mac80211: split TX aggregation stop action
[deliverable/linux.git] / drivers / net / wireless / mac80211_hwsim.c
1 /*
2 * mac80211_hwsim - software simulator of 802.11 radio(s) for mac80211
3 * Copyright (c) 2008, Jouni Malinen <j@w1.fi>
4 * Copyright (c) 2011, Javier Lopez <jlopex@gmail.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 /*
12 * TODO:
13 * - Add TSF sync and fix IBSS beacon transmission by adding
14 * competition for "air time" at TBTT
15 * - RX filtering based on filter configuration (data->rx_filter)
16 */
17
18 #include <linux/list.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <net/dst.h>
22 #include <net/xfrm.h>
23 #include <net/mac80211.h>
24 #include <net/ieee80211_radiotap.h>
25 #include <linux/if_arp.h>
26 #include <linux/rtnetlink.h>
27 #include <linux/etherdevice.h>
28 #include <linux/debugfs.h>
29 #include <linux/module.h>
30 #include <linux/ktime.h>
31 #include <net/genetlink.h>
32 #include "mac80211_hwsim.h"
33
34 #define WARN_QUEUE 100
35 #define MAX_QUEUE 200
36
37 MODULE_AUTHOR("Jouni Malinen");
38 MODULE_DESCRIPTION("Software simulator of 802.11 radio(s) for mac80211");
39 MODULE_LICENSE("GPL");
40
41 static u32 wmediumd_portid;
42
43 static int radios = 2;
44 module_param(radios, int, 0444);
45 MODULE_PARM_DESC(radios, "Number of simulated radios");
46
47 static int channels = 1;
48 module_param(channels, int, 0444);
49 MODULE_PARM_DESC(channels, "Number of concurrent channels");
50
51 static bool paged_rx = false;
52 module_param(paged_rx, bool, 0644);
53 MODULE_PARM_DESC(paged_rx, "Use paged SKBs for RX instead of linear ones");
54
55 /**
56 * enum hwsim_regtest - the type of regulatory tests we offer
57 *
58 * These are the different values you can use for the regtest
59 * module parameter. This is useful to help test world roaming
60 * and the driver regulatory_hint() call and combinations of these.
61 * If you want to do specific alpha2 regulatory domain tests simply
62 * use the userspace regulatory request as that will be respected as
63 * well without the need of this module parameter. This is designed
64 * only for testing the driver regulatory request, world roaming
65 * and all possible combinations.
66 *
67 * @HWSIM_REGTEST_DISABLED: No regulatory tests are performed,
68 * this is the default value.
69 * @HWSIM_REGTEST_DRIVER_REG_FOLLOW: Used for testing the driver regulatory
70 * hint, only one driver regulatory hint will be sent as such the
71 * secondary radios are expected to follow.
72 * @HWSIM_REGTEST_DRIVER_REG_ALL: Used for testing the driver regulatory
73 * request with all radios reporting the same regulatory domain.
74 * @HWSIM_REGTEST_DIFF_COUNTRY: Used for testing the drivers calling
75 * different regulatory domains requests. Expected behaviour is for
76 * an intersection to occur but each device will still use their
77 * respective regulatory requested domains. Subsequent radios will
78 * use the resulting intersection.
79 * @HWSIM_REGTEST_WORLD_ROAM: Used for testing the world roaming. We accomplish
80 * this by using a custom beacon-capable regulatory domain for the first
81 * radio. All other device world roam.
82 * @HWSIM_REGTEST_CUSTOM_WORLD: Used for testing the custom world regulatory
83 * domain requests. All radios will adhere to this custom world regulatory
84 * domain.
85 * @HWSIM_REGTEST_CUSTOM_WORLD_2: Used for testing 2 custom world regulatory
86 * domain requests. The first radio will adhere to the first custom world
87 * regulatory domain, the second one to the second custom world regulatory
88 * domain. All other devices will world roam.
89 * @HWSIM_REGTEST_STRICT_FOLLOW_: Used for testing strict regulatory domain
90 * settings, only the first radio will send a regulatory domain request
91 * and use strict settings. The rest of the radios are expected to follow.
92 * @HWSIM_REGTEST_STRICT_ALL: Used for testing strict regulatory domain
93 * settings. All radios will adhere to this.
94 * @HWSIM_REGTEST_STRICT_AND_DRIVER_REG: Used for testing strict regulatory
95 * domain settings, combined with secondary driver regulatory domain
96 * settings. The first radio will get a strict regulatory domain setting
97 * using the first driver regulatory request and the second radio will use
98 * non-strict settings using the second driver regulatory request. All
99 * other devices should follow the intersection created between the
100 * first two.
101 * @HWSIM_REGTEST_ALL: Used for testing every possible mix. You will need
102 * at least 6 radios for a complete test. We will test in this order:
103 * 1 - driver custom world regulatory domain
104 * 2 - second custom world regulatory domain
105 * 3 - first driver regulatory domain request
106 * 4 - second driver regulatory domain request
107 * 5 - strict regulatory domain settings using the third driver regulatory
108 * domain request
109 * 6 and on - should follow the intersection of the 3rd, 4rth and 5th radio
110 * regulatory requests.
111 */
112 enum hwsim_regtest {
113 HWSIM_REGTEST_DISABLED = 0,
114 HWSIM_REGTEST_DRIVER_REG_FOLLOW = 1,
115 HWSIM_REGTEST_DRIVER_REG_ALL = 2,
116 HWSIM_REGTEST_DIFF_COUNTRY = 3,
117 HWSIM_REGTEST_WORLD_ROAM = 4,
118 HWSIM_REGTEST_CUSTOM_WORLD = 5,
119 HWSIM_REGTEST_CUSTOM_WORLD_2 = 6,
120 HWSIM_REGTEST_STRICT_FOLLOW = 7,
121 HWSIM_REGTEST_STRICT_ALL = 8,
122 HWSIM_REGTEST_STRICT_AND_DRIVER_REG = 9,
123 HWSIM_REGTEST_ALL = 10,
124 };
125
126 /* Set to one of the HWSIM_REGTEST_* values above */
127 static int regtest = HWSIM_REGTEST_DISABLED;
128 module_param(regtest, int, 0444);
129 MODULE_PARM_DESC(regtest, "The type of regulatory test we want to run");
130
131 static const char *hwsim_alpha2s[] = {
132 "FI",
133 "AL",
134 "US",
135 "DE",
136 "JP",
137 "AL",
138 };
139
140 static const struct ieee80211_regdomain hwsim_world_regdom_custom_01 = {
141 .n_reg_rules = 4,
142 .alpha2 = "99",
143 .reg_rules = {
144 REG_RULE(2412-10, 2462+10, 40, 0, 20, 0),
145 REG_RULE(2484-10, 2484+10, 40, 0, 20, 0),
146 REG_RULE(5150-10, 5240+10, 40, 0, 30, 0),
147 REG_RULE(5745-10, 5825+10, 40, 0, 30, 0),
148 }
149 };
150
151 static const struct ieee80211_regdomain hwsim_world_regdom_custom_02 = {
152 .n_reg_rules = 2,
153 .alpha2 = "99",
154 .reg_rules = {
155 REG_RULE(2412-10, 2462+10, 40, 0, 20, 0),
156 REG_RULE(5725-10, 5850+10, 40, 0, 30,
157 NL80211_RRF_PASSIVE_SCAN | NL80211_RRF_NO_IBSS),
158 }
159 };
160
161 struct hwsim_vif_priv {
162 u32 magic;
163 u8 bssid[ETH_ALEN];
164 bool assoc;
165 u16 aid;
166 };
167
168 #define HWSIM_VIF_MAGIC 0x69537748
169
170 static inline void hwsim_check_magic(struct ieee80211_vif *vif)
171 {
172 struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
173 WARN(vp->magic != HWSIM_VIF_MAGIC,
174 "Invalid VIF (%p) magic %#x, %pM, %d/%d\n",
175 vif, vp->magic, vif->addr, vif->type, vif->p2p);
176 }
177
178 static inline void hwsim_set_magic(struct ieee80211_vif *vif)
179 {
180 struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
181 vp->magic = HWSIM_VIF_MAGIC;
182 }
183
184 static inline void hwsim_clear_magic(struct ieee80211_vif *vif)
185 {
186 struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
187 vp->magic = 0;
188 }
189
190 struct hwsim_sta_priv {
191 u32 magic;
192 };
193
194 #define HWSIM_STA_MAGIC 0x6d537749
195
196 static inline void hwsim_check_sta_magic(struct ieee80211_sta *sta)
197 {
198 struct hwsim_sta_priv *sp = (void *)sta->drv_priv;
199 WARN_ON(sp->magic != HWSIM_STA_MAGIC);
200 }
201
202 static inline void hwsim_set_sta_magic(struct ieee80211_sta *sta)
203 {
204 struct hwsim_sta_priv *sp = (void *)sta->drv_priv;
205 sp->magic = HWSIM_STA_MAGIC;
206 }
207
208 static inline void hwsim_clear_sta_magic(struct ieee80211_sta *sta)
209 {
210 struct hwsim_sta_priv *sp = (void *)sta->drv_priv;
211 sp->magic = 0;
212 }
213
214 struct hwsim_chanctx_priv {
215 u32 magic;
216 };
217
218 #define HWSIM_CHANCTX_MAGIC 0x6d53774a
219
220 static inline void hwsim_check_chanctx_magic(struct ieee80211_chanctx_conf *c)
221 {
222 struct hwsim_chanctx_priv *cp = (void *)c->drv_priv;
223 WARN_ON(cp->magic != HWSIM_CHANCTX_MAGIC);
224 }
225
226 static inline void hwsim_set_chanctx_magic(struct ieee80211_chanctx_conf *c)
227 {
228 struct hwsim_chanctx_priv *cp = (void *)c->drv_priv;
229 cp->magic = HWSIM_CHANCTX_MAGIC;
230 }
231
232 static inline void hwsim_clear_chanctx_magic(struct ieee80211_chanctx_conf *c)
233 {
234 struct hwsim_chanctx_priv *cp = (void *)c->drv_priv;
235 cp->magic = 0;
236 }
237
238 static struct class *hwsim_class;
239
240 static struct net_device *hwsim_mon; /* global monitor netdev */
241
242 #define CHAN2G(_freq) { \
243 .band = IEEE80211_BAND_2GHZ, \
244 .center_freq = (_freq), \
245 .hw_value = (_freq), \
246 .max_power = 20, \
247 }
248
249 #define CHAN5G(_freq) { \
250 .band = IEEE80211_BAND_5GHZ, \
251 .center_freq = (_freq), \
252 .hw_value = (_freq), \
253 .max_power = 20, \
254 }
255
256 static const struct ieee80211_channel hwsim_channels_2ghz[] = {
257 CHAN2G(2412), /* Channel 1 */
258 CHAN2G(2417), /* Channel 2 */
259 CHAN2G(2422), /* Channel 3 */
260 CHAN2G(2427), /* Channel 4 */
261 CHAN2G(2432), /* Channel 5 */
262 CHAN2G(2437), /* Channel 6 */
263 CHAN2G(2442), /* Channel 7 */
264 CHAN2G(2447), /* Channel 8 */
265 CHAN2G(2452), /* Channel 9 */
266 CHAN2G(2457), /* Channel 10 */
267 CHAN2G(2462), /* Channel 11 */
268 CHAN2G(2467), /* Channel 12 */
269 CHAN2G(2472), /* Channel 13 */
270 CHAN2G(2484), /* Channel 14 */
271 };
272
273 static const struct ieee80211_channel hwsim_channels_5ghz[] = {
274 CHAN5G(5180), /* Channel 36 */
275 CHAN5G(5200), /* Channel 40 */
276 CHAN5G(5220), /* Channel 44 */
277 CHAN5G(5240), /* Channel 48 */
278
279 CHAN5G(5260), /* Channel 52 */
280 CHAN5G(5280), /* Channel 56 */
281 CHAN5G(5300), /* Channel 60 */
282 CHAN5G(5320), /* Channel 64 */
283
284 CHAN5G(5500), /* Channel 100 */
285 CHAN5G(5520), /* Channel 104 */
286 CHAN5G(5540), /* Channel 108 */
287 CHAN5G(5560), /* Channel 112 */
288 CHAN5G(5580), /* Channel 116 */
289 CHAN5G(5600), /* Channel 120 */
290 CHAN5G(5620), /* Channel 124 */
291 CHAN5G(5640), /* Channel 128 */
292 CHAN5G(5660), /* Channel 132 */
293 CHAN5G(5680), /* Channel 136 */
294 CHAN5G(5700), /* Channel 140 */
295
296 CHAN5G(5745), /* Channel 149 */
297 CHAN5G(5765), /* Channel 153 */
298 CHAN5G(5785), /* Channel 157 */
299 CHAN5G(5805), /* Channel 161 */
300 CHAN5G(5825), /* Channel 165 */
301 };
302
303 static const struct ieee80211_rate hwsim_rates[] = {
304 { .bitrate = 10 },
305 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
306 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
307 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
308 { .bitrate = 60 },
309 { .bitrate = 90 },
310 { .bitrate = 120 },
311 { .bitrate = 180 },
312 { .bitrate = 240 },
313 { .bitrate = 360 },
314 { .bitrate = 480 },
315 { .bitrate = 540 }
316 };
317
318 static spinlock_t hwsim_radio_lock;
319 static struct list_head hwsim_radios;
320
321 struct mac80211_hwsim_data {
322 struct list_head list;
323 struct ieee80211_hw *hw;
324 struct device *dev;
325 struct ieee80211_supported_band bands[IEEE80211_NUM_BANDS];
326 struct ieee80211_channel channels_2ghz[ARRAY_SIZE(hwsim_channels_2ghz)];
327 struct ieee80211_channel channels_5ghz[ARRAY_SIZE(hwsim_channels_5ghz)];
328 struct ieee80211_rate rates[ARRAY_SIZE(hwsim_rates)];
329
330 struct mac_address addresses[2];
331
332 struct ieee80211_channel *tmp_chan;
333 struct delayed_work roc_done;
334 struct delayed_work hw_scan;
335 struct cfg80211_scan_request *hw_scan_request;
336 struct ieee80211_vif *hw_scan_vif;
337 int scan_chan_idx;
338
339 struct ieee80211_channel *channel;
340 unsigned long beacon_int; /* in jiffies unit */
341 unsigned int rx_filter;
342 bool started, idle, scanning;
343 struct mutex mutex;
344 struct timer_list beacon_timer;
345 enum ps_mode {
346 PS_DISABLED, PS_ENABLED, PS_AUTO_POLL, PS_MANUAL_POLL
347 } ps;
348 bool ps_poll_pending;
349 struct dentry *debugfs;
350 struct dentry *debugfs_ps;
351
352 struct sk_buff_head pending; /* packets pending */
353 /*
354 * Only radios in the same group can communicate together (the
355 * channel has to match too). Each bit represents a group. A
356 * radio can be in more then one group.
