Merge branch 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / net / wireless / mwifiex / wmm.c
1 /*
2 * Marvell Wireless LAN device driver: WMM
3 *
4 * Copyright (C) 2011, Marvell International Ltd.
5 *
6 * This software file (the "File") is distributed by Marvell International
7 * Ltd. under the terms of the GNU General Public License Version 2, June 1991
8 * (the "License"). You may use, redistribute and/or modify this File in
9 * accordance with the terms and conditions of the License, a copy of which
10 * is available by writing to the Free Software Foundation, Inc.,
11 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA or on the
12 * worldwide web at http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt.
13 *
14 * THE FILE IS DISTRIBUTED AS-IS, WITHOUT WARRANTY OF ANY KIND, AND THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
16 * ARE EXPRESSLY DISCLAIMED. The License provides additional details about
17 * this warranty disclaimer.
18 */
19
20 #include "decl.h"
21 #include "ioctl.h"
22 #include "util.h"
23 #include "fw.h"
24 #include "main.h"
25 #include "wmm.h"
26 #include "11n.h"
27
28
29 /* Maximum value FW can accept for driver delay in packet transmission */
30 #define DRV_PKT_DELAY_TO_FW_MAX 512
31
32
33 #define WMM_QUEUED_PACKET_LOWER_LIMIT 180
34
35 #define WMM_QUEUED_PACKET_UPPER_LIMIT 200
36
37 /* Offset for TOS field in the IP header */
38 #define IPTOS_OFFSET 5
39
40 /* WMM information IE */
41 static const u8 wmm_info_ie[] = { WLAN_EID_VENDOR_SPECIFIC, 0x07,
42 0x00, 0x50, 0xf2, 0x02,
43 0x00, 0x01, 0x00
44 };
45
46 static const u8 wmm_aci_to_qidx_map[] = { WMM_AC_BE,
47 WMM_AC_BK,
48 WMM_AC_VI,
49 WMM_AC_VO
50 };
51
52 static u8 tos_to_tid[] = {
53 /* TID DSCP_P2 DSCP_P1 DSCP_P0 WMM_AC */
54 0x01, /* 0 1 0 AC_BK */
55 0x02, /* 0 0 0 AC_BK */
56 0x00, /* 0 0 1 AC_BE */
57 0x03, /* 0 1 1 AC_BE */
58 0x04, /* 1 0 0 AC_VI */
59 0x05, /* 1 0 1 AC_VI */
60 0x06, /* 1 1 0 AC_VO */
61 0x07 /* 1 1 1 AC_VO */
62 };
63
64 /*
65 * This table inverses the tos_to_tid operation to get a priority
66 * which is in sequential order, and can be compared.
67 * Use this to compare the priority of two different TIDs.
68 */
69 static u8 tos_to_tid_inv[] = {
70 0x02, /* from tos_to_tid[2] = 0 */
71 0x00, /* from tos_to_tid[0] = 1 */
72 0x01, /* from tos_to_tid[1] = 2 */
73 0x03,
74 0x04,
75 0x05,
76 0x06,
77 0x07};
78
79 static u8 ac_to_tid[4][2] = { {1, 2}, {0, 3}, {4, 5}, {6, 7} };
80
81 /*
82 * This function debug prints the priority parameters for a WMM AC.
83 */
84 static void
85 mwifiex_wmm_ac_debug_print(const struct ieee_types_wmm_ac_parameters *ac_param)
86 {
87 const char *ac_str[] = { "BK", "BE", "VI", "VO" };
88
89 pr_debug("info: WMM AC_%s: ACI=%d, ACM=%d, Aifsn=%d, "
90 "EcwMin=%d, EcwMax=%d, TxopLimit=%d\n",
91 ac_str[wmm_aci_to_qidx_map[(ac_param->aci_aifsn_bitmap
92 & MWIFIEX_ACI) >> 5]],
93 (ac_param->aci_aifsn_bitmap & MWIFIEX_ACI) >> 5,
94 (ac_param->aci_aifsn_bitmap & MWIFIEX_ACM) >> 4,
95 ac_param->aci_aifsn_bitmap & MWIFIEX_AIFSN,
96 ac_param->ecw_bitmap & MWIFIEX_ECW_MIN,
97 (ac_param->ecw_bitmap & MWIFIEX_ECW_MAX) >> 4,
98 le16_to_cpu(ac_param->tx_op_limit));
99 }
100
101 /*
102 * This function allocates a route address list.
103 *
104 * The function also initializes the list with the provided RA.
105 */
106 static struct mwifiex_ra_list_tbl *
107 mwifiex_wmm_allocate_ralist_node(struct mwifiex_adapter *adapter, u8 *ra)
108 {
109 struct mwifiex_ra_list_tbl *ra_list;
110
111 ra_list = kzalloc(sizeof(struct mwifiex_ra_list_tbl), GFP_ATOMIC);
112
113 if (!ra_list) {
114 dev_err(adapter->dev, "%s: failed to alloc ra_list\n",
115 __func__);
116 return NULL;
117 }
118 INIT_LIST_HEAD(&ra_list->list);
119 skb_queue_head_init(&ra_list->skb_head);
120
121 memcpy(ra_list->ra, ra, ETH_ALEN);
122
123 ra_list->total_pkts_size = 0;
124
125 dev_dbg(adapter->dev, "info: allocated ra_list %p\n", ra_list);
126
127 return ra_list;
128 }
129
130 /*
131 * This function allocates and adds a RA list for all TIDs
132 * with the given RA.
133 */
134 void
135 mwifiex_ralist_add(struct mwifiex_private *priv, u8 *ra)
136 {
137 int i;
138 struct mwifiex_ra_list_tbl *ra_list;
139 struct mwifiex_adapter *adapter = priv->adapter;
140
141 for (i = 0; i < MAX_NUM_TID; ++i) {
142 ra_list = mwifiex_wmm_allocate_ralist_node(adapter, ra);
143 dev_dbg(adapter->dev, "info: created ra_list %p\n", ra_list);
144
145 if (!ra_list)
146 break;
147
148 if (!mwifiex_queuing_ra_based(priv))
149 ra_list->is_11n_enabled = IS_11N_ENABLED(priv);
150 else
151 ra_list->is_11n_enabled = false;
152
153 dev_dbg(adapter->dev, "data: ralist %p: is_11n_enabled=%d\n",
154 ra_list, ra_list->is_11n_enabled);
155
156 list_add_tail(&ra_list->list,
157 &priv->wmm.tid_tbl_ptr[i].ra_list);
158
159 if (!priv->wmm.tid_tbl_ptr[i].ra_list_curr)
160 priv->wmm.tid_tbl_ptr[i].ra_list_curr = ra_list;
161 }
162 }
163
164 /*
165 * This function sets the WMM queue priorities to their default values.
