 /*
1265 * These bits say the device is running, and should keep running for
1266 * at least a short while (at least as long as MAC_ACCESS_REQ stays 1),
1267 * but they do not indicate that embedded SRAM is restored yet;
1268 * 3945 and 4965 have volatile SRAM, and must save/restore contents
1269 * to/from host DRAM when sleeping/waking for power-saving.
1270 * Each direction takes approximately 1/4 millisecond; with this
1271 * overhead, it's a good idea to grab and hold MAC_ACCESS_REQUEST if a
1272 * series of register accesses are expected (e.g. reading Event Log),
1273 * to keep device from sleeping.
1274 *
1275 * CSR_UCODE_DRV_GP1 register bit MAC_SLEEP == 0 indicates that
1276 * SRAM is okay/restored. We don't check that here because this call
1277 * is just for hardware register access; but GP1 MAC_SLEEP check is a
1278 * good idea before accessing 3945/4965 SRAM (e.g. reading Event Log).
1279 *
1280 * 5000 series and later (including 1000 series) have non-volatile SRAM,
1281 * and do not save/restore SRAM when power cycling.
1282 */
1283 ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
1284 CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN,
1285 (CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY |
1286 CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP), 15000);
1287 if (unlikely(ret < 0)) {
1288 iwl_write32(trans, CSR_RESET, CSR_RESET_REG_FLAG_FORCE_NMI);
1289 if (!silent) {
1290 u32 val = iwl_read32(trans, CSR_GP_CNTRL);
1291 WARN_ONCE(1,
1292 "Timeout waiting for hardware access (CSR_GP_CNTRL 0x%08x)\n",
1293 val);
1294 spin_unlock_irqrestore(&trans_pcie->reg_lock, *flags);
1295 return false;
1296 }
1297 }
1298
1299 out:
1300 /*
1301 * Fool sparse by faking we release the lock - sparse will
1302 * track nic_access anyway.
1303 */
1304 __release(&trans_pcie->reg_lock);
1305 return true;
1306 }
1307
1308 static void iwl_trans_pcie_release_nic_access(struct iwl_trans *trans,
1309 unsigned long *flags)
1310 {
1311 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1312
1313 lockdep_assert_held(&trans_pcie->reg_lock);
1314
1315 /*
1316 * Fool sparse by faking we acquiring the lock - sparse will
1317 * track nic_access anyway.
1318 */
1319 __acquire(&trans_pcie->reg_lock);
1320
1321 if (trans_pcie->cmd_in_flight)
1322 goto out;
1323
1324 __iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL,
1325 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
1326 /*
1327 * Above we read the CSR_GP_CNTRL register, which will flush
1328 * any previous writes, but we need the write that clears the
1329 * MAC_ACCESS_REQ bit to be performed before any other writes
1330 * scheduled on different CPUs (after we drop reg_lock).
1331 */
1332 mmiowb();
1333 out:
1334 spin_unlock_irqrestore(&trans_pcie->reg_lock, *flags);
1335 }
1336
1337 static int iwl_trans_pcie_read_mem(struct iwl_trans *trans, u32 addr,
1338 void *buf, int dwords)
1339 {
1340 unsigned long flags;
1341 int offs, ret = 0;
1342 u32 *vals = buf;
1343
1344 if (iwl_trans_grab_nic_access(trans, false, &flags)) {
1345 iwl_write32(trans, HBUS_TARG_MEM_RADDR, addr);
1346 for (offs = 0; offs < dwords; offs++)
1347 vals[offs] = iwl_read32(trans, HBUS_TARG_MEM_RDAT);
1348 iwl_trans_release_nic_access(trans, &flags);
1349 } else {
1350 ret = -EBUSY;
1351 }
1352 return ret;
1353 }
1354
1355 static int iwl_trans_pcie_write_mem(struct iwl_trans *trans, u32 addr,
1356 const void *buf, int dwords)
1357 {
1358 unsigned long flags;
1359 int offs, ret = 0;
1360 const u32 *vals = buf;
1361
1362 if (iwl_trans_grab_nic_access(trans, false, &flags)) {
1363 iwl_write32(trans, HBUS_TARG_MEM_WADDR, addr);
1364 for (offs = 0; offs < dwords; offs++)
1365 iwl_write32(trans, HBUS_TARG_MEM_WDAT,
1366 vals ? vals[offs] : 0);
1367 iwl_trans_release_nic_access(trans, &flags);
1368 } else {
1369 ret = -EBUSY;
1370 }
1371 return ret;
1372 }
1373
1374 #define IWL_FLUSH_WAIT_MS 2000
1375
1376 static int iwl_trans_pcie_wait_txq_empty(struct iwl_trans *trans, u32 txq_bm)
1377 {
1378 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1379 struct iwl_txq *txq;
1380 struct iwl_queue *q;
1381 int cnt;
1382 unsigned long now = jiffies;
1383 u32 scd_sram_addr;