357 */
358 u64 group;
359 struct dentry *debugfs_group;
360
361 int power_level;
362
363 /* difference between this hw's clock and the real clock, in usecs */
364 u64 tsf_offset;
365 };
366
367
368 struct hwsim_radiotap_hdr {
369 struct ieee80211_radiotap_header hdr;
370 __le64 rt_tsft;
371 u8 rt_flags;
372 u8 rt_rate;
373 __le16 rt_channel;
374 __le16 rt_chbitmask;
375 } __packed;
376
377 /* MAC80211_HWSIM netlinf family */
378 static struct genl_family hwsim_genl_family = {
379 .id = GENL_ID_GENERATE,
380 .hdrsize = 0,
381 .name = "MAC80211_HWSIM",
382 .version = 1,
383 .maxattr = HWSIM_ATTR_MAX,
384 };
385
386 /* MAC80211_HWSIM netlink policy */
387
388 static struct nla_policy hwsim_genl_policy[HWSIM_ATTR_MAX + 1] = {
389 [HWSIM_ATTR_ADDR_RECEIVER] = { .type = NLA_UNSPEC,
390 .len = 6*sizeof(u8) },
391 [HWSIM_ATTR_ADDR_TRANSMITTER] = { .type = NLA_UNSPEC,
392 .len = 6*sizeof(u8) },
393 [HWSIM_ATTR_FRAME] = { .type = NLA_BINARY,
394 .len = IEEE80211_MAX_DATA_LEN },
395 [HWSIM_ATTR_FLAGS] = { .type = NLA_U32 },
396 [HWSIM_ATTR_RX_RATE] = { .type = NLA_U32 },
397 [HWSIM_ATTR_SIGNAL] = { .type = NLA_U32 },
398 [HWSIM_ATTR_TX_INFO] = { .type = NLA_UNSPEC,
399 .len = IEEE80211_TX_MAX_RATES*sizeof(
400 struct hwsim_tx_rate)},
401 [HWSIM_ATTR_COOKIE] = { .type = NLA_U64 },
402 };
403
404 static netdev_tx_t hwsim_mon_xmit(struct sk_buff *skb,
405 struct net_device *dev)
406 {
407 /* TODO: allow packet injection */
408 dev_kfree_skb(skb);
409 return NETDEV_TX_OK;
410 }
411
412 static __le64 __mac80211_hwsim_get_tsf(struct mac80211_hwsim_data *data)
413 {
414 struct timeval tv = ktime_to_timeval(ktime_get_real());
415 u64 now = tv.tv_sec * USEC_PER_SEC + tv.tv_usec;
416 return cpu_to_le64(now + data->tsf_offset);
417 }
418
419 static u64 mac80211_hwsim_get_tsf(struct ieee80211_hw *hw,
420 struct ieee80211_vif *vif)
421 {
422 struct mac80211_hwsim_data *data = hw->priv;
423 return le64_to_cpu(__mac80211_hwsim_get_tsf(data));
424 }
425
426 static void mac80211_hwsim_set_tsf(struct ieee80211_hw *hw,
427 struct ieee80211_vif *vif, u64 tsf)
428 {
429 struct mac80211_hwsim_data *data = hw->priv;
430 struct timeval tv = ktime_to_timeval(ktime_get_real());
431 u64 now = tv.tv_sec * USEC_PER_SEC + tv.tv_usec;
432 data->tsf_offset = tsf - now;
433 }
434
435 static void mac80211_hwsim_monitor_rx(struct ieee80211_hw *hw,
436 struct sk_buff *tx_skb,
437 struct ieee80211_channel *chan)
438 {
439 struct mac80211_hwsim_data *data = hw->priv;
440 struct sk_buff *skb;
441 struct hwsim_radiotap_hdr *hdr;
442 u16 flags;
443 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx_skb);
444 struct ieee80211_rate *txrate = ieee80211_get_tx_rate(hw, info);
445
446 if (!netif_running(hwsim_mon))
447 return;
448
449 skb = skb_copy_expand(tx_skb, sizeof(*hdr), 0, GFP_ATOMIC);
450 if (skb == NULL)
451 return;
452
453 hdr = (struct hwsim_radiotap_hdr *) skb_push(skb, sizeof(*hdr));
454 hdr->hdr.it_version = PKTHDR_RADIOTAP_VERSION;
455 hdr->hdr.it_pad = 0;
456 hdr->hdr.it_len = cpu_to_le16(sizeof(*hdr));
457 hdr->hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
458 (1 << IEEE80211_RADIOTAP_RATE) |
459 (1 << IEEE80211_RADIOTAP_TSFT) |
460 (1 << IEEE80211_RADIOTAP_CHANNEL));
461 hdr->rt_tsft = __mac80211_hwsim_get_tsf(data);
462 hdr->rt_flags = 0;
463 hdr->rt_rate = txrate->bitrate / 5;
464 hdr->rt_channel = cpu_to_le16(chan->center_freq);
465 flags = IEEE80211_CHAN_2GHZ;
466 if (txrate->flags & IEEE80211_RATE_ERP_G)
467 flags |= IEEE80211_CHAN_OFDM;
468 else
469 flags |= IEEE80211_CHAN_CCK;
470 hdr->rt_chbitmask = cpu_to_le16(flags);
471
472 skb->dev = hwsim_mon;
473 skb_set_mac_header(skb, 0);
474 skb->ip_summed = CHECKSUM_UNNECESSARY;
475 skb->pkt_type = PACKET_OTHERHOST;
476 skb->protocol = htons(ETH_P_802_2);
477 memset(skb->cb, 0, sizeof(skb->cb));
478 netif_rx(skb);
479 }
480
481
482 static void mac80211_hwsim_monitor_ack(struct ieee80211_channel *chan,
483 const u8 *addr)
484 {
485 struct sk_buff *skb;
486 struct hwsim_radiotap_hdr *hdr;
487 u16 flags;
488 struct ieee80211_hdr *hdr11;
489
490 if (!netif_running(hwsim_mon))
491 return;
492
493 skb = dev_alloc_skb(100);
494 if (skb == NULL)
495 return;
496
497 hdr = (struct hwsim_radiotap_hdr *) skb_put(skb, sizeof(*hdr));
498 hdr->hdr.it_version = PKTHDR_RADIOTAP_VERSION;
499 hdr->hdr.it_pad = 0;
500 hdr->hdr.it_len = cpu_to_le16(sizeof(*hdr));
501 hdr->hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
502 (1 << IEEE80211_RADIOTAP_CHANNEL));
503 hdr->rt_flags = 0;
504 hdr->rt_rate = 0;
505 hdr->rt_channel = cpu_to_le16(chan->center_freq);
506 flags = IEEE80211_CHAN_2GHZ;
507 hdr->rt_chbitmask = cpu_to_le16(flags);
508
509 hdr11 = (struct ieee80211_hdr *) skb_put(skb, 10);
510 hdr11->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
511 IEEE80211_STYPE_ACK);
512 hdr11->duration_id = cpu_to_le16(0);
513 memcpy(hdr11->addr1, addr, ETH_ALEN);
514
515 skb->dev = hwsim_mon;
516 skb_set_mac_header(skb, 0);
517 skb->ip_summed = CHECKSUM_UNNECESSARY;
518 skb->pkt_type = PACKET_OTHERHOST;
519 skb->protocol = htons(ETH_P_802_2);
520 memset(skb->cb, 0, sizeof(skb->cb));
521 netif_rx(skb);
522 }
523
524
525 static bool hwsim_ps_rx_ok(struct mac80211_hwsim_data *data,
526 struct sk_buff *skb)
527 {
528 switch (data->ps) {
529 case PS_DISABLED:
530 return true;
531 case PS_ENABLED:
532 return false;
533 case PS_AUTO_POLL:
534 /* TODO: accept (some) Beacons by default and other frames only
535 * if pending PS-Poll has been sent */
536 return true;
537 case PS_MANUAL_POLL:
538 /* Allow unicast frames to own address if there is a pending
539 * PS-Poll */
540 if (data->ps_poll_pending &&
541 memcmp(data->hw->wiphy->perm_addr, skb->data + 4,
542 ETH_ALEN) == 0) {
543 data->ps_poll_pending = false;
544 return true;
545 }
546 return false;
547 }
548
549 return true;
550 }
551
552
553 struct mac80211_hwsim_addr_match_data {
554 bool ret;
555 const u8 *addr;
556 };
557
558 static void mac80211_hwsim_addr_iter(void *data, u8 *mac,
559 struct ieee80211_vif *vif)
560 {
561 struct mac80211_hwsim_addr_match_data *md = data;
562 if (memcmp(mac, md->addr, ETH_ALEN) == 0)
563 md->ret = true;
564 }
565
566
567 static bool mac80211_hwsim_addr_match(struct mac80211_hwsim_data *data,
568 const u8 *addr)
569 {
570 struct mac80211_hwsim_addr_match_data md;
571
572 if (memcmp(addr, data->hw->wiphy->perm_addr, ETH_ALEN) == 0)
573 return true;
574
575 md.ret = false;
576 md.addr = addr;
577 ieee80211_iterate_active_interfaces_atomic(data->hw,
578 IEEE80211_IFACE_ITER_NORMAL,
579 mac80211_hwsim_addr_iter,
580 &md);
581
582 return md.ret;
583 }
584
585 static void mac80211_hwsim_tx_frame_nl(struct ieee80211_hw *hw,
586 struct sk_buff *my_skb,
587 int dst_portid)
588 {
589 struct sk_buff *skb;
590 struct mac80211_hwsim_data *data = hw->priv;
591 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) my_skb->data;
592 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(my_skb);
593 void *msg_head;
594 unsigned int hwsim_flags = 0;
595 int i;
596 struct hwsim_tx_rate tx_attempts[IEEE80211_TX_MAX_RATES];
597
598 if (data->ps != PS_DISABLED)
599 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
600 /* If the queue contains MAX_QUEUE skb's drop some */
601 if (skb_queue_len(&data->pending) >= MAX_QUEUE) {
602 /* Droping until WARN_QUEUE level */
603 while (skb_queue_len(&data->pending) >= WARN_QUEUE)
604 skb_dequeue(&data->pending);
605 }
606
607 skb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_ATOMIC);
608 if (skb == NULL)
609 goto nla_put_failure;
610
611 msg_head = genlmsg_put(skb, 0, 0, &hwsim_genl_family, 0,
612 HWSIM_CMD_FRAME);
613 if (msg_head == NULL) {
614 printk(KERN_DEBUG "mac80211_hwsim: problem with msg_head\n");
615 goto nla_put_failure;
616 }
617
618 if (nla_put(skb, HWSIM_ATTR_ADDR_TRANSMITTER,
619 sizeof(struct mac_address), data->addresses[1].addr))
620 goto nla_put_failure;
621
622 /* We get the skb->data */
623 if (nla_put(skb, HWSIM_ATTR_FRAME, my_skb->len, my_skb->data))
624 goto nla_put_failure;
625
626 /* We get the flags for this transmission, and we translate them to
627 wmediumd flags */
628
629 if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
630 hwsim_flags |= HWSIM_TX_CTL_REQ_TX_STATUS;
631
632 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
633 hwsim_flags |= HWSIM_TX_CTL_NO_ACK;
634
635 if (nla_put_u32(skb, HWSIM_ATTR_FLAGS, hwsim_flags))
636 goto nla_put_failure;
637
638 /* We get the tx control (rate and retries) info*/
639
640 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
