mac80211_hwsim: clean up netlink exit code
[deliverable/linux.git] / drivers / net / wireless / mac80211_hwsim.c
1 /*
2 * mac80211_hwsim - software simulator of 802.11 radio(s) for mac80211
3 * Copyright (c) 2008, Jouni Malinen <j@w1.fi>
4 * Copyright (c) 2011, Javier Lopez <jlopex@gmail.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 /*
12 * TODO:
13 * - Add TSF sync and fix IBSS beacon transmission by adding
14 * competition for "air time" at TBTT
15 * - RX filtering based on filter configuration (data->rx_filter)
16 */
17
18 #include <linux/list.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <net/dst.h>
22 #include <net/xfrm.h>
23 #include <net/mac80211.h>
24 #include <net/ieee80211_radiotap.h>
25 #include <linux/if_arp.h>
26 #include <linux/rtnetlink.h>
27 #include <linux/etherdevice.h>
28 #include <linux/platform_device.h>
29 #include <linux/debugfs.h>
30 #include <linux/module.h>
31 #include <linux/ktime.h>
32 #include <net/genetlink.h>
33 #include "mac80211_hwsim.h"
34
35 #define WARN_QUEUE 100
36 #define MAX_QUEUE 200
37
38 MODULE_AUTHOR("Jouni Malinen");
39 MODULE_DESCRIPTION("Software simulator of 802.11 radio(s) for mac80211");
40 MODULE_LICENSE("GPL");
41
42 static u32 wmediumd_portid;
43
44 static int radios = 2;
45 module_param(radios, int, 0444);
46 MODULE_PARM_DESC(radios, "Number of simulated radios");
47
48 static int channels = 1;
49 module_param(channels, int, 0444);
50 MODULE_PARM_DESC(channels, "Number of concurrent channels");
51
52 static bool paged_rx = false;
53 module_param(paged_rx, bool, 0644);
54 MODULE_PARM_DESC(paged_rx, "Use paged SKBs for RX instead of linear ones");
55
56 static bool rctbl = false;
57 module_param(rctbl, bool, 0444);
58 MODULE_PARM_DESC(rctbl, "Handle rate control table");
59
60 /**
61 * enum hwsim_regtest - the type of regulatory tests we offer
62 *
63 * These are the different values you can use for the regtest
64 * module parameter. This is useful to help test world roaming
65 * and the driver regulatory_hint() call and combinations of these.
66 * If you want to do specific alpha2 regulatory domain tests simply
67 * use the userspace regulatory request as that will be respected as
68 * well without the need of this module parameter. This is designed
69 * only for testing the driver regulatory request, world roaming
70 * and all possible combinations.
71 *
72 * @HWSIM_REGTEST_DISABLED: No regulatory tests are performed,
73 * this is the default value.
74 * @HWSIM_REGTEST_DRIVER_REG_FOLLOW: Used for testing the driver regulatory
75 * hint, only one driver regulatory hint will be sent as such the
76 * secondary radios are expected to follow.
77 * @HWSIM_REGTEST_DRIVER_REG_ALL: Used for testing the driver regulatory
78 * request with all radios reporting the same regulatory domain.
79 * @HWSIM_REGTEST_DIFF_COUNTRY: Used for testing the drivers calling
80 * different regulatory domains requests. Expected behaviour is for
81 * an intersection to occur but each device will still use their
82 * respective regulatory requested domains. Subsequent radios will
83 * use the resulting intersection.
84 * @HWSIM_REGTEST_WORLD_ROAM: Used for testing the world roaming. We accomplish
85 * this by using a custom beacon-capable regulatory domain for the first
86 * radio. All other device world roam.
87 * @HWSIM_REGTEST_CUSTOM_WORLD: Used for testing the custom world regulatory
88 * domain requests. All radios will adhere to this custom world regulatory
89 * domain.
90 * @HWSIM_REGTEST_CUSTOM_WORLD_2: Used for testing 2 custom world regulatory
91 * domain requests. The first radio will adhere to the first custom world
92 * regulatory domain, the second one to the second custom world regulatory
93 * domain. All other devices will world roam.
94 * @HWSIM_REGTEST_STRICT_FOLLOW_: Used for testing strict regulatory domain
95 * settings, only the first radio will send a regulatory domain request
96 * and use strict settings. The rest of the radios are expected to follow.
97 * @HWSIM_REGTEST_STRICT_ALL: Used for testing strict regulatory domain
98 * settings. All radios will adhere to this.
99 * @HWSIM_REGTEST_STRICT_AND_DRIVER_REG: Used for testing strict regulatory
100 * domain settings, combined with secondary driver regulatory domain
101 * settings. The first radio will get a strict regulatory domain setting
102 * using the first driver regulatory request and the second radio will use
103 * non-strict settings using the second driver regulatory request. All
104 * other devices should follow the intersection created between the
105 * first two.
106 * @HWSIM_REGTEST_ALL: Used for testing every possible mix. You will need
107 * at least 6 radios for a complete test. We will test in this order:
108 * 1 - driver custom world regulatory domain
109 * 2 - second custom world regulatory domain
110 * 3 - first driver regulatory domain request
111 * 4 - second driver regulatory domain request
112 * 5 - strict regulatory domain settings using the third driver regulatory
113 * domain request
114 * 6 and on - should follow the intersection of the 3rd, 4rth and 5th radio
115 * regulatory requests.
116 */
117 enum hwsim_regtest {
118 HWSIM_REGTEST_DISABLED = 0,
119 HWSIM_REGTEST_DRIVER_REG_FOLLOW = 1,
120 HWSIM_REGTEST_DRIVER_REG_ALL = 2,
121 HWSIM_REGTEST_DIFF_COUNTRY = 3,
122 HWSIM_REGTEST_WORLD_ROAM = 4,
123 HWSIM_REGTEST_CUSTOM_WORLD = 5,
124 HWSIM_REGTEST_CUSTOM_WORLD_2 = 6,
125 HWSIM_REGTEST_STRICT_FOLLOW = 7,
126 HWSIM_REGTEST_STRICT_ALL = 8,
127 HWSIM_REGTEST_STRICT_AND_DRIVER_REG = 9,
128 HWSIM_REGTEST_ALL = 10,
129 };
130
131 /* Set to one of the HWSIM_REGTEST_* values above */
132 static int regtest = HWSIM_REGTEST_DISABLED;
133 module_param(regtest, int, 0444);
134 MODULE_PARM_DESC(regtest, "The type of regulatory test we want to run");
135
136 static const char *hwsim_alpha2s[] = {
137 "FI",
138 "AL",
139 "US",
140 "DE",
141 "JP",
142 "AL",
143 };
144
145 static const struct ieee80211_regdomain hwsim_world_regdom_custom_01 = {
146 .n_reg_rules = 4,
147 .alpha2 = "99",
148 .reg_rules = {
149 REG_RULE(2412-10, 2462+10, 40, 0, 20, 0),
150 REG_RULE(2484-10, 2484+10, 40, 0, 20, 0),
151 REG_RULE(5150-10, 5240+10, 40, 0, 30, 0),
152 REG_RULE(5745-10, 5825+10, 40, 0, 30, 0),
153 }
154 };
155
156 static const struct ieee80211_regdomain hwsim_world_regdom_custom_02 = {
157 .n_reg_rules = 2,
158 .alpha2 = "99",
159 .reg_rules = {
160 REG_RULE(2412-10, 2462+10, 40, 0, 20, 0),
161 REG_RULE(5725-10, 5850+10, 40, 0, 30,
162 NL80211_RRF_NO_IR),
163 }
164 };
165
166 struct hwsim_vif_priv {
167 u32 magic;
168 u8 bssid[ETH_ALEN];
169 bool assoc;
170 bool bcn_en;
171 u16 aid;
172 };
173
174 #define HWSIM_VIF_MAGIC 0x69537748
175
176 static inline void hwsim_check_magic(struct ieee80211_vif *vif)
177 {
178 struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
179 WARN(vp->magic != HWSIM_VIF_MAGIC,
180 "Invalid VIF (%p) magic %#x, %pM, %d/%d\n",
181 vif, vp->magic, vif->addr, vif->type, vif->p2p);
182 }
183
184 static inline void hwsim_set_magic(struct ieee80211_vif *vif)
185 {
186 struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
187 vp->magic = HWSIM_VIF_MAGIC;
188 }
189
190 static inline void hwsim_clear_magic(struct ieee80211_vif *vif)
191 {
192 struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
193 vp->magic = 0;
194 }
195
196 struct hwsim_sta_priv {
197 u32 magic;
198 };
199
200 #define HWSIM_STA_MAGIC 0x6d537749
201
202 static inline void hwsim_check_sta_magic(struct ieee80211_sta *sta)
203 {
204 struct hwsim_sta_priv *sp = (void *)sta->drv_priv;
205 WARN_ON(sp->magic != HWSIM_STA_MAGIC);
206 }
207
208 static inline void hwsim_set_sta_magic(struct ieee80211_sta *sta)
209 {
210 struct hwsim_sta_priv *sp = (void *)sta->drv_priv;
211 sp->magic = HWSIM_STA_MAGIC;
212 }
213
214 static inline void hwsim_clear_sta_magic(struct ieee80211_sta *sta)
215 {
216 struct hwsim_sta_priv *sp = (void *)sta->drv_priv;
217 sp->magic = 0;
218 }
219
220 struct hwsim_chanctx_priv {
221 u32 magic;
222 };
223
224 #define HWSIM_CHANCTX_MAGIC 0x6d53774a
225
226 static inline void hwsim_check_chanctx_magic(struct ieee80211_chanctx_conf *c)
227 {
228 struct hwsim_chanctx_priv *cp = (void *)c->drv_priv;
229 WARN_ON(cp->magic != HWSIM_CHANCTX_MAGIC);
230 }
231
232 static inline void hwsim_set_chanctx_magic(struct ieee80211_chanctx_conf *c)
233 {
234 struct hwsim_chanctx_priv *cp = (void *)c->drv_priv;
235 cp->magic = HWSIM_CHANCTX_MAGIC;
236 }
237
238 static inline void hwsim_clear_chanctx_magic(struct ieee80211_chanctx_conf *c)
239 {
240 struct hwsim_chanctx_priv *cp = (void *)c->drv_priv;
241 cp->magic = 0;
242 }
243
244 static struct class *hwsim_class;
245
246 static struct net_device *hwsim_mon; /* global monitor netdev */
247
248 #define CHAN2G(_freq) { \
249 .band = IEEE80211_BAND_2GHZ, \
250 .center_freq = (_freq), \
251 .hw_value = (_freq), \
252 .max_power = 20, \
253 }
254
255 #define CHAN5G(_freq) { \
256 .band = IEEE80211_BAND_5GHZ, \
257 .center_freq = (_freq), \
258 .hw_value = (_freq), \
259 .max_power = 20, \
260 }
261
262 static const struct ieee80211_channel hwsim_channels_2ghz[] = {
263 CHAN2G(2412), /* Channel 1 */
264 CHAN2G(2417), /* Channel 2 */
265 CHAN2G(2422), /* Channel 3 */
266 CHAN2G(2427), /* Channel 4 */
267 CHAN2G(2432), /* Channel 5 */
268 CHAN2G(2437), /* Channel 6 */
269 CHAN2G(2442), /* Channel 7 */
270 CHAN2G(2447), /* Channel 8 */
271 CHAN2G(2452), /* Channel 9 */
272 CHAN2G(2457), /* Channel 10 */
273 CHAN2G(2462), /* Channel 11 */
274 CHAN2G(2467), /* Channel 12 */
275 CHAN2G(2472), /* Channel 13 */
276 CHAN2G(2484), /* Channel 14 */
277 };
278
279 static const struct ieee80211_channel hwsim_channels_5ghz[] = {
280 CHAN5G(5180), /* Channel 36 */
281 CHAN5G(5200), /* Channel 40 */
282 CHAN5G(5220), /* Channel 44 */
283 CHAN5G(5240), /* Channel 48 */
284
285 CHAN5G(5260), /* Channel 52 */
286 CHAN5G(5280), /* Channel 56 */
287 CHAN5G(5300), /* Channel 60 */
288 CHAN5G(5320), /* Channel 64 */
289
290 CHAN5G(5500), /* Channel 100 */
291 CHAN5G(5520), /* Channel 104 */
292 CHAN5G(5540), /* Channel 108 */
293 CHAN5G(5560), /* Channel 112 */
294 CHAN5G(5580), /* Channel 116 */
295 CHAN5G(5600), /* Channel 120 */
296 CHAN5G(5620), /* Channel 124 */
297 CHAN5G(5640), /* Channel 128 */
298 CHAN5G(5660), /* Channel 132 */
299 CHAN5G(5680), /* Channel 136 */
300 CHAN5G(5700), /* Channel 140 */
301
302 CHAN5G(5745), /* Channel 149 */
303 CHAN5G(5765), /* Channel 153 */
304 CHAN5G(5785), /* Channel 157 */
305 CHAN5G(5805), /* Channel 161 */
306 CHAN5G(5825), /* Channel 165 */
307 };
308
309 static const struct ieee80211_rate hwsim_rates[] = {
310 { .bitrate = 10 },
311 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
312 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
313 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314 { .bitrate = 60 },
315 { .bitrate = 90 },
316 { .bitrate = 120 },
317 { .bitrate = 180 },
318 { .bitrate = 240 },
319 { .bitrate = 360 },
320 { .bitrate = 480 },
321 { .bitrate = 540 }
322 };
323
324 static spinlock_t hwsim_radio_lock;
325 static struct list_head hwsim_radios;
326
327 struct mac80211_hwsim_data {
328 struct list_head list;
329 struct ieee80211_hw *hw;
330 struct device *dev;
331 struct ieee80211_supported_band bands[IEEE80211_NUM_BANDS];
332 struct ieee80211_channel channels_2ghz[ARRAY_SIZE(hwsim_channels_2ghz)];
333 struct ieee80211_channel channels_5ghz[ARRAY_SIZE(hwsim_channels_5ghz)];
334 struct ieee80211_rate rates[ARRAY_SIZE(hwsim_rates)];
335
336 struct mac_address addresses[2];
337
338 struct ieee80211_channel *tmp_chan;
339 struct delayed_work roc_done;
340 struct delayed_work hw_scan;
341 struct cfg80211_scan_request *hw_scan_request;
342 struct ieee80211_vif *hw_scan_vif;
343 int scan_chan_idx;
344
345 struct ieee80211_channel *channel;
346 u64 beacon_int /* beacon interval in us */;
347 unsigned int rx_filter;
348 bool started, idle, scanning;
349 struct mutex mutex;
350 struct tasklet_hrtimer beacon_timer;
351 enum ps_mode {
352 PS_DISABLED, PS_ENABLED, PS_AUTO_POLL, PS_MANUAL_POLL
353 } ps;
354 bool ps_poll_pending;
355 struct dentry *debugfs;
356
357 struct sk_buff_head pending; /* packets pending */
358 /*
359 * Only radios in the same group can communicate together (the
360 * channel has to match too). Each bit represents a group. A
361 * radio can be in more then one group.