1384 u8 buf[16];
1385 int ret = 0;
1386
1387 /* waiting for all the tx frames complete might take a while */
1388 for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) {
1389 u8 wr_ptr;
1390
1391 if (cnt == trans_pcie->cmd_queue)
1392 continue;
1393 if (!test_bit(cnt, trans_pcie->queue_used))
1394 continue;
1395 if (!(BIT(cnt) & txq_bm))
1396 continue;
1397
1398 IWL_DEBUG_TX_QUEUES(trans, "Emptying queue %d...\n", cnt);
1399 txq = &trans_pcie->txq[cnt];
1400 q = &txq->q;
1401 wr_ptr = ACCESS_ONCE(q->write_ptr);
1402
1403 while (q->read_ptr != ACCESS_ONCE(q->write_ptr) &&
1404 !time_after(jiffies,
1405 now + msecs_to_jiffies(IWL_FLUSH_WAIT_MS))) {
1406 u8 write_ptr = ACCESS_ONCE(q->write_ptr);
1407
1408 if (WARN_ONCE(wr_ptr != write_ptr,
1409 "WR pointer moved while flushing %d -> %d\n",
1410 wr_ptr, write_ptr))
1411 return -ETIMEDOUT;
1412 msleep(1);
1413 }
1414
1415 if (q->read_ptr != q->write_ptr) {
1416 IWL_ERR(trans,
1417 "fail to flush all tx fifo queues Q %d\n", cnt);
1418 ret = -ETIMEDOUT;
1419 break;
1420 }
1421 IWL_DEBUG_TX_QUEUES(trans, "Queue %d is now empty.\n", cnt);
1422 }
1423
1424 if (!ret)
1425 return 0;
1426
1427 IWL_ERR(trans, "Current SW read_ptr %d write_ptr %d\n",
1428 txq->q.read_ptr, txq->q.write_ptr);
1429
1430 scd_sram_addr = trans_pcie->scd_base_addr +
1431 SCD_TX_STTS_QUEUE_OFFSET(txq->q.id);
1432 iwl_trans_read_mem_bytes(trans, scd_sram_addr, buf, sizeof(buf));
1433
1434 iwl_print_hex_error(trans, buf, sizeof(buf));
1435
1436 for (cnt = 0; cnt < FH_TCSR_CHNL_NUM; cnt++)
1437 IWL_ERR(trans, "FH TRBs(%d) = 0x%08x\n", cnt,
1438 iwl_read_direct32(trans, FH_TX_TRB_REG(cnt)));
1439
1440 for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) {
1441 u32 status = iwl_read_prph(trans, SCD_QUEUE_STATUS_BITS(cnt));
1442 u8 fifo = (status >> SCD_QUEUE_STTS_REG_POS_TXF) & 0x7;
1443 bool active = !!(status & BIT(SCD_QUEUE_STTS_REG_POS_ACTIVE));
1444 u32 tbl_dw =
1445 iwl_trans_read_mem32(trans, trans_pcie->scd_base_addr +
1446 SCD_TRANS_TBL_OFFSET_QUEUE(cnt));
1447
1448 if (cnt & 0x1)
1449 tbl_dw = (tbl_dw & 0xFFFF0000) >> 16;
1450 else
1451 tbl_dw = tbl_dw & 0x0000FFFF;
1452
1453 IWL_ERR(trans,
1454 "Q %d is %sactive and mapped to fifo %d ra_tid 0x%04x [%d,%d]\n",
1455 cnt, active ? "" : "in", fifo, tbl_dw,
1456 iwl_read_prph(trans, SCD_QUEUE_RDPTR(cnt)) &
1457 (TFD_QUEUE_SIZE_MAX - 1),
1458 iwl_read_prph(trans, SCD_QUEUE_WRPTR(cnt)));
1459 }
1460
1461 return ret;
1462 }
1463
1464 static void iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans, u32 reg,
1465 u32 mask, u32 value)
1466 {
1467 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1468 unsigned long flags;
1469
1470 spin_lock_irqsave(&trans_pcie->reg_lock, flags);
1471 __iwl_trans_pcie_set_bits_mask(trans, reg, mask, value);
1472 spin_unlock_irqrestore(&trans_pcie->reg_lock, flags);
1473 }
1474
1475 static const char *get_csr_string(int cmd)
1476 {
1477 #define IWL_CMD(x) case x: return #x
1478 switch (cmd) {
1479 IWL_CMD(CSR_HW_IF_CONFIG_REG);
1480 IWL_CMD(CSR_INT_COALESCING);
1481 IWL_CMD(CSR_INT);
1482 IWL_CMD(CSR_INT_MASK);
1483 IWL_CMD(CSR_FH_INT_STATUS);
1484 IWL_CMD(CSR_GPIO_IN);
1485 IWL_CMD(CSR_RESET);
1486 IWL_CMD(CSR_GP_CNTRL);
1487 IWL_CMD(CSR_HW_REV);
1488 IWL_CMD(CSR_EEPROM_REG);
1489 IWL_CMD(CSR_EEPROM_GP);
1490 IWL_CMD(CSR_OTP_GP_REG);
1491 IWL_CMD(CSR_GIO_REG);
1492 IWL_CMD(CSR_GP_UCODE_REG);
1493 IWL_CMD(CSR_GP_DRIVER_REG);
1494 IWL_CMD(CSR_UCODE_DRV_GP1);
1495 IWL_CMD(CSR_UCODE_DRV_GP2);
1496 IWL_CMD(CSR_LED_REG);
1497 IWL_CMD(CSR_DRAM_INT_TBL_REG);
1498 IWL_CMD(CSR_GIO_CHICKEN_BITS);
1499 IWL_CMD(CSR_ANA_PLL_CFG);
1500 IWL_CMD(CSR_HW_REV_WA_REG);
1501 IWL_CMD(CSR_MONITOR_STATUS_REG);
1502 IWL_CMD(CSR_DBG_HPET_MEM_REG);
1503 default:
1504 return "UNKNOWN";
1505 }
1506 #undef IWL_CMD
1507 }
1508
1509 void iwl_pcie_dump_csr(struct iwl_trans *trans)
1510 {
1511 int i;
1512 static const u32 csr_tbl[] = {
1513 CSR_HW_IF_CONFIG_REG,
1514 CSR_INT_COALESCING,
1515 CSR_INT,
1516 CSR_INT_MASK,
1517 CSR_FH_INT_STATUS,
1518 CSR_GPIO_IN,
1519 CSR_RESET,
1520 CSR_GP_CNTRL,
1521 CSR_HW_REV,
1522 CSR_EEPROM_REG,
1523 CSR_EEPROM_GP,
1524 CSR_OTP_GP_REG,
1525 CSR_GIO_REG,
1526 CSR_GP_UCODE_REG,
1527 CSR_GP_DRIVER_REG,