641 tx_attempts[i].idx = info->status.rates[i].idx;
642 tx_attempts[i].count = info->status.rates[i].count;
643 }
644
645 if (nla_put(skb, HWSIM_ATTR_TX_INFO,
646 sizeof(struct hwsim_tx_rate)*IEEE80211_TX_MAX_RATES,
647 tx_attempts))
648 goto nla_put_failure;
649
650 /* We create a cookie to identify this skb */
651 if (nla_put_u64(skb, HWSIM_ATTR_COOKIE, (unsigned long) my_skb))
652 goto nla_put_failure;
653
654 genlmsg_end(skb, msg_head);
655 genlmsg_unicast(&init_net, skb, dst_portid);
656
657 /* Enqueue the packet */
658 skb_queue_tail(&data->pending, my_skb);
659 return;
660
661 nla_put_failure:
662 printk(KERN_DEBUG "mac80211_hwsim: error occurred in %s\n", __func__);
663 }
664
665 static bool hwsim_chans_compat(struct ieee80211_channel *c1,
666 struct ieee80211_channel *c2)
667 {
668 if (!c1 || !c2)
669 return false;
670
671 return c1->center_freq == c2->center_freq;
672 }
673
674 struct tx_iter_data {
675 struct ieee80211_channel *channel;
676 bool receive;
677 };
678
679 static void mac80211_hwsim_tx_iter(void *_data, u8 *addr,
680 struct ieee80211_vif *vif)
681 {
682 struct tx_iter_data *data = _data;
683
684 if (!vif->chanctx_conf)
685 return;
686
687 if (!hwsim_chans_compat(data->channel,
688 rcu_dereference(vif->chanctx_conf)->def.chan))
689 return;
690
691 data->receive = true;
692 }
693
694 static bool mac80211_hwsim_tx_frame_no_nl(struct ieee80211_hw *hw,
695 struct sk_buff *skb,
696 struct ieee80211_channel *chan)
697 {
698 struct mac80211_hwsim_data *data = hw->priv, *data2;
699 bool ack = false;
700 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
701 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
702 struct ieee80211_rx_status rx_status;
703 struct ieee80211_rate *txrate = ieee80211_get_tx_rate(hw, info);
704
705 memset(&rx_status, 0, sizeof(rx_status));
706 rx_status.flag |= RX_FLAG_MACTIME_START;
707 rx_status.freq = chan->center_freq;
708 rx_status.band = chan->band;
709 rx_status.rate_idx = info->control.rates[0].idx;
710 if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
711 rx_status.flag |= RX_FLAG_HT;
712 if (info->control.rates[0].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
713 rx_status.flag |= RX_FLAG_40MHZ;
714 if (info->control.rates[0].flags & IEEE80211_TX_RC_SHORT_GI)
715 rx_status.flag |= RX_FLAG_SHORT_GI;
716 /* TODO: simulate real signal strength (and optional packet loss) */
717 rx_status.signal = data->power_level - 50;
718
719 if (data->ps != PS_DISABLED)
720 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
721
722 /* release the skb's source info */
723 skb_orphan(skb);
724 skb_dst_drop(skb);
725 skb->mark = 0;
726 secpath_reset(skb);
727 nf_reset(skb);
728
729 /* Copy skb to all enabled radios that are on the current frequency */
730 spin_lock(&hwsim_radio_lock);
731 list_for_each_entry(data2, &hwsim_radios, list) {
732 struct sk_buff *nskb;
733 struct ieee80211_mgmt *mgmt;
734 struct tx_iter_data tx_iter_data = {
735 .receive = false,
736 .channel = chan,
737 };
738
739 if (data == data2)
740 continue;
741
742 if (!data2->started || (data2->idle && !data2->tmp_chan) ||
743 !hwsim_ps_rx_ok(data2, skb))
744 continue;
745
746 if (!(data->group & data2->group))
747 continue;
748
749 if (!hwsim_chans_compat(chan, data2->tmp_chan) &&
750 !hwsim_chans_compat(chan, data2->channel)) {
751 ieee80211_iterate_active_interfaces_atomic(
752 data2->hw, IEEE80211_IFACE_ITER_NORMAL,
753 mac80211_hwsim_tx_iter, &tx_iter_data);
754 if (!tx_iter_data.receive)
755 continue;
756 }
757
758 /*
759 * reserve some space for our vendor and the normal
760 * radiotap header, since we're copying anyway
761 */
762 if (skb->len < PAGE_SIZE && paged_rx) {
763 struct page *page = alloc_page(GFP_ATOMIC);
764
765 if (!page)
766 continue;
767
768 nskb = dev_alloc_skb(128);
769 if (!nskb) {
770 __free_page(page);
771 continue;
772 }
773
774 memcpy(page_address(page), skb->data, skb->len);
775 skb_add_rx_frag(nskb, 0, page, 0, skb->len, skb->len);
776 } else {
777 nskb = skb_copy(skb, GFP_ATOMIC);
778 if (!nskb)
779 continue;
780 }
781
782 if (mac80211_hwsim_addr_match(data2, hdr->addr1))
783 ack = true;
784
785 /* set bcn timestamp relative to receiver mactime */
786 rx_status.mactime =
787 le64_to_cpu(__mac80211_hwsim_get_tsf(data2));
788 mgmt = (struct ieee80211_mgmt *) nskb->data;
789 if (ieee80211_is_beacon(mgmt->frame_control) ||
790 ieee80211_is_probe_resp(mgmt->frame_control))
791 mgmt->u.beacon.timestamp = cpu_to_le64(
792 rx_status.mactime +
793 (data->tsf_offset - data2->tsf_offset) +
794 24 * 8 * 10 / txrate->bitrate);
795
796 #if 0
797 /*
798 * Don't enable this code by default as the OUI 00:00:00
799 * is registered to Xerox so we shouldn't use it here, it
800 * might find its way into pcap files.
801 * Note that this code requires the headroom in the SKB
802 * that was allocated earlier.
803 */
804 rx_status.vendor_radiotap_oui[0] = 0x00;
805 rx_status.vendor_radiotap_oui[1] = 0x00;
806 rx_status.vendor_radiotap_oui[2] = 0x00;
807 rx_status.vendor_radiotap_subns = 127;
808 /*
809 * Radiotap vendor namespaces can (and should) also be
810 * split into fields by using the standard radiotap
811 * presence bitmap mechanism. Use just BIT(0) here for
812 * the presence bitmap.
813 */
814 rx_status.vendor_radiotap_bitmap = BIT(0);
815 /* We have 8 bytes of (dummy) data */
816 rx_status.vendor_radiotap_len = 8;
817 /* For testing, also require it to be aligned */
818 rx_status.vendor_radiotap_align = 8;
819 /* push the data */
820 memcpy(skb_push(nskb, 8), "ABCDEFGH", 8);
821 #endif
822
823 memcpy(IEEE80211_SKB_RXCB(nskb), &rx_status, sizeof(rx_status));
824 ieee80211_rx_irqsafe(data2->hw, nskb);
825 }
826 spin_unlock(&hwsim_radio_lock);
827
828 return ack;
829 }
830
831 static void mac80211_hwsim_tx(struct ieee80211_hw *hw,
832 struct ieee80211_tx_control *control,
833 struct sk_buff *skb)
834 {
835 struct mac80211_hwsim_data *data = hw->priv;
836 struct ieee80211_tx_info *txi = IEEE80211_SKB_CB(skb);
837 struct ieee80211_chanctx_conf *chanctx_conf;
838 struct ieee80211_channel *channel;
839 bool ack;
840 u32 _portid;
841
842 if (WARN_ON(skb->len < 10)) {
843 /* Should not happen; just a sanity check for addr1 use */
844 dev_kfree_skb(skb);
845 return;
846 }
847
848 if (channels == 1) {
849 channel = data->channel;
850 } else if (txi->hw_queue == 4) {
851 channel = data->tmp_chan;
852 } else {
853 chanctx_conf = rcu_dereference(txi->control.vif->chanctx_conf);
854 if (chanctx_conf)
855 channel = chanctx_conf->def.chan;
856 else
857 channel = NULL;
858 }
859
860 if (WARN(!channel, "TX w/o channel - queue = %d\n", txi->hw_queue)) {
861 dev_kfree_skb(skb);
862 return;
863 }
864
865 if (data->idle && !data->tmp_chan) {
866 wiphy_debug(hw->wiphy, "Trying to TX when idle - reject\n");
867 dev_kfree_skb(skb);
868 return;
869 }
870
871 if (txi->control.vif)
872 hwsim_check_magic(txi->control.vif);
873 if (control->sta)
874 hwsim_check_sta_magic(control->sta);
875
876 txi->rate_driver_data[0] = channel;
877
878 mac80211_hwsim_monitor_rx(hw, skb, channel);
879
880 /* wmediumd mode check */
881 _portid = ACCESS_ONCE(wmediumd_portid);
882
883 if (_portid)
884 return mac80211_hwsim_tx_frame_nl(hw, skb, _portid);
885
886 /* NO wmediumd detected, perfect medium simulation */
887 ack = mac80211_hwsim_tx_frame_no_nl(hw, skb, channel);
888
889 if (ack && skb->len >= 16) {
890 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
891 mac80211_hwsim_monitor_ack(channel, hdr->addr2);
892 }
893
894 ieee80211_tx_info_clear_status(txi);
895
896 /* frame was transmitted at most favorable rate at first attempt */
897 txi->control.rates[0].count = 1;
898 txi->control.rates[1].idx = -1;
899
900 if (!(txi->flags & IEEE80211_TX_CTL_NO_ACK) && ack)
901 txi->flags |= IEEE80211_TX_STAT_ACK;
902 ieee80211_tx_status_irqsafe(hw, skb);
903 }
904
905
906 static int mac80211_hwsim_start(struct ieee80211_hw *hw)
907 {
908 struct mac80211_hwsim_data *data = hw->priv;
909 wiphy_debug(hw->wiphy, "%s\n", __func__);
910 data->started = true;
911 return 0;
912 }
913
914
915 static void mac80211_hwsim_stop(struct ieee80211_hw *hw)
916 {
917 struct mac80211_hwsim_data *data = hw->priv;
918 data->started = false;
919 del_timer(&data->beacon_timer);
920 wiphy_debug(hw->wiphy, "%s\n", __func__);
921 }
922
923
924 static int mac80211_hwsim_add_interface(struct ieee80211_hw *hw,
925 struct ieee80211_vif *vif)
926 {
927 wiphy_debug(hw->wiphy, "%s (type=%d mac_addr=%pM)\n",