362 */
363 u64 group;
364
365 int power_level;
366
367 /* difference between this hw's clock and the real clock, in usecs */
368 s64 tsf_offset;
369 s64 bcn_delta;
370 /* absolute beacon transmission time. Used to cover up "tx" delay. */
371 u64 abs_bcn_ts;
372 };
373
374
375 struct hwsim_radiotap_hdr {
376 struct ieee80211_radiotap_header hdr;
377 __le64 rt_tsft;
378 u8 rt_flags;
379 u8 rt_rate;
380 __le16 rt_channel;
381 __le16 rt_chbitmask;
382 } __packed;
383
384 struct hwsim_radiotap_ack_hdr {
385 struct ieee80211_radiotap_header hdr;
386 u8 rt_flags;
387 u8 pad;
388 __le16 rt_channel;
389 __le16 rt_chbitmask;
390 } __packed;
391
392 /* MAC80211_HWSIM netlinf family */
393 static struct genl_family hwsim_genl_family = {
394 .id = GENL_ID_GENERATE,
395 .hdrsize = 0,
396 .name = "MAC80211_HWSIM",
397 .version = 1,
398 .maxattr = HWSIM_ATTR_MAX,
399 };
400
401 /* MAC80211_HWSIM netlink policy */
402
403 static struct nla_policy hwsim_genl_policy[HWSIM_ATTR_MAX + 1] = {
404 [HWSIM_ATTR_ADDR_RECEIVER] = { .type = NLA_UNSPEC,
405 .len = 6*sizeof(u8) },
406 [HWSIM_ATTR_ADDR_TRANSMITTER] = { .type = NLA_UNSPEC,
407 .len = 6*sizeof(u8) },
408 [HWSIM_ATTR_FRAME] = { .type = NLA_BINARY,
409 .len = IEEE80211_MAX_DATA_LEN },
410 [HWSIM_ATTR_FLAGS] = { .type = NLA_U32 },
411 [HWSIM_ATTR_RX_RATE] = { .type = NLA_U32 },
412 [HWSIM_ATTR_SIGNAL] = { .type = NLA_U32 },
413 [HWSIM_ATTR_TX_INFO] = { .type = NLA_UNSPEC,
414 .len = IEEE80211_TX_MAX_RATES*sizeof(
415 struct hwsim_tx_rate)},
416 [HWSIM_ATTR_COOKIE] = { .type = NLA_U64 },
417 };
418
419 static netdev_tx_t hwsim_mon_xmit(struct sk_buff *skb,
420 struct net_device *dev)
421 {
422 /* TODO: allow packet injection */
423 dev_kfree_skb(skb);
424 return NETDEV_TX_OK;
425 }
426
427 static inline u64 mac80211_hwsim_get_tsf_raw(void)
428 {
429 return ktime_to_us(ktime_get_real());
430 }
431
432 static __le64 __mac80211_hwsim_get_tsf(struct mac80211_hwsim_data *data)
433 {
434 u64 now = mac80211_hwsim_get_tsf_raw();
435 return cpu_to_le64(now + data->tsf_offset);
436 }
437
438 static u64 mac80211_hwsim_get_tsf(struct ieee80211_hw *hw,
439 struct ieee80211_vif *vif)
440 {
441 struct mac80211_hwsim_data *data = hw->priv;
442 return le64_to_cpu(__mac80211_hwsim_get_tsf(data));
443 }
444
445 static void mac80211_hwsim_set_tsf(struct ieee80211_hw *hw,
446 struct ieee80211_vif *vif, u64 tsf)
447 {
448 struct mac80211_hwsim_data *data = hw->priv;
449 u64 now = mac80211_hwsim_get_tsf(hw, vif);
450 u32 bcn_int = data->beacon_int;
451 s64 delta = tsf - now;
452
453 data->tsf_offset += delta;
454 /* adjust after beaconing with new timestamp at old TBTT */
455 data->bcn_delta = do_div(delta, bcn_int);
456 }
457
458 static void mac80211_hwsim_monitor_rx(struct ieee80211_hw *hw,
459 struct sk_buff *tx_skb,
460 struct ieee80211_channel *chan)
461 {
462 struct mac80211_hwsim_data *data = hw->priv;
463 struct sk_buff *skb;
464 struct hwsim_radiotap_hdr *hdr;
465 u16 flags;
466 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx_skb);
467 struct ieee80211_rate *txrate = ieee80211_get_tx_rate(hw, info);
468
469 if (!netif_running(hwsim_mon))
470 return;
471
472 skb = skb_copy_expand(tx_skb, sizeof(*hdr), 0, GFP_ATOMIC);
473 if (skb == NULL)
474 return;
475
476 hdr = (struct hwsim_radiotap_hdr *) skb_push(skb, sizeof(*hdr));
477 hdr->hdr.it_version = PKTHDR_RADIOTAP_VERSION;
478 hdr->hdr.it_pad = 0;
479 hdr->hdr.it_len = cpu_to_le16(sizeof(*hdr));
480 hdr->hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
481 (1 << IEEE80211_RADIOTAP_RATE) |
482 (1 << IEEE80211_RADIOTAP_TSFT) |
483 (1 << IEEE80211_RADIOTAP_CHANNEL));
484 hdr->rt_tsft = __mac80211_hwsim_get_tsf(data);
485 hdr->rt_flags = 0;
486 hdr->rt_rate = txrate->bitrate / 5;
487 hdr->rt_channel = cpu_to_le16(chan->center_freq);
488 flags = IEEE80211_CHAN_2GHZ;
489 if (txrate->flags & IEEE80211_RATE_ERP_G)
490 flags |= IEEE80211_CHAN_OFDM;
491 else
492 flags |= IEEE80211_CHAN_CCK;
493 hdr->rt_chbitmask = cpu_to_le16(flags);
494
495 skb->dev = hwsim_mon;
496 skb_set_mac_header(skb, 0);
497 skb->ip_summed = CHECKSUM_UNNECESSARY;
498 skb->pkt_type = PACKET_OTHERHOST;
499 skb->protocol = htons(ETH_P_802_2);
500 memset(skb->cb, 0, sizeof(skb->cb));
501 netif_rx(skb);
502 }
503
504
505 static void mac80211_hwsim_monitor_ack(struct ieee80211_channel *chan,
506 const u8 *addr)
507 {
508 struct sk_buff *skb;
509 struct hwsim_radiotap_ack_hdr *hdr;
510 u16 flags;
511 struct ieee80211_hdr *hdr11;
512
513 if (!netif_running(hwsim_mon))
514 return;
515
516 skb = dev_alloc_skb(100);
517 if (skb == NULL)
518 return;
519
520 hdr = (struct hwsim_radiotap_ack_hdr *) skb_put(skb, sizeof(*hdr));
521 hdr->hdr.it_version = PKTHDR_RADIOTAP_VERSION;
522 hdr->hdr.it_pad = 0;
523 hdr->hdr.it_len = cpu_to_le16(sizeof(*hdr));
524 hdr->hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
525 (1 << IEEE80211_RADIOTAP_CHANNEL));
526 hdr->rt_flags = 0;
527 hdr->pad = 0;
528 hdr->rt_channel = cpu_to_le16(chan->center_freq);
529 flags = IEEE80211_CHAN_2GHZ;
530 hdr->rt_chbitmask = cpu_to_le16(flags);
531
532 hdr11 = (struct ieee80211_hdr *) skb_put(skb, 10);
533 hdr11->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
534 IEEE80211_STYPE_ACK);
535 hdr11->duration_id = cpu_to_le16(0);
536 memcpy(hdr11->addr1, addr, ETH_ALEN);
537
538 skb->dev = hwsim_mon;
539 skb_set_mac_header(skb, 0);
540 skb->ip_summed = CHECKSUM_UNNECESSARY;
541 skb->pkt_type = PACKET_OTHERHOST;
542 skb->protocol = htons(ETH_P_802_2);
543 memset(skb->cb, 0, sizeof(skb->cb));
544 netif_rx(skb);
545 }
546
547
548 static bool hwsim_ps_rx_ok(struct mac80211_hwsim_data *data,
549 struct sk_buff *skb)
550 {
551 switch (data->ps) {
552 case PS_DISABLED:
553 return true;
554 case PS_ENABLED:
555 return false;
556 case PS_AUTO_POLL:
557 /* TODO: accept (some) Beacons by default and other frames only
558 * if pending PS-Poll has been sent */
559 return true;
560 case PS_MANUAL_POLL:
561 /* Allow unicast frames to own address if there is a pending
562 * PS-Poll */
563 if (data->ps_poll_pending &&
564 memcmp(data->hw->wiphy->perm_addr, skb->data + 4,
565 ETH_ALEN) == 0) {
566 data->ps_poll_pending = false;
567 return true;
568 }
569 return false;
570 }
571
572 return true;
573 }
574
575
576 struct mac80211_hwsim_addr_match_data {
577 bool ret;
578 const u8 *addr;
579 };
580
581 static void mac80211_hwsim_addr_iter(void *data, u8 *mac,
582 struct ieee80211_vif *vif)
583 {
584 struct mac80211_hwsim_addr_match_data *md = data;
585 if (memcmp(mac, md->addr, ETH_ALEN) == 0)
586 md->ret = true;
587 }
588
589
590 static bool mac80211_hwsim_addr_match(struct mac80211_hwsim_data *data,
591 const u8 *addr)
592 {
593 struct mac80211_hwsim_addr_match_data md;
594
595 if (memcmp(addr, data->hw->wiphy->perm_addr, ETH_ALEN) == 0)
596 return true;
597
598 md.ret = false;
599 md.addr = addr;
600 ieee80211_iterate_active_interfaces_atomic(data->hw,
601 IEEE80211_IFACE_ITER_NORMAL,
602 mac80211_hwsim_addr_iter,
603 &md);
604
605 return md.ret;
606 }
607
608 static void mac80211_hwsim_tx_frame_nl(struct ieee80211_hw *hw,
609 struct sk_buff *my_skb,
610 int dst_portid)
611 {
612 struct sk_buff *skb;
613 struct mac80211_hwsim_data *data = hw->priv;
614 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) my_skb->data;
615 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(my_skb);
616 void *msg_head;
617 unsigned int hwsim_flags = 0;
618 int i;
619 struct hwsim_tx_rate tx_attempts[IEEE80211_TX_MAX_RATES];
620
621 if (data->ps != PS_DISABLED)
622 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
623 /* If the queue contains MAX_QUEUE skb's drop some */
624 if (skb_queue_len(&data->pending) >= MAX_QUEUE) {
625 /* Droping until WARN_QUEUE level */
626 while (skb_queue_len(&data->pending) >= WARN_QUEUE)
627 skb_dequeue(&data->pending);
628 }
629
630 skb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_ATOMIC);
631 if (skb == NULL)
632 goto nla_put_failure;
633
634 msg_head = genlmsg_put(skb, 0, 0, &hwsim_genl_family, 0,
635 HWSIM_CMD_FRAME);
636 if (msg_head == NULL) {
637 printk(KERN_DEBUG "mac80211_hwsim: problem with msg_head\n");
638 goto nla_put_failure;
639 }
640
641 if (nla_put(skb, HWSIM_ATTR_ADDR_TRANSMITTER,
642 sizeof(struct mac_address), data->addresses[1].addr))
643 goto nla_put_failure;
644
645 /* We get the skb->data */
646 if (nla_put(skb, HWSIM_ATTR_FRAME, my_skb->len, my_skb->data))
647 goto nla_put_failure;
648
649 /* We get the flags for this transmission, and we translate them to
650 wmediumd flags */
651
652 if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
653 hwsim_flags |= HWSIM_TX_CTL_REQ_TX_STATUS;
654
655 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
656 hwsim_flags |= HWSIM_TX_CTL_NO_ACK;
657
658 if (nla_put_u32(skb, HWSIM_ATTR_FLAGS, hwsim_flags))
659 goto nla_put_failure;
660
661 /* We get the tx control (rate and retries) info*/
662
663 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
664 tx_attempts[i].idx = info->status.rates[i].idx;
665 tx_attempts[i].count = info->status.rates[i].count;
666 }
667
668 if (nla_put(skb, HWSIM_ATTR_TX_INFO,
669 sizeof(struct hwsim_tx_rate)*IEEE80211_TX_MAX_RATES,
670 tx_attempts))
671 goto nla_put_failure;
672
673 /* We create a cookie to identify this skb */
674 if (nla_put_u64(skb, HWSIM_ATTR_COOKIE, (unsigned long) my_skb))
675 goto nla_put_failure;
676
677 genlmsg_end(skb, msg_head);
678 genlmsg_unicast(&init_net, skb, dst_portid);
679
680 /* Enqueue the packet */
681 skb_queue_tail(&data->pending, my_skb);
682 return;
683
684 nla_put_failure:
685 printk(KERN_DEBUG "mac80211_hwsim: error occurred in %s\n", __func__);
686 }
687
688 static bool hwsim_chans_compat(struct ieee80211_channel *c1,
689 struct ieee80211_channel *c2)
690 {
691 if (!c1 || !c2)
692 return false;
693
694 return c1->center_freq == c2->center_freq;
695 }
696
697 struct tx_iter_data {
698 struct ieee80211_channel *channel;
699 bool receive;
700 };
701
702 static void mac80211_hwsim_tx_iter(void *_data, u8 *addr,
703 struct ieee80211_vif *vif)
704 {
705 struct tx_iter_data *data = _data;
706
707 if (!vif->chanctx_conf)
708 return;
709
710 if (!hwsim_chans_compat(data->channel,
711 rcu_dereference(vif->chanctx_conf)->def.chan))
712 return;
713
714 data->receive = true;
715 }
716
717 static bool mac80211_hwsim_tx_frame_no_nl(struct ieee80211_hw *hw,
718 struct sk_buff *skb,
719 struct ieee80211_channel *chan)
720 {
721 struct mac80211_hwsim_data *data = hw->priv, *data2;
722 bool ack = false;
723 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
724 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
725 struct ieee80211_rx_status rx_status;
726 u64 now;
727
728 memset(&rx_status, 0, sizeof(rx_status));
729 rx_status.flag |= RX_FLAG_MACTIME_START;
730 rx_status.freq = chan->center_freq;
731 rx_status.band = chan->band;
732 if (info->control.rates[0].flags & IEEE80211_TX_RC_VHT_MCS) {
733 rx_status.rate_idx =
734 ieee80211_rate_get_vht_mcs(&info->control.rates[0]);
735 rx_status.vht_nss =
736 ieee80211_rate_get_vht_nss(&info->control.rates[0]);
737 rx_status.flag |= RX_FLAG_VHT;
738 } else {
739 rx_status.rate_idx = info->control.rates[0].idx;
740 if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
741 rx_status.flag |= RX_FLAG_HT;
742 }
743 if (info->control.rates[0].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
744 rx_status.flag |= RX_FLAG_40MHZ;
745 if (info->control.rates[0].flags & IEEE80211_TX_RC_SHORT_GI)
746 rx_status.flag |= RX_FLAG_SHORT_GI;
747 /* TODO: simulate real signal strength (and optional packet loss) */
748 rx_status.signal = data->power_level - 50;
749
750 if (data->ps != PS_DISABLED)
751 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
752
753 /* release the skb's source info */
754 skb_orphan(skb);
755 skb_dst_drop(skb);
756 skb->mark = 0;
757 secpath_reset(skb);
758 nf_reset(skb);
759
760 /*
761 * Get absolute mactime here so all HWs RX at the "same time", and
762 * absolute TX time for beacon mactime so the timestamp matches.