1528 CSR_UCODE_DRV_GP1,
1529 CSR_UCODE_DRV_GP2,
1530 CSR_LED_REG,
1531 CSR_DRAM_INT_TBL_REG,
1532 CSR_GIO_CHICKEN_BITS,
1533 CSR_ANA_PLL_CFG,
1534 CSR_MONITOR_STATUS_REG,
1535 CSR_HW_REV_WA_REG,
1536 CSR_DBG_HPET_MEM_REG
1537 };
1538 IWL_ERR(trans, "CSR values:\n");
1539 IWL_ERR(trans, "(2nd byte of CSR_INT_COALESCING is "
1540 "CSR_INT_PERIODIC_REG)\n");
1541 for (i = 0; i < ARRAY_SIZE(csr_tbl); i++) {
1542 IWL_ERR(trans, " %25s: 0X%08x\n",
1543 get_csr_string(csr_tbl[i]),
1544 iwl_read32(trans, csr_tbl[i]));
1545 }
1546 }
1547
1548 #ifdef CONFIG_IWLWIFI_DEBUGFS
1549 /* create and remove of files */
1550 #define DEBUGFS_ADD_FILE(name, parent, mode) do { \
1551 if (!debugfs_create_file(#name, mode, parent, trans, \
1552 &iwl_dbgfs_##name##_ops)) \
1553 goto err; \
1554 } while (0)
1555
1556 /* file operation */
1557 #define DEBUGFS_READ_FILE_OPS(name) \
1558 static const struct file_operations iwl_dbgfs_##name##_ops = { \
1559 .read = iwl_dbgfs_##name##_read, \
1560 .open = simple_open, \
1561 .llseek = generic_file_llseek, \
1562 };
1563
1564 #define DEBUGFS_WRITE_FILE_OPS(name) \
1565 static const struct file_operations iwl_dbgfs_##name##_ops = { \
1566 .write = iwl_dbgfs_##name##_write, \
1567 .open = simple_open, \
1568 .llseek = generic_file_llseek, \
1569 };
1570
1571 #define DEBUGFS_READ_WRITE_FILE_OPS(name) \
1572 static const struct file_operations iwl_dbgfs_##name##_ops = { \
1573 .write = iwl_dbgfs_##name##_write, \
1574 .read = iwl_dbgfs_##name##_read, \
1575 .open = simple_open, \
1576 .llseek = generic_file_llseek, \
1577 };
1578
1579 static ssize_t iwl_dbgfs_tx_queue_read(struct file *file,
1580 char __user *user_buf,
1581 size_t count, loff_t *ppos)
1582 {
1583 struct iwl_trans *trans = file->private_data;
1584 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1585 struct iwl_txq *txq;
1586 struct iwl_queue *q;
1587 char *buf;
1588 int pos = 0;
1589 int cnt;
1590 int ret;
1591 size_t bufsz;
1592
1593 bufsz = sizeof(char) * 64 * trans->cfg->base_params->num_of_queues;
1594
1595 if (!trans_pcie->txq)
1596 return -EAGAIN;
1597
1598 buf = kzalloc(bufsz, GFP_KERNEL);
1599 if (!buf)
1600 return -ENOMEM;
1601
1602 for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) {
1603 txq = &trans_pcie->txq[cnt];
1604 q = &txq->q;
1605 pos += scnprintf(buf + pos, bufsz - pos,
1606 "hwq %.2d: read=%u write=%u use=%d stop=%d need_update=%d%s\n",
1607 cnt, q->read_ptr, q->write_ptr,
1608 !!test_bit(cnt, trans_pcie->queue_used),
1609 !!test_bit(cnt, trans_pcie->queue_stopped),
1610 txq->need_update,
1611 (cnt == trans_pcie->cmd_queue ? " HCMD" : ""));
1612 }
1613 ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos);
1614 kfree(buf);
1615 return ret;
1616 }
1617
1618 static ssize_t iwl_dbgfs_rx_queue_read(struct file *file,
1619 char __user *user_buf,
1620 size_t count, loff_t *ppos)
1621 {
1622 struct iwl_trans *trans = file->private_data;
1623 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1624 struct iwl_rxq *rxq = &trans_pcie->rxq;
1625 char buf[256];
1626 int pos = 0;
1627 const size_t bufsz = sizeof(buf);
1628
1629 pos += scnprintf(buf + pos, bufsz - pos, "read: %u\n",
1630 rxq->read);
1631 pos += scnprintf(buf + pos, bufsz - pos, "write: %u\n",
1632 rxq->write);
1633 pos += scnprintf(buf + pos, bufsz - pos, "write_actual: %u\n",
1634 rxq->write_actual);
1635 pos += scnprintf(buf + pos, bufsz - pos, "need_update: %d\n",
1636 rxq->need_update);
1637 pos += scnprintf(buf + pos, bufsz - pos, "free_count: %u\n",
1638 rxq->free_count);
1639 if (rxq->rb_stts) {
1640 pos += scnprintf(buf + pos, bufsz - pos, "closed_rb_num: %u\n",
1641 le16_to_cpu(rxq->rb_stts->closed_rb_num) & 0x0FFF);
1642 } else {
1643 pos += scnprintf(buf + pos, bufsz - pos,
1644 "closed_rb_num: Not Allocated\n");
1645 }
1646 return simple_read_from_buffer(user_buf, count, ppos, buf, pos);
1647 }
1648
1649 static ssize_t iwl_dbgfs_interrupt_read(struct file *file,
1650 char __user *user_buf,
1651 size_t count, loff_t *ppos)
1652 {
1653 struct iwl_trans *trans = file->private_data;
1654 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1655 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1656
1657 int pos = 0;