928 __func__, ieee80211_vif_type_p2p(vif),
929 vif->addr);
930 hwsim_set_magic(vif);
931
932 vif->cab_queue = 0;
933 vif->hw_queue[IEEE80211_AC_VO] = 0;
934 vif->hw_queue[IEEE80211_AC_VI] = 1;
935 vif->hw_queue[IEEE80211_AC_BE] = 2;
936 vif->hw_queue[IEEE80211_AC_BK] = 3;
937
938 return 0;
939 }
940
941
942 static int mac80211_hwsim_change_interface(struct ieee80211_hw *hw,
943 struct ieee80211_vif *vif,
944 enum nl80211_iftype newtype,
945 bool newp2p)
946 {
947 newtype = ieee80211_iftype_p2p(newtype, newp2p);
948 wiphy_debug(hw->wiphy,
949 "%s (old type=%d, new type=%d, mac_addr=%pM)\n",
950 __func__, ieee80211_vif_type_p2p(vif),
951 newtype, vif->addr);
952 hwsim_check_magic(vif);
953
954 return 0;
955 }
956
957 static void mac80211_hwsim_remove_interface(
958 struct ieee80211_hw *hw, struct ieee80211_vif *vif)
959 {
960 wiphy_debug(hw->wiphy, "%s (type=%d mac_addr=%pM)\n",
961 __func__, ieee80211_vif_type_p2p(vif),
962 vif->addr);
963 hwsim_check_magic(vif);
964 hwsim_clear_magic(vif);
965 }
966
967 static void mac80211_hwsim_tx_frame(struct ieee80211_hw *hw,
968 struct sk_buff *skb,
969 struct ieee80211_channel *chan)
970 {
971 u32 _pid = ACCESS_ONCE(wmediumd_portid);
972
973 mac80211_hwsim_monitor_rx(hw, skb, chan);
974
975 if (_pid)
976 return mac80211_hwsim_tx_frame_nl(hw, skb, _pid);
977
978 mac80211_hwsim_tx_frame_no_nl(hw, skb, chan);
979 dev_kfree_skb(skb);
980 }
981
982 static void mac80211_hwsim_beacon_tx(void *arg, u8 *mac,
983 struct ieee80211_vif *vif)
984 {
985 struct ieee80211_hw *hw = arg;
986 struct sk_buff *skb;
987
988 hwsim_check_magic(vif);
989
990 if (vif->type != NL80211_IFTYPE_AP &&
991 vif->type != NL80211_IFTYPE_MESH_POINT &&
992 vif->type != NL80211_IFTYPE_ADHOC)
993 return;
994
995 skb = ieee80211_beacon_get(hw, vif);
996 if (skb == NULL)
997 return;
998
999 mac80211_hwsim_tx_frame(hw, skb,
1000 rcu_dereference(vif->chanctx_conf)->def.chan);
1001 }
1002
1003
1004 static void mac80211_hwsim_beacon(unsigned long arg)
1005 {
1006 struct ieee80211_hw *hw = (struct ieee80211_hw *) arg;
1007 struct mac80211_hwsim_data *data = hw->priv;
1008
1009 if (!data->started)
1010 return;
1011
1012 ieee80211_iterate_active_interfaces_atomic(
1013 hw, IEEE80211_IFACE_ITER_NORMAL,
1014 mac80211_hwsim_beacon_tx, hw);
1015
1016 data->beacon_timer.expires = jiffies + data->beacon_int;
1017 add_timer(&data->beacon_timer);
1018 }
1019
1020 static const char *hwsim_chantypes[] = {
1021 [NL80211_CHAN_NO_HT] = "noht",
1022 [NL80211_CHAN_HT20] = "ht20",
1023 [NL80211_CHAN_HT40MINUS] = "ht40-",
1024 [NL80211_CHAN_HT40PLUS] = "ht40+",
1025 };
1026
1027 static int mac80211_hwsim_config(struct ieee80211_hw *hw, u32 changed)
1028 {
1029 struct mac80211_hwsim_data *data = hw->priv;
1030 struct ieee80211_conf *conf = &hw->conf;
1031 static const char *smps_modes[IEEE80211_SMPS_NUM_MODES] = {
1032 [IEEE80211_SMPS_AUTOMATIC] = "auto",
1033 [IEEE80211_SMPS_OFF] = "off",
1034 [IEEE80211_SMPS_STATIC] = "static",
1035 [IEEE80211_SMPS_DYNAMIC] = "dynamic",
1036 };
1037
1038 wiphy_debug(hw->wiphy,
1039 "%s (freq=%d/%s idle=%d ps=%d smps=%s)\n",
1040 __func__,
1041 conf->channel ? conf->channel->center_freq : 0,
1042 hwsim_chantypes[conf->channel_type],
1043 !!(conf->flags & IEEE80211_CONF_IDLE),
1044 !!(conf->flags & IEEE80211_CONF_PS),
1045 smps_modes[conf->smps_mode]);
1046
1047 data->idle = !!(conf->flags & IEEE80211_CONF_IDLE);
1048
1049 data->channel = conf->channel;
1050
1051 WARN_ON(data->channel && channels > 1);
1052
1053 data->power_level = conf->power_level;
1054 if (!data->started || !data->beacon_int)
1055 del_timer(&data->beacon_timer);
1056 else
1057 mod_timer(&data->beacon_timer, jiffies + data->beacon_int);
1058
1059 return 0;
1060 }
1061
1062
1063 static void mac80211_hwsim_configure_filter(struct ieee80211_hw *hw,
1064 unsigned int changed_flags,
1065 unsigned int *total_flags,u64 multicast)
1066 {
1067 struct mac80211_hwsim_data *data = hw->priv;
1068
1069 wiphy_debug(hw->wiphy, "%s\n", __func__);
1070
1071 data->rx_filter = 0;
1072 if (*total_flags & FIF_PROMISC_IN_BSS)
1073 data->rx_filter |= FIF_PROMISC_IN_BSS;
1074 if (*total_flags & FIF_ALLMULTI)
1075 data->rx_filter |= FIF_ALLMULTI;
1076
1077 *total_flags = data->rx_filter;
1078 }
1079
1080 static void mac80211_hwsim_bss_info_changed(struct ieee80211_hw *hw,
1081 struct ieee80211_vif *vif,
1082 struct ieee80211_bss_conf *info,
1083 u32 changed)
1084 {
1085 struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
1086 struct mac80211_hwsim_data *data = hw->priv;
1087
1088 hwsim_check_magic(vif);
1089
1090 wiphy_debug(hw->wiphy, "%s(changed=0x%x)\n", __func__, changed);
1091
1092 if (changed & BSS_CHANGED_BSSID) {
1093 wiphy_debug(hw->wiphy, "%s: BSSID changed: %pM\n",
1094 __func__, info->bssid);
1095 memcpy(vp->bssid, info->bssid, ETH_ALEN);
1096 }
1097
1098 if (changed & BSS_CHANGED_ASSOC) {
1099 wiphy_debug(hw->wiphy, " ASSOC: assoc=%d aid=%d\n",
1100 info->assoc, info->aid);
1101 vp->assoc = info->assoc;
1102 vp->aid = info->aid;
1103 }
1104
1105 if (changed & BSS_CHANGED_BEACON_INT) {
1106 wiphy_debug(hw->wiphy, " BCNINT: %d\n", info->beacon_int);
1107 data->beacon_int = 1024 * info->beacon_int / 1000 * HZ / 1000;
1108 if (WARN_ON(!data->beacon_int))
1109 data->beacon_int = 1;
1110 if (data->started)
1111 mod_timer(&data->beacon_timer,
1112 jiffies + data->beacon_int);
1113 }
1114
1115 if (changed & BSS_CHANGED_ERP_CTS_PROT) {
1116 wiphy_debug(hw->wiphy, " ERP_CTS_PROT: %d\n",
1117 info->use_cts_prot);
1118 }
1119
1120 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
1121 wiphy_debug(hw->wiphy, " ERP_PREAMBLE: %d\n",
1122 info->use_short_preamble);
1123 }
1124
1125 if (changed & BSS_CHANGED_ERP_SLOT) {
1126 wiphy_debug(hw->wiphy, " ERP_SLOT: %d\n", info->use_short_slot);
1127 }
1128
1129 if (changed & BSS_CHANGED_HT) {
1130 wiphy_debug(hw->wiphy, " HT: op_mode=0x%x\n",
1131 info->ht_operation_mode);
1132 }
1133
1134 if (changed & BSS_CHANGED_BASIC_RATES) {
1135 wiphy_debug(hw->wiphy, " BASIC_RATES: 0x%llx\n",
1136 (unsigned long long) info->basic_rates);
1137 }
1138
1139 if (changed & BSS_CHANGED_TXPOWER)
1140 wiphy_debug(hw->wiphy, " TX Power: %d dBm\n", info->txpower);
1141 }
1142
1143 static int mac80211_hwsim_sta_add(struct ieee80211_hw *hw,
1144 struct ieee80211_vif *vif,
1145 struct ieee80211_sta *sta)
1146 {
1147 hwsim_check_magic(vif);
1148 hwsim_set_sta_magic(sta);
1149
1150 return 0;
1151 }
1152
1153 static int mac80211_hwsim_sta_remove(struct ieee80211_hw *hw,
1154 struct ieee80211_vif *vif,
1155 struct ieee80211_sta *sta)
1156 {
1157 hwsim_check_magic(vif);
1158 hwsim_clear_sta_magic(sta);
1159
1160 return 0;
1161 }
1162
1163 static void mac80211_hwsim_sta_notify(struct ieee80211_hw *hw,
1164 struct ieee80211_vif *vif,
1165 enum sta_notify_cmd cmd,
1166 struct ieee80211_sta *sta)
1167 {
1168 hwsim_check_magic(vif);
1169
1170 switch (cmd) {
1171 case STA_NOTIFY_SLEEP:
1172 case STA_NOTIFY_AWAKE:
1173 /* TODO: make good use of these flags */
1174 break;
1175 default:
1176 WARN(1, "Invalid sta notify: %d\n", cmd);
1177 break;
1178 }
1179 }
1180
1181 static int mac80211_hwsim_set_tim(struct ieee80211_hw *hw,
1182 struct ieee80211_sta *sta,
1183 bool set)
1184 {
1185 hwsim_check_sta_magic(sta);
1186 return 0;
1187 }
1188
1189 static int mac80211_hwsim_conf_tx(
1190 struct ieee80211_hw *hw,
1191 struct ieee80211_vif *vif, u16 queue,
1192 const struct ieee80211_tx_queue_params *params)
1193 {
1194 wiphy_debug(hw->wiphy,
1195 "%s (queue=%d txop=%d cw_min=%d cw_max=%d aifs=%d)\n",
1196 __func__, queue,
1197 params->txop, params->cw_min,
1198 params->cw_max, params->aifs);
1199 return 0;
1200 }
1201
1202 static int mac80211_hwsim_get_survey(
1203 struct ieee80211_hw *hw, int idx,
1204 struct survey_info *survey)
1205 {
1206 struct ieee80211_conf *conf = &hw->conf;
1207
1208 wiphy_debug(hw->wiphy, "%s (idx=%d)\n", __func__, idx);
1209
1210 if (idx != 0)
1211 return -ENOENT;
1212
1213 /* Current channel */
1214 survey->channel = conf->channel;
1215
1216 /*
1217 * Magically conjured noise level --- this is only ok for simulated hardware.
1218 *
1219 * A real driver which cannot determine the real channel noise MUST NOT
1220 * report any noise, especially not a magically conjured one :-)
1221 */
1222 survey->filled = SURVEY_INFO_NOISE_DBM;
1223 survey->noise = -92;
1224
1225 return 0;
1226 }
1227
1228 #ifdef CONFIG_NL80211_TESTMODE
1229 /*
1230 * This section contains example code for using netlink
1231 * attributes with the testmode command in nl80211.