166 */
167 static void mwifiex_wmm_default_queue_priorities(struct mwifiex_private *priv)
168 {
169 /* Default queue priorities: VO->VI->BE->BK */
170 priv->wmm.queue_priority[0] = WMM_AC_VO;
171 priv->wmm.queue_priority[1] = WMM_AC_VI;
172 priv->wmm.queue_priority[2] = WMM_AC_BE;
173 priv->wmm.queue_priority[3] = WMM_AC_BK;
174 }
175
176 /*
177 * This function map ACs to TIDs.
178 */
179 static void
180 mwifiex_wmm_queue_priorities_tid(struct mwifiex_wmm_desc *wmm)
181 {
182 u8 *queue_priority = wmm->queue_priority;
183 int i;
184
185 for (i = 0; i < 4; ++i) {
186 tos_to_tid[7 - (i * 2)] = ac_to_tid[queue_priority[i]][1];
187 tos_to_tid[6 - (i * 2)] = ac_to_tid[queue_priority[i]][0];
188 }
189
190 for (i = 0; i < MAX_NUM_TID; ++i)
191 tos_to_tid_inv[tos_to_tid[i]] = (u8)i;
192
193 atomic_set(&wmm->highest_queued_prio, HIGH_PRIO_TID);
194 }
195
196 /*
197 * This function initializes WMM priority queues.
198 */
199 void
200 mwifiex_wmm_setup_queue_priorities(struct mwifiex_private *priv,
201 struct ieee_types_wmm_parameter *wmm_ie)
202 {
203 u16 cw_min, avg_back_off, tmp[4];
204 u32 i, j, num_ac;
205 u8 ac_idx;
206
207 if (!wmm_ie || !priv->wmm_enabled) {
208 /* WMM is not enabled, just set the defaults and return */
209 mwifiex_wmm_default_queue_priorities(priv);
210 return;
211 }
212
213 dev_dbg(priv->adapter->dev, "info: WMM Parameter IE: version=%d, "
214 "qos_info Parameter Set Count=%d, Reserved=%#x\n",
215 wmm_ie->vend_hdr.version, wmm_ie->qos_info_bitmap &
216 IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK,
217 wmm_ie->reserved);
218
219 for (num_ac = 0; num_ac < ARRAY_SIZE(wmm_ie->ac_params); num_ac++) {
220 u8 ecw = wmm_ie->ac_params[num_ac].ecw_bitmap;
221 u8 aci_aifsn = wmm_ie->ac_params[num_ac].aci_aifsn_bitmap;
222 cw_min = (1 << (ecw & MWIFIEX_ECW_MIN)) - 1;
223 avg_back_off = (cw_min >> 1) + (aci_aifsn & MWIFIEX_AIFSN);
224
225 ac_idx = wmm_aci_to_qidx_map[(aci_aifsn & MWIFIEX_ACI) >> 5];
226 priv->wmm.queue_priority[ac_idx] = ac_idx;
227 tmp[ac_idx] = avg_back_off;
228
229 dev_dbg(priv->adapter->dev,
230 "info: WMM: CWmax=%d CWmin=%d Avg Back-off=%d\n",
231 (1 << ((ecw & MWIFIEX_ECW_MAX) >> 4)) - 1,
232 cw_min, avg_back_off);
233 mwifiex_wmm_ac_debug_print(&wmm_ie->ac_params[num_ac]);
234 }
235
236 /* Bubble sort */
237 for (i = 0; i < num_ac; i++) {
238 for (j = 1; j < num_ac - i; j++) {
239 if (tmp[j - 1] > tmp[j]) {
240 swap(tmp[j - 1], tmp[j]);
241 swap(priv->wmm.queue_priority[j - 1],
242 priv->wmm.queue_priority[j]);
243 } else if (tmp[j - 1] == tmp[j]) {
244 if (priv->wmm.queue_priority[j - 1]
245 < priv->wmm.queue_priority[j])
246 swap(priv->wmm.queue_priority[j - 1],
247 priv->wmm.queue_priority[j]);
248 }
249 }
250 }
251
252 mwifiex_wmm_queue_priorities_tid(&priv->wmm);
253 }
254
255 /*
256 * This function evaluates whether or not an AC is to be downgraded.
257 *
258 * In case the AC is not enabled, the highest AC is returned that is
259 * enabled and does not require admission control.
260 */
261 static enum mwifiex_wmm_ac_e
262 mwifiex_wmm_eval_downgrade_ac(struct mwifiex_private *priv,
263 enum mwifiex_wmm_ac_e eval_ac)
264 {
265 int down_ac;
266 enum mwifiex_wmm_ac_e ret_ac;
267 struct mwifiex_wmm_ac_status *ac_status;
268
269 ac_status = &priv->wmm.ac_status[eval_ac];
270
271 if (!ac_status->disabled)
272 /* Okay to use this AC, its enabled */
273 return eval_ac;
274
275 /* Setup a default return value of the lowest priority */
276 ret_ac = WMM_AC_BK;
277
278 /*
279 * Find the highest AC that is enabled and does not require
280 * admission control. The spec disallows downgrading to an AC,
281 * which is enabled due to a completed admission control.
282 * Unadmitted traffic is not to be sent on an AC with admitted
283 * traffic.
284 */
285 for (down_ac = WMM_AC_BK; down_ac < eval_ac; down_ac++) {
286 ac_status = &priv->wmm.ac_status[down_ac];
287
288 if (!ac_status->disabled && !ac_status->flow_required)
289 /* AC is enabled and does not require admission
290 control */
291 ret_ac = (enum mwifiex_wmm_ac_e) down_ac;
292 }
293
294 return ret_ac;
295 }
296
297 /*
298 * This function downgrades WMM priority queue.