1658 char *buf;
1659 int bufsz = 24 * 64; /* 24 items * 64 char per item */
1660 ssize_t ret;
1661
1662 buf = kzalloc(bufsz, GFP_KERNEL);
1663 if (!buf)
1664 return -ENOMEM;
1665
1666 pos += scnprintf(buf + pos, bufsz - pos,
1667 "Interrupt Statistics Report:\n");
1668
1669 pos += scnprintf(buf + pos, bufsz - pos, "HW Error:\t\t\t %u\n",
1670 isr_stats->hw);
1671 pos += scnprintf(buf + pos, bufsz - pos, "SW Error:\t\t\t %u\n",
1672 isr_stats->sw);
1673 if (isr_stats->sw || isr_stats->hw) {
1674 pos += scnprintf(buf + pos, bufsz - pos,
1675 "\tLast Restarting Code: 0x%X\n",
1676 isr_stats->err_code);
1677 }
1678 #ifdef CONFIG_IWLWIFI_DEBUG
1679 pos += scnprintf(buf + pos, bufsz - pos, "Frame transmitted:\t\t %u\n",
1680 isr_stats->sch);
1681 pos += scnprintf(buf + pos, bufsz - pos, "Alive interrupt:\t\t %u\n",
1682 isr_stats->alive);
1683 #endif
1684 pos += scnprintf(buf + pos, bufsz - pos,
1685 "HW RF KILL switch toggled:\t %u\n", isr_stats->rfkill);
1686
1687 pos += scnprintf(buf + pos, bufsz - pos, "CT KILL:\t\t\t %u\n",
1688 isr_stats->ctkill);
1689
1690 pos += scnprintf(buf + pos, bufsz - pos, "Wakeup Interrupt:\t\t %u\n",
1691 isr_stats->wakeup);
1692
1693 pos += scnprintf(buf + pos, bufsz - pos,
1694 "Rx command responses:\t\t %u\n", isr_stats->rx);
1695
1696 pos += scnprintf(buf + pos, bufsz - pos, "Tx/FH interrupt:\t\t %u\n",
1697 isr_stats->tx);
1698
1699 pos += scnprintf(buf + pos, bufsz - pos, "Unexpected INTA:\t\t %u\n",
1700 isr_stats->unhandled);
1701
1702 ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos);
1703 kfree(buf);
1704 return ret;
1705 }
1706
1707 static ssize_t iwl_dbgfs_interrupt_write(struct file *file,
1708 const char __user *user_buf,
1709 size_t count, loff_t *ppos)
1710 {
1711 struct iwl_trans *trans = file->private_data;
1712 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1713 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1714
1715 char buf[8];
1716 int buf_size;
1717 u32 reset_flag;
1718
1719 memset(buf, 0, sizeof(buf));
1720 buf_size = min(count, sizeof(buf) - 1);
1721 if (copy_from_user(buf, user_buf, buf_size))
1722 return -EFAULT;
1723 if (sscanf(buf, "%x", &reset_flag) != 1)
1724 return -EFAULT;
1725 if (reset_flag == 0)
1726 memset(isr_stats, 0, sizeof(*isr_stats));
1727
1728 return count;
1729 }
1730
1731 static ssize_t iwl_dbgfs_csr_write(struct file *file,
1732 const char __user *user_buf,
1733 size_t count, loff_t *ppos)
1734 {
1735 struct iwl_trans *trans = file->private_data;
1736 char buf[8];
1737 int buf_size;
1738 int csr;
1739
1740 memset(buf, 0, sizeof(buf));
1741 buf_size = min(count, sizeof(buf) - 1);
1742 if (copy_from_user(buf, user_buf, buf_size))
1743 return -EFAULT;
1744 if (sscanf(buf, "%d", &csr) != 1)
1745 return -EFAULT;
1746
1747 iwl_pcie_dump_csr(trans);
1748
1749 return count;
1750 }
1751
1752 static ssize_t iwl_dbgfs_fh_reg_read(struct file *file,
1753 char __user *user_buf,
1754 size_t count, loff_t *ppos)
1755 {
1756 struct iwl_trans *trans = file->private_data;
1757 char *buf = NULL;
1758 ssize_t ret;
1759
1760 ret = iwl_dump_fh(trans, &buf);
1761 if (ret < 0)
1762 return ret;
1763 if (!buf)
1764 return -EINVAL;
1765 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1766 kfree(buf);
1767 return ret;
1768 }
1769
1770 DEBUGFS_READ_WRITE_FILE_OPS(interrupt);
1771 DEBUGFS_READ_FILE_OPS(fh_reg);
1772 DEBUGFS_READ_FILE_OPS(rx_queue);
1773 DEBUGFS_READ_FILE_OPS(tx_queue);
1774 DEBUGFS_WRITE_FILE_OPS(csr);
1775
1776 /*
1777 * Create the debugfs files and directories
1778 *
1779 */
1780 static int iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans,
1781 struct dentry *dir)
1782 {
1783 DEBUGFS_ADD_FILE(rx_queue, dir, S_IRUSR);
1784 DEBUGFS_ADD_FILE(tx_queue, dir, S_IRUSR);
1785 DEBUGFS_ADD_FILE(interrupt, dir, S_IWUSR | S_IRUSR);
1786 DEBUGFS_ADD_FILE(csr, dir, S_IWUSR);
1787 DEBUGFS_ADD_FILE(fh_reg, dir, S_IRUSR);
1788 return 0;
1789
1790 err:
1791 IWL_ERR(trans, "failed to create the trans debugfs entry\n");
1792 return -ENOMEM;
1793 }
1794 #else
1795 static int iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans,
1796 struct dentry *dir)
1797 {
1798 return 0;
1799 }
1800 #endif /*CONFIG_IWLWIFI_DEBUGFS */
