Merge git://git.kernel.org/pub/scm/linux/kernel/git/linville/wireless-2.6
[deliverable/linux.git] / drivers / net / wireless / mwl8k.c
1 /*
2 * drivers/net/wireless/mwl8k.c
3 * Driver for Marvell TOPDOG 802.11 Wireless cards
4 *
5 * Copyright (C) 2008-2009 Marvell Semiconductor Inc.
6 *
7 * This file is licensed under the terms of the GNU General Public
8 * License version 2. This program is licensed "as is" without any
9 * warranty of any kind, whether express or implied.
10 */
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/sched.h>
16 #include <linux/spinlock.h>
17 #include <linux/list.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/completion.h>
21 #include <linux/etherdevice.h>
22 #include <net/mac80211.h>
23 #include <linux/moduleparam.h>
24 #include <linux/firmware.h>
25 #include <linux/workqueue.h>
26
27 #define MWL8K_DESC "Marvell TOPDOG(R) 802.11 Wireless Network Driver"
28 #define MWL8K_NAME KBUILD_MODNAME
29 #define MWL8K_VERSION "0.11"
30
31 /* Register definitions */
32 #define MWL8K_HIU_GEN_PTR 0x00000c10
33 #define MWL8K_MODE_STA 0x0000005a
34 #define MWL8K_MODE_AP 0x000000a5
35 #define MWL8K_HIU_INT_CODE 0x00000c14
36 #define MWL8K_FWSTA_READY 0xf0f1f2f4
37 #define MWL8K_FWAP_READY 0xf1f2f4a5
38 #define MWL8K_INT_CODE_CMD_FINISHED 0x00000005
39 #define MWL8K_HIU_SCRATCH 0x00000c40
40
41 /* Host->device communications */
42 #define MWL8K_HIU_H2A_INTERRUPT_EVENTS 0x00000c18
43 #define MWL8K_HIU_H2A_INTERRUPT_STATUS 0x00000c1c
44 #define MWL8K_HIU_H2A_INTERRUPT_MASK 0x00000c20
45 #define MWL8K_HIU_H2A_INTERRUPT_CLEAR_SEL 0x00000c24
46 #define MWL8K_HIU_H2A_INTERRUPT_STATUS_MASK 0x00000c28
47 #define MWL8K_H2A_INT_DUMMY (1 << 20)
48 #define MWL8K_H2A_INT_RESET (1 << 15)
49 #define MWL8K_H2A_INT_DOORBELL (1 << 1)
50 #define MWL8K_H2A_INT_PPA_READY (1 << 0)
51
52 /* Device->host communications */
53 #define MWL8K_HIU_A2H_INTERRUPT_EVENTS 0x00000c2c
54 #define MWL8K_HIU_A2H_INTERRUPT_STATUS 0x00000c30
55 #define MWL8K_HIU_A2H_INTERRUPT_MASK 0x00000c34
56 #define MWL8K_HIU_A2H_INTERRUPT_CLEAR_SEL 0x00000c38
57 #define MWL8K_HIU_A2H_INTERRUPT_STATUS_MASK 0x00000c3c
58 #define MWL8K_A2H_INT_DUMMY (1 << 20)
59 #define MWL8K_A2H_INT_CHNL_SWITCHED (1 << 11)
60 #define MWL8K_A2H_INT_QUEUE_EMPTY (1 << 10)
61 #define MWL8K_A2H_INT_RADAR_DETECT (1 << 7)
62 #define MWL8K_A2H_INT_RADIO_ON (1 << 6)
63 #define MWL8K_A2H_INT_RADIO_OFF (1 << 5)
64 #define MWL8K_A2H_INT_MAC_EVENT (1 << 3)
65 #define MWL8K_A2H_INT_OPC_DONE (1 << 2)
66 #define MWL8K_A2H_INT_RX_READY (1 << 1)
67 #define MWL8K_A2H_INT_TX_DONE (1 << 0)
68
69 #define MWL8K_A2H_EVENTS (MWL8K_A2H_INT_DUMMY | \
70 MWL8K_A2H_INT_CHNL_SWITCHED | \
71 MWL8K_A2H_INT_QUEUE_EMPTY | \
72 MWL8K_A2H_INT_RADAR_DETECT | \
73 MWL8K_A2H_INT_RADIO_ON | \
74 MWL8K_A2H_INT_RADIO_OFF | \
75 MWL8K_A2H_INT_MAC_EVENT | \
76 MWL8K_A2H_INT_OPC_DONE | \
77 MWL8K_A2H_INT_RX_READY | \
78 MWL8K_A2H_INT_TX_DONE)
79
80 #define MWL8K_RX_QUEUES 1
81 #define MWL8K_TX_QUEUES 4
82
83 struct rxd_ops {
84 int rxd_size;
85 void (*rxd_init)(void *rxd, dma_addr_t next_dma_addr);
86 void (*rxd_refill)(void *rxd, dma_addr_t addr, int len);
87 int (*rxd_process)(void *rxd, struct ieee80211_rx_status *status,
88 __le16 *qos);
89 };
90
91 struct mwl8k_device_info {
92 char *part_name;
93 char *helper_image;
94 char *fw_image;
95 struct rxd_ops *ap_rxd_ops;
96 };
97
98 struct mwl8k_rx_queue {
99 int rxd_count;
100
101 /* hw receives here */
102 int head;
103
104 /* refill descs here */
105 int tail;
106
107 void *rxd;
108 dma_addr_t rxd_dma;
109 struct {
110 struct sk_buff *skb;
111 DECLARE_PCI_UNMAP_ADDR(dma)
112 } *buf;
113 };
114
115 struct mwl8k_tx_queue {
116 /* hw transmits here */
117 int head;
118
119 /* sw appends here */
120 int tail;
121
122 struct ieee80211_tx_queue_stats stats;
123 struct mwl8k_tx_desc *txd;
124 dma_addr_t txd_dma;
125 struct sk_buff **skb;
126 };
127
128 struct mwl8k_priv {
129 struct ieee80211_hw *hw;
130 struct pci_dev *pdev;
131
132 struct mwl8k_device_info *device_info;
133
134 void __iomem *sram;
135 void __iomem *regs;
136
137 /* firmware */
138 struct firmware *fw_helper;
139 struct firmware *fw_ucode;
140
141 /* hardware/firmware parameters */
142 bool ap_fw;
143 struct rxd_ops *rxd_ops;
144
145 /* firmware access */
146 struct mutex fw_mutex;
147 struct task_struct *fw_mutex_owner;
148 int fw_mutex_depth;
149 struct completion *hostcmd_wait;
150
151 /* lock held over TX and TX reap */
152 spinlock_t tx_lock;
153
154 /* TX quiesce completion, protected by fw_mutex and tx_lock */
155 struct completion *tx_wait;
156
157 struct ieee80211_vif *vif;
158
159 struct ieee80211_channel *current_channel;
160
161 /* power management status cookie from firmware */
162 u32 *cookie;
163 dma_addr_t cookie_dma;
164
165 u16 num_mcaddrs;
166 u8 hw_rev;
167 u32 fw_rev;
168
169 /*
170 * Running count of TX packets in flight, to avoid
171 * iterating over the transmit rings each time.
172 */
173 int pending_tx_pkts;
174
175 struct mwl8k_rx_queue rxq[MWL8K_RX_QUEUES];
176 struct mwl8k_tx_queue txq[MWL8K_TX_QUEUES];
177
178 /* PHY parameters */
179 struct ieee80211_supported_band band;
180 struct ieee80211_channel channels[14];
181 struct ieee80211_rate rates[14];
182
183 bool radio_on;
184 bool radio_short_preamble;
185 bool sniffer_enabled;
186 bool wmm_enabled;
187
188 struct work_struct sta_notify_worker;
189 spinlock_t sta_notify_list_lock;
190 struct list_head sta_notify_list;
191
192 /* XXX need to convert this to handle multiple interfaces */
193 bool capture_beacon;
194 u8 capture_bssid[ETH_ALEN];
195 struct sk_buff *beacon_skb;
196
197 /*
198 * This FJ worker has to be global as it is scheduled from the
199 * RX handler. At this point we don't know which interface it
200 * belongs to until the list of bssids waiting to complete join
201 * is checked.
202 */
203 struct work_struct finalize_join_worker;
204
205 /* Tasklet to reclaim TX descriptors and buffers after tx */
206 struct tasklet_struct tx_reclaim_task;
207 };
208
209 /* Per interface specific private data */
210 struct mwl8k_vif {
211 /* Local MAC address. */
212 u8 mac_addr[ETH_ALEN];
213
214 /* Non AMPDU sequence number assigned by driver */
215 u16 seqno;
216 };
217 #define MWL8K_VIF(_vif) ((struct mwl8k_vif *)&((_vif)->drv_priv))
218
219 struct mwl8k_sta {
220 /* Index into station database. Returned by UPDATE_STADB. */
221 u8 peer_id;
222 };
223 #define MWL8K_STA(_sta) ((struct mwl8k_sta *)&((_sta)->drv_priv))
224
225 static const struct ieee80211_channel mwl8k_channels[] = {
226 { .center_freq = 2412, .hw_value = 1, },
227 { .center_freq = 2417, .hw_value = 2, },
228 { .center_freq = 2422, .hw_value = 3, },
229 { .center_freq = 2427, .hw_value = 4, },
230 { .center_freq = 2432, .hw_value = 5, },
231 { .center_freq = 2437, .hw_value = 6, },
232 { .center_freq = 2442, .hw_value = 7, },
233 { .center_freq = 2447, .hw_value = 8, },
234 { .center_freq = 2452, .hw_value = 9, },
235 { .center_freq = 2457, .hw_value = 10, },
236 { .center_freq = 2462, .hw_value = 11, },
237 { .center_freq = 2467, .hw_value = 12, },
238 { .center_freq = 2472, .hw_value = 13, },
239 { .center_freq = 2484, .hw_value = 14, },
240 };
241
242 static const struct ieee80211_rate mwl8k_rates[] = {
243 { .bitrate = 10, .hw_value = 2, },
244 { .bitrate = 20, .hw_value = 4, },
245 { .bitrate = 55, .hw_value = 11, },
246 { .bitrate = 110, .hw_value = 22, },
247 { .bitrate = 220, .hw_value = 44, },
248 { .bitrate = 60, .hw_value = 12, },
249 { .bitrate = 90, .hw_value = 18, },
250 { .bitrate = 120, .hw_value = 24, },
251 { .bitrate = 180, .hw_value = 36, },
252 { .bitrate = 240, .hw_value = 48, },
253 { .bitrate = 360, .hw_value = 72, },
254 { .bitrate = 480, .hw_value = 96, },
255 { .bitrate = 540, .hw_value = 108, },
256 { .bitrate = 720, .hw_value = 144, },
257 };
258
259 /* Set or get info from Firmware */
260 #define MWL8K_CMD_SET 0x0001
261 #define MWL8K_CMD_GET 0x0000
262
263 /* Firmware command codes */
264 #define MWL8K_CMD_CODE_DNLD 0x0001
265 #define MWL8K_CMD_GET_HW_SPEC 0x0003
266 #define MWL8K_CMD_SET_HW_SPEC 0x0004
267 #define MWL8K_CMD_MAC_MULTICAST_ADR 0x0010
268 #define MWL8K_CMD_GET_STAT 0x0014
269 #define MWL8K_CMD_RADIO_CONTROL 0x001c
270 #define MWL8K_CMD_RF_TX_POWER 0x001e
271 #define MWL8K_CMD_RF_ANTENNA 0x0020
272 #define MWL8K_CMD_SET_PRE_SCAN 0x0107
273 #define MWL8K_CMD_SET_POST_SCAN 0x0108
274 #define MWL8K_CMD_SET_RF_CHANNEL 0x010a
275 #define MWL8K_CMD_SET_AID 0x010d
276 #define MWL8K_CMD_SET_RATE 0x0110
277 #define MWL8K_CMD_SET_FINALIZE_JOIN 0x0111
278 #define MWL8K_CMD_RTS_THRESHOLD 0x0113
279 #define MWL8K_CMD_SET_SLOT 0x0114
280 #define MWL8K_CMD_SET_EDCA_PARAMS 0x0115
281 #define MWL8K_CMD_SET_WMM_MODE 0x0123
282 #define MWL8K_CMD_MIMO_CONFIG 0x0125
283 #define MWL8K_CMD_USE_FIXED_RATE 0x0126
284 #define MWL8K_CMD_ENABLE_SNIFFER 0x0150
285 #define MWL8K_CMD_SET_MAC_ADDR 0x0202
286 #define MWL8K_CMD_SET_RATEADAPT_MODE 0x0203
287 #define MWL8K_CMD_UPDATE_STADB 0x1123
288
289 static const char *mwl8k_cmd_name(u16 cmd, char *buf, int bufsize)
290 {
291 #define MWL8K_CMDNAME(x) case MWL8K_CMD_##x: do {\
292 snprintf(buf, bufsize, "%s", #x);\
293 return buf;\
294 } while (0)
295 switch (cmd & ~0x8000) {
296 MWL8K_CMDNAME(CODE_DNLD);
297 MWL8K_CMDNAME(GET_HW_SPEC);
298 MWL8K_CMDNAME(SET_HW_SPEC);
299 MWL8K_CMDNAME(MAC_MULTICAST_ADR);
300 MWL8K_CMDNAME(GET_STAT);
301 MWL8K_CMDNAME(RADIO_CONTROL);
302 MWL8K_CMDNAME(RF_TX_POWER);
303 MWL8K_CMDNAME(RF_ANTENNA);
304 MWL8K_CMDNAME(SET_PRE_SCAN);
305 MWL8K_CMDNAME(SET_POST_SCAN);
306 MWL8K_CMDNAME(SET_RF_CHANNEL);
307 MWL8K_CMDNAME(SET_AID);
308 MWL8K_CMDNAME(SET_RATE);
309 MWL8K_CMDNAME(SET_FINALIZE_JOIN);
310 MWL8K_CMDNAME(RTS_THRESHOLD);
311 MWL8K_CMDNAME(SET_SLOT);
312 MWL8K_CMDNAME(SET_EDCA_PARAMS);
313 MWL8K_CMDNAME(SET_WMM_MODE);
314 MWL8K_CMDNAME(MIMO_CONFIG);
315 MWL8K_CMDNAME(USE_FIXED_RATE);
316 MWL8K_CMDNAME(ENABLE_SNIFFER);
317 MWL8K_CMDNAME(SET_MAC_ADDR);
318 MWL8K_CMDNAME(SET_RATEADAPT_MODE);
319 MWL8K_CMDNAME(UPDATE_STADB);
320 default:
321 snprintf(buf, bufsize, "0x%x", cmd);
322 }
323 #undef MWL8K_CMDNAME
324
325 return buf;
326 }
327
328 /* Hardware and firmware reset */
329 static void mwl8k_hw_reset(struct mwl8k_priv *priv)
330 {
331 iowrite32(MWL8K_H2A_INT_RESET,
332 priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
333 iowrite32(MWL8K_H2A_INT_RESET,
334 priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
335 msleep(20);
336 }
337
338 /* Release fw image */
339 static void mwl8k_release_fw(struct firmware **fw)
340 {
341 if (*fw == NULL)
342 return;
343 release_firmware(*fw);
344 *fw = NULL;
345 }
346
347 static void mwl8k_release_firmware(struct mwl8k_priv *priv)
348 {
349 mwl8k_release_fw(&priv->fw_ucode);
350 mwl8k_release_fw(&priv->fw_helper);
351 }
352
353 /* Request fw image */
354 static int mwl8k_request_fw(struct mwl8k_priv *priv,
355 const char *fname, struct firmware **fw)
356 {
357 /* release current image */
358 if (*fw != NULL)
359 mwl8k_release_fw(fw);
360
361 return request_firmware((const struct firmware **)fw,
362 fname, &priv->pdev->dev);
363 }
364
365 static int mwl8k_request_firmware(struct mwl8k_priv *priv)
366 {
367 struct mwl8k_device_info *di = priv->device_info;
368 int rc;
369
370 if (di->helper_image != NULL) {
371 rc = mwl8k_request_fw(priv, di->helper_image, &priv->fw_helper);
372 if (rc) {
373 printk(KERN_ERR "%s: Error requesting helper "
374 "firmware file %s\n", pci_name(priv->pdev),
375 di->helper_image);
376 return rc;
377 }
378 }
379
380 rc = mwl8k_request_fw(priv, di->fw_image, &priv->fw_ucode);
381 if (rc) {
382 printk(KERN_ERR "%s: Error requesting firmware file %s\n",
383 pci_name(priv->pdev), di->fw_image);
384 mwl8k_release_fw(&priv->fw_helper);
385 return rc;
386 }
387
388 return 0;
389 }
390
391 MODULE_FIRMWARE("mwl8k/helper_8687.fw");
392 MODULE_FIRMWARE("mwl8k/fmimage_8687.fw");
393
394 struct mwl8k_cmd_pkt {
395 __le16 code;
396 __le16 length;
397 __le16 seq_num;
398 __le16 result;
399 char payload[0];
400 } __attribute__((packed));
401
402 /*
403 * Firmware loading.