299 */
300 void
301 mwifiex_wmm_setup_ac_downgrade(struct mwifiex_private *priv)
302 {
303 int ac_val;
304
305 dev_dbg(priv->adapter->dev, "info: WMM: AC Priorities:"
306 "BK(0), BE(1), VI(2), VO(3)\n");
307
308 if (!priv->wmm_enabled) {
309 /* WMM is not enabled, default priorities */
310 for (ac_val = WMM_AC_BK; ac_val <= WMM_AC_VO; ac_val++)
311 priv->wmm.ac_down_graded_vals[ac_val] =
312 (enum mwifiex_wmm_ac_e) ac_val;
313 } else {
314 for (ac_val = WMM_AC_BK; ac_val <= WMM_AC_VO; ac_val++) {
315 priv->wmm.ac_down_graded_vals[ac_val]
316 = mwifiex_wmm_eval_downgrade_ac(priv,
317 (enum mwifiex_wmm_ac_e) ac_val);
318 dev_dbg(priv->adapter->dev,
319 "info: WMM: AC PRIO %d maps to %d\n",
320 ac_val, priv->wmm.ac_down_graded_vals[ac_val]);
321 }
322 }
323 }
324
325 /*
326 * This function converts the IP TOS field to an WMM AC
327 * Queue assignment.
328 */
329 static enum mwifiex_wmm_ac_e
330 mwifiex_wmm_convert_tos_to_ac(struct mwifiex_adapter *adapter, u32 tos)
331 {
332 /* Map of TOS UP values to WMM AC */
333 const enum mwifiex_wmm_ac_e tos_to_ac[] = { WMM_AC_BE,
334 WMM_AC_BK,
335 WMM_AC_BK,
336 WMM_AC_BE,
337 WMM_AC_VI,
338 WMM_AC_VI,
339 WMM_AC_VO,
340 WMM_AC_VO
341 };
342
343 if (tos >= ARRAY_SIZE(tos_to_ac))
344 return WMM_AC_BE;
345
346 return tos_to_ac[tos];
347 }
348
349 /*
350 * This function evaluates a given TID and downgrades it to a lower
351 * TID if the WMM Parameter IE received from the AP indicates that the
352 * AP is disabled (due to call admission control (ACM bit). Mapping
353 * of TID to AC is taken care of internally.
354 */
355 static u8
356 mwifiex_wmm_downgrade_tid(struct mwifiex_private *priv, u32 tid)
357 {
358 enum mwifiex_wmm_ac_e ac, ac_down;
359 u8 new_tid;
360
361 ac = mwifiex_wmm_convert_tos_to_ac(priv->adapter, tid);
362 ac_down = priv->wmm.ac_down_graded_vals[ac];
363
364 /* Send the index to tid array, picking from the array will be
365 * taken care by dequeuing function
366 */
367 new_tid = ac_to_tid[ac_down][tid % 2];
368
369 return new_tid;
370 }
371
372 /*
373 * This function initializes the WMM state information and the
374 * WMM data path queues.
375 */
376 void
377 mwifiex_wmm_init(struct mwifiex_adapter *adapter)
378 {
379 int i, j;
380 struct mwifiex_private *priv;
381
382 for (j = 0; j < adapter->priv_num; ++j) {
383 priv = adapter->priv[j];
384 if (!priv)
385 continue;
386
387 for (i = 0; i < MAX_NUM_TID; ++i) {
388 priv->aggr_prio_tbl[i].amsdu = tos_to_tid_inv[i];
389 priv->aggr_prio_tbl[i].ampdu_ap = tos_to_tid_inv[i];
390 priv->aggr_prio_tbl[i].ampdu_user = tos_to_tid_inv[i];
391 priv->wmm.tid_tbl_ptr[i].ra_list_curr = NULL;
392 }
393
394 priv->aggr_prio_tbl[6].amsdu
395 = priv->aggr_prio_tbl[6].ampdu_ap
396 = priv->aggr_prio_tbl[6].ampdu_user
397 = BA_STREAM_NOT_ALLOWED;
398
399 priv->aggr_prio_tbl[7].amsdu = priv->aggr_prio_tbl[7].ampdu_ap
400 = priv->aggr_prio_tbl[7].ampdu_user
401 = BA_STREAM_NOT_ALLOWED;
402
403 priv->add_ba_param.timeout = MWIFIEX_DEFAULT_BLOCK_ACK_TIMEOUT;
404 priv->add_ba_param.tx_win_size = MWIFIEX_AMPDU_DEF_TXWINSIZE;
405 priv->add_ba_param.rx_win_size = MWIFIEX_AMPDU_DEF_RXWINSIZE;
406
407 mwifiex_reset_11n_rx_seq_num(priv);
408
409 atomic_set(&priv->wmm.tx_pkts_queued, 0);
410 atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID);
411 }
412 }
413
414 /*
415 * This function checks if WMM Tx queue is empty.
416 */
417 int
418 mwifiex_wmm_lists_empty(struct mwifiex_adapter *adapter)
419 {
420 int i;
421 struct mwifiex_private *priv;
422
423 for (i = 0; i < adapter->priv_num; ++i) {
424 priv = adapter->priv[i];
425 if (priv && atomic_read(&priv->wmm.tx_pkts_queued))
426 return false;
427 }
428
429 return true;
430 }
431
432 /*
433 * This function deletes all packets in an RA list node.
434 *
435 * The packet sent completion callback handler are called with
436 * status failure, after they are dequeued to ensure proper
437 * cleanup. The RA list node itself is freed at the end.
438 */
439 static void
440 mwifiex_wmm_del_pkts_in_ralist_node(struct mwifiex_private *priv,
441 struct mwifiex_ra_list_tbl *ra_list)
442 {
443 struct mwifiex_adapter *adapter = priv->adapter;
444 struct sk_buff *skb, *tmp;
445
446 skb_queue_walk_safe(&ra_list->skb_head, skb, tmp)
447 mwifiex_write_data_complete(adapter, skb, -1);
448 }
449
450 /*
451 * This function deletes all packets in an RA list.
452 *
453 * Each nodes in the RA list are freed individually first, and then
454 * the RA list itself is freed.