1801
1802 static u32 iwl_trans_pcie_get_cmdlen(struct iwl_tfd *tfd)
1803 {
1804 u32 cmdlen = 0;
1805 int i;
1806
1807 for (i = 0; i < IWL_NUM_OF_TBS; i++)
1808 cmdlen += iwl_pcie_tfd_tb_get_len(tfd, i);
1809
1810 return cmdlen;
1811 }
1812
1813 static const struct {
1814 u32 start, end;
1815 } iwl_prph_dump_addr[] = {
1816 { .start = 0x00a00000, .end = 0x00a00000 },
1817 { .start = 0x00a0000c, .end = 0x00a00024 },
1818 { .start = 0x00a0002c, .end = 0x00a0003c },
1819 { .start = 0x00a00410, .end = 0x00a00418 },
1820 { .start = 0x00a00420, .end = 0x00a00420 },
1821 { .start = 0x00a00428, .end = 0x00a00428 },
1822 { .start = 0x00a00430, .end = 0x00a0043c },
1823 { .start = 0x00a00444, .end = 0x00a00444 },
1824 { .start = 0x00a004c0, .end = 0x00a004cc },
1825 { .start = 0x00a004d8, .end = 0x00a004d8 },
1826 { .start = 0x00a004e0, .end = 0x00a004f0 },
1827 { .start = 0x00a00840, .end = 0x00a00840 },
1828 { .start = 0x00a00850, .end = 0x00a00858 },
1829 { .start = 0x00a01004, .end = 0x00a01008 },
1830 { .start = 0x00a01010, .end = 0x00a01010 },
1831 { .start = 0x00a01018, .end = 0x00a01018 },
1832 { .start = 0x00a01024, .end = 0x00a01024 },
1833 { .start = 0x00a0102c, .end = 0x00a01034 },
1834 { .start = 0x00a0103c, .end = 0x00a01040 },
1835 { .start = 0x00a01048, .end = 0x00a01094 },
1836 { .start = 0x00a01c00, .end = 0x00a01c20 },
1837 { .start = 0x00a01c58, .end = 0x00a01c58 },
1838 { .start = 0x00a01c7c, .end = 0x00a01c7c },
1839 { .start = 0x00a01c28, .end = 0x00a01c54 },
1840 { .start = 0x00a01c5c, .end = 0x00a01c5c },
1841 { .start = 0x00a01c84, .end = 0x00a01c84 },
1842 { .start = 0x00a01ce0, .end = 0x00a01d0c },
1843 { .start = 0x00a01d18, .end = 0x00a01d20 },
1844 { .start = 0x00a01d2c, .end = 0x00a01d30 },
1845 { .start = 0x00a01d40, .end = 0x00a01d5c },
1846 { .start = 0x00a01d80, .end = 0x00a01d80 },
1847 { .start = 0x00a01d98, .end = 0x00a01d98 },
1848 { .start = 0x00a01dc0, .end = 0x00a01dfc },
1849 { .start = 0x00a01e00, .end = 0x00a01e2c },
1850 { .start = 0x00a01e40, .end = 0x00a01e60 },
1851 { .start = 0x00a01e84, .end = 0x00a01e90 },
1852 { .start = 0x00a01e9c, .end = 0x00a01ec4 },
1853 { .start = 0x00a01ed0, .end = 0x00a01ed0 },
1854 { .start = 0x00a01f00, .end = 0x00a01f14 },
1855 { .start = 0x00a01f44, .end = 0x00a01f58 },
1856 { .start = 0x00a01f80, .end = 0x00a01fa8 },
1857 { .start = 0x00a01fb0, .end = 0x00a01fbc },
1858 { .start = 0x00a01ff8, .end = 0x00a01ffc },
1859 { .start = 0x00a02000, .end = 0x00a02048 },
1860 { .start = 0x00a02068, .end = 0x00a020f0 },
1861 { .start = 0x00a02100, .end = 0x00a02118 },
1862 { .start = 0x00a02140, .end = 0x00a0214c },
1863 { .start = 0x00a02168, .end = 0x00a0218c },
1864 { .start = 0x00a021c0, .end = 0x00a021c0 },
1865 { .start = 0x00a02400, .end = 0x00a02410 },
1866 { .start = 0x00a02418, .end = 0x00a02420 },
1867 { .start = 0x00a02428, .end = 0x00a0242c },
1868 { .start = 0x00a02434, .end = 0x00a02434 },
1869 { .start = 0x00a02440, .end = 0x00a02460 },
1870 { .start = 0x00a02468, .end = 0x00a024b0 },
1871 { .start = 0x00a024c8, .end = 0x00a024cc },
1872 { .start = 0x00a02500, .end = 0x00a02504 },
1873 { .start = 0x00a0250c, .end = 0x00a02510 },
1874 { .start = 0x00a02540, .end = 0x00a02554 },
1875 { .start = 0x00a02580, .end = 0x00a025f4 },
1876 { .start = 0x00a02600, .end = 0x00a0260c },
1877 { .start = 0x00a02648, .end = 0x00a02650 },
1878 { .start = 0x00a02680, .end = 0x00a02680 },
1879 { .start = 0x00a026c0, .end = 0x00a026d0 },
1880 { .start = 0x00a02700, .end = 0x00a0270c },
1881 { .start = 0x00a02804, .end = 0x00a02804 },
1882 { .start = 0x00a02818, .end = 0x00a0281c },
1883 { .start = 0x00a02c00, .end = 0x00a02db4 },
1884 { .start = 0x00a02df4, .end = 0x00a02fb0 },
1885 { .start = 0x00a03000, .end = 0x00a03014 },
1886 { .start = 0x00a0301c, .end = 0x00a0302c },
1887 { .start = 0x00a03034, .end = 0x00a03038 },
1888 { .start = 0x00a03040, .end = 0x00a03048 },
1889 { .start = 0x00a03060, .end = 0x00a03068 },
1890 { .start = 0x00a03070, .end = 0x00a03074 },
1891 { .start = 0x00a0307c, .end = 0x00a0307c },
1892 { .start = 0x00a03080, .end = 0x00a03084 },
1893 { .start = 0x00a0308c, .end = 0x00a03090 },
1894 { .start = 0x00a03098, .end = 0x00a03098 },