404 */
405 static int
406 mwl8k_send_fw_load_cmd(struct mwl8k_priv *priv, void *data, int length)
407 {
408 void __iomem *regs = priv->regs;
409 dma_addr_t dma_addr;
410 int loops;
411
412 dma_addr = pci_map_single(priv->pdev, data, length, PCI_DMA_TODEVICE);
413 if (pci_dma_mapping_error(priv->pdev, dma_addr))
414 return -ENOMEM;
415
416 iowrite32(dma_addr, regs + MWL8K_HIU_GEN_PTR);
417 iowrite32(0, regs + MWL8K_HIU_INT_CODE);
418 iowrite32(MWL8K_H2A_INT_DOORBELL,
419 regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
420 iowrite32(MWL8K_H2A_INT_DUMMY,
421 regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
422
423 loops = 1000;
424 do {
425 u32 int_code;
426
427 int_code = ioread32(regs + MWL8K_HIU_INT_CODE);
428 if (int_code == MWL8K_INT_CODE_CMD_FINISHED) {
429 iowrite32(0, regs + MWL8K_HIU_INT_CODE);
430 break;
431 }
432
433 cond_resched();
434 udelay(1);
435 } while (--loops);
436
437 pci_unmap_single(priv->pdev, dma_addr, length, PCI_DMA_TODEVICE);
438
439 return loops ? 0 : -ETIMEDOUT;
440 }
441
442 static int mwl8k_load_fw_image(struct mwl8k_priv *priv,
443 const u8 *data, size_t length)
444 {
445 struct mwl8k_cmd_pkt *cmd;
446 int done;
447 int rc = 0;
448
449 cmd = kmalloc(sizeof(*cmd) + 256, GFP_KERNEL);
450 if (cmd == NULL)
451 return -ENOMEM;
452
453 cmd->code = cpu_to_le16(MWL8K_CMD_CODE_DNLD);
454 cmd->seq_num = 0;
455 cmd->result = 0;
456
457 done = 0;
458 while (length) {
459 int block_size = length > 256 ? 256 : length;
460
461 memcpy(cmd->payload, data + done, block_size);
462 cmd->length = cpu_to_le16(block_size);
463
464 rc = mwl8k_send_fw_load_cmd(priv, cmd,
465 sizeof(*cmd) + block_size);
466 if (rc)
467 break;
468
469 done += block_size;
470 length -= block_size;
471 }
472
473 if (!rc) {
474 cmd->length = 0;
475 rc = mwl8k_send_fw_load_cmd(priv, cmd, sizeof(*cmd));
476 }
477
478 kfree(cmd);
479
480 return rc;
481 }
482
483 static int mwl8k_feed_fw_image(struct mwl8k_priv *priv,
484 const u8 *data, size_t length)
485 {
486 unsigned char *buffer;
487 int may_continue, rc = 0;
488 u32 done, prev_block_size;
489
490 buffer = kmalloc(1024, GFP_KERNEL);
491 if (buffer == NULL)
492 return -ENOMEM;
493
494 done = 0;
495 prev_block_size = 0;
496 may_continue = 1000;
497 while (may_continue > 0) {
498 u32 block_size;
499
500 block_size = ioread32(priv->regs + MWL8K_HIU_SCRATCH);
501 if (block_size & 1) {
502 block_size &= ~1;
503 may_continue--;
504 } else {
505 done += prev_block_size;
506 length -= prev_block_size;
507 }
508
509 if (block_size > 1024 || block_size > length) {
510 rc = -EOVERFLOW;
511 break;
512 }
513
514 if (length == 0) {
515 rc = 0;
516 break;
517 }
518
519 if (block_size == 0) {
520 rc = -EPROTO;
521 may_continue--;
522 udelay(1);
523 continue;
524 }
525
526 prev_block_size = block_size;
527 memcpy(buffer, data + done, block_size);
528
529 rc = mwl8k_send_fw_load_cmd(priv, buffer, block_size);
530 if (rc)
531 break;
532 }
533
534 if (!rc && length != 0)
535 rc = -EREMOTEIO;
536
537 kfree(buffer);
538
539 return rc;
540 }
541
542 static int mwl8k_load_firmware(struct ieee80211_hw *hw)
543 {
544 struct mwl8k_priv *priv = hw->priv;
545 struct firmware *fw = priv->fw_ucode;
546 int rc;
547 int loops;
548
549 if (!memcmp(fw->data, "\x01\x00\x00\x00", 4)) {
550 struct firmware *helper = priv->fw_helper;
551
552 if (helper == NULL) {
553 printk(KERN_ERR "%s: helper image needed but none "
554 "given\n", pci_name(priv->pdev));
555 return -EINVAL;
556 }
557
558 rc = mwl8k_load_fw_image(priv, helper->data, helper->size);
559 if (rc) {
560 printk(KERN_ERR "%s: unable to load firmware "
561 "helper image\n", pci_name(priv->pdev));
562 return rc;
563 }
564 msleep(5);
565
566 rc = mwl8k_feed_fw_image(priv, fw->data, fw->size);
567 } else {
568 rc = mwl8k_load_fw_image(priv, fw->data, fw->size);
569 }
570
571 if (rc) {
572 printk(KERN_ERR "%s: unable to load firmware image\n",
573 pci_name(priv->pdev));
574 return rc;
575 }
576
577 iowrite32(MWL8K_MODE_STA, priv->regs + MWL8K_HIU_GEN_PTR);
578
579 loops = 500000;
580 do {
581 u32 ready_code;
582
583 ready_code = ioread32(priv->regs + MWL8K_HIU_INT_CODE);
584 if (ready_code == MWL8K_FWAP_READY) {
585 priv->ap_fw = 1;
586 break;
587 } else if (ready_code == MWL8K_FWSTA_READY) {
588 priv->ap_fw = 0;
589 break;
590 }
591
592 cond_resched();
593 udelay(1);
594 } while (--loops);
595
596 return loops ? 0 : -ETIMEDOUT;
597 }
598
599
600 /* DMA header used by firmware and hardware. */
601 struct mwl8k_dma_data {
602 __le16 fwlen;
603 struct ieee80211_hdr wh;
604 char data[0];
605 } __attribute__((packed));
606
607 /* Routines to add/remove DMA header from skb. */
608 static inline void mwl8k_remove_dma_header(struct sk_buff *skb, __le16 qos)
609 {
610 struct mwl8k_dma_data *tr;
611 int hdrlen;
612
613 tr = (struct mwl8k_dma_data *)skb->data;
614 hdrlen = ieee80211_hdrlen(tr->wh.frame_control);
615
616 if (hdrlen != sizeof(tr->wh)) {
617 if (ieee80211_is_data_qos(tr->wh.frame_control)) {
618 memmove(tr->data - hdrlen, &tr->wh, hdrlen - 2);
619 *((__le16 *)(tr->data - 2)) = qos;
620 } else {
621 memmove(tr->data - hdrlen, &tr->wh, hdrlen);
622 }
623 }
624
625 if (hdrlen != sizeof(*tr))
626 skb_pull(skb, sizeof(*tr) - hdrlen);
627 }
628
629 static inline void mwl8k_add_dma_header(struct sk_buff *skb)
630 {
631 struct ieee80211_hdr *wh;
632 int hdrlen;
633 struct mwl8k_dma_data *tr;
634
635 /*
636 * Add a firmware DMA header; the firmware requires that we
637 * present a 2-byte payload length followed by a 4-address
638 * header (without QoS field), followed (optionally) by any
639 * WEP/ExtIV header (but only filled in for CCMP).
640 */
641 wh = (struct ieee80211_hdr *)skb->data;
642
643 hdrlen = ieee80211_hdrlen(wh->frame_control);
644 if (hdrlen != sizeof(*tr))
645 skb_push(skb, sizeof(*tr) - hdrlen);
646
647 if (ieee80211_is_data_qos(wh->frame_control))
648 hdrlen -= 2;
649
650 tr = (struct mwl8k_dma_data *)skb->data;
651 if (wh != &tr->wh)
652 memmove(&tr->wh, wh, hdrlen);
653 if (hdrlen != sizeof(tr->wh))
654 memset(((void *)&tr->wh) + hdrlen, 0, sizeof(tr->wh) - hdrlen);
655
656 /*
657 * Firmware length is the length of the fully formed "802.11
658 * payload". That is, everything except for the 802.11 header.
659 * This includes all crypto material including the MIC.
660 */
661 tr->fwlen = cpu_to_le16(skb->len - sizeof(*tr));
662 }
663
664
665 /*
666 * Packet reception for 88w8366 AP firmware.
667 */
668 struct mwl8k_rxd_8366_ap {
669 __le16 pkt_len;
670 __u8 sq2;
671 __u8 rate;
672 __le32 pkt_phys_addr;
673 __le32 next_rxd_phys_addr;
674 __le16 qos_control;
675 __le16 htsig2;
676 __le32 hw_rssi_info;
677 __le32 hw_noise_floor_info;
678 __u8 noise_floor;
679 __u8 pad0[3];
680 __u8 rssi;
681 __u8 rx_status;
682 __u8 channel;
683 __u8 rx_ctrl;
684 } __attribute__((packed));
685
686 #define MWL8K_8366_AP_RATE_INFO_MCS_FORMAT 0x80
687 #define MWL8K_8366_AP_RATE_INFO_40MHZ 0x40
688 #define MWL8K_8366_AP_RATE_INFO_RATEID(x) ((x) & 0x3f)
689
690 #define MWL8K_8366_AP_RX_CTRL_OWNED_BY_HOST 0x80
691
692 static void mwl8k_rxd_8366_ap_init(void *_rxd, dma_addr_t next_dma_addr)
693 {
694 struct mwl8k_rxd_8366_ap *rxd = _rxd;
695
696 rxd->next_rxd_phys_addr = cpu_to_le32(next_dma_addr);
697 rxd->rx_ctrl = MWL8K_8366_AP_RX_CTRL_OWNED_BY_HOST;
698 }
699
700 static void mwl8k_rxd_8366_ap_refill(void *_rxd, dma_addr_t addr, int len)
701 {
702 struct mwl8k_rxd_8366_ap *rxd = _rxd;
703
704 rxd->pkt_len = cpu_to_le16(len);
705 rxd->pkt_phys_addr = cpu_to_le32(addr);
706 wmb();
707 rxd->rx_ctrl = 0;
708 }
709
710 static int
711 mwl8k_rxd_8366_ap_process(void *_rxd, struct ieee80211_rx_status *status,
712 __le16 *qos)
713 {
714 struct mwl8k_rxd_8366_ap *rxd = _rxd;
715
716 if (!(rxd->rx_ctrl & MWL8K_8366_AP_RX_CTRL_OWNED_BY_HOST))
717 return -1;
718 rmb();
719
720 memset(status, 0, sizeof(*status));
721
722 status->signal = -rxd->rssi;
723 status->noise = -rxd->noise_floor;
724
725 if (rxd->rate & MWL8K_8366_AP_RATE_INFO_MCS_FORMAT) {
726 status->flag |= RX_FLAG_HT;
727 if (rxd->rate & MWL8K_8366_AP_RATE_INFO_40MHZ)
728 status->flag |= RX_FLAG_40MHZ;
729 status->rate_idx = MWL8K_8366_AP_RATE_INFO_RATEID(rxd->rate);
730 } else {
731 int i;
732
733 for (i = 0; i < ARRAY_SIZE(mwl8k_rates); i++) {
734 if (mwl8k_rates[i].hw_value == rxd->rate) {
735 status->rate_idx = i;
736 break;
737 }
738 }
739 }
740
741 status->band = IEEE80211_BAND_2GHZ;
742 status->freq = ieee80211_channel_to_frequency(rxd->channel);
743
744 *qos = rxd->qos_control;
745
746 return le16_to_cpu(rxd->pkt_len);
747 }
748
749 static struct rxd_ops rxd_8366_ap_ops = {
750 .rxd_size = sizeof(struct mwl8k_rxd_8366_ap),
751 .rxd_init = mwl8k_rxd_8366_ap_init,
752 .rxd_refill = mwl8k_rxd_8366_ap_refill,
753 .rxd_process = mwl8k_rxd_8366_ap_process,
754 };
755
756 /*
757 * Packet reception for STA firmware.
758 */
759 struct mwl8k_rxd_sta {
760 __le16 pkt_len;
761 __u8 link_quality;
762 __u8 noise_level;
763 __le32 pkt_phys_addr;
764 __le32 next_rxd_phys_addr;
765 __le16 qos_control;
766 __le16 rate_info;
767 __le32 pad0[4];
768 __u8 rssi;
769 __u8 channel;
770 __le16 pad1;
771 __u8 rx_ctrl;
772 __u8 rx_status;
773 __u8 pad2[2];
774 } __attribute__((packed));
775
776 #define MWL8K_STA_RATE_INFO_SHORTPRE 0x8000
777 #define MWL8K_STA_RATE_INFO_ANTSELECT(x) (((x) >> 11) & 0x3)
778 #define MWL8K_STA_RATE_INFO_RATEID(x) (((x) >> 3) & 0x3f)
779 #define MWL8K_STA_RATE_INFO_40MHZ 0x0004
780 #define MWL8K_STA_RATE_INFO_SHORTGI 0x0002
781 #define MWL8K_STA_RATE_INFO_MCS_FORMAT 0x0001
782
783 #define MWL8K_STA_RX_CTRL_OWNED_BY_HOST 0x02
784
785 static void mwl8k_rxd_sta_init(void *_rxd, dma_addr_t next_dma_addr)
786 {
787 struct mwl8k_rxd_sta *rxd = _rxd;
788
789 rxd->next_rxd_phys_addr = cpu_to_le32(next_dma_addr);
790 rxd->rx_ctrl = MWL8K_STA_RX_CTRL_OWNED_BY_HOST;
791 }
792
793 static void mwl8k_rxd_sta_refill(void *_rxd, dma_addr_t addr, int len)
794 {
795 struct mwl8k_rxd_sta *rxd = _rxd;
796
797 rxd->pkt_len = cpu_to_le16(len);
798 rxd->pkt_phys_addr = cpu_to_le32(addr);
799 wmb();
800 rxd->rx_ctrl = 0;
801 }
802
803 static int
804 mwl8k_rxd_sta_process(void *_rxd, struct ieee80211_rx_status *status,
805 __le16 *qos)
806 {
807 struct mwl8k_rxd_sta *rxd = _rxd;
808 u16 rate_info;
809
810 if (!(rxd->rx_ctrl & MWL8K_STA_RX_CTRL_OWNED_BY_HOST))
811 return -1;
812 rmb();
813
814 rate_info = le16_to_cpu(rxd->rate_info);
815
816 memset(status, 0, sizeof(*status));
817
818 status->signal = -rxd->rssi;
819 status->noise = -rxd->noise_level;
820 status->antenna = MWL8K_STA_RATE_INFO_ANTSELECT(rate_info);
821 status->rate_idx = MWL8K_STA_RATE_INFO_RATEID(rate_info);
822
823 if (rate_info & MWL8K_STA_RATE_INFO_SHORTPRE)
824 status->flag |= RX_FLAG_SHORTPRE;
825 if (rate_info & MWL8K_STA_RATE_INFO_40MHZ)
826 status->flag |= RX_FLAG_40MHZ;
827 if (rate_info & MWL8K_STA_RATE_INFO_SHORTGI)
828 status->flag |= RX_FLAG_SHORT_GI;
829 if (rate_info & MWL8K_STA_RATE_INFO_MCS_FORMAT)
830 status->flag |= RX_FLAG_HT;
831
832 status->band = IEEE80211_BAND_2GHZ;
833 status->freq = ieee80211_channel_to_frequency(rxd->channel);
834
835 *qos = rxd->qos_control;
836
837 return le16_to_cpu(rxd->pkt_len);
838 }
839
840 static struct rxd_ops rxd_sta_ops = {
841 .rxd_size = sizeof(struct mwl8k_rxd_sta),
842 .rxd_init = mwl8k_rxd_sta_init,
843 .rxd_refill = mwl8k_rxd_sta_refill,
844 .rxd_process = mwl8k_rxd_sta_process,
845 };
846
847
848 #define MWL8K_RX_DESCS 256
849 #define MWL8K_RX_MAXSZ 3800
850
851 static int mwl8k_rxq_init(struct ieee80211_hw *hw, int index)
852 {
853 struct mwl8k_priv *priv = hw->priv;
854 struct mwl8k_rx_queue *rxq = priv->rxq + index;
855 int size;
856 int i;
857
858 rxq->rxd_count = 0;
859 rxq->head = 0;
860 rxq->tail = 0;
861
862 size = MWL8K_RX_DESCS * priv->rxd_ops->rxd_size;
863
864 rxq->rxd = pci_alloc_consistent(priv->pdev, size, &rxq->rxd_dma);
865 if (rxq->rxd == NULL) {
866 printk(KERN_ERR "%s: failed to alloc RX descriptors\n",
867 wiphy_name(hw->wiphy));
868 return -ENOMEM;
869 }
870 memset(rxq->rxd, 0, size);
871
872 rxq->buf = kmalloc(MWL8K_RX_DESCS * sizeof(*rxq->buf), GFP_KERNEL);
873 if (rxq->buf == NULL) {
874 printk(KERN_ERR "%s: failed to alloc RX skbuff list\n",
875 wiphy_name(hw->wiphy));
876 pci_free_consistent(priv->pdev, size, rxq->rxd, rxq->rxd_dma);
877 return -ENOMEM;
878 }
879 memset(rxq->buf, 0, MWL8K_RX_DESCS * sizeof(*rxq->buf));
880
881 for (i = 0; i < MWL8K_RX_DESCS; i++) {
882 int desc_size;
883 void *rxd;
884 int nexti;
885 dma_addr_t next_dma_addr;
886
887 desc_size = priv->rxd_ops->rxd_size;
888 rxd = rxq->rxd + (i * priv->rxd_ops->rxd_size);
889
890 nexti = i + 1;
891 if (nexti == MWL8K_RX_DESCS)
892 nexti = 0;
893 next_dma_addr = rxq->rxd_dma + (nexti * desc_size);
894
895 priv->rxd_ops->rxd_init(rxd, next_dma_addr);
896 }
897
898 return 0;
899 }
900
901 static int rxq_refill(struct ieee80211_hw *hw, int index, int limit)
902 {
903 struct mwl8k_priv *priv = hw->priv;
904 struct mwl8k_rx_queue *rxq = priv->rxq + index;
905 int refilled;
906
907 refilled = 0;
908 while (rxq->rxd_count < MWL8K_RX_DESCS && limit--) {
909 struct sk_buff *skb;
910 dma_addr_t addr;
911 int rx;
912 void *rxd;
913
914 skb = dev_alloc_skb(MWL8K_RX_MAXSZ);
915 if (skb == NULL)
916 break;
917
918 addr = pci_map_single(priv->pdev, skb->data,
919 MWL8K_RX_MAXSZ, DMA_FROM_DEVICE);
920
921 rxq->rxd_count++;
922 rx = rxq->tail++;
923 if (rxq->tail == MWL8K_RX_DESCS)
924 rxq->tail = 0;
925 rxq->buf[rx].skb = skb;
926 pci_unmap_addr_set(&rxq->buf[rx], dma, addr);
927
928 rxd = rxq->rxd + (rx * priv->rxd_ops->rxd_size);
929 priv->rxd_ops->rxd_refill(rxd, addr, MWL8K_RX_MAXSZ);
930
931 refilled++;
932 }
933
934 return refilled;
935 }
936
937 /* Must be called only when the card's reception is completely halted */
938 static void mwl8k_rxq_deinit(struct ieee80211_hw *hw, int index)
939 {
940 struct mwl8k_priv *priv = hw->priv;
941 struct mwl8k_rx_queue *rxq = priv->rxq + index;
942 int i;
943
944 for (i = 0; i < MWL8K_RX_DESCS; i++) {
945 if (rxq->buf[i].skb != NULL) {
946 pci_unmap_single(priv->pdev,
947 pci_unmap_addr(&rxq->buf[i], dma),
948 MWL8K_RX_MAXSZ, PCI_DMA_FROMDEVICE);
949 pci_unmap_addr_set(&rxq->buf[i], dma, 0);
950
951 kfree_skb(rxq->buf[i].skb);
952 rxq->buf[i].skb = NULL;
953 }
954 }
955
956 kfree(rxq->buf);
957 rxq->buf = NULL;
958
959 pci_free_consistent(priv->pdev,
960 MWL8K_RX_DESCS * priv->rxd_ops->rxd_size,
961 rxq->rxd, rxq->rxd_dma);
962 rxq->rxd = NULL;
963 }
964
965
966 /*
967 * Scan a list of BSSIDs to process for finalize join.