455 */
456 static void
457 mwifiex_wmm_del_pkts_in_ralist(struct mwifiex_private *priv,
458 struct list_head *ra_list_head)
459 {
460 struct mwifiex_ra_list_tbl *ra_list;
461
462 list_for_each_entry(ra_list, ra_list_head, list)
463 mwifiex_wmm_del_pkts_in_ralist_node(priv, ra_list);
464 }
465
466 /*
467 * This function deletes all packets in all RA lists.
468 */
469 static void mwifiex_wmm_cleanup_queues(struct mwifiex_private *priv)
470 {
471 int i;
472
473 for (i = 0; i < MAX_NUM_TID; i++)
474 mwifiex_wmm_del_pkts_in_ralist(priv, &priv->wmm.tid_tbl_ptr[i].
475 ra_list);
476
477 atomic_set(&priv->wmm.tx_pkts_queued, 0);
478 atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID);
479 }
480
481 /*
482 * This function deletes all route addresses from all RA lists.
483 */
484 static void mwifiex_wmm_delete_all_ralist(struct mwifiex_private *priv)
485 {
486 struct mwifiex_ra_list_tbl *ra_list, *tmp_node;
487 int i;
488
489 for (i = 0; i < MAX_NUM_TID; ++i) {
490 dev_dbg(priv->adapter->dev,
491 "info: ra_list: freeing buf for tid %d\n", i);
492 list_for_each_entry_safe(ra_list, tmp_node,
493 &priv->wmm.tid_tbl_ptr[i].ra_list,
494 list) {
495 list_del(&ra_list->list);
496 kfree(ra_list);
497 }
498
499 INIT_LIST_HEAD(&priv->wmm.tid_tbl_ptr[i].ra_list);
500
501 priv->wmm.tid_tbl_ptr[i].ra_list_curr = NULL;
502 }
503 }
504
505 /*
506 * This function cleans up the Tx and Rx queues.
507 *
508 * Cleanup includes -
509 * - All packets in RA lists
510 * - All entries in Rx reorder table
511 * - All entries in Tx BA stream table
512 * - MPA buffer (if required)
513 * - All RA lists
514 */
515 void
516 mwifiex_clean_txrx(struct mwifiex_private *priv)
517 {
518 unsigned long flags;
519
520 mwifiex_11n_cleanup_reorder_tbl(priv);
521 spin_lock_irqsave(&priv->wmm.ra_list_spinlock, flags);
522
523 mwifiex_wmm_cleanup_queues(priv);
524 mwifiex_11n_delete_all_tx_ba_stream_tbl(priv);
525
526 if (priv->adapter->if_ops.cleanup_mpa_buf)
527 priv->adapter->if_ops.cleanup_mpa_buf(priv->adapter);
528
529 mwifiex_wmm_delete_all_ralist(priv);
530 memcpy(tos_to_tid, ac_to_tid, sizeof(tos_to_tid));
531
532 spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, flags);
533 }
534
535 /*
536 * This function retrieves a particular RA list node, matching with the
537 * given TID and RA address.
538 */
539 static struct mwifiex_ra_list_tbl *
540 mwifiex_wmm_get_ralist_node(struct mwifiex_private *priv, u8 tid,
541 u8 *ra_addr)
542 {
543 struct mwifiex_ra_list_tbl *ra_list;
544
545 list_for_each_entry(ra_list, &priv->wmm.tid_tbl_ptr[tid].ra_list,
546 list) {
547 if (!memcmp(ra_list->ra, ra_addr, ETH_ALEN))
548 return ra_list;
549 }
550
551 return NULL;
552 }
553
554 /*
555 * This function retrieves an RA list node for a given TID and
556 * RA address pair.
557 *
558 * If no such node is found, a new node is added first and then
559 * retrieved.
560 */
561 static struct mwifiex_ra_list_tbl *
562 mwifiex_wmm_get_queue_raptr(struct mwifiex_private *priv, u8 tid, u8 *ra_addr)
563 {
564 struct mwifiex_ra_list_tbl *ra_list;
565
566 ra_list = mwifiex_wmm_get_ralist_node(priv, tid, ra_addr);
567 if (ra_list)
568 return ra_list;
569 mwifiex_ralist_add(priv, ra_addr);
570
571 return mwifiex_wmm_get_ralist_node(priv, tid, ra_addr);
572 }
573
574 /*
575 * This function checks if a particular RA list node exists in a given TID
576 * table index.
577 */
578 int
579 mwifiex_is_ralist_valid(struct mwifiex_private *priv,
580 struct mwifiex_ra_list_tbl *ra_list, int ptr_index)
581 {
582 struct mwifiex_ra_list_tbl *rlist;
583
584 list_for_each_entry(rlist, &priv->wmm.tid_tbl_ptr[ptr_index].ra_list,
585 list) {
586 if (rlist == ra_list)
587 return true;
588 }
589
590 return false;
591 }
592
593 /*
594 * This function adds a packet to WMM queue.
595 *
596 * In disconnected state the packet is immediately dropped and the
597 * packet send completion callback is called with status failure.
598 *
599 * Otherwise, the correct RA list node is located and the packet
600 * is queued at the list tail.
601 */
602 void
603 mwifiex_wmm_add_buf_txqueue(struct mwifiex_private *priv,
604 struct sk_buff *skb)
605 {
606 struct mwifiex_adapter *adapter = priv->adapter;
607 u32 tid;
608 struct mwifiex_ra_list_tbl *ra_list;
609 u8 ra[ETH_ALEN], tid_down;
610 unsigned long flags;
611
612 if (!priv->media_connected) {
613 dev_dbg(adapter->dev, "data: drop packet in disconnect\n");
614 mwifiex_write_data_complete(adapter, skb, -1);
615 return;
616 }
617
618 tid = skb->priority;
619
620 spin_lock_irqsave(&priv->wmm.ra_list_spinlock, flags);
621
622 tid_down = mwifiex_wmm_downgrade_tid(priv, tid);
623
624 /* In case of infra as we have already created the list during
625 association we just don't have to call get_queue_raptr, we will
626 have only 1 raptr for a tid in case of infra */
627 if (!mwifiex_queuing_ra_based(priv)) {
628 if (!list_empty(&priv->wmm.tid_tbl_ptr[tid_down].ra_list))
629 ra_list = list_first_entry(
630 &priv->wmm.tid_tbl_ptr[tid_down].ra_list,
631 struct mwifiex_ra_list_tbl, list);
632 else
633 ra_list = NULL;
634 } else {
635 memcpy(ra, skb->data, ETH_ALEN);
636 if (ra[0] & 0x01)
637 memset(ra, 0xff, ETH_ALEN);
638 ra_list = mwifiex_wmm_get_queue_raptr(priv, tid_down, ra);
639 }
640
641 if (!ra_list) {
642 spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, flags);
643 mwifiex_write_data_complete(adapter, skb, -1);
644 return;
645 }
646
647 skb_queue_tail(&ra_list->skb_head, skb);
648
649 ra_list->total_pkts_size += skb->len;
650
651 atomic_inc(&priv->wmm.tx_pkts_queued);
652
653 if (atomic_read(&priv->wmm.highest_queued_prio) <
654 tos_to_tid_inv[tid_down])
655 atomic_set(&priv->wmm.highest_queued_prio,
656 tos_to_tid_inv[tid_down]);
657
658 spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, flags);
659 }
660
661 /*
662 * This function processes the get WMM status command response from firmware.