1895 { .start = 0x00a030a0, .end = 0x00a030a0 },
1896 { .start = 0x00a030a8, .end = 0x00a030b4 },
1897 { .start = 0x00a030bc, .end = 0x00a030bc },
1898 { .start = 0x00a030c0, .end = 0x00a0312c },
1899 { .start = 0x00a03c00, .end = 0x00a03c5c },
1900 { .start = 0x00a04400, .end = 0x00a04454 },
1901 { .start = 0x00a04460, .end = 0x00a04474 },
1902 { .start = 0x00a044c0, .end = 0x00a044ec },
1903 { .start = 0x00a04500, .end = 0x00a04504 },
1904 { .start = 0x00a04510, .end = 0x00a04538 },
1905 { .start = 0x00a04540, .end = 0x00a04548 },
1906 { .start = 0x00a04560, .end = 0x00a0457c },
1907 { .start = 0x00a04590, .end = 0x00a04598 },
1908 { .start = 0x00a045c0, .end = 0x00a045f4 },
1909 };
1910
1911 static u32 iwl_trans_pcie_dump_prph(struct iwl_trans *trans,
1912 struct iwl_fw_error_dump_data **data)
1913 {
1914 struct iwl_fw_error_dump_prph *prph;
1915 unsigned long flags;
1916 u32 prph_len = 0, i;
1917
1918 if (!iwl_trans_grab_nic_access(trans, false, &flags))
1919 return 0;
1920
1921 for (i = 0; i < ARRAY_SIZE(iwl_prph_dump_addr); i++) {
1922 /* The range includes both boundaries */
1923 int num_bytes_in_chunk = iwl_prph_dump_addr[i].end -
1924 iwl_prph_dump_addr[i].start + 4;
1925 int reg;
1926 __le32 *val;
1927
1928 prph_len += sizeof(**data) + sizeof(*prph) + num_bytes_in_chunk;
1929
1930 (*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_PRPH);
1931 (*data)->len = cpu_to_le32(sizeof(*prph) +
1932 num_bytes_in_chunk);
1933 prph = (void *)(*data)->data;
1934 prph->prph_start = cpu_to_le32(iwl_prph_dump_addr[i].start);
1935 val = (void *)prph->data;
1936
1937 for (reg = iwl_prph_dump_addr[i].start;
1938 reg <= iwl_prph_dump_addr[i].end;
1939 reg += 4)
1940 *val++ = cpu_to_le32(iwl_trans_pcie_read_prph(trans,
1941 reg));
1942 *data = iwl_fw_error_next_data(*data);
1943 }
1944
1945 iwl_trans_release_nic_access(trans, &flags);
1946
1947 return prph_len;
1948 }
1949
1950 #define IWL_CSR_TO_DUMP (0x250)
1951
1952 static u32 iwl_trans_pcie_dump_csr(struct iwl_trans *trans,
1953 struct iwl_fw_error_dump_data **data)
1954 {
1955 u32 csr_len = sizeof(**data) + IWL_CSR_TO_DUMP;
1956 __le32 *val;
1957 int i;
1958
1959 (*data)->type = cpu_to_le32(IWL_FW_ERROR_DUMP_CSR);
1960 (*data)->len = cpu_to_le32(IWL_CSR_TO_DUMP);
1961 val = (void *)(*data)->data;
1962
1963 for (i = 0; i < IWL_CSR_TO_DUMP; i += 4)
1964 *val++ = cpu_to_le32(iwl_trans_pcie_read32(trans, i));
1965
1966 *data = iwl_fw_error_next_data(*data);
1967
1968 return csr_len;
1969 }
1970
1971 static
1972 struct iwl_trans_dump_data *iwl_trans_pcie_dump_data(struct iwl_trans *trans)
1973 {
1974 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1975 struct iwl_fw_error_dump_data *data;
1976 struct iwl_txq *cmdq = &trans_pcie->txq[trans_pcie->cmd_queue];
1977 struct iwl_fw_error_dump_txcmd *txcmd;
1978 struct iwl_trans_dump_data *dump_data;
1979 u32 len;
1980 int i, ptr;
1981
1982 /* transport dump header */
1983 len = sizeof(*dump_data);
1984
1985 /* host commands */
1986 len += sizeof(*data) +
1987 cmdq->q.n_window * (sizeof(*txcmd) + TFD_MAX_PAYLOAD_SIZE);
1988
1989 /* CSR registers */
1990 len += sizeof(*data) + IWL_CSR_TO_DUMP;
1991
1992 /* PRPH registers */
1993 for (i = 0; i < ARRAY_SIZE(iwl_prph_dump_addr); i++) {
1994 /* The range includes both boundaries */
1995 int num_bytes_in_chunk = iwl_prph_dump_addr[i].end -
1996 iwl_prph_dump_addr[i].start + 4;
1997
1998 len += sizeof(*data) + sizeof(struct iwl_fw_error_dump_prph) +
1999 num_bytes_in_chunk;
2000 }
2001
2002 /* FW monitor */
2003 if (trans_pcie->fw_mon_page)
2004 len += sizeof(*data) + sizeof(struct iwl_fw_error_dump_fw_mon) +
2005 trans_pcie->fw_mon_size;
2006
2007 dump_data = vzalloc(len);
2008 if (!dump_data)
2009 return NULL;
2010
2011 len = 0;
2012 data = (void *)dump_data->data;
2013 data->type = cpu_to_le32(IWL_FW_ERROR_DUMP_TXCMD);
2014 txcmd = (void *)data->data;
2015 spin_lock_bh(&cmdq->lock);
2016 ptr = cmdq->q.write_ptr;
2017 for (i = 0; i < cmdq->q.n_window; i++) {
2018 u8 idx = get_cmd_index(&cmdq->q, ptr);
2019 u32 caplen, cmdlen;
2020
2021 cmdlen = iwl_trans_pcie_get_cmdlen(&cmdq->tfds[ptr]);
2022 caplen = min_t(u32, TFD_MAX_PAYLOAD_SIZE, cmdlen);
2023