968 * Allows for extension to process multiple BSSIDs.
969 */
970 static inline int
971 mwl8k_capture_bssid(struct mwl8k_priv *priv, struct ieee80211_hdr *wh)
972 {
973 return priv->capture_beacon &&
974 ieee80211_is_beacon(wh->frame_control) &&
975 !compare_ether_addr(wh->addr3, priv->capture_bssid);
976 }
977
978 static inline void mwl8k_save_beacon(struct ieee80211_hw *hw,
979 struct sk_buff *skb)
980 {
981 struct mwl8k_priv *priv = hw->priv;
982
983 priv->capture_beacon = false;
984 memset(priv->capture_bssid, 0, ETH_ALEN);
985
986 /*
987 * Use GFP_ATOMIC as rxq_process is called from
988 * the primary interrupt handler, memory allocation call
989 * must not sleep.
990 */
991 priv->beacon_skb = skb_copy(skb, GFP_ATOMIC);
992 if (priv->beacon_skb != NULL)
993 ieee80211_queue_work(hw, &priv->finalize_join_worker);
994 }
995
996 static int rxq_process(struct ieee80211_hw *hw, int index, int limit)
997 {
998 struct mwl8k_priv *priv = hw->priv;
999 struct mwl8k_rx_queue *rxq = priv->rxq + index;
1000 int processed;
1001
1002 processed = 0;
1003 while (rxq->rxd_count && limit--) {
1004 struct sk_buff *skb;
1005 void *rxd;
1006 int pkt_len;
1007 struct ieee80211_rx_status status;
1008 __le16 qos;
1009
1010 skb = rxq->buf[rxq->head].skb;
1011 if (skb == NULL)
1012 break;
1013
1014 rxd = rxq->rxd + (rxq->head * priv->rxd_ops->rxd_size);
1015
1016 pkt_len = priv->rxd_ops->rxd_process(rxd, &status, &qos);
1017 if (pkt_len < 0)
1018 break;
1019
1020 rxq->buf[rxq->head].skb = NULL;
1021
1022 pci_unmap_single(priv->pdev,
1023 pci_unmap_addr(&rxq->buf[rxq->head], dma),
1024 MWL8K_RX_MAXSZ, PCI_DMA_FROMDEVICE);
1025 pci_unmap_addr_set(&rxq->buf[rxq->head], dma, 0);
1026
1027 rxq->head++;
1028 if (rxq->head == MWL8K_RX_DESCS)
1029 rxq->head = 0;
1030
1031 rxq->rxd_count--;
1032
1033 skb_put(skb, pkt_len);
1034 mwl8k_remove_dma_header(skb, qos);
1035
1036 /*
1037 * Check for a pending join operation. Save a
1038 * copy of the beacon and schedule a tasklet to
1039 * send a FINALIZE_JOIN command to the firmware.
1040 */
1041 if (mwl8k_capture_bssid(priv, (void *)skb->data))
1042 mwl8k_save_beacon(hw, skb);
1043
1044 memcpy(IEEE80211_SKB_RXCB(skb), &status, sizeof(status));
1045 ieee80211_rx_irqsafe(hw, skb);
1046
1047 processed++;
1048 }
1049
1050 return processed;
1051 }
1052
1053
1054 /*
1055 * Packet transmission.
1056 */
1057
1058 #define MWL8K_TXD_STATUS_OK 0x00000001
1059 #define MWL8K_TXD_STATUS_OK_RETRY 0x00000002
1060 #define MWL8K_TXD_STATUS_OK_MORE_RETRY 0x00000004
1061 #define MWL8K_TXD_STATUS_MULTICAST_TX 0x00000008
1062 #define MWL8K_TXD_STATUS_FW_OWNED 0x80000000
1063
1064 #define MWL8K_QOS_QLEN_UNSPEC 0xff00
1065 #define MWL8K_QOS_ACK_POLICY_MASK 0x0060
1066 #define MWL8K_QOS_ACK_POLICY_NORMAL 0x0000
1067 #define MWL8K_QOS_ACK_POLICY_BLOCKACK 0x0060
1068 #define MWL8K_QOS_EOSP 0x0010
1069
1070 struct mwl8k_tx_desc {
1071 __le32 status;
1072 __u8 data_rate;
1073 __u8 tx_priority;
1074 __le16 qos_control;
1075 __le32 pkt_phys_addr;
1076 __le16 pkt_len;
1077 __u8 dest_MAC_addr[ETH_ALEN];
1078 __le32 next_txd_phys_addr;
1079 __le32 reserved;
1080 __le16 rate_info;
1081 __u8 peer_id;
1082 __u8 tx_frag_cnt;
1083 } __attribute__((packed));
1084
1085 #define MWL8K_TX_DESCS 128
1086
1087 static int mwl8k_txq_init(struct ieee80211_hw *hw, int index)
1088 {
1089 struct mwl8k_priv *priv = hw->priv;
1090 struct mwl8k_tx_queue *txq = priv->txq + index;
1091 int size;
1092 int i;
1093
1094 memset(&txq->stats, 0, sizeof(struct ieee80211_tx_queue_stats));
1095 txq->stats.limit = MWL8K_TX_DESCS;
1096 txq->head = 0;
1097 txq->tail = 0;
1098
1099 size = MWL8K_TX_DESCS * sizeof(struct mwl8k_tx_desc);
1100
1101 txq->txd = pci_alloc_consistent(priv->pdev, size, &txq->txd_dma);
1102 if (txq->txd == NULL) {
1103 printk(KERN_ERR "%s: failed to alloc TX descriptors\n",
1104 wiphy_name(hw->wiphy));
1105 return -ENOMEM;
1106 }
1107 memset(txq->txd, 0, size);
1108
1109 txq->skb = kmalloc(MWL8K_TX_DESCS * sizeof(*txq->skb), GFP_KERNEL);
1110 if (txq->skb == NULL) {
1111 printk(KERN_ERR "%s: failed to alloc TX skbuff list\n",
1112 wiphy_name(hw->wiphy));
1113 pci_free_consistent(priv->pdev, size, txq->txd, txq->txd_dma);
1114 return -ENOMEM;
1115 }
1116 memset(txq->skb, 0, MWL8K_TX_DESCS * sizeof(*txq->skb));
1117
1118 for (i = 0; i < MWL8K_TX_DESCS; i++) {
1119 struct mwl8k_tx_desc *tx_desc;
1120 int nexti;
1121
1122 tx_desc = txq->txd + i;
1123 nexti = (i + 1) % MWL8K_TX_DESCS;
1124
1125 tx_desc->status = 0;
1126 tx_desc->next_txd_phys_addr =
1127 cpu_to_le32(txq->txd_dma + nexti * sizeof(*tx_desc));
1128 }
1129
1130 return 0;
1131 }
1132
1133 static inline void mwl8k_tx_start(struct mwl8k_priv *priv)
1134 {
1135 iowrite32(MWL8K_H2A_INT_PPA_READY,
1136 priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
1137 iowrite32(MWL8K_H2A_INT_DUMMY,
1138 priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
1139 ioread32(priv->regs + MWL8K_HIU_INT_CODE);
1140 }
1141
1142 static void mwl8k_dump_tx_rings(struct ieee80211_hw *hw)
1143 {
1144 struct mwl8k_priv *priv = hw->priv;
1145 int i;
1146
1147 for (i = 0; i < MWL8K_TX_QUEUES; i++) {
1148 struct mwl8k_tx_queue *txq = priv->txq + i;
1149 int fw_owned = 0;
1150 int drv_owned = 0;
1151 int unused = 0;
1152 int desc;
1153
1154 for (desc = 0; desc < MWL8K_TX_DESCS; desc++) {
1155 struct mwl8k_tx_desc *tx_desc = txq->txd + desc;
1156 u32 status;
1157
1158 status = le32_to_cpu(tx_desc->status);
1159 if (status & MWL8K_TXD_STATUS_FW_OWNED)
1160 fw_owned++;
1161 else
1162 drv_owned++;
1163
1164 if (tx_desc->pkt_len == 0)
1165 unused++;
1166 }
1167
1168 printk(KERN_ERR "%s: txq[%d] len=%d head=%d tail=%d "
1169 "fw_owned=%d drv_owned=%d unused=%d\n",
1170 wiphy_name(hw->wiphy), i,
1171 txq->stats.len, txq->head, txq->tail,
1172 fw_owned, drv_owned, unused);
1173 }
1174 }
1175
1176 /*
1177 * Must be called with priv->fw_mutex held and tx queues stopped.
1178 */
1179 #define MWL8K_TX_WAIT_TIMEOUT_MS 1000
1180
1181 static int mwl8k_tx_wait_empty(struct ieee80211_hw *hw)
1182 {
1183 struct mwl8k_priv *priv = hw->priv;
1184 DECLARE_COMPLETION_ONSTACK(tx_wait);
1185 int retry;
1186 int rc;
1187
1188 might_sleep();
1189
1190 /*
1191 * The TX queues are stopped at this point, so this test
1192 * doesn't need to take ->tx_lock.
1193 */
1194 if (!priv->pending_tx_pkts)
1195 return 0;
1196
1197 retry = 0;
1198 rc = 0;
1199
1200 spin_lock_bh(&priv->tx_lock);
1201 priv->tx_wait = &tx_wait;
1202 while (!rc) {
1203 int oldcount;
1204 unsigned long timeout;
1205
1206 oldcount = priv->pending_tx_pkts;
1207
1208 spin_unlock_bh(&priv->tx_lock);
1209 timeout = wait_for_completion_timeout(&tx_wait,
1210 msecs_to_jiffies(MWL8K_TX_WAIT_TIMEOUT_MS));
1211 spin_lock_bh(&priv->tx_lock);
1212
1213 if (timeout) {
1214 WARN_ON(priv->pending_tx_pkts);
1215 if (retry) {
1216 printk(KERN_NOTICE "%s: tx rings drained\n",
1217 wiphy_name(hw->wiphy));
1218 }
1219 break;
1220 }
1221
1222 if (priv->pending_tx_pkts < oldcount) {
1223 printk(KERN_NOTICE "%s: waiting for tx rings "
1224 "to drain (%d -> %d pkts)\n",
1225 wiphy_name(hw->wiphy), oldcount,
1226 priv->pending_tx_pkts);
1227 retry = 1;
1228 continue;
1229 }
1230
1231 priv->tx_wait = NULL;
1232
1233 printk(KERN_ERR "%s: tx rings stuck for %d ms\n",
1234 wiphy_name(hw->wiphy), MWL8K_TX_WAIT_TIMEOUT_MS);
1235 mwl8k_dump_tx_rings(hw);
1236
1237 rc = -ETIMEDOUT;
1238 }
1239 spin_unlock_bh(&priv->tx_lock);
1240
1241 return rc;
1242 }
1243
1244 #define MWL8K_TXD_SUCCESS(status) \
1245 ((status) & (MWL8K_TXD_STATUS_OK | \
1246 MWL8K_TXD_STATUS_OK_RETRY | \
1247 MWL8K_TXD_STATUS_OK_MORE_RETRY))
1248
1249 static void mwl8k_txq_reclaim(struct ieee80211_hw *hw, int index, int force)
1250 {
1251 struct mwl8k_priv *priv = hw->priv;
1252 struct mwl8k_tx_queue *txq = priv->txq + index;
1253 int wake = 0;
1254
1255 while (txq->stats.len > 0) {
1256 int tx;
1257 struct mwl8k_tx_desc *tx_desc;
1258 unsigned long addr;
1259 int size;
1260 struct sk_buff *skb;
1261 struct ieee80211_tx_info *info;
1262 u32 status;
1263
1264 tx = txq->head;
1265 tx_desc = txq->txd + tx;
1266
1267 status = le32_to_cpu(tx_desc->status);
1268
1269 if (status & MWL8K_TXD_STATUS_FW_OWNED) {
1270 if (!force)
1271 break;
1272 tx_desc->status &=
1273 ~cpu_to_le32(MWL8K_TXD_STATUS_FW_OWNED);
1274 }
1275
1276 txq->head = (tx + 1) % MWL8K_TX_DESCS;
1277 BUG_ON(txq->stats.len == 0);
1278 txq->stats.len--;
1279 priv->pending_tx_pkts--;
1280
1281 addr = le32_to_cpu(tx_desc->pkt_phys_addr);
1282 size = le16_to_cpu(tx_desc->pkt_len);
1283 skb = txq->skb[tx];
1284 txq->skb[tx] = NULL;
1285
1286 BUG_ON(skb == NULL);
1287 pci_unmap_single(priv->pdev, addr, size, PCI_DMA_TODEVICE);
1288
1289 mwl8k_remove_dma_header(skb, tx_desc->qos_control);
1290
1291 /* Mark descriptor as unused */
1292 tx_desc->pkt_phys_addr = 0;
1293 tx_desc->pkt_len = 0;
1294
1295 info = IEEE80211_SKB_CB(skb);
1296 ieee80211_tx_info_clear_status(info);
1297 if (MWL8K_TXD_SUCCESS(status))
1298 info->flags |= IEEE80211_TX_STAT_ACK;
1299
1300 ieee80211_tx_status_irqsafe(hw, skb);
1301
1302 wake = 1;
1303 }
1304
1305 if (wake && priv->radio_on && !mutex_is_locked(&priv->fw_mutex))
1306 ieee80211_wake_queue(hw, index);
1307 }
1308
1309 /* must be called only when the card's transmit is completely halted */
1310 static void mwl8k_txq_deinit(struct ieee80211_hw *hw, int index)
1311 {
1312 struct mwl8k_priv *priv = hw->priv;
1313 struct mwl8k_tx_queue *txq = priv->txq + index;
1314
1315 mwl8k_txq_reclaim(hw, index, 1);
1316
1317 kfree(txq->skb);
1318 txq->skb = NULL;
1319
1320 pci_free_consistent(priv->pdev,
1321 MWL8K_TX_DESCS * sizeof(struct mwl8k_tx_desc),
1322 txq->txd, txq->txd_dma);
1323 txq->txd = NULL;
1324 }
1325
1326 static int
1327 mwl8k_txq_xmit(struct ieee80211_hw *hw, int index, struct sk_buff *skb)
1328 {
1329 struct mwl8k_priv *priv = hw->priv;
1330 struct ieee80211_tx_info *tx_info;
1331 struct mwl8k_vif *mwl8k_vif;
1332 struct ieee80211_hdr *wh;
1333 struct mwl8k_tx_queue *txq;
1334 struct mwl8k_tx_desc *tx;
1335 dma_addr_t dma;
1336 u32 txstatus;
1337 u8 txdatarate;
1338 u16 qos;
1339
1340 wh = (struct ieee80211_hdr *)skb->data;
1341 if (ieee80211_is_data_qos(wh->frame_control))
1342 qos = le16_to_cpu(*((__le16 *)ieee80211_get_qos_ctl(wh)));
1343 else
1344 qos = 0;
1345
1346 mwl8k_add_dma_header(skb);
1347 wh = &((struct mwl8k_dma_data *)skb->data)->wh;
1348
1349 tx_info = IEEE80211_SKB_CB(skb);
1350 mwl8k_vif = MWL8K_VIF(tx_info->control.vif);
1351
1352 if (tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1353 u16 seqno = mwl8k_vif->seqno;
1354
1355 wh->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1356 wh->seq_ctrl |= cpu_to_le16(seqno << 4);
1357 mwl8k_vif->seqno = seqno++ % 4096;
1358 }
1359
1360 /* Setup firmware control bit fields for each frame type. */
1361 txstatus = 0;
1362 txdatarate = 0;
1363 if (ieee80211_is_mgmt(wh->frame_control) ||
1364 ieee80211_is_ctl(wh->frame_control)) {
1365 txdatarate = 0;
1366 qos |= MWL8K_QOS_QLEN_UNSPEC | MWL8K_QOS_EOSP;
1367 } else if (ieee80211_is_data(wh->frame_control)) {
1368 txdatarate = 1;
1369 if (is_multicast_ether_addr(wh->addr1))
1370 txstatus |= MWL8K_TXD_STATUS_MULTICAST_TX;
1371
1372 qos &= ~MWL8K_QOS_ACK_POLICY_MASK;
1373 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
1374 qos |= MWL8K_QOS_ACK_POLICY_BLOCKACK;
1375 else
1376 qos |= MWL8K_QOS_ACK_POLICY_NORMAL;
1377 }
1378
1379 dma = pci_map_single(priv->pdev, skb->data,
1380 skb->len, PCI_DMA_TODEVICE);
1381
1382 if (pci_dma_mapping_error(priv->pdev, dma)) {
1383 printk(KERN_DEBUG "%s: failed to dma map skb, "
1384 "dropping TX frame.\n", wiphy_name(hw->wiphy));
1385 dev_kfree_skb(skb);
1386 return NETDEV_TX_OK;
1387 }
1388
1389 spin_lock_bh(&priv->tx_lock);
1390
1391 txq = priv->txq + index;
1392
1393 BUG_ON(txq->skb[txq->tail] != NULL);
1394 txq->skb[txq->tail] = skb;
1395
1396 tx = txq->txd + txq->tail;
1397 tx->data_rate = txdatarate;
1398 tx->tx_priority = index;
1399 tx->qos_control = cpu_to_le16(qos);
1400 tx->pkt_phys_addr = cpu_to_le32(dma);
1401 tx->pkt_len = cpu_to_le16(skb->len);
1402 tx->rate_info = 0;
1403 if (!priv->ap_fw && tx_info->control.sta != NULL)
1404 tx->peer_id = MWL8K_STA(tx_info->control.sta)->peer_id;
1405 else
1406 tx->peer_id = 0;
1407 wmb();
1408 tx->status = cpu_to_le32(MWL8K_TXD_STATUS_FW_OWNED | txstatus);
1409
1410 txq->stats.count++;
1411 txq->stats.len++;
1412 priv->pending_tx_pkts++;
1413
1414 txq->tail++;
1415 if (txq->tail == MWL8K_TX_DESCS)
1416 txq->tail = 0;
1417
1418 if (txq->head == txq->tail)
1419 ieee80211_stop_queue(hw, index);
1420
1421 mwl8k_tx_start(priv);
1422
1423 spin_unlock_bh(&priv->tx_lock);
1424
1425 return NETDEV_TX_OK;
1426 }
1427
1428
1429 /*
1430 * Firmware access.