663 *
664 * The response may contain multiple TLVs -
665 * - AC Queue status TLVs
666 * - Current WMM Parameter IE TLV
667 * - Admission Control action frame TLVs
668 *
669 * This function parses the TLVs and then calls further specific functions
670 * to process any changes in the queue prioritize or state.
671 */
672 int mwifiex_ret_wmm_get_status(struct mwifiex_private *priv,
673 const struct host_cmd_ds_command *resp)
674 {
675 u8 *curr = (u8 *) &resp->params.get_wmm_status;
676 uint16_t resp_len = le16_to_cpu(resp->size), tlv_len;
677 int valid = true;
678
679 struct mwifiex_ie_types_data *tlv_hdr;
680 struct mwifiex_ie_types_wmm_queue_status *tlv_wmm_qstatus;
681 struct ieee_types_wmm_parameter *wmm_param_ie = NULL;
682 struct mwifiex_wmm_ac_status *ac_status;
683
684 dev_dbg(priv->adapter->dev, "info: WMM: WMM_GET_STATUS cmdresp received: %d\n",
685 resp_len);
686
687 while ((resp_len >= sizeof(tlv_hdr->header)) && valid) {
688 tlv_hdr = (struct mwifiex_ie_types_data *) curr;
689 tlv_len = le16_to_cpu(tlv_hdr->header.len);
690
691 switch (le16_to_cpu(tlv_hdr->header.type)) {
692 case TLV_TYPE_WMMQSTATUS:
693 tlv_wmm_qstatus =
694 (struct mwifiex_ie_types_wmm_queue_status *)
695 tlv_hdr;
696 dev_dbg(priv->adapter->dev,
697 "info: CMD_RESP: WMM_GET_STATUS:"
698 " QSTATUS TLV: %d, %d, %d\n",
699 tlv_wmm_qstatus->queue_index,
700 tlv_wmm_qstatus->flow_required,
701 tlv_wmm_qstatus->disabled);
702
703 ac_status = &priv->wmm.ac_status[tlv_wmm_qstatus->
704 queue_index];
705 ac_status->disabled = tlv_wmm_qstatus->disabled;
706 ac_status->flow_required =
707 tlv_wmm_qstatus->flow_required;
708 ac_status->flow_created = tlv_wmm_qstatus->flow_created;
709 break;
710
711 case WLAN_EID_VENDOR_SPECIFIC:
712 /*
713 * Point the regular IEEE IE 2 bytes into the Marvell IE
714 * and setup the IEEE IE type and length byte fields
715 */
716
717 wmm_param_ie =
718 (struct ieee_types_wmm_parameter *) (curr +
719 2);
720 wmm_param_ie->vend_hdr.len = (u8) tlv_len;
721 wmm_param_ie->vend_hdr.element_id =
722 WLAN_EID_VENDOR_SPECIFIC;
723
724 dev_dbg(priv->adapter->dev,
725 "info: CMD_RESP: WMM_GET_STATUS:"
726 " WMM Parameter Set Count: %d\n",
727 wmm_param_ie->qos_info_bitmap &
728 IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK);
729
730 memcpy((u8 *) &priv->curr_bss_params.bss_descriptor.
731 wmm_ie, wmm_param_ie,
732 wmm_param_ie->vend_hdr.len + 2);
733
734 break;
735
736 default:
737 valid = false;
738 break;
739 }
740
741 curr += (tlv_len + sizeof(tlv_hdr->header));
742 resp_len -= (tlv_len + sizeof(tlv_hdr->header));
743 }
744
745 mwifiex_wmm_setup_queue_priorities(priv, wmm_param_ie);
746 mwifiex_wmm_setup_ac_downgrade(priv);
747
748 return 0;
749 }
750
751 /*
752 * Callback handler from the command module to allow insertion of a WMM TLV.
753 *
754 * If the BSS we are associating to supports WMM, this function adds the
755 * required WMM Information IE to the association request command buffer in
756 * the form of a Marvell extended IEEE IE.
757 */
758 u32
759 mwifiex_wmm_process_association_req(struct mwifiex_private *priv,
760 u8 **assoc_buf,
761 struct ieee_types_wmm_parameter *wmm_ie,
762 struct ieee80211_ht_cap *ht_cap)
763 {
764 struct mwifiex_ie_types_wmm_param_set *wmm_tlv;
765 u32 ret_len = 0;
766
767 /* Null checks */
768 if (!assoc_buf)
769 return 0;
770 if (!(*assoc_buf))
771 return 0;
772
773 if (!wmm_ie)
774 return 0;
775
776 dev_dbg(priv->adapter->dev,
777 "info: WMM: process assoc req: bss->wmm_ie=%#x\n",
778 wmm_ie->vend_hdr.element_id);
779
780 if ((priv->wmm_required ||
781 (ht_cap && (priv->adapter->config_bands & BAND_GN ||
782 priv->adapter->config_bands & BAND_AN))) &&
783 wmm_ie->vend_hdr.element_id == WLAN_EID_VENDOR_SPECIFIC) {
784 wmm_tlv = (struct mwifiex_ie_types_wmm_param_set *) *assoc_buf;
785 wmm_tlv->header.type = cpu_to_le16((u16) wmm_info_ie[0]);
786 wmm_tlv->header.len = cpu_to_le16((u16) wmm_info_ie[1]);
787 memcpy(wmm_tlv->wmm_ie, &wmm_info_ie[2],
788 le16_to_cpu(wmm_tlv->header.len));
789 if (wmm_ie->qos_info_bitmap & IEEE80211_WMM_IE_AP_QOSINFO_UAPSD)
790 memcpy((u8 *) (wmm_tlv->wmm_ie
791 + le16_to_cpu(wmm_tlv->header.len)
792 - sizeof(priv->wmm_qosinfo)),
793 &priv->wmm_qosinfo, sizeof(priv->wmm_qosinfo));
794
795 ret_len = sizeof(wmm_tlv->header)
796 + le16_to_cpu(wmm_tlv->header.len);
797
798 *assoc_buf += ret_len;
799 }
800
801 return ret_len;
802 }
803
804 /*
805 * This function computes the time delay in the driver queues for a
806 * given packet.