2024 if (cmdlen) {
2025 len += sizeof(*txcmd) + caplen;
2026 txcmd->cmdlen = cpu_to_le32(cmdlen);
2027 txcmd->caplen = cpu_to_le32(caplen);
2028 memcpy(txcmd->data, cmdq->entries[idx].cmd, caplen);
2029 txcmd = (void *)((u8 *)txcmd->data + caplen);
2030 }
2031
2032 ptr = iwl_queue_dec_wrap(ptr);
2033 }
2034 spin_unlock_bh(&cmdq->lock);
2035
2036 data->len = cpu_to_le32(len);
2037 len += sizeof(*data);
2038 data = iwl_fw_error_next_data(data);
2039
2040 len += iwl_trans_pcie_dump_prph(trans, &data);
2041 len += iwl_trans_pcie_dump_csr(trans, &data);
2042 /* data is already pointing to the next section */
2043
2044 if (trans_pcie->fw_mon_page) {
2045 struct iwl_fw_error_dump_fw_mon *fw_mon_data;
2046
2047 data->type = cpu_to_le32(IWL_FW_ERROR_DUMP_FW_MONITOR);
2048 data->len = cpu_to_le32(trans_pcie->fw_mon_size +
2049 sizeof(*fw_mon_data));
2050 fw_mon_data = (void *)data->data;
2051 fw_mon_data->fw_mon_wr_ptr =
2052 cpu_to_le32(iwl_read_prph(trans, MON_BUFF_WRPTR));
2053 fw_mon_data->fw_mon_cycle_cnt =
2054 cpu_to_le32(iwl_read_prph(trans, MON_BUFF_CYCLE_CNT));
2055 fw_mon_data->fw_mon_base_ptr =
2056 cpu_to_le32(iwl_read_prph(trans, MON_BUFF_BASE_ADDR));
2057
2058 /*
2059 * The firmware is now asserted, it won't write anything to
2060 * the buffer. CPU can take ownership to fetch the data.
2061 * The buffer will be handed back to the device before the
2062 * firmware will be restarted.
2063 */
2064 dma_sync_single_for_cpu(trans->dev, trans_pcie->fw_mon_phys,
2065 trans_pcie->fw_mon_size,
2066 DMA_FROM_DEVICE);
2067 memcpy(fw_mon_data->data, page_address(trans_pcie->fw_mon_page),
2068 trans_pcie->fw_mon_size);
2069
2070 len += sizeof(*data) + sizeof(*fw_mon_data) +
2071 trans_pcie->fw_mon_size;
2072 }
2073
2074 dump_data->len = len;
2075
2076 return dump_data;
2077 }
2078
2079 static const struct iwl_trans_ops trans_ops_pcie = {
2080 .start_hw = iwl_trans_pcie_start_hw,
2081 .op_mode_leave = iwl_trans_pcie_op_mode_leave,
2082 .fw_alive = iwl_trans_pcie_fw_alive,
2083 .start_fw = iwl_trans_pcie_start_fw,
2084 .stop_device = iwl_trans_pcie_stop_device,
2085
2086 .d3_suspend = iwl_trans_pcie_d3_suspend,
2087 .d3_resume = iwl_trans_pcie_d3_resume,
2088
2089 .send_cmd = iwl_trans_pcie_send_hcmd,
2090
2091 .tx = iwl_trans_pcie_tx,
2092 .reclaim = iwl_trans_pcie_reclaim,
2093
2094 .txq_disable = iwl_trans_pcie_txq_disable,
2095 .txq_enable = iwl_trans_pcie_txq_enable,
2096
2097 .dbgfs_register = iwl_trans_pcie_dbgfs_register,
2098
2099 .wait_tx_queue_empty = iwl_trans_pcie_wait_txq_empty,
2100
2101 .write8 = iwl_trans_pcie_write8,
2102 .write32 = iwl_trans_pcie_write32,
2103 .read32 = iwl_trans_pcie_read32,
2104 .read_prph = iwl_trans_pcie_read_prph,
2105 .write_prph = iwl_trans_pcie_write_prph,
2106 .read_mem = iwl_trans_pcie_read_mem,
2107 .write_mem = iwl_trans_pcie_write_mem,
2108 .configure = iwl_trans_pcie_configure,
2109 .set_pmi = iwl_trans_pcie_set_pmi,
2110 .grab_nic_access = iwl_trans_pcie_grab_nic_access,
2111 .release_nic_access = iwl_trans_pcie_release_nic_access,
2112 .set_bits_mask = iwl_trans_pcie_set_bits_mask,
2113
2114 .dump_data = iwl_trans_pcie_dump_data,
2115 };
2116
2117 struct iwl_trans *iwl_trans_pcie_alloc(struct pci_dev *pdev,
2118 const struct pci_device_id *ent,
2119 const struct iwl_cfg *cfg)
2120 {
2121 struct iwl_trans_pcie *trans_pcie;
2122 struct iwl_trans *trans;
2123 u16 pci_cmd;
2124 int err;
2125
2126 trans = kzalloc(sizeof(struct iwl_trans) +
2127 sizeof(struct iwl_trans_pcie), GFP_KERNEL);
2128 if (!trans) {
2129 err = -ENOMEM;
2130 goto out;
2131 }
2132
2133 trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2134
2135 trans->ops = &trans_ops_pcie;
2136 trans->cfg = cfg;
2137 trans_lockdep_init(trans);
2138 trans_pcie->trans = trans;
2139 spin_lock_init(&trans_pcie->irq_lock);
2140 spin_lock_init(&trans_pcie->reg_lock);
2141 init_waitqueue_head(&trans_pcie->ucode_write_waitq);
2142
2143 err = pci_enable_device(pdev);
2144 if (err)
2145 goto out_no_pci;
2146
2147 if (!cfg->base_params->pcie_l1_allowed) {
2148 /*
2149 * W/A - seems to solve weird behavior. We need to remove this
2150 * if we don't want to stay in L1 all the time. This wastes a
2151 * lot of power.