1431 *
1432 * We have the following requirements for issuing firmware commands:
1433 * - Some commands require that the packet transmit path is idle when
1434 * the command is issued. (For simplicity, we'll just quiesce the
1435 * transmit path for every command.)
1436 * - There are certain sequences of commands that need to be issued to
1437 * the hardware sequentially, with no other intervening commands.
1438 *
1439 * This leads to an implementation of a "firmware lock" as a mutex that
1440 * can be taken recursively, and which is taken by both the low-level
1441 * command submission function (mwl8k_post_cmd) as well as any users of
1442 * that function that require issuing of an atomic sequence of commands,
1443 * and quiesces the transmit path whenever it's taken.
1444 */
1445 static int mwl8k_fw_lock(struct ieee80211_hw *hw)
1446 {
1447 struct mwl8k_priv *priv = hw->priv;
1448
1449 if (priv->fw_mutex_owner != current) {
1450 int rc;
1451
1452 mutex_lock(&priv->fw_mutex);
1453 ieee80211_stop_queues(hw);
1454
1455 rc = mwl8k_tx_wait_empty(hw);
1456 if (rc) {
1457 ieee80211_wake_queues(hw);
1458 mutex_unlock(&priv->fw_mutex);
1459
1460 return rc;
1461 }
1462
1463 priv->fw_mutex_owner = current;
1464 }
1465
1466 priv->fw_mutex_depth++;
1467
1468 return 0;
1469 }
1470
1471 static void mwl8k_fw_unlock(struct ieee80211_hw *hw)
1472 {
1473 struct mwl8k_priv *priv = hw->priv;
1474
1475 if (!--priv->fw_mutex_depth) {
1476 ieee80211_wake_queues(hw);
1477 priv->fw_mutex_owner = NULL;
1478 mutex_unlock(&priv->fw_mutex);
1479 }
1480 }
1481
1482
1483 /*
1484 * Command processing.
1485 */
1486
1487 /* Timeout firmware commands after 10s */
1488 #define MWL8K_CMD_TIMEOUT_MS 10000
1489
1490 static int mwl8k_post_cmd(struct ieee80211_hw *hw, struct mwl8k_cmd_pkt *cmd)
1491 {
1492 DECLARE_COMPLETION_ONSTACK(cmd_wait);
1493 struct mwl8k_priv *priv = hw->priv;
1494 void __iomem *regs = priv->regs;
1495 dma_addr_t dma_addr;
1496 unsigned int dma_size;
1497 int rc;
1498 unsigned long timeout = 0;
1499 u8 buf[32];
1500
1501 cmd->result = 0xffff;
1502 dma_size = le16_to_cpu(cmd->length);
1503 dma_addr = pci_map_single(priv->pdev, cmd, dma_size,
1504 PCI_DMA_BIDIRECTIONAL);
1505 if (pci_dma_mapping_error(priv->pdev, dma_addr))
1506 return -ENOMEM;
1507
1508 rc = mwl8k_fw_lock(hw);
1509 if (rc) {
1510 pci_unmap_single(priv->pdev, dma_addr, dma_size,
1511 PCI_DMA_BIDIRECTIONAL);
1512 return rc;
1513 }
1514
1515 priv->hostcmd_wait = &cmd_wait;
1516 iowrite32(dma_addr, regs + MWL8K_HIU_GEN_PTR);
1517 iowrite32(MWL8K_H2A_INT_DOORBELL,
1518 regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
1519 iowrite32(MWL8K_H2A_INT_DUMMY,
1520 regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
1521
1522 timeout = wait_for_completion_timeout(&cmd_wait,
1523 msecs_to_jiffies(MWL8K_CMD_TIMEOUT_MS));
1524
1525 priv->hostcmd_wait = NULL;
1526
1527 mwl8k_fw_unlock(hw);
1528
1529 pci_unmap_single(priv->pdev, dma_addr, dma_size,
1530 PCI_DMA_BIDIRECTIONAL);
1531
1532 if (!timeout) {
1533 printk(KERN_ERR "%s: Command %s timeout after %u ms\n",
1534 wiphy_name(hw->wiphy),
1535 mwl8k_cmd_name(cmd->code, buf, sizeof(buf)),
1536 MWL8K_CMD_TIMEOUT_MS);
1537 rc = -ETIMEDOUT;
1538 } else {
1539 int ms;
1540
1541 ms = MWL8K_CMD_TIMEOUT_MS - jiffies_to_msecs(timeout);
1542
1543 rc = cmd->result ? -EINVAL : 0;
1544 if (rc)
1545 printk(KERN_ERR "%s: Command %s error 0x%x\n",
1546 wiphy_name(hw->wiphy),
1547 mwl8k_cmd_name(cmd->code, buf, sizeof(buf)),
1548 le16_to_cpu(cmd->result));
1549 else if (ms > 2000)
1550 printk(KERN_NOTICE "%s: Command %s took %d ms\n",
1551 wiphy_name(hw->wiphy),
1552 mwl8k_cmd_name(cmd->code, buf, sizeof(buf)),
1553 ms);
1554 }
1555
1556 return rc;
1557 }
1558
1559 /*
1560 * CMD_GET_HW_SPEC (STA version).
1561 */
1562 struct mwl8k_cmd_get_hw_spec_sta {
1563 struct mwl8k_cmd_pkt header;
1564 __u8 hw_rev;
1565 __u8 host_interface;
1566 __le16 num_mcaddrs;
1567 __u8 perm_addr[ETH_ALEN];
1568 __le16 region_code;
1569 __le32 fw_rev;
1570 __le32 ps_cookie;
1571 __le32 caps;
1572 __u8 mcs_bitmap[16];
1573 __le32 rx_queue_ptr;
1574 __le32 num_tx_queues;
1575 __le32 tx_queue_ptrs[MWL8K_TX_QUEUES];
1576 __le32 caps2;
1577 __le32 num_tx_desc_per_queue;
1578 __le32 total_rxd;
1579 } __attribute__((packed));
1580
1581 #define MWL8K_CAP_MAX_AMSDU 0x20000000
1582 #define MWL8K_CAP_GREENFIELD 0x08000000
1583 #define MWL8K_CAP_AMPDU 0x04000000
1584 #define MWL8K_CAP_RX_STBC 0x01000000
1585 #define MWL8K_CAP_TX_STBC 0x00800000
1586 #define MWL8K_CAP_SHORTGI_40MHZ 0x00400000
1587 #define MWL8K_CAP_SHORTGI_20MHZ 0x00200000
1588 #define MWL8K_CAP_RX_ANTENNA_MASK 0x000e0000
1589 #define MWL8K_CAP_TX_ANTENNA_MASK 0x0001c000
1590 #define MWL8K_CAP_DELAY_BA 0x00003000
1591 #define MWL8K_CAP_MIMO 0x00000200
1592 #define MWL8K_CAP_40MHZ 0x00000100
1593
1594 static void mwl8k_set_ht_caps(struct ieee80211_hw *hw, u32 cap)
1595 {
1596 struct mwl8k_priv *priv = hw->priv;
1597 int rx_streams;
1598 int tx_streams;
1599
1600 priv->band.ht_cap.ht_supported = 1;
1601
1602 if (cap & MWL8K_CAP_MAX_AMSDU)
1603 priv->band.ht_cap.cap |= IEEE80211_HT_CAP_MAX_AMSDU;
1604 if (cap & MWL8K_CAP_GREENFIELD)
1605 priv->band.ht_cap.cap |= IEEE80211_HT_CAP_GRN_FLD;
1606 if (cap & MWL8K_CAP_AMPDU) {
1607 hw->flags |= IEEE80211_HW_AMPDU_AGGREGATION;
1608 priv->band.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
1609 priv->band.ht_cap.ampdu_density =
1610 IEEE80211_HT_MPDU_DENSITY_NONE;
1611 }
1612 if (cap & MWL8K_CAP_RX_STBC)
1613 priv->band.ht_cap.cap |= IEEE80211_HT_CAP_RX_STBC;
1614 if (cap & MWL8K_CAP_TX_STBC)
1615 priv->band.ht_cap.cap |= IEEE80211_HT_CAP_TX_STBC;
1616 if (cap & MWL8K_CAP_SHORTGI_40MHZ)
1617 priv->band.ht_cap.cap |= IEEE80211_HT_CAP_SGI_40;
1618 if (cap & MWL8K_CAP_SHORTGI_20MHZ)
1619 priv->band.ht_cap.cap |= IEEE80211_HT_CAP_SGI_20;
1620 if (cap & MWL8K_CAP_DELAY_BA)
1621 priv->band.ht_cap.cap |= IEEE80211_HT_CAP_DELAY_BA;
1622 if (cap & MWL8K_CAP_40MHZ)
1623 priv->band.ht_cap.cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40;
1624
1625 rx_streams = hweight32(cap & MWL8K_CAP_RX_ANTENNA_MASK);
1626 tx_streams = hweight32(cap & MWL8K_CAP_TX_ANTENNA_MASK);
1627
1628 priv->band.ht_cap.mcs.rx_mask[0] = 0xff;
1629 if (rx_streams >= 2)
1630 priv->band.ht_cap.mcs.rx_mask[1] = 0xff;
1631 if (rx_streams >= 3)
1632 priv->band.ht_cap.mcs.rx_mask[2] = 0xff;
1633 priv->band.ht_cap.mcs.rx_mask[4] = 0x01;
1634 priv->band.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1635
1636 if (rx_streams != tx_streams) {
1637 priv->band.ht_cap.mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
1638 priv->band.ht_cap.mcs.tx_params |= (tx_streams - 1) <<
1639 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT;
1640 }
1641 }
1642
1643 static int mwl8k_cmd_get_hw_spec_sta(struct ieee80211_hw *hw)
1644 {
1645 struct mwl8k_priv *priv = hw->priv;
1646 struct mwl8k_cmd_get_hw_spec_sta *cmd;
1647 int rc;
1648 int i;
1649
1650 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
1651 if (cmd == NULL)
1652 return -ENOMEM;
1653
1654 cmd->header.code = cpu_to_le16(MWL8K_CMD_GET_HW_SPEC);
1655 cmd->header.length = cpu_to_le16(sizeof(*cmd));
1656
1657 memset(cmd->perm_addr, 0xff, sizeof(cmd->perm_addr));
1658 cmd->ps_cookie = cpu_to_le32(priv->cookie_dma);
1659 cmd->rx_queue_ptr = cpu_to_le32(priv->rxq[0].rxd_dma);
1660 cmd->num_tx_queues = cpu_to_le32(MWL8K_TX_QUEUES);
1661 for (i = 0; i < MWL8K_TX_QUEUES; i++)
1662 cmd->tx_queue_ptrs[i] = cpu_to_le32(priv->txq[i].txd_dma);
1663 cmd->num_tx_desc_per_queue = cpu_to_le32(MWL8K_TX_DESCS);
1664 cmd->total_rxd = cpu_to_le32(MWL8K_RX_DESCS);
1665
1666 rc = mwl8k_post_cmd(hw, &cmd->header);
1667
1668 if (!rc) {
1669 SET_IEEE80211_PERM_ADDR(hw, cmd->perm_addr);
1670 priv->num_mcaddrs = le16_to_cpu(cmd->num_mcaddrs);
1671 priv->fw_rev = le32_to_cpu(cmd->fw_rev);
1672 priv->hw_rev = cmd->hw_rev;
1673 if (cmd->caps & cpu_to_le32(MWL8K_CAP_MIMO))
1674 mwl8k_set_ht_caps(hw, le32_to_cpu(cmd->caps));
1675 }
1676
1677 kfree(cmd);
1678 return rc;
1679 }
1680
1681 /*
1682 * CMD_GET_HW_SPEC (AP version).
1683 */
1684 struct mwl8k_cmd_get_hw_spec_ap {
1685 struct mwl8k_cmd_pkt header;
1686 __u8 hw_rev;
1687 __u8 host_interface;
1688 __le16 num_wcb;
1689 __le16 num_mcaddrs;
1690 __u8 perm_addr[ETH_ALEN];
1691 __le16 region_code;
1692 __le16 num_antenna;
1693 __le32 fw_rev;
1694 __le32 wcbbase0;
1695 __le32 rxwrptr;
1696 __le32 rxrdptr;
1697 __le32 ps_cookie;
1698 __le32 wcbbase1;
1699 __le32 wcbbase2;
1700 __le32 wcbbase3;
1701 } __attribute__((packed));
1702
1703 static int mwl8k_cmd_get_hw_spec_ap(struct ieee80211_hw *hw)
1704 {
1705 struct mwl8k_priv *priv = hw->priv;
1706 struct mwl8k_cmd_get_hw_spec_ap *cmd;
1707 int rc;
1708
1709 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
1710 if (cmd == NULL)
1711 return -ENOMEM;
1712
1713 cmd->header.code = cpu_to_le16(MWL8K_CMD_GET_HW_SPEC);
1714 cmd->header.length = cpu_to_le16(sizeof(*cmd));
1715
1716 memset(cmd->perm_addr, 0xff, sizeof(cmd->perm_addr));
1717 cmd->ps_cookie = cpu_to_le32(priv->cookie_dma);
1718
1719 rc = mwl8k_post_cmd(hw, &cmd->header);
1720
1721 if (!rc) {
1722 int off;
1723
1724 SET_IEEE80211_PERM_ADDR(hw, cmd->perm_addr);
1725 priv->num_mcaddrs = le16_to_cpu(cmd->num_mcaddrs);
1726 priv->fw_rev = le32_to_cpu(cmd->fw_rev);
1727 priv->hw_rev = cmd->hw_rev;
1728
1729 off = le32_to_cpu(cmd->wcbbase0) & 0xffff;
1730 iowrite32(cpu_to_le32(priv->txq[0].txd_dma), priv->sram + off);
1731
1732 off = le32_to_cpu(cmd->rxwrptr) & 0xffff;
1733 iowrite32(cpu_to_le32(priv->rxq[0].rxd_dma), priv->sram + off);
1734
1735 off = le32_to_cpu(cmd->rxrdptr) & 0xffff;
1736 iowrite32(cpu_to_le32(priv->rxq[0].rxd_dma), priv->sram + off);
1737
1738 off = le32_to_cpu(cmd->wcbbase1) & 0xffff;
1739 iowrite32(cpu_to_le32(priv->txq[1].txd_dma), priv->sram + off);
1740
1741 off = le32_to_cpu(cmd->wcbbase2) & 0xffff;
1742 iowrite32(cpu_to_le32(priv->txq[2].txd_dma), priv->sram + off);
1743
1744 off = le32_to_cpu(cmd->wcbbase3) & 0xffff;
1745 iowrite32(cpu_to_le32(priv->txq[3].txd_dma), priv->sram + off);
1746 }
1747
1748 kfree(cmd);
1749 return rc;
1750 }
1751
1752 /*
1753 * CMD_SET_HW_SPEC.
1754 */
1755 struct mwl8k_cmd_set_hw_spec {
1756 struct mwl8k_cmd_pkt header;
1757 __u8 hw_rev;
1758 __u8 host_interface;
1759 __le16 num_mcaddrs;
1760 __u8 perm_addr[ETH_ALEN];
1761 __le16 region_code;
1762 __le32 fw_rev;
1763 __le32 ps_cookie;
1764 __le32 caps;
1765 __le32 rx_queue_ptr;
1766 __le32 num_tx_queues;
1767 __le32 tx_queue_ptrs[MWL8K_TX_QUEUES];
1768 __le32 flags;
1769 __le32 num_tx_desc_per_queue;
1770 __le32 total_rxd;
1771 } __attribute__((packed));
1772
1773 #define MWL8K_SET_HW_SPEC_FLAG_HOST_DECR_MGMT 0x00000080
1774
1775 static int mwl8k_cmd_set_hw_spec(struct ieee80211_hw *hw)
1776 {
1777 struct mwl8k_priv *priv = hw->priv;
1778 struct mwl8k_cmd_set_hw_spec *cmd;
1779 int rc;
1780 int i;
1781
1782 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
1783 if (cmd == NULL)
1784 return -ENOMEM;
1785
1786 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_HW_SPEC);
1787 cmd->header.length = cpu_to_le16(sizeof(*cmd));
1788
1789 cmd->ps_cookie = cpu_to_le32(priv->cookie_dma);
1790 cmd->rx_queue_ptr = cpu_to_le32(priv->rxq[0].rxd_dma);
1791 cmd->num_tx_queues = cpu_to_le32(MWL8K_TX_QUEUES);
1792 for (i = 0; i < MWL8K_TX_QUEUES; i++)
1793 cmd->tx_queue_ptrs[i] = cpu_to_le32(priv->txq[i].txd_dma);
1794 cmd->flags = cpu_to_le32(MWL8K_SET_HW_SPEC_FLAG_HOST_DECR_MGMT);
1795 cmd->num_tx_desc_per_queue = cpu_to_le32(MWL8K_TX_DESCS);
1796 cmd->total_rxd = cpu_to_le32(MWL8K_RX_DESCS);
1797
1798 rc = mwl8k_post_cmd(hw, &cmd->header);
1799 kfree(cmd);
1800
1801 return rc;
1802 }
1803
1804 /*
1805 * CMD_MAC_MULTICAST_ADR.