807 *
808 * When the packet is received at the OS/Driver interface, the current
809 * time is set in the packet structure. The difference between the present
810 * time and that received time is computed in this function and limited
811 * based on pre-compiled limits in the driver.
812 */
813 u8
814 mwifiex_wmm_compute_drv_pkt_delay(struct mwifiex_private *priv,
815 const struct sk_buff *skb)
816 {
817 u8 ret_val;
818 struct timeval out_tstamp, in_tstamp;
819 u32 queue_delay;
820
821 do_gettimeofday(&out_tstamp);
822 in_tstamp = ktime_to_timeval(skb->tstamp);
823
824 queue_delay = (out_tstamp.tv_sec - in_tstamp.tv_sec) * 1000;
825 queue_delay += (out_tstamp.tv_usec - in_tstamp.tv_usec) / 1000;
826
827 /*
828 * Queue delay is passed as a uint8 in units of 2ms (ms shifted
829 * by 1). Min value (other than 0) is therefore 2ms, max is 510ms.
830 *
831 * Pass max value if queue_delay is beyond the uint8 range
832 */
833 ret_val = (u8) (min(queue_delay, priv->wmm.drv_pkt_delay_max) >> 1);
834
835 dev_dbg(priv->adapter->dev, "data: WMM: Pkt Delay: %d ms,"
836 " %d ms sent to FW\n", queue_delay, ret_val);
837
838 return ret_val;
839 }
840
841 /*
842 * This function retrieves the highest priority RA list table pointer.
843 */
844 static struct mwifiex_ra_list_tbl *
845 mwifiex_wmm_get_highest_priolist_ptr(struct mwifiex_adapter *adapter,
846 struct mwifiex_private **priv, int *tid)
847 {
848 struct mwifiex_private *priv_tmp;
849 struct mwifiex_ra_list_tbl *ptr, *head;
850 struct mwifiex_bss_prio_node *bssprio_node, *bssprio_head;
851 struct mwifiex_tid_tbl *tid_ptr;
852 atomic_t *hqp;
853 int is_list_empty;
854 unsigned long flags;
855 int i, j;
856
857 for (j = adapter->priv_num - 1; j >= 0; --j) {
858 spin_lock_irqsave(&adapter->bss_prio_tbl[j].bss_prio_lock,
859 flags);
860 is_list_empty = list_empty(&adapter->bss_prio_tbl[j]
861 .bss_prio_head);
862 spin_unlock_irqrestore(&adapter->bss_prio_tbl[j].bss_prio_lock,
863 flags);
864 if (is_list_empty)
865 continue;
866
867 if (adapter->bss_prio_tbl[j].bss_prio_cur ==
868 (struct mwifiex_bss_prio_node *)
869 &adapter->bss_prio_tbl[j].bss_prio_head) {
870 bssprio_node =
871 list_first_entry(&adapter->bss_prio_tbl[j]
872 .bss_prio_head,
873 struct mwifiex_bss_prio_node,
874 list);
875 bssprio_head = bssprio_node;
876 } else {
877 bssprio_node = adapter->bss_prio_tbl[j].bss_prio_cur;
878 bssprio_head = bssprio_node;
879 }
880
881 do {
882 priv_tmp = bssprio_node->priv;
883 hqp = &priv_tmp->wmm.highest_queued_prio;
884
885 for (i = atomic_read(hqp); i >= LOW_PRIO_TID; --i) {
886
887 tid_ptr = &(priv_tmp)->wmm.
888 tid_tbl_ptr[tos_to_tid[i]];
889
890 /* For non-STA ra_list_curr may be NULL */
891 if (!tid_ptr->ra_list_curr)
892 continue;
893
894 spin_lock_irqsave(&tid_ptr->tid_tbl_lock,
895 flags);
896 is_list_empty =
897 list_empty(&adapter->bss_prio_tbl[j]
898 .bss_prio_head);
899 spin_unlock_irqrestore(&tid_ptr->tid_tbl_lock,
900 flags);
901 if (is_list_empty)
902 continue;
903
904 /*
905 * Always choose the next ra we transmitted
906 * last time, this way we pick the ra's in
907 * round robin fashion.
908 */
909 ptr = list_first_entry(
910 &tid_ptr->ra_list_curr->list,
911 struct mwifiex_ra_list_tbl,
912 list);
913
914 head = ptr;
915 if (ptr == (struct mwifiex_ra_list_tbl *)
916 &tid_ptr->ra_list) {
917 /* Get next ra */
918 ptr = list_first_entry(&ptr->list,
919 struct mwifiex_ra_list_tbl, list);
920 head = ptr;
921 }
922
923 do {
924 is_list_empty =
925 skb_queue_empty(&ptr->skb_head);
926
927 if (!is_list_empty)
928 goto found;
929
930 /* Get next ra */
931 ptr = list_first_entry(&ptr->list,
932 struct mwifiex_ra_list_tbl,
933 list);
934 if (ptr ==
935 (struct mwifiex_ra_list_tbl *)
936 &tid_ptr->ra_list)
937 ptr = list_first_entry(
938 &ptr->list,
939 struct mwifiex_ra_list_tbl,
940 list);
941 } while (ptr != head);
942 }
943
944 /* No packet at any TID for this priv. Mark as such
945 * to skip checking TIDs for this priv (until pkt is
946 * added).