2152 */
2153 pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S |
2154 PCIE_LINK_STATE_L1 |
2155 PCIE_LINK_STATE_CLKPM);
2156 }
2157
2158 pci_set_master(pdev);
2159
2160 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(36));
2161 if (!err)
2162 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(36));
2163 if (err) {
2164 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2165 if (!err)
2166 err = pci_set_consistent_dma_mask(pdev,
2167 DMA_BIT_MASK(32));
2168 /* both attempts failed: */
2169 if (err) {
2170 dev_err(&pdev->dev, "No suitable DMA available\n");
2171 goto out_pci_disable_device;
2172 }
2173 }
2174
2175 err = pci_request_regions(pdev, DRV_NAME);
2176 if (err) {
2177 dev_err(&pdev->dev, "pci_request_regions failed\n");
2178 goto out_pci_disable_device;
2179 }
2180
2181 trans_pcie->hw_base = pci_ioremap_bar(pdev, 0);
2182 if (!trans_pcie->hw_base) {
2183 dev_err(&pdev->dev, "pci_ioremap_bar failed\n");
2184 err = -ENODEV;
2185 goto out_pci_release_regions;
2186 }
2187
2188 /* We disable the RETRY_TIMEOUT register (0x41) to keep
2189 * PCI Tx retries from interfering with C3 CPU state */
2190 pci_write_config_byte(pdev, PCI_CFG_RETRY_TIMEOUT, 0x00);
2191
2192 trans->dev = &pdev->dev;
2193 trans_pcie->pci_dev = pdev;
2194 iwl_disable_interrupts(trans);
2195
2196 err = pci_enable_msi(pdev);
2197 if (err) {
2198 dev_err(&pdev->dev, "pci_enable_msi failed(0X%x)\n", err);
2199 /* enable rfkill interrupt: hw bug w/a */
2200 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
2201 if (pci_cmd & PCI_COMMAND_INTX_DISABLE) {
2202 pci_cmd &= ~PCI_COMMAND_INTX_DISABLE;
2203 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
2204 }
2205 }
2206
2207 trans->hw_rev = iwl_read32(trans, CSR_HW_REV);
2208 /*
2209 * In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have
2210 * changed, and now the revision step also includes bit 0-1 (no more
2211 * "dash" value). To keep hw_rev backwards compatible - we'll store it
2212 * in the old format.
2213 */
2214 if (trans->cfg->device_family == IWL_DEVICE_FAMILY_8000)
2215 trans->hw_rev = (trans->hw_rev & 0xfff0) |
2216 (CSR_HW_REV_STEP(trans->hw_rev << 2) << 2);
2217
2218 trans->hw_id = (pdev->device << 16) + pdev->subsystem_device;
2219 snprintf(trans->hw_id_str, sizeof(trans->hw_id_str),
2220 "PCI ID: 0x%04X:0x%04X", pdev->device, pdev->subsystem_device);
2221
2222 /* Initialize the wait queue for commands */
2223 init_waitqueue_head(&trans_pcie->wait_command_queue);
2224
2225 snprintf(trans->dev_cmd_pool_name, sizeof(trans->dev_cmd_pool_name),
2226 "iwl_cmd_pool:%s", dev_name(trans->dev));
2227
2228 trans->dev_cmd_headroom = 0;
2229 trans->dev_cmd_pool =
2230 kmem_cache_create(trans->dev_cmd_pool_name,
2231 sizeof(struct iwl_device_cmd)
2232 + trans->dev_cmd_headroom,
2233 sizeof(void *),
2234 SLAB_HWCACHE_ALIGN,
2235 NULL);
2236
2237 if (!trans->dev_cmd_pool) {
2238 err = -ENOMEM;
2239 goto out_pci_disable_msi;
2240 }
2241
2242 if (iwl_pcie_alloc_ict(trans))
2243 goto out_free_cmd_pool;
2244
2245 err = request_threaded_irq(pdev->irq, iwl_pcie_isr,
2246 iwl_pcie_irq_handler,
2247 IRQF_SHARED, DRV_NAME, trans);
2248 if (err) {
2249 IWL_ERR(trans, "Error allocating IRQ %d\n", pdev->irq);
2250 goto out_free_ict;
2251 }
2252
2253 trans_pcie->inta_mask = CSR_INI_SET_MASK;
2254
2255 return trans;
2256
2257 out_free_ict:
2258 iwl_pcie_free_ict(trans);
2259 out_free_cmd_pool:
2260 kmem_cache_destroy(trans->dev_cmd_pool);
2261 out_pci_disable_msi:
2262 pci_disable_msi(pdev);
2263 out_pci_release_regions:
2264 pci_release_regions(pdev);
2265 out_pci_disable_device:
2266 pci_disable_device(pdev);
2267 out_no_pci:
2268 kfree(trans);
2269 out:
2270 return ERR_PTR(err);
2271 }
This page took 0.077267 seconds and 4 git commands to generate.