1806 */
1807 struct mwl8k_cmd_mac_multicast_adr {
1808 struct mwl8k_cmd_pkt header;
1809 __le16 action;
1810 __le16 numaddr;
1811 __u8 addr[0][ETH_ALEN];
1812 };
1813
1814 #define MWL8K_ENABLE_RX_DIRECTED 0x0001
1815 #define MWL8K_ENABLE_RX_MULTICAST 0x0002
1816 #define MWL8K_ENABLE_RX_ALL_MULTICAST 0x0004
1817 #define MWL8K_ENABLE_RX_BROADCAST 0x0008
1818
1819 static struct mwl8k_cmd_pkt *
1820 __mwl8k_cmd_mac_multicast_adr(struct ieee80211_hw *hw, int allmulti,
1821 int mc_count, struct dev_addr_list *mclist)
1822 {
1823 struct mwl8k_priv *priv = hw->priv;
1824 struct mwl8k_cmd_mac_multicast_adr *cmd;
1825 int size;
1826
1827 if (allmulti || mc_count > priv->num_mcaddrs) {
1828 allmulti = 1;
1829 mc_count = 0;
1830 }
1831
1832 size = sizeof(*cmd) + mc_count * ETH_ALEN;
1833
1834 cmd = kzalloc(size, GFP_ATOMIC);
1835 if (cmd == NULL)
1836 return NULL;
1837
1838 cmd->header.code = cpu_to_le16(MWL8K_CMD_MAC_MULTICAST_ADR);
1839 cmd->header.length = cpu_to_le16(size);
1840 cmd->action = cpu_to_le16(MWL8K_ENABLE_RX_DIRECTED |
1841 MWL8K_ENABLE_RX_BROADCAST);
1842
1843 if (allmulti) {
1844 cmd->action |= cpu_to_le16(MWL8K_ENABLE_RX_ALL_MULTICAST);
1845 } else if (mc_count) {
1846 int i;
1847
1848 cmd->action |= cpu_to_le16(MWL8K_ENABLE_RX_MULTICAST);
1849 cmd->numaddr = cpu_to_le16(mc_count);
1850 for (i = 0; i < mc_count && mclist; i++) {
1851 if (mclist->da_addrlen != ETH_ALEN) {
1852 kfree(cmd);
1853 return NULL;
1854 }
1855 memcpy(cmd->addr[i], mclist->da_addr, ETH_ALEN);
1856 mclist = mclist->next;
1857 }
1858 }
1859
1860 return &cmd->header;
1861 }
1862
1863 /*
1864 * CMD_GET_STAT.
1865 */
1866 struct mwl8k_cmd_get_stat {
1867 struct mwl8k_cmd_pkt header;
1868 __le32 stats[64];
1869 } __attribute__((packed));
1870
1871 #define MWL8K_STAT_ACK_FAILURE 9
1872 #define MWL8K_STAT_RTS_FAILURE 12
1873 #define MWL8K_STAT_FCS_ERROR 24
1874 #define MWL8K_STAT_RTS_SUCCESS 11
1875
1876 static int mwl8k_cmd_get_stat(struct ieee80211_hw *hw,
1877 struct ieee80211_low_level_stats *stats)
1878 {
1879 struct mwl8k_cmd_get_stat *cmd;
1880 int rc;
1881
1882 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
1883 if (cmd == NULL)
1884 return -ENOMEM;
1885
1886 cmd->header.code = cpu_to_le16(MWL8K_CMD_GET_STAT);
1887 cmd->header.length = cpu_to_le16(sizeof(*cmd));
1888
1889 rc = mwl8k_post_cmd(hw, &cmd->header);
1890 if (!rc) {
1891 stats->dot11ACKFailureCount =
1892 le32_to_cpu(cmd->stats[MWL8K_STAT_ACK_FAILURE]);
1893 stats->dot11RTSFailureCount =
1894 le32_to_cpu(cmd->stats[MWL8K_STAT_RTS_FAILURE]);
1895 stats->dot11FCSErrorCount =
1896 le32_to_cpu(cmd->stats[MWL8K_STAT_FCS_ERROR]);
1897 stats->dot11RTSSuccessCount =
1898 le32_to_cpu(cmd->stats[MWL8K_STAT_RTS_SUCCESS]);
1899 }
1900 kfree(cmd);
1901
1902 return rc;
1903 }
1904
1905 /*
1906 * CMD_RADIO_CONTROL.
1907 */
1908 struct mwl8k_cmd_radio_control {
1909 struct mwl8k_cmd_pkt header;
1910 __le16 action;
1911 __le16 control;
1912 __le16 radio_on;
1913 } __attribute__((packed));
1914
1915 static int
1916 mwl8k_cmd_radio_control(struct ieee80211_hw *hw, bool enable, bool force)
1917 {
1918 struct mwl8k_priv *priv = hw->priv;
1919 struct mwl8k_cmd_radio_control *cmd;
1920 int rc;
1921
1922 if (enable == priv->radio_on && !force)
1923 return 0;
1924
1925 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
1926 if (cmd == NULL)
1927 return -ENOMEM;
1928
1929 cmd->header.code = cpu_to_le16(MWL8K_CMD_RADIO_CONTROL);
1930 cmd->header.length = cpu_to_le16(sizeof(*cmd));
1931 cmd->action = cpu_to_le16(MWL8K_CMD_SET);
1932 cmd->control = cpu_to_le16(priv->radio_short_preamble ? 3 : 1);
1933 cmd->radio_on = cpu_to_le16(enable ? 0x0001 : 0x0000);
1934
1935 rc = mwl8k_post_cmd(hw, &cmd->header);
1936 kfree(cmd);
1937
1938 if (!rc)
1939 priv->radio_on = enable;
1940
1941 return rc;
1942 }
1943
1944 static int mwl8k_cmd_radio_disable(struct ieee80211_hw *hw)
1945 {
1946 return mwl8k_cmd_radio_control(hw, 0, 0);
1947 }
1948
1949 static int mwl8k_cmd_radio_enable(struct ieee80211_hw *hw)
1950 {
1951 return mwl8k_cmd_radio_control(hw, 1, 0);
1952 }
1953
1954 static int
1955 mwl8k_set_radio_preamble(struct ieee80211_hw *hw, bool short_preamble)
1956 {
1957 struct mwl8k_priv *priv = hw->priv;
1958
1959 priv->radio_short_preamble = short_preamble;
1960
1961 return mwl8k_cmd_radio_control(hw, 1, 1);
1962 }
1963
1964 /*
1965 * CMD_RF_TX_POWER.
1966 */
1967 #define MWL8K_TX_POWER_LEVEL_TOTAL 8
1968
1969 struct mwl8k_cmd_rf_tx_power {
1970 struct mwl8k_cmd_pkt header;
1971 __le16 action;
1972 __le16 support_level;
1973 __le16 current_level;
1974 __le16 reserved;
1975 __le16 power_level_list[MWL8K_TX_POWER_LEVEL_TOTAL];
1976 } __attribute__((packed));
1977
1978 static int mwl8k_cmd_rf_tx_power(struct ieee80211_hw *hw, int dBm)
1979 {
1980 struct mwl8k_cmd_rf_tx_power *cmd;
1981 int rc;
1982
1983 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
1984 if (cmd == NULL)
1985 return -ENOMEM;
1986
1987 cmd->header.code = cpu_to_le16(MWL8K_CMD_RF_TX_POWER);
1988 cmd->header.length = cpu_to_le16(sizeof(*cmd));
1989 cmd->action = cpu_to_le16(MWL8K_CMD_SET);
1990 cmd->support_level = cpu_to_le16(dBm);
1991
1992 rc = mwl8k_post_cmd(hw, &cmd->header);
1993 kfree(cmd);
1994
1995 return rc;
1996 }
1997
1998 /*
1999 * CMD_RF_ANTENNA.
2000 */
2001 struct mwl8k_cmd_rf_antenna {
2002 struct mwl8k_cmd_pkt header;
2003 __le16 antenna;
2004 __le16 mode;
2005 } __attribute__((packed));
2006
2007 #define MWL8K_RF_ANTENNA_RX 1
2008 #define MWL8K_RF_ANTENNA_TX 2
2009
2010 static int
2011 mwl8k_cmd_rf_antenna(struct ieee80211_hw *hw, int antenna, int mask)
2012 {
2013 struct mwl8k_cmd_rf_antenna *cmd;
2014 int rc;
2015
2016 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2017 if (cmd == NULL)
2018 return -ENOMEM;
2019
2020 cmd->header.code = cpu_to_le16(MWL8K_CMD_RF_ANTENNA);
2021 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2022 cmd->antenna = cpu_to_le16(antenna);
2023 cmd->mode = cpu_to_le16(mask);
2024
2025 rc = mwl8k_post_cmd(hw, &cmd->header);
2026 kfree(cmd);
2027
2028 return rc;
2029 }
2030
2031 /*
2032 * CMD_SET_PRE_SCAN.
2033 */
2034 struct mwl8k_cmd_set_pre_scan {
2035 struct mwl8k_cmd_pkt header;
2036 } __attribute__((packed));
2037
2038 static int mwl8k_cmd_set_pre_scan(struct ieee80211_hw *hw)
2039 {
2040 struct mwl8k_cmd_set_pre_scan *cmd;
2041 int rc;
2042
2043 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2044 if (cmd == NULL)
2045 return -ENOMEM;
2046
2047 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_PRE_SCAN);
2048 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2049
2050 rc = mwl8k_post_cmd(hw, &cmd->header);
2051 kfree(cmd);
2052
2053 return rc;
2054 }
2055
2056 /*
2057 * CMD_SET_POST_SCAN.
2058 */
2059 struct mwl8k_cmd_set_post_scan {
2060 struct mwl8k_cmd_pkt header;
2061 __le32 isibss;
2062 __u8 bssid[ETH_ALEN];
2063 } __attribute__((packed));
2064
2065 static int
2066 mwl8k_cmd_set_post_scan(struct ieee80211_hw *hw, const __u8 *mac)
2067 {
2068 struct mwl8k_cmd_set_post_scan *cmd;
2069 int rc;
2070
2071 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2072 if (cmd == NULL)
2073 return -ENOMEM;
2074
2075 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_POST_SCAN);
2076 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2077 cmd->isibss = 0;
2078 memcpy(cmd->bssid, mac, ETH_ALEN);
2079
2080 rc = mwl8k_post_cmd(hw, &cmd->header);
2081 kfree(cmd);
2082
2083 return rc;
2084 }
2085
2086 /*
2087 * CMD_SET_RF_CHANNEL.
2088 */
2089 struct mwl8k_cmd_set_rf_channel {
2090 struct mwl8k_cmd_pkt header;
2091 __le16 action;
2092 __u8 current_channel;
2093 __le32 channel_flags;
2094 } __attribute__((packed));
2095
2096 static int mwl8k_cmd_set_rf_channel(struct ieee80211_hw *hw,
2097 struct ieee80211_conf *conf)
2098 {
2099 struct ieee80211_channel *channel = conf->channel;
2100 struct mwl8k_cmd_set_rf_channel *cmd;
2101 int rc;
2102
2103 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2104 if (cmd == NULL)
2105 return -ENOMEM;
2106
2107 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_RF_CHANNEL);
2108 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2109 cmd->action = cpu_to_le16(MWL8K_CMD_SET);
2110 cmd->current_channel = channel->hw_value;
2111
2112 if (channel->band == IEEE80211_BAND_2GHZ)
2113 cmd->channel_flags |= cpu_to_le32(0x00000001);
2114
2115 if (conf->channel_type == NL80211_CHAN_NO_HT ||
2116 conf->channel_type == NL80211_CHAN_HT20)
2117 cmd->channel_flags |= cpu_to_le32(0x00000080);
2118 else if (conf->channel_type == NL80211_CHAN_HT40MINUS)
2119 cmd->channel_flags |= cpu_to_le32(0x000001900);
2120 else if (conf->channel_type == NL80211_CHAN_HT40PLUS)
2121 cmd->channel_flags |= cpu_to_le32(0x000000900);
2122
2123 rc = mwl8k_post_cmd(hw, &cmd->header);
2124 kfree(cmd);
2125
2126 return rc;
2127 }
2128
2129 /*
2130 * CMD_SET_AID.
2131 */
2132 #define MWL8K_FRAME_PROT_DISABLED 0x00
2133 #define MWL8K_FRAME_PROT_11G 0x07
2134 #define MWL8K_FRAME_PROT_11N_HT_40MHZ_ONLY 0x02
2135 #define MWL8K_FRAME_PROT_11N_HT_ALL 0x06
2136
2137 struct mwl8k_cmd_update_set_aid {
2138 struct mwl8k_cmd_pkt header;
2139 __le16 aid;
2140
2141 /* AP's MAC address (BSSID) */
2142 __u8 bssid[ETH_ALEN];
2143 __le16 protection_mode;
2144 __u8 supp_rates[14];
2145 } __attribute__((packed));
2146
2147 static void legacy_rate_mask_to_array(u8 *rates, u32 mask)
2148 {
2149 int i;
2150 int j;
2151
2152 /*
2153 * Clear nonstandard rates 4 and 13.
2154 */
2155 mask &= 0x1fef;
2156
2157 for (i = 0, j = 0; i < 14; i++) {
2158 if (mask & (1 << i))
2159 rates[j++] = mwl8k_rates[i].hw_value;
2160 }
2161 }
2162
2163 static int
2164 mwl8k_cmd_set_aid(struct ieee80211_hw *hw,
2165 struct ieee80211_vif *vif, u32 legacy_rate_mask)
2166 {
2167 struct mwl8k_cmd_update_set_aid *cmd;
2168 u16 prot_mode;
2169 int rc;
2170
2171 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2172 if (cmd == NULL)
2173 return -ENOMEM;
2174
2175 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_AID);
2176 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2177 cmd->aid = cpu_to_le16(vif->bss_conf.aid);
2178 memcpy(cmd->bssid, vif->bss_conf.bssid, ETH_ALEN);
2179
2180 if (vif->bss_conf.use_cts_prot) {
2181 prot_mode = MWL8K_FRAME_PROT_11G;
2182 } else {
2183 switch (vif->bss_conf.ht_operation_mode &
2184 IEEE80211_HT_OP_MODE_PROTECTION) {
2185 case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ:
2186 prot_mode = MWL8K_FRAME_PROT_11N_HT_40MHZ_ONLY;
2187 break;
2188 case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED:
2189 prot_mode = MWL8K_FRAME_PROT_11N_HT_ALL;
2190 break;
2191 default:
2192 prot_mode = MWL8K_FRAME_PROT_DISABLED;
2193 break;
2194 }
2195 }
2196 cmd->protection_mode = cpu_to_le16(prot_mode);
2197
2198 legacy_rate_mask_to_array(cmd->supp_rates, legacy_rate_mask);
2199
2200 rc = mwl8k_post_cmd(hw, &cmd->header);
2201 kfree(cmd);
2202
2203 return rc;
2204 }
2205
2206 /*
2207 * CMD_SET_RATE.
2208 */
2209 struct mwl8k_cmd_set_rate {
2210 struct mwl8k_cmd_pkt header;
2211 __u8 legacy_rates[14];
2212
2213 /* Bitmap for supported MCS codes. */
2214 __u8 mcs_set[16];
2215 __u8 reserved[16];
2216 } __attribute__((packed));
2217
2218 static int
2219 mwl8k_cmd_set_rate(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2220 u32 legacy_rate_mask, u8 *mcs_rates)
2221 {
2222 struct mwl8k_cmd_set_rate *cmd;
2223 int rc;
2224
2225 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2226 if (cmd == NULL)
2227 return -ENOMEM;
2228
2229 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_RATE);
2230 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2231 legacy_rate_mask_to_array(cmd->legacy_rates, legacy_rate_mask);
2232 memcpy(cmd->mcs_set, mcs_rates, 16);
2233
2234 rc = mwl8k_post_cmd(hw, &cmd->header);
2235 kfree(cmd);
2236
2237 return rc;
2238 }
2239
2240 /*
2241 * CMD_FINALIZE_JOIN.
2242 */
2243 #define MWL8K_FJ_BEACON_MAXLEN 128
2244
2245 struct mwl8k_cmd_finalize_join {
2246 struct mwl8k_cmd_pkt header;
2247 __le32 sleep_interval; /* Number of beacon periods to sleep */
2248 __u8 beacon_data[MWL8K_FJ_BEACON_MAXLEN];
2249 } __attribute__((packed));
2250
2251 static int mwl8k_cmd_finalize_join(struct ieee80211_hw *hw, void *frame,
2252 int framelen, int dtim)
2253 {
2254 struct mwl8k_cmd_finalize_join *cmd;
2255 struct ieee80211_mgmt *payload = frame;
2256 int payload_len;
2257 int rc;
2258
2259 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2260 if (cmd == NULL)
2261 return -ENOMEM;
2262
2263 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_FINALIZE_JOIN);
2264 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2265 cmd->sleep_interval = cpu_to_le32(dtim ? dtim : 1);
2266
2267 payload_len = framelen - ieee80211_hdrlen(payload->frame_control);
2268 if (payload_len < 0)
2269 payload_len = 0;
2270 else if (payload_len > MWL8K_FJ_BEACON_MAXLEN)
2271 payload_len = MWL8K_FJ_BEACON_MAXLEN;
2272
2273 memcpy(cmd->beacon_data, &payload->u.beacon, payload_len);
2274
2275 rc = mwl8k_post_cmd(hw, &cmd->header);
2276 kfree(cmd);
2277
2278 return rc;
2279 }
2280
2281 /*
2282 * CMD_SET_RTS_THRESHOLD.
2283 */
2284 struct mwl8k_cmd_set_rts_threshold {
2285 struct mwl8k_cmd_pkt header;
2286 __le16 action;
2287 __le16 threshold;
2288 } __attribute__((packed));
2289
2290 static int mwl8k_cmd_set_rts_threshold(struct ieee80211_hw *hw,
2291 u16 action, u16 threshold)
2292 {
2293 struct mwl8k_cmd_set_rts_threshold *cmd;
2294 int rc;
2295
2296 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2297 if (cmd == NULL)
2298 return -ENOMEM;
2299
2300 cmd->header.code = cpu_to_le16(MWL8K_CMD_RTS_THRESHOLD);
2301 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2302 cmd->action = cpu_to_le16(action);
2303 cmd->threshold = cpu_to_le16(threshold);
2304
2305 rc = mwl8k_post_cmd(hw, &cmd->header);
2306 kfree(cmd);
2307
2308 return rc;
2309 }
2310
2311 /*
2312 * CMD_SET_SLOT.
2313 */
2314 struct mwl8k_cmd_set_slot {
2315 struct mwl8k_cmd_pkt header;
2316 __le16 action;
2317 __u8 short_slot;
2318 } __attribute__((packed));
2319
2320 static int mwl8k_cmd_set_slot(struct ieee80211_hw *hw, bool short_slot_time)
2321 {
2322 struct mwl8k_cmd_set_slot *cmd;
2323 int rc;
2324
2325 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2326 if (cmd == NULL)
2327 return -ENOMEM;
2328
2329 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_SLOT);
2330 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2331 cmd->action = cpu_to_le16(MWL8K_CMD_SET);
2332 cmd->short_slot = short_slot_time;
2333
2334 rc = mwl8k_post_cmd(hw, &cmd->header);
2335 kfree(cmd);
2336
2337 return rc;
2338 }
2339
2340 /*
2341 * CMD_SET_EDCA_PARAMS.