763 * Giving beacons a different mactime than non-beacons looks messy, but
764 * it helps the Toffset be exact and a ~10us mactime discrepancy
765 * probably doesn't really matter.
766 */
767 if (ieee80211_is_beacon(hdr->frame_control) ||
768 ieee80211_is_probe_resp(hdr->frame_control))
769 now = data->abs_bcn_ts;
770 else
771 now = mac80211_hwsim_get_tsf_raw();
772
773 /* Copy skb to all enabled radios that are on the current frequency */
774 spin_lock(&hwsim_radio_lock);
775 list_for_each_entry(data2, &hwsim_radios, list) {
776 struct sk_buff *nskb;
777 struct tx_iter_data tx_iter_data = {
778 .receive = false,
779 .channel = chan,
780 };
781
782 if (data == data2)
783 continue;
784
785 if (!data2->started || (data2->idle && !data2->tmp_chan) ||
786 !hwsim_ps_rx_ok(data2, skb))
787 continue;
788
789 if (!(data->group & data2->group))
790 continue;
791
792 if (!hwsim_chans_compat(chan, data2->tmp_chan) &&
793 !hwsim_chans_compat(chan, data2->channel)) {
794 ieee80211_iterate_active_interfaces_atomic(
795 data2->hw, IEEE80211_IFACE_ITER_NORMAL,
796 mac80211_hwsim_tx_iter, &tx_iter_data);
797 if (!tx_iter_data.receive)
798 continue;
799 }
800
801 /*
802 * reserve some space for our vendor and the normal
803 * radiotap header, since we're copying anyway
804 */
805 if (skb->len < PAGE_SIZE && paged_rx) {
806 struct page *page = alloc_page(GFP_ATOMIC);
807
808 if (!page)
809 continue;
810
811 nskb = dev_alloc_skb(128);
812 if (!nskb) {
813 __free_page(page);
814 continue;
815 }
816
817 memcpy(page_address(page), skb->data, skb->len);
818 skb_add_rx_frag(nskb, 0, page, 0, skb->len, skb->len);
819 } else {
820 nskb = skb_copy(skb, GFP_ATOMIC);
821 if (!nskb)
822 continue;
823 }
824
825 if (mac80211_hwsim_addr_match(data2, hdr->addr1))
826 ack = true;
827
828 rx_status.mactime = now + data2->tsf_offset;
829 #if 0
830 /*
831 * Don't enable this code by default as the OUI 00:00:00
832 * is registered to Xerox so we shouldn't use it here, it
833 * might find its way into pcap files.
834 * Note that this code requires the headroom in the SKB
835 * that was allocated earlier.
836 */
837 rx_status.vendor_radiotap_oui[0] = 0x00;
838 rx_status.vendor_radiotap_oui[1] = 0x00;
839 rx_status.vendor_radiotap_oui[2] = 0x00;
840 rx_status.vendor_radiotap_subns = 127;
841 /*
842 * Radiotap vendor namespaces can (and should) also be
843 * split into fields by using the standard radiotap
844 * presence bitmap mechanism. Use just BIT(0) here for
845 * the presence bitmap.
846 */
847 rx_status.vendor_radiotap_bitmap = BIT(0);
848 /* We have 8 bytes of (dummy) data */
849 rx_status.vendor_radiotap_len = 8;
850 /* For testing, also require it to be aligned */
851 rx_status.vendor_radiotap_align = 8;
852 /* push the data */
853 memcpy(skb_push(nskb, 8), "ABCDEFGH", 8);
854 #endif
855
856 memcpy(IEEE80211_SKB_RXCB(nskb), &rx_status, sizeof(rx_status));
857 ieee80211_rx_irqsafe(data2->hw, nskb);
858 }
859 spin_unlock(&hwsim_radio_lock);
860
861 return ack;
862 }
863
864 static void mac80211_hwsim_tx(struct ieee80211_hw *hw,
865 struct ieee80211_tx_control *control,
866 struct sk_buff *skb)
867 {
868 struct mac80211_hwsim_data *data = hw->priv;
869 struct ieee80211_tx_info *txi = IEEE80211_SKB_CB(skb);
870 struct ieee80211_chanctx_conf *chanctx_conf;
871 struct ieee80211_channel *channel;
872 bool ack;
873 u32 _portid;
874
875 if (WARN_ON(skb->len < 10)) {
876 /* Should not happen; just a sanity check for addr1 use */
877 ieee80211_free_txskb(hw, skb);
878 return;
879 }
880
881 if (channels == 1) {
882 channel = data->channel;
883 } else if (txi->hw_queue == 4) {
884 channel = data->tmp_chan;
885 } else {
886 chanctx_conf = rcu_dereference(txi->control.vif->chanctx_conf);
887 if (chanctx_conf)
888 channel = chanctx_conf->def.chan;
889 else
890 channel = NULL;
891 }
892
893 if (WARN(!channel, "TX w/o channel - queue = %d\n", txi->hw_queue)) {
894 ieee80211_free_txskb(hw, skb);
895 return;
896 }
897
898 if (data->idle && !data->tmp_chan) {
899 wiphy_debug(hw->wiphy, "Trying to TX when idle - reject\n");
900 ieee80211_free_txskb(hw, skb);
901 return;
902 }
903
904 if (txi->control.vif)
905 hwsim_check_magic(txi->control.vif);
906 if (control->sta)
907 hwsim_check_sta_magic(control->sta);
908
909 if (rctbl)
910 ieee80211_get_tx_rates(txi->control.vif, control->sta, skb,
911 txi->control.rates,
912 ARRAY_SIZE(txi->control.rates));
913
914 txi->rate_driver_data[0] = channel;
915 mac80211_hwsim_monitor_rx(hw, skb, channel);
916
917 /* wmediumd mode check */
918 _portid = ACCESS_ONCE(wmediumd_portid);
919
920 if (_portid)
921 return mac80211_hwsim_tx_frame_nl(hw, skb, _portid);
922
923 /* NO wmediumd detected, perfect medium simulation */
924 ack = mac80211_hwsim_tx_frame_no_nl(hw, skb, channel);
925
926 if (ack && skb->len >= 16) {
927 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
928 mac80211_hwsim_monitor_ack(channel, hdr->addr2);
929 }
930
931 ieee80211_tx_info_clear_status(txi);
932
933 /* frame was transmitted at most favorable rate at first attempt */
934 txi->control.rates[0].count = 1;
935 txi->control.rates[1].idx = -1;
936
937 if (!(txi->flags & IEEE80211_TX_CTL_NO_ACK) && ack)
938 txi->flags |= IEEE80211_TX_STAT_ACK;
939 ieee80211_tx_status_irqsafe(hw, skb);
940 }
941
942
943 static int mac80211_hwsim_start(struct ieee80211_hw *hw)
944 {
945 struct mac80211_hwsim_data *data = hw->priv;
946 wiphy_debug(hw->wiphy, "%s\n", __func__);
947 data->started = true;
948 return 0;
949 }
950
951
952 static void mac80211_hwsim_stop(struct ieee80211_hw *hw)
953 {
954 struct mac80211_hwsim_data *data = hw->priv;
955 data->started = false;
956 tasklet_hrtimer_cancel(&data->beacon_timer);
957 wiphy_debug(hw->wiphy, "%s\n", __func__);
958 }
959
960
961 static int mac80211_hwsim_add_interface(struct ieee80211_hw *hw,
962 struct ieee80211_vif *vif)
963 {
964 wiphy_debug(hw->wiphy, "%s (type=%d mac_addr=%pM)\n",
965 __func__, ieee80211_vif_type_p2p(vif),
966 vif->addr);
967 hwsim_set_magic(vif);
968
969 vif->cab_queue = 0;
970 vif->hw_queue[IEEE80211_AC_VO] = 0;
971 vif->hw_queue[IEEE80211_AC_VI] = 1;
972 vif->hw_queue[IEEE80211_AC_BE] = 2;
973 vif->hw_queue[IEEE80211_AC_BK] = 3;
974
975 return 0;
976 }
977
978
979 static int mac80211_hwsim_change_interface(struct ieee80211_hw *hw,
980 struct ieee80211_vif *vif,
981 enum nl80211_iftype newtype,
982 bool newp2p)
983 {
984 newtype = ieee80211_iftype_p2p(newtype, newp2p);
985 wiphy_debug(hw->wiphy,
986 "%s (old type=%d, new type=%d, mac_addr=%pM)\n",
987 __func__, ieee80211_vif_type_p2p(vif),
988 newtype, vif->addr);
989 hwsim_check_magic(vif);
990
991 /*
992 * interface may change from non-AP to AP in
993 * which case this needs to be set up again
994 */
995 vif->cab_queue = 0;
996
997 return 0;
998 }
999
1000 static void mac80211_hwsim_remove_interface(
1001 struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1002 {
1003 wiphy_debug(hw->wiphy, "%s (type=%d mac_addr=%pM)\n",
1004 __func__, ieee80211_vif_type_p2p(vif),
1005 vif->addr);
1006 hwsim_check_magic(vif);
1007 hwsim_clear_magic(vif);
1008 }
1009
1010 static void mac80211_hwsim_tx_frame(struct ieee80211_hw *hw,
1011 struct sk_buff *skb,
1012 struct ieee80211_channel *chan)
1013 {
1014 u32 _pid = ACCESS_ONCE(wmediumd_portid);
1015
1016 if (rctbl) {
1017 struct ieee80211_tx_info *txi = IEEE80211_SKB_CB(skb);
1018 ieee80211_get_tx_rates(txi->control.vif, NULL, skb,
1019 txi->control.rates,
1020 ARRAY_SIZE(txi->control.rates));
1021 }
1022
1023 mac80211_hwsim_monitor_rx(hw, skb, chan);
1024
1025 if (_pid)
1026 return mac80211_hwsim_tx_frame_nl(hw, skb, _pid);
1027
1028 mac80211_hwsim_tx_frame_no_nl(hw, skb, chan);
1029 dev_kfree_skb(skb);
1030 }
1031
1032 static void mac80211_hwsim_beacon_tx(void *arg, u8 *mac,
1033 struct ieee80211_vif *vif)
1034 {
1035 struct mac80211_hwsim_data *data = arg;
1036 struct ieee80211_hw *hw = data->hw;
1037 struct ieee80211_tx_info *info;
1038 struct ieee80211_rate *txrate;
1039 struct ieee80211_mgmt *mgmt;
1040 struct sk_buff *skb;
1041
1042 hwsim_check_magic(vif);
1043
1044 if (vif->type != NL80211_IFTYPE_AP &&
1045 vif->type != NL80211_IFTYPE_MESH_POINT &&
1046 vif->type != NL80211_IFTYPE_ADHOC)
1047 return;
1048
1049 skb = ieee80211_beacon_get(hw, vif);
1050 if (skb == NULL)
1051 return;
1052 info = IEEE80211_SKB_CB(skb);
1053 if (rctbl)
1054 ieee80211_get_tx_rates(vif, NULL, skb,
1055 info->control.rates,
1056 ARRAY_SIZE(info->control.rates));
1057
1058 txrate = ieee80211_get_tx_rate(hw, info);
1059
1060 mgmt = (struct ieee80211_mgmt *) skb->data;
1061 /* fake header transmission time */