947 */
948 atomic_set(hqp, NO_PKT_PRIO_TID);
949
950 /* Get next bss priority node */
951 bssprio_node = list_first_entry(&bssprio_node->list,
952 struct mwifiex_bss_prio_node,
953 list);
954
955 if (bssprio_node ==
956 (struct mwifiex_bss_prio_node *)
957 &adapter->bss_prio_tbl[j].bss_prio_head)
958 /* Get next bss priority node */
959 bssprio_node = list_first_entry(
960 &bssprio_node->list,
961 struct mwifiex_bss_prio_node,
962 list);
963 } while (bssprio_node != bssprio_head);
964 }
965 return NULL;
966
967 found:
968 spin_lock_irqsave(&priv_tmp->wmm.ra_list_spinlock, flags);
969 if (atomic_read(hqp) > i)
970 atomic_set(hqp, i);
971 spin_unlock_irqrestore(&priv_tmp->wmm.ra_list_spinlock, flags);
972
973 *priv = priv_tmp;
974 *tid = tos_to_tid[i];
975
976 return ptr;
977 }
978
979 /*
980 * This function checks if 11n aggregation is possible.
981 */
982 static int
983 mwifiex_is_11n_aggragation_possible(struct mwifiex_private *priv,
984 struct mwifiex_ra_list_tbl *ptr,
985 int max_buf_size)
986 {
987 int count = 0, total_size = 0;
988 struct sk_buff *skb, *tmp;
989
990 skb_queue_walk_safe(&ptr->skb_head, skb, tmp) {
991 total_size += skb->len;
992 if (total_size >= max_buf_size)
993 break;
994 if (++count >= MIN_NUM_AMSDU)
995 return true;
996 }
997
998 return false;
999 }
1000
1001 /*
1002 * This function sends a single packet to firmware for transmission.
1003 */
1004 static void
1005 mwifiex_send_single_packet(struct mwifiex_private *priv,
1006 struct mwifiex_ra_list_tbl *ptr, int ptr_index,
1007 unsigned long ra_list_flags)
1008 __releases(&priv->wmm.ra_list_spinlock)
1009 {
1010 struct sk_buff *skb, *skb_next;
1011 struct mwifiex_tx_param tx_param;
1012 struct mwifiex_adapter *adapter = priv->adapter;
1013 struct mwifiex_txinfo *tx_info;
1014
1015 if (skb_queue_empty(&ptr->skb_head)) {
1016 spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
1017 ra_list_flags);
1018 dev_dbg(adapter->dev, "data: nothing to send\n");
1019 return;
1020 }
1021
1022 skb = skb_dequeue(&ptr->skb_head);
1023
1024 tx_info = MWIFIEX_SKB_TXCB(skb);
1025 dev_dbg(adapter->dev, "data: dequeuing the packet %p %p\n", ptr, skb);
1026
1027 ptr->total_pkts_size -= skb->len;
1028
1029 if (!skb_queue_empty(&ptr->skb_head))
1030 skb_next = skb_peek(&ptr->skb_head);
1031 else
1032 skb_next = NULL;
1033
1034 spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, ra_list_flags);
1035
1036 tx_param.next_pkt_len = ((skb_next) ? skb_next->len +
1037 sizeof(struct txpd) : 0);
1038
1039 if (mwifiex_process_tx(priv, skb, &tx_param) == -EBUSY) {
1040 /* Queue the packet back at the head */
1041 spin_lock_irqsave(&priv->wmm.ra_list_spinlock, ra_list_flags);
1042
1043 if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
1044 spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
1045 ra_list_flags);
1046 mwifiex_write_data_complete(adapter, skb, -1);
1047 return;
1048 }
1049
1050 skb_queue_tail(&ptr->skb_head, skb);
1051
1052 ptr->total_pkts_size += skb->len;
1053 tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT;
1054 spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
1055 ra_list_flags);
1056 } else {
1057 spin_lock_irqsave(&priv->wmm.ra_list_spinlock, ra_list_flags);
1058 if (mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
1059 priv->wmm.packets_out[ptr_index]++;
1060 priv->wmm.tid_tbl_ptr[ptr_index].ra_list_curr = ptr;
1061 }
1062 adapter->bss_prio_tbl[priv->bss_priority].bss_prio_cur =
1063 list_first_entry(
1064 &adapter->bss_prio_tbl[priv->bss_priority]
1065 .bss_prio_cur->list,
1066 struct mwifiex_bss_prio_node,
1067 list);
1068 atomic_dec(&priv->wmm.tx_pkts_queued);
1069 spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
1070 ra_list_flags);
1071 }
1072 }
1073
1074 /*
1075 * This function checks if the first packet in the given RA list
1076 * is already processed or not.
1077 */
1078 static int
1079 mwifiex_is_ptr_processed(struct mwifiex_private *priv,
1080 struct mwifiex_ra_list_tbl *ptr)
1081 {
1082 struct sk_buff *skb;
1083 struct mwifiex_txinfo *tx_info;
1084
1085 if (skb_queue_empty(&ptr->skb_head))
1086 return false;
1087
1088 skb = skb_peek(&ptr->skb_head);
1089
1090 tx_info = MWIFIEX_SKB_TXCB(skb);
1091 if (tx_info->flags & MWIFIEX_BUF_FLAG_REQUEUED_PKT)
1092 return true;
1093
1094 return false;
1095 }
1096
1097 /*
1098 * This function sends a single processed packet to firmware for
1099 * transmission.