2342 */
2343 struct mwl8k_cmd_set_edca_params {
2344 struct mwl8k_cmd_pkt header;
2345
2346 /* See MWL8K_SET_EDCA_XXX below */
2347 __le16 action;
2348
2349 /* TX opportunity in units of 32 us */
2350 __le16 txop;
2351
2352 union {
2353 struct {
2354 /* Log exponent of max contention period: 0...15 */
2355 __le32 log_cw_max;
2356
2357 /* Log exponent of min contention period: 0...15 */
2358 __le32 log_cw_min;
2359
2360 /* Adaptive interframe spacing in units of 32us */
2361 __u8 aifs;
2362
2363 /* TX queue to configure */
2364 __u8 txq;
2365 } ap;
2366 struct {
2367 /* Log exponent of max contention period: 0...15 */
2368 __u8 log_cw_max;
2369
2370 /* Log exponent of min contention period: 0...15 */
2371 __u8 log_cw_min;
2372
2373 /* Adaptive interframe spacing in units of 32us */
2374 __u8 aifs;
2375
2376 /* TX queue to configure */
2377 __u8 txq;
2378 } sta;
2379 };
2380 } __attribute__((packed));
2381
2382 #define MWL8K_SET_EDCA_CW 0x01
2383 #define MWL8K_SET_EDCA_TXOP 0x02
2384 #define MWL8K_SET_EDCA_AIFS 0x04
2385
2386 #define MWL8K_SET_EDCA_ALL (MWL8K_SET_EDCA_CW | \
2387 MWL8K_SET_EDCA_TXOP | \
2388 MWL8K_SET_EDCA_AIFS)
2389
2390 static int
2391 mwl8k_cmd_set_edca_params(struct ieee80211_hw *hw, __u8 qnum,
2392 __u16 cw_min, __u16 cw_max,
2393 __u8 aifs, __u16 txop)
2394 {
2395 struct mwl8k_priv *priv = hw->priv;
2396 struct mwl8k_cmd_set_edca_params *cmd;
2397 int rc;
2398
2399 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2400 if (cmd == NULL)
2401 return -ENOMEM;
2402
2403 /*
2404 * Queues 0 (BE) and 1 (BK) are swapped in hardware for
2405 * this call.
2406 */
2407 qnum ^= !(qnum >> 1);
2408
2409 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_EDCA_PARAMS);
2410 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2411 cmd->action = cpu_to_le16(MWL8K_SET_EDCA_ALL);
2412 cmd->txop = cpu_to_le16(txop);
2413 if (priv->ap_fw) {
2414 cmd->ap.log_cw_max = cpu_to_le32(ilog2(cw_max + 1));
2415 cmd->ap.log_cw_min = cpu_to_le32(ilog2(cw_min + 1));
2416 cmd->ap.aifs = aifs;
2417 cmd->ap.txq = qnum;
2418 } else {
2419 cmd->sta.log_cw_max = (u8)ilog2(cw_max + 1);
2420 cmd->sta.log_cw_min = (u8)ilog2(cw_min + 1);
2421 cmd->sta.aifs = aifs;
2422 cmd->sta.txq = qnum;
2423 }
2424
2425 rc = mwl8k_post_cmd(hw, &cmd->header);
2426 kfree(cmd);
2427
2428 return rc;
2429 }
2430
2431 /*
2432 * CMD_SET_WMM_MODE.
2433 */
2434 struct mwl8k_cmd_set_wmm_mode {
2435 struct mwl8k_cmd_pkt header;
2436 __le16 action;
2437 } __attribute__((packed));
2438
2439 static int mwl8k_cmd_set_wmm_mode(struct ieee80211_hw *hw, bool enable)
2440 {
2441 struct mwl8k_priv *priv = hw->priv;
2442 struct mwl8k_cmd_set_wmm_mode *cmd;
2443 int rc;
2444
2445 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2446 if (cmd == NULL)
2447 return -ENOMEM;
2448
2449 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_WMM_MODE);
2450 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2451 cmd->action = cpu_to_le16(!!enable);
2452
2453 rc = mwl8k_post_cmd(hw, &cmd->header);
2454 kfree(cmd);
2455
2456 if (!rc)
2457 priv->wmm_enabled = enable;
2458
2459 return rc;
2460 }
2461
2462 /*
2463 * CMD_MIMO_CONFIG.
2464 */
2465 struct mwl8k_cmd_mimo_config {
2466 struct mwl8k_cmd_pkt header;
2467 __le32 action;
2468 __u8 rx_antenna_map;
2469 __u8 tx_antenna_map;
2470 } __attribute__((packed));
2471
2472 static int mwl8k_cmd_mimo_config(struct ieee80211_hw *hw, __u8 rx, __u8 tx)
2473 {
2474 struct mwl8k_cmd_mimo_config *cmd;
2475 int rc;
2476
2477 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2478 if (cmd == NULL)
2479 return -ENOMEM;
2480
2481 cmd->header.code = cpu_to_le16(MWL8K_CMD_MIMO_CONFIG);
2482 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2483 cmd->action = cpu_to_le32((u32)MWL8K_CMD_SET);
2484 cmd->rx_antenna_map = rx;
2485 cmd->tx_antenna_map = tx;
2486
2487 rc = mwl8k_post_cmd(hw, &cmd->header);
2488 kfree(cmd);
2489
2490 return rc;
2491 }
2492
2493 /*
2494 * CMD_USE_FIXED_RATE.
2495 */
2496 #define MWL8K_RATE_TABLE_SIZE 8
2497 #define MWL8K_UCAST_RATE 0
2498 #define MWL8K_USE_AUTO_RATE 0x0002
2499
2500 struct mwl8k_rate_entry {
2501 /* Set to 1 if HT rate, 0 if legacy. */
2502 __le32 is_ht_rate;
2503
2504 /* Set to 1 to use retry_count field. */
2505 __le32 enable_retry;
2506
2507 /* Specified legacy rate or MCS. */
2508 __le32 rate;
2509
2510 /* Number of allowed retries. */
2511 __le32 retry_count;
2512 } __attribute__((packed));
2513
2514 struct mwl8k_rate_table {
2515 /* 1 to allow specified rate and below */
2516 __le32 allow_rate_drop;
2517 __le32 num_rates;
2518 struct mwl8k_rate_entry rate_entry[MWL8K_RATE_TABLE_SIZE];
2519 } __attribute__((packed));
2520
2521 struct mwl8k_cmd_use_fixed_rate {
2522 struct mwl8k_cmd_pkt header;
2523 __le32 action;
2524 struct mwl8k_rate_table rate_table;
2525
2526 /* Unicast, Broadcast or Multicast */
2527 __le32 rate_type;
2528 __le32 reserved1;
2529 __le32 reserved2;
2530 } __attribute__((packed));
2531
2532 static int mwl8k_cmd_use_fixed_rate(struct ieee80211_hw *hw,
2533 u32 action, u32 rate_type, struct mwl8k_rate_table *rate_table)
2534 {
2535 struct mwl8k_cmd_use_fixed_rate *cmd;
2536 int count;
2537 int rc;
2538
2539 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2540 if (cmd == NULL)
2541 return -ENOMEM;
2542
2543 cmd->header.code = cpu_to_le16(MWL8K_CMD_USE_FIXED_RATE);
2544 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2545
2546 cmd->action = cpu_to_le32(action);
2547 cmd->rate_type = cpu_to_le32(rate_type);
2548
2549 if (rate_table != NULL) {
2550 /*
2551 * Copy over each field manually so that endian
2552 * conversion can be done.
2553 */
2554 cmd->rate_table.allow_rate_drop =
2555 cpu_to_le32(rate_table->allow_rate_drop);
2556 cmd->rate_table.num_rates =
2557 cpu_to_le32(rate_table->num_rates);
2558
2559 for (count = 0; count < rate_table->num_rates; count++) {
2560 struct mwl8k_rate_entry *dst =
2561 &cmd->rate_table.rate_entry[count];
2562 struct mwl8k_rate_entry *src =
2563 &rate_table->rate_entry[count];
2564
2565 dst->is_ht_rate = cpu_to_le32(src->is_ht_rate);
2566 dst->enable_retry = cpu_to_le32(src->enable_retry);
2567 dst->rate = cpu_to_le32(src->rate);
2568 dst->retry_count = cpu_to_le32(src->retry_count);
2569 }
2570 }
2571
2572 rc = mwl8k_post_cmd(hw, &cmd->header);
2573 kfree(cmd);
2574
2575 return rc;
2576 }
2577
2578 /*
2579 * CMD_ENABLE_SNIFFER.
2580 */
2581 struct mwl8k_cmd_enable_sniffer {
2582 struct mwl8k_cmd_pkt header;
2583 __le32 action;
2584 } __attribute__((packed));
2585
2586 static int mwl8k_cmd_enable_sniffer(struct ieee80211_hw *hw, bool enable)
2587 {
2588 struct mwl8k_cmd_enable_sniffer *cmd;
2589 int rc;
2590
2591 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2592 if (cmd == NULL)
2593 return -ENOMEM;
2594
2595 cmd->header.code = cpu_to_le16(MWL8K_CMD_ENABLE_SNIFFER);
2596 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2597 cmd->action = cpu_to_le32(!!enable);
2598
2599 rc = mwl8k_post_cmd(hw, &cmd->header);
2600 kfree(cmd);
2601
2602 return rc;
2603 }
2604
2605 /*
2606 * CMD_SET_MAC_ADDR.
2607 */
2608 struct mwl8k_cmd_set_mac_addr {
2609 struct mwl8k_cmd_pkt header;
2610 union {
2611 struct {
2612 __le16 mac_type;
2613 __u8 mac_addr[ETH_ALEN];
2614 } mbss;
2615 __u8 mac_addr[ETH_ALEN];
2616 };
2617 } __attribute__((packed));
2618
2619 static int mwl8k_cmd_set_mac_addr(struct ieee80211_hw *hw, u8 *mac)
2620 {
2621 struct mwl8k_priv *priv = hw->priv;
2622 struct mwl8k_cmd_set_mac_addr *cmd;
2623 int rc;
2624
2625 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2626 if (cmd == NULL)
2627 return -ENOMEM;
2628
2629 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_MAC_ADDR);
2630 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2631 if (priv->ap_fw) {
2632 cmd->mbss.mac_type = 0;
2633 memcpy(cmd->mbss.mac_addr, mac, ETH_ALEN);
2634 } else {
2635 memcpy(cmd->mac_addr, mac, ETH_ALEN);
2636 }
2637
2638 rc = mwl8k_post_cmd(hw, &cmd->header);
2639 kfree(cmd);
2640
2641 return rc;
2642 }
2643
2644 /*
2645 * CMD_SET_RATEADAPT_MODE.
2646 */
2647 struct mwl8k_cmd_set_rate_adapt_mode {
2648 struct mwl8k_cmd_pkt header;
2649 __le16 action;
2650 __le16 mode;
2651 } __attribute__((packed));
2652
2653 static int mwl8k_cmd_set_rateadapt_mode(struct ieee80211_hw *hw, __u16 mode)
2654 {
2655 struct mwl8k_cmd_set_rate_adapt_mode *cmd;
2656 int rc;
2657
2658 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2659 if (cmd == NULL)
2660 return -ENOMEM;
2661
2662 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_RATEADAPT_MODE);
2663 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2664 cmd->action = cpu_to_le16(MWL8K_CMD_SET);
2665 cmd->mode = cpu_to_le16(mode);
2666
2667 rc = mwl8k_post_cmd(hw, &cmd->header);
2668 kfree(cmd);
2669
2670 return rc;
2671 }
2672
2673 /*
2674 * CMD_UPDATE_STADB.
2675 */
2676 struct ewc_ht_info {
2677 __le16 control1;
2678 __le16 control2;
2679 __le16 control3;
2680 } __attribute__((packed));
2681
2682 struct peer_capability_info {
2683 /* Peer type - AP vs. STA. */
2684 __u8 peer_type;
2685
2686 /* Basic 802.11 capabilities from assoc resp. */
2687 __le16 basic_caps;
2688
2689 /* Set if peer supports 802.11n high throughput (HT). */
2690 __u8 ht_support;
2691
2692 /* Valid if HT is supported. */
2693 __le16 ht_caps;
2694 __u8 extended_ht_caps;
2695 struct ewc_ht_info ewc_info;
2696
2697 /* Legacy rate table. Intersection of our rates and peer rates. */
2698 __u8 legacy_rates[12];
2699
2700 /* HT rate table. Intersection of our rates and peer rates. */
2701 __u8 ht_rates[16];
2702 __u8 pad[16];
2703
2704 /* If set, interoperability mode, no proprietary extensions. */
2705 __u8 interop;
2706 __u8 pad2;
2707 __u8 station_id;
2708 __le16 amsdu_enabled;
2709 } __attribute__((packed));
2710
2711 struct mwl8k_cmd_update_stadb {
2712 struct mwl8k_cmd_pkt header;
2713
2714 /* See STADB_ACTION_TYPE */
2715 __le32 action;
2716
2717 /* Peer MAC address */
2718 __u8 peer_addr[ETH_ALEN];
2719
2720 __le32 reserved;
2721
2722 /* Peer info - valid during add/update. */
2723 struct peer_capability_info peer_info;
2724 } __attribute__((packed));
2725
2726 #define MWL8K_STA_DB_MODIFY_ENTRY 1
2727 #define MWL8K_STA_DB_DEL_ENTRY 2
2728
2729 /* Peer Entry flags - used to define the type of the peer node */
2730 #define MWL8K_PEER_TYPE_ACCESSPOINT 2
2731
2732 static int mwl8k_cmd_update_stadb_add(struct ieee80211_hw *hw,
2733 struct ieee80211_vif *vif,
2734 struct ieee80211_sta *sta)
2735 {
2736 struct mwl8k_cmd_update_stadb *cmd;
2737 struct peer_capability_info *p;
2738 int rc;
2739
2740 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2741 if (cmd == NULL)
2742 return -ENOMEM;
2743
2744 cmd->header.code = cpu_to_le16(MWL8K_CMD_UPDATE_STADB);
2745 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2746 cmd->action = cpu_to_le32(MWL8K_STA_DB_MODIFY_ENTRY);
2747 memcpy(cmd->peer_addr, sta->addr, ETH_ALEN);
2748
2749 p = &cmd->peer_info;
2750 p->peer_type = MWL8K_PEER_TYPE_ACCESSPOINT;
2751 p->basic_caps = cpu_to_le16(vif->bss_conf.assoc_capability);
2752 p->ht_support = sta->ht_cap.ht_supported;
2753 p->ht_caps = sta->ht_cap.cap;
2754 p->extended_ht_caps = (sta->ht_cap.ampdu_factor & 3) |
2755 ((sta->ht_cap.ampdu_density & 7) << 2);
2756 legacy_rate_mask_to_array(p->legacy_rates,
2757 sta->supp_rates[IEEE80211_BAND_2GHZ]);
2758 memcpy(p->ht_rates, sta->ht_cap.mcs.rx_mask, 16);
2759 p->interop = 1;
2760 p->amsdu_enabled = 0;
2761
2762 rc = mwl8k_post_cmd(hw, &cmd->header);
2763 kfree(cmd);
2764
2765 return rc ? rc : p->station_id;
2766 }
2767
2768 static int mwl8k_cmd_update_stadb_del(struct ieee80211_hw *hw,
2769 struct ieee80211_vif *vif, u8 *addr)
2770 {
2771 struct mwl8k_cmd_update_stadb *cmd;
2772 int rc;
2773
2774 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2775 if (cmd == NULL)
2776 return -ENOMEM;
2777
2778 cmd->header.code = cpu_to_le16(MWL8K_CMD_UPDATE_STADB);
2779 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2780 cmd->action = cpu_to_le32(MWL8K_STA_DB_DEL_ENTRY);
2781 memcpy(cmd->peer_addr, addr, ETH_ALEN);
2782
2783 rc = mwl8k_post_cmd(hw, &cmd->header);
2784 kfree(cmd);
2785
2786 return rc;
2787 }
2788
2789
2790 /*
2791 * Interrupt handling.
2792 */
2793 static irqreturn_t mwl8k_interrupt(int irq, void *dev_id)
2794 {
2795 struct ieee80211_hw *hw = dev_id;
2796 struct mwl8k_priv *priv = hw->priv;
2797 u32 status;
2798
2799 status = ioread32(priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS);
2800 iowrite32(~status, priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS);
2801
2802 if (!status)
2803 return IRQ_NONE;
2804
2805 if (status & MWL8K_A2H_INT_TX_DONE)
2806 tasklet_schedule(&priv->tx_reclaim_task);
2807
2808 if (status & MWL8K_A2H_INT_RX_READY) {
2809 while (rxq_process(hw, 0, 1))
2810 rxq_refill(hw, 0, 1);
2811 }
2812
2813 if (status & MWL8K_A2H_INT_OPC_DONE) {
2814 if (priv->hostcmd_wait != NULL)
2815 complete(priv->hostcmd_wait);
2816 }
2817
2818 if (status & MWL8K_A2H_INT_QUEUE_EMPTY) {
2819 if (!mutex_is_locked(&priv->fw_mutex) &&
2820 priv->radio_on && priv->pending_tx_pkts)
2821 mwl8k_tx_start(priv);
2822 }
2823
2824 return IRQ_HANDLED;
2825 }
2826
2827
2828 /*
2829 * Core driver operations.