1062 data->abs_bcn_ts = mac80211_hwsim_get_tsf_raw();
1063 mgmt->u.beacon.timestamp = cpu_to_le64(data->abs_bcn_ts +
1064 data->tsf_offset +
1065 24 * 8 * 10 / txrate->bitrate);
1066
1067 mac80211_hwsim_tx_frame(hw, skb,
1068 rcu_dereference(vif->chanctx_conf)->def.chan);
1069 }
1070
1071 static enum hrtimer_restart
1072 mac80211_hwsim_beacon(struct hrtimer *timer)
1073 {
1074 struct mac80211_hwsim_data *data =
1075 container_of(timer, struct mac80211_hwsim_data,
1076 beacon_timer.timer);
1077 struct ieee80211_hw *hw = data->hw;
1078 u64 bcn_int = data->beacon_int;
1079 ktime_t next_bcn;
1080
1081 if (!data->started)
1082 goto out;
1083
1084 ieee80211_iterate_active_interfaces_atomic(
1085 hw, IEEE80211_IFACE_ITER_NORMAL,
1086 mac80211_hwsim_beacon_tx, data);
1087
1088 /* beacon at new TBTT + beacon interval */
1089 if (data->bcn_delta) {
1090 bcn_int -= data->bcn_delta;
1091 data->bcn_delta = 0;
1092 }
1093
1094 next_bcn = ktime_add(hrtimer_get_expires(timer),
1095 ns_to_ktime(bcn_int * 1000));
1096 tasklet_hrtimer_start(&data->beacon_timer, next_bcn, HRTIMER_MODE_ABS);
1097 out:
1098 return HRTIMER_NORESTART;
1099 }
1100
1101 static const char * const hwsim_chanwidths[] = {
1102 [NL80211_CHAN_WIDTH_20_NOHT] = "noht",
1103 [NL80211_CHAN_WIDTH_20] = "ht20",
1104 [NL80211_CHAN_WIDTH_40] = "ht40",
1105 [NL80211_CHAN_WIDTH_80] = "vht80",
1106 [NL80211_CHAN_WIDTH_80P80] = "vht80p80",
1107 [NL80211_CHAN_WIDTH_160] = "vht160",
1108 };
1109
1110 static int mac80211_hwsim_config(struct ieee80211_hw *hw, u32 changed)
1111 {
1112 struct mac80211_hwsim_data *data = hw->priv;
1113 struct ieee80211_conf *conf = &hw->conf;
1114 static const char *smps_modes[IEEE80211_SMPS_NUM_MODES] = {
1115 [IEEE80211_SMPS_AUTOMATIC] = "auto",
1116 [IEEE80211_SMPS_OFF] = "off",
1117 [IEEE80211_SMPS_STATIC] = "static",
1118 [IEEE80211_SMPS_DYNAMIC] = "dynamic",
1119 };
1120
1121 if (conf->chandef.chan)
1122 wiphy_debug(hw->wiphy,
1123 "%s (freq=%d(%d - %d)/%s idle=%d ps=%d smps=%s)\n",
1124 __func__,
1125 conf->chandef.chan->center_freq,
1126 conf->chandef.center_freq1,
1127 conf->chandef.center_freq2,
1128 hwsim_chanwidths[conf->chandef.width],
1129 !!(conf->flags & IEEE80211_CONF_IDLE),
1130 !!(conf->flags & IEEE80211_CONF_PS),
1131 smps_modes[conf->smps_mode]);
1132 else
1133 wiphy_debug(hw->wiphy,
1134 "%s (freq=0 idle=%d ps=%d smps=%s)\n",
1135 __func__,
1136 !!(conf->flags & IEEE80211_CONF_IDLE),
1137 !!(conf->flags & IEEE80211_CONF_PS),
1138 smps_modes[conf->smps_mode]);
1139
1140 data->idle = !!(conf->flags & IEEE80211_CONF_IDLE);
1141
1142 data->channel = conf->chandef.chan;
1143
1144 WARN_ON(data->channel && channels > 1);
1145
1146 data->power_level = conf->power_level;
1147 if (!data->started || !data->beacon_int)
1148 tasklet_hrtimer_cancel(&data->beacon_timer);
1149 else if (!hrtimer_is_queued(&data->beacon_timer.timer)) {
1150 u64 tsf = mac80211_hwsim_get_tsf(hw, NULL);
1151 u32 bcn_int = data->beacon_int;
1152 u64 until_tbtt = bcn_int - do_div(tsf, bcn_int);
1153
1154 tasklet_hrtimer_start(&data->beacon_timer,
1155 ns_to_ktime(until_tbtt * 1000),
1156 HRTIMER_MODE_REL);
1157 }
1158
1159 return 0;
1160 }
1161
1162
1163 static void mac80211_hwsim_configure_filter(struct ieee80211_hw *hw,
1164 unsigned int changed_flags,
1165 unsigned int *total_flags,u64 multicast)
1166 {
1167 struct mac80211_hwsim_data *data = hw->priv;
1168
1169 wiphy_debug(hw->wiphy, "%s\n", __func__);
1170
1171 data->rx_filter = 0;
1172 if (*total_flags & FIF_PROMISC_IN_BSS)
1173 data->rx_filter |= FIF_PROMISC_IN_BSS;
1174 if (*total_flags & FIF_ALLMULTI)
1175 data->rx_filter |= FIF_ALLMULTI;
1176
1177 *total_flags = data->rx_filter;
1178 }
1179
1180 static void mac80211_hwsim_bcn_en_iter(void *data, u8 *mac,
1181 struct ieee80211_vif *vif)
1182 {
1183 unsigned int *count = data;
1184 struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
1185
1186 if (vp->bcn_en)
1187 (*count)++;
1188 }
1189
1190 static void mac80211_hwsim_bss_info_changed(struct ieee80211_hw *hw,
1191 struct ieee80211_vif *vif,
1192 struct ieee80211_bss_conf *info,
1193 u32 changed)
1194 {
1195 struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
1196 struct mac80211_hwsim_data *data = hw->priv;
1197
1198 hwsim_check_magic(vif);
1199
1200 wiphy_debug(hw->wiphy, "%s(changed=0x%x vif->addr=%pM)\n",
1201 __func__, changed, vif->addr);
1202
1203 if (changed & BSS_CHANGED_BSSID) {
1204 wiphy_debug(hw->wiphy, "%s: BSSID changed: %pM\n",
1205 __func__, info->bssid);
1206 memcpy(vp->bssid, info->bssid, ETH_ALEN);
1207 }
1208
1209 if (changed & BSS_CHANGED_ASSOC) {
1210 wiphy_debug(hw->wiphy, " ASSOC: assoc=%d aid=%d\n",
1211 info->assoc, info->aid);
1212 vp->assoc = info->assoc;
1213 vp->aid = info->aid;
1214 }
1215
1216 if (changed & BSS_CHANGED_BEACON_INT) {
1217 wiphy_debug(hw->wiphy, " BCNINT: %d\n", info->beacon_int);
1218 data->beacon_int = info->beacon_int * 1024;
1219 }
1220
1221 if (changed & BSS_CHANGED_BEACON_ENABLED) {
1222 wiphy_debug(hw->wiphy, " BCN EN: %d\n", info->enable_beacon);
1223 vp->bcn_en = info->enable_beacon;
1224 if (data->started &&
1225 !hrtimer_is_queued(&data->beacon_timer.timer) &&
1226 info->enable_beacon) {
1227 u64 tsf, until_tbtt;
1228 u32 bcn_int;
1229 if (WARN_ON(!data->beacon_int))
1230 data->beacon_int = 1000 * 1024;
1231 tsf = mac80211_hwsim_get_tsf(hw, vif);
1232 bcn_int = data->beacon_int;
1233 until_tbtt = bcn_int - do_div(tsf, bcn_int);
1234 tasklet_hrtimer_start(&data->beacon_timer,
1235 ns_to_ktime(until_tbtt * 1000),
1236 HRTIMER_MODE_REL);
1237 } else if (!info->enable_beacon) {
1238 unsigned int count = 0;
1239 ieee80211_iterate_active_interfaces_atomic(
1240 data->hw, IEEE80211_IFACE_ITER_NORMAL,
1241 mac80211_hwsim_bcn_en_iter, &count);
1242 wiphy_debug(hw->wiphy, " beaconing vifs remaining: %u",
1243 count);
1244 if (count == 0)
1245 tasklet_hrtimer_cancel(&data->beacon_timer);
1246 }
1247 }
1248
1249 if (changed & BSS_CHANGED_ERP_CTS_PROT) {
1250 wiphy_debug(hw->wiphy, " ERP_CTS_PROT: %d\n",
1251 info->use_cts_prot);
1252 }
1253
1254 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
1255 wiphy_debug(hw->wiphy, " ERP_PREAMBLE: %d\n",
1256 info->use_short_preamble);
1257 }
1258
1259 if (changed & BSS_CHANGED_ERP_SLOT) {
1260 wiphy_debug(hw->wiphy, " ERP_SLOT: %d\n", info->use_short_slot);
1261 }
1262
1263 if (changed & BSS_CHANGED_HT) {
1264 wiphy_debug(hw->wiphy, " HT: op_mode=0x%x\n",
1265 info->ht_operation_mode);
1266 }
1267
1268 if (changed & BSS_CHANGED_BASIC_RATES) {
1269 wiphy_debug(hw->wiphy, " BASIC_RATES: 0x%llx\n",
1270 (unsigned long long) info->basic_rates);
1271 }
1272
1273 if (changed & BSS_CHANGED_TXPOWER)
1274 wiphy_debug(hw->wiphy, " TX Power: %d dBm\n", info->txpower);
1275 }
1276
1277 static int mac80211_hwsim_sta_add(struct ieee80211_hw *hw,
1278 struct ieee80211_vif *vif,
1279 struct ieee80211_sta *sta)
1280 {
1281 hwsim_check_magic(vif);
1282 hwsim_set_sta_magic(sta);
1283
1284 return 0;
1285 }
1286
1287 static int mac80211_hwsim_sta_remove(struct ieee80211_hw *hw,
1288 struct ieee80211_vif *vif,
1289 struct ieee80211_sta *sta)
1290 {
1291 hwsim_check_magic(vif);
1292 hwsim_clear_sta_magic(sta);
1293
1294 return 0;
1295 }
1296
1297 static void mac80211_hwsim_sta_notify(struct ieee80211_hw *hw,
1298 struct ieee80211_vif *vif,
1299 enum sta_notify_cmd cmd,
1300 struct ieee80211_sta *sta)
1301 {
1302 hwsim_check_magic(vif);
1303
1304 switch (cmd) {
1305 case STA_NOTIFY_SLEEP:
1306 case STA_NOTIFY_AWAKE:
1307 /* TODO: make good use of these flags */
1308 break;
1309 default:
1310 WARN(1, "Invalid sta notify: %d\n", cmd);
1311 break;
1312 }
1313 }
1314
1315 static int mac80211_hwsim_set_tim(struct ieee80211_hw *hw,
1316 struct ieee80211_sta *sta,
1317 bool set)
1318 {
1319 hwsim_check_sta_magic(sta);
1320 return 0;
1321 }
1322
1323 static int mac80211_hwsim_conf_tx(
1324 struct ieee80211_hw *hw,
1325 struct ieee80211_vif *vif, u16 queue,
1326 const struct ieee80211_tx_queue_params *params)
1327 {
1328 wiphy_debug(hw->wiphy,
1329 "%s (queue=%d txop=%d cw_min=%d cw_max=%d aifs=%d)\n",
1330 __func__, queue,
1331 params->txop, params->cw_min,
1332 params->cw_max, params->aifs);
1333 return 0;
1334 }
1335
1336 static int mac80211_hwsim_get_survey(
1337 struct ieee80211_hw *hw, int idx,
1338 struct survey_info *survey)
1339 {
1340 struct ieee80211_conf *conf = &hw->conf;
1341
1342 wiphy_debug(hw->wiphy, "%s (idx=%d)\n", __func__, idx);
1343
1344 if (idx != 0)
1345 return -ENOENT;
1346
1347 /* Current channel */
1348 survey->channel = conf->chandef.chan;
1349
1350 /*
1351 * Magically conjured noise level --- this is only ok for simulated hardware.