1232 */
1233
1234 /* These enums need to be kept in sync with userspace */
1235 enum hwsim_testmode_attr {
1236 __HWSIM_TM_ATTR_INVALID = 0,
1237 HWSIM_TM_ATTR_CMD = 1,
1238 HWSIM_TM_ATTR_PS = 2,
1239
1240 /* keep last */
1241 __HWSIM_TM_ATTR_AFTER_LAST,
1242 HWSIM_TM_ATTR_MAX = __HWSIM_TM_ATTR_AFTER_LAST - 1
1243 };
1244
1245 enum hwsim_testmode_cmd {
1246 HWSIM_TM_CMD_SET_PS = 0,
1247 HWSIM_TM_CMD_GET_PS = 1,
1248 HWSIM_TM_CMD_STOP_QUEUES = 2,
1249 HWSIM_TM_CMD_WAKE_QUEUES = 3,
1250 };
1251
1252 static const struct nla_policy hwsim_testmode_policy[HWSIM_TM_ATTR_MAX + 1] = {
1253 [HWSIM_TM_ATTR_CMD] = { .type = NLA_U32 },
1254 [HWSIM_TM_ATTR_PS] = { .type = NLA_U32 },
1255 };
1256
1257 static int hwsim_fops_ps_write(void *dat, u64 val);
1258
1259 static int mac80211_hwsim_testmode_cmd(struct ieee80211_hw *hw,
1260 void *data, int len)
1261 {
1262 struct mac80211_hwsim_data *hwsim = hw->priv;
1263 struct nlattr *tb[HWSIM_TM_ATTR_MAX + 1];
1264 struct sk_buff *skb;
1265 int err, ps;
1266
1267 err = nla_parse(tb, HWSIM_TM_ATTR_MAX, data, len,
1268 hwsim_testmode_policy);
1269 if (err)
1270 return err;
1271
1272 if (!tb[HWSIM_TM_ATTR_CMD])
1273 return -EINVAL;
1274
1275 switch (nla_get_u32(tb[HWSIM_TM_ATTR_CMD])) {
1276 case HWSIM_TM_CMD_SET_PS:
1277 if (!tb[HWSIM_TM_ATTR_PS])
1278 return -EINVAL;
1279 ps = nla_get_u32(tb[HWSIM_TM_ATTR_PS]);
1280 return hwsim_fops_ps_write(hwsim, ps);
1281 case HWSIM_TM_CMD_GET_PS:
1282 skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy,
1283 nla_total_size(sizeof(u32)));
1284 if (!skb)
1285 return -ENOMEM;
1286 if (nla_put_u32(skb, HWSIM_TM_ATTR_PS, hwsim->ps))
1287 goto nla_put_failure;
1288 return cfg80211_testmode_reply(skb);
1289 case HWSIM_TM_CMD_STOP_QUEUES:
1290 ieee80211_stop_queues(hw);
1291 return 0;
1292 case HWSIM_TM_CMD_WAKE_QUEUES:
1293 ieee80211_wake_queues(hw);
1294 return 0;
1295 default:
1296 return -EOPNOTSUPP;
1297 }
1298
1299 nla_put_failure:
1300 kfree_skb(skb);
1301 return -ENOBUFS;
1302 }
1303 #endif
1304
1305 static int mac80211_hwsim_ampdu_action(struct ieee80211_hw *hw,
1306 struct ieee80211_vif *vif,
1307 enum ieee80211_ampdu_mlme_action action,
1308 struct ieee80211_sta *sta, u16 tid, u16 *ssn,
1309 u8 buf_size)
1310 {
1311 switch (action) {
1312 case IEEE80211_AMPDU_TX_START:
1313 ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
1314 break;
1315 case IEEE80211_AMPDU_TX_STOP_CONT:
1316 case IEEE80211_AMPDU_TX_STOP_FLUSH:
1317 case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
1318 ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
1319 break;
1320 case IEEE80211_AMPDU_TX_OPERATIONAL:
1321 break;
1322 case IEEE80211_AMPDU_RX_START:
1323 case IEEE80211_AMPDU_RX_STOP:
1324 break;
1325 default:
1326 return -EOPNOTSUPP;
1327 }
1328
1329 return 0;
1330 }
1331
1332 static void mac80211_hwsim_flush(struct ieee80211_hw *hw, bool drop)
1333 {
1334 /* Not implemented, queues only on kernel side */
1335 }
1336
1337 static void hw_scan_work(struct work_struct *work)
1338 {
1339 struct mac80211_hwsim_data *hwsim =
1340 container_of(work, struct mac80211_hwsim_data, hw_scan.work);
1341 struct cfg80211_scan_request *req = hwsim->hw_scan_request;
1342 int dwell, i;
1343
1344 mutex_lock(&hwsim->mutex);
1345 if (hwsim->scan_chan_idx >= req->n_channels) {
1346 wiphy_debug(hwsim->hw->wiphy, "hw scan complete\n");
1347 ieee80211_scan_completed(hwsim->hw, false);
1348 hwsim->hw_scan_request = NULL;
1349 hwsim->hw_scan_vif = NULL;
1350 hwsim->tmp_chan = NULL;
1351 mutex_unlock(&hwsim->mutex);
1352 return;
1353 }
1354
1355 wiphy_debug(hwsim->hw->wiphy, "hw scan %d MHz\n",
1356 req->channels[hwsim->scan_chan_idx]->center_freq);
1357
1358 hwsim->tmp_chan = req->channels[hwsim->scan_chan_idx];
1359 if (hwsim->tmp_chan->flags & IEEE80211_CHAN_PASSIVE_SCAN ||
1360 !req->n_ssids) {
1361 dwell = 120;
1362 } else {
1363 dwell = 30;
1364 /* send probes */
1365 for (i = 0; i < req->n_ssids; i++) {
1366 struct sk_buff *probe;
1367
1368 probe = ieee80211_probereq_get(hwsim->hw,
1369 hwsim->hw_scan_vif,
1370 req->ssids[i].ssid,
1371 req->ssids[i].ssid_len,
1372 req->ie_len);
1373 if (!probe)
1374 continue;
1375
1376 if (req->ie_len)
1377 memcpy(skb_put(probe, req->ie_len), req->ie,
1378 req->ie_len);
1379
1380 local_bh_disable();
1381 mac80211_hwsim_tx_frame(hwsim->hw, probe,
1382 hwsim->tmp_chan);
1383 local_bh_enable();
1384 }
1385 }
1386 ieee80211_queue_delayed_work(hwsim->hw, &hwsim->hw_scan,
1387 msecs_to_jiffies(dwell));
1388 hwsim->scan_chan_idx++;
1389 mutex_unlock(&hwsim->mutex);
1390 }
1391
1392 static int mac80211_hwsim_hw_scan(struct ieee80211_hw *hw,
1393 struct ieee80211_vif *vif,
1394 struct cfg80211_scan_request *req)
1395 {
1396 struct mac80211_hwsim_data *hwsim = hw->priv;
1397
1398 mutex_lock(&hwsim->mutex);
1399 if (WARN_ON(hwsim->tmp_chan || hwsim->hw_scan_request)) {
1400 mutex_unlock(&hwsim->mutex);
1401 return -EBUSY;
1402 }
1403 hwsim->hw_scan_request = req;
1404 hwsim->hw_scan_vif = vif;
1405 hwsim->scan_chan_idx = 0;
1406 mutex_unlock(&hwsim->mutex);
1407
1408 wiphy_debug(hw->wiphy, "hwsim hw_scan request\n");
1409
1410 ieee80211_queue_delayed_work(hwsim->hw, &hwsim->hw_scan, 0);
1411
1412 return 0;
1413 }
1414
1415 static void mac80211_hwsim_cancel_hw_scan(struct ieee80211_hw *hw,
1416 struct ieee80211_vif *vif)
1417 {
1418 struct mac80211_hwsim_data *hwsim = hw->priv;
1419
1420 wiphy_debug(hw->wiphy, "hwsim cancel_hw_scan\n");
1421
1422 cancel_delayed_work_sync(&hwsim->hw_scan);
1423
1424 mutex_lock(&hwsim->mutex);
1425 ieee80211_scan_completed(hwsim->hw, true);
1426 hwsim->tmp_chan = NULL;
1427 hwsim->hw_scan_request = NULL;
1428 hwsim->hw_scan_vif = NULL;
1429 mutex_unlock(&hwsim->mutex);
1430 }
1431
1432 static void mac80211_hwsim_sw_scan(struct ieee80211_hw *hw)
1433 {
1434 struct mac80211_hwsim_data *hwsim = hw->priv;
1435
1436 mutex_lock(&hwsim->mutex);
1437
1438 if (hwsim->scanning) {
1439 printk(KERN_DEBUG "two hwsim sw_scans detected!\n");
1440 goto out;
1441 }
1442
1443 printk(KERN_DEBUG "hwsim sw_scan request, prepping stuff\n");
1444 hwsim->scanning = true;
1445
1446 out:
1447 mutex_unlock(&hwsim->mutex);
1448 }
1449
1450 static void mac80211_hwsim_sw_scan_complete(struct ieee80211_hw *hw)
1451 {
1452 struct mac80211_hwsim_data *hwsim = hw->priv;
1453
1454 mutex_lock(&hwsim->mutex);
1455
1456 printk(KERN_DEBUG "hwsim sw_scan_complete\n");
1457 hwsim->scanning = false;
1458
1459 mutex_unlock(&hwsim->mutex);
1460 }
1461
1462 static void hw_roc_done(struct work_struct *work)
1463 {
1464 struct mac80211_hwsim_data *hwsim =
1465 container_of(work, struct mac80211_hwsim_data, roc_done.work);
1466
1467 mutex_lock(&hwsim->mutex);
1468 ieee80211_remain_on_channel_expired(hwsim->hw);
1469 hwsim->tmp_chan = NULL;
1470 mutex_unlock(&hwsim->mutex);
1471
1472 wiphy_debug(hwsim->hw->wiphy, "hwsim ROC expired\n");
1473 }
1474
1475 static int mac80211_hwsim_roc(struct ieee80211_hw *hw,
1476 struct ieee80211_vif *vif,
1477 struct ieee80211_channel *chan,
1478 int duration)
1479 {
1480 struct mac80211_hwsim_data *hwsim = hw->priv;
1481
1482 mutex_lock(&hwsim->mutex);
1483 if (WARN_ON(hwsim->tmp_chan || hwsim->hw_scan_request)) {
1484 mutex_unlock(&hwsim->mutex);
1485 return -EBUSY;
1486 }
1487
1488 hwsim->tmp_chan = chan;
1489 mutex_unlock(&hwsim->mutex);
1490
1491 wiphy_debug(hw->wiphy, "hwsim ROC (%d MHz, %d ms)\n",
1492 chan->center_freq, duration);
1493
1494 ieee80211_ready_on_channel(hw);
1495
1496 ieee80211_queue_delayed_work(hw, &hwsim->roc_done,
1497 msecs_to_jiffies(duration));
1498 return 0;
1499 }
1500
1501 static int mac80211_hwsim_croc(struct ieee80211_hw *hw)
1502 {
1503 struct mac80211_hwsim_data *hwsim = hw->priv;
1504
1505 cancel_delayed_work_sync(&hwsim->roc_done);
1506
1507 mutex_lock(&hwsim->mutex);
1508 hwsim->tmp_chan = NULL;
1509 mutex_unlock(&hwsim->mutex);
1510
1511 wiphy_debug(hw->wiphy, "hwsim ROC canceled\n");
1512
1513 return 0;
1514 }
1515
1516 static int mac80211_hwsim_add_chanctx(struct ieee80211_hw *hw,
1517 struct ieee80211_chanctx_conf *ctx)
1518 {
1519 hwsim_set_chanctx_magic(ctx);
1520 wiphy_debug(hw->wiphy,
1521 "add channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n",
1522 ctx->def.chan->center_freq, ctx->def.width,
1523 ctx->def.center_freq1, ctx->def.center_freq2);
1524 return 0;
1525 }
1526
1527 static void mac80211_hwsim_remove_chanctx(struct ieee80211_hw *hw,
1528 struct ieee80211_chanctx_conf *ctx)
1529 {
1530 wiphy_debug(hw->wiphy,
1531 "remove channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n",
1532 ctx->def.chan->center_freq, ctx->def.width,
1533 ctx->def.center_freq1, ctx->def.center_freq2);
1534 hwsim_check_chanctx_magic(ctx);
1535 hwsim_clear_chanctx_magic(ctx);
1536 }
1537
1538 static void mac80211_hwsim_change_chanctx(struct ieee80211_hw *hw,
1539 struct ieee80211_chanctx_conf *ctx,
1540 u32 changed)
1541 {
1542 hwsim_check_chanctx_magic(ctx);
1543 wiphy_debug(hw->wiphy,
1544 "change channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n",
1545 ctx->def.chan->center_freq, ctx->def.width,
1546 ctx->def.center_freq1, ctx->def.center_freq2);