2830 */
2831 static int mwl8k_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
2832 {
2833 struct mwl8k_priv *priv = hw->priv;
2834 int index = skb_get_queue_mapping(skb);
2835 int rc;
2836
2837 if (priv->current_channel == NULL) {
2838 printk(KERN_DEBUG "%s: dropped TX frame since radio "
2839 "disabled\n", wiphy_name(hw->wiphy));
2840 dev_kfree_skb(skb);
2841 return NETDEV_TX_OK;
2842 }
2843
2844 rc = mwl8k_txq_xmit(hw, index, skb);
2845
2846 return rc;
2847 }
2848
2849 static int mwl8k_start(struct ieee80211_hw *hw)
2850 {
2851 struct mwl8k_priv *priv = hw->priv;
2852 int rc;
2853
2854 rc = request_irq(priv->pdev->irq, mwl8k_interrupt,
2855 IRQF_SHARED, MWL8K_NAME, hw);
2856 if (rc) {
2857 printk(KERN_ERR "%s: failed to register IRQ handler\n",
2858 wiphy_name(hw->wiphy));
2859 return -EIO;
2860 }
2861
2862 /* Enable tx reclaim tasklet */
2863 tasklet_enable(&priv->tx_reclaim_task);
2864
2865 /* Enable interrupts */
2866 iowrite32(MWL8K_A2H_EVENTS, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
2867
2868 rc = mwl8k_fw_lock(hw);
2869 if (!rc) {
2870 rc = mwl8k_cmd_radio_enable(hw);
2871
2872 if (!priv->ap_fw) {
2873 if (!rc)
2874 rc = mwl8k_cmd_enable_sniffer(hw, 0);
2875
2876 if (!rc)
2877 rc = mwl8k_cmd_set_pre_scan(hw);
2878
2879 if (!rc)
2880 rc = mwl8k_cmd_set_post_scan(hw,
2881 "\x00\x00\x00\x00\x00\x00");
2882 }
2883
2884 if (!rc)
2885 rc = mwl8k_cmd_set_rateadapt_mode(hw, 0);
2886
2887 if (!rc)
2888 rc = mwl8k_cmd_set_wmm_mode(hw, 0);
2889
2890 mwl8k_fw_unlock(hw);
2891 }
2892
2893 if (rc) {
2894 iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
2895 free_irq(priv->pdev->irq, hw);
2896 tasklet_disable(&priv->tx_reclaim_task);
2897 }
2898
2899 return rc;
2900 }
2901
2902 static void mwl8k_stop(struct ieee80211_hw *hw)
2903 {
2904 struct mwl8k_priv *priv = hw->priv;
2905 int i;
2906
2907 mwl8k_cmd_radio_disable(hw);
2908
2909 ieee80211_stop_queues(hw);
2910
2911 /* Disable interrupts */
2912 iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
2913 free_irq(priv->pdev->irq, hw);
2914
2915 /* Stop finalize join worker */
2916 cancel_work_sync(&priv->finalize_join_worker);
2917 if (priv->beacon_skb != NULL)
2918 dev_kfree_skb(priv->beacon_skb);
2919
2920 /* Stop tx reclaim tasklet */
2921 tasklet_disable(&priv->tx_reclaim_task);
2922
2923 /* Return all skbs to mac80211 */
2924 for (i = 0; i < MWL8K_TX_QUEUES; i++)
2925 mwl8k_txq_reclaim(hw, i, 1);
2926 }
2927
2928 static int mwl8k_add_interface(struct ieee80211_hw *hw,
2929 struct ieee80211_vif *vif)
2930 {
2931 struct mwl8k_priv *priv = hw->priv;
2932 struct mwl8k_vif *mwl8k_vif;
2933
2934 /*
2935 * We only support one active interface at a time.
2936 */
2937 if (priv->vif != NULL)
2938 return -EBUSY;
2939
2940 /*
2941 * We only support managed interfaces for now.
2942 */
2943 if (vif->type != NL80211_IFTYPE_STATION)
2944 return -EINVAL;
2945
2946 /*
2947 * Reject interface creation if sniffer mode is active, as
2948 * STA operation is mutually exclusive with hardware sniffer
2949 * mode.
2950 */
2951 if (priv->sniffer_enabled) {
2952 printk(KERN_INFO "%s: unable to create STA "
2953 "interface due to sniffer mode being enabled\n",
2954 wiphy_name(hw->wiphy));
2955 return -EINVAL;
2956 }
2957
2958 /* Clean out driver private area */
2959 mwl8k_vif = MWL8K_VIF(vif);
2960 memset(mwl8k_vif, 0, sizeof(*mwl8k_vif));
2961
2962 /* Set and save the mac address */
2963 mwl8k_cmd_set_mac_addr(hw, vif->addr);
2964 memcpy(mwl8k_vif->mac_addr, vif->addr, ETH_ALEN);
2965
2966 /* Set Initial sequence number to zero */
2967 mwl8k_vif->seqno = 0;
2968
2969 priv->vif = vif;
2970 priv->current_channel = NULL;
2971
2972 return 0;
2973 }
2974
2975 static void mwl8k_remove_interface(struct ieee80211_hw *hw,
2976 struct ieee80211_vif *vif)
2977 {
2978 struct mwl8k_priv *priv = hw->priv;
2979
2980 if (priv->vif == NULL)
2981 return;
2982
2983 mwl8k_cmd_set_mac_addr(hw, "\x00\x00\x00\x00\x00\x00");
2984
2985 priv->vif = NULL;
2986 }
2987
2988 static int mwl8k_config(struct ieee80211_hw *hw, u32 changed)
2989 {
2990 struct ieee80211_conf *conf = &hw->conf;
2991 struct mwl8k_priv *priv = hw->priv;
2992 int rc;
2993
2994 if (conf->flags & IEEE80211_CONF_IDLE) {
2995 mwl8k_cmd_radio_disable(hw);
2996 priv->current_channel = NULL;
2997 return 0;
2998 }
2999
3000 rc = mwl8k_fw_lock(hw);
3001 if (rc)
3002 return rc;
3003
3004 rc = mwl8k_cmd_radio_enable(hw);
3005 if (rc)
3006 goto out;
3007
3008 rc = mwl8k_cmd_set_rf_channel(hw, conf);
3009 if (rc)
3010 goto out;
3011
3012 priv->current_channel = conf->channel;
3013
3014 if (conf->power_level > 18)
3015 conf->power_level = 18;
3016 rc = mwl8k_cmd_rf_tx_power(hw, conf->power_level);
3017 if (rc)
3018 goto out;
3019
3020 if (priv->ap_fw) {
3021 rc = mwl8k_cmd_rf_antenna(hw, MWL8K_RF_ANTENNA_RX, 0x7);
3022 if (!rc)
3023 rc = mwl8k_cmd_rf_antenna(hw, MWL8K_RF_ANTENNA_TX, 0x7);
3024 } else {
3025 rc = mwl8k_cmd_mimo_config(hw, 0x7, 0x7);
3026 }
3027
3028 out:
3029 mwl8k_fw_unlock(hw);
3030
3031 return rc;
3032 }
3033
3034 static void mwl8k_bss_info_changed(struct ieee80211_hw *hw,
3035 struct ieee80211_vif *vif,
3036 struct ieee80211_bss_conf *info,
3037 u32 changed)
3038 {
3039 struct mwl8k_priv *priv = hw->priv;
3040 u32 ap_legacy_rates;
3041 u8 ap_mcs_rates[16];
3042 int rc;
3043
3044 if (mwl8k_fw_lock(hw))
3045 return;
3046
3047 /*
3048 * No need to capture a beacon if we're no longer associated.
3049 */
3050 if ((changed & BSS_CHANGED_ASSOC) && !vif->bss_conf.assoc)
3051 priv->capture_beacon = false;
3052
3053 /*
3054 * Get the AP's legacy and MCS rates.
3055 */
3056 ap_legacy_rates = 0;
3057 if (vif->bss_conf.assoc) {
3058 struct ieee80211_sta *ap;
3059 rcu_read_lock();
3060
3061 ap = ieee80211_find_sta(vif, vif->bss_conf.bssid);
3062 if (ap == NULL) {
3063 rcu_read_unlock();
3064 goto out;
3065 }
3066
3067 ap_legacy_rates = ap->supp_rates[IEEE80211_BAND_2GHZ];
3068 memcpy(ap_mcs_rates, ap->ht_cap.mcs.rx_mask, 16);
3069
3070 rcu_read_unlock();
3071 }
3072
3073 if ((changed & BSS_CHANGED_ASSOC) && vif->bss_conf.assoc) {
3074 rc = mwl8k_cmd_set_rate(hw, vif, ap_legacy_rates, ap_mcs_rates);
3075 if (rc)
3076 goto out;
3077
3078 rc = mwl8k_cmd_use_fixed_rate(hw, MWL8K_USE_AUTO_RATE,
3079 MWL8K_UCAST_RATE, NULL);
3080 if (rc)
3081 goto out;
3082 }
3083
3084 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
3085 rc = mwl8k_set_radio_preamble(hw,
3086 vif->bss_conf.use_short_preamble);
3087 if (rc)
3088 goto out;
3089 }
3090
3091 if (changed & BSS_CHANGED_ERP_SLOT) {
3092 rc = mwl8k_cmd_set_slot(hw, vif->bss_conf.use_short_slot);
3093 if (rc)
3094 goto out;
3095 }
3096
3097 if (((changed & BSS_CHANGED_ASSOC) && vif->bss_conf.assoc) ||
3098 (changed & (BSS_CHANGED_ERP_CTS_PROT | BSS_CHANGED_HT))) {
3099 rc = mwl8k_cmd_set_aid(hw, vif, ap_legacy_rates);
3100 if (rc)
3101 goto out;
3102 }
3103
3104 if (vif->bss_conf.assoc &&
3105 (changed & (BSS_CHANGED_ASSOC | BSS_CHANGED_BEACON_INT))) {
3106 /*
3107 * Finalize the join. Tell rx handler to process
3108 * next beacon from our BSSID.
3109 */
3110 memcpy(priv->capture_bssid, vif->bss_conf.bssid, ETH_ALEN);
3111 priv->capture_beacon = true;
3112 }
3113
3114 out:
3115 mwl8k_fw_unlock(hw);
3116 }
3117
3118 static u64 mwl8k_prepare_multicast(struct ieee80211_hw *hw,
3119 int mc_count, struct dev_addr_list *mclist)
3120 {
3121 struct mwl8k_cmd_pkt *cmd;
3122
3123 /*
3124 * Synthesize and return a command packet that programs the
3125 * hardware multicast address filter. At this point we don't
3126 * know whether FIF_ALLMULTI is being requested, but if it is,
3127 * we'll end up throwing this packet away and creating a new
3128 * one in mwl8k_configure_filter().
3129 */
3130 cmd = __mwl8k_cmd_mac_multicast_adr(hw, 0, mc_count, mclist);
3131
3132 return (unsigned long)cmd;
3133 }
3134
3135 static int
3136 mwl8k_configure_filter_sniffer(struct ieee80211_hw *hw,
3137 unsigned int changed_flags,
3138 unsigned int *total_flags)
3139 {
3140 struct mwl8k_priv *priv = hw->priv;
3141
3142 /*
3143 * Hardware sniffer mode is mutually exclusive with STA
3144 * operation, so refuse to enable sniffer mode if a STA
3145 * interface is active.
3146 */
3147 if (priv->vif != NULL) {
3148 if (net_ratelimit())
3149 printk(KERN_INFO "%s: not enabling sniffer "
3150 "mode because STA interface is active\n",
3151 wiphy_name(hw->wiphy));
3152 return 0;
3153 }
3154
3155 if (!priv->sniffer_enabled) {
3156 if (mwl8k_cmd_enable_sniffer(hw, 1))
3157 return 0;
3158 priv->sniffer_enabled = true;
3159 }
3160
3161 *total_flags &= FIF_PROMISC_IN_BSS | FIF_ALLMULTI |
3162 FIF_BCN_PRBRESP_PROMISC | FIF_CONTROL |
3163 FIF_OTHER_BSS;
3164
3165 return 1;
3166 }
3167
3168 static void mwl8k_configure_filter(struct ieee80211_hw *hw,
3169 unsigned int changed_flags,
3170 unsigned int *total_flags,
3171 u64 multicast)
3172 {
3173 struct mwl8k_priv *priv = hw->priv;
3174 struct mwl8k_cmd_pkt *cmd = (void *)(unsigned long)multicast;
3175
3176 /*
3177 * AP firmware doesn't allow fine-grained control over
3178 * the receive filter.
3179 */
3180 if (priv->ap_fw) {
3181 *total_flags &= FIF_ALLMULTI | FIF_BCN_PRBRESP_PROMISC;
3182 kfree(cmd);
3183 return;
3184 }
3185
3186 /*
3187 * Enable hardware sniffer mode if FIF_CONTROL or
3188 * FIF_OTHER_BSS is requested.
3189 */
3190 if (*total_flags & (FIF_CONTROL | FIF_OTHER_BSS) &&
3191 mwl8k_configure_filter_sniffer(hw, changed_flags, total_flags)) {
3192 kfree(cmd);
3193 return;
3194 }
3195
3196 /* Clear unsupported feature flags */
3197 *total_flags &= FIF_ALLMULTI | FIF_BCN_PRBRESP_PROMISC;
3198
3199 if (mwl8k_fw_lock(hw)) {
3200 kfree(cmd);
3201 return;
3202 }
3203
3204 if (priv->sniffer_enabled) {
3205 mwl8k_cmd_enable_sniffer(hw, 0);
3206 priv->sniffer_enabled = false;
3207 }
3208
3209 if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
3210 if (*total_flags & FIF_BCN_PRBRESP_PROMISC) {
3211 /*
3212 * Disable the BSS filter.
3213 */
3214 mwl8k_cmd_set_pre_scan(hw);
3215 } else {
3216 const u8 *bssid;
3217
3218 /*
3219 * Enable the BSS filter.
3220 *
3221 * If there is an active STA interface, use that
3222 * interface's BSSID, otherwise use a dummy one
3223 * (where the OUI part needs to be nonzero for
3224 * the BSSID to be accepted by POST_SCAN).
3225 */
3226 bssid = "\x01\x00\x00\x00\x00\x00";
3227 if (priv->vif != NULL)
3228 bssid = priv->vif->bss_conf.bssid;
3229
3230 mwl8k_cmd_set_post_scan(hw, bssid);
3231 }
3232 }
3233
3234 /*
3235 * If FIF_ALLMULTI is being requested, throw away the command
3236 * packet that ->prepare_multicast() built and replace it with
3237 * a command packet that enables reception of all multicast
3238 * packets.