1352 *
1353 * A real driver which cannot determine the real channel noise MUST NOT
1354 * report any noise, especially not a magically conjured one :-)
1355 */
1356 survey->filled = SURVEY_INFO_NOISE_DBM;
1357 survey->noise = -92;
1358
1359 return 0;
1360 }
1361
1362 #ifdef CONFIG_NL80211_TESTMODE
1363 /*
1364 * This section contains example code for using netlink
1365 * attributes with the testmode command in nl80211.
1366 */
1367
1368 /* These enums need to be kept in sync with userspace */
1369 enum hwsim_testmode_attr {
1370 __HWSIM_TM_ATTR_INVALID = 0,
1371 HWSIM_TM_ATTR_CMD = 1,
1372 HWSIM_TM_ATTR_PS = 2,
1373
1374 /* keep last */
1375 __HWSIM_TM_ATTR_AFTER_LAST,
1376 HWSIM_TM_ATTR_MAX = __HWSIM_TM_ATTR_AFTER_LAST - 1
1377 };
1378
1379 enum hwsim_testmode_cmd {
1380 HWSIM_TM_CMD_SET_PS = 0,
1381 HWSIM_TM_CMD_GET_PS = 1,
1382 HWSIM_TM_CMD_STOP_QUEUES = 2,
1383 HWSIM_TM_CMD_WAKE_QUEUES = 3,
1384 };
1385
1386 static const struct nla_policy hwsim_testmode_policy[HWSIM_TM_ATTR_MAX + 1] = {
1387 [HWSIM_TM_ATTR_CMD] = { .type = NLA_U32 },
1388 [HWSIM_TM_ATTR_PS] = { .type = NLA_U32 },
1389 };
1390
1391 static int hwsim_fops_ps_write(void *dat, u64 val);
1392
1393 static int mac80211_hwsim_testmode_cmd(struct ieee80211_hw *hw,
1394 struct ieee80211_vif *vif,
1395 void *data, int len)
1396 {
1397 struct mac80211_hwsim_data *hwsim = hw->priv;
1398 struct nlattr *tb[HWSIM_TM_ATTR_MAX + 1];
1399 struct sk_buff *skb;
1400 int err, ps;
1401
1402 err = nla_parse(tb, HWSIM_TM_ATTR_MAX, data, len,
1403 hwsim_testmode_policy);
1404 if (err)
1405 return err;
1406
1407 if (!tb[HWSIM_TM_ATTR_CMD])
1408 return -EINVAL;
1409
1410 switch (nla_get_u32(tb[HWSIM_TM_ATTR_CMD])) {
1411 case HWSIM_TM_CMD_SET_PS:
1412 if (!tb[HWSIM_TM_ATTR_PS])
1413 return -EINVAL;
1414 ps = nla_get_u32(tb[HWSIM_TM_ATTR_PS]);
1415 return hwsim_fops_ps_write(hwsim, ps);
1416 case HWSIM_TM_CMD_GET_PS:
1417 skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy,
1418 nla_total_size(sizeof(u32)));
1419 if (!skb)
1420 return -ENOMEM;
1421 if (nla_put_u32(skb, HWSIM_TM_ATTR_PS, hwsim->ps))
1422 goto nla_put_failure;
1423 return cfg80211_testmode_reply(skb);
1424 case HWSIM_TM_CMD_STOP_QUEUES:
1425 ieee80211_stop_queues(hw);
1426 return 0;
1427 case HWSIM_TM_CMD_WAKE_QUEUES:
1428 ieee80211_wake_queues(hw);
1429 return 0;
1430 default:
1431 return -EOPNOTSUPP;
1432 }
1433
1434 nla_put_failure:
1435 kfree_skb(skb);
1436 return -ENOBUFS;
1437 }
1438 #endif
1439
1440 static int mac80211_hwsim_ampdu_action(struct ieee80211_hw *hw,
1441 struct ieee80211_vif *vif,
1442 enum ieee80211_ampdu_mlme_action action,
1443 struct ieee80211_sta *sta, u16 tid, u16 *ssn,
1444 u8 buf_size)
1445 {
1446 switch (action) {
1447 case IEEE80211_AMPDU_TX_START:
1448 ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
1449 break;
1450 case IEEE80211_AMPDU_TX_STOP_CONT:
1451 case IEEE80211_AMPDU_TX_STOP_FLUSH:
1452 case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
1453 ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
1454 break;
1455 case IEEE80211_AMPDU_TX_OPERATIONAL:
1456 break;
1457 case IEEE80211_AMPDU_RX_START:
1458 case IEEE80211_AMPDU_RX_STOP:
1459 break;
1460 default:
1461 return -EOPNOTSUPP;
1462 }
1463
1464 return 0;
1465 }
1466
1467 static void mac80211_hwsim_flush(struct ieee80211_hw *hw, u32 queues, bool drop)
1468 {
1469 /* Not implemented, queues only on kernel side */
1470 }
1471
1472 static void hw_scan_work(struct work_struct *work)
1473 {
1474 struct mac80211_hwsim_data *hwsim =
1475 container_of(work, struct mac80211_hwsim_data, hw_scan.work);
1476 struct cfg80211_scan_request *req = hwsim->hw_scan_request;
1477 int dwell, i;
1478
1479 mutex_lock(&hwsim->mutex);
1480 if (hwsim->scan_chan_idx >= req->n_channels) {
1481 wiphy_debug(hwsim->hw->wiphy, "hw scan complete\n");
1482 ieee80211_scan_completed(hwsim->hw, false);
1483 hwsim->hw_scan_request = NULL;
1484 hwsim->hw_scan_vif = NULL;
1485 hwsim->tmp_chan = NULL;
1486 mutex_unlock(&hwsim->mutex);
1487 return;
1488 }
1489
1490 wiphy_debug(hwsim->hw->wiphy, "hw scan %d MHz\n",
1491 req->channels[hwsim->scan_chan_idx]->center_freq);
1492
1493 hwsim->tmp_chan = req->channels[hwsim->scan_chan_idx];
1494 if (hwsim->tmp_chan->flags & IEEE80211_CHAN_NO_IR ||
1495 !req->n_ssids) {
1496 dwell = 120;
1497 } else {
1498 dwell = 30;
1499 /* send probes */
1500 for (i = 0; i < req->n_ssids; i++) {
1501 struct sk_buff *probe;
1502
1503 probe = ieee80211_probereq_get(hwsim->hw,
1504 hwsim->hw_scan_vif,
1505 req->ssids[i].ssid,
1506 req->ssids[i].ssid_len,
1507 req->ie_len);
1508 if (!probe)
1509 continue;
1510
1511 if (req->ie_len)
1512 memcpy(skb_put(probe, req->ie_len), req->ie,
1513 req->ie_len);
1514
1515 local_bh_disable();
1516 mac80211_hwsim_tx_frame(hwsim->hw, probe,
1517 hwsim->tmp_chan);
1518 local_bh_enable();
1519 }
1520 }
1521 ieee80211_queue_delayed_work(hwsim->hw, &hwsim->hw_scan,
1522 msecs_to_jiffies(dwell));
1523 hwsim->scan_chan_idx++;
1524 mutex_unlock(&hwsim->mutex);
1525 }
1526
1527 static int mac80211_hwsim_hw_scan(struct ieee80211_hw *hw,
1528 struct ieee80211_vif *vif,
1529 struct cfg80211_scan_request *req)
1530 {
1531 struct mac80211_hwsim_data *hwsim = hw->priv;
1532
1533 mutex_lock(&hwsim->mutex);
1534 if (WARN_ON(hwsim->tmp_chan || hwsim->hw_scan_request)) {
1535 mutex_unlock(&hwsim->mutex);
1536 return -EBUSY;
1537 }
1538 hwsim->hw_scan_request = req;
1539 hwsim->hw_scan_vif = vif;
1540 hwsim->scan_chan_idx = 0;
1541 mutex_unlock(&hwsim->mutex);
1542
1543 wiphy_debug(hw->wiphy, "hwsim hw_scan request\n");
1544
1545 ieee80211_queue_delayed_work(hwsim->hw, &hwsim->hw_scan, 0);
1546
1547 return 0;
1548 }
1549
1550 static void mac80211_hwsim_cancel_hw_scan(struct ieee80211_hw *hw,
1551 struct ieee80211_vif *vif)
1552 {
1553 struct mac80211_hwsim_data *hwsim = hw->priv;
1554
1555 wiphy_debug(hw->wiphy, "hwsim cancel_hw_scan\n");
1556
1557 cancel_delayed_work_sync(&hwsim->hw_scan);
1558
1559 mutex_lock(&hwsim->mutex);
1560 ieee80211_scan_completed(hwsim->hw, true);
1561 hwsim->tmp_chan = NULL;
1562 hwsim->hw_scan_request = NULL;
1563 hwsim->hw_scan_vif = NULL;
1564 mutex_unlock(&hwsim->mutex);
1565 }
1566
1567 static void mac80211_hwsim_sw_scan(struct ieee80211_hw *hw)
1568 {
1569 struct mac80211_hwsim_data *hwsim = hw->priv;
1570
1571 mutex_lock(&hwsim->mutex);
1572
1573 if (hwsim->scanning) {
1574 printk(KERN_DEBUG "two hwsim sw_scans detected!\n");
1575 goto out;
1576 }
1577
1578 printk(KERN_DEBUG "hwsim sw_scan request, prepping stuff\n");
1579 hwsim->scanning = true;
1580
1581 out:
1582 mutex_unlock(&hwsim->mutex);
1583 }
1584
1585 static void mac80211_hwsim_sw_scan_complete(struct ieee80211_hw *hw)
1586 {
1587 struct mac80211_hwsim_data *hwsim = hw->priv;
1588
1589 mutex_lock(&hwsim->mutex);
1590
1591 printk(KERN_DEBUG "hwsim sw_scan_complete\n");
1592 hwsim->scanning = false;
1593
1594 mutex_unlock(&hwsim->mutex);
1595 }
1596
1597 static void hw_roc_done(struct work_struct *work)
1598 {
1599 struct mac80211_hwsim_data *hwsim =
1600 container_of(work, struct mac80211_hwsim_data, roc_done.work);
1601
1602 mutex_lock(&hwsim->mutex);
1603 ieee80211_remain_on_channel_expired(hwsim->hw);
1604 hwsim->tmp_chan = NULL;
1605 mutex_unlock(&hwsim->mutex);
1606
1607 wiphy_debug(hwsim->hw->wiphy, "hwsim ROC expired\n");
1608 }
1609
1610 static int mac80211_hwsim_roc(struct ieee80211_hw *hw,
1611 struct ieee80211_vif *vif,
1612 struct ieee80211_channel *chan,
1613 int duration,
1614 enum ieee80211_roc_type type)
1615 {
1616 struct mac80211_hwsim_data *hwsim = hw->priv;
1617
1618 mutex_lock(&hwsim->mutex);
1619 if (WARN_ON(hwsim->tmp_chan || hwsim->hw_scan_request)) {
1620 mutex_unlock(&hwsim->mutex);
1621 return -EBUSY;
1622 }
1623
1624 hwsim->tmp_chan = chan;
1625 mutex_unlock(&hwsim->mutex);
1626
1627 wiphy_debug(hw->wiphy, "hwsim ROC (%d MHz, %d ms)\n",
1628 chan->center_freq, duration);
1629
1630 ieee80211_ready_on_channel(hw);
1631
1632 ieee80211_queue_delayed_work(hw, &hwsim->roc_done,
1633 msecs_to_jiffies(duration));
1634 return 0;
1635 }
1636
1637 static int mac80211_hwsim_croc(struct ieee80211_hw *hw)
1638 {
1639 struct mac80211_hwsim_data *hwsim = hw->priv;
1640
1641 cancel_delayed_work_sync(&hwsim->roc_done);
1642
1643 mutex_lock(&hwsim->mutex);
1644 hwsim->tmp_chan = NULL;
1645 mutex_unlock(&hwsim->mutex);
1646
1647 wiphy_debug(hw->wiphy, "hwsim ROC canceled\n");
1648
1649 return 0;
1650 }
1651
1652 static int mac80211_hwsim_add_chanctx(struct ieee80211_hw *hw,
1653 struct ieee80211_chanctx_conf *ctx)
1654 {
1655 hwsim_set_chanctx_magic(ctx);
1656 wiphy_debug(hw->wiphy,
1657 "add channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n",
1658 ctx->def.chan->center_freq, ctx->def.width,
1659 ctx->def.center_freq1, ctx->def.center_freq2);
1660 return 0;
1661 }
1662
1663 static void mac80211_hwsim_remove_chanctx(struct ieee80211_hw *hw,
1664 struct ieee80211_chanctx_conf *ctx)
1665 {
1666 wiphy_debug(hw->wiphy,
1667 "remove channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n",
1668 ctx->def.chan->center_freq, ctx->def.width,
1669 ctx->def.center_freq1, ctx->def.center_freq2);
1670 hwsim_check_chanctx_magic(ctx);
1671 hwsim_clear_chanctx_magic(ctx);
1672 }
1673
1674 static void mac80211_hwsim_change_chanctx(struct ieee80211_hw *hw,
1675 struct ieee80211_chanctx_conf *ctx,
1676 u32 changed)
1677 {
1678 hwsim_check_chanctx_magic(ctx);
1679 wiphy_debug(hw->wiphy,
1680 "change channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n",
1681 ctx->def.chan->center_freq, ctx->def.width,
1682 ctx->def.center_freq1, ctx->def.center_freq2);
1683 }
1684