1547 }
1548
1549 static int mac80211_hwsim_assign_vif_chanctx(struct ieee80211_hw *hw,
1550 struct ieee80211_vif *vif,
1551 struct ieee80211_chanctx_conf *ctx)
1552 {
1553 hwsim_check_magic(vif);
1554 hwsim_check_chanctx_magic(ctx);
1555
1556 return 0;
1557 }
1558
1559 static void mac80211_hwsim_unassign_vif_chanctx(struct ieee80211_hw *hw,
1560 struct ieee80211_vif *vif,
1561 struct ieee80211_chanctx_conf *ctx)
1562 {
1563 hwsim_check_magic(vif);
1564 hwsim_check_chanctx_magic(ctx);
1565 }
1566
1567 static struct ieee80211_ops mac80211_hwsim_ops =
1568 {
1569 .tx = mac80211_hwsim_tx,
1570 .start = mac80211_hwsim_start,
1571 .stop = mac80211_hwsim_stop,
1572 .add_interface = mac80211_hwsim_add_interface,
1573 .change_interface = mac80211_hwsim_change_interface,
1574 .remove_interface = mac80211_hwsim_remove_interface,
1575 .config = mac80211_hwsim_config,
1576 .configure_filter = mac80211_hwsim_configure_filter,
1577 .bss_info_changed = mac80211_hwsim_bss_info_changed,
1578 .sta_add = mac80211_hwsim_sta_add,
1579 .sta_remove = mac80211_hwsim_sta_remove,
1580 .sta_notify = mac80211_hwsim_sta_notify,
1581 .set_tim = mac80211_hwsim_set_tim,
1582 .conf_tx = mac80211_hwsim_conf_tx,
1583 .get_survey = mac80211_hwsim_get_survey,
1584 CFG80211_TESTMODE_CMD(mac80211_hwsim_testmode_cmd)
1585 .ampdu_action = mac80211_hwsim_ampdu_action,
1586 .sw_scan_start = mac80211_hwsim_sw_scan,
1587 .sw_scan_complete = mac80211_hwsim_sw_scan_complete,
1588 .flush = mac80211_hwsim_flush,
1589 .get_tsf = mac80211_hwsim_get_tsf,
1590 .set_tsf = mac80211_hwsim_set_tsf,
1591 };
1592
1593
1594 static void mac80211_hwsim_free(void)
1595 {
1596 struct list_head tmplist, *i, *tmp;
1597 struct mac80211_hwsim_data *data, *tmpdata;
1598
1599 INIT_LIST_HEAD(&tmplist);
1600
1601 spin_lock_bh(&hwsim_radio_lock);
1602 list_for_each_safe(i, tmp, &hwsim_radios)
1603 list_move(i, &tmplist);
1604 spin_unlock_bh(&hwsim_radio_lock);
1605
1606 list_for_each_entry_safe(data, tmpdata, &tmplist, list) {
1607 debugfs_remove(data->debugfs_group);
1608 debugfs_remove(data->debugfs_ps);
1609 debugfs_remove(data->debugfs);
1610 ieee80211_unregister_hw(data->hw);
1611 device_unregister(data->dev);
1612 ieee80211_free_hw(data->hw);
1613 }
1614 class_destroy(hwsim_class);
1615 }
1616
1617
1618 static struct device_driver mac80211_hwsim_driver = {
1619 .name = "mac80211_hwsim"
1620 };
1621
1622 static const struct net_device_ops hwsim_netdev_ops = {
1623 .ndo_start_xmit = hwsim_mon_xmit,
1624 .ndo_change_mtu = eth_change_mtu,
1625 .ndo_set_mac_address = eth_mac_addr,
1626 .ndo_validate_addr = eth_validate_addr,
1627 };
1628
1629 static void hwsim_mon_setup(struct net_device *dev)
1630 {
1631 dev->netdev_ops = &hwsim_netdev_ops;
1632 dev->destructor = free_netdev;
1633 ether_setup(dev);
1634 dev->tx_queue_len = 0;
1635 dev->type = ARPHRD_IEEE80211_RADIOTAP;
1636 memset(dev->dev_addr, 0, ETH_ALEN);
1637 dev->dev_addr[0] = 0x12;
1638 }
1639
1640
1641 static void hwsim_send_ps_poll(void *dat, u8 *mac, struct ieee80211_vif *vif)
1642 {
1643 struct mac80211_hwsim_data *data = dat;
1644 struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
1645 struct sk_buff *skb;
1646 struct ieee80211_pspoll *pspoll;
1647
1648 if (!vp->assoc)
1649 return;
1650
1651 wiphy_debug(data->hw->wiphy,
1652 "%s: send PS-Poll to %pM for aid %d\n",
1653 __func__, vp->bssid, vp->aid);
1654
1655 skb = dev_alloc_skb(sizeof(*pspoll));
1656 if (!skb)
1657 return;
1658 pspoll = (void *) skb_put(skb, sizeof(*pspoll));
1659 pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
1660 IEEE80211_STYPE_PSPOLL |
1661 IEEE80211_FCTL_PM);
1662 pspoll->aid = cpu_to_le16(0xc000 | vp->aid);
1663 memcpy(pspoll->bssid, vp->bssid, ETH_ALEN);
1664 memcpy(pspoll->ta, mac, ETH_ALEN);
1665
1666 rcu_read_lock();
1667 mac80211_hwsim_tx_frame(data->hw, skb,
1668 rcu_dereference(vif->chanctx_conf)->def.chan);
1669 rcu_read_unlock();
1670 }
1671
1672 static void hwsim_send_nullfunc(struct mac80211_hwsim_data *data, u8 *mac,
1673 struct ieee80211_vif *vif, int ps)
1674 {
1675 struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
1676 struct sk_buff *skb;
1677 struct ieee80211_hdr *hdr;
1678
1679 if (!vp->assoc)
1680 return;
1681
1682 wiphy_debug(data->hw->wiphy,
1683 "%s: send data::nullfunc to %pM ps=%d\n",
1684 __func__, vp->bssid, ps);
1685
1686 skb = dev_alloc_skb(sizeof(*hdr));
1687 if (!skb)
1688 return;
1689 hdr = (void *) skb_put(skb, sizeof(*hdr) - ETH_ALEN);
1690 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA |
1691 IEEE80211_STYPE_NULLFUNC |
1692 (ps ? IEEE80211_FCTL_PM : 0));
1693 hdr->duration_id = cpu_to_le16(0);
1694 memcpy(hdr->addr1, vp->bssid, ETH_ALEN);
1695 memcpy(hdr->addr2, mac, ETH_ALEN);
1696 memcpy(hdr->addr3, vp->bssid, ETH_ALEN);
1697
1698 rcu_read_lock();
1699 mac80211_hwsim_tx_frame(data->hw, skb,
1700 rcu_dereference(vif->chanctx_conf)->def.chan);
1701 rcu_read_unlock();
1702 }
1703
1704
1705 static void hwsim_send_nullfunc_ps(void *dat, u8 *mac,
1706 struct ieee80211_vif *vif)
1707 {
1708 struct mac80211_hwsim_data *data = dat;
1709 hwsim_send_nullfunc(data, mac, vif, 1);
1710 }
1711
1712
1713 static void hwsim_send_nullfunc_no_ps(void *dat, u8 *mac,
1714 struct ieee80211_vif *vif)
1715 {
1716 struct mac80211_hwsim_data *data = dat;
1717 hwsim_send_nullfunc(data, mac, vif, 0);
1718 }
1719
1720
1721 static int hwsim_fops_ps_read(void *dat, u64 *val)
1722 {
1723 struct mac80211_hwsim_data *data = dat;
1724 *val = data->ps;
1725 return 0;
1726 }
1727
1728 static int hwsim_fops_ps_write(void *dat, u64 val)
1729 {
1730 struct mac80211_hwsim_data *data = dat;
1731 enum ps_mode old_ps;
1732
1733 if (val != PS_DISABLED && val != PS_ENABLED && val != PS_AUTO_POLL &&
1734 val != PS_MANUAL_POLL)
1735 return -EINVAL;
1736
1737 old_ps = data->ps;
1738 data->ps = val;
1739
1740 if (val == PS_MANUAL_POLL) {
1741 ieee80211_iterate_active_interfaces(data->hw,
1742 IEEE80211_IFACE_ITER_NORMAL,
1743 hwsim_send_ps_poll, data);
1744 data->ps_poll_pending = true;
1745 } else if (old_ps == PS_DISABLED && val != PS_DISABLED) {
1746 ieee80211_iterate_active_interfaces(data->hw,
1747 IEEE80211_IFACE_ITER_NORMAL,
1748 hwsim_send_nullfunc_ps,
1749 data);
1750 } else if (old_ps != PS_DISABLED && val == PS_DISABLED) {
1751 ieee80211_iterate_active_interfaces(data->hw,
1752 IEEE80211_IFACE_ITER_NORMAL,
1753 hwsim_send_nullfunc_no_ps,
1754 data);
1755 }
1756
1757 return 0;
1758 }
1759
1760 DEFINE_SIMPLE_ATTRIBUTE(hwsim_fops_ps, hwsim_fops_ps_read, hwsim_fops_ps_write,
1761 "%llu\n");
1762
1763
1764 static int hwsim_fops_group_read(void *dat, u64 *val)
1765 {
1766 struct mac80211_hwsim_data *data = dat;
1767 *val = data->group;
1768 return 0;
1769 }
1770
1771 static int hwsim_fops_group_write(void *dat, u64 val)
1772 {
1773 struct mac80211_hwsim_data *data = dat;
1774 data->group = val;
1775 return 0;
1776 }
1777
1778 DEFINE_SIMPLE_ATTRIBUTE(hwsim_fops_group,
1779 hwsim_fops_group_read, hwsim_fops_group_write,
1780 "%llx\n");
1781
1782 static struct mac80211_hwsim_data *get_hwsim_data_ref_from_addr(
1783 struct mac_address *addr)
1784 {
1785 struct mac80211_hwsim_data *data;
1786 bool _found = false;
1787
1788 spin_lock_bh(&hwsim_radio_lock);
1789 list_for_each_entry(data, &hwsim_radios, list) {
1790 if (memcmp(data->addresses[1].addr, addr,
1791 sizeof(struct mac_address)) == 0) {
1792 _found = true;
1793 break;
1794 }
1795 }
1796 spin_unlock_bh(&hwsim_radio_lock);
1797
1798 if (!_found)
1799 return NULL;
1800
1801 return data;
1802 }
1803
1804 static int hwsim_tx_info_frame_received_nl(struct sk_buff *skb_2,
1805 struct genl_info *info)
1806 {
1807
1808 struct ieee80211_hdr *hdr;
1809 struct mac80211_hwsim_data *data2;
1810 struct ieee80211_tx_info *txi;
1811 struct hwsim_tx_rate *tx_attempts;
1812 unsigned long ret_skb_ptr;
1813 struct sk_buff *skb, *tmp;
1814 struct mac_address *src;
1815 unsigned int hwsim_flags;
1816
1817 int i;
1818 bool found = false;
1819
1820 if (!info->attrs[HWSIM_ATTR_ADDR_TRANSMITTER] ||
1821 !info->attrs[HWSIM_ATTR_FLAGS] ||
1822 !info->attrs[HWSIM_ATTR_COOKIE] ||
1823 !info->attrs[HWSIM_ATTR_TX_INFO])
1824 goto out;
1825
1826 src = (struct mac_address *)nla_data(
1827 info->attrs[HWSIM_ATTR_ADDR_TRANSMITTER]);
1828 hwsim_flags = nla_get_u32(info->attrs[HWSIM_ATTR_FLAGS]);
1829
1830 ret_skb_ptr = nla_get_u64(info->attrs[HWSIM_ATTR_COOKIE]);
1831
1832 data2 = get_hwsim_data_ref_from_addr(src);
1833
1834 if (data2 == NULL)
1835 goto out;
1836
1837 /* look for the skb matching the cookie passed back from user */
1838 skb_queue_walk_safe(&data2->pending, skb, tmp) {
1839 if ((unsigned long)skb == ret_skb_ptr) {
1840 skb_unlink(skb, &data2->pending);
1841 found = true;
1842 break;
1843 }
1844 }
1845
1846 /* not found */
1847 if (!found)
1848 goto out;
1849
1850 /* Tx info received because the frame was broadcasted on user space,
1851 so we get all the necessary info: tx attempts and skb control buff */
1852
1853 tx_attempts = (struct hwsim_tx_rate *)nla_data(
1854 info->attrs[HWSIM_ATTR_TX_INFO]);
1855
1856 /* now send back TX status */
1857 txi = IEEE80211_SKB_CB(skb);