1100 */
1101 static void
1102 mwifiex_send_processed_packet(struct mwifiex_private *priv,
1103 struct mwifiex_ra_list_tbl *ptr, int ptr_index,
1104 unsigned long ra_list_flags)
1105 __releases(&priv->wmm.ra_list_spinlock)
1106 {
1107 struct mwifiex_tx_param tx_param;
1108 struct mwifiex_adapter *adapter = priv->adapter;
1109 int ret = -1;
1110 struct sk_buff *skb, *skb_next;
1111 struct mwifiex_txinfo *tx_info;
1112
1113 if (skb_queue_empty(&ptr->skb_head)) {
1114 spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
1115 ra_list_flags);
1116 return;
1117 }
1118
1119 skb = skb_dequeue(&ptr->skb_head);
1120
1121 if (!skb_queue_empty(&ptr->skb_head))
1122 skb_next = skb_peek(&ptr->skb_head);
1123 else
1124 skb_next = NULL;
1125
1126 tx_info = MWIFIEX_SKB_TXCB(skb);
1127
1128 spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, ra_list_flags);
1129
1130 if (adapter->iface_type == MWIFIEX_USB) {
1131 adapter->data_sent = true;
1132 ret = adapter->if_ops.host_to_card(adapter, MWIFIEX_USB_EP_DATA,
1133 skb, NULL);
1134 } else {
1135 tx_param.next_pkt_len =
1136 ((skb_next) ? skb_next->len +
1137 sizeof(struct txpd) : 0);
1138 ret = adapter->if_ops.host_to_card(adapter, MWIFIEX_TYPE_DATA,
1139 skb, &tx_param);
1140 }
1141
1142 switch (ret) {
1143 case -EBUSY:
1144 dev_dbg(adapter->dev, "data: -EBUSY is returned\n");
1145 spin_lock_irqsave(&priv->wmm.ra_list_spinlock, ra_list_flags);
1146
1147 if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
1148 spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
1149 ra_list_flags);
1150 mwifiex_write_data_complete(adapter, skb, -1);
1151 return;
1152 }
1153
1154 skb_queue_tail(&ptr->skb_head, skb);
1155
1156 tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT;
1157 spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
1158 ra_list_flags);
1159 break;
1160 case -1:
1161 adapter->data_sent = false;
1162 dev_err(adapter->dev, "host_to_card failed: %#x\n", ret);
1163 adapter->dbg.num_tx_host_to_card_failure++;
1164 mwifiex_write_data_complete(adapter, skb, ret);
1165 break;
1166 case -EINPROGRESS:
1167 adapter->data_sent = false;
1168 default:
1169 break;
1170 }
1171 if (ret != -EBUSY) {
1172 spin_lock_irqsave(&priv->wmm.ra_list_spinlock, ra_list_flags);
1173 if (mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
1174 priv->wmm.packets_out[ptr_index]++;
1175 priv->wmm.tid_tbl_ptr[ptr_index].ra_list_curr = ptr;
1176 }
1177 adapter->bss_prio_tbl[priv->bss_priority].bss_prio_cur =
1178 list_first_entry(
1179 &adapter->bss_prio_tbl[priv->bss_priority]
1180 .bss_prio_cur->list,
1181 struct mwifiex_bss_prio_node,
1182 list);
1183 atomic_dec(&priv->wmm.tx_pkts_queued);
1184 spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
1185 ra_list_flags);
1186 }
1187 }
1188
1189 /*
1190 * This function dequeues a packet from the highest priority list
1191 * and transmits it.
1192 */
1193 static int
1194 mwifiex_dequeue_tx_packet(struct mwifiex_adapter *adapter)
1195 {
1196 struct mwifiex_ra_list_tbl *ptr;
1197 struct mwifiex_private *priv = NULL;
1198 int ptr_index = 0;
1199 u8 ra[ETH_ALEN];
1200 int tid_del = 0, tid = 0;
1201 unsigned long flags;
1202
1203 ptr = mwifiex_wmm_get_highest_priolist_ptr(adapter, &priv, &ptr_index);
1204 if (!ptr)
1205 return -1;
1206
1207 tid = mwifiex_get_tid(ptr);
1208
1209 dev_dbg(adapter->dev, "data: tid=%d\n", tid);
1210
1211 spin_lock_irqsave(&priv->wmm.ra_list_spinlock, flags);
1212 if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
1213 spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, flags);
1214 return -1;
1215 }
1216
1217 if (mwifiex_is_ptr_processed(priv, ptr)) {
1218 mwifiex_send_processed_packet(priv, ptr, ptr_index, flags);
1219 /* ra_list_spinlock has been freed in
1220 mwifiex_send_processed_packet() */
1221 return 0;
1222 }
1223
1224 if (!ptr->is_11n_enabled ||
1225 mwifiex_is_ba_stream_setup(priv, ptr, tid) ||
1226 priv->wps.session_enable ||
1227 ((priv->sec_info.wpa_enabled ||
1228 priv->sec_info.wpa2_enabled) &&
1229 !priv->wpa_is_gtk_set)) {
1230 mwifiex_send_single_packet(priv, ptr, ptr_index, flags);
1231 /* ra_list_spinlock has been freed in
1232 mwifiex_send_single_packet() */
1233 } else {
1234 if (mwifiex_is_ampdu_allowed(priv, tid)) {
1235 if (mwifiex_space_avail_for_new_ba_stream(adapter)) {
1236 mwifiex_create_ba_tbl(priv, ptr->ra, tid,
1237 BA_SETUP_INPROGRESS);
1238 mwifiex_send_addba(priv, tid, ptr->ra);
1239 } else if (mwifiex_find_stream_to_delete
1240 (priv, tid, &tid_del, ra)) {
1241 mwifiex_create_ba_tbl(priv, ptr->ra, tid,
1242 BA_SETUP_INPROGRESS);
1243 mwifiex_send_delba(priv, tid_del, ra, 1);
1244 }
1245 }
1246 if (mwifiex_is_amsdu_allowed(priv, tid) &&
1247 mwifiex_is_11n_aggragation_possible(priv, ptr,
1248 adapter->tx_buf_size))
1249 mwifiex_11n_aggregate_pkt(priv, ptr, INTF_HEADER_LEN,
1250 ptr_index, flags);
1251 /* ra_list_spinlock has been freed in
1252 mwifiex_11n_aggregate_pkt() */
1253 else
1254 mwifiex_send_single_packet(priv, ptr, ptr_index, flags);
1255 /* ra_list_spinlock has been freed in
1256 mwifiex_send_single_packet() */
1257 }
1258 return 0;
1259 }
1260
1261 /*
1262 * This function transmits the highest priority packet awaiting in the
1263 * WMM Queues.
1264 */
1265 void
1266 mwifiex_wmm_process_tx(struct mwifiex_adapter *adapter)
1267 {
1268 do {
1269 /* Check if busy */
1270 if (adapter->data_sent || adapter->tx_lock_flag)
1271 break;
1272
1273 if (mwifiex_dequeue_tx_packet(adapter))
1274 break;
1275 } while (!mwifiex_wmm_lists_empty(adapter));
1276 }
This page took 0.059983 seconds and 5 git commands to generate.