1685 static int mac80211_hwsim_assign_vif_chanctx(struct ieee80211_hw *hw,
1686 struct ieee80211_vif *vif,
1687 struct ieee80211_chanctx_conf *ctx)
1688 {
1689 hwsim_check_magic(vif);
1690 hwsim_check_chanctx_magic(ctx);
1691
1692 return 0;
1693 }
1694
1695 static void mac80211_hwsim_unassign_vif_chanctx(struct ieee80211_hw *hw,
1696 struct ieee80211_vif *vif,
1697 struct ieee80211_chanctx_conf *ctx)
1698 {
1699 hwsim_check_magic(vif);
1700 hwsim_check_chanctx_magic(ctx);
1701 }
1702
1703 static struct ieee80211_ops mac80211_hwsim_ops =
1704 {
1705 .tx = mac80211_hwsim_tx,
1706 .start = mac80211_hwsim_start,
1707 .stop = mac80211_hwsim_stop,
1708 .add_interface = mac80211_hwsim_add_interface,
1709 .change_interface = mac80211_hwsim_change_interface,
1710 .remove_interface = mac80211_hwsim_remove_interface,
1711 .config = mac80211_hwsim_config,
1712 .configure_filter = mac80211_hwsim_configure_filter,
1713 .bss_info_changed = mac80211_hwsim_bss_info_changed,
1714 .sta_add = mac80211_hwsim_sta_add,
1715 .sta_remove = mac80211_hwsim_sta_remove,
1716 .sta_notify = mac80211_hwsim_sta_notify,
1717 .set_tim = mac80211_hwsim_set_tim,
1718 .conf_tx = mac80211_hwsim_conf_tx,
1719 .get_survey = mac80211_hwsim_get_survey,
1720 CFG80211_TESTMODE_CMD(mac80211_hwsim_testmode_cmd)
1721 .ampdu_action = mac80211_hwsim_ampdu_action,
1722 .sw_scan_start = mac80211_hwsim_sw_scan,
1723 .sw_scan_complete = mac80211_hwsim_sw_scan_complete,
1724 .flush = mac80211_hwsim_flush,
1725 .get_tsf = mac80211_hwsim_get_tsf,
1726 .set_tsf = mac80211_hwsim_set_tsf,
1727 };
1728
1729
1730 static void mac80211_hwsim_free(void)
1731 {
1732 struct list_head tmplist, *i, *tmp;
1733 struct mac80211_hwsim_data *data, *tmpdata;
1734
1735 INIT_LIST_HEAD(&tmplist);
1736
1737 spin_lock_bh(&hwsim_radio_lock);
1738 list_for_each_safe(i, tmp, &hwsim_radios)
1739 list_move(i, &tmplist);
1740 spin_unlock_bh(&hwsim_radio_lock);
1741
1742 list_for_each_entry_safe(data, tmpdata, &tmplist, list) {
1743 debugfs_remove_recursive(data->debugfs);
1744 ieee80211_unregister_hw(data->hw);
1745 device_release_driver(data->dev);
1746 device_unregister(data->dev);
1747 ieee80211_free_hw(data->hw);
1748 }
1749 class_destroy(hwsim_class);
1750 }
1751
1752 static struct platform_driver mac80211_hwsim_driver = {
1753 .driver = {
1754 .name = "mac80211_hwsim",
1755 .owner = THIS_MODULE,
1756 },
1757 };
1758
1759 static const struct net_device_ops hwsim_netdev_ops = {
1760 .ndo_start_xmit = hwsim_mon_xmit,
1761 .ndo_change_mtu = eth_change_mtu,
1762 .ndo_set_mac_address = eth_mac_addr,
1763 .ndo_validate_addr = eth_validate_addr,
1764 };
1765
1766 static void hwsim_mon_setup(struct net_device *dev)
1767 {
1768 dev->netdev_ops = &hwsim_netdev_ops;
1769 dev->destructor = free_netdev;
1770 ether_setup(dev);
1771 dev->tx_queue_len = 0;
1772 dev->type = ARPHRD_IEEE80211_RADIOTAP;
1773 memset(dev->dev_addr, 0, ETH_ALEN);
1774 dev->dev_addr[0] = 0x12;
1775 }
1776
1777
1778 static void hwsim_send_ps_poll(void *dat, u8 *mac, struct ieee80211_vif *vif)
1779 {
1780 struct mac80211_hwsim_data *data = dat;
1781 struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
1782 struct sk_buff *skb;
1783 struct ieee80211_pspoll *pspoll;
1784
1785 if (!vp->assoc)
1786 return;
1787
1788 wiphy_debug(data->hw->wiphy,
1789 "%s: send PS-Poll to %pM for aid %d\n",
1790 __func__, vp->bssid, vp->aid);
1791
1792 skb = dev_alloc_skb(sizeof(*pspoll));
1793 if (!skb)
1794 return;
1795 pspoll = (void *) skb_put(skb, sizeof(*pspoll));
1796 pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
1797 IEEE80211_STYPE_PSPOLL |
1798 IEEE80211_FCTL_PM);
1799 pspoll->aid = cpu_to_le16(0xc000 | vp->aid);
1800 memcpy(pspoll->bssid, vp->bssid, ETH_ALEN);
1801 memcpy(pspoll->ta, mac, ETH_ALEN);
1802
1803 rcu_read_lock();
1804 mac80211_hwsim_tx_frame(data->hw, skb,
1805 rcu_dereference(vif->chanctx_conf)->def.chan);
1806 rcu_read_unlock();
1807 }
1808
1809 static void hwsim_send_nullfunc(struct mac80211_hwsim_data *data, u8 *mac,
1810 struct ieee80211_vif *vif, int ps)
1811 {
1812 struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
1813 struct sk_buff *skb;
1814 struct ieee80211_hdr *hdr;
1815
1816 if (!vp->assoc)
1817 return;
1818
1819 wiphy_debug(data->hw->wiphy,
1820 "%s: send data::nullfunc to %pM ps=%d\n",
1821 __func__, vp->bssid, ps);
1822
1823 skb = dev_alloc_skb(sizeof(*hdr));
1824 if (!skb)
1825 return;
1826 hdr = (void *) skb_put(skb, sizeof(*hdr) - ETH_ALEN);
1827 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA |
1828 IEEE80211_STYPE_NULLFUNC |
1829 (ps ? IEEE80211_FCTL_PM : 0));
1830 hdr->duration_id = cpu_to_le16(0);
1831 memcpy(hdr->addr1, vp->bssid, ETH_ALEN);
1832 memcpy(hdr->addr2, mac, ETH_ALEN);
1833 memcpy(hdr->addr3, vp->bssid, ETH_ALEN);
1834
1835 rcu_read_lock();
1836 mac80211_hwsim_tx_frame(data->hw, skb,
1837 rcu_dereference(vif->chanctx_conf)->def.chan);
1838 rcu_read_unlock();
1839 }
1840
1841
1842 static void hwsim_send_nullfunc_ps(void *dat, u8 *mac,
1843 struct ieee80211_vif *vif)
1844 {
1845 struct mac80211_hwsim_data *data = dat;
1846 hwsim_send_nullfunc(data, mac, vif, 1);
1847 }
1848
1849
1850 static void hwsim_send_nullfunc_no_ps(void *dat, u8 *mac,
1851 struct ieee80211_vif *vif)
1852 {
1853 struct mac80211_hwsim_data *data = dat;
1854 hwsim_send_nullfunc(data, mac, vif, 0);
1855 }
1856
1857
1858 static int hwsim_fops_ps_read(void *dat, u64 *val)
1859 {
1860 struct mac80211_hwsim_data *data = dat;
1861 *val = data->ps;
1862 return 0;
1863 }
1864
1865 static int hwsim_fops_ps_write(void *dat, u64 val)
1866 {
1867 struct mac80211_hwsim_data *data = dat;
1868 enum ps_mode old_ps;
1869
1870 if (val != PS_DISABLED && val != PS_ENABLED && val != PS_AUTO_POLL &&
1871 val != PS_MANUAL_POLL)
1872 return -EINVAL;
1873
1874 old_ps = data->ps;
1875 data->ps = val;
1876
1877 if (val == PS_MANUAL_POLL) {
1878 ieee80211_iterate_active_interfaces(data->hw,
1879 IEEE80211_IFACE_ITER_NORMAL,
1880 hwsim_send_ps_poll, data);
1881 data->ps_poll_pending = true;
1882 } else if (old_ps == PS_DISABLED && val != PS_DISABLED) {
1883 ieee80211_iterate_active_interfaces(data->hw,
1884 IEEE80211_IFACE_ITER_NORMAL,
1885 hwsim_send_nullfunc_ps,
1886 data);
1887 } else if (old_ps != PS_DISABLED && val == PS_DISABLED) {
1888 ieee80211_iterate_active_interfaces(data->hw,
1889 IEEE80211_IFACE_ITER_NORMAL,
1890 hwsim_send_nullfunc_no_ps,
1891 data);
1892 }
1893
1894 return 0;
1895 }
1896
1897 DEFINE_SIMPLE_ATTRIBUTE(hwsim_fops_ps, hwsim_fops_ps_read, hwsim_fops_ps_write,
1898 "%llu\n");
1899
1900 static int hwsim_write_simulate_radar(void *dat, u64 val)
1901 {
1902 struct mac80211_hwsim_data *data = dat;
1903
1904 ieee80211_radar_detected(data->hw);
1905
1906 return 0;
1907 }
1908
1909 DEFINE_SIMPLE_ATTRIBUTE(hwsim_simulate_radar, NULL,
1910 hwsim_write_simulate_radar, "%llu\n");
1911
1912 static int hwsim_fops_group_read(void *dat, u64 *val)
1913 {
1914 struct mac80211_hwsim_data *data = dat;
1915 *val = data->group;
1916 return 0;
1917 }
1918
1919 static int hwsim_fops_group_write(void *dat, u64 val)
1920 {
1921 struct mac80211_hwsim_data *data = dat;
1922 data->group = val;
1923 return 0;
1924 }
1925
1926 DEFINE_SIMPLE_ATTRIBUTE(hwsim_fops_group,
1927 hwsim_fops_group_read, hwsim_fops_group_write,
1928 "%llx\n");
1929
1930 static struct mac80211_hwsim_data *get_hwsim_data_ref_from_addr(
1931 struct mac_address *addr)
1932 {
1933 struct mac80211_hwsim_data *data;
1934 bool _found = false;
1935
1936 spin_lock_bh(&hwsim_radio_lock);
1937 list_for_each_entry(data, &hwsim_radios, list) {
1938 if (memcmp(data->addresses[1].addr, addr,
1939 sizeof(struct mac_address)) == 0) {
1940 _found = true;
1941 break;
1942 }
1943 }
1944 spin_unlock_bh(&hwsim_radio_lock);
1945
1946 if (!_found)
1947 return NULL;
1948
1949 return data;
1950 }
1951
1952 static int hwsim_tx_info_frame_received_nl(struct sk_buff *skb_2,
1953 struct genl_info *info)
1954 {
1955
1956 struct ieee80211_hdr *hdr;
1957 struct mac80211_hwsim_data *data2;
1958 struct ieee80211_tx_info *txi;
1959 struct hwsim_tx_rate *tx_attempts;
1960 unsigned long ret_skb_ptr;
1961 struct sk_buff *skb, *tmp;
1962 struct mac_address *src;
1963 unsigned int hwsim_flags;
1964
1965 int i;
1966 bool found = false;
1967
1968 if (!info->attrs[HWSIM_ATTR_ADDR_TRANSMITTER] ||
1969 !info->attrs[HWSIM_ATTR_FLAGS] ||
1970 !info->attrs[HWSIM_ATTR_COOKIE] ||
1971 !info->attrs[HWSIM_ATTR_TX_INFO])
1972 goto out;
1973
1974 src = (struct mac_address *)nla_data(
1975 info->attrs[HWSIM_ATTR_ADDR_TRANSMITTER]);
1976 hwsim_flags = nla_get_u32(info->attrs[HWSIM_ATTR_FLAGS]);
1977
1978 ret_skb_ptr = nla_get_u64(info->attrs[HWSIM_ATTR_COOKIE]);
1979
1980 data2 = get_hwsim_data_ref_from_addr(src);
1981
1982 if (data2 == NULL)
1983 goto out;
1984
1985 /* look for the skb matching the cookie passed back from user */
1986 skb_queue_walk_safe(&data2->pending, skb, tmp) {
1987 if ((unsigned long)skb == ret_skb_ptr) {
1988 skb_unlink(skb, &data2->pending);
1989 found = true;
1990 break;
1991 }
1992 }
1993
1994 /* not found */
1995 if (!found)
1996 goto out;
1997
1998 /* Tx info received because the frame was broadcasted on user space,
1999 so we get all the necessary info: tx attempts and skb control buff */
2000
2001 tx_attempts = (struct hwsim_tx_rate *)nla_data(
2002 info->attrs[HWSIM_ATTR_TX_INFO]);
2003
2004 /* now send back TX status */
2005 txi = IEEE80211_SKB_CB(skb);
2006
2007 ieee80211_tx_info_clear_status(txi);
2008
2009 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
2010 txi->status.rates[i].idx = tx_attempts[i].idx;
2011 txi->status.rates[i].count = tx_attempts[i].count;