3239 */
3240 if (*total_flags & FIF_ALLMULTI) {
3241 kfree(cmd);
3242 cmd = __mwl8k_cmd_mac_multicast_adr(hw, 1, 0, NULL);
3243 }
3244
3245 if (cmd != NULL) {
3246 mwl8k_post_cmd(hw, cmd);
3247 kfree(cmd);
3248 }
3249
3250 mwl8k_fw_unlock(hw);
3251 }
3252
3253 static int mwl8k_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
3254 {
3255 return mwl8k_cmd_set_rts_threshold(hw, MWL8K_CMD_SET, value);
3256 }
3257
3258 struct mwl8k_sta_notify_item
3259 {
3260 struct list_head list;
3261 struct ieee80211_vif *vif;
3262 enum sta_notify_cmd cmd;
3263 struct ieee80211_sta sta;
3264 };
3265
3266 static void mwl8k_sta_notify_worker(struct work_struct *work)
3267 {
3268 struct mwl8k_priv *priv =
3269 container_of(work, struct mwl8k_priv, sta_notify_worker);
3270 struct ieee80211_hw *hw = priv->hw;
3271
3272 spin_lock_bh(&priv->sta_notify_list_lock);
3273 while (!list_empty(&priv->sta_notify_list)) {
3274 struct mwl8k_sta_notify_item *s;
3275
3276 s = list_entry(priv->sta_notify_list.next,
3277 struct mwl8k_sta_notify_item, list);
3278 list_del(&s->list);
3279
3280 spin_unlock_bh(&priv->sta_notify_list_lock);
3281
3282 if (s->cmd == STA_NOTIFY_ADD) {
3283 int rc;
3284
3285 rc = mwl8k_cmd_update_stadb_add(hw, s->vif, &s->sta);
3286 if (rc >= 0) {
3287 struct ieee80211_sta *sta;
3288
3289 rcu_read_lock();
3290 sta = ieee80211_find_sta(s->vif, s->sta.addr);
3291 if (sta != NULL)
3292 MWL8K_STA(sta)->peer_id = rc;
3293 rcu_read_unlock();
3294 }
3295 } else {
3296 mwl8k_cmd_update_stadb_del(hw, s->vif, s->sta.addr);
3297 }
3298
3299 kfree(s);
3300
3301 spin_lock_bh(&priv->sta_notify_list_lock);
3302 }
3303 spin_unlock_bh(&priv->sta_notify_list_lock);
3304 }
3305
3306 static void
3307 mwl8k_sta_notify(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
3308 enum sta_notify_cmd cmd, struct ieee80211_sta *sta)
3309 {
3310 struct mwl8k_priv *priv = hw->priv;
3311 struct mwl8k_sta_notify_item *s;
3312
3313 if (cmd != STA_NOTIFY_ADD && cmd != STA_NOTIFY_REMOVE)
3314 return;
3315
3316 s = kmalloc(sizeof(*s), GFP_ATOMIC);
3317 if (s != NULL) {
3318 s->vif = vif;
3319 s->cmd = cmd;
3320 s->sta = *sta;
3321
3322 spin_lock(&priv->sta_notify_list_lock);
3323 list_add_tail(&s->list, &priv->sta_notify_list);
3324 spin_unlock(&priv->sta_notify_list_lock);
3325
3326 ieee80211_queue_work(hw, &priv->sta_notify_worker);
3327 }
3328 }
3329
3330 static int mwl8k_conf_tx(struct ieee80211_hw *hw, u16 queue,
3331 const struct ieee80211_tx_queue_params *params)
3332 {
3333 struct mwl8k_priv *priv = hw->priv;
3334 int rc;
3335
3336 rc = mwl8k_fw_lock(hw);
3337 if (!rc) {
3338 if (!priv->wmm_enabled)
3339 rc = mwl8k_cmd_set_wmm_mode(hw, 1);
3340
3341 if (!rc)
3342 rc = mwl8k_cmd_set_edca_params(hw, queue,
3343 params->cw_min,
3344 params->cw_max,
3345 params->aifs,
3346 params->txop);
3347
3348 mwl8k_fw_unlock(hw);
3349 }
3350
3351 return rc;
3352 }
3353
3354 static int mwl8k_get_tx_stats(struct ieee80211_hw *hw,
3355 struct ieee80211_tx_queue_stats *stats)
3356 {
3357 struct mwl8k_priv *priv = hw->priv;
3358 struct mwl8k_tx_queue *txq;
3359 int index;
3360
3361 spin_lock_bh(&priv->tx_lock);
3362 for (index = 0; index < MWL8K_TX_QUEUES; index++) {
3363 txq = priv->txq + index;
3364 memcpy(&stats[index], &txq->stats,
3365 sizeof(struct ieee80211_tx_queue_stats));
3366 }
3367 spin_unlock_bh(&priv->tx_lock);
3368
3369 return 0;
3370 }
3371
3372 static int mwl8k_get_stats(struct ieee80211_hw *hw,
3373 struct ieee80211_low_level_stats *stats)
3374 {
3375 return mwl8k_cmd_get_stat(hw, stats);
3376 }
3377
3378 static int
3379 mwl8k_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
3380 enum ieee80211_ampdu_mlme_action action,
3381 struct ieee80211_sta *sta, u16 tid, u16 *ssn)
3382 {
3383 switch (action) {
3384 case IEEE80211_AMPDU_RX_START:
3385 case IEEE80211_AMPDU_RX_STOP:
3386 if (!(hw->flags & IEEE80211_HW_AMPDU_AGGREGATION))
3387 return -ENOTSUPP;
3388 return 0;
3389 default:
3390 return -ENOTSUPP;
3391 }
3392 }
3393
3394 static const struct ieee80211_ops mwl8k_ops = {
3395 .tx = mwl8k_tx,
3396 .start = mwl8k_start,
3397 .stop = mwl8k_stop,
3398 .add_interface = mwl8k_add_interface,
3399 .remove_interface = mwl8k_remove_interface,
3400 .config = mwl8k_config,
3401 .bss_info_changed = mwl8k_bss_info_changed,
3402 .prepare_multicast = mwl8k_prepare_multicast,
3403 .configure_filter = mwl8k_configure_filter,
3404 .set_rts_threshold = mwl8k_set_rts_threshold,
3405 .sta_notify = mwl8k_sta_notify,
3406 .conf_tx = mwl8k_conf_tx,
3407 .get_tx_stats = mwl8k_get_tx_stats,
3408 .get_stats = mwl8k_get_stats,
3409 .ampdu_action = mwl8k_ampdu_action,
3410 };
3411
3412 static void mwl8k_tx_reclaim_handler(unsigned long data)
3413 {
3414 int i;
3415 struct ieee80211_hw *hw = (struct ieee80211_hw *) data;
3416 struct mwl8k_priv *priv = hw->priv;
3417
3418 spin_lock_bh(&priv->tx_lock);
3419 for (i = 0; i < MWL8K_TX_QUEUES; i++)
3420 mwl8k_txq_reclaim(hw, i, 0);
3421
3422 if (priv->tx_wait != NULL && !priv->pending_tx_pkts) {
3423 complete(priv->tx_wait);
3424 priv->tx_wait = NULL;
3425 }
3426 spin_unlock_bh(&priv->tx_lock);
3427 }
3428
3429 static void mwl8k_finalize_join_worker(struct work_struct *work)
3430 {
3431 struct mwl8k_priv *priv =
3432 container_of(work, struct mwl8k_priv, finalize_join_worker);
3433 struct sk_buff *skb = priv->beacon_skb;
3434
3435 mwl8k_cmd_finalize_join(priv->hw, skb->data, skb->len,
3436 priv->vif->bss_conf.dtim_period);
3437 dev_kfree_skb(skb);
3438
3439 priv->beacon_skb = NULL;
3440 }
3441
3442 enum {
3443 MWL8363 = 0,
3444 MWL8687,
3445 MWL8366,
3446 };
3447
3448 static struct mwl8k_device_info mwl8k_info_tbl[] __devinitdata = {
3449 [MWL8363] = {
3450 .part_name = "88w8363",
3451 .helper_image = "mwl8k/helper_8363.fw",
3452 .fw_image = "mwl8k/fmimage_8363.fw",
3453 },
3454 [MWL8687] = {
3455 .part_name = "88w8687",
3456 .helper_image = "mwl8k/helper_8687.fw",
3457 .fw_image = "mwl8k/fmimage_8687.fw",
3458 },
3459 [MWL8366] = {
3460 .part_name = "88w8366",
3461 .helper_image = "mwl8k/helper_8366.fw",
3462 .fw_image = "mwl8k/fmimage_8366.fw",
3463 .ap_rxd_ops = &rxd_8366_ap_ops,
3464 },
3465 };
3466
3467 static DEFINE_PCI_DEVICE_TABLE(mwl8k_pci_id_table) = {
3468 { PCI_VDEVICE(MARVELL, 0x2a0c), .driver_data = MWL8363, },
3469 { PCI_VDEVICE(MARVELL, 0x2a24), .driver_data = MWL8363, },
3470 { PCI_VDEVICE(MARVELL, 0x2a2b), .driver_data = MWL8687, },
3471 { PCI_VDEVICE(MARVELL, 0x2a30), .driver_data = MWL8687, },
3472 { PCI_VDEVICE(MARVELL, 0x2a40), .driver_data = MWL8366, },
3473 { },
3474 };
3475 MODULE_DEVICE_TABLE(pci, mwl8k_pci_id_table);
3476
3477 static int __devinit mwl8k_probe(struct pci_dev *pdev,
3478 const struct pci_device_id *id)
3479 {
3480 static int printed_version = 0;
3481 struct ieee80211_hw *hw;
3482 struct mwl8k_priv *priv;
3483 int rc;
3484 int i;
3485
3486 if (!printed_version) {
3487 printk(KERN_INFO "%s version %s\n", MWL8K_DESC, MWL8K_VERSION);
3488 printed_version = 1;
3489 }
3490
3491
3492 rc = pci_enable_device(pdev);
3493 if (rc) {
3494 printk(KERN_ERR "%s: Cannot enable new PCI device\n",
3495 MWL8K_NAME);
3496 return rc;
3497 }
3498
3499 rc = pci_request_regions(pdev, MWL8K_NAME);
3500 if (rc) {
3501 printk(KERN_ERR "%s: Cannot obtain PCI resources\n",
3502 MWL8K_NAME);
3503 goto err_disable_device;
3504 }
3505
3506 pci_set_master(pdev);
3507
3508
3509 hw = ieee80211_alloc_hw(sizeof(*priv), &mwl8k_ops);
3510 if (hw == NULL) {
3511 printk(KERN_ERR "%s: ieee80211 alloc failed\n", MWL8K_NAME);
3512 rc = -ENOMEM;
3513 goto err_free_reg;
3514 }
3515
3516 SET_IEEE80211_DEV(hw, &pdev->dev);
3517 pci_set_drvdata(pdev, hw);
3518
3519 priv = hw->priv;
3520 priv->hw = hw;
3521 priv->pdev = pdev;
3522 priv->device_info = &mwl8k_info_tbl[id->driver_data];
3523
3524
3525 priv->sram = pci_iomap(pdev, 0, 0x10000);
3526 if (priv->sram == NULL) {
3527 printk(KERN_ERR "%s: Cannot map device SRAM\n",
3528 wiphy_name(hw->wiphy));
3529 goto err_iounmap;
3530 }
3531
3532 /*
3533 * If BAR0 is a 32 bit BAR, the register BAR will be BAR1.
3534 * If BAR0 is a 64 bit BAR, the register BAR will be BAR2.
3535 */
3536 priv->regs = pci_iomap(pdev, 1, 0x10000);
3537 if (priv->regs == NULL) {
3538 priv->regs = pci_iomap(pdev, 2, 0x10000);
3539 if (priv->regs == NULL) {
3540 printk(KERN_ERR "%s: Cannot map device registers\n",
3541 wiphy_name(hw->wiphy));
3542 goto err_iounmap;
3543 }
3544 }
3545
3546
3547 /* Reset firmware and hardware */
3548 mwl8k_hw_reset(priv);
3549
3550 /* Ask userland hotplug daemon for the device firmware */
3551 rc = mwl8k_request_firmware(priv);
3552 if (rc) {
3553 printk(KERN_ERR "%s: Firmware files not found\n",
3554 wiphy_name(hw->wiphy));
3555 goto err_stop_firmware;
3556 }
3557
3558 /* Load firmware into hardware */
3559 rc = mwl8k_load_firmware(hw);
3560 if (rc) {
3561 printk(KERN_ERR "%s: Cannot start firmware\n",
3562 wiphy_name(hw->wiphy));
3563 goto err_stop_firmware;
3564 }
3565
3566 /* Reclaim memory once firmware is successfully loaded */
3567 mwl8k_release_firmware(priv);
3568
3569
3570 if (priv->ap_fw) {
3571 priv->rxd_ops = priv->device_info->ap_rxd_ops;
3572 if (priv->rxd_ops == NULL) {
3573 printk(KERN_ERR "%s: Driver does not have AP "
3574 "firmware image support for this hardware\n",
3575 wiphy_name(hw->wiphy));
3576 goto err_stop_firmware;
3577 }
3578 } else {
3579 priv->rxd_ops = &rxd_sta_ops;
3580 }
3581
3582 priv->sniffer_enabled = false;
3583 priv->wmm_enabled = false;
3584 priv->pending_tx_pkts = 0;
3585
3586
3587 memcpy(priv->channels, mwl8k_channels, sizeof(mwl8k_channels));
3588 priv->band.band = IEEE80211_BAND_2GHZ;
3589 priv->band.channels = priv->channels;
3590 priv->band.n_channels = ARRAY_SIZE(mwl8k_channels);
3591 priv->band.bitrates = priv->rates;
3592 priv->band.n_bitrates = ARRAY_SIZE(mwl8k_rates);
3593 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &priv->band;
3594
3595 BUILD_BUG_ON(sizeof(priv->rates) != sizeof(mwl8k_rates));
3596 memcpy(priv->rates, mwl8k_rates, sizeof(mwl8k_rates));
3597
3598 /*
3599 * Extra headroom is the size of the required DMA header
3600 * minus the size of the smallest 802.11 frame (CTS frame).
3601 */
3602 hw->extra_tx_headroom =
3603 sizeof(struct mwl8k_dma_data) - sizeof(struct ieee80211_cts);
3604
3605 hw->channel_change_time = 10;
3606
3607 hw->queues = MWL8K_TX_QUEUES;
3608
3609 /* Set rssi and noise values to dBm */
3610 hw->flags |= IEEE80211_HW_SIGNAL_DBM | IEEE80211_HW_NOISE_DBM;
3611 hw->vif_data_size = sizeof(struct mwl8k_vif);
3612 hw->sta_data_size = sizeof(struct mwl8k_sta);
3613 priv->vif = NULL;
3614
3615 /* Set default radio state and preamble */
3616 priv->radio_on = 0;
3617 priv->radio_short_preamble = 0;
3618
3619 /* Station database handling */
3620 INIT_WORK(&priv->sta_notify_worker, mwl8k_sta_notify_worker);
3621 spin_lock_init(&priv->sta_notify_list_lock);
3622 INIT_LIST_HEAD(&priv->sta_notify_list);
3623
3624 /* Finalize join worker */
3625 INIT_WORK(&priv->finalize_join_worker, mwl8k_finalize_join_worker);
3626
3627 /* TX reclaim tasklet */
3628 tasklet_init(&priv->tx_reclaim_task,
3629 mwl8k_tx_reclaim_handler, (unsigned long)hw);
3630 tasklet_disable(&priv->tx_reclaim_task);
3631
3632 /* Power management cookie */
3633 priv->cookie = pci_alloc_consistent(priv->pdev, 4, &priv->cookie_dma);
3634 if (priv->cookie == NULL)
3635 goto err_stop_firmware;
3636
3637 rc = mwl8k_rxq_init(hw, 0);
3638 if (rc)
3639 goto err_free_cookie;
3640 rxq_refill(hw, 0, INT_MAX);
3641
3642 mutex_init(&priv->fw_mutex);
3643 priv->fw_mutex_owner = NULL;
3644 priv->fw_mutex_depth = 0;
3645 priv->hostcmd_wait = NULL;
3646
3647 spin_lock_init(&priv->tx_lock);
3648
3649 priv->tx_wait = NULL;
3650
3651 for (i = 0; i < MWL8K_TX_QUEUES; i++) {
3652 rc = mwl8k_txq_init(hw, i);
3653 if (rc)
3654 goto err_free_queues;
3655 }
3656
3657 iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS);
3658 iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
3659 iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_CLEAR_SEL);
3660 iowrite32(0xffffffff, priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS_MASK);
3661
3662 rc = request_irq(priv->pdev->irq, mwl8k_interrupt,
3663 IRQF_SHARED, MWL8K_NAME, hw);
3664 if (rc) {
3665 printk(KERN_ERR "%s: failed to register IRQ handler\n",
3666 wiphy_name(hw->wiphy));
3667 goto err_free_queues;
3668 }
3669
3670 /*
3671 * Temporarily enable interrupts. Initial firmware host
3672 * commands use interrupts and avoids polling. Disable
3673 * interrupts when done.
3674 */
3675 iowrite32(MWL8K_A2H_EVENTS, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
3676
3677 /* Get config data, mac addrs etc */
3678 if (priv->ap_fw) {
3679 rc = mwl8k_cmd_get_hw_spec_ap(hw);
3680 if (!rc)
3681 rc = mwl8k_cmd_set_hw_spec(hw);
3682 } else {
3683 rc = mwl8k_cmd_get_hw_spec_sta(hw);
3684
3685 hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
3686 }
3687 if (rc) {
3688 printk(KERN_ERR "%s: Cannot initialise firmware\n",
3689 wiphy_name(hw->wiphy));
3690 goto err_free_irq;
3691 }
3692
3693 /* Turn radio off */
3694 rc = mwl8k_cmd_radio_disable(hw);
3695 if (rc) {
3696 printk(KERN_ERR "%s: Cannot disable\n", wiphy_name(hw->wiphy));
3697 goto err_free_irq;
3698 }
3699
3700 /* Clear MAC address */
3701 rc = mwl8k_cmd_set_mac_addr(hw, "\x00\x00\x00\x00\x00\x00");
3702 if (rc) {
3703 printk(KERN_ERR "%s: Cannot clear MAC address\n",
3704 wiphy_name(hw->wiphy));
3705 goto err_free_irq;
3706 }
3707
3708 /* Disable interrupts */
3709 iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
3710 free_irq(priv->pdev->irq, hw);
3711
3712 rc = ieee80211_register_hw(hw);
3713 if (rc) {
3714 printk(KERN_ERR "%s: Cannot register device\n",
3715 wiphy_name(hw->wiphy));
3716 goto err_free_queues;
3717 }
3718
3719 printk(KERN_INFO "%s: %s v%d, %pM, %s firmware %u.%u.%u.%u\n",
3720 wiphy_name(hw->wiphy), priv->device_info->part_name,
3721 priv->hw_rev, hw->wiphy->perm_addr,
3722 priv->ap_fw ? "AP" : "STA",
3723 (priv->fw_rev >> 24) & 0xff, (priv->fw_rev >> 16) & 0xff,
3724 (priv->fw_rev >> 8) & 0xff, priv->fw_rev & 0xff);
3725
3726 return 0;
3727
3728 err_free_irq:
3729 iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
3730 free_irq(priv->pdev->irq, hw);
3731
3732 err_free_queues:
3733 for (i = 0; i < MWL8K_TX_QUEUES; i++)
3734 mwl8k_txq_deinit(hw, i);
3735 mwl8k_rxq_deinit(hw, 0);
3736
3737 err_free_cookie:
3738 if (priv->cookie != NULL)
3739 pci_free_consistent(priv->pdev, 4,
3740 priv->cookie, priv->cookie_dma);
3741
3742 err_stop_firmware:
3743 mwl8k_hw_reset(priv);
3744 mwl8k_release_firmware(priv);
3745
3746 err_iounmap:
3747 if (priv->regs != NULL)
3748 pci_iounmap(pdev, priv->regs);
3749
3750 if (priv->sram != NULL)
3751 pci_iounmap(pdev, priv->sram);
3752
3753 pci_set_drvdata(pdev, NULL);
3754 ieee80211_free_hw(hw);
3755
3756 err_free_reg:
3757 pci_release_regions(pdev);
3758
3759 err_disable_device:
3760 pci_disable_device(pdev);
3761
3762 return rc;
3763 }
3764
3765 static void __devexit mwl8k_shutdown(struct pci_dev *pdev)
3766 {
3767 printk(KERN_ERR "===>%s(%u)\n", __func__, __LINE__);
3768 }
3769
3770 static void __devexit mwl8k_remove(struct pci_dev *pdev)
3771 {
3772 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
3773 struct mwl8k_priv *priv;
3774 int i;
3775
3776 if (hw == NULL)
3777 return;
3778 priv = hw->priv;
3779
3780 ieee80211_stop_queues(hw);
3781
3782 ieee80211_unregister_hw(hw);
3783
3784 /* Remove tx reclaim tasklet */
3785 tasklet_kill(&priv->tx_reclaim_task);
3786
3787 /* Stop hardware */
3788 mwl8k_hw_reset(priv);
3789
3790 /* Return all skbs to mac80211 */
3791 for (i = 0; i < MWL8K_TX_QUEUES; i++)
3792 mwl8k_txq_reclaim(hw, i, 1);
3793
3794 for (i = 0; i < MWL8K_TX_QUEUES; i++)
3795 mwl8k_txq_deinit(hw, i);
3796
3797 mwl8k_rxq_deinit(hw, 0);
3798
3799 pci_free_consistent(priv->pdev, 4, priv->cookie, priv->cookie_dma);
3800
3801 pci_iounmap(pdev, priv->regs);
3802 pci_iounmap(pdev, priv->sram);
3803 pci_set_drvdata(pdev, NULL);
3804 ieee80211_free_hw(hw);
3805 pci_release_regions(pdev);
3806 pci_disable_device(pdev);
3807 }
3808
3809 static struct pci_driver mwl8k_driver = {
3810 .name = MWL8K_NAME,
3811 .id_table = mwl8k_pci_id_table,
3812 .probe = mwl8k_probe,
3813 .remove = __devexit_p(mwl8k_remove),
3814 .shutdown = __devexit_p(mwl8k_shutdown),
3815 };
3816
3817 static int __init mwl8k_init(void)
3818 {
3819 return pci_register_driver(&mwl8k_driver);
3820 }
3821
3822 static void __exit mwl8k_exit(void)
3823 {
3824 pci_unregister_driver(&mwl8k_driver);
3825 }
3826
3827 module_init(mwl8k_init);
3828 module_exit(mwl8k_exit);
3829
3830 MODULE_DESCRIPTION(MWL8K_DESC);
3831 MODULE_VERSION(MWL8K_VERSION);
3832 MODULE_AUTHOR("Lennert Buytenhek <buytenh@marvell.com>");
3833 MODULE_LICENSE("GPL");
This page took 0.112368 seconds and 6 git commands to generate.