1858
1859 ieee80211_tx_info_clear_status(txi);
1860
1861 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
1862 txi->status.rates[i].idx = tx_attempts[i].idx;
1863 txi->status.rates[i].count = tx_attempts[i].count;
1864 /*txi->status.rates[i].flags = 0;*/
1865 }
1866
1867 txi->status.ack_signal = nla_get_u32(info->attrs[HWSIM_ATTR_SIGNAL]);
1868
1869 if (!(hwsim_flags & HWSIM_TX_CTL_NO_ACK) &&
1870 (hwsim_flags & HWSIM_TX_STAT_ACK)) {
1871 if (skb->len >= 16) {
1872 hdr = (struct ieee80211_hdr *) skb->data;
1873 mac80211_hwsim_monitor_ack(txi->rate_driver_data[0],
1874 hdr->addr2);
1875 }
1876 txi->flags |= IEEE80211_TX_STAT_ACK;
1877 }
1878 ieee80211_tx_status_irqsafe(data2->hw, skb);
1879 return 0;
1880 out:
1881 return -EINVAL;
1882
1883 }
1884
1885 static int hwsim_cloned_frame_received_nl(struct sk_buff *skb_2,
1886 struct genl_info *info)
1887 {
1888
1889 struct mac80211_hwsim_data *data2;
1890 struct ieee80211_rx_status rx_status;
1891 struct mac_address *dst;
1892 int frame_data_len;
1893 char *frame_data;
1894 struct sk_buff *skb = NULL;
1895
1896 if (!info->attrs[HWSIM_ATTR_ADDR_RECEIVER] ||
1897 !info->attrs[HWSIM_ATTR_FRAME] ||
1898 !info->attrs[HWSIM_ATTR_RX_RATE] ||
1899 !info->attrs[HWSIM_ATTR_SIGNAL])
1900 goto out;
1901
1902 dst = (struct mac_address *)nla_data(
1903 info->attrs[HWSIM_ATTR_ADDR_RECEIVER]);
1904
1905 frame_data_len = nla_len(info->attrs[HWSIM_ATTR_FRAME]);
1906 frame_data = (char *)nla_data(info->attrs[HWSIM_ATTR_FRAME]);
1907
1908 /* Allocate new skb here */
1909 skb = alloc_skb(frame_data_len, GFP_KERNEL);
1910 if (skb == NULL)
1911 goto err;
1912
1913 if (frame_data_len <= IEEE80211_MAX_DATA_LEN) {
1914 /* Copy the data */
1915 memcpy(skb_put(skb, frame_data_len), frame_data,
1916 frame_data_len);
1917 } else
1918 goto err;
1919
1920 data2 = get_hwsim_data_ref_from_addr(dst);
1921
1922 if (data2 == NULL)
1923 goto out;
1924
1925 /* check if radio is configured properly */
1926
1927 if (data2->idle || !data2->started)
1928 goto out;
1929
1930 /*A frame is received from user space*/
1931 memset(&rx_status, 0, sizeof(rx_status));
1932 rx_status.freq = data2->channel->center_freq;
1933 rx_status.band = data2->channel->band;
1934 rx_status.rate_idx = nla_get_u32(info->attrs[HWSIM_ATTR_RX_RATE]);
1935 rx_status.signal = nla_get_u32(info->attrs[HWSIM_ATTR_SIGNAL]);
1936
1937 memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status));
1938 ieee80211_rx_irqsafe(data2->hw, skb);
1939
1940 return 0;
1941 err:
1942 printk(KERN_DEBUG "mac80211_hwsim: error occurred in %s\n", __func__);
1943 goto out;
1944 out:
1945 dev_kfree_skb(skb);
1946 return -EINVAL;
1947 }
1948
1949 static int hwsim_register_received_nl(struct sk_buff *skb_2,
1950 struct genl_info *info)
1951 {
1952 if (info == NULL)
1953 goto out;
1954
1955 wmediumd_portid = info->snd_portid;
1956
1957 printk(KERN_DEBUG "mac80211_hwsim: received a REGISTER, "
1958 "switching to wmediumd mode with pid %d\n", info->snd_portid);
1959
1960 return 0;
1961 out:
1962 printk(KERN_DEBUG "mac80211_hwsim: error occurred in %s\n", __func__);
1963 return -EINVAL;
1964 }
1965
1966 /* Generic Netlink operations array */
1967 static struct genl_ops hwsim_ops[] = {
1968 {
1969 .cmd = HWSIM_CMD_REGISTER,
1970 .policy = hwsim_genl_policy,
1971 .doit = hwsim_register_received_nl,
1972 .flags = GENL_ADMIN_PERM,
1973 },
1974 {
1975 .cmd = HWSIM_CMD_FRAME,
1976 .policy = hwsim_genl_policy,
1977 .doit = hwsim_cloned_frame_received_nl,
1978 },
1979 {
1980 .cmd = HWSIM_CMD_TX_INFO_FRAME,
1981 .policy = hwsim_genl_policy,
1982 .doit = hwsim_tx_info_frame_received_nl,
1983 },
1984 };
1985
1986 static int mac80211_hwsim_netlink_notify(struct notifier_block *nb,
1987 unsigned long state,
1988 void *_notify)
1989 {
1990 struct netlink_notify *notify = _notify;
1991
1992 if (state != NETLINK_URELEASE)
1993 return NOTIFY_DONE;
1994
1995 if (notify->portid == wmediumd_portid) {
1996 printk(KERN_INFO "mac80211_hwsim: wmediumd released netlink"
1997 " socket, switching to perfect channel medium\n");
1998 wmediumd_portid = 0;
1999 }
2000 return NOTIFY_DONE;
2001
2002 }
2003
2004 static struct notifier_block hwsim_netlink_notifier = {
2005 .notifier_call = mac80211_hwsim_netlink_notify,
2006 };
2007
2008 static int hwsim_init_netlink(void)
2009 {
2010 int rc;
2011
2012 /* userspace test API hasn't been adjusted for multi-channel */
2013 if (channels > 1)
2014 return 0;
2015
2016 printk(KERN_INFO "mac80211_hwsim: initializing netlink\n");
2017
2018 rc = genl_register_family_with_ops(&hwsim_genl_family,
2019 hwsim_ops, ARRAY_SIZE(hwsim_ops));
2020 if (rc)
2021 goto failure;
2022
2023 rc = netlink_register_notifier(&hwsim_netlink_notifier);
2024 if (rc)
2025 goto failure;
2026
2027 return 0;
2028
2029 failure:
2030 printk(KERN_DEBUG "mac80211_hwsim: error occurred in %s\n", __func__);
2031 return -EINVAL;
2032 }
2033
2034 static void hwsim_exit_netlink(void)
2035 {
2036 int ret;
2037
2038 /* userspace test API hasn't been adjusted for multi-channel */
2039 if (channels > 1)
2040 return;
2041
2042 printk(KERN_INFO "mac80211_hwsim: closing netlink\n");
2043 /* unregister the notifier */
2044 netlink_unregister_notifier(&hwsim_netlink_notifier);
2045 /* unregister the family */
2046 ret = genl_unregister_family(&hwsim_genl_family);
2047 if (ret)
2048 printk(KERN_DEBUG "mac80211_hwsim: "
2049 "unregister family %i\n", ret);
2050 }
2051
2052 static const struct ieee80211_iface_limit hwsim_if_limits[] = {
2053 { .max = 1, .types = BIT(NL80211_IFTYPE_ADHOC) },
2054 { .max = 2048, .types = BIT(NL80211_IFTYPE_STATION) |
2055 BIT(NL80211_IFTYPE_P2P_CLIENT) |
2056 #ifdef CONFIG_MAC80211_MESH
2057 BIT(NL80211_IFTYPE_MESH_POINT) |
2058 #endif
2059 BIT(NL80211_IFTYPE_AP) |
2060 BIT(NL80211_IFTYPE_P2P_GO) },
2061 { .max = 1, .types = BIT(NL80211_IFTYPE_P2P_DEVICE) },
2062 };
2063
2064 static struct ieee80211_iface_combination hwsim_if_comb = {
2065 .limits = hwsim_if_limits,
2066 .n_limits = ARRAY_SIZE(hwsim_if_limits),
2067 .max_interfaces = 2048,
2068 .num_different_channels = 1,
2069 };
2070
2071 static int __init init_mac80211_hwsim(void)
2072 {
2073 int i, err = 0;
2074 u8 addr[ETH_ALEN];
2075 struct mac80211_hwsim_data *data;
2076 struct ieee80211_hw *hw;
2077 enum ieee80211_band band;
2078
2079 if (radios < 1 || radios > 100)
2080 return -EINVAL;
2081
2082 if (channels < 1)
2083 return -EINVAL;
2084
2085 if (channels > 1) {
2086 hwsim_if_comb.num_different_channels = channels;
2087 mac80211_hwsim_ops.hw_scan = mac80211_hwsim_hw_scan;
2088 mac80211_hwsim_ops.cancel_hw_scan =
2089 mac80211_hwsim_cancel_hw_scan;
2090 mac80211_hwsim_ops.sw_scan_start = NULL;
2091 mac80211_hwsim_ops.sw_scan_complete = NULL;
2092 mac80211_hwsim_ops.remain_on_channel =
2093 mac80211_hwsim_roc;
2094 mac80211_hwsim_ops.cancel_remain_on_channel =
2095 mac80211_hwsim_croc;
2096 mac80211_hwsim_ops.add_chanctx =
2097 mac80211_hwsim_add_chanctx;
2098 mac80211_hwsim_ops.remove_chanctx =
2099 mac80211_hwsim_remove_chanctx;
2100 mac80211_hwsim_ops.change_chanctx =
2101 mac80211_hwsim_change_chanctx;
2102 mac80211_hwsim_ops.assign_vif_chanctx =
2103 mac80211_hwsim_assign_vif_chanctx;
2104 mac80211_hwsim_ops.unassign_vif_chanctx =
2105 mac80211_hwsim_unassign_vif_chanctx;
2106 }
2107
2108 spin_lock_init(&hwsim_radio_lock);
2109 INIT_LIST_HEAD(&hwsim_radios);
2110
2111 hwsim_class = class_create(THIS_MODULE, "mac80211_hwsim");
2112 if (IS_ERR(hwsim_class))
2113 return PTR_ERR(hwsim_class);
2114
2115 memset(addr, 0, ETH_ALEN);
2116 addr[0] = 0x02;
2117
2118 for (i = 0; i < radios; i++) {
2119 printk(KERN_DEBUG "mac80211_hwsim: Initializing radio %d\n",
2120 i);
2121 hw = ieee80211_alloc_hw(sizeof(*data), &mac80211_hwsim_ops);
2122 if (!hw) {
2123 printk(KERN_DEBUG "mac80211_hwsim: ieee80211_alloc_hw "
2124 "failed\n");
2125 err = -ENOMEM;
2126 goto failed;
2127 }
2128 data = hw->priv;
2129 data->hw = hw;
2130
2131 data->dev = device_create(hwsim_class, NULL, 0, hw,
2132 "hwsim%d", i);
2133 if (IS_ERR(data->dev)) {
2134 printk(KERN_DEBUG
2135 "mac80211_hwsim: device_create "
2136 "failed (%ld)\n", PTR_ERR(data->dev));
2137 err = -ENOMEM;
2138 goto failed_drvdata;
2139 }
2140 data->dev->driver = &mac80211_hwsim_driver;
2141 skb_queue_head_init(&data->pending);
2142
2143 SET_IEEE80211_DEV(hw, data->dev);
2144 addr[3] = i >> 8;
2145 addr[4] = i;
2146 memcpy(data->addresses[0].addr, addr, ETH_ALEN);
2147 memcpy(data->addresses[1].addr, addr, ETH_ALEN);
2148 data->addresses[1].addr[0] |= 0x40;
2149 hw->wiphy->n_addresses = 2;
2150 hw->wiphy->addresses = data->addresses;
2151
2152 hw->wiphy->iface_combinations = &hwsim_if_comb;
2153 hw->wiphy->n_iface_combinations = 1;
2154
2155 if (channels > 1) {
2156 hw->wiphy->max_scan_ssids = 255;
2157 hw->wiphy->max_scan_ie_len = IEEE80211_MAX_DATA_LEN;
2158 hw->wiphy->max_remain_on_channel_duration = 1000;
2159 }
2160
2161 INIT_DELAYED_WORK(&data->roc_done, hw_roc_done);
2162 INIT_DELAYED_WORK(&data->hw_scan, hw_scan_work);
2163
2164 hw->channel_change_time = 1;
2165 hw->queues = 5;
2166 hw->offchannel_tx_hw_queue = 4;