2012 /*txi->status.rates[i].flags = 0;*/
2013 }
2014
2015 txi->status.ack_signal = nla_get_u32(info->attrs[HWSIM_ATTR_SIGNAL]);
2016
2017 if (!(hwsim_flags & HWSIM_TX_CTL_NO_ACK) &&
2018 (hwsim_flags & HWSIM_TX_STAT_ACK)) {
2019 if (skb->len >= 16) {
2020 hdr = (struct ieee80211_hdr *) skb->data;
2021 mac80211_hwsim_monitor_ack(txi->rate_driver_data[0],
2022 hdr->addr2);
2023 }
2024 txi->flags |= IEEE80211_TX_STAT_ACK;
2025 }
2026 ieee80211_tx_status_irqsafe(data2->hw, skb);
2027 return 0;
2028 out:
2029 return -EINVAL;
2030
2031 }
2032
2033 static int hwsim_cloned_frame_received_nl(struct sk_buff *skb_2,
2034 struct genl_info *info)
2035 {
2036
2037 struct mac80211_hwsim_data *data2;
2038 struct ieee80211_rx_status rx_status;
2039 struct mac_address *dst;
2040 int frame_data_len;
2041 char *frame_data;
2042 struct sk_buff *skb = NULL;
2043
2044 if (!info->attrs[HWSIM_ATTR_ADDR_RECEIVER] ||
2045 !info->attrs[HWSIM_ATTR_FRAME] ||
2046 !info->attrs[HWSIM_ATTR_RX_RATE] ||
2047 !info->attrs[HWSIM_ATTR_SIGNAL])
2048 goto out;
2049
2050 dst = (struct mac_address *)nla_data(
2051 info->attrs[HWSIM_ATTR_ADDR_RECEIVER]);
2052
2053 frame_data_len = nla_len(info->attrs[HWSIM_ATTR_FRAME]);
2054 frame_data = (char *)nla_data(info->attrs[HWSIM_ATTR_FRAME]);
2055
2056 /* Allocate new skb here */
2057 skb = alloc_skb(frame_data_len, GFP_KERNEL);
2058 if (skb == NULL)
2059 goto err;
2060
2061 if (frame_data_len <= IEEE80211_MAX_DATA_LEN) {
2062 /* Copy the data */
2063 memcpy(skb_put(skb, frame_data_len), frame_data,
2064 frame_data_len);
2065 } else
2066 goto err;
2067
2068 data2 = get_hwsim_data_ref_from_addr(dst);
2069
2070 if (data2 == NULL)
2071 goto out;
2072
2073 /* check if radio is configured properly */
2074
2075 if (data2->idle || !data2->started)
2076 goto out;
2077
2078 /*A frame is received from user space*/
2079 memset(&rx_status, 0, sizeof(rx_status));
2080 rx_status.freq = data2->channel->center_freq;
2081 rx_status.band = data2->channel->band;
2082 rx_status.rate_idx = nla_get_u32(info->attrs[HWSIM_ATTR_RX_RATE]);
2083 rx_status.signal = nla_get_u32(info->attrs[HWSIM_ATTR_SIGNAL]);
2084
2085 memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status));
2086 ieee80211_rx_irqsafe(data2->hw, skb);
2087
2088 return 0;
2089 err:
2090 printk(KERN_DEBUG "mac80211_hwsim: error occurred in %s\n", __func__);
2091 goto out;
2092 out:
2093 dev_kfree_skb(skb);
2094 return -EINVAL;
2095 }
2096
2097 static int hwsim_register_received_nl(struct sk_buff *skb_2,
2098 struct genl_info *info)
2099 {
2100 if (info == NULL)
2101 goto out;
2102
2103 wmediumd_portid = info->snd_portid;
2104
2105 printk(KERN_DEBUG "mac80211_hwsim: received a REGISTER, "
2106 "switching to wmediumd mode with pid %d\n", info->snd_portid);
2107
2108 return 0;
2109 out:
2110 printk(KERN_DEBUG "mac80211_hwsim: error occurred in %s\n", __func__);
2111 return -EINVAL;
2112 }
2113
2114 /* Generic Netlink operations array */
2115 static const struct genl_ops hwsim_ops[] = {
2116 {
2117 .cmd = HWSIM_CMD_REGISTER,
2118 .policy = hwsim_genl_policy,
2119 .doit = hwsim_register_received_nl,
2120 .flags = GENL_ADMIN_PERM,
2121 },
2122 {
2123 .cmd = HWSIM_CMD_FRAME,
2124 .policy = hwsim_genl_policy,
2125 .doit = hwsim_cloned_frame_received_nl,
2126 },
2127 {
2128 .cmd = HWSIM_CMD_TX_INFO_FRAME,
2129 .policy = hwsim_genl_policy,
2130 .doit = hwsim_tx_info_frame_received_nl,
2131 },
2132 };
2133
2134 static int mac80211_hwsim_netlink_notify(struct notifier_block *nb,
2135 unsigned long state,
2136 void *_notify)
2137 {
2138 struct netlink_notify *notify = _notify;
2139
2140 if (state != NETLINK_URELEASE)
2141 return NOTIFY_DONE;
2142
2143 if (notify->portid == wmediumd_portid) {
2144 printk(KERN_INFO "mac80211_hwsim: wmediumd released netlink"
2145 " socket, switching to perfect channel medium\n");
2146 wmediumd_portid = 0;
2147 }
2148 return NOTIFY_DONE;
2149
2150 }
2151
2152 static struct notifier_block hwsim_netlink_notifier = {
2153 .notifier_call = mac80211_hwsim_netlink_notify,
2154 };
2155
2156 static int hwsim_init_netlink(void)
2157 {
2158 int rc;
2159
2160 /* userspace test API hasn't been adjusted for multi-channel */
2161 if (channels > 1)
2162 return 0;
2163
2164 printk(KERN_INFO "mac80211_hwsim: initializing netlink\n");
2165
2166 rc = genl_register_family_with_ops(&hwsim_genl_family, hwsim_ops);
2167 if (rc)
2168 goto failure;
2169
2170 rc = netlink_register_notifier(&hwsim_netlink_notifier);
2171 if (rc)
2172 goto failure;
2173
2174 return 0;
2175
2176 failure:
2177 printk(KERN_DEBUG "mac80211_hwsim: error occurred in %s\n", __func__);
2178 return -EINVAL;
2179 }
2180
2181 static void hwsim_exit_netlink(void)
2182 {
2183 /* userspace test API hasn't been adjusted for multi-channel */
2184 if (channels > 1)
2185 return;
2186
2187 /* unregister the notifier */
2188 netlink_unregister_notifier(&hwsim_netlink_notifier);
2189 /* unregister the family */
2190 genl_unregister_family(&hwsim_genl_family);
2191 }
2192
2193 static const struct ieee80211_iface_limit hwsim_if_limits[] = {
2194 { .max = 1, .types = BIT(NL80211_IFTYPE_ADHOC) },
2195 { .max = 2048, .types = BIT(NL80211_IFTYPE_STATION) |
2196 BIT(NL80211_IFTYPE_P2P_CLIENT) |
2197 #ifdef CONFIG_MAC80211_MESH
2198 BIT(NL80211_IFTYPE_MESH_POINT) |
2199 #endif
2200 BIT(NL80211_IFTYPE_AP) |
2201 BIT(NL80211_IFTYPE_P2P_GO) },
2202 { .max = 1, .types = BIT(NL80211_IFTYPE_P2P_DEVICE) },
2203 };
2204
2205 static const struct ieee80211_iface_limit hwsim_if_dfs_limits[] = {
2206 { .max = 8, .types = BIT(NL80211_IFTYPE_AP) },
2207 };
2208
2209 static struct ieee80211_iface_combination hwsim_if_comb[] = {
2210 {
2211 .limits = hwsim_if_limits,
2212 .n_limits = ARRAY_SIZE(hwsim_if_limits),
2213 .max_interfaces = 2048,
2214 .num_different_channels = 1,
2215 },
2216 {
2217 .limits = hwsim_if_dfs_limits,
2218 .n_limits = ARRAY_SIZE(hwsim_if_dfs_limits),
2219 .max_interfaces = 8,
2220 .num_different_channels = 1,
2221 .radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
2222 BIT(NL80211_CHAN_WIDTH_20) |
2223 BIT(NL80211_CHAN_WIDTH_40) |
2224 BIT(NL80211_CHAN_WIDTH_80) |
2225 BIT(NL80211_CHAN_WIDTH_160),
2226 }
2227 };
2228
2229 static int __init init_mac80211_hwsim(void)
2230 {
2231 int i, err = 0;
2232 u8 addr[ETH_ALEN];
2233 struct mac80211_hwsim_data *data;
2234 struct ieee80211_hw *hw;
2235 enum ieee80211_band band;
2236
2237 if (radios < 1 || radios > 100)
2238 return -EINVAL;
2239
2240 if (channels < 1)
2241 return -EINVAL;
2242
2243 if (channels > 1) {
2244 hwsim_if_comb[0].num_different_channels = channels;
2245 mac80211_hwsim_ops.hw_scan = mac80211_hwsim_hw_scan;
2246 mac80211_hwsim_ops.cancel_hw_scan =
2247 mac80211_hwsim_cancel_hw_scan;
2248 mac80211_hwsim_ops.sw_scan_start = NULL;
2249 mac80211_hwsim_ops.sw_scan_complete = NULL;
2250 mac80211_hwsim_ops.remain_on_channel =
2251 mac80211_hwsim_roc;
2252 mac80211_hwsim_ops.cancel_remain_on_channel =
2253 mac80211_hwsim_croc;
2254 mac80211_hwsim_ops.add_chanctx =
2255 mac80211_hwsim_add_chanctx;
2256 mac80211_hwsim_ops.remove_chanctx =
2257 mac80211_hwsim_remove_chanctx;
2258 mac80211_hwsim_ops.change_chanctx =
2259 mac80211_hwsim_change_chanctx;
2260 mac80211_hwsim_ops.assign_vif_chanctx =
2261 mac80211_hwsim_assign_vif_chanctx;
2262 mac80211_hwsim_ops.unassign_vif_chanctx =
2263 mac80211_hwsim_unassign_vif_chanctx;
2264 }
2265
2266 spin_lock_init(&hwsim_radio_lock);
2267 INIT_LIST_HEAD(&hwsim_radios);
2268
2269 err = platform_driver_register(&mac80211_hwsim_driver);
2270 if (err)
2271 return err;
2272
2273 hwsim_class = class_create(THIS_MODULE, "mac80211_hwsim");
2274 if (IS_ERR(hwsim_class)) {
2275 err = PTR_ERR(hwsim_class);
2276 goto failed_unregister_driver;
2277 }
2278
2279 memset(addr, 0, ETH_ALEN);
2280 addr[0] = 0x02;
2281
2282 for (i = 0; i < radios; i++) {
2283 printk(KERN_DEBUG "mac80211_hwsim: Initializing radio %d\n",
2284 i);
2285 hw = ieee80211_alloc_hw(sizeof(*data), &mac80211_hwsim_ops);
2286 if (!hw) {
2287 printk(KERN_DEBUG "mac80211_hwsim: ieee80211_alloc_hw "
2288 "failed\n");
2289 err = -ENOMEM;
2290 goto failed;
2291 }
2292 data = hw->priv;
2293 data->hw = hw;
2294
2295 data->dev = device_create(hwsim_class, NULL, 0, hw,
2296 "hwsim%d", i);
2297 if (IS_ERR(data->dev)) {
2298 printk(KERN_DEBUG
2299 "mac80211_hwsim: device_create failed (%ld)\n",
2300 PTR_ERR(data->dev));
2301 err = -ENOMEM;
2302 goto failed_drvdata;
2303 }
2304 data->dev->driver = &mac80211_hwsim_driver.driver;
2305 err = device_bind_driver(data->dev);
2306 if (err != 0) {
2307 printk(KERN_DEBUG
2308 "mac80211_hwsim: device_bind_driver failed (%d)\n",
2309 err);
2310 goto failed_hw;
2311 }
2312
2313 skb_queue_head_init(&data->pending);
2314
2315 SET_IEEE80211_DEV(hw, data->dev);
2316 addr[3] = i >> 8;
2317 addr[4] = i;
2318 memcpy(data->addresses[0].addr, addr, ETH_ALEN);
2319 memcpy(data->addresses[1].addr, addr, ETH_ALEN);
2320 data->addresses[1].addr[0] |= 0x40;
2321 hw->wiphy->n_addresses = 2;
2322 hw->wiphy->addresses = data->addresses;
2323
2324 hw->wiphy->iface_combinations = hwsim_if_comb;
2325 hw->wiphy->n_iface_combinations = ARRAY_SIZE(hwsim_if_comb);
2326
2327 if (channels > 1) {
2328 hw->wiphy->max_scan_ssids = 255;
2329 hw->wiphy->max_scan_ie_len = IEEE80211_MAX_DATA_LEN;
2330 hw->wiphy->max_remain_on_channel_duration = 1000;
2331 /* For channels > 1 DFS is not allowed */
2332 hw->wiphy->n_iface_combinations = 1;
2333 }
2334
2335 INIT_DELAYED_WORK(&data->roc_done, hw_roc_done);
2336 INIT_DELAYED_WORK(&data->hw_scan, hw_scan_work);
2337
2338 hw->queues = 5;
2339 hw->offchannel_tx_hw_queue = 4;
2340 hw->wiphy->interface_modes =
2341 BIT(NL80211_IFTYPE_STATION) |