2167 hw->wiphy->interface_modes =
2168 BIT(NL80211_IFTYPE_STATION) |
2169 BIT(NL80211_IFTYPE_AP) |
2170 BIT(NL80211_IFTYPE_P2P_CLIENT) |
2171 BIT(NL80211_IFTYPE_P2P_GO) |
2172 BIT(NL80211_IFTYPE_ADHOC) |
2173 BIT(NL80211_IFTYPE_MESH_POINT) |
2174 BIT(NL80211_IFTYPE_P2P_DEVICE);
2175
2176 hw->flags = IEEE80211_HW_MFP_CAPABLE |
2177 IEEE80211_HW_SIGNAL_DBM |
2178 IEEE80211_HW_SUPPORTS_STATIC_SMPS |
2179 IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS |
2180 IEEE80211_HW_AMPDU_AGGREGATION |
2181 IEEE80211_HW_WANT_MONITOR_VIF |
2182 IEEE80211_HW_QUEUE_CONTROL;
2183
2184 hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
2185 WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL;
2186
2187 /* ask mac80211 to reserve space for magic */
2188 hw->vif_data_size = sizeof(struct hwsim_vif_priv);
2189 hw->sta_data_size = sizeof(struct hwsim_sta_priv);
2190
2191 memcpy(data->channels_2ghz, hwsim_channels_2ghz,
2192 sizeof(hwsim_channels_2ghz));
2193 memcpy(data->channels_5ghz, hwsim_channels_5ghz,
2194 sizeof(hwsim_channels_5ghz));
2195 memcpy(data->rates, hwsim_rates, sizeof(hwsim_rates));
2196
2197 for (band = IEEE80211_BAND_2GHZ; band < IEEE80211_NUM_BANDS; band++) {
2198 struct ieee80211_supported_band *sband = &data->bands[band];
2199 switch (band) {
2200 case IEEE80211_BAND_2GHZ:
2201 sband->channels = data->channels_2ghz;
2202 sband->n_channels =
2203 ARRAY_SIZE(hwsim_channels_2ghz);
2204 sband->bitrates = data->rates;
2205 sband->n_bitrates = ARRAY_SIZE(hwsim_rates);
2206 break;
2207 case IEEE80211_BAND_5GHZ:
2208 sband->channels = data->channels_5ghz;
2209 sband->n_channels =
2210 ARRAY_SIZE(hwsim_channels_5ghz);
2211 sband->bitrates = data->rates + 4;
2212 sband->n_bitrates = ARRAY_SIZE(hwsim_rates) - 4;
2213 break;
2214 default:
2215 continue;
2216 }
2217
2218 sband->ht_cap.ht_supported = true;
2219 sband->ht_cap.cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
2220 IEEE80211_HT_CAP_GRN_FLD |
2221 IEEE80211_HT_CAP_SGI_40 |
2222 IEEE80211_HT_CAP_DSSSCCK40;
2223 sband->ht_cap.ampdu_factor = 0x3;
2224 sband->ht_cap.ampdu_density = 0x6;
2225 memset(&sband->ht_cap.mcs, 0,
2226 sizeof(sband->ht_cap.mcs));
2227 sband->ht_cap.mcs.rx_mask[0] = 0xff;
2228 sband->ht_cap.mcs.rx_mask[1] = 0xff;
2229 sband->ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2230
2231 hw->wiphy->bands[band] = sband;
2232
2233 if (channels == 1)
2234 continue;
2235
2236 sband->vht_cap.vht_supported = true;
2237 sband->vht_cap.cap =
2238 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
2239 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ |
2240 IEEE80211_VHT_CAP_RXLDPC |
2241 IEEE80211_VHT_CAP_SHORT_GI_80 |
2242 IEEE80211_VHT_CAP_SHORT_GI_160 |
2243 IEEE80211_VHT_CAP_TXSTBC |
2244 IEEE80211_VHT_CAP_RXSTBC_1 |
2245 IEEE80211_VHT_CAP_RXSTBC_2 |
2246 IEEE80211_VHT_CAP_RXSTBC_3 |
2247 IEEE80211_VHT_CAP_RXSTBC_4 |
2248 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK;
2249 sband->vht_cap.vht_mcs.rx_mcs_map =
2250 cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_8 << 0 |
2251 IEEE80211_VHT_MCS_SUPPORT_0_8 << 2 |
2252 IEEE80211_VHT_MCS_SUPPORT_0_9 << 4 |
2253 IEEE80211_VHT_MCS_SUPPORT_0_8 << 6 |
2254 IEEE80211_VHT_MCS_SUPPORT_0_8 << 8 |
2255 IEEE80211_VHT_MCS_SUPPORT_0_9 << 10 |
2256 IEEE80211_VHT_MCS_SUPPORT_0_9 << 12 |
2257 IEEE80211_VHT_MCS_SUPPORT_0_8 << 14);
2258 sband->vht_cap.vht_mcs.tx_mcs_map =
2259 sband->vht_cap.vht_mcs.rx_mcs_map;
2260 }
2261 /* By default all radios are belonging to the first group */
2262 data->group = 1;
2263 mutex_init(&data->mutex);
2264
2265 /* Enable frame retransmissions for lossy channels */
2266 hw->max_rates = 4;
2267 hw->max_rate_tries = 11;
2268
2269 /* Work to be done prior to ieee80211_register_hw() */
2270 switch (regtest) {
2271 case HWSIM_REGTEST_DISABLED:
2272 case HWSIM_REGTEST_DRIVER_REG_FOLLOW:
2273 case HWSIM_REGTEST_DRIVER_REG_ALL:
2274 case HWSIM_REGTEST_DIFF_COUNTRY:
2275 /*
2276 * Nothing to be done for driver regulatory domain
2277 * hints prior to ieee80211_register_hw()
2278 */
2279 break;
2280 case HWSIM_REGTEST_WORLD_ROAM:
2281 if (i == 0) {
2282 hw->wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY;
2283 wiphy_apply_custom_regulatory(hw->wiphy,
2284 &hwsim_world_regdom_custom_01);
2285 }
2286 break;
2287 case HWSIM_REGTEST_CUSTOM_WORLD:
2288 hw->wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY;
2289 wiphy_apply_custom_regulatory(hw->wiphy,
2290 &hwsim_world_regdom_custom_01);
2291 break;
2292 case HWSIM_REGTEST_CUSTOM_WORLD_2:
2293 if (i == 0) {
2294 hw->wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY;
2295 wiphy_apply_custom_regulatory(hw->wiphy,
2296 &hwsim_world_regdom_custom_01);
2297 } else if (i == 1) {
2298 hw->wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY;
2299 wiphy_apply_custom_regulatory(hw->wiphy,
2300 &hwsim_world_regdom_custom_02);
2301 }
2302 break;
2303 case HWSIM_REGTEST_STRICT_ALL:
2304 hw->wiphy->flags |= WIPHY_FLAG_STRICT_REGULATORY;
2305 break;
2306 case HWSIM_REGTEST_STRICT_FOLLOW:
2307 case HWSIM_REGTEST_STRICT_AND_DRIVER_REG:
2308 if (i == 0)
2309 hw->wiphy->flags |= WIPHY_FLAG_STRICT_REGULATORY;
2310 break;
2311 case HWSIM_REGTEST_ALL:
2312 if (i == 0) {
2313 hw->wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY;
2314 wiphy_apply_custom_regulatory(hw->wiphy,
2315 &hwsim_world_regdom_custom_01);
2316 } else if (i == 1) {
2317 hw->wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY;
2318 wiphy_apply_custom_regulatory(hw->wiphy,
2319 &hwsim_world_regdom_custom_02);
2320 } else if (i == 4)
2321 hw->wiphy->flags |= WIPHY_FLAG_STRICT_REGULATORY;
2322 break;
2323 default:
2324 break;
2325 }
2326
2327 /* give the regulatory workqueue a chance to run */
2328 if (regtest)
2329 schedule_timeout_interruptible(1);
2330 err = ieee80211_register_hw(hw);
2331 if (err < 0) {
2332 printk(KERN_DEBUG "mac80211_hwsim: "
2333 "ieee80211_register_hw failed (%d)\n", err);
2334 goto failed_hw;
2335 }
2336
2337 /* Work to be done after to ieee80211_register_hw() */
2338 switch (regtest) {
2339 case HWSIM_REGTEST_WORLD_ROAM:
2340 case HWSIM_REGTEST_DISABLED:
2341 break;
2342 case HWSIM_REGTEST_DRIVER_REG_FOLLOW:
2343 if (!i)
2344 regulatory_hint(hw->wiphy, hwsim_alpha2s[0]);
2345 break;
2346 case HWSIM_REGTEST_DRIVER_REG_ALL:
2347 case HWSIM_REGTEST_STRICT_ALL:
2348 regulatory_hint(hw->wiphy, hwsim_alpha2s[0]);
2349 break;
2350 case HWSIM_REGTEST_DIFF_COUNTRY:
2351 if (i < ARRAY_SIZE(hwsim_alpha2s))
2352 regulatory_hint(hw->wiphy, hwsim_alpha2s[i]);
2353 break;
2354 case HWSIM_REGTEST_CUSTOM_WORLD:
2355 case HWSIM_REGTEST_CUSTOM_WORLD_2:
2356 /*
2357 * Nothing to be done for custom world regulatory
2358 * domains after to ieee80211_register_hw
2359 */
2360 break;
2361 case HWSIM_REGTEST_STRICT_FOLLOW:
2362 if (i == 0)
2363 regulatory_hint(hw->wiphy, hwsim_alpha2s[0]);
2364 break;
2365 case HWSIM_REGTEST_STRICT_AND_DRIVER_REG:
2366 if (i == 0)
2367 regulatory_hint(hw->wiphy, hwsim_alpha2s[0]);
2368 else if (i == 1)
2369 regulatory_hint(hw->wiphy, hwsim_alpha2s[1]);
2370 break;
2371 case HWSIM_REGTEST_ALL:
2372 if (i == 2)
2373 regulatory_hint(hw->wiphy, hwsim_alpha2s[0]);
2374 else if (i == 3)
2375 regulatory_hint(hw->wiphy, hwsim_alpha2s[1]);
2376 else if (i == 4)
2377 regulatory_hint(hw->wiphy, hwsim_alpha2s[2]);
2378 break;
2379 default:
2380 break;
2381 }
2382
2383 wiphy_debug(hw->wiphy, "hwaddr %pm registered\n",
2384 hw->wiphy->perm_addr);
2385
2386 data->debugfs = debugfs_create_dir("hwsim",
2387 hw->wiphy->debugfsdir);
2388 data->debugfs_ps = debugfs_create_file("ps", 0666,
2389 data->debugfs, data,
2390 &hwsim_fops_ps);
2391 data->debugfs_group = debugfs_create_file("group", 0666,
2392 data->debugfs, data,
2393 &hwsim_fops_group);
2394
2395 setup_timer(&data->beacon_timer, mac80211_hwsim_beacon,
2396 (unsigned long) hw);
2397
2398 list_add_tail(&data->list, &hwsim_radios);
2399 }
2400
2401 hwsim_mon = alloc_netdev(0, "hwsim%d", hwsim_mon_setup);
2402 if (hwsim_mon == NULL)
2403 goto failed;
2404
2405 rtnl_lock();
2406
2407 err = dev_alloc_name(hwsim_mon, hwsim_mon->name);
2408 if (err < 0)
2409 goto failed_mon;
2410
2411
2412 err = register_netdevice(hwsim_mon);
2413 if (err < 0)
2414 goto failed_mon;
2415
2416 rtnl_unlock();
2417
2418 err = hwsim_init_netlink();
2419 if (err < 0)
2420 goto failed_nl;
2421
2422 return 0;
2423
2424 failed_nl:
2425 printk(KERN_DEBUG "mac_80211_hwsim: failed initializing netlink\n");
2426 return err;
2427
2428 failed_mon:
2429 rtnl_unlock();
2430 free_netdev(hwsim_mon);
2431 mac80211_hwsim_free();
2432 return err;
2433
2434 failed_hw:
2435 device_unregister(data->dev);
2436 failed_drvdata:
2437 ieee80211_free_hw(hw);
2438 failed:
2439 mac80211_hwsim_free();
2440 return err;
2441 }
2442 module_init(init_mac80211_hwsim);
2443
2444 static void __exit exit_mac80211_hwsim(void)
2445 {
2446 printk(KERN_DEBUG "mac80211_hwsim: unregister radios\n");
2447
2448 hwsim_exit_netlink();
2449
2450 mac80211_hwsim_free();
2451 unregister_netdev(hwsim_mon);
2452 }
2453 module_exit(exit_mac80211_hwsim);
This page took 0.088782 seconds and 5 git commands to generate.