2342 BIT(NL80211_IFTYPE_AP) |
2343 BIT(NL80211_IFTYPE_P2P_CLIENT) |
2344 BIT(NL80211_IFTYPE_P2P_GO) |
2345 BIT(NL80211_IFTYPE_ADHOC) |
2346 BIT(NL80211_IFTYPE_MESH_POINT) |
2347 BIT(NL80211_IFTYPE_P2P_DEVICE);
2348
2349 hw->flags = IEEE80211_HW_MFP_CAPABLE |
2350 IEEE80211_HW_SIGNAL_DBM |
2351 IEEE80211_HW_SUPPORTS_STATIC_SMPS |
2352 IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS |
2353 IEEE80211_HW_AMPDU_AGGREGATION |
2354 IEEE80211_HW_WANT_MONITOR_VIF |
2355 IEEE80211_HW_QUEUE_CONTROL |
2356 IEEE80211_HW_SUPPORTS_HT_CCK_RATES;
2357 if (rctbl)
2358 hw->flags |= IEEE80211_HW_SUPPORTS_RC_TABLE;
2359
2360 hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
2361 WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL |
2362 WIPHY_FLAG_AP_UAPSD;
2363 hw->wiphy->features |= NL80211_FEATURE_ACTIVE_MONITOR;
2364
2365 /* ask mac80211 to reserve space for magic */
2366 hw->vif_data_size = sizeof(struct hwsim_vif_priv);
2367 hw->sta_data_size = sizeof(struct hwsim_sta_priv);
2368 hw->chanctx_data_size = sizeof(struct hwsim_chanctx_priv);
2369
2370 memcpy(data->channels_2ghz, hwsim_channels_2ghz,
2371 sizeof(hwsim_channels_2ghz));
2372 memcpy(data->channels_5ghz, hwsim_channels_5ghz,
2373 sizeof(hwsim_channels_5ghz));
2374 memcpy(data->rates, hwsim_rates, sizeof(hwsim_rates));
2375
2376 for (band = IEEE80211_BAND_2GHZ; band < IEEE80211_NUM_BANDS; band++) {
2377 struct ieee80211_supported_band *sband = &data->bands[band];
2378 switch (band) {
2379 case IEEE80211_BAND_2GHZ:
2380 sband->channels = data->channels_2ghz;
2381 sband->n_channels =
2382 ARRAY_SIZE(hwsim_channels_2ghz);
2383 sband->bitrates = data->rates;
2384 sband->n_bitrates = ARRAY_SIZE(hwsim_rates);
2385 break;
2386 case IEEE80211_BAND_5GHZ:
2387 sband->channels = data->channels_5ghz;
2388 sband->n_channels =
2389 ARRAY_SIZE(hwsim_channels_5ghz);
2390 sband->bitrates = data->rates + 4;
2391 sband->n_bitrates = ARRAY_SIZE(hwsim_rates) - 4;
2392 break;
2393 default:
2394 continue;
2395 }
2396
2397 sband->ht_cap.ht_supported = true;
2398 sband->ht_cap.cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
2399 IEEE80211_HT_CAP_GRN_FLD |
2400 IEEE80211_HT_CAP_SGI_40 |
2401 IEEE80211_HT_CAP_DSSSCCK40;
2402 sband->ht_cap.ampdu_factor = 0x3;
2403 sband->ht_cap.ampdu_density = 0x6;
2404 memset(&sband->ht_cap.mcs, 0,
2405 sizeof(sband->ht_cap.mcs));
2406 sband->ht_cap.mcs.rx_mask[0] = 0xff;
2407 sband->ht_cap.mcs.rx_mask[1] = 0xff;
2408 sband->ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2409
2410 hw->wiphy->bands[band] = sband;
2411
2412 sband->vht_cap.vht_supported = true;
2413 sband->vht_cap.cap =
2414 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
2415 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ |
2416 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
2417 IEEE80211_VHT_CAP_RXLDPC |
2418 IEEE80211_VHT_CAP_SHORT_GI_80 |
2419 IEEE80211_VHT_CAP_SHORT_GI_160 |
2420 IEEE80211_VHT_CAP_TXSTBC |
2421 IEEE80211_VHT_CAP_RXSTBC_1 |
2422 IEEE80211_VHT_CAP_RXSTBC_2 |
2423 IEEE80211_VHT_CAP_RXSTBC_3 |
2424 IEEE80211_VHT_CAP_RXSTBC_4 |
2425 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK;
2426 sband->vht_cap.vht_mcs.rx_mcs_map =
2427 cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_8 << 0 |
2428 IEEE80211_VHT_MCS_SUPPORT_0_8 << 2 |
2429 IEEE80211_VHT_MCS_SUPPORT_0_9 << 4 |
2430 IEEE80211_VHT_MCS_SUPPORT_0_8 << 6 |
2431 IEEE80211_VHT_MCS_SUPPORT_0_8 << 8 |
2432 IEEE80211_VHT_MCS_SUPPORT_0_9 << 10 |
2433 IEEE80211_VHT_MCS_SUPPORT_0_9 << 12 |
2434 IEEE80211_VHT_MCS_SUPPORT_0_8 << 14);
2435 sband->vht_cap.vht_mcs.tx_mcs_map =
2436 sband->vht_cap.vht_mcs.rx_mcs_map;
2437 }
2438 /* By default all radios are belonging to the first group */
2439 data->group = 1;
2440 mutex_init(&data->mutex);
2441
2442 /* Enable frame retransmissions for lossy channels */
2443 hw->max_rates = 4;
2444 hw->max_rate_tries = 11;
2445
2446 /* Work to be done prior to ieee80211_register_hw() */
2447 switch (regtest) {
2448 case HWSIM_REGTEST_DISABLED:
2449 case HWSIM_REGTEST_DRIVER_REG_FOLLOW:
2450 case HWSIM_REGTEST_DRIVER_REG_ALL:
2451 case HWSIM_REGTEST_DIFF_COUNTRY:
2452 /*
2453 * Nothing to be done for driver regulatory domain
2454 * hints prior to ieee80211_register_hw()
2455 */
2456 break;
2457 case HWSIM_REGTEST_WORLD_ROAM:
2458 if (i == 0) {
2459 hw->wiphy->regulatory_flags |=
2460 REGULATORY_CUSTOM_REG;
2461 wiphy_apply_custom_regulatory(hw->wiphy,
2462 &hwsim_world_regdom_custom_01);
2463 }
2464 break;
2465 case HWSIM_REGTEST_CUSTOM_WORLD:
2466 hw->wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2467 wiphy_apply_custom_regulatory(hw->wiphy,
2468 &hwsim_world_regdom_custom_01);
2469 break;
2470 case HWSIM_REGTEST_CUSTOM_WORLD_2:
2471 if (i == 0) {
2472 hw->wiphy->regulatory_flags |=
2473 REGULATORY_CUSTOM_REG;
2474 wiphy_apply_custom_regulatory(hw->wiphy,
2475 &hwsim_world_regdom_custom_01);
2476 } else if (i == 1) {
2477 hw->wiphy->regulatory_flags |=
2478 REGULATORY_CUSTOM_REG;
2479 wiphy_apply_custom_regulatory(hw->wiphy,
2480 &hwsim_world_regdom_custom_02);
2481 }
2482 break;
2483 case HWSIM_REGTEST_STRICT_ALL:
2484 hw->wiphy->regulatory_flags |= REGULATORY_STRICT_REG;
2485 break;
2486 case HWSIM_REGTEST_STRICT_FOLLOW:
2487 case HWSIM_REGTEST_STRICT_AND_DRIVER_REG:
2488 if (i == 0)
2489 hw->wiphy->regulatory_flags |=
2490 REGULATORY_STRICT_REG;
2491 break;
2492 case HWSIM_REGTEST_ALL:
2493 if (i == 0) {
2494 hw->wiphy->regulatory_flags |=
2495 REGULATORY_CUSTOM_REG;
2496 wiphy_apply_custom_regulatory(hw->wiphy,
2497 &hwsim_world_regdom_custom_01);
2498 } else if (i == 1) {
2499 hw->wiphy->regulatory_flags |=
2500 REGULATORY_CUSTOM_REG;
2501 wiphy_apply_custom_regulatory(hw->wiphy,
2502 &hwsim_world_regdom_custom_02);
2503 } else if (i == 4)
2504 hw->wiphy->regulatory_flags |=
2505 REGULATORY_STRICT_REG;
2506 break;
2507 default:
2508 break;
2509 }
2510
2511 /* give the regulatory workqueue a chance to run */
2512 if (regtest)
2513 schedule_timeout_interruptible(1);
2514 err = ieee80211_register_hw(hw);
2515 if (err < 0) {
2516 printk(KERN_DEBUG "mac80211_hwsim: "
2517 "ieee80211_register_hw failed (%d)\n", err);
2518 goto failed_hw;
2519 }
2520
2521 /* Work to be done after to ieee80211_register_hw() */
2522 switch (regtest) {
2523 case HWSIM_REGTEST_WORLD_ROAM:
2524 case HWSIM_REGTEST_DISABLED:
2525 break;
2526 case HWSIM_REGTEST_DRIVER_REG_FOLLOW:
2527 if (!i)
2528 regulatory_hint(hw->wiphy, hwsim_alpha2s[0]);
2529 break;
2530 case HWSIM_REGTEST_DRIVER_REG_ALL:
2531 case HWSIM_REGTEST_STRICT_ALL:
2532 regulatory_hint(hw->wiphy, hwsim_alpha2s[0]);
2533 break;
2534 case HWSIM_REGTEST_DIFF_COUNTRY:
2535 if (i < ARRAY_SIZE(hwsim_alpha2s))
2536 regulatory_hint(hw->wiphy, hwsim_alpha2s[i]);
2537 break;
2538 case HWSIM_REGTEST_CUSTOM_WORLD:
2539 case HWSIM_REGTEST_CUSTOM_WORLD_2:
2540 /*
2541 * Nothing to be done for custom world regulatory
2542 * domains after to ieee80211_register_hw
2543 */
2544 break;
2545 case HWSIM_REGTEST_STRICT_FOLLOW:
2546 if (i == 0)
2547 regulatory_hint(hw->wiphy, hwsim_alpha2s[0]);
2548 break;
2549 case HWSIM_REGTEST_STRICT_AND_DRIVER_REG:
2550 if (i == 0)
2551 regulatory_hint(hw->wiphy, hwsim_alpha2s[0]);
2552 else if (i == 1)
2553 regulatory_hint(hw->wiphy, hwsim_alpha2s[1]);
2554 break;
2555 case HWSIM_REGTEST_ALL:
2556 if (i == 2)
2557 regulatory_hint(hw->wiphy, hwsim_alpha2s[0]);
2558 else if (i == 3)
2559 regulatory_hint(hw->wiphy, hwsim_alpha2s[1]);
2560 else if (i == 4)
2561 regulatory_hint(hw->wiphy, hwsim_alpha2s[2]);
2562 break;
2563 default:
2564 break;
2565 }
2566
2567 wiphy_debug(hw->wiphy, "hwaddr %pm registered\n",
2568 hw->wiphy->perm_addr);
2569
2570 data->debugfs = debugfs_create_dir("hwsim",
2571 hw->wiphy->debugfsdir);
2572 debugfs_create_file("ps", 0666, data->debugfs, data,
2573 &hwsim_fops_ps);
2574 debugfs_create_file("group", 0666, data->debugfs, data,
2575 &hwsim_fops_group);
2576 if (channels == 1)
2577 debugfs_create_file("dfs_simulate_radar", 0222,
2578 data->debugfs,
2579 data, &hwsim_simulate_radar);
2580
2581 tasklet_hrtimer_init(&data->beacon_timer,
2582 mac80211_hwsim_beacon,
2583 CLOCK_MONOTONIC_RAW, HRTIMER_MODE_ABS);
2584
2585 list_add_tail(&data->list, &hwsim_radios);
2586 }
2587
2588 hwsim_mon = alloc_netdev(0, "hwsim%d", hwsim_mon_setup);
2589 if (hwsim_mon == NULL) {
2590 err = -ENOMEM;
2591 goto failed;
2592 }
2593
2594 rtnl_lock();
2595
2596 err = dev_alloc_name(hwsim_mon, hwsim_mon->name);
2597 if (err < 0)
2598 goto failed_mon;
2599
2600
2601 err = register_netdevice(hwsim_mon);
2602 if (err < 0)
2603 goto failed_mon;
2604
2605 rtnl_unlock();
2606
2607 err = hwsim_init_netlink();
2608 if (err < 0)
2609 goto failed_nl;
2610
2611 return 0;
2612
2613 failed_nl:
2614 printk(KERN_DEBUG "mac80211_hwsim: failed initializing netlink\n");
2615 return err;
2616
2617 failed_mon:
2618 rtnl_unlock();
2619 free_netdev(hwsim_mon);
2620 mac80211_hwsim_free();
2621 return err;
2622
2623 failed_hw:
2624 device_unregister(data->dev);
2625 failed_drvdata:
2626 ieee80211_free_hw(hw);
2627 failed:
2628 mac80211_hwsim_free();
2629 failed_unregister_driver:
2630 platform_driver_unregister(&mac80211_hwsim_driver);
2631 return err;
2632 }
2633 module_init(init_mac80211_hwsim);
2634
2635 static void __exit exit_mac80211_hwsim(void)
2636 {
2637 printk(KERN_DEBUG "mac80211_hwsim: unregister radios\n");
2638
2639 hwsim_exit_netlink();
2640
2641 mac80211_hwsim_free();
2642 unregister_netdev(hwsim_mon);
2643 platform_driver_unregister(&mac80211_hwsim_driver);
2644 }
2645 module_exit(exit_mac80211_hwsim);
This page took 0.082965 seconds and 6 git commands to generate.